
Delft Center for Systems and Control

Generative Adversarial Nets
For generating synthetic Imaging Mass Spectrometry
data

Willem van der Linden

Th
es

is

Generative Adversarial Nets
For generating synthetic Imaging Mass Spectrometry data

Thesis

Willem van der Linden

June 25, 2024

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright ©
All rights reserved.

Abstract

This report investigates the use of Generative Adversarial Nets (GANs) specifically for over-
sampling Imaging Mass Spectrometry spectra. IMS is a technique used to measure the spatial
distribution of molecules, which is valuable in fields like oncology and biomarker discovery.
GANs, on the other hand, are a class of machine learning frameworks where two neural net-
works, the generator, and the discriminator, are trained simultaneously through adversarial
processes. The generator creates synthetic data, while the discriminator tries to distinguish
between real and synthetic data.

GANs-based oversampling aims to increase classifier performance by adding data to classes
that are underrepresented in the original data. Synthetic oversampling is especially relevant
in IMS data as the measuring technique is destructive, making acquiring more real samples
impossible. GANs have been shown to outperform other oversampling techniques such as
SMOTE on various datasets. Applying GANs directly to the dataset proved unsuccessful in
this oversampling task.

Different possible causes of the limited performance of the GANs are studied leading to
improved experiment results using spectra reduced in dimension and the Wasserstein GANs
with gradient penalty. Even though with these changes to the experiment the GANs appear
to generate more realistic data, using this data for oversampling does not increase overall
classifier performance. Rather, it steers the classifier to overfitting towards the minority
classes.

This report demonstrates that applying the designed GANs for oversampling minority classes
on this dataset does increase classifier performance. However, it is shown that GANs can be
trained on IMS data and that GANs might be of use for applications with IMS data besides
oversampling.

Thesis Willem van der Linden

ii

Willem van der Linden Thesis

Table of Contents

Preface vii

1 Introduction 1
1-1 Problem statement . 1
1-2 Goal . 2
1-3 Document overview . 2

2 Background 5
2-1 Imaging Mass Spectrometry . 5

2-1-1 Working principle of IMS . 6
2-1-2 IMS data . 7

2-2 GANs . 9
2-2-1 GANs basics . 10
2-2-2 Applied GANs . 14
2-2-3 GANs performance indicators . 17

3 Methods and data 21
3-1 Preprocessing . 21

3-1-1 Labelling . 21
3-1-2 Dimensionality reduction . 22
3-1-3 Scaling . 23

3-2 Oversampling . 25
3-2-1 Simple data augmentation . 25
3-2-2 SMOTE . 25

3-3 Classification . 26
3-3-1 Classifiers . 26
3-3-2 Linear discriminant analysis . 27
3-3-3 Classifier accuracy . 27

Thesis Willem van der Linden

iv Table of Contents

4 Paper 31
4-1 Introduction . 32

4-1-1 Synthetic minority oversampling . 32
4-2 Background . 33

4-2-1 Generative Adversarial Neural Nets . 33
4-2-2 Applied GANs . 35

4-3 Methods and data . 36
4-3-1 Preprocessing . 37
4-3-2 Quantitative evaluation . 38
4-3-3 Baselines . 39
4-3-4 Hardware and code . 40

4-4 Design . 40
4-4-1 Discriminator testing . 40
4-4-2 Generator design . 40

4-5 Experimental results . 41
4-5-1 Benchmark . 41
4-5-2 5 majority classes . 41
4-5-3 Influence of dimensionality . 42
4-5-4 Influence of number of classes . 43
4-5-5 Varying the latent space . 43
4-5-6 Training on majority and minority classes 44
4-5-7 Full dataset . 45

4-6 Conclusion . 45
4-7 Further research . 46

5 Design 49
5-1 Network architectures . 49

5-1-1 Building blocks . 49
5-1-2 Optimizer . 52

5-2 Discriminator Design . 52
5-2-1 Discriminator verification . 53
5-2-2 Final discriminator design . 54

5-3 Generator Design . 55
5-3-1 Design considerations . 55
5-3-2 Generator verification . 55
5-3-3 Final generator design. 56

5-4 Training and hyperparameters . 57
5-5 Benchmark . 57

Willem van der Linden Thesis

Table of Contents v

6 Experiments 59
6-1 Initial experiment . 59

6-1-1 Baseline results . 59
6-1-2 GAN quality . 60
6-1-3 Comparison . 61

6-2 Progressive experimentation . 62
6-2-1 wGAN-gp . 62
6-2-2 Noise reduction . 63
6-2-3 Dimensionality . 64
6-2-4 Model complexity . 64
6-2-5 Latent space dimension . 65
6-2-6 Number of classes . 65
6-2-7 Minority only training . 66

6-3 Final experiment . 66
6-3-1 Baseline results . 67
6-3-2 GAN quality . 67
6-3-3 Comparison . 68

Conclusion and Recommendations 69

A Murine Kidney 71
A-1 Baseline . 72
A-2 GANs results . 73

A-2-1 Conclusion . 73

B Anomaly detection 75

C Activation functions 77

D Additional neural net designs 81
D-1 Discriminator designs . 81

D-1-1 Fully connected networks . 81
D-1-2 Convolutional designs . 82

D-2 Generator designs . 83
D-2-1 Fully connected networks . 83
D-2-2 Convolutional design . 84

E Example spectra 87

Bibliography 89

Glossary 97
List of Acronyms . 97
List of Symbols . 97

Thesis Willem van der Linden

vi Table of Contents

Willem van der Linden Thesis

Preface

This document is my master thesis on "Generative Adversarial Nets for generating synthetic
imaging Mass Spectrometry data". This thesis is the final document, concluding over a year
of work on the subject. Throughout this period, I have reviewed the existing literature and
implemented the framework using real data. This document compiles the most significant
experiments and conclusions drawn from my research.

I would like to thank my supervisor Dr. ing. Raf van de Plas for the opportunity to work on
the frontier of AI applied to IMS data.

I want to thank Dr. Lukasz Migas for providing background information on the data used in
the various experiments.

A special thank you goes to my daily supervisor Ir. Roger Moens for the weekly meetings
and regular feedback, criticism, and motivation.

Finally, I want to thank all other PhD-candidates and students working on similar topics. The
regular group meetings were a great help and motivator to bring this thesis to a successful
conclusion.

Willem van der Linden
Delft University of Technology, June 25, 2024

Thesis Willem van der Linden

viii Preface

Willem van der Linden Thesis

“Generative AI is like a mischievous genie in a bottle, granting your wishes with
a twist of randomness and a sprinkle of absurdity. Just when you think you’ve
mastered it, it unleashes a dancing elephant in your data set!”
— ChatGPT

Chapter 1

Introduction

This work gives a practical introduction to using Generative Adversarial Nets (GANs) with
Imaging Mass Spectrometry Imaging Mass Spectrometry (IMS) data. IMS is a measurement
of the molecular mass distributions with respect to the spatial location. The resulting data
contains a mass spectrum for every pixel, making a dataset relatively large. In this work,
GANs are used to study the mass distributions i.e. the effect of adding generated spectra to
the original data in a classification task.

GANs are a relatively novel way to model the data distribution of data. To do this a paramet-
ric generator function maps noise from a set distribution to generated samples. A parametric
discriminator function aims to distinguish between generated and original data. Based on
the accuracy of the discrimination both parametric functions are updated until the generated
and original samples are indistinguishable. If the generated data is indistinguishable from the
original data the generator has successfully learned the distribution of the original data.

GANs have been applied for many different machine learning tasks such as clustering, clas-
sification, and anomaly detection. In this work, the focus is on generating data. To verify
that the data is of useful quality we use the data for oversampling minority classes. Useful
is here defined as sufficiently realistic data that can be interchanged with the original data
without changing classifier performance and the generated data should increase classification
performance if generated data is added to minority classes.

1-1 Problem statement

Minority classes are a common challenge in machine learning. A minority class is defined
as a class that is underrepresented in a dataset. Minority classes can hinder a classification
algorithm and might develop a bias toward the majority classes. A few different approaches
are used to reduce the negative effect of data imbalance. The easiest method is undersampling
majority classes, i.e. reducing the number of samples of overrepresented classes. This method
has the downside of throwing out samples and possibly reducing the variance in the dataset
thereby limiting classifier performance.

Thesis Willem van der Linden

2 Introduction

Ideally, minority classes are averted by measuring more samples, which is not always possible.
In the case of IMS data, a limiting factor for getting more samples is the destructive nature
of the measurement.

Another method to correct for so-called class imbalance is the synthetic oversampling of
minority classes. This means that additional, synthetic data is constructed such that the mi-
nority classes are represented as often as the majority classes. A naïve way to oversample data
is to copy samples. A common way to oversample data is by using SMOTE. Recently multi-
ple studies have shown that using GANs for oversampling instead of SMOTE can sometimes
result in better classifier performance[1, 2].

1-2 Goal

This project aims to show that GANs can be applied to IMS data and that using GANs can
lead to new methods for analyzing this data. To verify that GANs indeed learn the data distri-
bution of IMS data, this work specifically studies the use of GANs for oversampling minority
classes in IMS data. To do this, conditional GANs are trained on a multi-class (more than 2
classes) dataset. After training, the GANs are used for oversampling and the original training
dataset is extended by generated data. The resulting classification accuracy is measured on
a test set unseen by the classifier and GANs. The workflow of GANs-based oversampling is
given in Figure 1-1. Note, that instead of GANs, other oversampling techniques like SMOTE
follow the same workflow.

The resulting classifier results are compared to three baseline methods: adding no data,
adding simple augmented data, and adding SMOTE-generated data.

1-3 Document overview

The main results of this research including most relevant backgrounds and methods are sum-
marized in a paper included in this report as chapter 4. Besides this paper, the rest of this
report can be read as additional information for this paper:

In chapter 2 background information on both IMS data and GANs is given. This chapter
discusses some background on IMS techniques as well as preprocessing of data that is
outside of the scope of this project but still relevant for the data used. The section on
GANs goes in-depth on the theory behind adversarial learning, gives some examples of
different GANs in practice, and introduces performance indicators used to check the
quality of generated data.

In chapter 3 different techniques for scaling the data are introduced as well as the
baseline methods (SMOTE and data augmentation) and the classifier used in the ex-
periments.

In chapter 4 the paper is included, this paper can be read as a stand-alone document.

Willem van der Linden Thesis

1-3 Document overview 3

Baseline OversamplingTraining Data

Classifier

Evaluate
Test Data

Train GANs

Extend Training Data

Classifier

Evaluate

Figure 1-1: Workflow of GANs-based oversampling. On the left-hand side: the baseline where
only the unbalanced training data is used to create a classifier. On the right-hand side: the
same training data is used to train GANs these GANs are then used to generate minority samples
thereby extending the dataset. This extended dataset is used to create a classifier that is tested
against the same original test dataset as the baseline classifier.

In chapter 5 the steps for the design of the generator and discriminator functions are
explained. This chapter contains some tests to evaluate if the chosen function is suf-
ficiently complex to model the data. In this chapter, a benchmark test is included to
verify that the GANs are implemented correctly.

In chapter 6 different experiments are summarized. Using the results from these exper-
iments a final experiment on the full dataset is executed.

This document ends with a conclusion and recommendations for further research and different
research directions for GANs for IMS. The main results from these experiments are verified by
an additional dataset in Appendix A. Additionally, the appendix includes a short experiment
on anomaly detection Appendix B and alternative designs of neural networks.

Thesis Willem van der Linden

4 Introduction

Willem van der Linden Thesis

Chapter 2

Background

To use GANs for oversampling of IMS data, basic knowledge is required of the data and
the GANs framework. This chapter introduces some background information on IMS; the
basic working of IMS is explained, followed by information on IMS data in general and an
introduction to the dataset used for experimentation.

GANs are explored in depth, first, the basic optimization and notation are introduced followed
by some relevant modifications. As additional information, some applications of GANs beyond
data generation are given.

2-1 Imaging Mass Spectrometry

Imaging Mass Spectrometry (IMS) is a technique to measure the distribution of molecules
with respect to their spatial location, i.e. Mass Spectrometry (MS) on a spatial grid. MS
allows for the label-free discovery of the chemical composition of a sample. By measuring
the mass spectra for every pixel in a grid a spatial resemblance of the different spectra is
captured.

An analogy can be made with other imaging techniques such as fluorescence microscopy or
hyperspectral imaging. Where most known imaging techniques capture color (light ranges)
for every pixel, IMS captures different molecular masses.

IMS has huge potential in different fields. For example, in oncology research, IMS can be used
to expedite drug development as it allows for the study of the effect of drugs on the tumor
microenvironment[3]. Another application is in biomarker discovery in toxicity studies. IMS
can be used to study the effects of administered drugs on a tissue sample, giving insights into
the possible adverse effects of the medicine[4].

Imaging mass spectrometry is a rapidly growing field, as evidenced by the increasing number
of publications shown in Figure 2-1. Research in the IMS field goes into the applications e.g.
drug development[5, 6] as well as statistical and dimensionality reduction methods to process
the vast amounts resulting from an IMS process.[7, 8]

Thesis Willem van der Linden

6 Background

Figure 2-1: Number of publications on ‘mass spectrometry imaging’, based on search results on
PubMed. (From [9])

In the following sections, an introduction to the working principle of IMS is given, followed
by an introduction to IMS data in general as well as the IMS data that is used in the rest of
this work.

2-1-1 Working principle of IMS

Imaging mass spectrometry is mass spectrometry on a spatial grid. The working principle of
IMS therefore is very similar to mass spectrometry. An ionizing probe is used to ionize a part
of a sample. Ions break from the sample and are captured and measured by a mass analyzer.
For ionization, capturing and measuring different techniques are available. In Figure 2-2 IMS
is visualized, at the top left a piece is tissue is ionized by a UV laser. Every red dot is a spot
where the tissue is measured resulting in a mass spectrum visualized in the top right. If for
every pixel the same mass bin is selected a spatial view of the intensity of the selected mass
is generated as shown in the bottom right corner.

The most used form of ionization in IMS appears to be Matrix Assisted Laser Desorption and
Ionization (MALDI). In MALDI a matrix solution is applied to the sample before measuring.
This matrix reduces the wear of the sample thereby allowing for more distinguished masses
can be measured before the tissue becomes too damaged and the measurement unreliable.
MALDI allows for large mass ranges to be measured; from 100 up to 500.000 m/z[10].

Another technique for ionization is Secondary Ion Mobility Separation (SIMS). SIMS has a
higher spatial resolution than MALDI, however, the maximum mass-to-charge ratio that can
be measured is relatively limited to approximately 1000m/z[10].

A method for measuring the ion stream often combined with MALDI is Time Of Flight (TOF).
TOF accelerates the ions with short electromagnetic pulses. By measuring the resulting
velocity (time in which the ions fly a certain distance) the acceleration and therefore the mass
relative to the given charge can be calculated. In (2-1) the two physical principles used for
calculating the mass-to-charge ratio are given; Newton’s second law of motion and Lorentz

Willem van der Linden Thesis

2-1 Imaging Mass Spectrometry 7

Figure 2-2: Principle of MALDI IMS. Top left: data collection, top right: mass spectrum of a
single pixel, bottom left: tissue sample, bottom right, spatial representation of single mass bins.
From[5]

force[11].

F = ma

F = q(E + v ×B)
ma = q(E + v ×B)

m

q
= E + v ×B

a

(2-1)

In (2-1) F is the force applied to the ion, q is the charge of the ion, E is the electrical field,
and v × B is the vector cross-product of the ion velocity and applied magnetic field. The
mass-to-charge ratio m/z is dimensionless as z is proportional to the charge of a proton e
i.e. z = q/e. Depending on the ionization method used ions can have different charges which
leads to the observation that e.g. an ion of 12 Dalton (carbon-12) is detected as 12m/z for
single-charged ions while the same mass is detected as 6m/z with double-charged ions.

2-1-2 IMS data

An IMS dataset contains a mass spectrum for every pixel as shown in Figure 2-2. As every
mass bin is represented in every pixel, a spatial view of the mass intensities of single mass
bins can be created as shown in the bottom right of Figure 2-2. The number of mass bins, in
this work, considered the size of the spectra, is dependent on the mass range as well as the
mass resolution (or mass resolving power) used during the measurement. The mass resolving
power or the separation between peaks is denoted ∆m and the ratio m/∆m can be used to
measure the ability of the mass spectrometer to separate ions[12].
The raw data resulting from an experiment undergoes multiple processing steps such as
smoothing, baseline correction, peak alignment, and peak picking to prepare the data for

Thesis Willem van der Linden

8 Background

downstream statistical analysis[13]. Peak picking reduces the signal-to-noise ratio and aims
to select the peaks needed for analysis. Additionally, peak integration can be used together
to combine neighboring peaks, thereby decreasing the number of peaks[14].

An imaging mass spectrometry data set quickly grows in size as it is a 3D tensor with two
spatial dimensions commonly denoted x and y and one mass dimension. A single pixel of this
tensor contains a single spectrum and looking at one m/z-bin results in a 2D image as shown
on the right side of Figure 2-2. Using a higher number of peaks, either a larger ranger or with
a lower mass ratio, or a higher spatial resolution drastically increases the size of the dataset.
Datasets of multiple GB up to hundreds of GB are not uncommon, which makes it difficult
to process. e.g. A dataset of multiple GB can not be loaded (into working memory) in its
entirety on a simple laptop let alone being able to do analysis.

To make analyzing the large IMS datasets less difficult, i.e. possible on simpler hardware, a
lot of attention from the IMS research is focused on dimensionality reduction. Dimensionality
reduction aims to reduce the data size while preserving the most important features captured
in the dataset. Examples of dimensionality reduction are principal component analysis (PCA)
and non-negative matrix factorization (NMF). In multiple experiments in chapter 6, dimen-
sionality reduction in the form of NMF is used. NMF is especially attractive for IMS as the
data is inherently non-negative.

NMF splits the dataset (matrix) into two smaller matrices by minimizing the difference of
the original data and a multiplication of the two smaller matrices. In (2-2) X denotes the
data matrix of N spectra of size n, W denotes the weights and H can be seen as a matrix
containing base spectra that build up the original spectra. c Is the number of weights or base
spectra that should be used to approximate X. The difference is in this case calculating using
the squared Frobenius norm, as this was used in the experiments as well.

min
W,H≥0

||X −WH||2F

Where X ∈ RN×n
+

W ∈ RN×c
+

H ∈ Rc×n
+

(2-2)

Data used for experimentation

For experimentation (see chapter 6) a mouse kidney with a Staphylococcus bacterial infes-
tation is used. In Figure 4-1a the total ion count of every pixel is given. The shape of the
kidney is visible, the two lighter areas show where the bacterial colonies are located.

The infected mouse kidney was obtained from the Skaar Laboratory (Vanderbilt University),
snap-frozen at -80 °C, and cryo-sectioned at 10 µm thickness, using a CM3050 S cryostat.
The tissue was thaw-mounted onto a conductive indium tin oxide-coated glass slide. DAN in
a solution of 90% acetonitrile was sprayed at a surface density of 3.6 /mm2 at 85 °C; 1:1 ratio
of carbonate buffer (pH 10.3) and 250 mM sodium acetate in a solution of 30% methanol
sprayed at a surface density of 6.8 µg/mm2 at 85 ◦C.

Willem van der Linden Thesis

2-2 GANs 9

Figure 2-3: Total ion count, all intensities measured in one pixel summed

The mouse kidney data was acquired using the timsToF fleX (MALDI) mass spectrometer
(Bruker Daltonik, Bremen, Germany) in Quadrupole Time Of Flight (QTOF) mode of oper-
ation. Tissue imaging data (161,547 pixels) were collected at 15 µm pixel size using 500 shots
per pixel and 53% laser power in negative ionization mode from m/z 400 to 1,400.

The data was peak integrated, resulting in 573 mass bins for every pixel. The resulting peaks
are not equidistant. The average distance between peaks is 1.2 Dalton, but Figure 2-4 shows
that the peaks are not equally spaced. During experimentation the spacing between mass bins
is not considered, i.e. no adjustments are made to compensate for unequal distance between
bins.

Figure 2-4: Total ion intensity for every mass bin, on the y-axis the intensity and on the x-axis
the mass to charge ratio.

2-2 GANs

Generative Adversarial Nets (GANs) is a relatively novel way to learn the underlying distri-
bution of data. As the name suggests, multiple neural nets are pitted against each other. The

Thesis Willem van der Linden

10 Background

basic GANs consist of two neural networks; a generator network maps a noise vector to a
generated sample and a discriminator network judges if a sample is either real or generated.
By updating both networks, eventually, the generator can generate samples indistinguishable
from the original data.
In this section, GANs are introduced in two parts:

• In subsection 2-2-1 is explained how GANs work. The original adversarial loss function
as well as different extensions and modifications are introduced.

• In subsection 2-2-2 a few examples of how GANs are used in practice are given. This
includes the

Additionally, in subsection 2-2-3 different validation methods used for the quality control of
GANs are introduced.

2-2-1 GANs basics

GANs were first introduced in 2014[15]. Like most variations of GANs, the original GANs
use a generator function to map noise to a generator output and a discriminator function
(sometimes called a critic function[16]) that tries to distinguish between real and generated
samples. The goal of the generator function is to model the data distribution. What sets
GANs apart from most other machine learning-based modeling techniques such as auto-
encoders is that a learned function provides the error.
Figure 2-5 shows the layout of the basic GANs data flow. Noise with a distribution pz is used
as input to a parametric generator function. The generator outputs generated samples with
distribution pg. The discriminator predicts if its input is real i.e. from pdata or generated i.e.
from pg

Generator DiscriminatorNoise

Real data

Real/
Fakepz pg

pdata

Figure 2-5: Scheme of basic GANs-framework

To update the two parametric functions the minimax-optimization scheme is given in (2-3).
Note that in this work the parameters of the generator and discriminator functions are left out
for readability. e.g. Optimizing over the parameters of G means optimizing the parameters
θG but is denoted as optimizing G.

min
G

max
D

V (G, D)

V (G, D) = Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]

= Ex∼pdata
[log(D(x))] + Ex̂∼pg [log(1−D(x̂))]

(2-3)

Willem van der Linden Thesis

2-2 GANs 11

In (2-3) x denotes an original sample from the original data distribution pdata, z denotes a
noise realization from the noise distribution z and x̂ a sample generated from z i.e. x̂ =
G(z). This expression of the adversarial learning procedure is based on binary cross-entropy,
a common optimization statement used for binary classification based on regression. The
task of the discriminator can be seen as a binary classification between real and generated
samples. A sigmoid function is used as the output of the discriminator function, meaning
that D(·) ∈ (0, 1).

The min-max problem is considered optimal if changing G or D does not increase or decrease
the score of V (G, D). The optimal solution for this problem is a Nash equilibrium, denoted
V (G∗, D∗). Formally, a Nash equilibrium can be written as in (4-4)[17]. In other words, if
the generator is optimal any discriminator will result in a lower value than the value from the
of the optimal discriminator, and if the discriminator is optimal any not optimal generator
will result in a higher function value.

V (G∗, D) ≤ V (G∗, D∗) ≤ V (G, D∗) (2-4)

Finding the theoretical optimum of (2-3) is fairly straightforward. First, an expression for
the optimal discriminator is found by writing out the expectations and using a change of
variables. Note that here is assumed that the resulting generated samples x̂ are optimal and
therefore one expectation over both original and generated samples is the same as the two
separate expectations. From this, the derivative over the samples is set to zero resulting in
an expression for the optimal discriminator. (2-5)

V (G, D) =
∫

x
pdata(x) log(D(x))dx +

∫
x̂

pg(x̂) log(1−D(x̂))dx̂

=
∫

x
pdata(x) log(D(x)) + pg(x) log(1−D(x))dx

d

dx
V (G, D∗) = d

dx

∫
x

pdata(x) log(D∗(x)) + pg(x) log(1−D∗(x))dx = 0

⇒ D∗(x) = pdata(x)
pdata(x) + pg(x)

(2-5)

The optimal generator G∗, in theory, produces samples indistinguishable from the original
samples, i.e. pg = pdata. Therefore, from (2-5) it follows that V (G∗, D∗) = −log(4). This
can be interpreted as the discriminator not being able to distinguish original from generated
data and predicting 1

2 on average. The function value V (G, D) reaching − log(4) does not
mean the global optimum is reached; a discriminator that can’t distinguish between real and
generated samples will return these values no matter the quality of the samples.

Additionally, it is assumed that the generator can learn to accurately replicate the distribution
pdata. However, this means that the generator should have the capacity to learn this data
distribution. A simple example of how this capacity could be a problem is if the original data
is standardized, meaning that approximately 98% will be within the range of (-3,3), but the
output of the generator function is determined by a tangent hyperbolic function all values
outside of (-1,1) range will never be generated.

In general, for GANs can be stated that a Nash equilibrium might not exist, which is proven
(by counterexample) for multiple different GANs[18].

Thesis Willem van der Linden

12 Background

conditional GANs

The GANs framework can easily be extended to include class labels. This was first introduced
by the conditional GANs (cGANs)[19]. In this case, both the generator and discriminator are
conditioned by a label. The noise input to the generator is extended with an encoded class
label, commonly implemented using one-hot encoding or an embedding layer (the latter is
used in this work). Similarly, the labels are added to the original and generated samples as
input to the discriminator. In Figure 2-6 the schematic of the cGANs is given. Note that the
class label is used as an input to the discriminator and is not given as an output. In contrast
to e.g. ACGAN (see subsection 2-2-2), cGANs can not be used for classification directly.

Generator DiscriminatorNoise

Label

Real data

Label

Real/
Fake

pz

y

y

pg

pdata

y

Figure 2-6: Flow diagram of conditional Generative Adversarial Networks (cGANs).

The original GANs optimization given in (2-3) is extended by using the class labels as inputs
to the generator and discriminator function as seen in (2-6). The main benefit of using cGANs
over the original GANs is the ability of the GANs to distinguish between different modes of
labeled data. First and foremost, this helps in training the GANs by allowing for mode (class)
specific learning. Secondly, cGANs allow for class-specific data generation; by giving a specific
class label to the generator a sample supposedly belonging to that class will be generated.
This is necessary for the minority class oversampling as intended in this work.

min
G

max
D

V (G, D)

With V (G, D) = Ex∼pdata(x|y)[log(D(x, y))] + Ez∼pz(z|y)[log(1−D(G(z, y)))]
(2-6)

In (2-6) the conditional expectations are denoted Eq∼pQ(q|y) i.e. the expectation of sample q
is being from the distribution of Q conditioned on y.

Alternative adversarial loss

Optimizing the generator and discriminator function can be a tedious process. The original
GANs have a major downside; the quality of the update steps is dependent on the quality of
the discriminator. If the discriminator is insufficiently trained the function value of V (G, D)
is not useful for updating the generator. If the discriminator is near perfect, however, the
function V (G, D) goes to zero meaning that using gradient descent-based methods does not
update either function sufficiently and the training progression comes to a halt.

Willem van der Linden Thesis

2-2 GANs 13

A solution to this problem is training the discriminator for multiple steps with the hope of
the discriminator staying slightly ahead of the generator. However, setting a hyperparameter
to sufficiently train the discriminator without it becoming too far ahead and the value of
V (G, D) going to zero, is difficult as the convergence rate changes during training depending
on the performance of the adversary.
The problem described above can be solved by using the Wasserstein Generative Adversarial
Nets (WGANs)[16]. Using the WGANs architecture and optimization scheme the discrimina-
tor can be trained for an unlimited number of steps without the training becoming unstable
or stopping (e.g. V (G, D) going to zero). As written in the publication and motivated by
studying the equations below, training the discriminator to optimality provides a better gradi-
ent for the generator update, and therefore the discriminator should be trained to optimality
before every generator step.
The WGANs optimization function is motivated by the Wasserstein distance measure. The
original GANs optimization is related to the Jensen-Shannon (JS) divergence. The JS diver-
gence measure becomes constant if the distribution of the real and generated data distribution
does not intersect[16].
A more promising distance metric is the Wasserstein distance also referred to as Earth Mover
(EM) distance. EM refers to how much it costs to move all parts of one distribution to the
other. This distance metric is defined as follows:

W (Pdata,Pg) = inf
γ∈

∏
(Pdata,Pg)

E(x,y)∼γ [||x− y||] (2-7)

Where
∏

(Pdata,Pg) is the set of all joint distributions γ(x, y) whose marginals are Pdata and
Pg. To evaluate the Wasserstein distance effectively, some derivations are needed. Using the
Kantorovich-Rubinstein duality the Wasserstein distance can be written as a supremum under
the condition that f(·) is a Lischitz-1 function (denoted ||f ||L ≤ 1)

W (Pdata,Pg) = sup
||f ||L≤1

Ex∼Pdata
[f(x)]− Ex∼Pg [f(x)] (2-8)

To enforce the Lipschitz constant in the given optimization problem all weights should be in
a constraint set.

max
w∈W

Ex∼Pdata
[fw(x)]− Ex∼Pg [fw(x)] (2-9)

To enforce weights being in this set, the weights are clipped to [-c,c]. c Here is a hyperpa-
rameter that should be chosen before training. To implement the EM first the output layer
of the Discriminator is changed from a sigmoid function to a linear function. This changes
the range of the output from (0, 1) to (−∞,∞).
In the paper is pointed out that clipping the weights is not a good way to enforce the Lips-
chitz constraint. Also, choosing bounds that are too large might again result in a vanishing
gradient, and choosing bounds too small can lead to slow or even no convergence. wGANs-
gp! (wGANs-gp!) [20] proposes to add another term to the loss function to act as a
penalty function. Penalty functions are a common way in (nonlinear) optimization to enforce
constraints[21].

L = min
θG

max
θD

Ez∼Pz [D(G(z))]− Ex∼Pdata
[D(x)]︸ ︷︷ ︸

Wasserstein Loss

+ λEy∼Py [(||∇yD(y)||2 − 1)2]︸ ︷︷ ︸
(Weighted) gradient penalty

(2-10)

Thesis Willem van der Linden

14 Background

Where Py is sampled uniformly along straight lines between pairs of points of Pg and Pdata.
λ is the penalty coefficient in the paper λ = 10 is used. Literature empirically shows that
using this penalty function results in faster convergence than the original WGAN on multiple
example datasets[20].

Deep convolutional GANs

GANs can take a long time to converge or even not converge at all[22].Some of the issues
occurring during training can be reduced using e.g. the Wasserstein GANs presented in
section 2-2-1. Instead of changing the optimization, additional attention to the generator
and discriminator function can also increase stability and convergence rate. The paper on
Deep Convolutional Generative Adversarial Nets (DC-GANs)[23] provides multiple guidelines
for creating better-suited neural networks. The largest change is using strided convolutions
for the discriminator and fractional strided convolution layers instead of the fully connected
layers used in previous works. So-called Deep Convolutional GANs (DC-GANs) form the
basis of many different commonly used GANs such as StyleGANs[24, 25, 26].

Next to the use of convolutional layers, the use of batch normalization and LeakyReLU
activation layers is recommended. Even though DC-GANs show fast convergence in different
publications no guarantee can be given that the DC-GANs perform better than other GANs.
DC-GANs[23] uses the original optimization function given in (2-3), however, the DC-GANs
network architectures can be used with different optimization schemes, such as the WGAN
optimization presented in section 2-2-1.

2-2-2 Applied GANs

The GANs on itself can be used for generating data, by using the trained generator, or for
anomaly detection, by using the trained discriminator. This work mostly focuses on the data
generation of GANs, but with different modifications, GANs can be used for other tasks such
as clustering or classification. In the following sections, some background information is given
for applying GANs directly for downstream tasks.

Classification with GANs

In this work, the focus is on generating data and looking at the effect of adding this data
to a dataset used with an external classifier. Instead of using an external classifier, GANs
can be used for classification directly. Classification is a well-known example where machine
learning excels[27]. The discriminator of GANs on itself already is a classifier. It checks if
the sample belongs to the “real class” or the “fake class”. If the discriminator is sufficiently
trained on specific samples it can act as a classifier directly, this principle is for example used
for anomaly detection (section 2-2-2).

Auxiliary Classifier Generative Adversarial Nets (AC-GAN)[27] extend the original GANs by
using the discriminator as a classifier. Similar to conditional Generative Adversarial Nets
(cGANs) (see section 2-2-1) the Generator takes a class label as input resulting in a fake
sample x̂ = G(z, y) where z is the input noise and c is the class label. In contrast to cGANs,

Willem van der Linden Thesis

2-2 GANs 15

AC-GAN does not provide labels to the discriminator. Instead, the discriminator outputs a
label (as well as the real/fake prediction) as shown in Figure 2-7. This is implemented using
a Softmax activation function on the final layer of the neural network, parallel to the sigmoid
activation (used for real/fake classification).

Generator DiscriminatorNoise

Class

Real data

Real/
Fake

Predicted
Class

pz

y

pg

pdata

Figure 2-7: Flow diagram of AC-GAN

In addition to the changes to the layout as shown in Figure 2-7, additional changes are made
to the optimization problem to include a term for the classification performance. Specifically,
the generator aims to maximize Lc − Ls and the discriminatory aims to minimize Lc + Ls.
Where Lc is the classification-loss given in (2-11) and Ls given in (2-12) is the adversarial loss
similar as seen before in (2-3) and (2-6). (2-11) contains the expectations of the discriminator
predicting the correct class y.

Lc = Ey∼py log(D(x)) + Ec∼py log(D(G(c, y))) (2-11)

Ls = Ex∼pdata(x)log(D(x)) + Ez∼pz(x|y)log(1−D(G(c, y))) (2-12)
The intended task for AC-GAN is condition data synthesis, where the auxiliary classification
task aims to better replicate the full data distribution. What makes the AC-GAN useful for
classification is the data efficiency; the number of labeled samples can be relatively limited
[28]. The original AC-GAN suffers from stability issues during training, especially with a
higher number of classes. Some improvements have been made to the AC-GAN, for example,
an extension to the optimization function is made resulting in more variance in the generated
samples[29].

Clustering with GANs

Bidirectional Generative Adversarial Nets (BiGAN)[30] extends the normal GANs framework
by adding an encoder that encodes the input sample x to a latent space z. In Figure 2-8 the
BiGAN architecture is shown. The encoder E should learn to invert the generator G. The
learned latent representations z can be used as labels.
The original minimax formulation given in (2-3) is changed to include the encoder:

min
θG,θE

max
θD

V (D(θD, ·), E(θE , ·), G(θG, ·))

With V (D, E, G) = Ex∼pdata
[Ez∼pE(·|x)logD(x, z)︸ ︷︷ ︸

logD(x,E(x))

] + Ez∼pz [Ex∼pG(·|z)log(1−D(x, z))︸ ︷︷ ︸
log(1−D(G(z),z))

]

(2-13)

Thesis Willem van der Linden

16 Background

Figure 2-8: flow diagram of BiGAN (from [30])

Where Ez∼pE is the expectation of z being either the original z or the output of the encoder
E(x) and Ex∼pG is the expectation of x being either generated (G(z)) or a real sample (x).
The discriminator uses both the latent input and an example (real or generated data) as input
as shown in Figure 2-8.

BiGAN is compared to other methods for unsupervised classification on multiple different
datasets. In the tests presented, it outperformed other methods such as k-means clustering.

Other methods similar to BiGAN are InfoGAN[31], Adversarial Learned Inference (ALI)[32]
and ClusterGAN[33].

Anomaly detection with GANs

Detecting anomalies is a challenging and important problem, faced in many fields a.o. in
manufacturing [34, 35], medical diagnosis[36, 37] and fraud detection[38]. Anomalies can be
defined as; “examples that do not follow the general pattern present in the dataset”[36].

GANs can be used for unsupervised anomaly detection directly i.e. without changing the
framework or optimization. By training GANs on only non-anomalous data, the discriminator
can be used as a binary classifier to detect anomalies. A successfully trained discriminator
will predict anomalous samples to be fake or generated.

Different studies use a modified GAN architecture to increase further the effectiveness of
detecting anomalies. For example, AnoGAN[39] uses the original framework but extracts
the features of the final hidden layer of the discriminator to show where anomalies are on
an image. For extracting these features an additional step is needed for every new sample,
making AnoGAN a time-consuming method for anomaly identification.

Other variations of GANs for anomaly detection include GANomaly[40] and EGBAD[41].
Both of these architectures use the approach of the bidirectional GANs described in section 2-
2-2. EGBAD performs better in terms of accuracy than GANomaly on multiple different
datasets[42].

In Appendix B an anomaly detection experiment is included that uses the original GANs.
This experiment shows nicely how a trained discriminator can be used to detect anomalous
spectra.

Willem van der Linden Thesis

2-2 GANs 17

2-2-3 GANs performance indicators

In machine learning, the optimization function, usually called loss function, can be a good
indicator of how well the algorithm is doing. For example, binary cross entropy (BCE) or
mean squared error (MSE) will decay towards zero as the algorithm becomes better. With
the adversarial loss, there is no such luxury, as the loss or optimization value is dependent on
the performance of the discrimination. As seen in subsection 2-2-1 the theoretical optimum
of the GANs either is not reached or the optimal value is reached even though the generator
is not optimal. In literature is spoken about interpretable loss i.e. the value of the loss is no
direct indicator of performance[17].

Instead of looking at the loss function for performance, GANs are usually validated after
training by multiple different performance indicators. The performance indicators can be
split into two groups, quantitative measures that put a value on the performance, and quali-
tative measures that depend on user experience. A nice overview of methods used for GANs
validation is given in two papers[43, 44]. Some of these performance indicators are also used
to check training progression and determine stopping criteria. For example by generating
samples over time and seeing how these samples become more recognizable (by human ex-
perts) over time or by calculating a quantitative indicator such as the Inception Score at every
(few) iteration(s) to show the trend of this score.

Qualitative validation

Qualitative methods for validating the generated output rely on user experience. For example,
in images, especially natural images, the generated samples should be similar to the real thing
to the human user. Many different ways of qualitative validation methods are used, most
notably:

• Turing test variations; used by [45]
• Rapid scene categorization, where individuals are briefly shown real and generated sam-

ples and have to decide which is which[46].
• Preference Judgement, where individuals rank different generator models based on gen-

erated output. (Comparing different synthetic images without real images)[43].

The methods above are primarily useful for natural images. For other types of data, the
downside of needing experienced users becomes more and more difficult, as the distinguish-
able features might not be as apparent. Additionally, qualitative methods can fail to detect
overfitting or mode collapse, i.e. a user might not notice that generated samples have little
to no variance.

For IMS data, looking at comparing real and generated spectra can give a first indication of
the quality of the generated samples. For example, in some experiments, it is very clear that
the generated samples have very little variance i.e. all generated spectra look the same while
in comparison the original spectra show some variation between the samples.

To further help with qualitative validation, next to plots of the spectra a plot is generated
with the mean of the spectra (original and generated) with around it a shaded area of three

Thesis Willem van der Linden

18 Background

times the standard deviation. Figure 2-9 shows such a result as an example. Here it is
clear that the mean of the generated data follows the same trend as the real data, however,
the standardization of the generated spectra is limited, meaning the generator is overfitting
towards the mean of the data. Note that in this image, and other in images of this kind, these
spectra are plotted as a continuous line for ease of inspection. The values the interpolated
lines take between mass indices should not be assigned any meaning.

Figure 2-9: Example of a spectral plot used for quality control, here the mean and 3 times
standard deviation of both the original (test) and generated data are given. The data is generated
and scaled back to its original scale. On the x-axis the mass bin index, and on the y-axis the
intensities in the original scale

Quantitative validation

Especially for comparing different GANs or different discriminator and generator architec-
tures, a quantitative evaluation of the generated data is necessary. The most common methods
of quantitative validation seen in the literature are the Inception Score and Fréchet Inception
Distance (FID). Those two methods rely on a pre-trained neural network (Inception) for
image recognition. In this work, the focus is on spectra meaning that the Inception-based
scores can not be used. However, taking inspiration from the FID, the Fréchet Distance (FD)
can be used.

Another method very useful for validating GANs generated data is using classification perfor-
mance as an indicator of data quality. This method uses an external classifier and compares
classifier results. Below both the FD and classification methods are further explored. In
chapter 6 these two methods are used in the experiments.

Fréchet distance
The FD is a distance measure based on the Wasserstein-2 distance for normal distributions.
The FID measures this distance on an intermediate layer of the Inception model. This distance
measure can be used on the features as well under the assumption that the data follows a
(multivariate) normal distribution. This distance measure is on the data directly in literature
as well[47].

The FD distance is the minimal l2 distance between two multivariate normal distributions
P = N (µX , ΣX) and Q = N (µY , ΣY). Here µ and Σ are the mean and covariance respectively.
Writing out this l2-norm given in (2-14) gives the derivation and definition given in (2-15).
The full derivation and motivation of the FD measure is given in [48].

Willem van der Linden Thesis

2-2 GANs 19

FD2(P, Q) = min
X,Y
|X − Y |2 (2-14)

FD2(P, Q) = |µx − µy|2 + |σx − σy|2

= |µx − µy|2 + tr(Σ2
x + Σ2

y − 2(ΣxΣy)1/2)
(2-15)

Where:

P = N (µx, Σx), µx ∈ Rn, Σx ∈ Rn×n

Q = N (µy, Σy), µy ∈ Rn, Σy ∈ Rn×n

Σx = σxσ⊤
x

Σy = σyσ⊤
y

(2-16)

This FD score is used in different ways. First, it is used as an online performance indicator
to determine if the GANs are still improving. In Figure 2-10 an example is shown of the FD
distance decreasing over time. On the horizontal axis are the iterations of the GANs and the
y-axis shows the FD distance. This distance is calculated between the generated data and an
unseen test set. Note that the scale of the data (standardization or otherwise as introduced in
subsection 3-1-3) influences the value the FD takes. To compare between different runs, with
e.g. other classes it can be useful to scale the data back before calculating the FD-distance.
A plot over time is only used as an indicator of the progress of the GANs.

Figure 2-10: FD distance between generated and original samples

A second way how the FD is used is by looking at the scaled-back data and comparing the FD
of the generated data with the FD of the original data. For example, looking at the distance
between the original training data and original test data or looking at the training data of a
specific class compared to the training data of another class. The intuition behind these two
examples is that the generated data should ideally be as close to the test data as the training
data. And that the distance between the generated data of a certain class should be closer
to the original data of that class.

Thesis Willem van der Linden

20 Background

These results can be visualized in a matrix as shown in Figure 2-11. Here five classes are
used and the FD is determined between test data and generated (fake) data. If the data is
sufficiently well generated the expectation is that the the FD is low on the diagonal meaning
that the generated distribution of a certain class is closest to the real distribution of that
class.

FD-distance

Figure 2-11: FD matrix of GANs trained on 50 NMF features of 5 majority classes. For reference,
the FD between the total train and test set in this experiment is approximately 30.000. All values
are based on data being scaled back to its original scale.

Classifier accuracy
Another method is using generated data to train a classifier and see how well the classifier
does on original test data. This method is substantially different from the oversampling task;
in this method, all original data in the training set is replaced by the training data. The
resulting classification scores can be compared to classifier scores if it was trained on the
original data.

An alternative way is to use a classifier fitted on the original data and a generated test set
to see if the generated data is classified correctly. This approach has a major downside: if
all data belonging to the same class is the same, i.e. no variance exists within the class. The
classifier accuracy can be high as all data is classified correctly, however, the data is not useful
for oversampling.

In the experiments, this method is used to study the effects of the dimension of the data and
the effect of the number of classes. For a quick indication, one can look at the average recall
score and the recall-confusion matrix. For a more detailed comparison between the resulting
classifiers, one can look at the recall and precision scores for each class separately.

Willem van der Linden Thesis

Chapter 3

Methods and data

The data used for the experiments in chapter 6 is already briefly introduced in subsection 2-
1-2. In this chapter, the steps needed to use this data are explained. In section 3-1 the initial
steps to prepare the given data for the experiments are given. After this, in section 3-2, the
motivation behind oversampling as well as different oversampling techniques are summarized.
As a final step, the used classifier is introduced in combination with methods to measure the
accuracy of the classifier.

3-1 Preprocessing

The provided data consists out of a large data file and a file containing the semi-orthogonal
NMF matrices. From these matrices, every original spectrum is assigned a cluster, henceforth
referred to as a class. After assigning class labels and selecting a subset of the data to use for
an experiment, the data is scaled such that all values are within a set range.

During experimentation, some results are based on a reduced number of features; a dimen-
sionality reduction step is performed on the data between selection and scaling. The methods
used for the labeling, dimensionality reduction and scaling are explained below.

3-1-1 Labelling

For the task of classification, labeled data is needed. The provided labels are created using
semi-orthogonal-NMF. Semi-orthogonal NMF is a special kind of Non-negative matrix fac-
torization (NMF) where the weight matrix of W has an orthogonality constraint: WW ⊤ = I.
This constraint results in a clustering property, as every row of W has a single non-zero
entry[49]. The index of this entry is the cluster where the sample corresponding to that row
is assigned to.

NMF splits the data into a base-spectra matrix H with every row holds a spectrum repre-
sentation. The weight matrix W has a weight of how much the corresponding base spectrum

Thesis Willem van der Linden

22 Methods and data

Figure 3-1: Clustered data

Class #Samples % Class #Samples %
1 14056 8.70% 11 12937 8.01%
2 2343 1.45% 12 14463 8.95%
3 9485 5.87% 13 4523 2.80%
4 679 0.42% 14 3257 2.02%
5 18 0.01% 15 6416 3.97%
6 449 0.28% 16 722 0.45%
7 16147 10.00% 17 15149 9.38%
8 11969 7.41% 18 6118 3.79%
9 18443 11.42% 19 14591 9.03%
10 5955 3.69% 20 3827 2.37%

Table 3-1: Number of samples of each class

is represented in the original spectrum on every row. Adding the orthogonality constraint
results in a H matrix containing several base spectra and a W matrix that assigns every
original spectrum to a single base spectrum.

The spatial location of the resulting clustered spectra can be visualized by color coding each
cluster as shown in Figure 4-1b. This figure shows some of the features present in the data
such as the location of the bacterial colonies visible as two circular areas. In this image, it is
clear that not every color (cluster) occurs in equal amounts. The number of samples (spectra)
in each class is given in Table 3-1.

3-1-2 Dimensionality reduction

During experiments, the effect dimension of the samples is researched by changing the number
of features. To reduce the feature space NMF is used to split the data into a W and H
matrix where W contains a number of weights for every sample. These weights are used as
a representation of the original spectra in a lower dimensional space. All analysis in these

Willem van der Linden Thesis

3-1 Preprocessing 23

lower dimension experiments is done on the weights and not the original mass bins. This
means that the GANs learn to generate weights and the classification steps are also done on
the weights.

The generated data can be scaled back to the original space by multiplying the generated
samples by the H matrix. In this method there are two sources where the quality of the
generated samples can be hindered; dimensionality reduction by NMF is not loss-less and
NMF is not guaranteed to find the optimal solution.

The dimensionality reduction step is implemented using the Scikit-learn library[50]. The
initialization method is set to ‘nndsvd’ (Nonnegative Double Singular Value Decomposition)
as this was the standard in older library versions. The maximum number of iterations is set
to 500 (default is 200).

3-1-3 Scaling

In literature, a lot of focus is on applying GANs to images with pixel values commonly
in the range of 0 to 255. The original GANs[15] use a sigmoid generator output meaning
that all values have to be scaled to a range of 0 to 1. DC-GAN suggests using a tangent
hyperbolic output[23], giving a range of -1 to 1. The choice for the Tanh function over the
sigmoid function is the steeper gradient around 0 this function provides, which allows for
faster converging GANs.

To have all data in the range achievable by the generator, the data has to be scaled. This
is commonly done by min-max-scaling[23]. However, as the IMS data at hand is not in the
typical range of 0 to 255 but has many outliers with values well over 500.000 multiple scaling
methods are considered. Below a short overview of the methods is given.

Similarly to the dimensionality reduction step, the data can be scaled back to have both the
original data and generated data in the same scale. This scaling is with all classes used for the
experiment at once. This means that for standard scaling a single class has not necessarily
zero mean and unit variance for all mass bins.

Minmax scaling

Minmax scaling first reduces all values by subtracting the lowest value everywhere. Next, all
values are divided by the largest difference in the data. This results in the data being in the
range of 0 to 1. All data is then multiplied by 2 and 1 is subtracted to get the range -1 to 1.
In (3-1) xi is a single datapoint in the original dataset, x̃i denotes the scaled datapoint, and
min(X) and max(X) are the smallest and largest values of the original dataset respectively.

x̃i = 2 xi −min(X)
max(X)−min(X) − 1 (3-1)

A downside of this scaling method is that all features are scaled by the same factor. In the
case of the IMS dataset, the largest value is an outlier, which results in many already low
values becoming very small even though these values might still hold important information.

Thesis Willem van der Linden

24 Methods and data

Figure 3-2: Distribution density plot of the intensity values. The mean and median are marked
by vertical line. Note that the frequency axis is in logarithmic scale to ensure visibility.

Minmax scaling featurewise

One way to reduce the effect the min-max scaling has on the lower values is by applying the
scaling featurewise. This means the scaling is applied to every mass bin separately, resulting
in a scaled spectrum that looks more uniform and in which mass bins with low intensities
hold a similar value to the original data. In (3-2) the subscript the argument m indicates the
mass bin.

x̃i(m) = 2 xi(m)−min(X(m))
max(X(m))−min(X(m)) − 1 (3-2)

This method of scaling is less prone to the effect of outliers in the data because every outlier
only effects a single massbin. However, a single massbin containing outliers might still be
scaled with a large amount.

Standard scaling

A method that uses the minimum and maximum of the data and therefore is not hindered
by outliers is standard scaling. Standard scaling scales the distribution to have zero mean
and unit variance while keeping the distribution intact. Similarly to the featurewise min-max
scaling, standard scaling is applied to each mass bin separately.

In (3-3) M(X(m)) is the mean of the data of mass bin m and σ(X(m)) is the standard
deviation of the data corresponding to mass bin m.

x̃i(m) = xi(m)−M(X(m))
σ(X(m)) (3-3)

Figure 3-3 shows the effect of standard scaling. Note that the mass bins in the scaled plot
are drawn from the middle, as the data is centered around zero.

Willem van der Linden Thesis

3-2 Oversampling 25

(a) (b)

Figure 3-3: Example of standard scaling. (a) 5 original spectra, (b) the same spectra scaled
using standard scaling.

3-2 Oversampling

GANs can be used for oversampling minority classes[1, 2]. In this work, using GANs for over-
sampling is compared with two other oversampling methods. The first method is oversampling
by adding noise to the data. The second method is the Synthetic Minoirty OverSampling
Technique (SMOTE), a method designed for oversampling based in interpolation between
samples. Below, these two methods are briefly clarified.

3-2-1 Simple data augmentation

Data augmentation is a common technique to generate more samples without repetition[51].
The basic principle is to take a sample and add some noise to this sample to make it slightly
perturbed in the hope of creating artificial variation within the dataset. A simple way to do
this is by applying noise to the original samples to generate new samples. In the implemen-
tation, we use the mean of a class and add a random value based on the standard deviation.
New samples denoted x̂i are created by taking the vector mean of the data X ∈ RN×n denoted
M(X). To this mean vector p times the standard deviation of that mass bin. p is a random
vector normally distributed with zero mean and standard deviation 1.

x̂i = M(X) + pσ(X) with p ∼ N (0, I) (3-4)

3-2-2 SMOTE

Synthetic Minority Oversampling Technique (SMOTE)[52] is a common framework for learn-
ing from imbalanced data[53] and is used in with IMS data as well[54, 55]. SMOTE inter-
polates neighboring samples of the same class. The algorithm can be summarized by the
following steps:

1. For samples belonging to the same class, select one sample.
2. From this selected sample, find a number of the nearest neighbors.
3. The difference between the sample and each neighbor is multiplied with a random value

between 0 and 1.

Thesis Willem van der Linden

26 Methods and data

4. The resulting value is added to the original sample to generate a synthetic sample.

This process is repeated until the desired number of synthetic samples are created. In Figure 3-
4 The steps given above are visualized: for sample Yi four neighboring samples are selected
denoted Yi,1 through Yi,4. On the imaginary lines between sample Yi and its neighbors, a new
sample is created at a random position defined by the random value w.

Figure 3-4: Visulatisation of SMOTE (from[56])

Numerous extensions and variations for SMOTE have been developed over the years[53].
In this work, only the original algorithm is considered. SMOTE is implemented using the
imbalanced-learn Python library[57].

3-3 Classification

Classification is a task where an algorithm decides what subgroup of data a sample belongs
to. In this work, we consider supervised machine learning based classification, i.e. a machine
learning algorithm that learns to distinguish between subsets of data where the subsets are
predetermined and used to create the decision variable. The goal of a classifier is to predict
a class label of an unseen example, e.g. in this work a label based on a spectrum.
There is a distinction between regression models and classification problems, where regression
assigns a continuous value and classification a discrete value. A regression example is the
discriminator of the GANs that uses a sigmoid function to assign a value between zero and
one. Putting a threshold value on top of this sigmoid function would make this a classifier.
In this work, classification and regression are used synonymously.

3-3-1 Classifiers

There exist many different ways of building classification algorithms. A very common binary
classifier is Logistic Regression (LR). This classifier is used in section 5-5 in accordance with
the cited literature. LR differentiates between two subgroups of data but can not directly be
used for multiclass classification.
A very popular method for classification using machine learning is the use of convolutional
neural networks and other deep learning strategies. This is also applied to IMS data[58],
however, using these deep learning models takes a lot of computational time. Therefore
only simpler methods are used in this work. Specifically, for all experimentation except the
benchmark Linear Discriminant Analysis (LDA) is used for classification.

Willem van der Linden Thesis

3-3 Classification 27

3-3-2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a method commonly used for classification in IMS[59,
58, 60]. LDA assumes that classes are linearly separable and that the covariance Σ is equal
for every class.

The formulation of LDA is given in (3-5). Here Σ is the covariance matrix, y is the label.
LDA computes the probability of sample x belonging to class k based on the distance of the
sample to the distribution. More specifically the class asignment follows from finding the
argument k that maximizes the posterior P (y = k|x).

log(P (y = k|x)) = −1
2(x− µk)tΣ−1(x− µk) + log(P (y = k)) + Cst (3-5)

LDA indeed works better for classification if a dataset is balanced[61].

3-3-3 Classifier accuracy

To verify how well a classifier does, different measures can be used. Below, a short overview
is given of the different options including the downsides of some options. As this work is on
multiclass classification the definitions are given for multiple classes with the notion of true
and false positives and negatives as given in the confusion matrix Table 3-2. This table holds
the information on the classifier performance for class 1. As in Table 3-2 the rest of this

Prediction
Class 1 Class 2 Class 3

Tr
ut

h Class 1 TP FN FN
Class 2 FP TN TN
Class 3 FP TN TN

Table 3-2: Multi class confusion matrix for class 1

section describes correctly classified positive samples as True Positive (TP), and correctly
classified negative samples as True Negative (TN). Negative samples incorrectly classified
as positive False Positive (FP) and positive samples incorrectly classified as negative False
negative (FP). All these values contain a number of samples such that the sum of the row
elements is equal to the number of samples in that class.

Accuracy

Accuracy is defined as the number of correct predictions divided by the total number of
predictions:

ACC = Number of correct predictions
Total number of predictions = TP + TN

TP + TN + FP + FN
(3-6)

From the accuracy score, it is not clear if the inaccuracy comes from false negatives or false
positives.

Thesis Willem van der Linden

28 Methods and data

Recall

Recall is defined as the number of correct true predictions (true positives) divided by the
number of actual positives (sum of true positives and false negatives).

REC = Correct predictions
Sum of row = TP

TP + FN
(3-7)

The recall score does not consider the false positives i.e. recall is invariant under overfitting.
For example, if a classifier predicts class 1 for all samples, the number of false negatives is
zero and the recall score of class 1 is 100%. However, if the recall scores of all classes are
considered, overfitting can be detected as all recall scores except for class 1 will be 0.

For a fast visualization of a multiclass classifier performance, the recall matrix can be used
instead of the standard confusion matrix. An example of a recall matrix is given in Figure 3-5.
The recall matrix is the confusion matrix where every entry is divided by the sum of the row
(divided by the support i.e. the number of samples of that class). This way of looking at the
confusion (recall) matrix circumvents a skewed view due to unequal samplings of each class;
all values will be in the range of 0 to 1. A perfect matrix would have ones on the diagonal
and zero elsewhere.

Figure 3-5: Example of a recall matrix: the optimal scores for all classes is 1 on the diagonal
and zero everywhere else. This matrix shows good classification for all classes except for the class
labeled two.

Precision

Precision is defined as the number of correct true predictions (true positives) divided by the
number of wrong positive predictions (sum of false negatives).

PREC = Correct predictions
Sum of column = TP

TP + FP
(3-8)

Precision is used to detect overfitting to a specific class. For example, if all samples are
predicted to belong to the same class the recall score will be high (100%). However, the
precision score will be low as a result of the large number of false positive predictions.

Willem van der Linden Thesis

3-3 Classification 29

F1-score

The recall and precision scores can be combined into the F1-score:

F1 = 2PREC ×REC

PREC + REC
(3-9)

The F1 score on itself is not sufficient as it gives no indication of the ratio of false negatives
and false positives.

Use of classifier scores

In this work, the focus of classifier accuracy is on the recall score. Using the recall matrix
a first glance estimate of how well the classification works is made. As a second part for
verification, the precision score is used to detect if the classifier is not overfitting to a specific
class.

Thesis Willem van der Linden

30 Methods and data

Willem van der Linden Thesis

Chapter 4

Paper

An investigation of generating IMS-spectra using GANs

Abstract

Imaging Mass Spectrometry is a technique that measures molecular mass distributions with
respect to their spatial location. The resulting dataset contains a mass spectrum for every
pixel. If divided into different classes, the number of spectra belonging to the same class can
vary significantly, with for example thousands of spectra belonging to one class but only hun-
dreds to a different class, thereby limiting the performance of classifiers. As IMS is destructive,
generating additional original samples is not possible. The data imbalance problem therefore
can be counteracted by generating synthetic samples belonging to the underrepresented class.
A commonly used technique to generate additional samples is SMOTE.

Recently, generative adversarial nets (GANs) have been used instead of SMOTE for the over-
sampling of minority classes. Using GANs-based oversampling can result in better-performing
classifiers than using SMOTE oversampling. GANs is a method of machine learning in which
the combination of two functions tries to learn the distribution of data. The first function
generates samples from noise, while the second function aims to distinguish these generated
samples from the original samples. By updating the two functions the generated samples
eventually should be indistinguishable from the original data.

In this work, conditional Wasserstein Generative Adversarial Nets with gradient panelty
(cWGANs-gp) is implemented and tested in various ways on IMS data to oversample minority
classes in a multiclass setting. This paper focuses on different experiments in an investiga-
tion of why working on full spectra is unsuccessful. By limiting the number of features (by
dimensionality reduction) the implemented GANs can generate very similar data (based on
classifier testing).

On the dataset used, using a lower number of features, our GANs can slightly increase spectral
classifier (LDA) accuracy on minority classes with the downside that the classifier overfits

Thesis Willem van der Linden

32 Paper

to the minority classes. SMOTE performs slightly better than the GANs, leading to the
conclusion that using GANs to oversample minority classes in this IMS dataset is not useful.
However, GANs might still hold great potential in other applications for IMS data such as
anomaly detection or classification.

4-1 Introduction

Imaging Mass Spectrometry (IMS) is a technique that measures the mass distributions of
a sample with respect to their spatial location. IMS allows for untargeted discovery of a
large range of biomolecules. This has huge potential in e.g. drug discovery, and pathology
research[6]. For example, IMS is used to study tumors[58] and enhances the development of
new medicine by giving insight into the drug distribution within the tissue[5].
IMS data contains a mass distribution (spectrum) for every spatial location (pixel). Mass dis-
tributions contain the intensities of many different small mass ranges (mass bins), depending
on the technology used the number of mass bins measured can go into the 100-thousands, for
every pixel. This results in a data collection of multiple gigabytes.
Different methods are being developed to mine the considerable amount of information within
an IMS dataset. Research goes into dimensionality reduction[62, 63] and machine learning
methods[64] such as deep convolutional networks to classify tumors[58].
A relatively new method in machine learning is Generative Adversarial Nets (GANs)[15].
This setup of machine learning can be used for different machine learning tasks, for instance
classification[65] and clustering[33]. What makes GANs apparently well suited for IMS data
is the ability to learn from limited labeled data[66, 15]. To our knowledge, GANs have not
been used with IMS data until now.
In this work, the generative ability of GANs is studied. To show that data generated by GANs
is useful, generated data is added to a dataset to increase classification performance. More
specifically, spectra generated with GANs are used for minority oversampling to lessen the
effect of class imbalance. Resolving the problem of minority classes in IMS data by measuring
more data is not possible due to the destructive nature of mass spectrometry, underlining the
need for synthetic oversampling.
Class imbalance is further explored in the following subsection after which GANs are intro-
duced. Only the basics of GANs theory are included in this paper, for more information
please refer to the appendix or the cited literature.
In section 4-3 the dataset and different data processing steps are discussed. In this section,
the evaluation metrics to be used in the experiments are introduced as well. During the design
of the GANs multiple intermediate steps are taken, which are included in section section 4-4.
After the design, multiple different experiments are conducted of which the results are given
in section 4-5. That section contains increasingly more complicated experiments, the last of
which is a test on the full dataset.

4-1-1 Synthetic minority oversampling

Class imbalance is a common problem in machine learning[67, 68, 69]. Especially in biological
samples, where e.g. the rate between positive (healthy) and negative (diseased) samples can

Willem van der Linden Thesis

4-2 Background 33

be large.[66, 70]

A few different methods exist to decrease the negative effect of class imbalance. Undersam-
pling majority classes throws out samples belonging to the majority class with the downside
that the decrease in the number of samples results in a significant loss of data and possible
loss of generalizability[71].

Instead of undersampling majority classes, oversampling minority classes is another way to
reduce the limitations an imbalanced dataset poses. Oversampling means sampling from the
minority class data distribution such that the number of samples is sufficient. To sample from
this distribution, a simple data augmentation technique can be used. A bit more common
is using Synthetic Minority Oversampling Technique (SMOTE)[72]. SMOTE creates new
samples by interpolating between neighboring samples with the hope of preserving the original
distribution without directly copying data.

SMOTE may add noise to the training data thereby only slightly increasing or even decreasing
classifier performance[73]. Data generated by GANs can be used as an alternative to SMOTE-
generated data. Multiple studies[1, 2] empirically show that adding data generated by GANs
can outperform the SMOTE algorithm.

4-2 Background

This section introduces some prerequisite knowledge about GANs; subsection 4-2-1 goes into
the basic mathematics behind the adversarial learning process and subsection 4-2-2 gives
additional information on how GANs are used in practice.

4-2-1 Generative Adversarial Neural Nets

Generative Adversarial Nets (GANs) are a machine learning method that aims to learn a
data distribution by trying to replicate this distribution from a noise distribution. GANs
consist of (at least) two parametric functions, a generator function that maps a noise input
to a generated sample, and a discriminator function that classifies a sample to either belong
to the real or generated data. The quality of this binary classification is used to update both
the generator and discriminator. Intuitively, if the classification of real and generated data is
good, the generator can and should be improved by updating the parameters of the generator
function. Conversely, the classification quality can be improved by updating the discriminator
function.
The optimization of the two functions can be posed as the following minimax problem (4-1).
(Note; abuse of notation, for readability the parameters are left out.)

min
G

max
D

Ex∼pdata
[log(D(x))] + Ez∼pnoise [log(1−D(G(z)))] (4-1)

Where G(z) is a generated sample also denoted x̂. Ex∼pdata
Is the expectation of the vector

x belonging to the real data distribution and Ez∼pnoise is the expectation of the vector z
being from the noise distribution (equivalent to Ex̂∼pg ; the expectation of x̂ being from the
generated distribution). The output of the discriminator should be between 0 and 1 where 1
will be a real sample and 0 a generated sample.

Thesis Willem van der Linden

34 Paper

The minimax equation as posed in (4-1) can be explained as a distance metric in which
the discriminator tries to maximize the measured distance between the real and generated
distribution without influencing the distribution. The generator tries to minimize the distance
by changing the generated distribution.

In conditional GANs (cGANs)[19]both the discriminator and generator function are condi-
tioned using a class label. It is important to make the distinction between conditional GANs,
that use the class label as input for both functions, and e.g. Auxiliary-Classifier GANs [65]that
give the class label as a discriminator output and can be used as for classification directly.
Note that in this work the focus is on generating data to use with an external classifier,
designing an optimal classifier network, or using GANs for classification is not explored. An
introduction to previous works that use GANs for classification or other tasks directly is given
in subsection 4-2-2.

The optimization of the minimax function is implemented in two steps. With the suggestion
found in literature[15] the second part of the equation is changed to a maximization step for
the Generator to increase stability during training. Only the second part of the equation is
influenced by the generator function, meaning that for optimizing the generator the first term
of the equation can be left out.

max
D

Ex∼pdata
[log(D(x))] + Ez∼pnoise [log(1−D(G(z)))] (4-2)

max
G

Ez∼pz [log(D(G(z)))] (4-3)

The minimax game should end if the generated data exactly matches the original data distri-
bution pdata = pg. If the distribution of the real data equals the distribution of the generated
data and the discriminator is perfect, the solution of the minimax objective function should
be 2 log(1

2) on average as the discriminator has no way of distinguishing two equal distribu-
tions. This result can intuitively be explained by even a perfect discriminator not being able
to distinguish between original and generated data and therefore predicting 1

2 on average. A
derivation for this solution is given in subsection 4-2-1.

This optimal value is not likely to be reached, to due the difficulties during the training of the
GANs and the finite capacity of the generator and discriminator function. In game theory
the optimal value of a two-player game, a so-called Nash equilibrium, is defined as the value
resulting that neither player changing their policy will result in a better score. Given the
function V (G, D) as the GANs minimax optimization function as (4-1) it can be stated that
the Nash equilibrium (G∗, D∗) satisfies:

V (G∗, D) ≤ V (G∗, D∗) ≤ V (G, D∗) (4-4)

Where D∗ and G∗ denote the optimal discriminator and generator respectively. The theoret-
ical optimum is usually not reached and a Nash equilibrium might not even exist because of
the finite capacity of both the generator and discriminator[18].

As pointed out in different papers[15, 16] the minimax problem as posed in (4-1) has an
inherent problem if the generator and discriminator are not converging at the same rate, i.e.
the generator starts to effectively trick or the discriminator or the discriminator distinguishes
generated data from original data without fail. If the discriminator is perfect (or far ahead)
the optimization function given in (4-3) goes to infinity.

Willem van der Linden Thesis

4-2 Background 35

To deal with this issue, the Wasserstein distance metric is used[16]. This distance metric is
implemented with a gradient penalty[20]. The motivation for using the Wasserstein-gp metric
for experimentation can be found in section 2-2-1 and subsection 6-2-1.

min
G

max
D

Ez∼pnoise [1−D(G(z))]− Ex∼pdata
[D(x))]+

λEy∼Py [(||∇yD(y)||2 − 1)2]
(4-5)

In (4-5) the discriminator function D(·) ∈ R instead of D(·) ∈ (0, 1) as is the case in (4-1).
Py is sampled uniformly along straight lines between pairs of points of Pg and Pdata. λ is the
penalty coefficient in the original paper λ = 10 is used. It is empirically shown that using this
penalty function results in faster convergence than the original WGAN on multiple example
datasets[20].

In contrast to the original GANs minimax equation (4-1), the discriminator in the WGAN
can (and should) be ahead of the generator[16]. To achieve this, the generator is updated only
every ndis steps. The number of discriminator update steps per generator update can be tuned
by looking at the accuracy of the discriminator predictions. In algorithm 1 the WGAN-gp
algorithm is summarized. In this algorithm, the on gradient descent based optimizer Adam[74]
is used.

Algorithm 1 WGAN-gp algorithm
Require: λ, ndis

1: for i=1,. . . ,epochs do
2: for b=1,. . . ,batches do
3: if b MOD ndis==0 then
4: sample z ∼ N (0, I), y ∼ Y
5: G← Adam(∇Gmean(−D(G(z|y))))
6: end if
7: sample z ∼ N (0, I), ϵ ∼ (0, 1), (x, y) ∼ Xb

8: x̂← G(z, y)
9: x̃← ϵx + (1− ϵ)x̂

10: D ← Adam(∇Dmean(D(x̂|y)−D(x) + λ(||∇x̃D(x̃|y)||2 − 1)2)))
11: end for
12: end for

4-2-2 Applied GANs

Research aimed at improving the GANs framework usually work on smaller images and stan-
dard datasets like MNIST[75] or fashion-mnist[76] as benchmarks[23, 16, 20]. As mentioned,
alternative minmax formulations are suggested, such as using the Wasserstein distance (4-5).
Changes to the algorithm such as unrolled GANs[77] or changes to the overall structure by
adding a third function have been proposed[30, 78]. There seems to be no consensus on the
best GANs in general, as this is dependent on the goal of the application.

GANs are used in many different applications in 2D images. Well-known examples are gen-
erating random high-resolution images[79] and mixing the style of images[80].

Thesis Willem van der Linden

36 Paper

GANs research is not limited to “normal” 2D images, for example, GANs are used in radiology
for a.o. image reconstruction and data augmentation[81]. Similarly, GANs are used to gener-
ate additional samples to account for imbalances in MRI data for brain disease diagnosis[82].
Specifically, it is shown that adding missing modalities generated by conditional GANs can
improve multiclass classification better than classical data augmentation.

Additionally to images, MRI or otherwise, GANs also have been successfully applied for
oversampling in tabular data. [2] show that binary classification can be improved by GANs for
different datasets and for different classifiers. In comparison to SMOTE minor improvements
are made on 3 benchmark datasets (with a varying number of features) as well as their own
dataset.

It has been empirically shown that training using Wasserstein GANs for minority oversampling
outperforms DC-GAN on a fraud detection dataset [83].

In this work, GANs are used on the spectra and not on the images that can be created
by looking at a single mass bin. By studying the spectra conclusions can be made on, for
example, diseased vs healthy tissue[60]. A different approach to generating IMS-data using
GANs is looking at the spatial representations of separate mass bins. GANs might be used
to generate a spatial representation of a non-existent mass bin, the exact use case for this
method is not obvious to us but can be explored in a subsequent work. A starting point
would be to look at GANs for high resolution[84].

4-3 Methods and data

The data used for experimentation is a mouse kidney. The 161.547 pixels (spectra) were
collected at 15µm pixel size from m/z 400 to 1400. The data is peak integrated into 573
mass bins. A spatial representation of the data is given in Figure 4-1a, The total ion in-
tensity per mass bin is given in Figure 4-2. More information on the provided data such as
instrumentation is given in chapter 2.

(a) (b)

Figure 4-1: Spatial view of the dataset,4-1a the total ion count of every pixel, 4-1b: the location
of the different spectra clusters.

Willem van der Linden Thesis

4-3 Methods and data 37

Figure 4-2: Total ion-count of the 573 mass bins with on the x-axis the mass/charge ratio.
Mass bins are unequally spaced in the range of 401 to 1110 Dalton.

4-3-1 Preprocessing

Classification is simulated by clustering the dataset with semi-orthogonal Nonnegative matrix
factorization (NMF). NMF splits a data matrix X into a feature matrix H and a weight matrix
W , both with only positive elements. Additionally, W is orthogonal which means that every
row of W holds exactly 1 nonzero value. The index of this value assigns the sample of the
corresponding row to a cluster. In (4-6) the orthogonal NMF minimization problem is given.

The spectra are used as separate signals and will be referred to as the original data going
forward. The generator is expected to eventually produce spectra that can be added to the
training data to increase classifier performance.

min
W,H
||X −WH||F

s.t. W, H ≥ 0
WW ⊤ = I

(4-6)

The clustering method and its effects on the clusters compared to other clustering methods
are not further explored in this work. The cluster assignment deducted from the weight
matrix is considered a class assignment to be used for a classification task. In Figure 4-1b
the different labels are represented as colors in their respective spatial location. The choice
of 20 different clusters is considered arbitrary.

The number of samples belonging to each class is given in Table 4-1. In this table, it is clear
that this dataset is very unbalanced, with 20 classes every class should contain approximately
5% of the total number of samples. Classes represented with less than 5% of the samples are
defined as minority classes. As can be seen in the results in section 4-5 the classes containing
3% or 4% of the total do not cause classification issues.

For training GANs and fitting the classifier, the data is split into a training and test set. At
least 20% of the data of each class is used for testing. A maximum of 5000 samples is used
for training. i.e. If more than 6000 samples are available, 5000 are used for training and all
other samples are used for testing.

To study the effect of GANs a subset of the classes is selected in most experiments. After
selecting the clusters to be used, the selected data is normalized. This normalization step
is necessary to make the range reachable by the generator. In literature, the data is usually

Thesis Willem van der Linden

38 Paper

Class #Samples % Class #Samples %
1 14056 8.70% 11 12937 8.01%
2 2343 1.45% 12 14463 8.95%
3 9485 5.87% 13 4523 2.80%
4 679 0.42% 14 3257 2.02%
5 18 0.01% 15 6416 3.97%
6 449 0.28% 16 722 0.45%
7 16147 10.00% 17 15149 9.38%
8 11969 7.41% 18 6118 3.79%
9 18443 11.42% 19 14591 9.03%
10 5955 3.69% 20 3827 2.37%

Table 4-1: Number of samples of every class with the percentage of the total number of
samples

scaled using minmax such that all values are between 0 and 1. Minmax-scaling has a huge
downside if there are many outliers within the data. Where natural images usually have a
pixel intensity between 0 and 255, the data at hand has values over 500.000. In (4-7), xi is
the ith sample of the original data X and x̃i is the scaled sample.

x̃i = 2 xi −min(X)
max(X)−min(X) − 1 (4-7)

Instead of minmax scaling Equation 4-7, the data is standardized featurewise using (4-8). This
means that for every mass bin (denoted argument m) the mean of that mass bin is subtracted
from every intensity value and then divided by the corresponding standard deviation. Every
mass bin therefore has zero mean and unit variance. Note that this is done on all the selected
classes used in an experiment. Looking at a single class, the mean is not necessarily zero and
the variance is not necessarily one.

x̃i(m) = xi(m)−M(X(m))
σ(X(m)) (4-8)

4-3-2 Quantitative evaluation

To verify the quality of the generated data and compare different GANs two different quan-
titative validation methods are used. Note that here only quantitative methods are given,
qualitative tests such as HYPE[85] or Rapid Scene Categorization[46] used for natural images
are much more difficult to obtain as looking at spectra is not as intuitive as looking at images.
As a qualitative method, some plots of the generated and real distributions are given in the
Appendix B.

Numerous quantitative validation methods used for GANs exist and are summarized in
literature[43, 44]. In this work two different methods are used; the Fréchet distance and
classification performance. These two methods are briefly introduced below.

Willem van der Linden Thesis

4-3 Methods and data 39

Fréchet Distance

The first quantitative method is the Fréchet distance. This measure is often used in GANs[86,
87] on intermediate layer outputs of a pre-trained inception network (e.g. Inception v3[88]).
The Fréchet Distance (FD) can be used on the original data space as well[47]. The Fréchet
distance is the L2 Wasserstein distance between two multivariate normal distributions. Note
that the assumption is used that the data follows a multivariate normal distribution. The FD
is defined as in (4-9)

FD(Q, R) =
√
||µQ − µR||2 + Tr(ΣQ + ΣR − 2(ΣRΣQ)

1
2)

With Q ∼ N (µQ, ΣQ), R ∼ N (µR, ΣR)
(4-9)

Where Σ denotes the standard deviation and µ denotes the mean of the multivariate normal
distributed datasets Q and R. The motivation and derivation of the FD measure are given
in section 2-2-3. Note that the FD takes a positive value in R, however, it only serves as a
relative comparison as scaling the data drastically changes the value of the FD.

Classifier performance

As a second validation measure, classification performance is used. The intuition is that if
GANs produce data very similar to the original data, replacing original training data with
GAN-generated data should not hinder classifier performance.
To test this a Linear Discriminant Analysis (LDA) classifier is fitted on the original training
data. A GAN network is trained on the same data. After GAN training the GAN produces
an entire training set with the same number of samples per class as in the original training
data. A new LDA is fitted to this GAN-generated training data. To compare the LDA fitted
to GAN data and the LDA fitted to original data, a separate test set is used.
Note that this method can not be used effectively as the original LDA has limited performance
because of e.g. class imbalance. To verify GANs in this way, a subset of majority classes is
selected.

4-3-3 Baselines

To show the effect of minority oversampling using GANs, the classification method is also
used on the original data (without oversampling denoted W/O) as well as SMOTE and a
simple data augmentation technique. As simple data augmentation, a noise vector z scaled
by the covariance matrix Σx is added to the mean µx of the original data to get a new sample
x̂.

x̂ = µx + Σxz, z ∼ N (0, I) (4-10)

For classification, LDA is used. Creating a better classifier using e.g. neural nets is not part
of this research. LDA is commonly used for IMS data as a baseline classifier. Similarly to
e.g. linear regression (LR), fitting the LDA is very fast compared to the training of Neural
networks. Unlike LR, LDA can be used for multiclass classification directly.
As explored in literature[61], LDA indeed works better for classification if a dataset is bal-
anced.

Thesis Willem van der Linden

40 Paper

4-3-4 Hardware and code

All experimentation is implemented in Python and the main scripts are available on github.
com/WvdL1995/IMS_GANs. The GANs algorithm is implemented using Pytorch[89], for SMOTE
the imbalanced-learn[57] library is used. Other algorithms like LR and LDA are implemented
using scikit-learn[90].

All experiments mentioned in this paper can be run on a single NVIDIA GTX 1050 TI with
4 GB of video memory. To expedite training some experiments were performed in parallel
using an NVIDIA RTX A6000.

Training GANs on the full dataset as shown in section 6-1 took approximately six hours. The
majority-only experiments ran in under two hours.

4-4 Design

Designing the generator and discriminator functions is an important step as the design dictates
the capacity of what the model can learn as well. Additionally, the design of the functions has
a huge influence of the stability of the adversarial learning process. In literature, the design
decisions of both networks are not always explained and in most research, the standard number
of layers and neurons as presented in e.g. the original GANs[15] are used.

Work that goes toward optimal generator and discriminator design such as alphaGAN[91] goes
in the direction of automatic machine learning. Using the proximal duality gap the generator
network is optimized for a specific discriminator. In this work, the auto-ML direction is not
further explored. Instead, as a first step in designing GANs the capacity of the generator and
discriminator are studied separately. Different architectures are compared to a baseline score
and based on this score a decision on the architecture to use for experimentation is chosen.

4-4-1 Discriminator testing

To verify that the discriminator design has sufficient capacity, the neural network is used as
a binary classifier. The intuition behind this test is that if the discriminator network can
learn to distinguish between 2 different classes of spectra or between real data and noise
from an untrained generator, it holds enough complexity that it can work as a discriminator
during training. Different network architectures were compared in this way, leading to the
conclusion that, of the tested architectures a network with 3 linear connections works best
for this dataset.

4-4-2 Generator design

To test the generator capacity in a similar way to the discriminator the neural network is used
as a decoder network that maps the noise vector z to an output signal. The reference output
signal is generated by a function f(·) that takes the same input z as the decoder. The goal of
this experiment is to minimize the difference between G(z) and f(z) as shown in (5-5). The
function f(z) can be any function, an experiment with a linear function is included in the

Willem van der Linden Thesis

4-5 Experimental results 41

appendix. Assuming that a linear mapping of noise can not model the data, a second-order
function is used for the analysis below.

min
G
||f(z)−G(z)||22 (4-11)

The choice for f(z) = Az2 + Az + b comes from the assumption that if the data is from a
multivariate normal distribution N (µ, σσ⊤) it can be described by a linear function f(z) =
σz +µ with z ∼ N (0, I). Where AA⊤ is a lower rank approximation of the covariance matrix,
calculated by the truncated singular value decomposition, of the data used in the experiments
below. b Is the mean of the data.

Using this method, it is concluded that a fully connected network with 4 linear connections
is best for this dataset. The results of this test are included in section 5-3. In further
experiments, the generator design with 4 linear connections will be used.

4-5 Experimental results

Applying the GANs to the entire dataset does not give satisfying results. These results are
given in section 6-1. To investigate why the training GANs on the full training set and
generating minority classes does not work as intended, multiple smaller experiments are done
below.

4-5-1 Benchmark

To test if the cGANs are correctly implemented, as a first step one of the benchmarks seen in
literature[2] is tested with our design. This benchmark is a binary classification task on the
Wisconsin Breast Cancer dataset[92]. This dataset contains 30 features for every sample. The
results on this benchmark are given in section 5-5. In these results, we see that our design
improves on the referenced results. Additionally, the results show the clear effect of different
scaling methods on the baseline: If standard scaling is used instead of min-max-scaling the
baseline classifier immediately performs significantly better even without oversampling.

From testing with this benchmark dataset, it is concluded that our implementation of the
cGANs works as intended. Results seen in the literature can be replicated and improved
upon.

4-5-2 5 majority classes

As a first step in testing the designed GANs on IMS data, the GANs are tested on 5 of the
majority classes. This relatively low number of classes allows for faster testing of different
configurations. Because all classes have a large and equal number of samples in the training
set (set to 5000), adding generated data to classes does not give a clear insight into the
quality of the generated spectra. Instead, the training data is replaced entirely following the
quantitative verification technique described in subsection 4-3-2. As a baseline score, the
original training data is used to fit the LDA classifier. SMOTE, in this case, replaces all

Thesis Willem van der Linden

42 Paper

training data. Finally, conditional GANs and conditional Wasserstein GANs are trained on
the training data after which the generators are used to regenerate the training set based on
the training labels.

The results of this experiment is given in Table 4-2. From these results, it is clear that
both the conditional GANs as well as the conditional Wasserstein GANs cannot adequately
generate data. In search of the cause of the limited performance, the signal-to-noise ratio

Baseline SMOTE cGAN cWGAN-gp
Class Recall Precision Recall Precision Recall Precision Recall Precision

1 0.92± 0.01 0.99±0.00 0.94±0.01 0.98±0.01 0.30± 0.06 0.28±0.06 0.22±0.05 0.19±0.02
3 1.00± 0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.40± 0.05 0.15±0.03 0.38±0.04 0.10±0.01
7 0.88± 0.00 0.86±0.01 0.88±0.00 0.85±0.00 0.22± 0.09 0.24±0.01 0.07±0.04 0.26±0.01
8 0.93± 0.00 0.85±0.00 0.89±0.01 0.85±0.00 0.13± 0.04 0.16±0.06 0.19±0.07 0.16±0.01
9 0.97± 0.00 0.99±0.00 0.97±0.01 0.99±0.00 0.14± 0.11 0.25±0.12 0.13±0.02 0.31±0.02

Table 4-2: Data replacement results of training GANs on 5 majority classes. Scores collected
over 3 runs.

was increased by applying dimensionality reduction and transforming the data back to the
original data space. Using this method, no improvement was made. Therefore, it can be
concluded that noise in the data is not the (self-standing) factor limiting the performance.

4-5-3 Influence of dimensionality

Besides noise, a different cause of the GANs failing can be the dimension of the signal. As
pointed out in literature reducing the spectral dimension of hyperspectral images to only a
few components leads to better performance than the same procedure with a larger number
of components[93].

To study what the effect of the dimension of the features is on the GANs, different numbers
of features are used in the same experiment using only 5 majority classes. The total (macro
average) recall score resulting from selecting a different number of features is given in Figure 4-
3. More information on this experiment is given in subsection 6-2-3.

Figure 4-3: Classification performance by an increasing number of features

Note that the baseline (classifier based on original data) performs consistently well no matter
the number of features used. The same holds for the classifier on SMOTE-generated data.

Willem van der Linden Thesis

4-5 Experimental results 43

Conditional GANs perform significantly worse than other options. The conditional Wasser-
stein GANs performs well for a lower number of features, but the classifier performance starts
to decay if the number of features is increased.

The result presented in Figure 4-3 suggests that the GANs model has more difficulty with more
complicated data (i.e. larger number of features). Allowing for more complicated relations
between features to be modeled by increasing the number of layers in both the discriminator
and generator network does not improve this result. In subsection 6-2-4 the results from the
same experiments are given using an additional layer in both networks. It is important to
note that this difference is observed by applying the same hyperparameters i.e. the same
number of iterations and the same learning rate.

4-5-4 Influence of number of classes

The results on the benchmark dataset given in section 5-5 are on binary classification. To
study the behavior of the conditional GANs to be used for multiclass data generation, the
number of classes is increased in a similar way as the number of features was increased in
subsection 6-2-3. The full experiment setup can be found in the subsection 6-2-6.

Figure 4-4: Increasing number of classes

From Figure 4-4 it can be seen that training GANs on an increasing number of samples does
not drastically influence performance; the scores of the GAN-generated data follow the same
trend of the baseline classifier up until above 16 classes. After 16 classes more classes with a
relatively low number of samples are added.

4-5-5 Varying the latent space

The dimension of the latent space seems not that well studied. To test the effect of a different-
sized latent space the size of the noise input nz is varied and the resulting replacement scores
are given in Table 4-3. A description of this experiment is given in subsection 6-2-5. This
experiment shows only marginal change if the latent dimension is changed. Note that the
number of inputs does change the number of trainable parameters. Based on the results
below, nz is set equal to 100 following most literature.

Thesis Willem van der Linden

44 Paper

nz Recall
10 0.87
20 0.91
50 0.91
100 0.91
200 0.92

Table 4-3: Changing the size of the latent vector nz

4-5-6 Training on majority and minority classes

The aim of the research is to train a GAN on all classes and then oversample the minority
classes. It can be assumed that GANs have more difficulty learning the underrepresented
classes as these classes are shown less often during the training iterations, this is also shown
in Figure 4-4 where a slower Fréchet distance decay is shown if classes with a lower number
of samples. In Figure 4-5 the Fréchet distance decay is shown. All classes are represented
with 5000 samples in the training dataset except for the class labeled 1. After 200 epochs the
majority classes no longer improve significantly however the quality of the minority class is
still increasing.

Figure 4-5: Experiment with single minority class

Baseline SMOTE Simple cWGAN-gp Number of samples
Class Recall Precision Recall Precision Recall Precision Recall Precision Train Test

1 0.91 0.99 0.84 0.99 0.85 0.99 0.86 0.99 5000 9056
4 0.48 0.34 0.96 0.08 0.57 0.15 0.74 0.09 543 136
7 0.88 0.86 0.86 0.87 0.85 0.81 0.86 0.86 5000 11147
8 0.93 0.84 0.91 0.85 0.92 0.81 0.91 0.85 5000 6969
9 0.97 0.99 0.96 0.99 0.95 0.99 0.97 0.99 5000 13443

Average (m) 0.83 0.81 0.90 0.76 0.83 0.75 0.87 0.76
Average (w) 0.92 0.93 0.90 0.93 0.89 0.91 0.90 0.93

Table 4-4: Oversampling results on part of the dataset.

Table 4-4 shows the resulting classifier if only a single class is oversampled.

Willem van der Linden Thesis

4-6 Conclusion 45

Training the GANs on only underrepresented classes and adding generated data to these
underrepresented classes does not improve the overall classifier results as the generated data
can be similar to the majority classes, which is not seen during GAN training. The summary
of the results of this approach for the full dataset is given in Figure 4-6. The macro average
recall score on the full dataset is 56% which is significantly worse than the baseline and all
other results presented in Table 4-5.

Figure 4-6: Recall matrix resulting from GANs oversampling where GANs are trained on only
minority classes.

4-5-7 Full dataset

Considering the results from all smaller tests, the experiment on ‘all’ classes is conducted
using 50 features. The results of this experiment are given in Table 4-5. In Table 4-5 multiple
interesting minority classes are highlighted. These highlighted classes are better classified
with the use of oversampling. Both SMOTE and GANs oversampling improve the recall
score for these classes. However, by observing the precision scores and the average scores
it can be deduced that overall performance does not increase, rather the classifier starts to
become biased towards the minority classes.

While GANs-based oversampling increases the recall score on minority classes, the loss in
recall of the majority classes results in no total improvement. SMOTE does increase the
macro average score of the classifier and can therefore be considered the better oversampling
option for this dataset. Note that even though the macro average recall increases slightly, the
weighted average recall does decrease which means that the classifier becomes biased towards
the minority classes.

4-6 Conclusion

From the conducted experiments, two main conclusions can be made:

Firstly, GANs can be used to generate artificial data that resembles the training data suf-
ficiently well to serve as a replacement. We show that the performance of GANs decreases

Thesis Willem van der Linden

46 Paper

Baseline SMOTE Simple cWGAN-gp Number of samples
Class Recall Precision Recall Precision Recall Precision Recall Precision Train Test

1 .71 ± .03 .95 ± .00 .66 ±.01 .95±.01 .69±.01 .84±.00 .68 ± .02 .94± .00 5000 9056
2 .79 ± .06 .14 ± .03 .92 ±.01 .08±.01 .90±.02 .07±.00 .87 ± .02 .08 ±.01 1874 469
3 .90 ± .01 .83 ± .01 .90 ±.01 .81±.01 .89±.01 .88±.01 .91 ± .01 .81 ± .01 5000 4485
4 .38 ± .06 .12 ± .02 .73 ±.04 .09±.01 .49±.02 .09±.01 .39 ± .12 .12± .02 543 136
5 - - - - - - - - 0 0
6 .58 ± .09 .06 ± .02 .82 ±.02 .03±.00 .79±.05 .02±.00 .65 ± .07 .04 ± .01 359 90
7 .53 ± .01 .75 ± .01 .52 ±.01 .75±.01 .45±.00 .68±.01 .52 ± .02 .74 ± .01 5000 11147
8 .65 ± .04 .59 ± .01 .60 ±.00 .61±.01 .53±.02 .56±.01 .59 ± .01 .60 ± .01 5000 6969
9 .74 ± .02 .95 ± .00 .69 ±.01 .95±.00 .63±.02 .94±.00 .71 ± .01 .95 ± .00 5000 13443
10 .89 ± .02 .16 ± .00 .84 ±.00 .18±.00 .83±.02 .13±.00 .85 ± .02 .17 ± .00 4764 1191
11 .72 ± .01 .91 ± .01 .70 ±.01 .92±.01 .71±.01 .83±.01 .70 ± .00 .92 ± .01 5000 7937
12 .55 ± .04 .82 ± .01 .49 ±.01 .83±.01 .46±.01 .82±.01 .49 ± .01 .82 ± .01 5000 9463
13 .57 ± .02 .24 ± .01 .58±.02 .22±.01 .42±.02 .24±.01 .57 ± .03 .22 ± .01 3618 905
14 .65 ± .02 .20 ± .03 .70 ±.02 .16±.01 .57±.03 .14±.01 .73 ± .03 .15 ± .01 2605 652
15 .66 ± .03 .31 ± .01 .61 ±.01 .33±.01 .45±.01 .27±.01 .60 ± .01 .32 ± .01 5000 1416
16 .60 ± .14 .09 ± .02 .80 ±.04 .05±.00 .62±.03 .04±.00 .73 ± .07 .05 ± .00 577 145
17 .61 ± .02 .73 ± .00 .58 ±.01 .74±.01 .51±.01 .67±.01 .59 ± .01 .73 ± .01 5000 10149
18 .76 ± .02 .60 ± .04 .73 ±.01 .60±.02 .71±.01 .66±.03 .74 ± .03 .58 ± .05 5000 1118
19 .60 ± .04 .69 ± .01 .50 ±.01 .72±.01 .34±0.01 .65±.01 .53 ± .02 .71 ± .01 5000 9591
20 .85 ± .02 .62 ± .02 .87 ±.01 .59±.01 0.87±.01 .59±.01 .84 ± .01 .63 ± .02 3061 766

Average (m) .67 ± .01 .51±.01 .70±.01 .50±.01 .63±.01 .48±.00 .67± .01 .50±.01
Average (w) .66 ± .02 .77±.00 .62±.00 .78±.00 .57±.00 .74±.00 .63± .01 .77±.00

Table 4-5: Results on full dataset except class 4. Average score and standard deviation over 5
runs. The average (m) is the macro average and the average (w) is the weighted average

with a larger number of features, calling for classification as well as GANs-based generation
on a dimension-reduced approximation of the data. Increasing the number of trainable pa-
rameters does not show a clear increase in performance, leading to the hypothesis that not
the network architecture of the neural networks but rather the adversarial framework is the
limiting factor.
Secondly, on this specific dataset, oversampling only increases the classification of minority
classes slightly, with the downside of decreasing precision and overfitting to minority classes.
SMOTE increases performance a little more than GANs do, leading to the conclusion that
GANs should not be used for oversampling on this dataset. SMOTE takes seconds to generate
new samples, while GANs take hours to train (depending on the number of training samples
and hardware used).

4-7 Further research

From this research can be concluded that GANs are not useful for oversampling in this IMS
dataset. The results are validated with a second dataset (see Appendix A). Still, applying the
same methods to a different dataset, for example, a binary IMS dataset with only 2 classes,
should be considered in the future.
As shown by the experiments on majority classes only, an increasing number of classes is not
a hindering factor for GANs performance. Applying GANs for oversampling in a multiclass
setting is not yet a common occurrence in literature. Based on this research, GANs do have
potential for multiclass oversampling tasks.
To further increase performance, other neural network architectures can be applied such as
Deep Convolutional networks[23, 94] and residual networks[95]. A novel approach in GANs

Willem van der Linden Thesis

4-7 Further research 47

design is the use of auto machine learning to optimize the neural network by changing the
architecture as shown by alphaGAN[91] and autoGAN[96].

Instead of changes to the neural nets, the adversarial learning framework can also be further
improved for example by using AC-GANs instead of the WGANs studied in this work.

Besides generating data, GANs can be used for many different applications. In IMS, anomaly
detection by using the discriminator or even by using the specialized architectures such as
AnoGAN[39] and GANomaly[40] might be useful to find the spatial location of spectra that do
not fit in the general distribution of the data. Also, GANs that can be used for classification
or clustering directly, such as ACGAN[65] and BIGAN[30].

As briefly pointed out in section 4-2, GANs can be used to generate spatial representations
of a single m/z-bin instead of spectra. To do this, GANs capable of handling high resolutions
should be considered such as StyleGANs[24].

Thesis Willem van der Linden

48 Paper

Willem van der Linden Thesis

Chapter 5

Design

This chapter explains the steps taken in the design of the implemented GANs. The design is
an important step but it should be emphasized that during experiments changes were made
to the initial design. For example, after the first experiments using the original GANs the
change was made to the Wasserstein GANs, this change is motivated in subsection 6-2-1.

To ensure that the generator and discriminator both can learn their respective tasks with the
IMS data some tests were conducted to choose a valid function design. These tests are given
in section 5-2 and section 5-3. The components to build the generator and discriminator
functions are introduced in section 5-1.

5-1 Network architectures

The successful training of GANs falls and stands with the quality of the parametric function.
No literature has been found that uses functions different from neural networks. In this work,
neural networks are used as functions as well. The design of these neural networks is done by
testing a few different options based on designs seen in the literature.

To motivate the design choices, subsection 5-1-1 first introduces some basic concepts of the
different parts that make up a neural network. The main concepts are based on literature[97].

5-1-1 Building blocks

Neural networks are intricate, usually nonlinear, parametric functions. At the basis of these
functions are blocks of simpler functions, that can be combined in various ways to change the
model complexity and behavior.

Below, a short introduction is given to the building blocks used in the experiment conducted
for this work. Throughout the examples and equations, a vector x is considered the input
to the neural network and a vector y is considered the output. The trainable parameters
are denoted as θ, note that the trainable parameters are left out of the equations to increase

Thesis Willem van der Linden

50 Design

readability. A neural network consists of multiple layers, where every layer is a combination
of inputs followed by an activation function. E.g. a neural network consisting of three layers
can be written in the following way (5-1):

y = f(x) = f1(f2(f3(x))) (5-1)

Here, output y is described by a function f(x) and f(x) consists of 3 functions (layers) in
series. The first layer, the input layer, takes the sample x. The final layer, the output layer
outputs the vector y all intermediate layers are commonly called hidden layers, these layers
combine the outputs from the previous layer. Every layer contains a method of combining
inputs (e.g. linear) with an activation function. Additional regularization can be applied to
the layers to make training the neural network more effective[98].

Linear layer

A linear layer, also known as a fully connected[23] or dense layer[99] applies a linear trans-
formation to its input. A linear layer consists of a weight matrix W and a bias vector b. The
output of the layer is the sum of the weight matrix multiplied by the input vector and the
bias as given in (5-2)

y = Wx + b (5-2)

A visual interpretation of a linear layer is given in Figure 5-1. This figure shows that all
output features from every layer connect to all inputs of the next layer i.e. all layers are fully
connected.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 5-1: Fully connected network with 2 hidden layers.

A major downside of fully connected layers is that the number of parameters (weights) grows
rapidly as the number of features increases. If the input to the neural network has for example
a million features (e.g. image of 1024 by 1024 pixels) and the input layer has only 1000 outputs
the weight matrix holds already a billion weights. Even larger inputs or a higher number of
outputs makes updating the weights too time-consuming.

As shown in Figure 5-1, the number of nodes of one layer does not have to match the number
of nodes of the subsequent layer. The number of nodes can grow or shrink i.e. linear layers
can be used for both encoding and decoding data.

Willem van der Linden Thesis

5-1 Network architectures 51

Convolutional layer

A convolutional layer extends the concept of a linear layer by focusing on local patterns.
Instead of fully connecting all input and output nodes, it uses small learnable filters (kernels)
that slide over the input sequence, performing element-wise multiplication and summation.
In (5-3) the convolutional layer is given. Here y(i) is the ith output feature determined by
the sum over m features of the input data x multiplied by the mth kernel (K) element. m
Is the number of features in the kernel. Note that here a 1D kernel is used resulting in a
vector of outputs. This kernel can be extended into a 2D kernel giving rise to multiple output
channels. Please note that this is different from a 2D-convolution operation; in 2D-convolution
the kernel moves in two directions.

y(i) =
∑
m

x(i−m)K(m) (5-3)

Figure 5-2 gives an overview of the convolution operation. In this case, 3 input features are
combined through a filter to create a single output feature. Note that the number of output
features is lower than the input features. To compensate for this, additional features (usually
zeros) can be added to both ends of the input (so-called padding).

x0 x1 x2 x3 x4 x5 x6

w0 w1 w2

y0 y1 y2 y3 y4

Input

Kernel / Filter

Output

Figure 5-2: In purple; the input layer, In red the kernel; In green the output layer. The red arrow
indicates the movement of the kernel.

Convolutional layers are computationally efficient, as the number of weights depends on the
size of the kernel and not on the number of inputs. This means that no matter the size of the
input the number of trainable parameters (number of weights in the kernel) stays the same.
The opposite of the convolution operation is the inverse convolution or deconvolution. Con-
volution lowers the dimension and is usually used for encoding data to a lower space such
as in the discriminator. Deconvolution is used for decoding data from a lower to a higher
dimension and can be used for the generator.

Activation functions

Activation functions introduce nonlinearities into the network enabling it to model more
intricate data relationships. An activation function takes the output of a node as an argument.
Some of the most common functions are given in Appendix C. The derivates are included to
show the effect of the layers on the backpropagation step.

Thesis Willem van der Linden

52 Design

Batch normalization

Batch normalization is a technique used in neural networks to improve training stability and
performance. It normalizes the inputs of each layer, ensuring that they have a consistent
mean and variance across mini-batches. By mitigating issues like internal covariate shift,
batch normalization accelerates convergence and allows for higher learning rates[100].

Dropout

Dropout is a regularization technique used in neural networks to prevent overfitting. During
training, dropout randomly deactivates some neurons in the network at each iteration, forcing
the network to learn redundant representations of features. This approach helps the model
generalize better by reducing reliance on specific neurons and mitigating the risk of overfitting
to the training data. By improving generalization, dropout enhances the model’s performance
on unseen data[101].

Label embedding

To include labels in the input of the neural network an embedding layer is used. An embedding
layer maps a discrete input (class label) to a continuous vector. This mapping can be seen
as a linear layer where the number of inputs is the number of classes. The output, which is
concatenated with the noise vector, can be of any chosen length. In this work, the output
length of the embedding layer is chosen equal to the number of classes.

5-1-2 Optimizer

In the original GANs[15] Stochastic Gradient Descent (SGD) is used to optimize both neural
networks based on the chosen optimization function. However, later works[23, 20] use the
Adam optimizer. In short, Adam computes “individual adaptive learning rates for different
parameters from estimates of first and second moments of the gradients” [74]. By using the
moments of the gradients, the algorithm converges faster as SGD.

The use of momentum is discouraged in some literature on GANs[16] as it would lead to
instability and GANs not converging. This is however disputed in other literature that does
choose Adam over SGD[20]. In this work, Adam is used for optimization.

5-2 Discriminator Design

The successful training of GANs is largely based on the effectiveness of the discriminator. If
the discriminator fails to distinguish real from fake data, the updates to the generator become
meaningless.

The input of the discriminator is a spectrum (vector) with the corresponding class label
(integer). The output of the discriminator is a prediction of the input either being a real
or generated sample. In the original adversarial loss function given in (2-3) the prediction
should be in the range of 0 to 1. The Wasserstein loss (2-7) expects a prediction in R.

Willem van der Linden Thesis

5-2 Discriminator Design 53

Design considerations

Based on the original GANs[15]and conditional GANs[19]the first discriminator tested is a
neural network with fully connected layers. Based on suggestions found in literature[23]Leaky
ReLU is used on all layers except the output layer which uses a sigmoid activation function. To
accommodate the condition on the input an embedding layer is used. During experimentation,
the choice was made to incorporate dropout in all hidden layers as suggested in literature[23].
The discriminator takes a spectrum x̃ (either real or generated) with the corresponding label
y. The output p of the generator is between 0 and 1 corresponding to predicting ‘fake’ and
‘generated’ respectively.

p = D(x̃, y) ∈ (0, 1) (5-4)
When using the Wasserstein GANs the output activation function is removed leaving a fully
connected linear output layer. This gives the discriminator a range of (−∞,∞) The number
of connections in each layer and the number of layers is determined by the experiments below.

5-2-1 Discriminator verification

To test if the discriminator architecture is sufficient to learn to distinguish between original
and (imperfect) fake samples, the architecture is tested as a binary classifier. The intuition is
that, if the discriminator can distinguish different classes of the original data, it can distinguish
between real and imperfect generated data. Additionally, a test is conducted to see if the
discriminator can distinguish between real data and pure noise (from an untrained generator).
A few example spectra used for these tests are given in Figure 5-3.
Note that, even though the discriminator is designed to incorporate labels in its decision-
making, during this test all labels are set to a static value. These tests are conducted on

(a) (b) (c)

Figure 5-3: The discriminator is used as a regression model classifier to distinguish between class
1 and class 2 and between class 1 and noise. (a) Example from class 1, (b) Examples from class
2, (c) Examples of noise samples

a few different architectures. In the tables (Table 5-1 and Table 5-2) fc(n) denotes a fully
connected network with n linear connection between layers. A few tests were conducted
using deep convolution networks (DC(n)), here n is a factor in the number of channels in the
convolutional layers. Full descriptions of these architectures can be found in section D-1 and
subsection 5-2-2.
The scores of the different fully connected options indicate that 3 or 4 linear connections give
the best results. Based on these results, the 3-connection fully connected network is used in

Thesis Willem van der Linden

54 Design

Accuracy at iteration Final Average
Model 5 10 50 Recall Precision
DC (8) 0.50 0.60 1.00 0.95 0.96
DC (32) 0.65 0.70 1.00 1.00 1.00

fc (1) 0.99 1.00 1.00 0.98 0.99
fc (3) 1.00 1.00 1.00 0.99 0.99
fc (4) 1.00 1.00 1.00 1.00 1.00

Table 5-1: Noise test; all scores on test set. DC: deep convolutional network, fc: fully
connected network.

Accuracy at iteration Final Average
Model 5 10 50 Recall Precision
DC (8) 0.50 0.60 1.00 0.95 0.96
DC (32) 0.39 0.55 0.61 0.87 0.90

fc (1) 0.63 0.78 0.78 0.87 0.82
fc (3) 0.99 1.00 1.00 0.94 0.93
fc (4) 1.00 1.00 1.00 0.92 0.93

Table 5-2: Binary test; all scores on test set. DC: deep convolutional network, fc: fully
connected network.

further experimentation. In the next section, the implemented network is given. The other
networks used in this test are given in section D-1.

5-2-2 Final discriminator design

Based on the test results given in the previous section, the discriminator architecture given
in Table 5-5 is used for experiments. Note that the number of classes (19) as well as the
length of the input vector (spectrum size of 573) changes in some experiments. The input
sizes and therefore the number of trainable parameters are changed accordingly. The number
of parameters of a linear layer is the number of input features multiplied by the number of
output features (the W matrix) plus the number of output features (the bias b).

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 592 (573+19) 512 303616 (592x512+512)
LeakyReLU 512 512 - -
Linear 512 512 262656 (512x512+512)
Dropout (0.4) - -
LeakyReLU 512 512 - -
Linear 512 1 513 (512x1+1)
Sigmoid - -

Trainable parameters: 567146

Table 5-3: Discriminator design with 3 linear connections. The sigmoid output on the final layer
is omitted in the Wasserstein GANs

Willem van der Linden Thesis

5-3 Generator Design 55

To further clarify this design, we relate it to the graph given in Figure 5-4. In this graph,
the gray circle indicates the embedded labels and the purple input circles indicate the signal
(spectrum). Next, the two hidden layers have an equal number of neurons, from the second
hidden layer all output features are combined into a single output layer.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

(573 + 19) (512) (512) (1)

Figure 5-4: Fully connected network with 2 hidden layers.

5-3 Generator Design

For the design of the generator, the design mustn’t limit the mapping from noise to a generated
sample. The output range of the generator has to be considered in relation to the scaling.

5-3-1 Design considerations

The generator eventually has to be able to map a noise input to an output indistinguishable
from real data. In literature, the generator usually uses a tangent hyperbolic output which
puts the range of all features in the interval of (−1, 1). As discussed in subsection 3-1-3,
depending on the scaling of the data this range has to be changed. In this work, the choice is
made to use standard scaling for the majority of experiments. To accommodate the range the
final layer of the generator uses no activation, i.e. a fully connected linear output mapping is
used.

5-3-2 Generator verification

To test the generator capacity in a similar way to the discriminator the neural network is used
as a decoder network that maps the noise vector z to an output signal. The reference output
signal is generated by a function f(·) that takes the same input z as the decoder. The goal of
this experiment is to minimize the difference between G(z) and f(z) as shown in (5-5). The
function f(z) can be any function, an experiment with a linear function is included in the
appendix. Assuming that a linear mapping of noise can not model the data, a second-order
function is used for the analysis below.

min
G
||f(z)−G(z)||22 (5-5)

Thesis Willem van der Linden

56 Design

The choice for f(z) = Az2 + Az + b comes from the assumption that if the data is from a
multivariate normal distribution N (µ, σσ⊤) it can be described by a linear function f(z) =
σz +µ with z ∼ N (0, I). Where AA⊤ is a lower rank approximation of the covariance matrix,
calculated by the truncated singular value decomposition, of the data used in the experiments
below. b Is the mean of the data.

The function f(z) is approximated by different candidate generator models G(z) and for
comparison linear regression and linear least squares are used as baseline. To compare the
different models both the mean squared error and Fréchet distance (see section 2-2-3) are
used. The tests were executed multiple times to verify that the training stability did not
cause a large variance in the results. The results are given in Table 5-4

G(z) MSE FD
LLS 2.19 ±0.02 27.25 ±0.17
LR 1.18 ±0.02 13.37±0.26
fc (1) 1.57 ±0.27 29.50 ±0.74
fc (3) 0.36 ±0.00 10.56 ±0.05
fc (4) 0.25 ±0.01 8.78 ±0.09
fc (5) 0.67 ±0.01 17.89 ±0.08
DC (8) 1.72 ±0.08 29.86 ±1.46

Table 5-4: Results of quadratic function (Average scores ± standard deviation over 3 runs).
LLS: Linear least squares, LR: Linear regression

5-3-3 Final generator design.

Based on the test results given in the previous section, the following generator architecture
is used for experimentation:

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 119 (100+19) 128 15360 (119x128+128)
LeakyReLU 128 128 - -
Linear 128 256 33024 (128x256+256)
BatchNorm1d 256 256 - -
LeakyReLU 256 256 - -
Linear 256 512 131584 (256x512+512)
BatchNorm1d 512 512 - -
LeakyReLU 512 512 - -
Linear 512 573 293949 (512x573+573)
BatchNorm1d 573 573 - -

Trainable parameters: 474278

Table 5-5: Generator design with 4 linear connections.

Willem van der Linden Thesis

5-4 Training and hyperparameters 57

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

(100 + 19) (128) (256) (512) (573)

Figure 5-5: Generator design overview. The purple circle represents the input noise vector and
the gray circle represents the embedded label. The number of circles represents the number of
neurons in that layer.

5-4 Training and hyperparameters

During experimentation, the choice was made to switch from the original GANs to the more
stable Wasserstein-based GANs. This choice is explained in subsection 6-2-1. For optimizing
the discriminator and generator functions, the Adam[74] optimizer is used with a learning
rate of 0.0001 for the discriminator. The learning rate for the generator is scaled with the
number of discriminator steps for every generator step (where a step is updating over a single
minibatch). The stopping criteria for optimization are a total number of iterations of 1000,
which proved enough to observe convergence in the different quality measures. Additionally,
training is stopped if the discriminator or generator loss explodes (would go over a threshold
for multiple update steps).

The data is split into minibatches with a batch size of 64. The last batch is dropped in every
iteration to ensure that no minibatch with a single sample exists, the batch normalization in
the neural networks relies on having multiple samples in each update step.

5-5 Benchmark

To test if the GANs are correctly implemented, as a first step one of the benchmarks used in
literature[1] is tested with the design described in previous sections. As noted in subsection 3-
1-3 standard scaling was used for the IMS-data, however, to compare this benchmark min-max
is used in accordance with the cited paper. In table Table 5-6 the results are given. In this
table, the neural network architecture of both the discriminator and generator is based on
the paper to see if the results are equal. The scores of the baseline (W/O), SMOTE, and
conditional GANs based on logistic regression are very similar to the scores reported.

As noted in section 3-3 LR can not be used for multiclass classification. Therefore the results
are also given for the linear discriminant analysis. What springs out immediately is that the
baseline LDA already performs better than the LR classifier. Also, only smote can increase
performance slightly, while both cGANs and cWGAN-GP both decrease performance.

If, instead of the very small neural networks (single layer) used in the cited literature, our own
design is applied in the same experiment. The GANs in fact do increase the performance of

Thesis Willem van der Linden

58 Design

Method Metric W/O SMOTE cGAN cWGAN-gp

LR
Precision 0.90 0.91 0.91 0.91

Recall 0.83 0.87 0.89 0.85
F1-score 0.85 0.88 0.90 0.87

LDA
Precision 0.97 0.97 0.94 0.93

Recall 0.94 0.95 0.91 0.92
F1-score 0.95 0.96 0.92 0.92

Table 5-6: macro average scores, data scaled using minmax, model architectures based on paper

both the LR and LDA classifier. The results are given in Table 5-7. From these scores, we see
a clear improvement of the GANs scores leading to the conclusion that a more complicated
model can model the data with more detail.

Table 5-8 shows that if standardization is used instead of minmax scaling, the baseline score
of the LR classifier improves to better scores than previously seen by any method. The
designed GANs can not further increase performance for the LR classifier, however, the LDA
classification is improved by the cWGAN-gp.

Method Metric W/O SMOTE cGAN cWGAN-gp

LR
Precision 0.90 0.91 0.90 0.88

Recall 0.83 0.87 0.90 0.87
F1-score 0.85 0.88 0.90 0.88

LDA
Precision 0.97 0.97 0.97 0.97

Recall 0.94 0.95 0.94 0.95
F1-score 0.95 0.96 0.95 0.96

Table 5-7: macro average scores, data scaled using minmax, model architectures based on ours
(fc(3))

Method Metric W/O SMOTE cGAN cWGAN-gp

LR
Precision 0.97 0.97 0.91 0.91

Recall 0.97 0.97 0.93 0.93
F1-score 0.97 0.97 0.92 0.92

LDA
Precision 0.95 0.95 0.90 0.94

Recall 0.91 0.92 0.92 0.95
F1-score 0.92 0.93 0.91 0.94

Table 5-8: Macro average scores, standardized data, based on our architecture

Willem van der Linden Thesis

Chapter 6

Experiments

This chapter shows some of the important experiments that lead to the conclusions given in
this report. The first experiment used the full dataset and in this experiment, all minority
classes were oversampled using GANs. This proved unsuccessful, however, why this did not
work as intended was not clear from the results. Many different experiments are conducted
to find if and how GANs can be successfully applied to IMS and specifically for oversampling
minority IMS classes.

6-1 Initial experiment

After implementing the designed architectures as described in the previous chapter, the first
experiment was on the full dataset, meaning on all classes and all features (full spectra). This
experiment is characterized by the following settings:

• Using all 191 classes
• Using all features (mass bins)
• Using standard scaling
• Using conditional GANs (adversarial loss as given in (2-6))

6-1-1 Baseline results

The baseline scores of classification are visualized in the recall matrices given in section 6-1.
Based on the average recall scores it can be concluded that the data augmentation baseline
lowers the performance of classification. SMOTE, however, does increase the recall score.

From these visualizations, the effect of the class imbalance is not directly visible. In Table 6-1
the full results are given in combination with other resulting classifiers fit to oversampled
data.

1Class labeled 5 is left out of experimentation due to the severe lack of examples

Thesis Willem van der Linden

60 Experiments

(a) (b) (c)

Figure 6-1: (a): the recall scores without oversampling, (b): the recall scores with augmented
oversampling, (c): the recall scores with SMOTE oversampling

6-1-2 GAN quality

After running the experiment, the oversampling score of the GANs is significantly worse than
the baseline scores. To investigate why the results are lacking the validation methods given
in section 2-2-3 are used. First, the replacement test shows that the GANs did not learn
to generate distinguishable classes as shown in Figure 6-2. In the recall figure, we expect a
diagonal line high scores similar to Figure 6-1.

Figure 6-2: Recall scores on test set, LDA fit on data generated by GANs

A second observation, based on a quantitative method is the lack of variance of the generated
samples. Figure 6-3 shows the mean and standard deviation of generated samples and original
samples of a single class. The mean is not estimated correctly and the generated samples show
no variance.

Willem van der Linden Thesis

6-1 Initial experiment 61

Figure 6-3: Visualization of the distribution of a single class, in blue mean and standard deviation
of the original data and in red the mean and standard deviation of the generated data.

6-1-3 Comparison

In Table 6-1 the full oversampling results are given. The gray rows show the minority classes
that score low in the baseline score. SMOTE gives a slight improvement in recall score.
However, this improvement comes with the cost of reduced precision meaning that the added
data leads to overfitting towards minority classes.

The implemented conditional GANs can not generate data that helps with the classification
scores. It rather decreases performance, the sole reason the average scores are still relatively
high is that the majority class data remains untouched. Figure 6-2 shows what happens if
all training data is replaced: the average score drops to approximately 1/19 meaning that a
classifier trained on the generated data randomly guesses every class.

Baseline SMOTE Simple cGAN Number of samples
Class Recall Precision Recall Precision Recall Precision Recall Precision Train Test

1 0.70 0.96 0.65 0.96 0.68 0.95 0.73 0.95 5000 9056
2 0.74 0.15 0.88 0.09 0.97 0.06 0.00 0.00 1874 469
3 0.90 0.86 0.90 0.85 0.89 0.84 0.93 0.85 5000 4485
4 0.53 0.17 0.82 0.11 0.62 0.10 0.04 1.00 543 136
5 - - - - - - - - 0 0
6 0.56 0.07 0.79 0.03 0.73 0.02 0.00 0.00 359 90
7 0.54 0.75 0.52 0.75 0.42 0.65 0.57 0.73 5000 11147
8 0.66 0.60 0.59 0.62 0.47 0.57 0.71 0.56 5000 6969
9 075. 0.95 0.70 0.96 0.63 0.94 0.81 0.94 5000 13443
10 0.91 0.16 0.86 0.17 0.84 0.13 0.88 0.18 4764 1191
11 0.74 0.89 0.72 0.90 0.70 0.87 0.78 0.89 5000 7937
12 0.60 0.80 0.54 0.80 0.47 0.81 0.69 0.78 5000 9463
13 0.57 0.25 0.58 0.22 0.42 0.17 0.30 0.36 3618 905
14 0.64 0.20 0.71 0.16 0.37 0.10 0.01 0.56 2605 652
15 0.64 0.31 0.58 0.33 0.32 0.17 0.73 0.28 5000 1416
16 0.50 0.09 0.71 0.05 0.42 0.02 0.00 0.00 577 145
17 0.61 0.73 0.57 0.74 0.48 0.64 0.65 0.71 5000 10149
18 0.79 0.58 0.75 0.58 0.69 0.74 0.81 0.57 5000 1118
19 0.62 0.68 0.53 0.69 0.34 0.59 0.70 0.62 5000 9591
20 0.88 0.63 0.90 0.61 0.89 0.60 0.83 0.72 3061 766

Average (m) 0.68 0.52 0.70 0.51 0.59 0.47 0.53 0.56
Average (w) 0.67 0.77 0.63 0.77 0.55 0.73 0.70 0.76

Table 6-1: Oversampling results, in gray the most minority classes that reduce classification
performance

Thesis Willem van der Linden

62 Experiments

6-2 Progressive experimentation

From the initial experiment, it is clear that oversampling using the implemented cGANs
does not work. However, what the limiting factor is, is not clear from the results. Many
experiments have been conducted to determine why results seen in literature can not be
reproduced with this dataset. From these experiments, the most significant results are shown
in the following sections.

6-2-1 wGAN-gp

As explained in section 2-2-1 the quality of the updates to both the discriminator and gen-
erator network is dependent on the quality of the discriminator. However, updating the dis-
criminator for more steps as the generator is discouraged as this hyperparameter is difficult
to tune as explained in section 2-2-1.

To circumvent the difficulties that might arise from fine-tuning the number of discriminator
update steps the original GAN optimization is changed to the Wasserstein metric with gradi-
ent penalty as presented in (2-10). This alternative formulation allows for unlimited training
of the discriminator. After some small experiments is concluded that 100 discriminator update
steps for every generator step yields the desired effect.

With the higher number of discriminator update steps, it can be assumed that the quality of
the update step of the generator is high. Therefore the learning rate for the generator is set
higher than the learning rate of the discriminator.

The main difference this change to the Wasserstein GANs has brought is the increased vari-
ance in the generated data. Figure 6-4 shows how the mean of a single class is relatively
well estimated and the standard deviation of the generated data overlaps with the standard
deviation of the original data. This is a large step from the cGANs results seen previously.

Figure 6-4: Visualization of the distribution of a single class, in blue mean and standard deviation
of the original data and in red the mean and standard deviation of the generated data.

Even though the statistics of the generated spectra look very similar to the original data in
the visualization. Using the training data replacement test shows that the data generated by
the Wasserstein GANs is still useless. This result is given in Figure 6-5.

Willem van der Linden Thesis

6-2 Progressive experimentation 63

Figure 6-5: Recall scores on test set, LDA fit on data generated by wGAN-gp

6-2-2 Noise reduction

Implementing the conditional Wasserstein Generative Adversarial Nets with gradient panelty
(cWGANs-gp) appears to improve the quality of samples, however, samples can not be used
for fitting a classifier. To further investigate why this does not work the data is denoised by
applying NMF to the data and scaling it back by multiplying the resulting W and H matrix.
The results of this experiment are similar to the previous experiment using WGANs-gp on
the full spectra. There is a slight improvement in the average recall score as shown in the
recall matrix given in Figure 6-6. This minor improvement is not considered to be proof that
noise is the source of the oversampling of the GANs not working.

Figure 6-6: Recall scores on test set, LDA fit on data generated by wGANs-gp. The original
data is first denoised by applying dimensionality reduction and increasing the dimension back

Thesis Willem van der Linden

64 Experiments

6-2-3 Dimensionality

The dimension of the signal might be a limiting factor in the performance. In the literature on
GANs-based oversampling is stated that reducing the dimensions to oversampling on reduced
dimensions gives better results and that increasing the number of dimensions does not increase
the results[93]. To test this, NMF is applied and the GANs are trained on the weights (the
W matrix). To expedite this experiment only five classes are used for this experiment. The
effect of the number of classes is explored in subsection 6-2-6.

Figure 6-7 shows the macro average recall score of an LDA fitted on generated data. On the
x-axis there is an increasing number of features used. SMOTE and the baseline don’t differ in
this test. The performance of simple data augmentation decays slightly by a higher number
of features. cWGAN-gp performce quit well up to 100 features but starts to decay there.
cGANs performs significantly worse than cWGANs-gp and decreases faster as well. Based on

Figure 6-7: Recall score of replacement test, Discriminator uses 3 and Generator uses 4 linear
connections.

this experiment it is concluded that working with a lower dimensional representation of the
data works better with GANs. As the optimal recall score for the wGANs is reached with 50
features, this number is considered ideal for further experimentation.

6-2-4 Model complexity

The previous results show that the dimension of the signal is a problem for the GANs. From
this can be assumed that the model is insufficiently complicated to model the data in higher
dimensions. To test this hypothesis, the dimensionality experiment is repeated with both the
generator and discriminator networks having one additional layer.

Figure 6-8 shows a similar trend to the trend seen in the previous section, however instead of
the additional dimension helping the recall score, the score decay happens earlier and faster.

Willem van der Linden Thesis

6-2 Progressive experimentation 65

Figure 6-8: Recall score of replacement test, Discriminator uses 4 and Generator uses 5 linear
connections.

6-2-5 Latent space dimension

A hyperparameter that seems te be closely related to the variation in the final dataset is the
number of latent variables used to generate a sample. In literature, a latent vector of length
100 is most common[23, 15] but no studies have been found that explicitly study the effect of
the size of this latent space.
A few different sizes are tested as noted in the Table 6-2. Only a subtle change is observed
between the size of the latent variables. Therefore the conclusion is drawn that this vector
length is not significant for overall performance. The size of 100 often-seen literature is used
for further experimentation.
In Table 6-2 50 features are used in accordance with previous experiments. Again, 5 majority
classes are used. The score in the table is the average recall score resulting from replacing
the data.

nz Recall
10 0.87
20 0.91
50 0.91
100 0.91
200 0.92

Table 6-2: Changing the size of the latent vector nz

6-2-6 Number of classes

The number of features has a big influence on the performance of the GANs as shown in
subsection 6-2-3. A second variable that introduces more complexity to the data is the

Thesis Willem van der Linden

66 Experiments

number of classes. Some of the previous experiments have been on only 5 majority classes
to show study the capabilities of GANs without the difference in the number of samples in
mind. To study the effect of the number of samples the number of classes is increased as
shown in Figure 6-9. In this test, the number of features used is 50. This figure shows a decay
in performance, however, the decay in the performance of the GANs follows the same trend
as the baseline techniques.

Figure 6-9: Varying the number of classes.

6-2-7 Minority only training

Instead of training on all classes, another approach would be to train the GANs only on
the classes that need oversampling, i.e. train GANs only on minority classes. However, a
downside of this method is that the GANs learn to generate data that is not necessarily
distinguishable from majority classes but only from minority classes.

Applying this method using the Wasserstein GANs with the reduced dimensions as discussed
previously does not result in better performance compared to the initial test conducted in
section 6-1. The GANs are trained in class 2,4,6 and 16.

6-3 Final experiment

Based on the results, the initial experiment on the full dataset is repeated with the following
settings:

• All 192 classes
• Using a reduced number of features (50 NMF-weights)
• Using standard scaling
• Using conditional WGANs with gradient penalty
2Class labeled 5 is left out of experimentation due to the severe lack of examples

Willem van der Linden Thesis

6-3 Final experiment 67

Figure 6-10: Recall matrix of GANs-based oversampling using 50 features. cWGANs-gp trained
on only minority classes.

6-3-1 Baseline results

Similar to the initial test described in section 6-1 the baseline results are collected and visual-
ized in recall matrices below. Note that the baseline scores based on the reduced dimensions
slightly differ from the original baseline scores as presented in section 6-1.

(a) (b) (c)

Figure 6-11: (a): the recall scores without oversampling, (b): the recall scores with augmented
oversampling, (c): the recall scores with SMOTE oversampling

6-3-2 GAN quality

As a first indicator of the GANs performance the training data for classification is entirely
replaced, as explained in section 2-2-3. The resulting recall scores are visualized in a recall
matrix given in Figure 6-12. This figure shows that the 4th class is not correctly classified,
however, all other classes show relatively good scores as indicated by the diagonal darker
blue line. Comparing this to the initial experiment results given in Figure 6-2 a significant
improvement is made using the insights gained in previous experiments.

Thesis Willem van der Linden

68 Experiments

Figure 6-12: Recall matrix replacement test using data generated by wGAN-gp for training and
original data for testing.

6-3-3 Comparison

The full results are given in Table 6-3. Comparing these results to the initial cGANs shows a
significant performance increase for GANs-based oversampling. However, the increase in mi-
nority classes scores comes with a decrease in majority classes i.e. GANs-based oversampling
does not result in an overall performance of classifier performance.

Baseline SMOTE Simple cWGAN-gp Number of samples
Class Recall Precision Recall Precision Recall Precision Recall Precision Train Test

1 .71 ± .03 .95 ± .00 .66 ±.01 .95±.01 .69±.01 .84±.00 .68 ± .02 .94± .00 5000 9056
2 .79 ± .06 .14 ± .03 .92 ±.01 .08±.01 .90±.02 .07±.00 .87 ± .02 .08 ±.01 1874 469
3 .90 ± .01 .83 ± .01 .90 ±.01 .81±.01 .89±.01 .88±.01 .91 ± .01 .81 ± .01 5000 4485
4 .38 ± .06 .12 ± .02 .73 ±.04 .09±.01 .49±.02 .09±.01 .39 ± .12 .12± .02 543 136
5 - - - - - - - - 0 0
6 .58 ± .09 .06 ± .02 .82 ±.02 .03±.00 .79±.05 .02±.00 .65 ± .07 .04 ± .01 359 90
7 .53 ± .01 .75 ± .01 .52 ±.01 .75±.01 .45±.00 .68±.01 .52 ± .02 .74 ± .01 5000 11147
8 .65 ± .04 .59 ± .01 .60 ±.00 .61±.01 .53±.02 .56±.01 .59 ± .01 .60 ± .01 5000 6969
9 .74 ± .02 .95 ± .00 .69 ±.01 .95±.00 .63±.02 .94±.00 .71 ± .01 .95 ± .00 5000 13443
10 .89 ± .02 .16 ± .00 .84 ±.00 .18±.00 .83±.02 .13±.00 .85 ± .02 .17 ± .00 4764 1191
11 .72 ± .01 .91 ± .01 .70 ±.01 .92±.01 .71±.01 .83±.01 .70 ± .00 .92 ± .01 5000 7937
12 .55 ± .04 .82 ± .01 .49 ±.01 .83±.01 .46±.01 .82±.01 .49 ± .01 .82 ± .01 5000 9463
13 .57 ± .02 .24 ± .01 .58±.02 .22±.01 .42±.02 .24±.01 .57 ± .03 .22 ± .01 3618 905
14 .65 ± .02 .20 ± .03 .70 ±.02 .16±.01 .57±.03 .14±.01 .73 ± .03 .15 ± .01 2605 652
15 .66 ± .03 .31 ± .01 .61 ±.01 .33±.01 .45±.01 .27±.01 .60 ± .01 .32 ± .01 5000 1416
16 .60 ± .14 .09 ± .02 .80 ±.04 .05±.00 .62±.03 .04±.00 .73 ± .07 .05 ± .00 577 145
17 .61 ± .02 .73 ± .00 .58 ±.01 .74±.01 .51±.01 .67±.01 .59 ± .01 .73 ± .01 5000 10149
18 .76 ± .02 .60 ± .04 .73 ±.01 .60±.02 .71±.01 .66±.03 .74 ± .03 .58 ± .05 5000 1118
19 .60 ± .04 .69 ± .01 .50 ±.01 .72±.01 .34±0.01 .65±.01 .53 ± .02 .71 ± .01 5000 9591
20 .85 ± .02 .62 ± .02 .87 ±.01 .59±.01 0.87±.01 .59±.01 .84 ± .01 .63 ± .02 3061 766

Average (m) .67 ± .01 .51±.01 .70±.01 .50±.01 .63±.01 .48±.00 .67± .01 .50±.01
Average (w) .66 ± .02 .77±.00 .62±.00 .78±.00 .57±.00 .74±.00 .63± .01 .77±.00

Table 6-3: Results on full dataset except class 4. Average score and standard deviation over 5
runs. The average (m) is the macro average and the average (w) is the weighted average

These results of using trained GANs to oversample minority class IMS spectra are verified on
a different dataset. This experiment is included in Appendix A. Some example spectra are
included in Appendix E.

Willem van der Linden Thesis

Conclusion and Recommendations

This work introduces Generative Adversarial Nets (GANs) for Imaging Mass Spectrometry
data (IMS). GANs can be used to generate data that can be used for oversampling minority
class data to increase classifier performance. GANs have been shown to outperform other
oversampling techniques such as SMOTE on different datasets.

In this work, Wasserstein GANs with gradient penalty is implemented to oversample minority
classes of an IMS dataset. Specifically, GANs are used to generate spectra of multiple different
classes.

Training the original GANs to generate spectra proved unsuccessful. By studying the per-
formance of GANs for a different number of classes and with reduced spectra length. The
final conclusion is reached by using cWGAN-gp on a reduced spectrum size. The GANs can
replicate the data well based on a classifier performance test. However, using the GANs to
oversample the minority classes does not increase overall classifier performance.

On this dataset GANs are outperformed by SMOTE, leading to the conclusion that GANs
should not be used on for the task of oversampling on this dataset. This result is verified
on a second dataset, leading to a similar conclusion. Testing on different datasets, e.g. in
a binary classification setting, could still be a good addition and next step to this research.
Additionally, other modifications or network architectures can be explored. For example,
deep convolutional GANs have not been thoroughly explored in this work.

Other steps to further improve on the generative capability of the implemented GANs that
have not been explored in this work are feature matching[102] or using the AC-GANs[27]
instead of the conditional GANs.

GANs are commonly used for image generation. Using GANs on images generated by selecting
a single mass bin can be used with GANs to for instance generate spatial views of non-existent
mass bins. A direct application for this is not clear to us.

Other research directions using GANs should also not be discarded. GANs used for anomaly
detection might be a huge opportunity in IMS data. In the appendix, a short experiment
already shows promising results. These results were created by using a reduced size spectrum
(using a lower number of features) in accordance with the previous conclusions.

Thesis Willem van der Linden

70 Experiments

Willem van der Linden Thesis

Appendix A

Murine Kidney

The results presented in this report are verified on a second dataset. This dataset is an
IMS dataset of a healthy Murine kidney. The main difference between this dataset and the
dataset used for the majority of the dataset is how the spectra are divided into classes. In
the presented work on the diseased kidney, NMF was used as a clustering method, while the
healthy kidney data included masks provided by an expert to point out regions of interest in
the data. Figure A-1a shows the total ion count image of this kidney, Figure A-1c shows the
masks of the data.
This dataset includes more pixels/ spectra (591534). And the spectra contain 1428 m/z bins.
To decrease the time of this experiment only a part of the pixels is selected. The data is sliced
as shown in Figure A-1c, this part of the data still contains all classes.

(a) (b) (c)

Figure A-1: (a) total ion count of the Murine kidney, (b) provided masks; purple: measured
pixels, blue: acquisition mask, green: cortex mask, yellow: medulla mask, turquoise: cortex mask,
(c) data selected for experimentation

The selected data contains 141607 spectra divided over 5 classes as indicated by the different
colors shown in Figure A-1. All these classes have a relatively larger number of samples as
shown in Table A-1. There is no obvious effect of class imbalance if the data is split normally
with 5000 samples of every class in the training data as shown in Table A-2.

Thesis Willem van der Linden

72 Murine Kidney

The results below are created using 50 features based on an NMF approximation of the data
as seen in the experiments in chapter 6.

Class Samples
1 15665
2 54791
3 25424
4 27443
5 18284

Table A-1: Total number of samples of every class

Class Precision Recall Training Test
1 0.90 0.96 5000 10665
2 0.94 0.55 5000 49791
3 0.74 0.95 5000 20424
4 0.67 0.97 5000 22443
5 0.72 0.95 5000 13284

Average (m) 0.97 0.87
Average (w) 0.82 0.78

Table A-2: Results with equal training size

A-1 Baseline

To simulate the effect of class imbalance, class 4 is undersampled. From all classes, 5000
samples are used for training, except class 4 from which only 500 samples are used. Comparing
Table A-3 to Table A-2 shows that the effect of undersampling on this dataset is very limited;
the average scores stay the same. The effect of SMOTE on this dataset is similar to the the
results presented before: the classification overfits toward the minority class but the average
scores stay similar to the unbalanced results.

No oversampling SMOTE
Class Precision Recall Precision Recall Training Test

1 0.88 0.96 0.90 0.95 5000 10665
2 0.86 0.61 0.94 0.55 5000 49791
3 0.74 0.95 0.75 0.94 5000 20424
4 0.75 0.84 0.71 0.97 500 26943
5 0.73 0.95 0.72 0.95 5000 13284

Average (m) 0.97 0.87 0.80 0.87
Average (w) 0.82 0.78 0.83 0.79

Table A-3: Baseline results, the gray row indicates the undersampled class.

Willem van der Linden Thesis

A-2 GANs results 73

A-2 GANs results

For this dataset the GANs designed in chapter 5 are not changed.

Similar to the results presented in the main part of this work the quality of GANs generated
data decreases as the number of features increases. This is shown in Figure A-2 where the
most left pictures shows the recall matrix of an LDA classifier fitted to GAN-generated data
where the GANs are trained on full spectra. Using 200 components, shown in the middle
image, shows a significant increase in performance but further decreasing the number of
features in this case improves the accuracy even further. This is the same result as seen in
subsection 6-2-3.

(a) (b) (c)

Figure A-2: Classifier scores with, (a) 1423 (all) features, (b) 200 features, and (c) 50 features

Based on the results seen in subsection 6-2-3 and the results given in Figure A-2 50 features
are selected for the training of GANs on this dataset. The results are presented in Table A-4.
Similar to what was observed in the main study, using SMOTE for oversampling leads to an
increased recall and a decreased precision of the minority class. However, for this dataset,
with artificially undersampled classes SMOTE does not increase overall performance.

GANs in this case even slightly decrease overall performance meaning that the generated data
is not a perfect representation of the data distribution.

No oversampling Augmentation SMOTE GANs
Class Precision Recall Precision Recall Precision Recall Precision Recall Training Test

1 0.88 0.96 0.88 0.96 0.90 0.95 0.89 0.92 5000 10665
2 0.86 0.61 0.95 0.52 0.94 0.55 0.84 0.61 5000 49791
3 0.74 0.95 0.74 0.93 0.75 0.94 0.74 0.94 5000 20424
4 0.75 0.84 0.70 0.97 0.71 0.97 0.74 0.83 500 26943
5 0.73 0.95 0.68 0.97 0.72 0.95 0.71 0.95 5000 13284

Average (m) 0.97 0.87 0.79 0.87 0.80 0.87 0.79 0.86
Average (w) 0.82 0.78 0.82 0.78 0.83 0.79 0.79 0.78

Table A-4: Baseline results, the gray row indicates the undersampled class.

A-2-1 Conclusion

This experiment underlines the results found in the chapter 6. Applying the conditional
Wasserstein GANs with gradient penalty to the full spectra is unsuccessful. Reducing the

Thesis Willem van der Linden

74 Murine Kidney

number of features increases the performance of GANs as shown in Figure A-2. However,
even with a low number of values, the GANs do not increase overall performance. In this
experiment, SMOTE also did not affect the overall performance in a meaningful way.

Willem van der Linden Thesis

Appendix B

Anomaly detection

GANs can be used for anomaly detection by training on only ‘normal’ data. After success-
ful training, the discriminator function will predict unseen data that is different from the
‘normal’ (anomalous) to be fake. This property of the discriminator can be exploited for
semi-supervised learning. Here is assumed that a small part of the data is known to be
healthy or non-anomalous. Training the GANs on this small part of data should create a
discriminator that can be used to identify unhealthy or anomalies in unseen data.
Using the kidney with bacterial colonies, the anomaly detection property of GANs can be
visualized with a small experiment. Of this dataset it is known that 1. bacterial colonies are
present in the middle of the sample, 2. folding effects influence some of the spectra located
near the edges. Therefore, a simple mask is created to filter out a small portion of data that
is almost certainly healthy. This mask is given in Figure B-1.
In the total ion image, some bright-colored regions already indicate the locations of bacterial
colonies, however not every bright spot corresponds to anomalous data. Training the original

Figure B-1: On the left, the full total-ion-count image, on the right the total ion count of the
spectra (in the corresponding location) selected as healthy.

GANs on the selected data and then using the discriminator on all spectra gives predictions

Thesis Willem van der Linden

76 Anomaly detection

in the left of Figure B-2. In this image, a darker color or higher value means a larger
chance of the data being anomalous. For reference, the figure on the right shows the result
of K-means, an unsupervised method to distinguish different modes in the data. This test

(a) (b)

Figure B-2: (a) Prediction of real and fake classes. (b) K-means clustering for reference

shows the capabilities of GANs for anomaly detection. No comparison or validation is used
to verify the accuracy of the detected anomalies. In future work, anomalies can be further
explored and studied using GANs and maybe even specialized GANs such as GANomaly[40]
or AnoGAN[40].

Willem van der Linden Thesis

Appendix C

Activation functions

Below an overview is given of the most common activation fucntions.

Linear activation

A linear activation function does not change the input
(y=x).

f(x) = x f(x) ∈ (−∞,∞)
f ′(x) = 1

Figure C-1: Linear activation
with its derrivative

Sigmoid activation

The sigmoid activation is often used for binary classifica-
tion, the (rounded) output 0 corresponds to the first and
the (rounded) output 1 corresponds to the second class.
A generator in GANs can use a sigmoid activation on
the final layer if the data is scaled accordingly (to (0,1)).

f(x) = 1
1 + e−x

f(x) ∈ (0, 1)

f ′(x) = f(x)(1− f(x)) f ′(x) ∈ (0,
1
4] Figure C-2: Sigmoid activation

with its derivative

Tanh activation

Thesis Willem van der Linden

78 Activation functions

The Tangent hyperbolic activation function is very
similar to the sigmoid function. The range is doubled
(-1 to 1, instead of 0 to 1). The main important
difference is the derivative, which takes a larger value
for the Tanh close to 0.

f(x) = tanh(x) f(x) ∈ (−1, 1)
f ′(x) = 1− tanh2(x) f ′(x) ∈ [1, 0)

Figure C-3: Tanh activation
with its derrivative

ReLU activation

The Rectifier Linear Unit function is equal to the
linear activation for positive inputs. It is zero for
negative inputs. This activation function is often used
in intermediate layers of a neural network.

f(x) =
{

x, if x > 0
0, otherwise

f(x) ∈ [0,∞)

f ′(x) =
{

1, if x > 0
0, otherwise

f ′(x) ∈ {0, 1}
Figure C-4: ReLU with its der-
rivative

Leaky ReLU activation
Similar to ReLU, except Leaky ReLU can have negative values. Using this layer can lead to
faster training as Leaky ReLU has a nonzero gradient for negative inputs.

f(x) =
{

x, if x > 0
αx, otherwise

f(x) ∈ (−∞,∞)

f ′(x) =
{

1, if x > 0
α, otherwise

f ′(x) ∈ {α, 1}

With 0 < α < 1

Figure C-5: Leaky ReLU with its derivative
(α = 0.1)

Softmax activation
The softmax activation function takes a vector as input and produces a vector as output.
The output vector corresponds to probabilities. This can be used for multiclass classification.
Where every entry in the output vector corresponds to the probability of the input corre-
sponding to the class. In the equations below, K is the number of classes. xi and xj denote

Willem van der Linden Thesis

79

the i’th and j’th value of the vector x

f(x) = exi∑K
j=1 exj

x ∈ (0, 1)K

In the example below the input to the NN corresponds is predicted to correspond to the
second class (as the second entry of the output vector has the highest probability).

1.3
5.1
2.1
0.7
1.1

 −→
exi∑K

j=1 exj
−→

0.02
0.90
0.05
0.01
0.02

Thesis Willem van der Linden

80 Activation functions

Willem van der Linden Thesis

Appendix D

Additional neural net designs

Multiple designs are tested as discussed in chapter 5. The designed are summarized below.
Testing with e.g. different dropout rates and different numbers of neurons per layer is not
discussed in this document.

D-1 Discriminator designs

D-1-1 Fully connected networks

The main focus of the different designs discussed in this work are on the number of layers in a
fully connected neural network. For the discriminator the number of neurons in every hidden
layer is kept the same throughout the different designs. The output layer of discrimination
is a scaler by definition and the inputsize is dependent on the number of (embedded) classes
and the number of features in the dataset.

Single linear connection fc(1)
The simplest possible discriminator network is a direct connection between the in and output.

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 592 (573+19) 1 593 (592x1+1)
Sigmoid - -

Trainable parameters: 954

Table D-1: Discriminator design with 1 linear connection. The sigmoid output on the final layer
is omitted in the Wasserstein GANs

Four linear connections fc(4)
The main design used in this work has three linear connections (see chapter 5). Adding an
additional layer results in the design given below in Table D-2.

Thesis Willem van der Linden

82 Additional neural net designs

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 592 (573+19) 512 303616 (592x512+512)
LeakyReLU 512 512 - -
Linear 512 512 262656 (512x512+512)
Dropout (0.4) - -
LeakyReLU 512 512 - -
Linear 512 512 262656 (512x512+512)
Dropout (0.4) - -
LeakyReLU 512 512 - -
Linear 512 1 513 (512x1+1)
Sigmoid - -

Trainable parameters: 829411

Table D-2: Discriminator design with 4 linear connections. The sigmoid output on the final layer
is omitted in the Wasserstein GANs

D-1-2 Convolutional designs

DC with 8 channels DC(8)
In addition to the fully connected networks, some testing with varying convolutional networks
was done as well. The chosen kernel size is included in the brackets. The number of output
channels of the convolutions is added as a column. The stride for all convolutions is equal to
2. This design is given in Table D-3

Layer type Output channels Input shape Output shape Number of parameters
Embedding 1 19 19 361 (19x19)
Linear 1 592 (573+19) 512 303616 (592x512+512)
LeakyReLU 1 512 512 - -
Convolution (5) 8 512 8x258 48
LeakyReLU 8 32x258 8x258 - -
Dropout (0.4) 8 - -
Convolution (4) 16 32x258 16x131 528
LeakyReLU 16 16x131 16x131 - -
Dropout (0.4) 16 - -
Convolution (4) 32 16x131 32x67 2080
LeakyReLU 32 32x67 32x67 - -
Dropout (0.4) 32 - -
Convolution (4) 64 128x67 64x35 8256
LeakyReLU 64 64x35 64x35 - -
Dropout (0.4) 64 - -
Flatten 1 64x35 2240 - -
Linear 1 2240 1 2241 (2240x1+1)
Sigmoid - -

Trainable parameters: 317130

Table D-3: Discriminator design with characteristic 8. The sigmoid output on the final layer is
omitted in the Wasserstein GANs

Willem van der Linden Thesis

D-2 Generator designs 83

DC with 32 channels DC(32)
An additional convolutional network is created for comparison with a different channel scaling.
Where the previous example doubles the number of channels starting at 8 this alternative
design given in Table D-8 starts with 32 output channels of the first convolution layer.

Layer type Output channels Input shape Output shape Number of parameters
Embedding 1 19 19 361 (19x19)
Linear 1 592 (573+19) 512 303616 (592x512+512)
LeakyReLU 1 512 512 - -
Convolution (5) 32 512 32x258 192
LeakyReLU 32 32x258 32x258 - -
Dropout (0.4) 32 - -
Convolution (4) 64 32x258 64x131 8256
LeakyReLU 64 64x131 64x131 - -
Dropout (0.4) 64 - -
Convolution (4) 128 64x131 128x67 32896
LeakyReLU 128 128x67 128x67 - -
Dropout (0.4) 128 - -
Convolution (4) 2556 128x67 256x35 131328
LeakyReLU 256 256x35 256x35 - -
Dropout (0.4) 256 - -
Flatten 1 256x35 8960 - -
Linear 1 8960 1 8961 (8961x1+1)
Sigmoid - -

Trainable parameters: 485610

Table D-4: Discriminator design with characteristic 32. The sigmoid output on the final layer is
omitted in the Wasserstein GANs

D-2 Generator designs

For the generator design the number of numbers is increased in each added layer. The number
of inputs is dependent on the number of classes and the size of the latent vector. Below the
generator designs tested in chapter 5 are summarized.

D-2-1 Fully connected networks

Single linear connection fc(1)

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 119 (100+19) 573 68760 (119x573+128)
Batchnormalization 573 573 - -

Trainable parameters: 69121

Table D-5: Generator design with 1 linear connection.

Thesis Willem van der Linden

84 Additional neural net designs

Three linear connections fc(3)

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 119 (100+19) 128 15360 (119x128+128)
LeakyReLU 128 128 - -
Linear 128 256 33024 (128x256+256)
Batchnormalization 256 256 - -
LeakyReLU 256 256 - -
Linear 256 573 147261 (256x573+573)
Batchnormalization 573 573 - -

Trainable parameters: 197664

Table D-6: Generator design with 3 linear connections.

Three linear connections fc(5)

Layer type Input shape Output shape Number of parameters
Embedding 19 19 361 (19x19)
Linear 119 (100+19) 128 15360 (119x128+128)
LeakyReLU 128 128 - -
Linear 128 256 33024 (128x256+256)
Batchnormalization 256 256 - -
LeakyReLU 256 256 - -
Linear 256 512 131584 (256x512+512)
Batchnormalization 512 512 - -
LeakyReLU 512 512 - -
Linear 512 1024 525312 (512x1024+573)
Batchnormalization 1024 1024 - -
LeakyReLU 1024 1024 - -
Linear 1024 573 587325 (1024x573+573)
Batchnormalization 573 573 - -

Trainable parameters: 1296550

Table D-7: Generator design with 5 linear connections.

D-2-2 Convolutional design

A single convolutional network as the generator is tested. Here, the deconvolution or transpose-
convolution operation is used to decode a lower dimensional vector to a higher dimensional
space. The number of channels is first increased from 1 to 8 and then the number of channels
is lowered while the signal length increases.

Willem van der Linden Thesis

D-2 Generator designs 85

Layer type Output channels Input shape Output shape Number of parameters
Embedding 1 19 19 361 (19x19)
Linear 1 119 (100+19) 128 15360 (119x128+128)
Batchnormalization 1 2
LeakyReLU 1 128 128 - -
Deconvolution (4) 8 128 8x256 40
Batchnormalization 8 16
LeakyReLU 8 8x256 8x256 - -
Deconvolution (4) 4 4x512 4x512 132
Batchnormalization 4 8
LeakyReLU 4 64x131 64x131 - -
Deconvolution (4) 2 4x512 2x1024 34
Batchnormalization 2 4
LeakyReLU 2 128x67 128x67 - -
Deconvolution (4) 1 2x1024 1x1025 9
Batchnormalization 1 2
LeakyReLU 1 1x1025 1x1025 - -
Linear 1 1025 573 587898 (1025x573+573)
Sigmoid - -

Trainable parameters: 605054

Table D-8: Generator design with characteristic 8. Kernel of 4 in all layers

Thesis Willem van der Linden

86 Additional neural net designs

Willem van der Linden Thesis

Appendix E

Example spectra

Below, some randomly selected examples are given of original and generated data. All data
is scaled back to its original scale. The generated spectra are created by a generator trained
using cWGAN-gp with 50 NMF features. The real spectra are taken from the test set. Each
figure shows 5 spectra of the mentioned class.

(a) (b)

Figure E-1: (a) real and (b) generated spectra, both of class 1.

Thesis Willem van der Linden

88 Example spectra

(a) (b)

Figure E-2: (a) real and (b) generated spectra, both of class 8.

(a) (b)

Figure E-3: (a) real and (b) generated spectra, both of class 16.

Willem van der Linden Thesis

Bibliography

[1] J. Engelmann and S. Lessmann, “Conditional wasserstein gan-based oversampling of
tabular data for imbalanced learning,” Expert Systems with Applications, vol. 174,
p. 114582, 2021.

[2] C. Charitou, S. Dragicevic, and A. d. Garcez, “Synthetic data generation for fraud
detection using gans,” arXiv preprint arXiv:2109.12546, 2021.

[3] R. Goodwin, J. Bunch, and D. McGinnity, “Mass spectrometry imaging in oncology
drug discovery,” Advances in cancer research, vol. 134, pp. 133–171, 2017.

[4] H. Meistermann, J. L. Norris, H.-R. Aerni, D. S. Cornett, A. Friedlein, A. R. Erskine,
A. Augustin, M. C. D. V. Mudry, S. Ruepp, L. Suter, et al., “Biomarker discovery
by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced
nephrotoxicity in rat,” Molecular & Cellular Proteomics, vol. 5, no. 10, pp. 1876–1886,
2006.

[5] M. Aichler and A. Walch, “Maldi imaging mass spectrometry: current frontiers and
perspectives in pathology research and practice,” Laboratory investigation, vol. 95, no. 4,
pp. 422–431, 2015.

[6] A. Nilsson, R. J. Goodwin, M. Shariatgorji, T. Vallianatou, P. J. Webborn, and P. E. An-
drén, “Mass spectrometry imaging in drug development,” Analytical chemistry, vol. 87,
no. 3, pp. 1437–1455, 2015.

[7] E. A. Jones, S.-O. Deininger, P. C. Hogendoorn, A. M. Deelder, and L. A. McDonnell,
“Imaging mass spectrometry statistical analysis,” Journal of proteomics, vol. 75, no. 16,
pp. 4962–4989, 2012.

[8] T. Alexandrov, “Maldi imaging mass spectrometry: statistical data analysis and current
computational challenges,” BMC bioinformatics, vol. 13, no. Suppl 16, p. S11, 2012.

[9] D. Pietkiewicz, S. Plewa, M. Zaborowski, T. J. Garrett, E. Matuszewska, Z. J. Kokot,
and J. Matysiak, “Mass spectrometry imaging in gynecological cancers: the best is yet
to come,” Cancer Cell International, vol. 22, no. 1, p. 414, 2022.

Thesis Willem van der Linden

90 Bibliography

[10] E. R. A. van Hove, D. F. Smith, and R. M. Heeren, “A concise review of mass spec-
trometry imaging,” Journal of chromatography A, vol. 1217, no. 25, pp. 3946–3954,
2010.

[11] S. S. Rubakhin and J. V. Sweedler, “Mass spectrometry imaging,” Rubakhin SS,
Sweedler JV,(Eds.), pp. 21–49, 2010.

[12] K. K. Murray, “Resolution and resolving power in mass spectrometry,” Journal of the
American Society for Mass Spectrometry, vol. 33, no. 12, pp. 2342–2347, 2022.

[13] C. Bauer, R. Cramer, and J. Schuchhardt, “Evaluation of peak-picking algorithms for
protein mass spectrometry,” in Data Mining in Proteomics: From Standards to Appli-
cations, pp. 341–352, Springer, 2010.

[14] F. Falcetta, L. Morosi, P. Ubezio, S. Giordano, A. Decio, R. Giavazzi, R. Frapolli,
M. Prasad, P. Franceschi, M. D’Incalci, et al., “Past-in-the-future. peak detection im-
proves targeted mass spectrometry imaging,” Analytica Chimica Acta, vol. 1042, pp. 1–
10, 2018.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” vol. 3, p. 2672 – 2680,
2014. Cited by: 33546.

[16] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”
in International conference on machine learning, pp. 214–223, PMLR, 2017.

[17] S. Sidheekh, A. Aimen, and N. C. Krishnan, “On characterizing gan convergence
through proximal duality gap,” in International Conference on Machine Learning,
pp. 9660–9670, PMLR, 2021.

[18] F. Farnia and A. Ozdaglar, “Do gans always have nash equilibria?,” in International
Conference on Machine Learning, pp. 3029–3039, PMLR, 2020.

[19] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” Advances in neural information processing systems,
vol. 30, 2017.

[21] C. A. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford University Press,
1995.

[22] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for gans do actually
converge?,” in International conference on machine learning, pp. 3481–3490, PMLR,
2018.

[23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” 2016. Cited by: 2486.

[24] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4401–4410, 2019.

Willem van der Linden Thesis

91

[25] A. Sauer, T. Karras, S. Laine, A. Geiger, and T. Aila, “Stylegan-t: Unlocking the power
of gans for fast large-scale text-to-image synthesis,” arXiv preprint arXiv:2301.09515,
2023.

[26] V. Sampath, I. Maurtua, J. J. Aguilar Martin, and A. Gutierrez, “A survey on generative
adversarial networks for imbalance problems in computer vision tasks,” Journal of big
Data, vol. 8, pp. 1–59, 2021.

[27] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier
gans,” in International conference on machine learning, pp. 2642–2651, PMLR, 2017.

[28] S. Kamal, A. Mujeeb, M. Supriya, et al., “Generative adversarial learning for improved
data efficiency in underwater target classification,” Engineering Science and Technology,
an International Journal, vol. 30, p. 101043, 2022.

[29] M. Kang, W. Shim, M. Cho, and J. Park, “Rebooting acgan: Auxiliary classifier
gans with stable training,” Advances in neural information processing systems, vol. 34,
pp. 23505–23518, 2021.

[30] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv
preprint arXiv:1605.09782, 2016.

[31] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets,” Advances in neural information processing systems, vol. 29, 2016.

[32] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and
A. Courville, “Adversarially learned inference,” arXiv preprint arXiv:1606.00704, 2016.

[33] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent space clustering
in generative adversarial networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, pp. 4610–4617, 2019.

[34] J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, “Using deep learning to detect
defects in manufacturing: a comprehensive survey and current challenges,” Materials,
vol. 13, no. 24, p. 5755, 2020.

[35] J. Liu, J. Guo, P. Orlik, M. Shibata, D. Nakahara, S. Mii, and M. Takáč, “Anomaly
detection in manufacturing systems using structured neural networks,” in 2018 13th
world congress on intelligent control and automation (wcica), pp. 175–180, IEEE, 2018.

[36] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, “Deep learning
for medical anomaly detection–a survey,” ACM Computing Surveys (CSUR), vol. 54,
no. 7, pp. 1–37, 2021.

[37] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “Iot healthcare analytics: The impor-
tance of anomaly detection,” in 2016 IEEE 30th international conference on advanced
information networking and applications (AINA), pp. 994–997, IEEE, 2016.

[38] D. Lasaga and P. Santhana, “Deep learning to detect medical treatment fraud,” in Pro-
ceedings of the KDD 2017: Workshop on Anomaly Detection in Finance (A. Anandakr-
ishnan, S. Kumar, A. Statnikov, T. Faruquie, and D. Xu, eds.), vol. 71 of Proceedings
of Machine Learning Research, pp. 114–120, PMLR, 14 Aug 2018.

Thesis Willem van der Linden

92 Bibliography

[39] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsu-
pervised anomaly detection with generative adversarial networks to guide marker dis-
covery,” in Information Processing in Medical Imaging: 25th International Conference,
IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings, pp. 146–157, Springer,
2017.

[40] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised
anomaly detection via adversarial training,” in Computer Vision–ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised
Selected Papers, Part III 14, pp. 622–637, Springer, 2019.

[41] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient
gan-based anomaly detection,” arXiv preprint arXiv:1802.06222, 2018.

[42] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A survey on gans for anomaly
detection,” arXiv preprint arXiv:1906.11632, 2019.

[43] A. Borji, “Pros and cons of gan evaluation measures,” Computer Vision and Image
Understanding, vol. 179, p. 41 – 65, 2019. Cited by: 319; All Open Access, Green Open
Access.

[44] A. Borji, “Pros and cons of gan evaluation measures: New developments,” Computer
Vision and Image Understanding, vol. 215, p. 103329, 2022.

[45] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

[46] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image models using a
laplacian pyramid of adversarial networks,” Advances in neural information processing
systems, vol. 28, 2015.

[47] S. Tang, “Lessons learned from the training of gans on artificial datasets,” IEEE Access,
vol. 8, pp. 165044–165055, 2020.

[48] C. R. Givens and R. M. Shortt, “A class of wasserstein metrics for probability distribu-
tions.,” Michigan Mathematical Journal, vol. 31, no. 2, pp. 231–240, 1984.

[49] J. Kim and H. Park, “Sparse nonnegative matrix factorization for clustering,” tech.
rep., Georgia Institute of Technology, 2008.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in
python,” Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[51] J. Hemmerich, E. Asilar, and G. F. Ecker, “Cover: conformational oversampling as data
augmentation for molecules,” Journal of cheminformatics, vol. 12, no. 1, p. 18, 2020.

[52] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

Willem van der Linden Thesis

93

[53] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “Smote for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary,” Journal
of artificial intelligence research, vol. 61, pp. 863–905, 2018.

[54] L. Chen, T. Zhang, and T. Li, “Gradient boosting model for unbalanced quantitative
mass spectra quality assessment,” in 2017 International Conference on Security, Pattern
Analysis, and Cybernetics (SPAC), pp. 394–399, IEEE, 2017.

[55] S. Shahryari Fard, Improving protein identification in mass spectrometry imaging
using machine learning and spatial spectral information. PhD thesis, Université
d’Ottawa/University of Ottawa, 2022.

[56] A. S. Hussein, T. Li, C. W. Yohannese, and K. Bashir, “A-smote: A new preprocessing
approach for highly imbalanced datasets by improving smote,” International Journal of
Computational Intelligence Systems, vol. 12, no. 2, pp. 1412–1422, 2019.

[57] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning,” Journal of Machine
Learning Research, vol. 18, no. 17, pp. 1–5, 2017.

[58] J. Behrmann, C. Etmann, T. Boskamp, R. Casadonte, J. Kriegsmann, and P. Maaβ,
“Deep learning for tumor classification in imaging mass spectrometry,” Bioinformatics,
vol. 34, no. 7, pp. 1215–1223, 2018.

[59] J. Promchan, D. Günther, A. Siripinyanond, and J. Shiowatana, “Elemental imaging
and classifying rice grains by using laser ablation inductively coupled plasma mass spec-
trometry and linear discriminant analysis,” Journal of Cereal Science, vol. 71, pp. 198–
203, 2016.

[60] S. A. Thomas, Y. Jin, J. Bunch, and I. S. Gilmore, “Enhancing classification of mass
spectrometry imaging data with deep neural networks,” in 2017 IEEE symposium series
on computational intelligence (SSCI), pp. 1–8, IEEE, 2017.

[61] J. Xie and Z. Qiu, “The effect of imbalanced data sets on lda: A theoretical and empirical
analysis,” Pattern recognition, vol. 40, no. 2, pp. 557–562, 2007.

[62] S. A. Thomas, A. M. Race, R. T. Steven, I. S. Gilmore, and J. Bunch, “Dimensional-
ity reduction of mass spectrometry imaging data using autoencoders,” in 2016 IEEE
symposium series on computational intelligence (SSCI), pp. 1–7, IEEE, 2016.

[63] A. M. Race, R. T. Steven, A. D. Palmer, I. B. Styles, and J. Bunch, “Memory efficient
principal component analysis for the dimensionality reduction of large mass spectrom-
etry imaging data sets,” Analytical chemistry, vol. 85, no. 6, pp. 3071–3078, 2013.

[64] A. Jetybayeva, N. Borodinov, A. V. Ievlev, M. I. U. Haque, J. Hinkle, W. A. Lamberti,
J. C. Meredith, D. Abmayr, and O. S. Ovchinnikova, “A review on recent machine learn-
ing applications for imaging mass spectrometry studies,” Journal of Applied Physics,
vol. 133, no. 2, 2023.

[65] Z. Zhou, X. Zhai, and C. Tin, “Fully automatic electrocardiogram classification system
based on generative adversarial network with auxiliary classifier,” Expert Systems with
Applications, vol. 174, p. 114809, 2021.

Thesis Willem van der Linden

94 Bibliography

[66] J. J. Jeong, A. Tariq, T. Adejumo, H. Trivedi, J. W. Gichoya, and I. Banerjee, “Sys-
tematic review of generative adversarial networks (gans) for medical image classification
and segmentation,” Journal of Digital Imaging, vol. 35, no. 2, pp. 137–152, 2022.

[67] A. Viloria, O. B. P. Lezama, and N. Mercado-Caruzo, “Unbalanced data processing
using oversampling: machine learning,” Procedia Computer Science, vol. 175, pp. 108–
113, 2020.

[68] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,”
Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[69] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing
high-class imbalance in big data,” Journal of Big Data, vol. 5, no. 1, pp. 1–30, 2018.

[70] D. J. Dittman, T. M. Khoshgoftaar, R. Wald, and A. Napolitano, “Comparison of
data sampling approaches for imbalanced bioinformatics data,” in The twenty-seventh
international FLAIRS conference, 2014.

[71] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance
learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 39, no. 2, pp. 539–550, 2008.

[72] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[73] F. Grina, Z. Elouedi, and E. Lefevre, “A preprocessing approach for class-imbalanced
data using smote and belief function theory,” in Intelligent Data Engineering and Au-
tomated Learning–IDEAL 2020: 21st International Conference, Guimaraes, Portugal,
November 4–6, 2020, Proceedings, Part II 21, pp. 3–11, Springer, 2020.

[74] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[75] L. Deng, “The mnist database of handwritten digit images for machine learning re-
search,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[76] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms,” 2017.

[77] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial
networks,” arXiv preprint arXiv:1611.02163, 2016.

[78] J. Chen, J. Konrad, and P. Ishwar, “Vgan-based image representation learning for
privacy-preserving facial expression recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp. 1570–1579, 2018.

[79] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of stylegan,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8110–8119, 2020.

Willem van der Linden Thesis

95

[80] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[81] V. Sorin, Y. Barash, E. Konen, and E. Klang, “Creating artificial images for radi-
ology applications using generative adversarial networks (gans)–a systematic review,”
Academic radiology, vol. 27, no. 8, pp. 1175–1185, 2020.

[82] M. Rezaei, T. Uemura, J. Näppi, H. Yoshida, C. Lippert, and C. Meinel, “Generative
synthetic adversarial network for internal bias correction and handling class imbalance
problem in medical image diagnosis,” in Medical Imaging 2020: Computer-Aided Diag-
nosis, vol. 11314, pp. 82–89, SPIE, 2020.

[83] Q. Wang, X. Zhou, C. Wang, Z. Liu, J. Huang, Y. Zhou, C. Li, H. Zhuang, and J.-Z.
Cheng, “Wgan-based synthetic minority over-sampling technique: Improving semantic
fine-grained classification for lung nodules in ct images,” IEEE Access, vol. 7, pp. 18450–
18463, 2019.

[84] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution
image synthesis and semantic manipulation with conditional gans,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[85] S. Zhou, M. Gordon, R. Krishna, A. Narcomey, L. F. Fei-Fei, and M. Bernstein, “Hype:
A benchmark for human eye perceptual evaluation of generative models,” Advances in
neural information processing systems, vol. 32, 2019.

[86] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created equal?
a large-scale study,” Advances in neural information processing systems, vol. 31, 2018.

[87] C.-I. Kim, M. Kim, S. Jung, and E. Hwang, “Simplified fréchet distance for generative
adversarial nets,” Sensors, vol. 20, no. 6, p. 1548, 2020.

[88] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

[89] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” CoRR, vol. abs/1912.01703,
2019.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[91] Y. Tian, L. Shen, G. Su, Z. Li, and W. Liu, “Alphagan: Fully differentiable architecture
search for generative adversarial networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 10, pp. 6752–6766, 2021.

Thesis Willem van der Linden

96 Bibliography

[92] M. O. S. N. Wolberg, William and W. Street, “Breast Cancer Wisconsin (Diagnostic).”
UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

[93] L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative adversarial networks
for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 56, no. 9, pp. 5046–5063, 2018.

[94] N. Aloysius and M. Geetha, “A review on deep convolutional neural networks,” in 2017
international conference on communication and signal processing (ICCSP), pp. 0588–
0592, IEEE, 2017.

[95] D. Nemirovsky, N. Thiebaut, Y. Xu, and A. Gupta, “Countergan: Generating counter-
factuals for real-time recourse and interpretability using residual gans,” in Uncertainty
in Artificial Intelligence, pp. 1488–1497, PMLR, 2022.

[96] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “Autogan: Neural architecture search
for generative adversarial networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3224–3234, 2019.

[97] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, Massachusetss:
The MIT Press, 2016.

[98] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help
optimization?,” Advances in neural information processing systems, vol. 31, 2018.

[99] A. M. Javid, S. Das, M. Skoglund, and S. Chatterjee, “A relu dense layer to improve the
performance of neural networks,” in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2810–2814, IEEE, 2021.

[100] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, pmlr, 2015.

[101] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[102] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” Advances in neural information processing sys-
tems, vol. 29, 2016.

Willem van der Linden Thesis

Glossary

List of Acronyms

AC-GAN Auxiliary Classifier Generative Adversarial Nets
BiGAN Bidirectional Generative Adversarial Nets
cGANs conditional Generative Adversarial Nets
cWGANs-gp conditional Wasserstein Generative Adversarial Nets with gradient panelty
DC-GANs Deep Convolutional Generative Adversarial Nets
EM Earth Mover
FD Fréchet Distance
FID Fréchet Inception Distance
GANs Generative Adversarial Nets
IMS Imaging Mass Spectrometry
MALDI Matrix Assisted Laser Desorption and Ionization
MS Mass Spectrometry
NMF Non-negative matrix factorization
QTOF Quadrupole Time Of Flight
SMOTE Synthetic Minority Oversampling Technique
WGANs Wasserstein Generative Adversarial Nets

List of Symbols

D(·) Discriminator function
G(·) Generator function
Σ Covariance matrix
En∼pQ Expectation of n being from distribution Q
µ Mean

Thesis Willem van der Linden

98 Glossary

σ Standard diviation

FN False Negative
FP False Positive
m/z Mass to charge ratio
mM millimolar
TN True Negative
TP True Positive

Willem van der Linden Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Preface

	Main Matter
	Introduction
	Problem statement
	Goal
	Document overview

	Background
	Imaging Mass Spectrometry
	Working principle of IMS
	IMS data

	GANs
	GANs basics
	Applied GANs
	GANs performance indicators

	Methods and data
	Preprocessing
	Labelling
	Dimensionality reduction
	Scaling

	Oversampling
	Simple data augmentation
	SMOTE

	Classification
	Classifiers
	Linear discriminant analysis
	Classifier accuracy

	Paper
	Introduction
	Synthetic minority oversampling

	Background
	Generative Adversarial Neural Nets
	Applied GANs

	Methods and data
	Preprocessing
	Quantitative evaluation
	Baselines
	Hardware and code

	Design
	Discriminator testing
	Generator design

	Experimental results
	Benchmark
	5 majority classes
	Influence of dimensionality
	Influence of number of classes
	Varying the latent space
	Training on majority and minority classes
	Full dataset

	Conclusion
	Further research

	Design
	Network architectures
	Building blocks
	Optimizer

	Discriminator Design
	Discriminator verification
	Final discriminator design

	Generator Design
	Design considerations
	Generator verification
	Final generator design.

	Training and hyperparameters
	Benchmark

	Experiments
	Initial experiment
	Baseline results
	GAN quality
	Comparison

	Progressive experimentation
	wGAN-gp
	Noise reduction
	Dimensionality
	Model complexity
	Latent space dimension
	Number of classes
	Minority only training

	Final experiment
	Baseline results
	GAN quality
	Comparison

	Conclusion and Recommendations

	Appendices
	Murine Kidney
	Baseline
	GANs results
	Conclusion

	Anomaly detection
	Activation functions
	Additional neural net designs
	Discriminator designs
	Fully connected networks
	Convolutional designs

	Generator designs
	Fully connected networks
	Convolutional design

	Example spectra

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

