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Abstract

Automated driving is where automobiles meet robotics. With the recent advances in
intelligence, sensor technology, wireless technology, and computation power, we are
inching ever closer to realising full autonomy in a vehicle. We are nowhere near the
end of the line, however. Automated vehicles will have to interact with static obstacles
like pavements, dividers, and poles and dynamic elements like pedestrians and other
vehicles. This opens up a range of sub-topics on privacy, safety, and decision-making.
While driving on the road in the presence of other agents(human or autonomous),
safety constraints and collision avoidance are of paramount importance. Even with
this achieved, we need a good performance in the latency of processing each iteration;
we need constraints to be followed and, of course, ensure minimal errors in our control.
Through this thesis, we introduce automated driving, its general pipeline stack, and in-
dustry standards for autonomy. We then get ourselves up-to-date with the latest trends
and advances in motion planning, decision-making, and control of automated vehicles.
Once that is covered, we narrow our focus towards using a scenario-based approach to
safe trajectory planning. We delve in-depth into safety constraints guaranteed by this
approach and discuss previous results obtained by using this method with pedestrians
in an urban setting.
This thesis aims to extend this previously used scenario-based planning method to a
multi-vehicle implementation. Two methods of modelling scenario distributions(assumed
to be Gaussian) are proposed, implemented, and compared using evaluation metrics like
computation times, safety, and time taken to reach the goal. The first method models
each obstacle vehicle as a series of obstacles linked together by the vehicle constraints.
Thus, each vehicle is represented by multiple collision regions corresponding to each
obstacle. The second method models the vehicle as having a single collision region
with multiple scenario distributions. This extension’s safety/risk guarantee is shown
both theoretically and experimentally. Experiments are conducted in simulation on an
urban straight road and at a T-Junction with multiple obstacle vehicles, and perfor-
mances are compared, not only between these two methods but also with each obstacle
modelled as a single disc, which is the baseline implementation. Conclusions are then
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made based on the performance metrics, and further improvements are proposed. It
is shown that modelling the vehicle as a series of linked scenarios improves over the
baseline method and the multiple obstacle discs implementation in terms of safety and
computation times respectively.
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“Do not go gentle into that good night,
Old age should burn and rave at close of day;

Rage, rage against the dying of the light.
Though wise men at their end know dark is right,
Because their words had forked no lightning they

Do not go gentle into that good night.”
— Dylan Thomas





Chapter 1

Introduction

This introductory chapter talks about the origins of self-driving vehicles and their
progress over time and raises a few questions, which will be answered in subsequent
chapters.

1-1 History of Automated Driving

Figure 1-1 depicts one of the first ideas of a self-driving car. This was designed by
Leonardo da Vinci around five centuries ago! He proposed using high-tension strings
as the torque source to steer the cart along a predetermined path. There was not
much-known progress since then, until the automobile revolution.
The 1920s bore the first witness to this revolution when a radio-controlled car was
driven through New York City without a human presence. In the 1950s and 1960s,
sensors like current sensors and cameras were integrated into cars, and these cars were
run on their own using sensor feedback.

Figure 1-1: Leonardo da Vinci’s Self-Propelled Cart Design [2]
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2 Introduction

Figure 1-2: Visual Chart for “Levels of Driving Automation” Standard for Self-Driving Vehicles

By the 1990s, neural networks were already being integrated for image processing and
steering control of self-driving cars, especially at Carnegie Mellon University. The 2000s
witnessed the most significant progress in automated driving with the introduction of
the DARPA challenge to navigate the desert and urban routes.
Witnessing the potential of self-driving cars started a giant race amongst companies
and institutions worldwide to accomplish automated driving fully. Automobile compa-
nies like Ford, Mercedes-Benz and BMW were significant players but were also joined
by non-automobile giants like Google, Amazon and Uber. No one has realised a fully
automated car yet. Many companies have realised partial autonomy(the levels of au-
tonomy will be covered in the next section), but we are still far from a 100% automated
vehicle. Tesla has commercially deployed a semi-automated vehicle that can navigate
highways entirely on their own. Cruise and Waymo are currently testing automated
shuttle services for their employees in San Francisco, Seattle, and most recently, Los
Angeles. Baidu has also recently obtained permission to run their automated shuttles
in Wuhan and Chongqing in China.
Automated vehicles are more widely used in mines, reactors, and other applications
successfully, but navigating urban cities along with other vehicles is a different ball
game altogether. Researchers worldwide are working tirelessly to achieve this mammoth
engineering task.

1-2 5 Levels of Automated Driving

The Society of Automotive Engineers(SAE) released a standard for vehicle autonomy
known as J3016. This can be summarized in Figure 1-2. The 5 levels very roughly
summarized[1] are:

Vivek Varma Master of Science Thesis



1-3 What lies ahead? 3

• Level 0: No Driving Automation- Completely manual vehicle

• Level 1: Driving Assistance- Support the driver, increase safety and convenience

• Level 2: Partial Driving Automation- Can independently perform certain maneu-
vers

• Level 3: Conditional Driving Automation- Drives in an automated under certain
conditions

• Level 4: High Driving Automation- Vehicle can drive in an automated fashion in
local conditions

• Level 5: Full Driving Automation- Fully automated, can drive anywhere, whatever
the condition

With this definition, we begin to assess where we stand concerning this standard. With
Automotive Cyber-Security and stringent rules being a significant factor, we are still at
Level 2 on this autonomy scale. With rapid research, development and funds poured
into automated driving, many different ideas and methodologies come forth to reach
the same ultimate objective. The technology stack of an automated vehicle is similar
to that of a wheeled mobile robot in terms of the modules but at a much higher level
due to more complex requirements.
The modules that an automated vehicle has are:

• Sensor Inputs

• Stack Hardware Infrastructure:

• Computation and Processing(Hardware/Software Interfacing)

• Applications like planning, decision making and control

The bulk of the focus of this thesis lies in the motion planning, decision making and
control module. In the next chapter, we individually address the progress in this field
concerning automated driving.

1-3 What lies ahead?

Every question we currently answer opens up more questions to be answered. With
every passing software and hardware research iteration, we can access better infrastruc-
ture, which leads to us being able to perform more tasks of higher complexity.
Safe and optimal planning and decision-making are essential for any automated vehicle
on the road. This needs to account not only for the road and lane boundaries but also
for the presence of other road components like vehicles, pedestrians, and signals. A
planning and decision-making module’s task is to take sensor data from surroundings
as input and accordingly lay out a set of waypoints that the car must follow.

Master of Science Thesis Vivek Varma



4 Introduction

This thesis investigates scenario-based trajectory optimisation and poses some inter-
esting research questions:

• How does one transition from a pedestrian to a vehicular scenario model, and
what factors should be considered when making this transition?

• What is the most computationally efficient manner to model obstacle(vehicle)
uncertainties without compromising safety?

• What are the implications on the safety guarantees caused by such a representa-
tion?

To answer these questions, the rest of this thesis is structured as follows:

• Chapter 2- Provides a recap of the literature research, which lays down an overview
of the different layers of a planning and decision making module and reviews some
state-of-the-art algorithms.

• Chapter 3- Establishment of some mathematical background and terminologies
prerequisite to understanding the thesis.

• Chapter 4- Introduction to the proposed approach and methodology followed to
implement this approach.

• Chapter 5- A coverage of the results obtained and their explanations.

• Chapter 6- Draws conclusions based on the results and provides direction for
improvement and future work.
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Chapter 2

Summary of Literature Research

2-1 Planning and Decision Making

The decision making module for an automated vehicle can be hierarchically classified
into four layers (Figure 2-1).

• The highest layer is the route planning layer, which takes the desired destination
of the user and the map of the area(which it may or may not have) and returns
the waypoints that need to be followed to reach the desired destination.

• The behavioural layer takes the global waypoints and some data from the sur-
roundings. It selects the kind of behaviour the car must follow on the road(for
example, to read a stop sign and stop, to decide to change lanes or to cross an
intersection).

Figure 2-1: Overview of the Planning and Decision Making Module [60]
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6 Summary of Literature Research

(a) Route Planning Layer (b) Graphical Representation of a route with
Edges and Vertices

Figure 2-2: Route Planning as a Graph

• The lower layer is the motion planning layer which then takes the input as the
behaviour to be followed from the higher layer and accordingly plans the mo-
tion(by laying down a reference trajectory or local waypoints) for the vehicle to
accomplish this task.

• The lowest layer is the local feedback control which takes as inputs the reference
path and adjusts the vehicle’s current position with respect to the corresponding
reference point by providing actuation in the form of steering and acceleration.
Thus the vehicular control loop is closed by taking sensor data from the surround-
ings, checking where the vehicle currently is with respect to where it should be
instead, and accordingly sending actuator commands to it.

Thus, we can infer that the role of planning and decision-making is to lay down the
path, both locally and globally, for the vehicle to follow and ensure that the vehicle
does indeed follow them by using feedback from the environment. Further details of
these methods can be found in [60], [67] and [40].

2-1-1 Route Planning

From Figure 2-2, an idea of what route planning means can be inferred. It involves
using various heuristics to compute the optimal route from the start to the end. In
Figure (a), a route has been mapped from Point A to Point B. We can visualise this
route being the result of an internal optimal route computation where different points
are mapped as vertices, linked by edges with some cost. The optimal route problem
thus reduces to computing the optimal route through a graph, as in Figure (b).
This is a transportation problem, and many different solutions are proposed to solve
such problems. There is the GSP(Generic Shortest Path Algorithm) [30], Label-Setting
Algorithms like Dijkstra’s [25] and Bi-Directional Dijkstra’s Algorithm. There are also
the Label-Correcting Algorithms like Bellman-Ford[7][32] and Heuristic Estimators like
A∗ [57]. It is important to check the time and space complexity of such algorithms for
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2-1 Planning and Decision Making 7

(a) For Lane Changes (b) At an Intersection with Traffic Signals

Figure 2-3: Instances of Behavioral Decision Making(referred to as "Manoeuvre Planning" in
[40])

automated driving applications, as there will be a significant number of nodes needed
for many routing applications, and the route planner should be practically compatible
in such scenarios.

2-1-2 Behavioral Decision Making

Figure 2-3 (a) and (b) serve as a pointer towards the role of the behavioural decision-
making module. This layer acts as the "Brain" of the planning layers; where the way-
points provided by the routing layer are assessed, interactions with other traffic par-
ticipants(moving as well as stationary) are defined, and a decision is made in the best
interests of all the concerned entities [40].
The instinctive approach to implement behavioural decision-making would be using
finite state machines, where the behaviour is time triggered or event triggered[13].
However, in urban settings, there is much more randomness and uncertainty, creating
the need for alternative decision-making methods. The decision-making system should
either have a good obstacle prediction and risk management capability or a suitable
decision theory-based framework [40] that can be termed interactive behaviour-aware
planning. There are different categories according to which these algorithms can be
classified based on the methods used to make decisions.

Game Theoretical
Game theoretical approaches aim to optimise an individual agent’s cost function, re-
sulting in optimal controls for the agent while also considering actions undertaken by
other agents. Automated driving scenarios can be modelled as different types of games
depending on the situation under consideration. Marden & Shamma [53] provides a
comprehensive survey regarding the basics of game theory, the different types of games
and equilibria.
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8 Summary of Literature Research

Liniger & Lygeros [49] modelled the automated racing of two cars as a non-zero-sum
non-cooperative game where the players are only rewarded for collision avoidance.
Wang et al. [79] extend the work by introducing an ego factor term which deter-
mines how much importance a vehicle will place on its competitiveness as a trade-off
with collision avoidance. Wang et al. [77] use a risk-sensitive game theoretic frame-
work to model the stochastic behaviour of interacting agents. Fabiani & Grammatico
[27] proposed a mixed-logical dynamical framework along with a set of driving rules
to ensure efficient and safe driving of a selfish automated vehicle on a highway. Chiu
et al. [19] propose a robust defensive driving model based on a general-sum dynamic
game framework. This robustness is implemented by adding an adversarial phase (a
time period where neighbouring agents have erratic behaviour) to the cost function to
render the ego agent’s trajectory robust to the non-ego agent’s uncertainties. Fisac et
al. [31] propose an algorithm where the dynamic game is broken down into a long-
horizon strategic game and a short-horizon tactical game. The long horizon non-zero
sum game has simplified dynamics and a complete closed-loop information feedback
structure. In contrast, the shorter horizon game has accurate dynamics and a sim-
plified information structure(informed by the long-term planner), with this approach
also accounting for non-deterministic decision-making scenarios. Laine et al. [41] use a
Bernoulli random variable to represent the probability of specific hypotheses. Each hy-
pothesis represents an estimate of other agents’ constraints and objectives in situations
of uncertainty regarding the intentions of the agents.

Probabilistic

There are several approaches in the probabilistic domain originating from several possi-
ble sources of uncertainty in terms of the motions and intentions of agents. In such sit-
uations, scenario optimisation, intention estimation, dynamic programming and prob-
abilistic sampling find a range of applications [72].
Fridovich-Keil et al. [33] model a Bayesian confidence regarding the agent motion model
variance. This prediction is combined with a robust motion planner after selecting a
high-probability collision-free path. Guan et al. [35] formulate the automated driving
task as a Markov Decision Process(MDP) with an environment state space and agent
action space. A state transition and reward model are built using a prediction of
surrounding vehicles. Bai et al.[5] use DESPOT [68] to implement automated driving in
crowded areas. DESPOT is a scenario optimisation framework which samples scenarios
and searches for a near-optimal plan at each time step. Here, the sampling is done
according to the confidence variable. Luo et al. [50] propose an Importance Sampling
method to the DESPOT. The Importance Sampling samples scenarios according to
their importance.

Learning-Based

Lenz et al. [46] compare deep neural networks, feature combinations and past inputs
for motion prediction, even accounting for uncertainties. Bakker & Grammatico [6]
propose the introduction of adjacent lanes in a structured observation grid(thus making
collisions observable) and lane-changing decisions of neighbouring agents to be in the
state vector. This enables future predictions regarding the collision, and action can
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Figure 2-4: Motion Planning Layer

be taken accordingly to avoid them. Toghi et al. [74] represent the mixed-autonomy
driving problem as a partially observable stochastic game and derive optimal policies
using Deep Multi-Agent Reinforcement Learning to enable altruistic agents to drive
safely and with inter-agent coordination.

Other Safety Approaches

With the safety of decision-making being the driving force behind this thesis, there are
also several other approaches where the focus is on a safety certificate or a guarantee
of safety. Safety constraints can be guaranteed using Control Barrier Functions(CBFs),
where forward invariance of a safe set is obtained [69] [51] [76]. Polling systems-based co-
ordination control methods where safety guarantees and time delay bounds are provided
[55] [56]. Connected and Automated Vehicles(CAVs) based cooperative communication
and control methods have a wide array of corresponding literature, where the focus
is decentralized control with Vehicle-to-Vehicle(V2V) communication [63] [36] [54] [20]
[83]. Planning space-based methods provide safety guarantees within a certain range
of values. [78] [61].

2-1-3 Motion Planning

This layer is responsible for translating the behavioural decision-making level com-
mands into a local trajectory or path the vehicle needs to follow to accomplish that
decision(Figure 2-4). This layer needs to consider dynamic/static obstacles, smooth
motion, and dynamics of the vehicle while laying out the way-points for the vehicle to
follow.
Motion planning methods can be roughly categorised into three [67] classes based on
methods used: Input Space Discretization (Motion primitives [29][62][80], Lane Graphs,
Geometric Graphs [43][18][58][71][42], Sampling based graphs), Randomized Planning
[44][45][39] and Receding Horizon Control [28][52][47].

2-1-4 Local Feedback Control

In this layer, the vehicle’s current state is compared with the desired state(reference
trajectory from the motion planning layer). From Figure 2-5, errors are computed and
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Figure 2-5: Lowest Layer- Local Feedback Control

nullified by designing controllers which send appropriate commands to the actuator.
This is where the control loop is closed; thus, essential properties like robustness and
stability need to be considered.
Several methods can be employed for this low-level control layer. Pure pursuit con-
trollers are a method where the vehicle is made to follow a point on the reference
path at a certain look-ahead distance [75] [21]. Front and rear wheel-based position
feedback control use the wheel position to stabilize the nominal wheel path [73] [64].
Another method uses a Control Lyapunov function based on the vehicle state [81].
This can guarantee exponential stability locally. Other methods are output feedback
linearization[22] and PID based approaches. MPC can also be used in the lower layer
as a tracking controller.
A visual summary of the methods covered in this section can be seen in Figure 2-6.
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Figure 2-6: Summary of the Planning, Decision Making and Control Layers and Methods
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Chapter 3

Background

3-1 Model Predictive Control

Model Predictive Control(MPC) is a control strategy used to control a system optimally,
subject to certain constraints. It uses a system dynamics model, which predicts the
system’s behaviour and optimises the states and inputs over a certain time horizon.
The optimisation problem generally comprises an objective function to be optimised
and a set of constraints. The result of this optimisation is an optimal series of inputs
over the time horizon. Only the first of these inputs is applied to the system, which is
then repeated in a receding horizon manner. This problem is solved at every sample
time to account for prediction, and observed mismatches [3]. Figure 3-1 illustrates the
working of MPC by illustrating two consecutive iterations. t represents the current time
step, Hp represents the prediction horizon, Hu is the control horizon, or the number of
steps after which change in the control input is not allowed. Thus, Hu ≤ Hp. At each
time step, the optimisation problem is solved over horizon Hp(Figure 3-1(a)).

(a) MPC at Iteration 1 (b) MPC at Iteration 2

Figure 3-1: The working of MPC illustrated at 2 consecutive iterations [3])
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The result is a vector of control inputs ∆u⋆ =
(

∆u⋆(t) . . . ∆u⋆ (t+Hp − 1)
)T

.
The applied input is however only u(t) = u(t−1)+∆u∗(t) at time step [t, t+1). At the
next time step t+ 1, a new optimisation problem is solved, based on measured states,
and the horizon is shifted, as seen in Figure 3-1(b). Based on the model used, the MPC
problem can be linear or non-linear, and based on the convexity of the optimisation, it
can be convex or non-convex. The general components of an MPC problem are covered
below.

3-1-1 Dynamic Model and Predictions

Generally, an MPC problem uses the dynamic model of the system as a constraint-
based on which the predicted states evolve over the future. Complex models provide
better representations of the system behaviour but also take up computation time.
Simplified models, or linearised models, provide good approximations in specific regions
and are computationally less expensive. A general discrete-time model is represented
by Equation 3-1:

x(t+ 1) = f(x(t),u(t))
y(t) = g(x(t),u(t)) (3-1)

where states x ∈ Rn, control inputs u ∈ Rm, controlled outputs y ∈ Rp, states evolution
function f : Rn × Rm → Rn, and output function g : Rn × Rm → Rp. For the purpose
of this thesis, a continuous-time second-order bicycle model is used with linearisation
every 200ms. Further details of the implementation will be provided shortly.

3-1-2 Objective Function

The objective function represents the function to be optimised and is generally split into
the terminal cost and the running cost. The running cost is usually a weighted error
function between the states and inputs and the reference over the prediction horizon.
The terminal cost is the weighted error between the states and inputs and the reference
at the final prediction step Hp. A generalized objective function looks like the one in
Equation 3-2.

J(x̃, ũ) =
Hp−1∑
t=1

x̃(t)T Qix̃(t) +
Hu−1∑
t=1

ũ(t)T Riũ(t)︸ ︷︷ ︸
Running cost

+ x̃ (Hp)T Px̃ (Hp)︸ ︷︷ ︸
Terminal cost

, (3-2)

where x̃(t) = x(t)−xref (t) and ũ(t) = u(t)−uref (t). Qi and Ri represent the (possibly)
time-varying weights on the state error and input error in the running cost while P is
the weight on the terminal cost state errors.

3-1-3 Constraints

In an MPC formulation, constraints to the system can be directly incorporated as
constraints to the optimisation problem. Thus, a saturation of control inputs, system
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Figure 3-2: On the left is the contouring error ec, on the right is the lag error el, with their
linear approximations êc and êl respectively. [48]

dynamics, obstacles on the road, and road/lane boundaries, can all be directly used as
constraints to the problem. The solution of the optimisation thus accounts for all this
inherently. Constraints can provide safety, guarantee stability, provide a "hot-start" or
an initial condition, and model complex environments. Constraints can be represented
as sets as shown in Equation 3-3.

x(t+ k) ∈ X ⊆ Rn, k = 1, . . . , Hp

y(t+ k) ∈ Y ⊆ Rp, k = 1, . . . , Hp

u(t+ k) ∈ U ⊆ Rm, k = 0, . . . , Hu − 1
∆u(t+ k) ∈ ∆U ⊆ Rm, k = 0, . . . , Hu − 1

(3-3)

Thus, a general MPC optimisation problem looks like Equation 3-4.

minx,u
∑N

t=0 Jt (xt,ut) => ObejctiveFunction
s.t. : xt+1 = f (xt,ut) , t = 0, 1, . . . , N − 1 => Model

g (xt,ut) ≤ dt, t = 0, 1, . . . , N − 1 => Constraints
x0 = xinit => InitialCondition

(3-4)

where x, u are the states and control inputs respectively, N is the prediction horizon, t
is an arbitrary time-step within the prediction horizon, Jt(.) is the stage cost function
to be optimised in terms of the states, inputs and references, subject to the system
model, the initial condition and some other equality or inequality constraints.

3-2 Model Predictive Contouring Control

Model Predictive Contouring Control [66] [48] is a formulation that combines path
tracking and path generation by planning a progress-optimal path that considers the
non-linear projection of the vehicle’s position onto the centre line. In MPCC, the
reference path is parameterized by the arc length, θ ϵ [0, L], where L is the total arc
length, by using spline polynomials. Using the spline polynomial arguments makes
any spatial reference path easily accessible. The angle of the tangent to the path with
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respect to the reference point on the X-Axis is defined as

Φ(θ) ≜ arctan
{
∂Y ref(θ)
∂Xref(θ)

}

The contouring error ec is taken as the orthogonal distance from the car to the reference
path. However, using the projection operator to minimise the orthogonal distance in
itself resembles an optimisation problem, and is not feasible to be performed online.
Thus, an independent approximation of this spline polynomial is introduced and the
lag error el is defined as the link between these two approximations. It is a measure of
the quality of the approximation(Figure 3-2).

el (X, Y, θA) ≜ |θA − θP |

where θA is the independent variable approximation of the projection θP . Thus in
order to be independent of the projection θP , the lag error and contouring error are
approximated as a function of the position X,Y and the approximated projection θA.
The linearised contouring error êc

k is the orthogonal component of the error between X,
Y and Xref (θA) and Y ref (θA) and at time step k is defined as

êc (xk) = sin
(
Φref (θk)

) (
Xk −Xref (θk)

)
− cos

(
Φref (θk)

) (
Yk − Y ref (θk)

)
The approximate lag error êl

k is tangential component of the error between X, Y and
Xref (θA) and Y ref (θA) and at time step k is defined as

êl (xk) = − cos
(
Φref (θk)

) (
Xk −Xref (θk)

)
− sin

(
Φref (θk)

) (
Yk − Y ref (θk)

)
The problem formulation is as shown in Equation 3-5

min ∑N
k=1

[
êc

k

êl
k

]T [
qc 0
0 ql

] [
êc

k

êl
k

]
− qvvθ,k + ∆uT

kR∆∆uk

s.t. x0 = x(0)
xk+1 = f (xk, uk)
êc (xk) = sin

(
Φref (θk)

) (
Xk −Xref (θk)

)
− cos

(
Φref (θk)

) (
Yk − Y ref (θk)

)
êl (xk) = − cos

(
Φref (θk)

) (
Xk −Xref (θk)

)
− sin

(
Φref (θk)

) (
Yk − Y ref (θk)

)
∆uk = uk − uk−1
xk ∈ XTrack
x ≤ xk ≤ x̄
u ≤ uk ≤ ū
∆u ≤ ∆uk ≤ ∆u

(3-5)
and qc and ql are weights on the contouring error and lag error respectively, qv is a
weight on the vθ,k, which is a measure of the approximated progress along the path.
R∆ represents the weights on the control inputs. It can be seen that Xref and Y ref

are now parameterised by θk, which are spline interpolation parameters. x0 represents
the starting point or the initial condition. The system dynamics, bounds on the states
and inputs, linearised contouring error and lag error, form the rest of the constraints
in this problem formulation.
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3-2-1 Local Model Predictive Contouring Control

LMPCC [12] or a Local MPCC is a reformulation of MPCC [66] enabling real-time
collision avoidance with a lightweight implementation. It is a local motion planning
framework extended to robots in unstructured environments. Here, the global reference
path is broken into segments and locally followed while ensuring continuity is main-
tained over the various local reference paths. This algorithm also ensures static and
dynamic collision avoidance and visualises a polytope of the free space and predicted
free spaces.
This model creates a static map by online computation of a set of convex regions in free
space. The robot is considered a combination of n circles, while an ellipse represents
dynamic obstacles. The dynamic obstacles at future time steps are represented with a
constant velocity model with Gaussian uncertainty. This collision with dynamic obsta-
cles is modelled using a collision region found by the Minkowsky sum of an ellipse and a
circle. The global reference path consists of a sequence of multiple path-segments con-
taining M way-points (pr

m = [xp
m, y

p
m]). The closest path segment to the robot is selected

at every step of the optimisation, along with the following few path segments, depend-
ing on the robot’s speed. At each step in the time horizon, the controller minimises
the distance to the path segments while avoiding static and dynamic obstacles. This
method is lightweight and runs in real-time in an automated system. The algorithm of
LMPCC can be summarised by Algorithm 1.
LMPCC is just an MPCC problem written for a path-following task. There are three
major changes made to the MPCC formulation to accomplish this:

• In each planning stage, θ0 is initialised. This is a parameter used to monitor
the progress over the reference path. Each time the closest path segment m is
found, θ0 is computed using line search in the same neighbourhood as the previous
iteration.

• The global reference path is broken into M segments. In order to reduce the
computational load, η ≤ M segments are picked to generate the local reference
path, which is tracked in the optimisation problem instead of the global reference.
η in the local reference path is a function of the prediction horizon length, the
individual path segment lengths, and the robot’s speed at each time instance.
A conservative η is chosen considering the maximum longitudinal velocity of the
robot vmax and imposing that the covered distance is lower than the lower bound
of the travelled distance along the reference path. This is shown in Equation 3-6.

τ
N−1∑
j=0

vj︸ ︷︷ ︸
Traveled distance

≤ τNvmax ≤
m+η∑

i=m+1

∥∥∥pr
i+1 − pr

i

∥∥∥︸ ︷︷ ︸
Waypoints distance

≤
m+η∑

i=m+1
si︸ ︷︷ ︸

Reference path length

, (3-6)

Here N is the prediction horizon, τ is the length of the discretisation steps along
the horizon, vj is the predicted speed of the robot at step j, m is the index of the
closest path segment to the robot, pr

i is the ith waypoint of the path segment and
si is the length of each path segment.
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• The η reference paths are concatenated to form a differentiable local reference
path Lr, which is tracked by LMPCC as shown in Equation 3-7.

pr (θk) =
m+η∑
i=m

σi,+ (θk)σi,− (θk) ςi (θk) (3-7)

where

σi,− (θk) = 1/
(

1 + e

(
θ−
∑i

j=m
si

)
/ϵ
)
, σi,+ (θk) = 1/

(
1 + e

(
−θ+

∑i−1
j=m

si

)
/ϵ
)

are two sigmoidal activation functions for each path segment ςi(θk) and ϵ is a
design constant with a small value. This representation is used to ensure that a
continuous local reference path is followed, and that the solver does not throw an
error during gradient computation.

Algorithm 1 LMPCC Algorithm
for each time step t do

z0 = zinit

Estimate path parameter θ0 w.r.t closest path segment
Select η ▷ No. of path segments needed to generate local reference
Concatenate η path segments into continuous local reference pr (θk)
Compute static collision free region along computed trajectory
Get dynamic obstacles predicted pose
Solve the optimisation problem
Apply u* as the control input

end for

The LMPCC algorithm is summarised by Algorithm 1. Inside the for loop, we can see
that the second, third and fourth steps correspond to the modified steps just covered to
split the global reference into local path segments and track them in the optimisation.
The remaining steps of the algorithm are similar to the original MPCC formulation
given by Equation 3-5.

3-3 Robust Optimisation vs Stochastic Optimisation

There are broadly two schools of approaches for collision avoidance problems: robust
optimisation and stochastic optimisation.
Robust optimisation problems aim to guarantee safety and consider all possible con-
straints in the optimisation problem. Robust MPC considers a worst-case scenario
and ensures a safe motion for all possible circumstances. Robust optimisation assumes
bounded uncertainties within which it defines safety corridors where the ego vehicle
can traverse without collisions. Approaches such as [65] and [38] use a Robust Model
Predictive Control model to realise real-time, safe, collision avoidance.
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Figure 3-3: A representation of the robust obstacle avoidance constraints in [38]. The green area
represents the soft constraints defined by rmin,j while the orange area represents hard constraints
enforced by rth,j

[38] use an Extended Kalman Filter to propagate uncertainty with the collision con-
straint function defined as

Gj(x) = −
∥∥∥p(t) − pj(t)

∥∥∥2

2
+ r2

min,j(t)

where p(t) and pj(t) are the positions of the ego vehicle and obstacle j at time t re-
spectively. rmin,j represents a constant minimum distance that the ego vehicle should
try and maintain from the obstacle j. If this is violated, a hard constraint rth,j thresh-
old constant is enforced to avoid collisions. This constant is incorporated in the cost
function. The constraints used here are non-convex, and the function G is smooth
and continuous. An illustration of the constraints being implemented and uncertainty
being propagated in the robust model is shown in Figure 3-3. dj represents the distance
between the drone and obstacle predictions. σ is the square root of the maximum eigen
value of the ego’s uncertainty and σj is the square root of the maximum eigen value of
jth agent’s uncertainty.
This method needs a bounded uncertainty distribution to maintain its constraint model.
Even when provided with the bounded uncertainty model, the controller will produce
very conservative behaviour due to the method in which the constraints are enforced.
There may even be conditions where the ego vehicle might not take action.
On the other hand, stochastic optimisation designs safety constraints probabilistically
(through chance constraints). The control action should guarantee that a constraint
violation’s chances are lower than a user-defined risk value. This formulation allows
for a trade-off between safety and efficiency in an urban framework. [4] explore this
trade-off between flexibility and generalisation using a CVaR(Conditional Value-at-
Risk) term. Many disturbances are better represented as stochastic models rather
than set-bounded ones. Less conservative actions can be taken with the addition of
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a risk term, still bounded by an acceptable risk level. Directly dealing with these
probabilistic constraints is intractable in real time, considering that the distribution
could be shaped differently. Two methods of dealing with these are bounding them or
approximating them. Bounding techniques guarantee that constraints will be satisfied,
but approximation techniques often do not. However, if the bound is loose, the result
can be a highly conservative solution, leading to high cost and even infeasibility [11].
Bounding them, such as in [8] with a long prediction horizon, helped the trade-off be-
tween safety and conservativeness in urban traffic scenarios. [11] bound the probability
of collision that approximates the chance-constrained problem as a disjunctive convex
problem which is solved using branch-and-bound techniques. This method introduces
a degree of conservatism by introducing the bound and applies only to Gaussian dis-
tributions.
The scenario approach(which will be covered in detail later) generates samples of un-
certain variables and ensures that the constraints are satisfied for all scenarios. This
can apply to arbitrary distributions.
In the case of approximation methods, the method most commonly used is the particle
control approach [9]. The disadvantages of these methods are that the complexity scales
with the number of obstacles. Particle control ensures that the fraction of particles
violating the constraints is at most ∆, and as the number of particles approaches ∞,
the solution is exact. It can apply to arbitrary distributions, although the safety of
this approach cannot be guaranteed in unknown environments. An illustration of this
is shown in Figure 3-4.
The difference between particle control and scenario approaches is that particle con-
trol approximates the chance-constrained problem using samples, while the scenario
methods establish a bound on the chance-constrained problem using samples.
To summarise briefly, robust optimisation attempts to provide a 100% safety guaran-
tee for the trajectory by enforcing hard constraints on bounded uncertainties in every
possible situation. While this guarantees safety, it often results in very conservative
trajectories and infeasible trajectories. Stochastic optimisation attempts to model col-
lision avoidance as a probabilistic constraint based on a risk factor. These are usually
independent of the uncertainty model used, and they can be dealt with using bounds
on the constraints or approximation methods to determine the safe path. By incorpo-
rating risk into the probabilistic framework, we can easily obtain a trade-off between
safety and conservativeness of the resultant trajectory and integrate probabilistic noise
models into the problem formulation.

3-3-1 Chance Constraints

We know real-world processes are subject to many uncertainties, such as state esti-
mation errors, exogenous disturbances and modelling uncertainties. For example, a
position and velocity estimator as a Kalman filter yields a Gaussian-distributed uncer-
tainty in the predictions. In addition to that, the system model may not be perfect,
and a vehicle could be subject to unpredictable disturbances, such as turbulence.
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Figure 3-4: A representation of the particle control approach[9] designed such taht at most 10%
of the particles fail to provide a safe approximation of the trajectory.

Due to such uncertainty, the result of an executed plan will inevitably deviate from
the original plan, and hence there is a risk of certain conditions or constraints being
violated. When the plan is deterministic, the optimisation plan usually pushes against
constraint boundaries to find an optimum and is thus much more susceptible to risk.
For example, in the case of obstacle avoidance, even a tiny perturbation to the planned
path might result in a collision with obstacles. This risk can be reduced by introducing
a safety margin between the path of the vehicle and obstacles, which might come at
the cost of a less optimal path, but more robust to disturbances.

However, a guarantee of zero risk is usually impossible, and there is thus a non-zero
probability of having a disturbance significant enough to make still the vehicle violate
constraints. The risk must be accepted, but it is vital to establish a bound for this risk.
The motion planner should be able to provide a guarantee that the system can con-
sistently operate within these bounds. These constraints are called chance constraints
[59].

In the case of collision avoidance, a typical chance constraint might take the form of
Equation 3-8.

Pk [∥xr
k − xo

k∥2 > r] ≥ 1 − ϵk,∀k (3-8)

Here, xr
k and xo

k are the states of the robot and obstacle respectively at time step k,
ϵk is the risk threshold at k and r is some distance threshold. This Equation reads out
as: The probability of the distance between the robot and the obstacle at time step k
being greater than r should be at least 1−ϵ for all k time steps. Thus this equation and
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chance constraints in motion planning aim to represent a bound on the risk or safety
of constraints.

3-4 Scenario Approach

Optimisation-based methods use constraints in their formulation to avoid collisions.
Classical methods of imposing these constraints consider the obstacle predictions de-
terministic(do not account for uncertainties). In the case of uncertainties, deterministic
frameworks are very likely to be violated since they do not consider the distribution
of uncertainties. Uncertainties can be added to deterministic predictions using robust
optimisation. The acceptable risk can be set to zero if the probability density func-
tion is non-zero in a bounded domain of the robot’s workspace and is zero elsewhere.
However, the assumption of a bounded distribution may be limiting, and it could be
conservative in the case of a large support domain.
In the case of unbounded uncertainties, stochastic optimisation in the form of chance
constraints allows for constraints of the collision probability below a certain risk level.
The chance of collisions for each step can also be constrained separately. More on
chance constraints has previously been discussed in Section 3-3-1.
Directly evaluating these constraints is intractable, especially considering that the dis-
tribution could be arbitrarily shaped. Thus, they are often approximated or bounded.
Due to the sample efficiency and safety guarantees, bound-based methods receive the
most attention. Scenarios are one such method, where sampling points from a contin-
uous distribution and bounding the risk with these samples results in a problem that
ensures safety and real-time tractability. It would otherwise be infeasible to guarantee
safety bounds for a continuous arbitrary uncertainty distribution and ensure that it has
a real-time computational latency. The scenario approach ensures that we retain the
features of the distribution even after discretisation, bound the risk and use it in real
time.
The scenario approach is a stochastic optimization method, constraining the marginal
risk of collision at each point using chance constraints. Positions of the dynamic ob-
stacles are sampled from the chance constraints, and each of these samples represents
a scenario for collision constraints. This approach uses individual samples for the colli-
sion constraints and is thus unaffected by the underlying uncertainty distribution. This
method is thus flexible in dealing with both Gaussian and non-Gaussian uncertainty.
The scenario approach can be described as a model that chooses the best solution
x∗(Figure 3-5), which works well for multiple scenarios

(
δ(1) . . . ..δ(N)

)
, while optimizing

the objective [14]. The risk of the solution depends on how many scenarios are subject to
optimisation. Naturally, more scenarios might ensure less risk and thus greater safety,
but the computation would be slow and infeasible for time-constrained applications.
On the other hand, with fewer scenarios, we might get faster optimisation and more
feasible solutions, but the risk threshold might be pushed up. Thus, there is a trade-off
between the feasibility and safety of the solution. The scenario approach makes use of

Vivek Varma Master of Science Thesis



3-4 Scenario Approach 23

Figure 3-5: A scenario algorithm is a way to generate decisions able to cope with uncertainty.
The picture shows in yellow the scenario box. It is constructed on the ground of prior knowledge
about the problem at hand and is fed by a sample of situations (scenarios) elicited from a (typically
infinite) population of situations. [14]

a wait-and-judge [16] quality evaluation of its solutions, where the decision maker can
make the following decisions based on the quality of the result:

• Use or Discard the solution.

• Re-calibrate the formulation of the optimisation in order to be provided with a
better solution.

We can now look at how the risk is bounded using the scenario approach, first for the
convex optimisation case, then the non-convex optimisation case, and finally, in the
case of the non-convex, non-linear optimisation applied to automated driving.

3-4-1 Convex Optimisation with Scenarios

In [15], the authors have attempted to demonstrate the feasibility of different uncertain
convex optimisations. Uncertain convex optimisations are situations where constraints
are known imprecisely. N constraints are randomly extracted from the uncertainty dis-
tribution, and the constraint satisfaction for these constraints is used as an alternative
representation. The optimisation problem is thus:

min
x∈X ⊆Rd

cTx

s.t., x ∈ ∩i∈(1,...,N)Xδ(i)

(3-9)
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where Rd represents the dimensionality of x, c is a constant vector of weights, X and
Xδ(i) represent the set of values of x and the set of scenarios from which x can be drawn
respectively. In this problem formulation, a finite number of constraints N are checked,
thus significantly reducing the computational optimisation cost if N is not too large.
The result in the paper, help to define the violation probability of the method, based
on N. Violation probability is defined as: V (x) = P {δ ∈ ∆ : x /∈ Xδ}.
In Equation 3-9, due to the the scenarios being picked randomly, the solution of the
equation x∗

N is a random variable and thus the violation probability V (x∗
N) ≤ ϵ for

some cases, while V (x∗
N) > ϵ for others, where ϵ is the risk value. The authors then

attempt to establish a confidence with which this probability can have an upper risk
bound of ϵ. Certain terminologies are defined:

• Support Constraint - These are constraints whose removal affects the value of
the optimisation problem. Constraint δ(r), r ∈ {1, . . . , N}, is a support constraint
for PN if its removal changes the solution of PN . PN here is the scenario prob-
lem(Equation 3-9) with N extractions.

• Fully Supported Problem- These are problems where the number of support con-
straints is equal to d, the dimensionality of the problem.

• Non-Fully Supported Problem- These are the class of problems where the number
of support constraints is less than or equal to d.

In the case of a fully supported problem, the probability of violation:

PN {V (x∗
N) > ϵ} =

d−1∑
i=0

(
N
i

)
ϵi(1 − ϵ)N−i (3-10)

In the case of a non-fully supported problem, this probability is an upper bound, and
the violation probability is bounded:

PN {V (x∗
N) > ϵ} ≤

d−1∑
i=0

(
N
i

)
ϵi(1 − ϵ)N−i (3-11)

Thus, for general convex problems, the confidence with which the violation probability
is less than ϵ is given by Equation 3-11.

3-4-2 Non-Convex Optimisation with Scenarios

Most real-world problems are non-convex. The scenario problem was recently extended
to incorporate non-convex optimisation problems [17]. It is suggested that a general-
isation guarantee of the problem is to be found only after a solution, or a-posteriori,
depending on the length of the support subsample. The optimization problem consid-
ered here is:

minθ∈Θ f(θ)
s.t. θ ∈ Θδ(i) , for all i = 1, . . . , N. (3-12)
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where Θ and Θδ represent the set of values of θ and the set of scenarios from which θ
can be drawn respectively.
When f(θ),Θ and Θδ are convex, the problem takes the same form as the problem
in the previous section. The problem here is, however, much more general since no
assumptions are made on f(θ),Θ and Θδ. The assumption made in [15] is that the
number of support constraints in a convex optimisation problem with d optimisation
variables never exceeds d. In a non-convex optimisation problem, this does not hold
true. In non-convex optimisation problems, the removal of any support constraint
might generate a new optimisation problem.
f(θ) is the non-convex objective function to be optimised. If it assumed that a unique
solution(or a scenario decision) to Equation 3-12 exists (θ∗

N), then the Equation defines a
mapping function AN : ∆N 7→ Θ between θ∗

N and the picked scenarios
(
δ(1), . . . , δ(N)

)
,

i.e. θ∗
N = AN

(
δ(1), . . . , δ(N)

)
. N scenarios are picked during the optimisation. The

objective of the paper is to find out how robust to unseen scenarios θ∗
N is. This can be

defined by the violation probability, given by: V(θ) = P {δ ∈ ∆ : θ /∈ Θδ}. If V (θ) ≤ ϵ,
where ϵ ∈ (0, 1), the solution is ϵ - feasible ϵ - robust. The authors find the number of
samples required to find a confidence bound (1- β ), such that V (θ∗

N) ≤ ϵ.
Some important terminologies used are:

• Support Subsample- With given samples
(
δ(1), . . . , δ(N)

)
∈ ∆N , a support sam-

ple S is a k-tuple elements extracted from the sample(S=
(
δ(i1), . . . , δ(ik)

)
, where

i1 < i2 < . . . < ik), which gives the same solution as the original sample. i.e.
Ak

(
δ(i1), . . . , δ(ik)

)
= AN

(
δ(1), . . . , δ(N)

)
.

• A support subsample S=
(
δ(i1), . . . , δ(ik)

)
is irreducible if no element can be re-

moved from it, giving the same solution.

The assumption made in the convex case that the support length is lesser than or equal
to the problem’s dimensionality does not hold in the non-convex case. The goal is,
therefore, to find the minimal-length support subsample.
Let BN :

(
δ(1), . . . , δ(N)

)
7→ i1, . . . , ik where i1 < i2 < . . . < ik. BN is the function

that finds the support subsample from a given sample. Let s∗
N :=

∣∣∣BN

(
δ(1), . . . , δ(N)

)∣∣∣
be the cardinality of BN(length of the support subsample

(
δ(i1), . . . , δ(ik)

)
). Since

BN

(
δ(1), . . . , δ(N)

)
is a random variable over the uncertainty distribution ∆N , so is

s∗
N . It is shown that for a confidence (β), risk ϵ ∈ [0, 1] is a function where ϵ(N) = 1

and:
N−1∑
k=0

(
N
k

)
(1 − ε(k))N−k = β (3-13)

and the confidence bound of the violation probability for any AN ,BN and probability
P is given by:

PN { V (θ∗
N) > ε (s∗

N)} ≤ β.
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Figure 3-6: Transition of the chance-constrained problem from its original form(a) to a linearized
form(b) to a sampled form of the linearization(c) to a pruned sampled form of the linearization(d).
Robot is in blue, and the obstacle is in red. [24]

Then the length of the support subsample(s∗
N) < s̄, and the value of risk ϵ(k) are:

ε(k) :=


1 if k ≥ s̄

1 −
N−k

√√√√√√
β

s̄

 N

k

 otherwise. (3-14)

The authors thus establish a scenario approach for non-convex optimisation programs.
[24] use these theorems in automated driving, where positions of the dynamic obstacles
are used as scenarios for optimisation. This is discussed in the subsequent section.

3-5 Scenario-based Model Predictive Contouring Control

The work in this thesis is based on De Groot et al. [24], who propose a scenario-based
trajectory optimisation method to deal with dynamic uncertainties of obstacles. The
method does not consider any description of the obstacle’s uncertainty, thus generalising
the problem. Chance constraints are used to bound the marginal risk of collisions
[10] [84]. The probabilistic chance constraints are first linearised and then sampled to
generate scenarios. A scenario represents the probabilistic chance constraint for collision
with a dynamic obstacle at the sampling point. However, most of these scenarios may be
computed but never achieved, so the paper proposes a method to prune scenarios before
optimisation while maintaining safety guarantees. A scenario optimisation problem can
handle arbitrary uncertainty distributions. This implementation is applied to a Local
Model Predictive Contouring Control(MPCC) [12] framework, which was discussed
previously. This Scenario-MPCC or S-MPCC is built on a non-convex optimisation
framework [17] where the predicted risk of motion planning is obtained pre-optimisation
(unlike in [17]) by using the geometry of the problem formulation, leading to a reduced
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3-5 Scenario-based Model Predictive Contouring Control 27

and more efficient evaluation of samples. The optimisation problem here is defined as:

min
u∈U

N∑
k=1

J (xk,uk)

s.t. xk+1 = f (xk,uk) ,x ∈ X

AT
k

(
δi

k, x̂k

)
xk ≤ bk

(
δi

k, x̂k

)
, i ∈ Hk.

(3-15)

where the last line represent the linear inequality constraints which also include halfs-
paces. Hk is a subset of halfspace indices defined as

Hk :=
{
i | ∃xk ∈ Pk,A

T
k

(
δi

k, x̂k

)
xk = bk

(
δi

k, x̂k

)}
where

Ak = δk − x̂k

∥δk − x̂k∥
, bk = AT

k (δk − Akr)

Pk

[
AT

k xk ≤ bk

]
≥ 1 − ϵk,∀k, δk ∈ ∆k

At stage k, Sk(sample size) number of scenarios are sampled from the uncertainty distri-
bution, and δk is the sampled position of one of the Sk scenarios for one of the obstacles.
x̂k are the future predicted poses of the robot from the previous optimisation step, and
r is the combined radius of the car and the obstacle discs. Ak and bk are the halfspace
parameters constructed with respect to this particular scenario. Only the indices of
the halfspaces which span the boundary of the polytope Pk are taken into account as
shown by Hk, thus reducing the size of the optimisation problem. This set contains
active indices during the optimisation, thus placing a bound on the support subsam-
ples(by the cardinality s∗

k ≤ |Hk|). ϵ is the risk factor associated with each halfspace
constructed. The line Pk

[
AT

k xk ≤ bk

]
≥ 1 − ϵk,∀k, δk ∈ ∆k represents the linearised

chance constraints based on the the normalised distance between the ego vehicle and
the sampled scenarios of each obstacle. This means that the obstacle avoidance risk is
represented probabilistically as a set of linear halfspaces for all scenarios sampled from
an uncertainty distribution.

Algorithm 2 S-MPCC Algorithm [24]
Compute Number of Scenarios S from epsilon safety function, and lower bound
for t=1,2,.. do

Get uncertainties from perception module
for k=1 to N do

Sample S times from the uncertainty region
Compute halfspace parameters for each sampled obstacle position
Construct halfspaces and determine safety region as polytopes

end for
Solve optimisation problem over horizon
Apply first input u1.

end for

This implementation is competitive in terms of computation times with state-of-the-
art planning methods while also applicable to generic uncertainties, thus making it
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a very suitable prospect for hardware implementation. This paper has implemented
this on hardware with pedestrians modelled as the dynamic obstacles, with both Gaus-
sian and non-Gaussian uncertainties. There is not much work in non-convex scenario
optimization, but [17] and [34] are helpful resources. Generally, sampling-based chance-
constrained approaches are considered intractable for real-time motion planning; this
method can incorporate it, although with a higher processing cost. The sampling period
used for this implementation is 10ms. In the case of Gaussian uncertainties, S-MPCC
is very effective in preventing collisions and competing with other algorithms. In the
case of non-Gaussian uncertainties, the risk threshold can be maintained at the cost
of increasing the computation times. This is because, in the case of non-Gaussian
uncertainties, an increased number of samples might be required to replicate the distri-
bution features and ensure the same risk levels as in the case of Gaussian uncertainties.
This increased number of scenarios leads to extra computational load and, thus, higher
computation times.

3-5-1 Bounding the Risk in S-MPCC

The work proposes a few theorems to bound the risk and also prune samples in order
to have a tractable solution in real-time. Theorem 1 of [24] proves that the probability
of the optimisation solution violating the chance constraint at a stage k is:

PSk
k [Vk (u∗

SP ) > ϵk (s∗
k)] ⩽ βk (Sk) (3-16)

where u∗
SP is the solution of the optimisation problem Equation 3-15, s∗

k is the smallest
support subsample size and β is the confidence, defined by:

βk (Sk) :=
Sk−1∑
s=0

(
Sk

s

)
[1 − ϵk(s)]Sk−s (3-17)

Regarding scenario pruning, the work explains that not all the scenarios need to be
considered in order to define the free space. The convex collision-free region is found
by the intersection of convex half-spaces, which are defined by their indices:

Hk :=
{
i | ∃xk ∈ Pk, A

T
k

(
δi

k, x̂k

)
xk = bk

(
δi

k, x̂k

)}
(3-18)

This means that only the half-spaces spanning the polytope contribute to the optimiza-
tion problem. Discarding the remaining scenarios increases the time efficiency of the
approach.
Theorem 2 of the work formalized the risk of the solution when R of the original S
scenarios are discarded, leaving P = S - R, the remaining scenarios. Consider,

β(S, P ) =
(
S
P

)
P −1∑
s=0

(
P
s

)
[1 − ϵ(s)]P −s, (3-19)

where ϵ(s) is a function such that ϵ(P) = 1. The probability of violation satisfies:

PS [V (u∗
SP ) > ϵ (s∗)] ⩽ β(S, P ) (3-20)
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3-6 Technical Specifications 29

Figure 3-7: 2nd order bicycle model, where it is assumed that lr(distance between the rear wheel
and the center of gravity cg) is known. Here L = lr + lf , S=L/ tan(δ), R=S/ cos(β) and θ = ψ
when comparing this model with Equation 3-21. ICR is the Instantaneous Center of Rotation.
[23]

We can conclude from this section that using the scenario approach in the case of
dynamic obstacle avoidance for local motion planning is a stochastic approach agnostic
to the uncertainty type or distribution of the obstacle, unlike LMPCC [12].
Another positive point of this approach is its real-time feasibility due to its pruning of
constraints and the formal definition of risk bounds with confidence parameters.

3-6 Technical Specifications

Some of the important technical specifications contributing to this implementation are
covered below.

3-6-1 Vehicle Dynamics

For the dynamic model and predictions in the optimisation solver, a 2nd order bicycle
model is used [12]. This model has two inputs(acceleration a and angular velocity w)
and six states(x-coordinate x, y-coordinate y, yaw ψ, velocity v, steering angle δ, and
spline state s). The continuous-time state space model is given by Equation 3-21.

ẋ
ẏ
ψ̇
v̇
δ̇
ṡ


=



v cos(ψ + β)
v sin(ψ + β)

v
lr

sin(β)
a
w
v


(3-21)

where
β = arctan( lr

lr + lf
tan(δ))
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where lr and lf are the distances from the Center of Mass(COM) of the vehicle to
the rear and front respectively. The dynamic effect of steering can be seen through
the representation of β(the slip angle) and its effect on the position and orientation
indirectly. Figure 3-7 can be used as a reference to visualise the physical interpretation
of these dynamics. The integrator step size used is 0.2s, which is thus the discretisation
and correspondingly the model prediction update time step.

3-6-2 Objective Function

The objective function is the function to be optimised by the solver. The objective
function used here as shown in Equation 3-22 is a function of both the inputs, the
velocity and the contour and lag error approximations which are orthogonal and tan-
gential error in the MPCC framework. [48]. Further details of these two error terms
have been previously covered in Section 3-2.

min
N∑

k=1
Wce

2
c +Wle

2
l +Wv

(v − vref )2

vub − vlb

+Wa
a2

aub − alb

+Ww
w2

wub − wlb

(3-22)

where Wc,Wl,Wv,Wa,Ww are the weights on the contouring error, lag error, velocity er-
ror, acceleration and angular velocity respectively. The subscript ’ub’ and ’lb’ represent
pre-defined upper bounds and lower bounds respectively. This is a non-linear objective
function, although it might appear quadratic on first glance. This is due to the non-
linear definition of the lag and contouring errors in terms of the spline-parameterised
reference path, which is a decision variable in the MPCC formulation.

3-6-3 Constraints

The constraints to this problem(aside from the non-linear dynamic model) are only
linear inequality constraints of the form AT

k x ≤ bk whose definition has been covered
by Equation 3-23.

AT
k

(
δi

k, x̂k

)
xk ≤ bk

(
δi

k, x̂k

)
, i ∈ Hk. (3-23)

where Hk are the set of boundary halfspaces defined as

Hk :=
{
i | ∃xk ∈ Pk,A

T
k

(
δi

k, x̂k

)
xk = bk

(
δi

k, x̂k

)}
,

Ak = δk − x̂k

∥δk − x̂k∥
, bk = AT

k (δk − Akr)

Here δk is the position of one of the S scenarios for one of the obstacles, x̂k is the future
predicted poses of the robot from the previous optimisation step, r is the combined
radius of the car discs and the obstacle discs. Ak and bk are the half space parameters
constructed with respect to this particular scenario. Only the line segments(and not
the interiors) of the halfspaces are taken into account as shown by Hk.
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Chapter 4

Proposed Approach and Methodology

Now that a literature review and mathematical background has been established, a
formal proposal for this thesis is made.

4-1 From Pedestrians to Vehicles

The work in [24] proposed using a scenario approach to deal with dynamic uncertainties
in the form of pedestrians crossing a road in an urban environment. The method
showed promising results regarding collision probabilities, the time to completion, and
the ability to handle different probabilistic uncertainty distributions.

Table 4-1: Differences between dynamic pedestrians and vehicles in an urban setting

Pedestrians Vehicles
Modelled with small radii Larger radii required for model
Lesser deviation in position uncertainty
standard deviations

Greater deviation in position uncertainty
standard deviations

Comparatively slower motion Faster motion
Motions in most cases linear motion like
walking on sidewalks or crossing the road

Complex set of motions like left and right
turns in addition to straight motion

Size of disc to be modelled is fixed Uncertain sizes (trucks, sedans, hatch-
backs) should be considered

Relatively less complex motions could be
generalised as unimodal or bi-modal in
most cases

Different sets of complex possible deci-
sions render uncertainties to be multi-
modal

This thesis aims to extend the work in [24] from dealing with pedestrians to dealing
with vehicles. In any urban setting, with different road configurations and widths, the
issue of dynamic obstacles in the form of vehicles is as crucial a challenge to deal with
as pedestrians, if not more.
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We now briefly assess the differences and difficulties posed when modelling vehicles
compared to pedestrians(Table 4-1). From the table, we can conclude that a different
representation is required for a vehicle compared to a pedestrian. This thesis will
use the extended pedestrian model for vehicles as a baseline for comparison with the
proposed approach.

There are three different approaches through which we can model the uncertainties of
other vehicles:

• Stick to the single disc representation. Keeping the disc small under-approximates
the vehicle and can lead to unsafe solutions. A large disc leads to over-approximation
of the vehicle shape and, thus, an overly conservative and often infeasible solution.

• Modelling the vehicle as a series of n pedestrian obstacle discs(or larger) linked
together by the vehicle geometry, and each disc has its uncertainty distribution
and collision region

• Modelling the vehicle as a single disc with n uncertainty regions linked by vehicle
geometry but having a single collision region.

At this point, the question of why the choice to use discs as a model and not another
shape(e.g. ellipse, rectangle, which might be a better approximation of the vehicle
shape). There are multiple reasons for this:

• In terms of speedy optimisation, a rectangle is not an ideal choice due to its
non-differentiable shape and difficulty in deciding how to construct a halfspace
appropriately due to the shape and orientation.

• An ellipse provides a better approximation than a rectangle in terms of its con-
tinuity and halfspace construction. However, its orientation dependence makes
it computationally relatively inefficient. Every point on an ellipse has a different
radius relative to its neighbourhood points, making distance-based pruning out
of scenarios or halfspaces a more tricky and computationally demanding task. In
addition, an elliptical vehicle model would lead to different constraints based on
its orientation, resulting in computational inefficiency relative to a disc. In addi-
tion, a series of discs is a better approximation(it covers more vehicle area) than
an ellipse.

• Using discs removes the dependence on orientation when constructing the con-
straints and polygons since it is symmetric in all directions. In addition, discs
cover more area and are the ideal candidate to model obstacle vehicles in this
scenario-based implementation.

Vivek Varma Master of Science Thesis



4-2 Mathematical Extension 33

Figure 4-1: A car with 3 discs(n=3). (Xk,front, Yk,front) and (Xk,back, Yk,back) represent the
kth non-overlapping discs at the front and back of the center disc(X,Y) respectively.

4-2 Mathematical Extension

4-2-1 n-Disc Representation

Referring to a generalised representation of vehicle geometry like in Figure 4-1, we can
conjure up a generalised equation to find the centre of each of the n discs that are used
to represent the vehicle or the scenarios(the mathematical transformation remains the
same).
Assume that the car has length l, width w and is oriented at an angle θ with respect to
the global coordinate frame. If each disc has radius r, and if we want our car to have
a total of n discs((n-1)/2 discs behind the centre disc and (n-1)/2 discs in front of the
centre), and let X, Y be the x-y coordinate of the centre disc, the x-y coordinate of the
kth disc behind the car is

Xk,back = X − 2kr cos θ (4-1)

Yk,back = Y − 2kr sin θ
and the kth disc at the front of the car is

Xk,front = X + 2kr cos θ (4-2)

Yk,front = Y + 2kr sin θ
where it is assumed that l > w > r and that the radius r is selected. With r selected, the
maximum number of discs that can be taken in front(or the back, due to the symmetry
of the problem) of the car,

n− 1
2 = l − 2r

4r
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and thus the total number of discs that can be taken(including the center disc) are:

n = l

2r (4-3)

As an example, for a car with length=3m, width=1m and r=0.5m, we can have 3 discs,
one at the back, one at the center, one at front. Both the approaches taken in this
thesis involve linear transformations based on car geometry at different stages of the
SMPCC algorithm.

4-2-2 Constraints Extension

The generalised chance constraints are given by

Pk

[∥∥∥xd
k − δv

k

∥∥∥
2
> r, ∀d, v

]
≥ 1 − ϵk, ∀k (4-4)

δv
k ∈ ∆v

k is the uncertain position of obstacle v at stage k and the r is the combination
of the vehicle and obstacle radii. This chance constraint represents the risk level ϵk

bound on the probability of collisions in between collision circles d of the vehicle and
the collision circle of each dynamic obstacle v at the future prediction step k. The
probability measure Pk is the modeled uncertainty.
[24] use the nonconvex scenario optimisation framework of [17] to solve this problem.
In this extension, Equation 4-4 would be re-written as:

Pk

[∥∥∥xd
k − aδv

k − b
∥∥∥

2
> r, ∀d, v

]
≥ 1 − ϵk, ∀k (4-5)

where a and b are constants representing the linear displacement of the position of the
vehicle v at stage k.
[17] established a link between a Chance Constrained Problem and a Scenario Program
enabling the conversion of the non-convex constraints from the form

P[g(u, δ) ≤ 0] ≥ 1 − ϵ, δ ∈ ∆

to the form
g
(
u, δi

)
≤ 0, δi ∈ ∆, ∀i ∈ S

[24] use this property to convert linearized chance constraints to a linear halfspace. In
this extension, this would look something like

Ãk = aδk + b− x̂k

∥aδk + b− x̂k∥
, b̃k = Ãk

T
(
aδk + b− Ãkr

)
Pk

[
Ãk

T
xk ≤ b̃k

]
≥ 1 − ϵk, ∀k, δk ∈ ∆k

(4-6)

We can convert this linear chance constraint problem to a linear halfspace

Ãk
T
(
aδi

k + b, x̂k

)
xk ≤ b̃k

(
aδi

k + b, x̂k

)
, ∀i ∈ Sk,∀k (4-7)

This problem is of the same form as the constraints in [24], and do not affect the
linearity or convexity of the optimisation problem.
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(a) A plot of ϵ(k) for N=500, N=1000 and N=2000, when β = 10−6

(b) A plot of ϵ(k) for N=500 and β = 10−6, 10−8, 10−10, 10−12

Figure 4-2: Dependence of Risk ϵ(k) on different parameters. [17]

4-2-3 Safety Guarantee

The free space defined by the subset of scenarios is defined by

Hk :=
{
i | ∃xk ∈ Pk, A

T
k

(
δi

k, x̂k

)
xk = bk

(
δi

k, x̂k

)}
(4-8)

which in this case will be

H̃k :=
{
i | ∃xk ∈ Pk, Ãk

T
(
aδi

k + b, x̂k

)
xk = b̃k

(
aδi

k + b, x̂k

)}
(4-9)

This represents only halfspaces bordering the free-space to be be involved in the poly-
tope construction, and also represents an upper bound s̄ on the cardinality of Hk, hence
bounding the support samples.
Taking a look the previously defined safety guarantee,

βk (Sk) :=
Sk−1∑
s=0

(
Sk

s

)
[1 − ϵk(s)]Sk−s (4-10)

For this extension, instead of Sk scenarios, we now have nSk scenarios(Sk scenarios
corresponding to each disc). If we interpret the vehicle as a single body, we now
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represent it with nSk scenarios, and the support subsample would also be ns∗. Thus,
our new confidence function is now:

βk (nSk) :=
nSk−1∑

s=0

(
nSk

s

)
[1 − ϵk(s)]nSk−s (4-11)

and thus our risk violation probability is now bounded by β(nSk):
PnSk

k [Vk (u∗
SP ) > ϵk (ns∗

k)] ⩽ βk (nSk) (4-12)
Referring to Figures 4-2, we analyse the trends in the risk with respect to changes in Sk

and the confidence parameter β. It can be seen that there is a very weak dependence
on ϵ(k) by β, and thus we can assume that the value of β(nSk) remains similar with the
change in the number of scenarios. On the other hand, there is a rich coupling between
the risk function and the number of scenarios(Equation 4-13). As expected, the risk
function has a smoother increase over the stages k, for larger values of Sk. Physically
this means that the better we approximate the uncertainty distribution, the less is the
risk of the constraints being violated. As we now have nSk scenarios, the risk function
takes the appearance of

ε(k) :=


1 if k ≥ s̄

1 −
nSk−k

√√√√√√
β

s̄

 nSk

k

 otherwise. (4-13)

Thus we have a smoother risk function and similar confidence in constraint violation
probability with the n-Disc model for an obstacle vehicle.
The second theorem which formalized the risk of the solution when some of the original
scenarios are discarded continues to stay. Considering,

β(nS, P ) =
(
nS
P

)
P −1∑
s=0

(
P
s

)
[1 − ϵ(s)]P −s, (4-14)

where ϵ(s) is a function with ϵ(P) = 1. The probability of violation continues to satisfy:
PS [V (u∗

SP ) > ϵ (ns∗)] ⩽ β(nS, P ) (4-15)
From this entire section, we can summarise that:

• A n-Disc representation is proposed to model the obstacle vehicle.

• The discs are placed(translated) in a non-overlapping fashion, taking into account
the geometry of the vehicle.

• The translation of these discs does not affect the nature of the constraints cor-
respondingly produced, neither does it add any non-linear factor into any of the
computations with respect to the linearisations, chance constraints or polygon
construction.

• The number of samples now used are n times what was previously used per ob-
stacle. This renders the risk function to be smoother over time, and maintains a
very similar confidence bound as was the case for a single disc.
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Figure 4-3: Vehicle as a single expanded disc. The Blue disc represents the vehicle model, while
the Orange ellipsoid is representative of the uncertainty distribution from which scenarios are
sampled. This configuration has one collision region, one corresponding to the single disc.

4-3 Analytical Interpretation

Having proposed three different methods to model the scenario-based implementation,
we can go in-depth into each of these approaches and understand what they mean for
the algorithm.

4-3-1 Vehicle as a Single Expanded Disc

In terms of implementation, this is identical to the work in [24], with the minor differ-
ence being that the radius of the disc is made much bigger to represent a vehicle better.
An illustration of what this would look like is shown in Figure 4-3.
The explanation for this shape is: to be neither too conservative nor liberal with the
radius of the disc.

• If the disc radius is too conservative, and the disc is confined to the limits of
the car at the centre of the car, the front and the back region of the car are not
considered as a part of the car at all, leaving them more prone to collision, as they
are not considered in the optimisation problem.

• If the disc modelling in the car is made so large as to cover the entire car, it will
over-extend well beyond the car’s sides. One would think this will result in a very
safe solution in terms of collisions. While that is true, the resulting circle would
project so much beyond the ego vehicle that it would result in several infeasible
optimisations since there would be no feasible trajectory for the obstacles without
violating safety constraints.
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Figure 4-4: Vehicle as a series of linked discs. The Blue discs collectively represent the vehicle,
while the orange ellipsoids are representative of the uncertainty distribution from which scenarios
are sampled. This particular formation has n collision regions, one corresponding to each disc.

Hence, a radius must be chosen such that the ego vehicle is neither over-approximated
nor under-approximated.
The radius of this disc is taken as 1.2m, while for the proposed two methods, it is taken
as 0.8m. The dimension of the obstacle vehicles taken is 4.72m x 1.78m. Thus three
non-overlapping discs of 0.8m perfectly envelop the car, while the single disc of radius
1.2m is already 0.62m beyond the car boundaries. Further increases lead to slower and
infeasible solutions while reducing this number leads to the front and back being even
less approximated.
In terms of the algorithm, the steps followed are identical to the one in Algorithm 2.

4-3-2 Vehicle as a series of Linked Discs

The idea here is that for each obstacle, n − 1 new obstacles are cloned (where n is
the required number of discs to model each vehicle), and their mean positions are
translated based on the yaw of the vehicle, the radius of the discs, and the dimensions
of the vehicle. The properties associated with a new obstacle are given to these newly
cloned obstacles with the extra condition of being linked to each other through the car
geometry. The rest of the algorithm works as it previously did, with the difference now
being that each obstacle is now considered as n obstacles. This also implies that since
each obstacle had uncertainty bounds and a collision region, each vehicle now has n
collision regions instead of one. An illustration of what this means is shown in Figure
4-4.

4-3-3 Vehicle as a series of Linked Scenarios

The previous two methods may not have been the smartest or the most optimal ways to
model a vehicle. The idea of this method aims to reduce some of the computation and
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Figure 4-5: Vehicle as a series of linked scenarios. The Blue disc in the center represents the de-
fined vehicle model, while the dotted blue circles represent the effective vehicle representation(due
to the linked scenarios). The orange ellipsoid represents the uncertainty distribution from which
scenarios are sampled. This particular formation has one collision region, one corresponding to the
centre disc. This method combines the best properties of both the previously defined methods.

provide a better implementation. The proposal is that instead of modelling a vehicle
as a series of obstacle discs, the vehicle continues to be modelled as a single disc by
name, but that one uncertainty sample now spawns n-1 more scenarios linked together
by the exact geometry of the car. This step is implemented at the stage where the
samples’ mean and standard deviation are translated to the location of each obstacle
vehicle, thus bypassing a few computation steps made in the previous subsection but
effectively representing the same region. An illustration of this is shown in Figure 4-5.
The difference between Method 2 and Method 3 is:

• In Method 2, the vehicle discs are linked to each other through the car geometry
at the first step of the algorithm(feedback reception). The n scenarios for this
implementation(one for each disc) are independently sampled and not linked to
each other.

• In Method 3, the entire vehicle is considered as a single disc only and each scenario
sampled from the uncertainty region of this disc is linked to n-1 other scenarios(one
for each disc, as if a disc were present). The advantage of doing this is that we
now functionally have a n disc representation without computationally having n
discs but only one disc. This is expected to make the multi-vehicle extension
computationally faster while maintaining the safety guarantee.
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Chapter 5

Test Setup and Results

5-1 Test Setup

In this section, some of the other technical specifications of this implementation are
laid down. Table 5-1 highlight some essential technical details which were run in the
simulation. The scenario distribution was taken as a Gaussian distribution, and not a
truncated Gaussian with a 3σ cut-off threshold like in [24], to avoid pruning out of any
essential scenarios that could fall beyond the 3σ threshold. Although this threshold
can be considered the safe limit, a Gaussian uncertainty model provides that addi-
tional safety of keeping scenarios(at the cost of variance), and is appropriate for this
investigation of a multi-vehicle extension of scenario-based trajectory optimisation.
Figure 5-1 is a screenshot of the simulation taken to provide an idea of the visualisation.
The small window with the title ’Carla UE4’ is the CARLA simulator with the ego
vehicle in the centre of the frame at a T-Junction. Another vehicle can be seen on the
right side of this image.
The larger window in Figure 5-1 is the visualisation tool RViz which is a more technical
visualisation of what is seen in the simulator. The ego vehicle is represented as a mini-
car, and the blue discs are its predictions over the horizon. The rectangular shape
around the car is the safe region polytope for each step of the prediction horizon. The
series of circles are surrounding objects and their predicted paths along the prediction
horizon(orange to green is the current step to N prediction steps, respectively). The
red line in front and behind the ego vehicle represents the car’s reference path. As
the ego vehicle moves, its predictions, obstacle predictions and thus its safety region is
updated in real-time in RViz.
CARLA provides several urban and rural maps for conducting simulations. In this
thesis, there will be two major simulations carried out.

• Straight road:- Ego vehicle goes straight. The vehicle just ahead goes straight and
turns left, another vehicle just ahead goes straight, and two other vehicles coming
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Figure 5-1: An instance of the multi-vehicle visualisation

Table 5-1: Technical Specifications of the Test Setup

Computing Specifications HP Pavilion 15-cs3xxx, Intel Core i7 @ 1.3GHz, NVIDIA
GeForce MX250 Graphics, Ubuntu 20.04 OS

Simulator CARLA 0.9.10[26]
Physics Engine Unreal Engine 4(UE4)
Visualisation Tool RViz[37]
Framework ROS Noetic Ninjemys[70](See Appendix A)
Optimiser Forces Pro[82]
Optimisation Algorithm Primal-Dual Interior Point Method
Global and Local Path Planner CARLA and LMPCC respectively
Integrator Step Size 200ms
MPCC Objective Function Type Non-Linear(due to non-linear contouring error and lag

error computation)
Optimisation System Dynamics Bicycle model with Dynamic Steering(Non-Linear)
Constraints Linear Halfspaces
Number of ego vehicle discs 3
Number of obstacle discs 3
Prediction Horizon 20
Number of scenarios per sample 1000
Scenario Distribution Gaussian
Risk ϵ 0.05
Confidence β 10−6
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in the opposite direction, one behind the other, go straight. This simulation is
chosen in order to monitor the responsiveness of the ego vehicle to a crowd of
obstacles on spawning.

• T-Junction:- Ego vehicle takes a right turn. Just ahead of the ego, one vehicle also
takes a right turn. Another vehicle on the opposite side before the T-Junction goes
straight. A third vehicle, just behind the second, takes a left into the same turn
our ego vehicle turns into simultaneously. Coming into the T-Junction from the
T stem is another car, which takes a left turn towards our ego vehicle’s road. This
simulation configuration is chosen to test the responsiveness of the ego vehicle to
possible head-on collisions with other obstacles.

These situations will be run for all three vehicle disc models covered in the previous
section. The evaluation metrics for these results are:

• Time taken to reach the goal. It is representative of how conservatively the vehicle
deals with obstacles.

• Closest distance between ego vehicle and an obstacle. Another measure of the
safety of the implementation.

• Computation Time. An important factor in determining the real-time feasibility
and checking for improvements in the algorithm.

• Ego vehicle steering, velocity and acceleration. It helps in determining how ag-
gressive the reaction to obstacles is.

For these simulations, in the case of a single disc, the radius of the disc modelling the
car is taken as 1.2m, while in the cases where we have multiple obstacle discs linked
together and multiple scenarios linked together, the radius is 0.8m, following the details
covered in the previous chapter.

5-2 Results

In this section, the results of the simulations carried out in all three different con-
figurations, and two different urban scenarios will be shown, and the results will be
analysed.
For reference, from now on, ’Single Disc’ refers to the implementation like in Figure
4-3, ’Multiple Discs’ refers to modelling each obstacle as a series of linked obstacles, as
shown in Figure 4-4, and ’Multiple Scenarios’ refers to the vehicle being modelled as
a series of linked scenarios, like in Figure 4-5. This nomenclature does not imply that
Multiple Discs do not have Multiple Scenarios since, by the flow of the program, it will
have multiple scenarios at the ’Scenario’ stage. It is just a reference to differentiate the
implementations by highlighting a distinct characteristic.
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Figure 5-2: Trajectory followed by the ego vehicle in the three different implementations on the
Straight Road. The thick black lines show the road limits. The gray dotted lines represent lane
divisions. The circular points show the position of the ego vehicle at different time steps. The
bright car icons represent the position of the obstacles at t=0. The faded car icons of the same
colour represent the direction of the trajectories followed by the corresponding obstacles

5-2-1 Straight Road

The trajectory followed by the ego vehicle and the other obstacles are shown in Figure
5-2. Figure 5-3 is a CARLA and Rviz viewpoint of the same environment at t=0.

• The ego vehicle starts near the middle of the road while there are two other
vehicles in the same lane spawned just in front of the ego.

• The first vehicle keeps going straight, while the second vehicle takes a left turn
after going some distance.

• On the opposite lane, two vehicles are spawned back-to-back and they go straight
in their respective lane(opposite direction).

Points to note are that the coordinates are in the global frame of the Town 1 in CARLA,
and that the width of a lane spans roughly 4 coordinates. Figure 5-4 is the yaw feedback
of the ego vehicle received from the simulator.
We now visualise the control commands given to the ego vehicle in the form of the
velocity, acceleration and steering angle commands(Figures 5-5, 5-6, 5-7 respectively).
Before we make an analysis of the three implementations, we also first visualise the
minimum distance to the nearest obstacle throughout the trajectory(Figure 5-8). The
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Figure 5-3: Simulation visualisation of the Straight Road case on spawning

Figure 5-4: Yaws of the ego vehicle on the Straight Road
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Figure 5-5: Velocity profile of the ego vehicle on the Straight Road

last thing to understand before analysing the results are the computation times and
time to goal for each of the implementations (Table 5-2). The lowest computation times
are highlighted.
We can now analyse the results we have seen.

• In terms of the trajectory in Figure 5-2, it is observed that the Multi Disc im-
plementation swerves extra to its right and then overshoots very slightly to the
other side in an attempt to follow the reference path. This can be confirmed by
observing the yaw plots in Figure 5-4 where a slight deflection of around -0.24
radians is observed, and the correction can be seen. Correspondingly, the steer-
ing angle command instructing the car to turn that extra 0.24 radians and then
correct them can be seen in the plot of Figure 5-7.

Table 5-2: Time To Goal and Computation Times for different parts of the algorithm for the
Straight Road

Time To Goal(s) Computation Times(Minimum, Maximum, Average)(ms)
Scenario Updates Full Control Loop Optimisation

Single Disc 29.30
0.001341 9.86111 2.35558
15.7656 37.9061 23.6211
9.12744 18.8476 9.05677

Multiple Discs 31.13s
18.2915 26.5805 2.3702
70.7839 89.9907 46.9688
29.915 41.3661 10.7018

Multiple Scenarios 26.16
16.8869 25.4581 4.33009
39.3932 65.1113 37.1549
26.7276 39.8249 12.4562

Vivek Varma Master of Science Thesis



5-2 Results 47

Figure 5-6: Acceleration commands to the ego vehicle on the Straight Road

Figure 5-7: Steering commands to the ego vehicle on the straight road
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Figure 5-8: Minimum distances to nearest obstacles on the Straight Road

• Looking at the obstacle distance plot in Figure 5-8, at the time instants just
before the steering commands to turn are sent(for the Multi Disc curve), we do
not see any abnormalities. The deflection is minor, and can be attributed to
the stochastic nature of the algorithm. The rest of the trends in the yaw and
steering plots seem to agree with the trajectory reasonably well for all cases. It is
noteworthy to observe the smoothness of the other two implementations and that
there is a minimal deviation for the multi scenarios case.

• Turning the focus to the acceleration and velocity plots of Figure 5-6 and Figure
5-5 respectively, it is first helpful to note that the reference velocity is 4m/s, ex-
plaining why the speeds seem to settle at that value. The standout point from the
velocity plot is the oscillatory response of the Multi Disc implementation. The
reason for this has nothing to do with the implementation, but the computational
load of the implementation on the simulator. In CARLA, the traffic manager is
in asynchronous mode, and thus heavy traffic(especially heavy for multiple discs,
since each vehicle is modelled as 3 obstacles) causes a drop in the frames per
second, causing many frames to be skipped. This causes the observed oscillatory
motion of the car, due to the skipping of frames. Relatively, the increase in speed
corresponds to the increase in minimum distances from the nearest obstacle. Once
the speed reaches the desired reference speed, the acceleration commands tend to
be 0, as expected. In the case of the Single Disc, we can see that it reaches the
reference speed much quicker and has much more aggressive acceleration com-
mands than the Multiple Scenarios implementation. This could be explained by
the Multiple Scenarios being a more realistic representation of how close to the
ego vehicle the obstacle is, thus leading to a more conservative speeding up and a
gentler acceleration profile by causality.

• Looking at Figure 5-8, we observe very similar initial trends for all three for long
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periods until both multiple discs, and multiple scenarios slightly decrease and
then increase rapidly. This is attributed to the period when the vehicle in front
turns left and continues along the road. The Single Disc implementation showed
a difference in trends at the end due to always being closer to the vehicle just
ahead.

• Finally, we look at Table 5-2, and the results are not surprising. A single disc
would take the least number of scenarios, obstacles, and computation and thus
have the shortest computation times. It is to be noted that the optimisation
times of all three implementations are pretty similar, but this is not surprising
considering that the only difference would be the number of linear constraints.
Regarding the control loop and the scenario update times, the Multiple Scenarios
implementation is faster than the Multiple Discs since few computation steps are
skipped to implement the Multiple Scenarios compared to Multiple Discs. This
leads to decreased computation times in scenario update steps and the control
loops. The time to reach the goal destination was the fastest in the Multiple
Scenarios case.

A similar in-depth analysis will now be conducted for the T-Junction situation.

5-2-2 T-Junction

The trajectory followed by the ego vehicle and the other obstacles are shown in Figure
5-9. Figure 5-10 is a CARLA and Rviz viewpoint of the ego vehicle and obstacles at
the T-Junction just before and during turning at the junction.

• The ego vehicle is spawned in the middle of the road. Just ahead of the ego vehicle
is an obstacle(gray vehicle) which takes a right turn at the T-Junction

• A blue obstacle is spawned on the opposite lane of the ego vehicle and it continues
straight along its path.

• A yellow vehicle is spawned just behind the blue vehicle and it takes a left turn
into the T-Junction. The timing of this turn is perfectly in synchronisation with
the ego vehicle turning into the T-Junction, thus providing a very appropriate
test of the ego vehicle’s response to our obstacle models.

• A red car is spawned on the opposite side of the lane inside the T-Junction. This
vehicle turns left at the junction. This is also perfectly times to turn left just after
allowing the previous yellow vehicle to turn inside.

It should be noted that the Single Disc trajectory took an aggressive trajectory by
crossing a small part of the sidewalk and accelerating suddenly to try and get past the
yellow obstacle vehicle, but still slowing down to let it pass. This led to a speedy time to
goal; thus, all the time step plots we see might include similar trends but "time-shifted"
data. The focus here is on the trends, though; they will now be visualised just like in
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Figure 5-9: Trajectory followed by the ego vehicle in the three different implementations at the
T-Junction. The thick black lines show the road limits. The gray dotted lines represent lane
divisions. The circular points show the position of the ego vehicle at different time steps. The
bright car icons represent the position of the obstacles at t=0. The faded car icons of the same
colour represent the direction of the trajectories followed by the corresponding obstacles

Vivek Varma Master of Science Thesis



5-2 Results 51

(a) T-Junction while the ego vehicle turns. All the four obstacles are visible in this frame(two on the left lane,
two in the T-junction, one leaving it and one entering it)

(b) T-Junction just before the ego vehicle is about to turn into it. The ego vehicle stops to let the obstacle
pass cross first.

Figure 5-10: Simulation visualisation of the T-Junction case
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Figure 5-11: Yaws of the ego vehicle at the T-Junction

the previous sub-section, after which an analysis will be conducted. The yaw plots of
the ego vehicle are shown in Figure 5-11. It should be noted that these yaw values are
in the global CARLA frame, thus explaining the continual switching between π and
−π since the yaw range is [−π, π].
We now visualise the control commands given to the ego vehicle in the form of the ve-
locity, acceleration and steering angle commands(Figures 5-12, 5-13, 5-14 respectively).
Before analysing the three implementations, we also visualise the minimum distance to
the nearest obstacle throughout the trajectory(Figure 5-15). The last things to under-
stand before analysing the results are the computation times and time to goal for each
implementation (Table 5-3). The lowest computation times are highlighted.

• Through Figure 5-11, it can be seen that the yaw switches between −π and π,

Table 5-3: Time To Goal and Computation Times for different parts of the algorithm for the
T-Junction

Time To Goal(s) Computation Times(Minimum, Maximum, Average)(ms)
Scenario Updates Full Control Loop Optimisation

Single Disc 25.96
0.00195 8.47177 2.225764
27.0908 128.152 114.808
9.39033 26.3929 16.3145

Multiple Discs 38.21
14.8213 21.5146 1.78828
37.8875 130.612 102.898
29.8977 43.3787 12.6314

Multiple Scenarios 33.86
0.001215 7.5641 2.2842
65.2766 196.675 158.471
19.873 37.33 16.801
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Figure 5-12: Velocity profile of the ego vehicle at the T-Junction

Figure 5-13: Acceleration commands to the ego vehicle at the T-Junction
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Figure 5-14: Steering commands to the ego vehicle at the T-Junction

Figure 5-15: Minimum distances to nearest obstacles at the T-Junction
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Figure 5-16: An illustration of the effect of the number of scenarios sampled on the computation
times. Note that the x axis is on a logarithmic scale, while the y-axis is on a linear scale. The blue
line represents the entire Control Loop(Scenario Updates+Optimisation+Extra Computations),
while the red line represents only the Scenario Update times.

and that is because they correspond to nearly the same orientation at the point of
discontinuity. Once the car reaches the T-Junction, it turns to the right and the
yaw changes to π/2. In the case of the single disc, the yaw aggressively decreases
for a short time before stabilising and reaching π/2. This happened because the
car aggressively turned at the T-Junction, then stopped to allow a car to pass,
after which it completed the turn. In the other cases, the ego vehicle approached
the T-Junction, waited momentarily for the car to cross it, and followed suit. It
can be seen that the Multiple Scenarios Approach run had the car turning shortly
before the Multiple Discs run.

• We now look at the corresponding steering angle commands in Figure 5-14, where
we observe that after an initial right turn when spawning to stay in the correct lane
corresponding to the first dip, the steering returns to zero. After this, the single
disc implementation takes a sudden right turn, as validated by the trajectory, and
waits for a little. At the same time, the vehicle it stops for passes by and then
resumes to complete the turn, after which the steering angle returns to zero. In
the case of multiple discs, after the initial minor right turn, there is a sudden left
and right steering command, which still keeps the car in the lane, but maybe shifts
it a bit to the right side, as we can see in the trajectory. Due to this position,
it must take a slightly sharper turn at the T-Junction, and this is reflected in
the magnitude of the steering action taken. In the multiple scenarios steering
angle graph, everything is ordinary apart from the big positive left steering spike.
This corresponded to the trajectory part when the multiple disc implementation
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shifted to the left lane and is attributed to having a cleaner, less steering turn
at the T-Junction, and the trajectory graph, along with the steering command
magnitude of the left turn, agrees with that.

• Looking at the acceleration commands and velocity profile in Figures 5-13 and
5-12 respectively, we assess each case individually. In the case of a Single Disc,
we see a gradual increase in velocity on the straight part of the road approaching
the T-Junction, and then we see a sudden spike, dip, spike, dip and then spike
again in the acceleration plot. This corresponds to the car swerving onto parts of
the crosswalk, slowing down, continuing on the path, allowing the yellow obstacle
vehicle to pass and then speeding up again to reach the goal. The trend is pretty
much identical and expected in the case of multiple discs and multiple scenarios.
The cars speed up on the straight, slow down/stop at the T-Junction to allow the
vehicle to pass, then turn and speed up again to complete the manoeuvre.

• The last plot we look at is the minimum distance plot in Figure 5-15, where we
once again observe almost identical trends when comparing Multiple Discs and
Multiple Scenarios. There is, however, a slight difference in minimum distances
between them initially, which could be attributed to them sticking to different
sides of the same lane. The first rise corresponds to the grey obstacle vehicle
just ahead of the ego vehicle. The corresponding dip then corresponds to the
blue obstacle vehicle, which continues to go straight along its path, the next dip
corresponds to the red obstacle vehicle, and the final dip corresponds to the yellow
obstacle car. In terms of Single Disc, we observe that it "misses" one of the dips
we can see for the other two cases. This missing dip would correspond to the red
obstacle since it takes a short turn across the crosswalk and is at all times closer
to the yellow car than the red one, which is on the opposite side of the road.

• We now look at the Computation Times in Table 5-3, and we can see that, as
expected, the time to goal for the Single Disc is much lesser than the other two
implementations due to its relatively aggressive approach. The Time to goal
for Multiple Scenarios was significantly lesser than the time to goal for Multiple
Discs. In terms of individual computation times, the scenario updates are still the
quickest in the Single Disc implementation, owing to the fewer scenarios due to
one disc. The scenario updates for multiple scenarios are slightly lesser than those
of multiple discs. In the control loop, a Single Disc is least understandably due to
lesser computations, while multiple scenarios beat multiple discs due to reduced
computations. The optimisation speeds are pretty comparable, with Multiple
Discs being the quickest.

• From Figure 5-16, we can observe the reliance on the computation times of the
scenario updates and, correspondingly, the control loop for different numbers of
scenarios. Seeing the exponential effect that the number of scenarios has on com-
putation times makes us reflect on the importance of having a trade-off between
the number of scenarios sampled against the risk factor ϵ. Larger the number of
scenarios, the lesser the risk factor, but the greater the computation time required.
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However, even with 128000 scenarios the computation times remain real-time im-
plementable, and that is noteworthy.

Now that all the results have been visualised and discussed, we make some conclusions
based on all we have seen in the next chapter and discuss future progress directions.
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Chapter 6

Conclusions and Future Directions

6-1 Conclusions

Going through a small recap of everything this thesis has covered, we started with the
introduction, where a brief background of automated driving was laid down, and a
few research questions regarding the transition of moving from pedestrians to vehicles,
along with their impact on safety, were asked. The next chapter summarised relevant
literature on motion planning and decision-making. This was followed by a background
chapter that covered the basics of MPC, MPCC, LMPCC, Robust and Stochastic opti-
misation, Chance Constraints, Scenarios, and SMPCC, along with mathematical repre-
sentations of risk bounding, safety and confidence in the case of convex and non-convex
scenario optimisation problems. Chapter 4 highlighted the proposed approach and
decided to represent vehicles as a series of discs, which was then improved upon by
representing them as a series of linked scenarios. It was then mathematically shown
that these implementations’ chance constraints and safety guarantees remain as if a
simple linear transformation had been applied, and that they relatively provide better
safety guarantees due to having an increased number of scenarios. The next chapter
discussed the test setup and environment where simulations were carried out, after
which the results were visualised and discussed. We now attempt to make inferences
based on these results.
Based especially on the results we saw in the previous chapter, we can conclude the
following:

• The Single Disc implementation was generally always the fastest. This makes
perfect sense as it is a single disc approximating the vehicle, and there are only
1000 scenario computations per vehicle per iteration. In terms of simulated per-
formance on the straight road and T-Junction, this implementation seemed the
more aggressive out of the three implementations. Once again, this makes good
sense that the region covered by the scenarios is not a good fit for the vehicle.
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Thus all computations would consider a relatively less safe approximation of the
vehicle. The T-Junction was a perfect highlight of things that go wrong with
using such an approximation of the vehicle.

• The multiple disc implementations consider the vehicle to be a series of linked
obstacles. It is computationally heavier since n times the number of scenarios
is taken through all the computations in each iteration(n depends on how many
discs the vehicle could be modelled with). Each obstacle also has a collision region
defined around it, and a single vehicle having n overlapping collision regions is
not ideal or optimal. However, this implementation provides a safer or more
conservative solution, which makes sense since the car is well-approximated shape-
wise, with n times the number of samples compared to a single disc.

• The final implementation was multiple scenarios, where the single disc with a
probability distribution of uncertainty around spawns n scenarios around the ve-
hicle. It is effectively an n-disc representation with one collision region and a
good approximation while avoiding the time complexity issue of Multiple Discs.
The results confirm this in terms of similarity or trajectory and behaviour, but a
marked difference in latency.

This can lead us to conclude that the Multiple Scenarios approach has served as a
good approximation of the obstacle vehicle in an urban setting while being compu-
tationally efficient. It thus satisfies the requirements of being practical and real-time
implementable.

6-2 Future Directions

The scenario approach to obstacle avoidance(especially for non-convex, non-linear pro-
grams) is a relatively unexplored but promising avenue for future research in planning
and decision-making for automated driving and robotics. That being said, several hur-
dles must be overcome for this to be deployed at a commercial level. Some of the
drawbacks of this implementation are:

• The real-time scalability of this method with respect to the number of dynamic ob-
stacles is a question. Running the same algorithm with more vehicles and walking
and crossing pedestrians resulted in frequent crashes on the testing system.

• The prediction model used for vehicles and even pedestrians here was a constant
velocity model. In real life, that is an inaccurate representation of dynamic mo-
tion. The uncertainty distribution was assumed to be real-time here, while real
uncertainties are non-Gaussian.

With these major drawbacks in mind, the proposal for future work is:

• The first recommendation would be to improve the scalability of dynamic vehicles
through the scenario approach or an even better but still computationally efficient
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obstacle representation. A shape like a rectangle used for this implementation
while still preserving the latency, and dealing with its discontinuous shape, would
be ideal.

• When it comes to trajectory prediction models, a wide variety of non-Gaussian
trajectories spring up, rendering it a challenge for the algorithm to handle. There
is much scope to explore this path.

• This scenario extension for vehicle representation should be tested on hardware
platforms to assess its real-time feasibility.

• Having a vehicle represented as a series of overlapping discs can also be explored.
This would provide an even better approximation of the vehicle. However, simul-
taneously, there would be many overlapping scenario points and collision regions,
which would then need to be pruned out. While this could be a promising direc-
tion for future work, it will play with the safety risk bounds and might be much
less conservative depending on the number of pruned-out scenarios.
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Appendix A

ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software.
It is a collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behaviour across various robotic platforms.

Why? Because creating truly robust, general-purpose robot software is complicated.
From the robot’s perspective, problems that seem trivial to humans often vary wildly
between instances of tasks and environments. Dealing with these variations is so hard
that no single individual, laboratory, or institution can hope to do it on their own.

As a result, ROS was built from the ground up to encourage collaborative robotics soft-
ware development. For example, one laboratory might have experts in indoor mapping
environments and could contribute a world-class system for producing maps. Another
group might have experts at using maps to navigate, yet another group might have
discovered a computer vision approach that works well for recognizing small objects in
clutter. ROS was designed for groups like these to collaborate and build upon each
other’s work.

For this purpose, we cover the basic ROS concepts of topics, nodes, messages, publish-
ing and subscribing. ROS is a robotics middleware. It cannot be called an Operating
System, but it still provides hardware abstraction, low-level device control, message
transfers between services, multi-threading, package management, etc. ROS is open-
source. Users can choose the configuration of tools and libraries which interact with
ROS core to account for custom applications and robots according to user demands.
ROS processes are represented as nodes, which communicate with each other via topics.
This is possible thanks to a process called ROS Master. The Master sets up peer-to-
peer communication between node processes.
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A-1 Design

A node represents a single process running the ROS graph. Every node has a name,
which registers with the ROS master before it can take any other actions. Nodes are at
the centre of ROS programming, as most ROS client code is in the form of a ROS node
which takes actions based on information received from other nodes, sends information
to other nodes, or sends and receives requests for actions to and from other nodes.

Figure A-1: ROS Topics and Nodes

Topics are named buses over which nodes send and receive messages. In order to send
messages to a topic, a node must publish to said topic, while to receive messages, it must
subscribe, as shown in Fig A-1. The publish/subscribe model is anonymous: no node
knows which nodes are sending or receiving on a topic, only that it is sending/receiving
on that topic. The messages passed on a topic vary widely and can be user-defined.
The content of these messages can be sensor data, motor control commands, state in-
formation, actuator commands, or anything else.

A-2 Tools

ROS’s core functionality is augmented by a variety of tools which allow developers
to visualize and record data, easily navigate the ROS package structures, and create
scripts automating complex configuration and setup processes. These tools significantly
increase the capabilities of systems using ROS by simplifying and providing solutions to
several common robotics developments. These tools are provided in packages like any
other algorithm, but rather than providing implementations of hardware drivers or al-
gorithms for various robotic tasks, and these packages provide task and robot-agnostic
tools that come with the core of most modern ROS installations.
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Catkin is the ROS build system. Catkin is based on CMake and is similarly cross-
platform, open-source, and language-independent. The rosbash package provides a
suite of tools that augment the bash shell’s functionality. These tools include rosls,
roscd, and roscp, which replicate the functionalities of ls, cd, and cp. The ROS ver-
sions of these tools allow users to use ROS package names in place of the file path where
the package is located. The package also adds tab-completion to most ROS utilities. It
includes rosed, which edits a given file with the chosen default text editor, and rosrun,
which runs and executes in ROS packages.

roslaunch is a tool used to launch multiple ROS nodes locally and remotely, as well
as set parameters on the ROS parameter server. roslaunch configuration files, written
using XML can easily automate a complex startup and configuration process into a
single command. roslaunch scripts can include other roslaunch scripts, launch nodes
on specific machines, and even restart processes which die during execution.

A-3 Programming

ROSCPP is a C++ implementation of ROS. It provides a client library that enables
C++ programmers to interface with ROS Topics, Services, and Parameters quickly.
roscpp is the most widely used ROS client library and is designed to be the high-
performance library for ROS.
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