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A B S T R A C T   

Background: An increasing number of wearables are capable of measuring electrocardiograms (ECGs), which may 
help in early detection of atrial fibrillation (AF). Therefore, many studies focus on automated detection of AF in 
ECGs. A major obstacle is the required amount of manually labelled data. This study aimed to provide an efficient 
and reliable method to train a classifier for AF detection using large datasets of real-life ECGs. 
Method: Human-controlled semi-supervised learning was applied, consisting of two phases: the pre-training phase 
and the semi-automated training phase. During pre-training, an initial classifier was trained, which was used to 
predict the classes of new ECG segments in the semi-automated training phase. Based on the degree of certainty, 
segments were added to the training dataset automatically or after human validation. Thereafter, the classifier 
was retrained and this procedure was repeated. To test the model performance, a real-life telemetry dataset 
containing 3,846,564 30-s ECG segments of hospitalized patients (n = 476) and the CinC Challenge 2017 
database were used. 
Results: After pre-training, the average F1-score on a hidden testing dataset was 89.0%. Furthermore, after the 
pre-training phase 68.0% of all segments in the hidden test set could be classified with an estimated probability 
of successful classification of 99%, providing an F1-score of 97.9% for these segments. During the semi- 
automated training phase, this F1-score showed little variation (97.3%–97.9% in the hidden test set), whilst 
the number of segments which could be automatically classified increased from 68.0% to 75.8% due to the 
enhanced training dataset. At the same time, the overall F1-score increased from 89.0% to 91.4%. 
Conclusions: Human-validated semi-supervised learning makes training a classifier more time efficient without 
compromising on accuracy, hence this method might be valuable in the automated detection of AF in real-life 
ECGs.   

1. Introduction 

With the introduction of photoplethysmographic pulse waveform 
measurements in wearables, these consumer products have made their 
entrance into the early detection of heart rhythm disorders by moni-
toring the heart rate. In addition to photoplethysmography, an 
increasing number of smartwatches and other wearables are also 
capable of measuring electrocardiograms (ECGs), hence not only 
providing insight into the rate of cardiac contractions, but also in the 
electrical activation of the heart [1]. Given the fact that in the 4th 

quarter of 2019 alone already 118.9 million wearable devices were 
shipped worldwide [2] and the market is expected to grow further to a 
market value of $150 billion in 2026 [3], wearables could potentially 
play an increasingly important role in the early detection of heart 
rhythm disorders, in particular atrial fibrillation (AF), which, with an 
estimated prevalence of 2–4% in adults, is the most common sustained 
cardiac arrhythmia worldwide [4]. Although the ESC Guidelines [4] and 
EHRA consensus statements [5] recommend that a definite diagnosis of 
AF can only be established after an ECG recording has been reviewed by 
a physician, accurate wearable measurements could help in the early 
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detection of AF. 

1.1. Challenges in automated AF detection using ECGs 

In the ECG, AF is characterized by irregular R-R intervals, absence of 
P waves and presence of fibrillatory waves. Already in the early 90s, 
multiple studies endeavored to automatically analyze ECGs in order to 
automatically detect AF [6–8]. During recent years, the number of 
studies focusing on automated detection of AF in ECGs steeply increased 
[9]. Automated AF detection comes with two important challenges. 
First, the need for good features that can accurately distinguish AF from 
other rhythms. Although the differences between normal sinus rhythm 
and AF are apparent, differentiating AF from other irregular rhythms (e. 
g. frequent ventricular extrasystoles or atrial extrasystoles, or sinus 
arrhythmia) is more complicated, since almost 40% of the proposed 
algorithms solely rely on the irregularity of ventricular activity as a 
feature of AF [9]. The incidence of cardiac arrhythmias in general is 
substantial, particularly in older patients or patients with cardiovascular 
comorbidities [10]. Furthermore, after cardiac surgery, the reported 
incidence of post-operative AF (PoAF) is even up to 60% [11]. In pa-
tients with PoAF, an increased long-term mortality and stroke incidence 
was observed, indicating an even higher relevance of early AF detection 
in these more complex ECGs. 

Although new studies mainly innovate on the extracted features from 
ECGs and the used classification algorithms [9], the next challenge is 
related to the fact that accurate classification heavily depends on the 
presence of enough accurately labelled data. In 2017, the yearly 
Computing in Cardiology (CinC) Challenge focused on detecting AF in 
short term ECG recordings using a training set of 8,528 samples. Entries 
in the competition showed F1-scores up to 83.1%, indicating that it is 
possible to successfully train a classifier to automatically and accurately 
detect AF [12]. However, the expected advantage of more complex 
machine learning-based methods (e.g. convolutional neural networks 
and recurrent neural networks) was not observed. Clifford et al. state 
that this might be caused by the limited size of the training dataset [12]. 
However, manually labeling a large number of samples to generate a 
larger training set is time-consuming and hence might introduce 
inaccuracies. 

1.2. Machine learning techniques 

Traditionally, classifiers are trained using supervised learning, mean-
ing that, in order to train an accurate classifier, all data has to be 
manually labelled [13]. As an alternative, semi-supervised learning can be 
used to automatically fill a training dataset based on classifier output 
without manual intervention, also called self-training. First an initial 
classifier is trained using manually classified data, after which the 
training set is augmented with automatically classified data and then 
re-trained [14]. Using this technique, once self-training has started, 
there is no guarantee that the augmented data is classified correctly. 
Furthermore, the classifier does not learn from human input anymore, 
hence erroneous classifications might introduce tunnel vision to a wrong 
class for certain combinations of features. Therefore, with 
semi-supervised learning for AF detection in complex ECGs, recordings 
containing a variety of different cardiac rhythms, noise levels, and ar-
tefacts should be represented in the initial training dataset. Another way 
to limit the required amount of labelled data is using transfer learning, in 
which an already trained classifier from a similar task is used as a 
starting point to train a classifier for a new task. De Cooman et al. 
showed that this method is fast and robust for the detection of seizures 
based on heart rate. First, they trained a classifier using offline 
patient-independent data and then used this classifier to analyze 
patient-specific data [15]. Lastly, reinforcement learning is a method 
which tries to learn from a dataset, but also tries to optimize its reaction 
to a situation in order to optimize the reward, which, in this case, is the 
classification accuracy, expressed as the F1-score [16]. 

1.3. Study aim 

The output of a classifier does not necessarily solely consist of the 
predicted class of a newly analyzed sample, but can also contain infor-
mation on the estimated probability of a sample being in a certain class 
[17]. This information could potentially be used to train the classifier 
behavior in a reinforcement learning-based approach. Furthermore, a 
transfer learning-based approach might reduce the required size of the 
training dataset. Therefore, the aim of this study was to develop and test 
an efficient and reliable method to train a classifier on a large dataset 
containing real-life telemetry data without manually classifying all 
samples, but by combining semi-supervised learning, reinforcement 
learning and transfer learning techniques, taking into account the de-
gree of certainty of the classifier. 

2. Methods 

2.1. Dataset 

Real-life post-operative telemetry data of 418 hospitalized patients 
who underwent various types of cardiac surgery (CS) was used (CS 
database). This dataset was augmented with real-life telemetry data of 
58 patients who underwent electrical cardioversion (ECV) as AF treat-
ment (ECV database). All data was acquired using a 12-lead ECG 
recorder with a sampling frequency of 200Hz, from which only lead II 
was used to train the classifier. Patients were distributed over a training/ 
validation dataset and a hidden testing dataset with a ratio of 9:1. Long- 
term recordings were then split into a total of 3,846,564 non- 
overlapping segments of 30 s (CS database: 3,799,998 segments; ECV 
database: 46,566 segments; training/validation dataset: 3,474,361 
segments; hidden testing dataset: 372,203 segments), which corre-
sponds to the minimum clinical AF episode duration [4] and the average 
duration of segments in the CinC Challenge [12]. 

These segments of 30 s were annotated by an investigator experi-
enced in ECG evaluations. First, as visualized in the flowchart (Supple-
mentary Fig. 1), if the ECG could not be assessed due to noise or artefacts 
(caused by, for example, movement or pacemaker activity), it was 
classified as noise/artefact (Class ~). Next, if only sinus rhythm beats 
were present, it was classified as regular sinus rhythm (Class Normal). 
Otherwise, if AF occurred within the recording, it was classified as AF 
(Class AF). In all other cases (e.g. premature atrial or ventricular con-
tractions, or atrial flutter), it was classified as other irregular rhythm 
(Class Other). In total, 3,829 signals were annotated as AF, 8,882 as 
regular sinus rhythm, 3,500 as other irregular rhythm, and 12,352 as 
noise/artefact. A hidden test dataset was created using 500 segments of 
each class. The other segments were used for training and validation 
purposes. Examples of the four different classes are visualized in Fig. 1. 

Furthermore, the database from the CinC Challenge 2017 was used to 
study the effect of the proposed method on another database [12]. The 
updated labels from the CinC Challenge 2017 (v3) were used to deter-
mine the true class of each segment. The dataset was split into a training 
set containing 80% of the records and a testing set containing 20% of the 
records. 

2.2. Classifier design 

A classifier was designed to differentiate between the previously 
defined classes, similar to the CinC Challenge 2017 [12]. QRS-peak 
detection was performed based on the Pan Tompkins algorithm [18]. 
Next, P- and T-waves were detected using the method as described by 
Elgendi et al. [19]. As the aim of this study was not to find the optimal 
features for AF detection, the included features mainly describe the ECG 
in similar ways as previous studies [9]. For example, the ECG signal was 
described in terms of peak intervals and amplitudes per heartbeat. 
Furthermore, the R-R interval variability and the number of detected 
P-waves and T-waves was determined. Also, since P waves, QRS 
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complexes and T waves mainly contain frequencies of 0.5Hz–40Hz, the 
area under the frequency spectrum was analyzed to get information on 
the noise level [19]. More specifically, the area under the curve between 
0.5Hz and 40Hz was compared to the area under the curve outside this 
range. As the focus of this paper is on how to efficiently train a classifier 
without manually labelling all data and not on how to find the optimal 
feature set, we describe the used features very briefly. A full overview of 
the used features is presented in Table 1. All calculations were per-
formed using Python (version 3.8.3, 64-bits). Initial exploration showed 
that boosted decision trees resulted in the best performance. Moreover, 
multiple studies have reported good performance using boosted decision 
trees [20–22]. Therefore, the XGBoost Python module (version 1.5.2) 
was used to train a gradient boosted decision trees classifier based on the 
features [23]. 

2.3. General overview of the training model 

A schematic overview of the proposed human-validated semi-su-
pervised training process is visualized in Fig. 2. The proposed procedure 
consists of two phases: the pre-training phase (upper panel) and the semi- 
automated training phase (lower panel). During the pre-training phase a 
classifier was trained based on a training dataset containing manually 
labelled ECG segments. Next, during the semi-automated training phase, 
new ECG segments were semi-automatically classified. The classifier 
output did not only contain the predicted class, but also the estimated 
probability p of an ECG segment being of the predicted class – which is 
from here on called the degree of certainty. The degree of certainty was 
calculated as the mean predicted class probability of the trees in the 
random forest. The predicted class probability of a tree was calculated as 
the fraction of samples of the same class in a leaf. When the degree of 
certainty was above a certain threshold α, the new segment was auto-
matically added to the training dataset. However, if the classifier was 
uncertain (i.e. p < α), the user was asked to validate the predicted class 
manually, before it was added to the training dataset. Using this new 
training dataset, the classifier was retrained. 

2.4. Phase I: Pre-training phase 

The pre-training phase consists of several iterations. In the initiali-
zation (iI = 0th iteration), ECG segments were manually labelled to 
create an initial training dataset containing at least A = 10 segments per 

class (a total of at least 40 segments). Then, in each subsequent iteration 
iI ≥ 1, if the training dataset expanded at least A = 10 ECG segments for 
each class compared to the previous training iteration, a temporary 
classifier was trained and validated. This temporary classifier was used 
to classify new segments parallel to manual classification in the next 
iteration iI + 1 of the pre-training phase. Based on whether the classi-
fication was correct, the segment was added to either the training dataset 
(in case the classification was correct) or the corrected training dataset (in 
case the classification was incorrect). During the next training iteration, 
to learn from the previously misclassified ECG segments, at most 10% of 
the training set was filled with segments which were misclassified by the 
classifier from the previous training iteration, if available. This value 
corresponds to the commonly used value for the learning rate of 0.1 in 
deep learning approaches. If not enough segments were available in the 
corrected training dataset, all available segments were used. For each 
training iteration, 80% of the training dataset was used to train the 
classifier and 20% was used for validation purposes. Furthermore, the 
classifier was tested using the hidden testing dataset. The stopping cri-
terion for this phase was defined as the smallest set of training data 
consisting of at least B = 500 segments. 

2.5. Phase II: Semi-automated training phase 

The semi-automated training phase consists of a theoretically un-
limited number of iterations. During the initialization of this phase 
(iII = 0th iteration), the trained XGBoost classifier from the pre-training 
phase was used. In order to increase the size of the training dataset, new 
segments were fed to the classifier. Only segments which the classifier 
could not classify with p > α were presented to the user for manual 
validation. All other segments were automatically added to the training 
set. Again, the classifier was retrained and revalidated when all classes 
contained at least A = 10 ECG segments more than during the last 
training iteration. This updated classifier was then used during the next 
iteration iII + 1 of the semi-automated training phase. 

2.6. Threshold determination 

The threshold α was chosen based on the classifier performance for 
segments which could be classified with p > α, balancing the F1-scores 
(represents classification accuracy) and the number of segments which 
could be automatically classified (represents time efficiency), as visu-

Fig. 1. Typical ECG segments of the four different classes: Regular Sinus Rhythm, Atrial Fibrillation, Other Irregular Rhythm, and Noise/Artefacts. Duration of the 
segments is 30 s. mV = Millivolts; s = Seconds. 
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alized in Fig. 3. Ideally, all ECG segments are automatically classified 
with an F1-score of 100%, which corresponds to the upper right corner 
of Fig. 3. In this study, threshold α was chosen based on visual inspection 
of the relation between the F1-score and the percentage of automatically 
classifiable segments to find an optimum based on the slope of the 
relation between the two parameters. The threshold α was determined 
directly after the pre-training phase only and remained constant for each 
subsequent training iteration. 

2.7. Statistical outcome measures 

After each training iteration, the hidden testing dataset – containing 
500 segments per class from patients which were not used for training 
purposes – was used to test the performance of the classifier. Further-
more, after the stopping criterion was satisfied in the pre-training phase, 
classifier performance was evaluated as a function of the degree of 
certainty p of the classifier. Similarly, during the semi-automated 
training phase, classifier performance was evaluated when all classes 
contained at least 500 ECG segments more with respect to the last testing 
iteration (i.e. at 500 ECG segments, at 1000 ECG segments, at 1500 ECG 
segments, etcetera). 

The classifier output for each class could either be true positive (TP), 
false positive (FP), false negative (FN), or true negative (TN). Classifi-
cation accuracy for each class was described using the precision P =

TP/(TP + FP), recall R = TP/(TP + FN), and the F1-score, which is the 
harmonic mean of the precision and recall: F1 = 2× P× R/(P + R). 

2.8. Human-controlled semi-supervised learning on the CinC challenge 
2017 dataset 

The different classes in this CinC Challenge 2017 dataset are not 
equally represented and only 3.3% of all segments is classified as noise/ 
artefacts. Therefore, unfortunately it was not possible to perform phase 
II of the proposed method. Instead, only phase I was applied by using 
80% of the data to train the same classifier as used previously. Next, the 
testing set (20%) was used to test the classifier’s performance using 
different thresholds for the degree of certainty α. Based on this relation, 
the threshold for α was determined based on visual inspection as 
described previously. 

3. Results 

3.1. Pre-training phase 

After the pre-training phase, the classifier showed an average pre-
cision and recall in the hidden testing dataset of 89.2% and 89.0%, 
respectively. The corresponding average F1-score was 89.0%. Most 
inaccuracies were caused by the class containing non-AF irregular 
rhythms (F1-scores: 87.0% (Class Normal), 93.3% (Class AF), 78.6% 
(Class Other), 97.1% (Class ~)). The average degree of certainty of the 
classifier for the correct class was 88.0%. Again, most uncertainties were 
caused by the class containing non-AF irregular rhythms (degrees of 
certainty: 87.6% (Class Normal), 91.9% (Class AF), 77.1% (Class Other), 
95.3% (Class ~)). 

3.2. Threshold determination 

As visualized in Fig. 4A, the number of ECG segments which could be 
classified with p > α decreased when increasing threshold α. As an ef-
fect, the ECG segments which could be classified with p > α were more 
accurately classified, as visualized in Fig. 4B, indicating a relation be-
tween the degree of certainty and the F1-score of the classifier. The 
threshold α was set by balancing the number of segments which could be 
automatically classified and the F1-score, as visualized in Fig. 4C. More 
specifically, α was chosen corresponding to the earliest point of signif-
icantly increasing curvature. In the first part of the plot up to 1,360 

Table 1 
Feature selection used to train the classifier.  

Feature class Feature Statistical measure 

R-R interval 
variability 

Time between R-peaks Mean, SD, CV, RMSSD, pNN5, 
pNN10, pNN50 

Ratio between R-R time 
intervals 

Mean, SD, CV, RMSSD 

Poincaré plot of R-R time 
intervals 

SD of points to regression 
line, SD of points to 
perpendicular line, shape of 
Poincaré points (SD/SD) 

Shannon entropy of R-R 
time intervals 

Shannon entropy 

Amplitude difference 
between R-peaks 

Mean, SD, CV, RMSSD, pNN5, 
pNN10, pNN50 

Ratio between R-R 
amplitude differences 

Mean, SD, CV, RMSSD 

Poincaré plot of R-R 
amplitude differences 

SD of points to regression 
line, SD of points to 
perpendicular line, shape of 
Poincaré points (SD/SD) 

Intra-beat peak 
time intervals 

Interval between P-peak 
and Q-peak 

Mean, SD, CV 

Interval between Q-peak 
and S-peak 

Mean, SD, CV 

Interval between Q-peak 
and T-peak 

Mean, SD, CV 

Interval between S-peak 
and T-peak 

Mean, SD, CV 

Number of peaks 
per QRS-complex 

Detected P-waves per 
QRS-complex 

% of QRS-complexes with 0/ 
1/>1 P-waves 

Detected T-waves per 
QRS-complex 

% of QRS-complexes with 0/ 
1/>1 T-waves 

Peak amplitude 
differences 

Amplitude difference 
between Q-peak and R- 
peak 

Mean, SD, CV 

Amplitude difference 
between R-peak and S- 
peak 

Mean, SD, CV 

Ratio between P-wave 
amplitude and QRS- 
complex amplitude 

Mean, SD, CV 

Ratio between T-wave 
amplitude and QRS- 
complex amplitude 

Mean, SD, CV 

Autocorrelation Autocorrelation of the 
ECG segment 

Mean, SD, CV 

Peaks in the 
autocorrelation of the 
ECG segment 

Mean, SD, CV, number of 
peaks relative to number of 
detected R-peaks 

Time between peaks in 
autocorrelation of the 
ECG segment 

Mean, SD, CV 

QRS-morphology Number of different QRS- 
morphologies 

Count  

Most common QRS- 
morphology 

% of QRS-complexes  

Second most QRS- 
morphology 

% of QRS-complexes 

Noise level Time in which no R-peak 
detection was reliably 
possible 

% of total segment time  

Time in which no P- and 
T-wave detection was 
reliably possible 

% of total segment time 

Frequency analysis Area under frequency plot 
between 0.5 and 40Hz 

% of total area under 
frequency plot  

Area under frequency plot 
between 4 and 10Hz 

% of total area under 
frequency plot  

Area under frequency plot 
below 0.5Hz 

% of total area under 
frequency plot  

Area under frequency plot 
above 40Hz 

% of total area under 
frequency plot 

CV= Coefficient of Variance; ECG = Electrocardiogram; pNN5 = % of successive 
R-R time intervals greater than 5 ms; pNN10 = % of successive R-R time in-
tervals greater than 10 ms; pNN50 = % of successive R-R time intervals greater 
than 50 ms; RMSSD = Root Mean Square of Successive Differences; SD= Stan-
dard Deviation. 
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segments, the F1-score decreases with 0.0017% per segment, while in 
the second part of the plot starting from 1,360 segments, the F1-score 
decreases more than 10 times as fast with 0.021% per segment. There-
fore, based on visual inspection, the threshold α was set at a degree of 
certainty p of 99%, which corresponds to 68.0% of the testing dataset (=
1,360 ECG segments) being classified automatically with an average F1- 
score of 97.9%, as shown in Fig. 4A and B, respectively. 

3.3. Semi-automated training phase 

The average degree of certainty p of the classifier for each training 
iteration and F1-score of the classifier for the validation dataset is 
visualized in Fig. 5A and B, respectively. The degree of certainty p in-
creases with increasing size of the training dataset. An increasing F1- 
score is observed up until a training dataset size of 1,500 ECG seg-
ments, after which the increase is less prominent. Similar to the results of 
the pre-training phase, the F1-score and degree of certainty p for the 
class containing non-AF irregular rhythms remains lower. 

From training with 500 ECG segments to training with 3,000 ECG 
segments, the percentage of automatically classifiable ECG segments in 

the testing dataset with p > 99% increased from 68.0% to 75.8%. The 
average F1-score for these segments remains almost constant with values 
between 97.3% and 97.9%. The average F1-score for all segments in the 
hidden testing dataset increased from 89.0% to 91.4%. Table 2 sum-
marizes the results for all testing iterations. Complete results for each 
training iteration using the validation and hidden testing dataset are 
presented in Supplementary Tables 1 and 2, respectively. 

Although threshold α was fixed at 99%, the results for all other 
thresholds are visualized in Fig. 6. The upper panel again shows that 
more ECG segments can be automatically classified with more ECG 
segments in the training dataset. Furthermore, the average F1-score 
increases, as visualized in the middle panel. Lastly, the lower panel 
shows that the curve of the relation between the number of ECG seg-
ments which could be classified with p > α and the average F1-score 
shifts towards the upper right corner. 

3.4. Human-controlled semi-supervised learning on the CinC challenge 
2017 dataset 

Using the CinC Challenge 2017 dataset, the average F1-score is 

Fig. 2. Human-validated semi-supervised learning, consisting of two phases: the pre-training phase and the semi-automated training phase, as described in the text. In 
this study, A = 10 segments per class, B = 500 segments per class, and α = 99%. ECG = Electrocardiogram; α = Threshold for the estimated probability p of an ECG 
segment being of the predicted class. 
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67.0%. Whereas in the previous analysis only the class containing other 
arrhythmias showed a lower degree of certainty and lower F1-scores, 
using the CinC Challenge 2017 dataset, this is also observed for the 
class containing noise (degrees of certainty: 86.1% (Class Normal), 
61.8% (Class AF), 54.9% (Class Other), 38.8% (Class ~); F1-scores: 
84.9% (Class Normal), 69.7% (Class AF), 61.6% (Class Other), 52.0% 
(Class ~)). 

Results for classifier performance using the CinC Challenge 2017 
dataset are visualized in Fig. 7. Fig. 7A and B show similar trends as 
observed previously for the number of segments with p > α and the F1- 
score, respectively. Fig. 7C shows a different relation between the 
number of segments which can be classified with p > α and the F1-score. 
Instead of a slowly increasing slope, a sudden drop in F1-score is 
observed around 265 segments (= 15.5% of the testing set). The cor-
responding threshold α is 98.8% and segments with this degree of cer-
tainty show an F1-score of 95.5%. 

4. Discussion 

A new efficient and accurate method based on a combination of 
reinforcement learning-based and transfer learning-based methods was 
applied to train a classifier using a large set of real-life telemetry data of 
hospitalized patients. Transfer learning-based methods are applied by 
first training the classifier on a smaller dataset and then using this 
classifier to classify new ECG segments which are more difficult to 
classify. At the same time, using the degree of certainty of the classifier, 
the classifier adapts its behavior to optimize the final classification 
accuracy. 

The major advantage of this new training method is the decreased 
workload for the user, making it less time-consuming compared to 
manually validating all ECG segments. In the current study, the work-
load decreased more than 3/4, since more than 75% of the segments 
could be classified automatically with p = 99%. Furthermore, hospi-

talized patients after cardiac surgery show many different combinations 
of rhythm abnormalities, noise levels, and artefacts, making it difficult 
to generalize a classifier for all cases. Using the degree of certainty p of 
the classifier as a gatekeeper before adding an ECG segment to the 
training set, the training method learns by asking the user when a new 
rhythm is encountered. Also, since during each training iteration pre-
viously misclassified data is used, the classifier learns from its mistakes 
which were corrected by the user. A previous study by Parvaneh et al. 
also shows an increase of the F1-score of 3.7% after manually checking 
all the disagreements between human input and classifier output [24]. 
However, instead of only retraining the classifier once, the current study 
iteratively updates the classifier and only asks input for ECGs of which 
the classifier is uncertain, hence increases time efficiency. 

4.1. Database-dependent efficiency 

The classifier was initially developed to be used on the real-life post- 
operative telemetry dataset and the real-life electrical cardioversion 
dataset. To study the effect of the proposed method on other datasets as 
well, phase I of the method was also applied on the CinC Challenge 2017 
dataset. As demonstrated, the used classification algorithm is subopti-
mal for the CinC Challenge 2017 dataset, since the average F1-score is 
67.0%, whereas previous studies report significantly higher F1-scores 
[12]. However, the relation between threshold α and the efficiency 
and F1-scores is still clear (Fig. 7A and B, respectively). A higher degree 
of certainty correlates with a higher classification accuracy. When 
comparing Figs. 4C and 7C a clear database-dependent efficiency can be 
observed. For the CinC Challenge 2017 database, the initial threshold α 
would be around 98.8%, resulting in automated classification of 15.5% 
of all segments, whereas using the CS and ECV databases 68.0% of the 
segments could be automatically classified. This shows that using the 
method on the CinC Challenge 2017 database improves efficiency less. 

A highly probable cause for this large difference is the unequal dis-
tribution of the classes in the CinC Challenge 2017 dataset. In the first 
analysis, an initial classifier was trained using 2000 segments which 
were equally distributed over the four classes. Although more segments 
were available for initial training using the CinC Challenge dataset (n =
6,822), these were unequally distributed (59.2% normal sinus rhythm, 
8.7% atrial fibrillation, 28.8% other arrhythmias, and only 3.3% noise/ 
artefacts). Fig. 5A shows the increase in degree of certainty resulting 
from increasing the number of segments in the training set. Not only 
does the unequal distribution explain the lower efficiency, but it is also a 
plausible explanation for the low degree of certainty and the low F1- 
scores for the class containing noise/artefacts in the CinC Challenge 
2017 dataset. 

4.2. Supervised learning vs. semi-supervised learning vs. human-validated 
semi-supervised learning 

Traditionally, classifiers are trained using a human-validated 
training dataset, hence the user should label all ECG segments of the 
training dataset manually [13]. Not only is this time-consuming, but also 
subject to more human errors. Although several databases containing 
annotated ECGs are available online (e.g. PhysioNet databases [25], the 
CinC Challenge 2017 database [12], and the database used by Attia et al. 
[26]), these databases are mainly focused on specific patient groups and 
mostly contain ECG segments without much variety in cardiac ar-
rhythmias, noise levels, and artefacts [27]. As an alternative to using a 
human-validated training dataset, semi-supervised learning can be used 
to first train an initial classifier, after which the classifier trains itself 
[14]. The most important assumption using semi-supervised learning, is 
that the unlabeled data resembles the labelled data. For hospitalized 
patients after cardiac surgery, this would require the pre-training 
dataset to contain a large variety of segments containing different 
rhythm abnormalities and data quality, hence the pre-training dataset 
should still be relatively large. Instead, the proposed method uses the 

Fig. 3. Trade-off between time efficiency and classification accuracy. In the 
optimal situation (green dot), all segments are classified automatically and the 
classification accuracy is 100%. In any other situation, a trade-off has to be 
made between the classification accuracy of the automatically classified seg-
ments and the time efficiency. α = Threshold for the estimated probability p of 
an ECG segment being of the predicted class; p = Estimated probability of an 
ECG segment being of the predicted class. 
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estimated probability p of a sample being in the predicted class as an 
indicator of the degree of certainty to avoid making this assumption. In 
this way, a new ECG segment, which is completely different from a 
previous segment, would not be classified with p > α and the user is 
asked to review the ECG segment manually. Therefore, as opposed to 
semi-supervised learning, the proposed method still learns from human 
input after the initial classifier was trained, hence avoiding tunnel 
vision. 

4.3. How certain is certain? 

The threshold for the degree of certainty was set at p = 99% based on 
visual inspection of the relation between the number of segments which 
could be automatically classified and the F1-score. Alternatively, the 
threshold could be set at p = 0%, which would result in the special case 
of semi-supervised learning with self-training. Still, using this threshold, 
the average F1-score would be 89.0%. On the other end, the threshold 
could be chosen even higher than p = 99%, resulting in a slightly higher 
F1-score, but less ECG segments which could be classified automatically, 
hence decreasing time efficiency. 

In this study, the threshold was set by focusing on the slope of the 
relation between the number of segments and the F1-score of segments 
which could be automatically classified. Another option would be to 
determine the point with the smallest distance to the upper right corner 
of the graph, which represents the optimal classifier, as visualized in 
Fig. 3. In doing so, a decrease in the number of segments and a decrease 
in F1-score are equally penalized. However, using our method, the focus 
is on having a high F1-score, at the cost of a decrease in time efficiency. 
Therefore, the used method is preferable over the distance-based 
method when aiming for the most accurate classifier. 

It should be noted that the value for α was set based on results of the 
testing dataset. Therefore, the presented results might be biased towards 
the used database. In order to find the optimal value for α – which might 
be different for each classification problem – it would be better to use an 
additional validation set. 

4.4. Blinded manual classification vs. non-blinded manual validation 

During the semi-automated training phase, segments of which the 
classifier could not determine the class with p > α were shown to the 
user for validation, hence a combination of 1) the ECG segment, 2) the 
predicted class and 3) the degree of certainty p was presented to the user. 
Another option would be to ask the user to manually classify the ECG 
segment blinded, since showing the predicted class to the user might 
introduce bias towards a certain class. This raises the question of 
whether this bias would negatively influence the training results. As 
shown in Fig. 4B, even in the special case of semi-supervised learning 
with self-training (threshold α = 0%), the average F1-score is 89.0%. 
The corresponding average recall and precision are 89.0% and 89.2%, 
respectively, indicating that even when the classifier is not sure of the 
predicted class, the predicted class is still correct in 89% of the cases. 
Therefore, in 89% of the cases, the introduced bias actually is a well- 
directed push towards the correct class, hence showing the predicted 

(caption on next column) 

Fig. 4. Threshold α determination after the pre-training phase. The final 
threshold (α = 99%) is indicated by the red dashed line in panel A and panel B 
and the intersection of the two dashed lines in panel C. Upper panel: The 
number of segments which can be classified with p > α decreases with 
increasing threshold α. Middle panel: The F1-score for the segments which are 
classified automatically increases with increasing threshold α. Lower panel: A 
trade-off between the number of segments which can be classified with p > α 
and the F1-score is made. After 1,360 segments, the average slope increases 
from 0.0017 to 0.021, hence in this study, the threshold was set where 1,360 
segments could still be classified automatically (α = 99%). α = Threshold for 
the estimated probability p of an ECG segment being of the predicted class; p =
Estimated probability p of an ECG segment being of the predicted class. 
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class actually might help in improving the classification accuracy. If, 
however, the classification accuracy would be poor for low degrees of 
estimated probability p, showing the predicted class likely has a negative 
influence, as might be the case for the analysis using the CinC Challenge 
2017 dataset where the F1-score for the semi-supervised learning case 
was 67.0% (Fig. 7B). 

4.5. Future perspectives 

This study not only shows that human-validated semi-supervised 
learning results in an accurate classifier with a lower human workload, 
but also shows that the degree of certainty of the classifier increases with 
an increasing number of ECG segments in the training dataset and is 
related to classifier accuracy. Using the degree of certainty of the 

classifier in AF detection algorithms for the detection of AF episodes in 
long-term real-life telemetry data of hospitalized data might result in a 
more accurate detection, paving the way towards accurately deter-
mining the AF burden in these patients in terms of AF duration, number 
of episodes, and proportion of time an individual is in AF [28]. 

Furthermore, this method was now applied to real-life data of hos-
pitalized patients. However, more and more non-hospitalized people also 
have their heart rhythm registered using wearables, showing similar 
problems of noisy measurements with artefacts and potentially other 
heart rhythms. Therefore, when training a classifier to automatically 
detect rhythm abnormalities in these recordings, human-validated semi- 
supervised learning might be feasible to decrease the human workload. 
In this case, human-supervised semi-supervised learning should not be 
applied by the end-user, since then the user should be a trained clinician, 

Fig. 5. Effect of increasing the size of the training dataset. Dots indicate averages per training iteration, solid lines indicate moving averages over 10 training it-
erations. Upper panel: Increasing the number of segments in the training dataset results in a higher degree of certainty for the classifier, represented by the estimated 
probability p of an ECG segment being of the predicted class. Lower panel: Increasing the number of segments in the training dataset results in a higher F1-score for 
the validation dataset. AF = Atrial fibrillation; Normal = Regular sinus rhythm; Other = Other irregular rhythms; ~ = Noise or artefacts. 

Table 2 
Results per testing iteration.  

Testing iteration Number of segments in training dataset Number of segments with p > 99% (%) Average recall (%) Average precision (%) Average F1-score (%) 

All: >α: All: >α: All: >α: 

1 500 1360 (68.0%) 89.0% 97.9% 89.2% 97.9% 89.0% 97.9% 
2 1000 1475 (73.8%) 89.6% 97.4% 89.8% 97.3% 89.7% 97.3% 
3 1500 1488 (74.4%) 91.6% 97.4% 91.5% 97.3% 91.6% 97.3% 
4 2000 1511 (75.6%) 91.7% 97.9% 91.8% 97.8% 91.7% 97.9% 
5 2500 1522 (76.1%) 91.5% 97.6% 91.6% 97.5% 91.6% 97.5% 
6 3000 1515 (75.8%) 91.3% 97.6% 91.5% 97.4% 91.4% 97.5% 

p = Estimated probability of an ECG segment being of the predicted class; All = Results based on the entire hidden testing dataset; > α = Results based on segments 
which could be classified with p > α.  
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but could be used to reduce the workload for training a validated, ac-
curate classifier using a large dataset. 

5. Limitations 

First, although technically not a limitation of this study in view of its 
methods, this study did not aim to reach the highest accuracy for AF 

detection, but to propose an efficient method of training an accurate 
classifier. For future studies, applying human-validated semi-supervised 
learning in accurate detection of cardiac arrhythmias, using other 
datasets with validated annotations (e.g. PhysioNet 2017 and 2021 
datasets) is essential. Further, in this study only a single ECG lead was 
used. Using more leads – although not always possible due to data 
availability, especially in wearables – might improve classifier accuracy. 

Fig. 6. Effect of increasing the size of the training 
dataset on results from the testing dataset for all 
thresholds α from 0% to 100% with steps of 0.01%. 
Upper panel: Relation between threshold α and 
number of segments with p > α. Mainly for high 
values of α, the number of segments which can be 
classified with p > α increases with increasing size of 
the training dataset. Middle panel: Relation between 
threshold α and the F1-score. Mainly for low values of 
α, the F1-score of the classifier increases with 
increasing size of the training dataset. Lower panel: 
Relation between the number of segments with p > α 
and the F1-score. With increasing size of the training 
dataset, lines move towards the upper right corner of 
the graph, which is the optimal situation, as visual-
ized in Fig. 3. This indicates that a better trade-off 
between classification accuracy and time efficiency 
is possible using a larger training dataset. α =

Threshold for the estimated probability p of an ECG 
segment being of the predicted class; p = Estimated 
probability of an ECG segment being of the predicted 
class.   
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A dataset containing telemetry recordings of hospitalized patients 
was used, hence the classification results themselves should not be 
generalized to other wearable data of another population. First, telem-
etry data of hospitalized patients might have different quality compared 
to consumer wearable data. Also, the patient population using consumer 
wearables is different from the population of hospitalized patients. 
Nonetheless, since the incidence of various cardiac arrhythmias is lower 
in healthy and young individuals [10], applying the proposed method to 
train a classifier for AF detection in this group likely results in a similar 
or even better classifier performance. However, given the higher inci-
dence of cardiac arrhythmias in elderly patients with cardiovascular 
comorbidities [10], the advantage of human-validated semi-supervised 
learning over classical semi-supervised learning most likely is less 
striking when applied to wearable ECGs from young and healthy 
individuals. 

Although human-validated semi-supervised learning resulted in an 
accurate classifier, it still requires three parameters to be set manually, 
which could influence the performance. First, the threshold α is 
currently set based on visual inspection. More optimally, the threshold is 
automatically determined and adapts after each testing iteration. Next, 
the number of extra segments which is required to retrain the classifier 
was currently heuristically set at A = 10 per class and the number of 
segments required to start the semi-automated training phase at B = 500 
per class. The effect of changing these thresholds was not investigated, 
but likely influences the time efficiency of the proposed method and the 
final classification accuracy. Lastly, during training, at most 10% of the 
data from the corrected training dataset was used, corresponding to the 
commonly used value for the learning rate of 0.1 in deep learning ap-
proaches. However, using too much data from the corrected training 
dataset might result in overtraining on the misclassified ECG segments. 
On the opposite, using too few segments from the corrected training 
dataset would reduce the effect of the classifier learning from its 
mistakes. 

6. Conclusion 

A new and efficient method, called human-validated semi-supervised 
learning, was proposed for training a classifier for large sets of ECG 
segments. This method makes training of an accurate classifier more 
time efficient without compromising on classification accuracy, hence 
increasing the size of the training dataset is less of an obstacle. There-
fore, this method might be valuable when training a classifier based on 
large amounts of real-life ECG data of hospitalized patients showing 
varying cardiac rhythms, noise levels, and artefacts. 
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(caption on next column) 

Fig. 7. Results for analysis using the CinC Challenge 2017 database. Upper 
panel: The number of segments which can be classified with p > α decreases 
with increasing threshold α. Middle panel: The F1-score for the segments which 
are classified automatically increases with increasing threshold α. Lower panel: 
Relation between the number of segments which can be classified automatically 
(efficiency) and the F1-score (accuracy). α = Threshold for the estimated 
probability p of an ECG segment being of the predicted class; p = Estimated 
probability p of an ECG segment being of the predicted class. 
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