
A Bayesian Approach to Yield Curve Modelling
and Forecasting with Stochastic Volatility for

Interest Rate Risk Management

by

David Sarkisian

for the purpose of obtaining the degree of Master of Science
at the Delft University of Technology

to be defended publicly on Wednesday January 31st, 2024 at 10:30

Student number: 4547616

Project duration: March 1, 2023 - January 31, 2024

Thesis committee: dr. ir. J. Bierkens, TU Delft, supervisor
dr. ir. L. E. Meester, TU Delft,
drs. I. W. Specker, DSTA, supervisor

An electronic copy of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/


Abstract

This thesis explores how forecasts of Dutch government bond yields can be improved by extend-
ing the current Dynamic Nelson-Siegel (DNS) model, used by the Dutch State Treasury Agency
(DSTA), with stochastic volatility modeling and a Bayesian approach to parameter estimation and
forecasting. The primary goal was to determine if the model extensions together with the Bayesian
approach could improve the accuracy of yield forecasts given the highly volatile interest rate envi-
ronment. In particular, we aimed to improve the “worst-case” forecasts, which we have defined as
the upper bound of the 95% credible region with respect to the observed bond yields. To this end,
we began with a baseline state-space model, resembling the current model in a state-space frame-
work. Subsequently, we applied the findings from both in-sample and forecasting results as well as
the findings from a literature review on volatility modeling to develop different models including
two volatility models.

The volatility of the DNS model extensions is modeled as a GARCH process through the ob-
servation noise based on findings in the literature. This allowed for computationally efficient state
estimation using a modified Kalman filter. Then, employing the Random Walk Metropolis al-
gorithm for parameter estimation allowed us to use Bayesian multiple-step ahead forecasting. In
particular, a comparative analysis of various models showed that while the current model performed
better than expected, it was significantly outperformed in-sample by the DNS model with AR(1)
observation noise (DNS-ARRW) and the DNS model with GARCH(1,1) observation noise volatility
(DNS-OV). The Bayesian forecasting method particularly improved capturing the uncertainty of
increasing yields in twelve-months ahead forecasts. Moreover, the two volatility models showed
promising in-sample performance, but only one (DNS-OV) showed relatively good forecasting per-
formance as well. Furthermore, the DNS-ARRW model consistently showed the best performance
both in-sample and in forecasting.

In conclusion, the Bayesian approach to parameter estimation and forecasting proved effective in
accounting for more variability in increasing forecast yields and simulating the direction of forecasts
slightly better than the current MLE-based method. Moreover, the DNS-ARRW model showed sig-
nificantly better worst-case forecasting performance, whereas the volatility models had a mixed
performance.

Keywords: yield curve modeling, Bayesian forecasting, stochastic volatility, Dynamic Nelson-
Siegel (DNS), Markov Chain Monte Carlo (MCMC)
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“No matter how sophisticated our choices, how good we are at dominating the odds, randomness
will have the last word.”

— Nassim N. Taleb, 2007
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1

Introduction

In the aftermath of the COVID-19 pandemic, economies around the world have found themselves
struggling with restarting due to supply chain disruptions and rising geopolitical tensions. These
disruptions and tensions have led to higher production and energy costs, which stimulated inflation
that reached levels not seen since the 70s and 80s. As a result, central banks have increased interest
rates to tackle the high inflation. In particular, the European Central Bank (ECB) has increased
the interest rate1 10 times from −0.50% in July 2022 to 4.00% in December 2023, which is a
total increase of 450 basis points (bps) (ECB, 2023). The uncertainty that arises from potential
interest rate hikes together with the overall uncertainty in the world results into more volatile bond
markets, even relative to the stock market. In Figure 1.1 the VIX index and the MOVE index,
two popular indicators for the volatility of the stock market and bond market (Kumar et al., 2022)
respectively, are compared by looking at the VIX/MOVE ratio. Specifically, the volatile bond
market (high MOVE) and relatively calm stock market (low VIX) result into a VIX/MOVE ratio
that is historically low, indicating a relatively high volatile bond market.

Particularly, the highly volatile bond markets affect the Dutch state as well. The Dutch State
Treasury Agency (DSTA) is responsible for managing the Dutch state debt and issuing government
bonds. The issuance of bonds means that the Dutch state has costs arising from annual coupon
(interest) payments and the payments of the principal amount of maturing bonds. Consequently,
the DSTA knows the repayment schedule of all redemptions and coupon payments for bonds that
have already been issued. However, interest rate costs in the future consist of known costs of
already issued bonds and of unknown costs that arise from future bond issuance. The unknown
interest rate costs are affected by the annual government budget deficit and the bond yields for
different maturities in the market. Essentially, the annual government budget deficit influences the
total amount of money that the DSTA has to raise from the market, mainly affecting the principal
amounts due for repayment over the years. Additionally, the bond yield for some maturity observed
in the market influences the coupon rate of a bond with a comparable maturity that has to be issued.
However, the coupon rate is not determined by the exact bond yield for a comparable maturity,

1When talking about central banks increasing “the interest rate”, we usually refer to the rate for which commercial
banks and other financial institutes have to deposit some reserve funds overnight at the relevant central bank.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The VIX and MOVE indices from January 2nd 2003 till January 2nd 2024 (left) and
the corresponding VIX/MOVE ratio (right).

but usually it is quite in the same range. Therefore, a forecast of the ten years bond yield is useful
to forecast interest rate costs associated with bonds of a maturity of ten years. Then, a highly
volatile interest rate environment complicates forecasting interest rate costs, as the interest rates
show large deviations in a short period of time. Moreover, the estimated funding need of the Dutch
state in 2024 is around €75 billion of which €40 billion is expected to be raised from the capital
market, which are the bonds with a maturity longer than one year2 (DSTA, 2023). Additionally, the
estimated interest rate costs for 2024 are around €7.8 billion (Rijksoverheid, 2023). So, estimating
interest rate costs is important for managing the interest rate risks arising from managing the state
debt as it involves substantial amounts of money. The DSTA estimates future interest rate costs by
forecasting interest rates and using the predicted interest rates to estimate the costs that arise from
future issued bonds, whereas the funding need is estimated by expert judgement. Consequently, in
this thesis we only focus on modeling and forecasting the bond yields, so the uncertainty arising
from the government budget deficit is out of the scope of this thesis.

Several methods exist to model bond yields for different maturities, or the yield curve, but
central banks and debt management offices often use variants of the Dynamic Nelson-Siegel (DNS)
model (Filipovic, 2009, p. 3) introduced by Diebold et al. (2006), which is a state-space extension of
the original Nelson-Siegel model of C. R. Nelson and Siegel (1987). The DNS model as state-space
model assumes that the yield curve is driven by three underlying factors, called states. Particularly,
Diebold and Li (2006) introduce an interpretation of the three states as the level, slope and curvature
of a yield curve, which is commonly used nowadays to interpret the DNS model in an economical
context. Moreover, Diebold and Li (2006) propose a two-step method characterized by the use of
linear regressions to estimate the underlying factors as opposed to the one-step method proposed
by Diebold et al. (2006) that takes advantage of the model being a state-space model and uses
(extensions of) the Kalman filter to estimate the three states for every time point. Extensive

2The DSTA draws a distinction between the money market and the capital market. Bonds with a maturity of
< 1 year are said to raise funds in the money market, whereas bonds with maturities > 1 year are said to raise funds
in the capital market.
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research has been done on the DNS model and various extensions have been proposed. In particular,
there has been done research in modeling volatility in the DNS framework (Koopman et al., 2010,
Hautsch and Ou, 2008a, Glosten et al., 1993, Mesters et al., 2014) that focus on adding volatility
with either a GARCH process or a Stochastic Volatility process. These type of extensions usually
require Bayesian techniques like Markov Chain Monte Carlo (MCMC) algorithms to estimate model
parameters as the conventional Maximum Likelihood Estimation (MLE) methods struggle with
finding optimal parameter values in higher dimensions due to the complex shape of such high-
dimensional parameter spaces.

The current model and method employed by the DSTA is based on the two-step estimation
method of Diebold and Li (2006) for the DNS model, using the ordinary least squares method to
estimate states and an MLE-based method to estimate parameters. However, the current model and
method have difficulty in predicting the increasing interest rates and the associated volatility due
to interest rate hikes. Moreover, the current model and method do not quantify the uncertainty of
the forecasts realistically. Specifically, the “worst-case” forecasts (upper bound of the 95% credible
region of the forecast simulations) show quite some deviation from the actual interest rates. As a
result, the forecasts of the current model have lost some practical significance. That is why this
thesis aims to research whether extending the current model with stochastic volatility modeling and
using Bayesian forecasting techniques can improve the interest rate forecasts. The main research
question to this end is

• How to model interest rate volatility and quantify forecasting uncertainty with a Bayesian
approach in order to forecast interest rate costs better?

In particular, we are interested in modeling bond yields for various maturities and, consequently,
yield curves. The sub-questions that lead to answering the main research question are

1. How to model bond yields and how can we extend those models with stochastic volatility?

2. How can a Bayesian approach improve uncertainty quantification in yield curve forecasts?

3. How do the different models and methods compare?

In order to answer these questions, this thesis is written in the following structure. In Chapter 2
we provide some background information on interest rates and discuss the used data. Subsequently,
in Chapter 3 we discuss the theory on state-space models, which are the used type of yield curve
models. Then, in Chapter 4 we introduce the Bayesian methods that are used for parameter
estimation and forecasting. In Chapter 5 we provide a literature review on yield curve and volatility
modeling in the DNS framework. Afterwards, in Chapter 6 we bring the Bayesian approach together
with yield curve modeling and we discuss the explored yield curve models. Then, in Chapter 7 we
discuss the parameter estimation, in-sample and forecasting results for each model. Additionally,
we compare the in-sample and forecasting performance of the used models and Bayesian methods
with the current model and method in Section 7.6 to answer the main research question. Finally,
we discuss the main conclusion, the limitations of our research and recommendations for further
research in Chapter 8.

It is worth noting for the readability of this thesis that we have worked in a modeling cycle,
which means that we have explored one model and we have used the findings of that model to
explore a new model. So, the formulation and explanation of each model are provided in Chapter
6, whereas the results that lead to a certain model can be found in Chapter 7.
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2

Data and Introduction to Bonds

In this chapter we introduce some key concepts related to bonds that will be used throughout this
thesis and we discuss the used bond yield data as well. In Section 2.1 and 2.2 we introduce two
common types of bonds. Subsequently, in Section 2.3 we discuss the concepts of yield-to-maturity
and a yield curve for the previously introduced bonds. Then, we conclude this chapter by discussing
the used bond yield data.

2.1 Zero-Coupon Bonds

Let us first consider the zero-coupon bond. This is a bond that has no cash flows between buying
at some time t an maturity T . We provide a definition of the zero-coupon bond based on Oosterlee
and Grzelak (2019, p. 341).

Definition 2.1. (Zero-coupon bond). A zero-coupon bond (sometimes called a discount bond) is a
contract with maturity T and at time t ≤ T value P (t, T ), which pays €1 at maturity T , denoted as
P (T, T ) = 1. The €1 that is paid at maturity is called the notional amount, sometimes also called
the principal amount, and is more generally denoted by N .

Since the only payment is the notional amount at maturity with certainty, the price of the
zero-coupon bond P (t, T ) represents a discount on the notional amount N . The discount on the
notional amount can be seen as a compensation for the time value of money (Berk et al., 2021,
p. 162). Zero-coupon bonds typically have short-term maturities. For instance, Dutch Treasury
Certificates or U.S. Treasury Bills with a maturity of less than one year are usually zero-coupon
bonds.

2.2 Coupon Bonds

Coupon bonds are bonds that pay coupon, or interest, at fixed dates over the life of a bond. This
means that there are cash flows between the issuance of the bond and the time of maturity. The

5



6 CHAPTER 2. DATA AND INTRODUCTION TO BONDS

coupon rate can be a fixed rate for all payments (fixed rate) or can be linked to some unknown
future market rate (floating rate) like the euro short-term rate (ESTR). Since the DSTA only issues
bonds with a fixed coupon rate we only focus on fixed-rate bonds. Oosterlee and Grzelak (2019,
pp. 341-342) define a fixed-rate bond as follows.

Definition 2.2. (Fixed-rate bond). For a given fixed rate r, a notional amount N and a set
of payment dates T1, T2, . . . , Tm, a fixed coupon rate bond is an investment with several coupon
payments, that are defined by

Vi(Ti) =

{
rN(Ti − Ti−1), i = 1, 2, . . .m− 1

rN(Tm − Tm−1) +N, i = m.
(2.1)

Note that, due to the interim cash flows of a fixed-rate bond, the price of a fixed-rate bond
cannot directly be considered as the compensation of the time value of money. Bonds with coupon
payments typically have medium to long-term maturities. Examples include the Dutch State Loans
or U.S. Treasury Notes with maturities ranging from one to thirty years.

2.3 Yield-to-Maturity and Yield Curve

In Section 2.1 we introduced the price of a zero-coupon bond, P (t, T ). However, in practice the bond
price is not used directly, but rather the yield-to-maturity of a bond is used. This is the interest
rate at which a bond is traded (Oosterlee and Grzelak, 2019, p. 375). The yield-to-maturity, or
just yield, of a zero-coupon bond is given by (Berk et al., 2021, p. 163)

y(t, T ) =

(
N

P (t, T )

) 1
T−t

− 1, (2.2)

where N and P (t, T ) are again the notional amount and the price of a zero-coupon bond with
maturity T at time t respectively. Since a zero-coupon bond does not have coupon payments,
the yield-to-maturity for the zero-coupon bond is just the future cash flow at maturity that is
discounted to the present value. In contrast, the yield for a fixed-rate bond cannot be expressed in
closed-form since the additional cash flows of the coupon payments have to be taken into account
as well, for which we refer to Berk et al. (2021, Section 6.3) for a more detailed discussion. This
means that in general we have to use the zero-coupon yields or we have to discount the cash flows of
coupon-bearing bonds that include coupon payments, since the zero-coupon yields are considered to
represent the time value of money. So, for applications such as bond pricing, it is common practice
to use the zero-coupon yields instead of the yields of a fixed-rate bond.

Subsequently, bond yields can vary across different maturities. The mapping T 7→ y(t, T ) is
commonly referred to as a yield curve. In theory, the yield curve is some smooth curve that relates
the time-to-maturity τ = T − t with the bond yield y(t, T ) at some fixed time t. However, in reality
bonds are not available for a continuous spectrum of maturities and we are dependent on market
observations of the yields for various bonds. These are finite observations for maturities τ1, . . . , τM
that are possibly noisy (Filipovic, 2009, p. 29). This means that the actual yield curve at time t
has to be estimated from different observations of bond yields at time t. In Figure 2.1 observations
of actual Dutch government bond yields are shown at 5 different dates for maturities of 24, 36, 48,
60, 72, 84, 96, 108, 120, 240 and 360 months.
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Figure 2.1: Dutch government bond yields as observed in the market at various dates.

2.4 Data

For this research we have used the bond yield data for eleven maturities τ ∈ {24, 36, 48, 60, 72, 84, 96,
108, 120, 240, 360} directly, which is shown in Figure 2.2. We note that the choice for these ma-
turities is determined by the availability of certain ranges and the frequency of bond yields. So,
we have to be cautious for the estimates of the bond yields of the short maturities (< 24 months).
In addition, we note that the observed bond yields of the medium to long-term maturities in the
market are usually not zero-coupon bonds, but coupon-bearing bonds. This means that the yields
also take into account the coupon payments and are not providing the zero-coupon bond yield
curve, which is usually used for yield curve estimation.

In the literature so-called unsmoothed Fama-Bliss zero-coupon bond yields, which are modified
U.S. Treasury rates, are often used to compare theoretical results between different papers. For the
further details we refer to the original authors Fama and Bliss (1987). Another method to obtain
zero-coupon yields is by using the so-called bootstrap method. This method involves iteratively
computing the yields from the shortest-term to the longest-term maturity by “removing” the coupon
payments from the yields, for which we refer to Berk et al. (2021, Section 6.3) and Filipovic (2009,
Section 3.1).

However, we have chosen to use the direct bond yield data and not to modify these yields. The
main reason for this is a practical one. In particular, the current model and method employed by the
DSTA use the direct bond yield data as well. This is based on a paper of Ibáñez (2015) comparing a
rigorous approach involving the bootstrap method with daily bond price data with a practitioner’s
approach involving constant maturity rates reported by the U.S. Treasury. Specifically, the author
finds that the mean absolute error (MAE) values of the rigorous and practitioner’s approach with
respect to the actual yields are 8.97 bps and 8.92 bps respectively. Since the aim of this thesis is to
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explore models with respect to the current model and method it seems reasonable to use the same
data to have a sound comparison between the different models and methods. So, we are aware of the
somewhat practical approach to the used data. Naturally, this has both drawbacks and advantages.

First, the direct usage of the bond yields implies that the modeled and forecast yields in our
research include the effects of the coupon payments. This means that the yields could overlook
the price sensitivity (duration) of a bond as we do not consider the cash flows explicitly in the
bond yields. Moreover, the used yields do not represent the time value of money directly as the
zero-coupon bond yields. However, in reaching the goals of this research we are mainly interested
in trends of the market yields as opposed to using the yields to price bonds or construct a portfolio
strategy, for which the zero-coupon yields are needed. So, we argue that while direct yields are not
suitable for bond pricing models or portfolio strategies, they are sufficient for forecasting the trends
in bond yields.

Figure 2.2: Graph of the used Dutch government bond yield data from March 2001 to October
2023 for maturities of 24, 36, 48, 60, 72, 84, 96, 108, 120, 240 and 360 months.



3

State-Space Models and State Estimation

In this chapter we will discuss state-space models (SSMs) and important subjects related to such
models. In particular, we begin with explaining what state-space models are in Section 3.1. Subse-
quently, in Section 3.2 we will outline two properties of state-space models that are important for
dealing with estimating states, which we will discuss in Section 3.3.

3.1 State-Space Models

Imagine that we want to know whether it rains or not, but we are stuck in some office without
any windows. The only way we can tell whether it has rained is to look at whether employees are
entering the office with or without an umbrella. One can imagine that looking at umbrellas is not
the most exact way of observing whether it has rained or not. It could be the case that it rains
often and people take their umbrellas just in case. On the contrary, it could also be the case that
employees never take an umbrella with them to the office since it is a few seconds walk from the
train station. In the context of state-space models, we call the situation whether it rains or not the
state. We try to say something about the state by observing employees with or without umbrellas.
We can extend this anecdote to a more specific example. Suppose that we want to know what the
true, or exact, rainfall is. We call the true rainfall the state, in which we are interested. The true
rainfall is something that we cannot know with a 100% certainty and has some randomness to it.
Nature is random, so a region can be struck with an unforeseen heat wave or an unexpected storm.
This uncertainty that influences the rainfall results into an uncertain - a “noisy” - state, and this
randomness is called the state noise. Since the true rainfall is not directly observable we have to
think of a method to measure rainfall and a way to link those measurements with the true rainfall.

We begin by putting an empty water tank outside every day. If it rains heavily on a given
day, the tank will be filled up with water, whereas the tank will be empty on a dry day. We call
the water level that is reached in the water tank an observation. One can imagine that these
observations will not be very accurate. In particular, there could be small cracks in the tank that
let go a little bit of the collected water or the measure lines on the tank could be slightly off, which

9
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contribute to less measurement accuracy. A digital rain gauge could help us obtaining more accurate
measurements, but electronics are also prone to errors in their electronic circuits or there could be
some production error. Most importantly, there is always some error (be it perhaps extremely
small) in the measurements that results into uncertainty in the observation itself, which becomes
a “noisy” observation. This is called the observation noise. Let us summarize the components
thus far,

• state xt: the true rainfall at day t;

• state noise vt: the uncertainty in nature affecting the rainfall at day t;

• observation yt: the observed rainfall in the water tank at day t;

• observation noise wt: the uncertainty in the measurement at day t.

Now we have the individual pieces of a state-space model, but they are still not connected. A
first assumption we can make is that we believe the rainfall of today is somehow connected with the
rainfall of yesterday. This does not have to be a one-on-one influence, but intuitively the possibility
of having a rainy day if it has been dry for the past thirty days is quite small, while it is instinctively
larger if it has already rained for a week. How the rainfall of yesterday influences that of today,
can be rephrased as how the state at time t transitions to the state at time t+ 1 and is called the
state-transition. The last piece that has to be connected is how we link the actual rainfall to the
observed water level in the water tank. We can, for instance, say that the water level we see in the
tank is twice the actual rainfall or in general g ∈ R>0 times the actual rainfall. We now have the
last components to define the example state-space model given by

yt = gxt + wt, (3.1)

xt = fxt−1 + vt, (3.2)

where f ∈ R is the state-transition factor representing the amount of influence the rainfall on a
previous day has on the next one and g is the observation factor as explained before. Additionally,
we assume for this example that the randomness for both the observation and the state, the noise
terms vt, wt, are normally distributed

vt ∼ N (0, q2), wt ∼ N (0, r2), (3.3)

which is also referred to as Gaussian white noise in short.

3.1.1 Linear and Gaussian State-Space Models

Thus far, we have introduced the concept of a state-space model by a simple physical example. More
generally, though, we can extend the rainfall example to a state-space model with even more states
like rainfall, groundwater level, soil moisture, etc. and more observations given by a rain gauge, a soil
moisture sensor, a submersible pressure sensor, etc. This results into a multidimensional state-space
model, where the states and observations can also have some “cross-influence”, or cross-dependence,
on each other. This can be formally summarized in the following definition given by Brockwell and
Davis (1991, pp. 463-464).
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Definition 3.1. (Linear Gaussian State-Space Model). A time-series model can be represented in
linear state-space form. By this we mean that the series {yt, t = 0, 1, . . . } satisfies the equation

yt = Gtxt +wt, t = 0, 1, . . . , (3.4)

xt = Ftxt−1 + vt, t = 0, 1, . . . , (3.5)

where Ft ∈ Rn×n, Gt ∈ Rp×n,yt ∈ Rp,xt ∈ Rn for t = 0, 1, . . . . Moreover, wt and vt are
independent and distributed as [

wt

vt

]
∼ N

(
0,

[
Rt ST

t

St Qt

])
, (3.6)

with Qt ∈ Rn×n, Rt ∈ Rp×p, S ∈ Rn×p.

Notice that the state-space model is linear in the state, since we can see the observation yt as
a linear transformation (matrix multiplication plus a noise term) and that the state-space model
is Gaussian as both noise terms are assumed to be Gaussian (normally distributed). Moreover,
the state-space model in Definition 3.1 is multidimensional, so we work with matrices instead of
one-dimensional factors. So, F is the state-transition matrix, G is the observation matrix and
yt,xt,wt,vt are conceptually the same as their one-dimensional counterparts. Additionally, the
matrices Gt, Ft, Rt, Qt, St are together commonly referred to as the system matrices.

Furthermore, in the used linear state-space models for modeling yield curves we assume time-
invariance, i.e. Ft ≡ F and Gt ≡ G, and time-invariant observation and state noise covariance
matrices Rt ≡ R and Qt ≡ Q respectively. For our example, this means that the influence of the
rainfall at day t on the rainfall at day t + 1 does not change over time, and the way we link the
actual rainfall with measurements of rainfall in the water tank stays the same over time as well.
Additionally, we also assume that the observation noise wt and state noise vt are independent of
each other, so St ≡ S = O, where O ∈ Rn×p is the matrix with zero-only entries. Consequently, with
these assumptions and Definition 3.1 some (in)dependencies arise, which are useful for derivations
in later sections and chapters. In particular, we see that the model assumes that xt+1 and xt−1

are conditionally independent given xt, which is denoted as

xt+1 ⊥ xt−1|xt, (3.7)

which in our example corresponds with the actual rainfall of tomorrow xt+1 being only dependent
of the actual rainfall of today xt. Furthermore, the model assumes that yt and xt are conditionally
independent as well, so

yt ⊥ xt−1|xt, (3.8)

which means that our observation of the water level in the water tank today yt only depends on
the actual rainfall of today xt. Finally, the observations y1, . . . ,yt are dependent of each other via
the states. Bishop (2006) elaborates on the (in)dependencies by means of a visual representation
(a graph) of the state-space model as in Figure 3.1.

In Figure 3.1 the nodes represent states (xt) or observations (yt) at some time t = 1, . . . , k. Here,
the arrows represent the dependency structure of the state-space model, where node1 −→ node2
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Figure 3.1: This is a schematic overview of a state-space model, where z is the state variable and
x is the observation variable. (Source: Vivekvinushanth, 2020).

means node2 is dependent on node1. So, the first two dependence relations follow directly from
the graph. The last dependence relation between the observations is a bit harder to see in the
graph. Without going into too much graph theory (see Bishop, 2006, pp. 378-382 for more detailed
theory), we can see that there is always a path from one observation to another, where a path
is an edge regardless of the direction. In particular, consecutive observations always have a path
between them that goes through consecutive states, on which the observations are dependent. So,
instinctively the indirect dependence between the observations is something to take into account.
Especially, when we need distributions like the posterior predictive distribution p(yt|Yt−1), where
Yt−1 := {y1, . . . ,yt−1}, which is needed for forecasts and is discussed more thoroughly in Chapter
4.

3.1.2 Nonlinear and non-Gaussian State-Space Models

In the previous section we discussed linear Gaussian state-space models, which is the most basic
type of state-space models. An obvious generalization is then to consider state-space models that
are nonlinear or non-Gaussian. However, in this subsection we only discuss nonlinear state-space
models, since we have not explored any non-Gaussian models. Then, we first have to specify what
we exactly mean with “nonlinear”. Nonlinear state-space models can be extensions that

1. are nonlinear in the state variable xt;

2. are nonlinear in the noise terms wt or vt (such as non-additive noise);

3. are nonlinear in the system matrices Gt, Ft, Rt, Qt or St;

4. are some combination of the above.

Particularly, Harvey (1990, pp. 155-156) makes a distinction between the first type of nonlinear-
ity in the state variable and the third type of nonlinearity in the system matrices. The author calls
the first type functionally nonlinear and the third type conditionally Gaussian. We will first briefly
discuss the functionally nonlinear type of state-space models in order to obtain a sense of arguably
the more common meaning of nonlinear state-space models. Subsequently, we will elaborate on
the conditionally Gaussian models. We note that in the subsequent chapters we will refer to the
conditionally Gaussian models as just nonlinear, since the models that are explored in this research
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are either functionally linear and Gaussian models or functionally linear and conditionally Gaussian
models.

Functionally Nonlinear State-Space Models

Then, having specified the different notions of nonlinearity, we return to the rainfall example.
Recall that in this simple example we assumed that the actual rainfall at day t influences the actual
rainfall at the previous day t − 1 with some state-transition factor f and that the observation of
the water level in the water tank is linked with the actual rainfall via some observation factor g as
in (3.1). Nonlinearity in the state does not change the underlying dependence relations between
the observations yt and the states xt that we discussed for linear state-space models. However, it
changes the way our observations are connected with the states. In other words, we assume that the
actual rainfall at day t does not influence the actual rainfall at day t− 1 by some factor. Instead of
a linear relationship, we could for example assume that there is some logistic relationship between
the true rainfall at day t and day t− 1. Additionally, for the sake of the example we could assume
that the observation of the water level in the tank at day t is the square of the true rainfall at the
same day t. Together, this results into the nonlinear Gaussian state-space model

yt = gt(xt) + wt = x2t + wt, (3.9)

xt = ft(xt−1) + vt =
1

1 + exp (−xt−1)
+ vt. (3.10)

The logistic and square functions can be any nonlinear functions ft and gt, though. Furthermore,
we can summarize this in the following definition based on Kitagawa (1996, p. 2) and Anderson
and Moore (1979, p. 194).

Definition 3.2. (Functionally Nonlinear Gaussian State-Space Model). A time-series model can
be represented as a functionally nonlinear state-space model. By this we mean that the series
{yt, t = 0, 1, . . . } satisfies the equation

yt = gt(xt) +wt, t = 0, 1, . . . , (3.11)

xt = ft(xt−1) + vt, t = 0, 1, . . . , (3.12)

where ft : Rn −→ Rn, gt : Rn −→ Rp are nonlinear functions, yt ∈ Rp,xt ∈ Rn for t = 0, 1, . . . .
Moreover, wt and vt are independent and distributed as

[
vt

wt

]
∼ N

(
0,

[
Rt ST

t

St Qt

])
, (3.13)

with Qt ∈ Rn×n, Rt ∈ Rp×p, St ∈ Rn×p.

Conditionally Gaussian State-Space Models

A conditionally Gaussian state-space model is characterized by the fact that at least one of the
system matrices is dependent of past observations. As a result the state-space model is Gaussian
given that these past observations are known. A definition of a conditionally Gaussian state-space
model is given in Definition 3.3 and is based on Harvey (1990, p. 156).
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Definition 3.3. (Conditionally Gaussian State-Space Model). A time-series model can be repre-
sented as a conditionally Gaussian state-space model. By this we mean that the series {yt, t =
0, 1, . . . } satisfies the equation

yt = Gt(Yt−1)xt +wt, t = 0, 1, . . . , (3.14)

xt = Ft(Yt−1)xt−1 + vt, t = 0, 1, . . . , (3.15)

where Ft ∈ Rn×n, Gt ∈ Rp×n,yt ∈ Rp,xt ∈ Rn for t = 0, 1, . . . and past observations are denoted
by Yt−1 = y1, . . . ,yt−1. Moreover, wt and vt are conditionally independent and distributed as

wt|Yt−1 ∼ N (0, Rt(Yt−1)), (3.16)

vt|Yt−1 ∼ N (0, Qt(Yt−1)), (3.17)

with Qt ∈ Rn×n and Rt ∈ Rp×p.

We note that in general the system matrices do not have to depend on all past observations
until time t − 1, as long as no dependency exists on a current or future observation. In Example
3.4 we elaborate on this type of state-space model.

Example 3.4. Recall that the one-dimensional rainfall example in (3.1) is a linear state-space
model defined as

xt = fxt−1 + vt, vt ∼ N (0, q2), (3.18)

yt = gxt + wt, wt ∼ N (0, r2), (3.19)

where xt is the true rainfall and yt is the measurement of the rainfall. Now, it might be the case
that the sensor measuring rainfall has worse accuracy during periods of high-intensity rainfall.
Consequently, we could model the observation noise variance as

rt = byt−1, (3.20)

which means that the variance is dependent on some fraction b ∈ (0, 1) of the measured rainfall of
the past day yt−1. Then, we can write the resulting state-space model as

xt ∼ N (fxt−1, q
2), (3.21)

yt|yt−1 ∼ N (gxt, byt−1), (3.22)

from which it becomes clear that this state-space model is Gaussian given the past observation and,
hence, is conditionally Gaussian.

Furthermore, we remark that Definition 3.3 can be generalized to also include past noise values
w1, . . . ,wt−1 and v1, . . . ,vt−1 or past state values x1, . . . ,xt−1. As a result, for such models we
need approximations of these values to estimate states with the Kalman filter, on which we elaborate
in Section 3.3 and in more detail for the used type of yield curve model that incorporates volatility
in Subsection 5.2.2.
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3.2 Observability

In this section we discuss some of the key concepts for state-space models, namely observability
and controllability. Intuitively, controllability says something about whether the model can be
steered into some other state with control variables, whereas observability says something about
whether the state variables can be explained by the observations. Using the multidimensional
rainfall example, we can see the two concepts as follows. Controllability says something about
whether we can use, for instance, irrigation in such a way that the final state (like groundwater
level) is as desired. Then, observability says something about whether the true rainfall, groundwater
levels and soil moisture can be directly observed with the used measurements. The two properties,
controllability and observability, are dual properties as Kalman (1960, p. 499) describes and the
way these two properties are related is given in Definition 3.5. The duality means that observability
implies controllability and vice versa. For a more thorough derivation we refer to the original paper
(Kalman, 1960, pp. 498-499).

Both properties are generally important to consider for state-space models. However, in this
research observability is a more relevant notion as we do not use additional external variables.
Specifically, if a state-space model is observable, it means that the unobservable state variable
can exclusively be determined from the observations. Because of this, we will only elaborate on
observability in the remainder of the section. We define observability in Definition 3.5, which is
given in Brockwell and Davis (1991, p. 496) as Proposition 12.4.4.

Definition 3.5. (Observability). The pair of matrices (F,G) is observable if and only if On has
rank n. In particular, (F,G) is observable if and only if (FT , GT ) is controllable. Here, the matrix
Ok ∈ Rkp×n for some k ∈ N ∪ {0} is defined as

Ok =


G

GF
...

GF k−1

 , (3.23)

and is called the observability matrix.

Notice that in Definition 3.5 the components of Ok only go until the k− 1-th power of F due to
the so-called Cayley-Hamilton Theorem. It goes beyond the aim of this section to go into full-depth
of this theorem, but the key idea is that a for a square matrix A ∈ Rn×n, the n-th power An can
be written as a linear combination of A,A2, . . . , An−1. For the details we refer to Brockwell and
Davis (1991, p. 492).

Showing observability of a state-space model by using Definition 3.5 can be a tedious task as the
observability matrix Ok can become large. The results that are shown below provide some sufficient
conditions to show that a state-space model is observable and are more straightforward. Lemma
3.7 is equivalent to Lemma 3.6 (Hautus Lemma or sometimes also called Popov-Belevitch-Hautus
(PBH) test) and, in practice, is a useful result in showing whether a state-space model is observable.
We do not provide the proof of Lemma 3.6, but we will prove the equivalence of Lemma 3.7 with
Lemma 3.6.

Lemma 3.6. (Lemma 3.3.7 (Hautus lemma), Sontag (1998, p. 272)). Let F ∈ Rn×n and G ∈
Rp×n. The following properties are equivalent for the pair (F,G).
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1. (F,G) is observable.

2. rank

([
λI − F

G

])
= n for all λ ∈ C.

3. rank

([
λI − F

G

])
= n for each eigenvalue λ of F .

Proof. For the proof, see Sontag (1998), pp. 94-95.

Lemma 3.7 reduces the task of testing for observability of a linear state-space model to only
computing the eigenvalues of F and confirming whether the associated eigenvectors multiplied with
observation matrix G result into the zero vector 0. The lemma is as follows.

Lemma 3.7. The pair (F,G) is observable if and only if there exists no v ̸= 0 such that Fv = λv
and Gv = 0.

Proof. We will prove Lemma 3.7 by proving equivalence between the contraposition of the third
point of Lemma 3.6 and Lemma 3.7. First, we write

A :=

[
λI − F

G

]
. (3.24)

Assume that the contraposition of the third point of Lemma 3.6 holds, which is

rank (A) < n, (3.25)

for each eigenvalue λ of F . Then, the columns of A are linearly dependent. From this it follows
that there exists a v ∈ Rn such that Av = 0. Now, it directly follows from writing out A that

Av =

[
λI − F

G

]
v =

[
(λI − F )v

Gv

]
= 0, (3.26)

⇔
Fv = λv and Gv = 0. (3.27)

From Lemma 3.6 we know that this is equivalent with the pair (F,G) being unobservable, which
proves Lemma 3.7.

For a diagonal matrix F the eigenvalue and eigenvector computations become trivial. Since
we only use diagonal state-transition matrices in the used state-space models, this specific case is
summarized in Corollary 3.8.

Corollary 3.8. If F ∈ Rn×n is a diagonal matrix and G ∈ Rp×n has only nonzero columns, then
the pair (F,G) is observable.
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Proof. Define F ∈ Rn×n and G ∈ Rp×n as

F =


f1 . . . 0
...

. . .
...

0 . . . fn

 , G =
[
G1 . . . Gn

]
, (3.28)

where Gi denotes the i-th column of matrix G. Since F is a diagonal matrix, it follows immediately
that the eigenvalues of F are f1, . . . , fn. Consequently, the eigenvector vi corresponding to the
eigenvalue fi is the standard unit vector, i.e. vi = ei for i = 1, . . . , n. Since matrix G has
only nonzero columns, i.e. Gi ̸= 0 for i = 1, . . . , n, it holds for every eigenvector vi = ei that
Gei = Gi ̸= 0. So, there exists no v ̸= 0 such that Fv = λv and Gv = 0. Hence, by Proposition
3.7, we conclude that the pair (F,G) is observable.

If we want to modify the original Dynamic Nelson-Siegel model, Corollary 3.8 can be used to
check that the extensions are indeed observable. This result ensures us that the state estimates
obtained through the Kalman filter are optimal and that the observations give enough information
for estimating the states, on which we will elaborate in the next section.

Example 3.9. We consider two models in this example.

1. For the Dynamic Nelson-Siegel (DNS) model we have to consider the pair (Φ,Λ). As Φ =
diag(ϕ1, ϕ2, ϕ3) and Λ has no columns with only zeros, it follows directly from Corollary 3.8
that the DNS model is observable.

2. For the DNS model with observation noise following an autoregressive process of order 1 and
states modeled by a random walk (DNS-ARRW) we have to consider the pair (Φ̃, Λ̃). In this

case Φ̃ =

[
I 0

0 A

]
, where I and A are diagonal matrices with diagonals (1, 1, 1, α1, . . . , α11).

For the observation matrix we have Λ̃ =
[
Λ I

]
, so Λ̃ has only nonzero columns. Hence,

from Corollary 3.8 it follows that (Φ̃, Λ̃) is observable.

3.3 State Estimation

In this section we discuss one of the most important concepts in regard to state-space models,
state estimation (Shumway and Stoffer, 2011; Kitagawa, 1996). In the context of state-space
models, estimating the state variable xt means finding some estimate of xt given observations
Yn = {y1, . . . ,yn}. Recall the example where the state is given by the true rainfall, which we try
to measure with a water tank. Every day we observe the water level in the water tank, which gives
us a collection of observations Yt = {y1, y2, . . . , yt}. However, we are actually interested in the true
rainfall every day x1, x2, . . . , xt. So, we need some way to infer xt from observations Yt. In other
words, for each day t we would like to know the true rainfall given that we know the water levels in
the tank from day 1 to day t, which is summarized by E[xt|Yt]. Notice that since the true rainfall
and the observations have some randomness, E[xt|Yt] has some randomness as well. That is why
we are also interested in the “accuracy” of an estimate. This is encapsulated in the variance of the
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true rainfall xt given our observations Yt, denoted by Var[xt|Yt]. In short, we are interested in the
filter density p(xt|Yt).

In the proceeding parts of this section we present a method to estimate the states x1, . . . , xt by
using the filter density called the Kalman filter originally derived by Kalman (1960). Particularly,
we only focus on the Kalman filter and some important notions related to this filter, since it can
be used for linear Gaussian state-space models and with some approximations for conditionally
Gaussian state-space models as well. In order to make the following parts of this section more
readable, we first introduce some notation that Shumway and Stoffer (2011) use as well.

Notation.

xs
t := E[xt|Ys], (3.29)

P s
t1,t2 := E[(xt1 − xs

t1)(xt2 − xs
t2)

T ], (3.30)

where Ys = {y1, . . . ,ys}. When t1 = t2 = t, we obtain

P s
t := E[(xt − xs

t )
2]. (3.31)

Moreover, we assume that the processes xt,yt are normally distributed. Shumway and Stoffer
(2011) show that (xt − xs

t ) ⊥ Ys for s, t > 0, from which it follows that

P s
t = E[(xt − xs

t )
2], (3.32)

= E[(xt − xs
t )

2|Ys] (normality) (3.33)

= E[(xt − E[xt|Ys])2|Ys] (definition 3.3), (3.34)

=: Var[xt|Ys] (definition Var(·)). (3.35)

3.3.1 Kalman Filter for Linear Gaussian SSMs

The Kalman filter is based on a two-step approach, consisting of the prediction step and the filtering
step. We introduce the Kalman filter through the one-dimensional rainfall example with state-space
model (3.1). First we give an outline of the basic idea before discussing the derivation of the Kalman
filter later in this subsection. The first step is to predict the state xt using observations until time
t− 1. Since the observations Yt−1 and the way xt is defined are both known, we can derive that

xt−1
t = E[xt|Yt−1] = E[fxt−1 + vt|Yt−1] = fxt−1

t−1, (3.36)

P t−1
t = Var[xt|Yt−1] = Var[fxt−1 + vt|Yt−1] = f2P t−1

t−1 + q2. (3.37)

Then, the idea of the filtering step is to improve the predicted state xt−1
t with the new infor-

mation that observation yt gives. However, the new information that yt gives is relative to the
predicted observation gxt−1

t , which says something about how close the model for the state pre-
dicts the observations compared with the actual observation. That is why we consider the residual
ϵt = yt − gxt−1

t instead of the observation yt, which is called the innovation term. The predicted
state xt−1

t is improved by finding some optimal combination of the predicted state and the new
information that yt gives. Another way to put it is by writing

xtt = ktyt + (1− kt)gx
t−1
t = gxt−1

t + kt(yt − gxt−1
t ) = gxt−1

t + ktϵt, (3.38)
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where kt is called the Kalman gain, which tells us how much the new observation should “weigh”
in the improved estimate xtt. How much new information the observation yt gives, is intuitively
connected with how accurate an observation is (Bar-Shalom et al., 2001, p. 207). Recall that
the observation noise is wt ∼ N (0, r2). Therefore, a large r means that the new observation yt
gives weaker information than if r is small and, consequently, the observation is accurate. The
Kalman gain kt actually depends partly on the observation noise r and is the weight that minimizes
P t
t = Var[xtt], the uncertainty of xtt.
In summary, there are four essential variables to be considered when estimating states. That is,

• yt: the original observation;

• xt: the true state;

• xt
t: the state estimated at time t given observation till time t;

• P t
t : the uncertainty of the estimated state at time t given observations till time t;

Bishop (2006. p. 641) illustrates these variables with a two-dimensional example, which serves
as a visualisation of the Kalman filter. In Figure 3.2 the original illustration is shown. The most
important part of this illustration is the fact that we cannot say that the estimated states are the
true states with 100% certainty. This uncertainty is captured with the red circles representing P t

t

around the red crosses representing xt
t.

Figure 3.2: This is an example of a state-space model used to track movements. The blue points
are the states (true position) xt, the green points are the measurements yt and the red crosses are
the estimated states xt

t obtained by the Kalman filter. The red circles around the state estimates
represent the covariance P t

t of each state estimate. (Source: Bishop, 2006, p. 641).

The described concepts of state estimation can be formalized for a state-space model as in
Definition 3.1 in the following theorem, which Shumway and Stoffer (2011) provide as Property 6.1
on p. 326.
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Theorem 3.10. (Kalman Filter) For the state-space model specified as in Definition 3.1 with initial
conditions x0

0 = µ0 and P 0
0 = Σ0, for t = 1, . . . , T we have

xt−1
t = Fxt−1

t−1, (3.39)

P t−1
t = FP t−1

t−1F
T +Q, (3.40)

(3.41)

with

xt
t = x

t−1
t +Kt(yt −Gxt−1

t ), (3.42)

P t
t = [I −KtG]P

t−1
t , (3.43)

where

Kt = P t−1
t GT [GP t−1

t GT +R]−1 (3.44)

is called the Kalman gain. Prediction for t > T can be done with initial conditions xT
T and PT

T .
Moreover, we call

ϵt = yt − yt−1
t = yt − E[yt|Yt−1] (3.45)

= yt −Gxt−1
t , (3.46)

innovations/prediction errors and define the corresponding variance-covariance matrices

Σt := Var[ϵt] = Var[G(xt − xt−1
t ) +wt] (3.47)

= GP t−1
t GT +R, (3.48)

for t = 1, . . . , T .

Although a formal proof of the Kalman filter is provided by Shumway and Stoffer (2011, pp.
326-327), it goes somewhat quickly through important steps. That is why we will elaborate more
on the outline of the proof. We skip the proof of the prediction step, because it is a straightforward
computation similar to the computation for the one-dimensional example. The proof of the filtering
step begins with writing out xt

t and using that ϵt = yt −Gxt−1
t and ys are independent for s < t

xt
t = E[xt|Yt] = E[xt|Yt−1, ϵt]. (3.49)

In order to derive the conditional expectation Shumway and Stoffer (2011) use a lemma that
is key in their proof. The lemma states that for two random variables X = (X1, . . . , Xn), Y =
(Y1, . . . , Ym), if their joint distribution is Gaussian with

[
Y

X

]
∼ N

([
µY

µX

]
,

[
ΣY Y ΣY X

ΣXY ΣXX

])
, (3.50)
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then the conditional distribution is also Gaussian. In other words, Y |X ∼ N (µY |X ,ΣY |X) with
µY |X and ΣY |X given by

µY |X = µY +ΣY XΣ−1
XX(X − µX), (3.51)

ΣY |X = ΣY Y − ΣY XΣ−1
XXΣXY . (3.52)

We will not prove this lemma, but it can be shown by working out the definition of the conditional

fY |X(y|x) =
fY,X(y,x)
fX(x) . Using this lemma, the proof reduces to showing that ϵt is Gaussian and

computing its mean and variance, and the covariance between xt and ϵt. The authors use that
ϵt ⊥ Ys, and show that ϵt ∼ N (0,Σt). Moreover, the covariance is then also a quite straightforward
computation and given by Cov[xt, ϵt|Yt−1] = P t−1

t GT , of which the computation is already given
by the authors. Since we have all components of the joint distribution xt, ϵt|Yt−1, this means all
the components are known for the conditional distribution xt|Yt−1, ϵt

[
xt

ϵt

] ∣∣∣∣∣Yt−1 ∼ N

([
xt−1
t

0

]
,

[
P t−1
t P t−1

t GT

GP t−1
t Σt

])
. (3.53)

From the lemma xt
t and P

t
t follow directly

xt
t = E[xt|Yt] = E[xt|Yt−1, ϵt] (3.54)

= xt−1
t + P t−1

t GTΣ−1
t (ϵt) (3.55)

= xt−1
t +Ktϵt, (3.56)

P t
t = Var[xt|Yt] = Var[xt|Yt−1, ϵt] (3.57)

= P t−1
t − P t−1

t GTΣ−1
t GP t−1

t (3.58)

= P t−1
t −KtGP

t−1
t (3.59)

= (I −KtG)P
t−1
t . (3.60)

where Kt := P t−1
t GTΣ−1

t = P t−1
t GT

(
GP t−1

t GT +R
)−1

is the Kalman gain. As mentioned for
the one-dimensional example, we can see that the filtered state estimate is indeed some weighted
combination of the predicted state estimate xt−1

t and the innovation ϵt. Here, the Kalman gain
Kt can be seen as a weight again that indicates to what extent the state estimate should rely on
the prediction step xt−1

t or the new observation yt partly depending on the observation noise R. If
the observations are not very accurate, i.e. R has large entries, then one can imagine that this will
contribute to Σ−1

t (and thus Kt) becoming small. Consequently, a small Kt will give “less weight”
to the innovation term resulting into xt

t being much more close to the predicted xt−1
t .

Notice that the Kalman filter also needs two initial conditions. Before we can employ the Kalman
filter, we have to give an initial state x0

0 and an initial covariance matrix P 0
0 . In other words we

need to have some idea how the first state is distributed, where x0 ∼ N (x0
0, P

0
0 ). In general, we

can consider these initial conditions to be unknown parameters like the parameters in G,R, F and
Q resulting into a collection of parameters θ := {x0

0, P
0
0 , G,R, F,Q}.
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Numerical Stability

The Kalman filter as presented in Theorem 3.10 computes P t
t as

P t
t = (I −KtG)P

t−1
t = P t−1

t −KtGP
t−1
t , (3.61)

where the implicit assumption is that the Kalman gain Kt is optimal in the sense that it minimizes
the covariance matrix P t

t . However, in practice, there may be situations where the entries of the
noise matrices R,Q are so small that numerical precision is at stake. In these cases, the Kalman
gain Kt is not optimal anymore, which can result into state estimates that are not optimal anymore.
In order to counter numerical instability we use the so-called Joseph form of the computation of
P t
t defined as

P t
t = (I −KtG)P

t−1
t (I −KtG)

T +KtRK
T
t . (3.62)

The Joseph form requires more computational effort, which can make the filter using (3.62)
slower compared to using (3.61), but less prone to round-off errors (Bar-Shalom et al., 2001, p.
206). Expression (3.61) is actually a simplified variant of the Joseph form, which is the result of the
fact that Kt = P t−1

t GTΣ−1
t is the Kalman gain minimizing P t

t . The derivation is based on writing
out the definition of P t

t as in (3.32) and then plugging in all the necessary definitions (Problem 5-5
in Bar-Shalom et al., 2001, p. 262).

P t
t = Cov(xt − xt

t) (3.63)

= Cov(xt − xt−1
t −Kt(yt −Gxt−1

t )) (3.64)

= Cov(xt − xt−1
t −Kt(Gxt +wt −Gxt−1

t )) (3.65)

= Cov((I −KtG)(xt − xt−1
t )) + Cov(Ktwt) (3.66)

= (I −KtG)P
t−1
t (I −KtG)

T +KtRK
T
t . (3.67)

Then, we know that the optimal Kalman gain is given by Kt = P t−1
t GTΣ−1

t , which is the same
as KtΣt = P t−1

t GT . So, the simplified form (3.61) follows directly after rewriting the Joseph form
and substituting the optimal KtΣt

P t
t = (I −KtG)P

t−1
t (I −KtG)

T +KtRK
T
t (3.68)

= P t−1
t −KtGP

t−1
t − P t−1

t GTKT
t +KtΣtK

T
t (definition Σt) (3.69)

= P t−1
t −KtGP

t−1
t − P t−1

t GTKT
t + P t−1

t GTKT
t (definition optimal Kt) (3.70)

= P t−1
t −KtGP

t−1
t . (3.71)

Log-likelihood

Previously, we defined the collection of all unknown parameters of a state-space model and initial
conditions for the Kalman filter as θ := {x0

0, P
0
0 , G,R, F,Q}. Then, an important advantage of

using the Kalman filter to estimate the states is that by computing ϵt and Σt for every iteration
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we also have the necessary ingredients for computing the likelihood p(Yt|θ), and thus the log-
likelihood ℓ(θ;Yt) := log(p(Yt|θ)). This is a direct result of the fact that the Kalman filter works
on linear Gaussian state-space models. The linearity of the model ensures that the Gaussian terms
stay Gaussian, while the Gaussian noise terms let us derive a closed-form expression for the log-
likelihood. Durbin and Koopman (2012, p. 171) give a brief derivation, which we will elaborate
on.

Suppose we have n observations Yn = (y1, . . . ,yn) and yt ∈ Rp for t = 1, . . . , n, then we can
write the likelihood as a product of conditional densities using the definition of a conditional density.

p(Yt|θ) := p(Yt) = p(Yt−1)p(yt|Yt−1) (3.72)

= p(Yt−2)p(yt−1|Yt−2)p(yt|Yt−1) (3.73)

...

= p(y1)

n∏
t=2

p(yt|Yt−1). (3.74)

Deriving the likelihood now consists of computing every density p(yt|Yt−1). In particular, we
have

E[yt|Yt−1] = E[Gxt +wt|Yt−1] (3.75)

= GE[xt|Yt−1] (3.76)

= Gxt−1
t , (3.77)

Var[yt|Yt−1] = Var[Gxt +wt|Yt−1] (3.78)

= GVar[xt|Yt−1]G
T +R (3.79)

= GP t−1
t GT +R. (3.80)

We deduce that p(yt|Yt−1)
d
= N

(
Gxt−1

t , GP t−1
t GT +R

)
, which can be rewritten in a more

compact form in terms of the innovation ϵt by using that Gxt−1
t = yt−ϵt and Σt = GP t−1

t GT +R.

Hence, p(yt|Yt−1)
d
= N (yt − ϵt,Σt) and the log-likelihood ℓ(Yt|θ) is given by

ℓ(Yt|θ) = log

{
p(y1)

n∏
t=2

p(yt|Yt−1)

}
(3.81)

= −np
2

log(2π)− 1

2

n∑
t=1

log |Σt| −
1

2

n∑
t=1

ϵTt Σ
−1
t ϵt. (3.82)

The log-likelihood formulated in terms of the innovation ϵt and its variance Σt as in (3.82) will
be useful for comparing different models and for estimating parameters with the Markov Chain
Monte Carlo method that we use, as we will discuss in Chapter 4.
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3.3.2 Modified Kalman Filter for Conditionally Gaussian SSMs

Recall that a more general conditionally Gaussian state-space model can consist of system matrices
Gt, Ft, Rt, Qt that are not only dependent on past observations Yt−1, but also on past values of the
state x1, . . . ,xt−1 or the noise termsw1, . . . ,wt−1 and v1, . . . ,vt−1. If such a model has dependence
on past observations, the resulting state-space model has time-variant system matrices, for which
we can still use the Kalman filter. On the other hand, if such a model has dependence on past states
or noise terms, then the Kalman filter as in Theorem 3.10 needs approximations for these values as
they are assumed to be not directly observable. However, there is no general approximation that
works for all types of conditionally Gaussian state-space models while still having the advantages of
a Kalman filter. So, the approximations depend on what kind of conditionally Gaussian state-space
model is considered. This is in contrast with the functionally nonlinear state-space models, for
which the extended1 or unscented2 Kalman filter is a general method especially developed for this
kind of nonlinearity.

Subsequently, we do not provide all ways in which the Kalman filter can be modified for a
conditionally Gaussian state-space model. In particular, we refer to Subsection 5.2.2, in which we
elaborate on the approximation that is used for the specific volatility model that has conditionality
on the observation noise term.

1See Anderson and Moore (1979, p. 195)
2See Wan and Van der Merwe (2000)



4

Bayesian Parameter Estimation and
Forecasting

In this chapter we will discuss the way we estimate parameters. We begin this chapter by giving a
brief introduction on Bayesian statistics in Section 4.1. In this section we explain some important
concepts such as the prior and posterior distributions to estimate parameters. In the same section
we will also elaborate on forecasting in a Bayesian setting with the posterior predictive distribu-
tion. Afterwards, we discuss Markov Chain Monte Carlo (MCMC) methods and specifically the
Random Walk Metropolis algorithm in Section 4.2, which is a method to approximate probability
distributions (such as the posterior distribution).

4.1 A Brief Introduction to Bayesian Statistics

Suppose we have some data x = (x1, . . . , xn) that is a realization of a random variable X =
(X1, . . . , Xn) with a distribution p(x|θ). Then θ ∈ D ⊂ R is the parameter of the distribution
p and D denotes the support, which are the values that θ can attain. Usually, one is interested
in estimating the parameter in order to perform analyses that are based on the distribution with
the estimated parameter, denoted by p(x; θ̂). Then, in classical statistics, or also the frequentist
approach, the parameter θ is regarded as a fixed and unknown point (Young and Smith, 2005, p.

22). A popular method in finding the parameter estimator θ̂ is the maximum likelihood estimation
method (Robert and Casella, 2004, p. 6). The frequentist approach consists of computing the
likelihood function, denoted by L(θ|x) and defined as

L(θ|x) = p(x1, . . . , xn|θ) (4.1)

=

n∏
i=1

p(xi|θ), (if xi’s i.i.d.), (4.2)

25



26 CHAPTER 4. BAYESIAN PARAMETER ESTIMATION AND FORECASTING

where i.i.d. means independent and identically distributed. Subsequently, a frequentist will use
the likelihood function to find the maximum likelihood estimator θ̂, that maximizes L(θ|x). The

estimator θ̂ = argmaxθ∈D L(θ|x) is in this context a point estimate of θ. In contrast, in the
Bayesian approach it is assumed that θ is a random variable like X. A Bayesian statistician has
some belief about parameter θ before seeing the data x based on some prior information. This prior
information is encapsulated in the prior distribution p(θ), or prior in short. Then, the likelihood,
which in the Bayesian setting is often denoted by p(x|θ), can be seen as the information that the
observations x1, . . . , xn give us. Together, the likelihood and the prior are related to the posterior
distribution or posterior in short, denoted by p(θ|x), in the following way.

p(θ|x) = p(x|θ)p(θ)
p(x)

(4.3)

=
p(x|θ)p(θ)∫
p(x|θ′)p(θ′)dθ′

(4.4)

∝ p(x|θ)p(θ), (4.5)

where we used the definition of a conditional distribution and a marginal distribution to express
the posterior in terms of the likelihood and the prior. The term

∫
p(x|θ′)p(θ′)dθ′ is called the

normalizing constant and ensures that the posterior integrates to one over the entire support D,

∫
θ′∈D

p(θ′|x)dθ′ = 1, (4.6)

and ensures that the posterior satisfies the definition of a probability distribution. However, for
parameter estimation the normalizing constant is often ignored as it suffices to know the posterior
up to a constant. Robert and Casella (2004, pp. 51-52) discuss this in further detail.

4.1.1 Choice of Prior and Posterior Derivation

As mentioned, the prior distribution can be considered as our belief on the parameter prior to
seeing any data. When choosing priors, a question that arises is whether we want a prior to be
informative or non-informative. An informative prior is one that gives some information about
the parameter based on, for instance, historical data or some subjective grounds. One can imagine
that the less data is available, the more the posterior will resemble the prior. In contrast, an non-
informative prior is one that gives as less as possible information about the parameter. As a result,
the posterior will depend mostly on the data. Young and Smith (2005) give four approaches for
choosing a prior, of which we give the three approaches that are most common.

• flat or uniform priors are priors that are generally considered as non-informative priors.
Examples include uniform priors such as θ ∼ U(0, 1), improper priors like p(θ) ∝ 1, or the
so-called Jeffreys prior, which is a type of prior that is invariant under reparametrization.
Invariance under reparametrization means that it does not matter whether, for instance, σ or
σ2 is used as a parameter for the variance.

• Subjective priors are priors that involve some expert judgement to assess prior beliefs or beliefs
based on historical data.
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• Convenient priors are priors that are mainly used to simplify the derivation of the posterior.
Conjugate priors are a good example of such priors. These kinds of prior assure that the
posterior and the prior are in the same probability density family.

Additionally, flat priors and Jeffreys prior are so-called improper priors. Improper priors are
priors that do not satisfy condition (4.6), so

∫
θ′∈D

p(θ′)dθ′ ̸= 1. In general, an improper prior
is acceptable as long as it does not result in an improper posterior. This is the case as long as∫
θ′∈D

p(θ′|x)dθ′ < +∞. As a consequence, if the likelihood multiplied with the prior resembles
some known probability density up to a constant, then the posterior is proper. Gelman et al. (2014,
p. 52 and Chapter 4) elaborate more on this. We give a small example, where we have one normally
distributed observation and where we choose an improper prior.

Example 4.1. (Improper and non-informative prior). A Debt Management Office (DMO) wants to
quantify its knowledge about yields given some observation. Suppose that they have one observation
of a 10 year government bond yield, which is x = 1%. The DMO assumes that the yields are
distributed according to a normal distribution with unknown mean µ and known variance σ2 = 1, so
x ∼ N (µ, 1). Now, the DMO needs to specify a prior for parameter µ, but does not know a lot about
the mean. The only thing the DMO is sure of is that µ > 0 (perhaps the DMO lives pre-2008). So,
an improper prior is chosen as p(µ) ∝ 1(0,+∞)(µ), where 1A(·) is the indicator function on some
set A. Then, we will derive the posterior distribution for this example, which is given by

p(µ|x) = p(x|µ)p(µ)∫
p(x|µ′)p(µ′)dµ′ . (4.7)

We compute the numerator and denominator separately. The derivation of the numerator is
straightforward.

p(x|µ)p(µ) = 1√
2π
e−

1
2 (x−µ)21(0,+∞)(µ), (4.8)

where 1(·) is the indicator function, which has value 1 if µ ∈ (0,+∞) and 0 elsewhere. Subsequently,
the denominator can be computed as follows.

∫
p(x|µ′)p(µ′)dµ′ =

∫
1√
2π
e−

1
2 (x−µ′)21(0,+∞)(µ

′)dµ′ (4.9)

=

∫ +∞

0

1√
2π
e−

1
2 (x−µ′)2dµ′ (4.10)

=

∫ +∞

0

1√
2π
e−

1
2 (µ

′−x)2dµ′. (4.11)

Notice that we can recognize the probability density of a random variable µ ∼ N (x, 1) and it
follows that Z = (µ− x) ∼ N (0, 1). So, we can write
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∫ +∞

0

1√
2π
e−

1
2 (µ

′−x)2dµ′ = P(0 < µ < +∞) (4.12)

= P(−x < Z < +∞) (4.13)

= lim
c→+∞

Φ(c)− Φ(−x) (4.14)

= 1− Φ(−x), (4.15)

where Φ(·) is the cumulative distribution function (cdf) of the standard Normal distribution. Hence,
the posterior distribution is given by

p(µ|x) = e−
1
2 (µ−x)2

(1− Φ(−x))
√
2π

1(0,+∞)(µ), (4.16)

in which we recognize the truncated Normal distribution, Ntrunc(x, 1; 0,+∞) with mean x, variance
1, lower bound 0 and upper bound +∞. In Figure 4.1 the posterior of µ given three different
observations x = 1%, x = 5% and x = 10% is presented. Notice that we now indeed have a
distribution of parameter µ, which concentrates around the observation. Additionally, the effect of
the improper prior can clearly be seen for x = 1% as the density cuts off for µ < 0.

Figure 4.1: The posterior for our example with an improper prior µ ∝ 1(0,+∞) and normally
distributed observation x. In this example the posterior is presented in case that the observation
is x = 1, x = 5 or x = 10 (Example 4.1).

Now, the DMO wants to use some estimator for µ. A frequentist DMO would, for example, use
the maximum likelihood estimator, which is the value of µ that maximizes the likelihood. On the



4.1. A BRIEF INTRODUCTION TO BAYESIAN STATISTICS 29

contrary, a Bayesian DMO can compute the µ value that maximizes the posterior, also called the
maximum a posteriori estimator (MAPE). For this example the MAPE is

µ̂MAPE = argmax
µ∈(0,+∞)

p(µ|x) (4.17)

= x. (4.18)

In Example 4.1 we have showed how to compute the posterior with an improper prior and one
observation. In this example the posterior is indeed a valid probability distribution, even though
we have chosen an improper prior. Moreover, as the improper prior gives little information, we see
that the posterior concentrates around the observation. This is also the aim of the chosen improper
prior, to let the observations have the most influence on the posterior. We only see the influence
of the prior clearly for observations close to the bounds of the chosen domain of µ ∈ (0,+∞). In
addition, it is also interesting to see how the posterior behaves if we choose a prior that resembles
a very certain knowledge about the parameter.

Example 4.2. (Informative prior). Consider the same setting as in Example 4.1. However, instead
of choosing an improper prior that gives little information, we choose a prior that represents our very
certain belief about the mean of the yield µ that it has to be around 1%. We assume µ ∼ N (m0, s

2
0)

with m0 = 1, s20 = 0.0009. Moreover, suppose that there are n observations x = (x1, . . . , xn) with
xi ∼ N (µ, 1) i.i.d. for i = 1, . . . , n instead of one observation. Then, the likelihood and prior are
defined as

p(µ) =
1

s0
√
2π

exp

{
−1

2

(
x−m0

s0

)2
}
, (4.19)

p(x|µ) = 1

(2π)n/2
exp

{
−1

2

n∑
i=1

(xi − µ)2

}
. (4.20)

Notice that this prior is also a conjugate prior, meaning that the posterior is also a Normal
distribution. Define nx̄ =

∑n
i=1 xi. We compute the posterior as follows, where we denote propor-

tionality with respect to parameter µ as just ∝.

p(µ|x) ∝ p(x|µ)p(µ) (4.21)

∝ exp

{
−1

2

n∑
i=1

(xi − µ)2

}
exp

{
−1

2

(
µ−m0

s0

)2
}

(4.22)

∝ exp

{
− 1

2s20

(
s20

(
n∑

i=1

x2i

)
− 2µs20nx̄+ s20nµ

2 + µ2 − 2µm0 +m2
0

)}
(4.23)

∝ exp

{
− 1

2s20

(
µ2(1 + ns20)− 2µ

(
s20nx̄+m0

))}
(4.24)

= exp

{
− 1

2s20(1 + ns20)
−1

(
µ−

((
s20nx̄+m0

)
(1 + ns20)

−1
))2}

, (4.25)
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from which we conclude that the posterior is normally distributed as µ|x ∼ N
(
m′, (s′)2

)
with

m′ =
m0 + s20

∑n
i=1 xi

1 + ns20
, (4.26)

(s′)2 =
s20

1 + ns20
. (4.27)

Notice that for a very small s20, which means we are very certain of our belief, m′ ≈ m0 and
(s′)2 ≈ s20. This means the data should be very convincing of µ having some other value than the
prior mean m0, such that the term

∑n
i=1 xi “outweighs” s

2
0. In order to show the effect of the prior,

we present the posterior for four different sets of observations. For simplicity, we consider the
observations x1 = 7%, x1 = · · · = x100 = 7%, x1 = · · · = x1000 = 7% and x1 = · · · = x10000 = 7%.
In Figure 4.2 the posterior for the several observations is shown. We can immediately see that
it takes a lot of observations that counter the prior belief for the posterior to move to the actual
observation. In addition, we see that the posterior “inherits” the certainty from the prior, since the
posterior variance (s′)2 is not influenced by the observations.

Figure 4.2: The posterior distribution for observations x1 = · · · = xn = 7% with four scenario’s
n = 1, 100, 1000, 10000 (Example 4.2).

4.1.2 Posterior Predictive Distribution

In the previous subsection we discussed how to estimate parameters in the Bayesian approach.
However, sometimes we are also interested in predictions of a new future observation x̃ given the
already known observations x = (x1, . . . , xn). In other words, we are interested in a predictive
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distribution. Gelman et al. (2014) explain the posterior predictive distribution, or posterior predic-
tive in short, by first explaining its prior counterpart, the prior predictive distribution. This is the
distribution before we have seen any previous data and is defined as

p(x) =

∫
p(x|θ′)p(θ′)dθ′. (4.28)

The prior predictive distribution turns out to be the marginal distribution of x. It is the
prior predictive distribution, because the computation of the integral needs the prior and x is not
conditioned on previous data. In contrast, the posterior predictive is the distribution of some not
yet known observation x̃ after we have seen observations x with x̃ being an independent future
observation. Analogous to the prior predictive distribution, the posterior predictive is defined as
(Gelman et al., 2014, p. 7)

p(x̃|x) =
∫
p(x̃, θ|x)dθ (4.29)

=

∫
p(x̃|θ)p(θ|x)dθ. (4.30)

In this case, the posterior is needed for the computation of the posterior predictive distribution.
Notice that p(x̃|θ) is the likelihood of observation x̃, which is distributed the same as x1, . . . , xn. In
the case that we have sequential data, like a time series Xt := (x1, . . . , xt), the posterior predictive
translates naturally to forecasting. In particular, if we assume x1, . . . , xt to be i.i.d., the posterior
predictive of a future observation xt+1 is defined analogously as x̃ as

p(xt+1|Xt) =

∫
p(xt+1, θ|Xt) (4.31)

=

∫
p(xt+1|θ)p(θ|Xt)dθ. (4.32)

For complex models with more involved (in)dependence structures, the joint conditional distri-
bution p(xt+1, θ|Xt) may require a more involved decomposition as well (as we will see in Chapter
6). Moreover, the use of improper priors or priors that are not conjugate can result into proba-
bility distributions that are non-standard and cannot be expressed analytically. In such cases the
posterior predictive needs to be simulated, which we will discuss later in this subsection. First, we
elaborate on the posterior predictive in Example 4.3, where the posterior is the one in Example 4.2
and can be derived in closed-form due to the conjugate prior.

Example 4.3. Consider the same setting as in Example 4.2. In that example we derived that the
posterior is Normally distributed as µ|x ∼ N

(
m′, (s′)2

)
with

m′ =
m0 + s20

∑n
i=1 xi

1 + ns20
, (4.33)

(s′)2 =
s20

1 + ns20
, (4.34)
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where x = (x1, . . . , xn) are observations. Now, suppose that the observations are some time series
Xt := (x1, . . . , xt) of the monthly yields, where xi ∼ N (µ, 1) i.i.d. Then, Gelman et al. (2014,
p. 41) show that the posterior predictive is also a Normal distribution by using the mean and
variance of the posterior and the likelihood in the case of one observation. However, in the same
way we can derive the posterior predictive for multiple observations. By writing out E[xt+1|Xt] and
Var[xt+1|Xt], the integral over the product of two Normal distributions reduces to computing

E[xt+1|Xt] = E[E[xt+1|µ,Xt]|Xt] (4.35)

= E[E[xt+1|µ]|Xt] (4.36)

= E[µ|Xt] (4.37)

= m′, (4.38)

Var[xt+1|Xt] = E[Var[xt+1|µ,Xt]|Xt] + Var[E[xt+1|µ,Xt]|Xt] (4.39)

= E[Var[xt+1|µ]|Xt] + Var[E[xt+1|µ]|Xt] (4.40)

= E[1|Xt] + Var[µ|Xt] (4.41)

= 1 + (s′)2. (4.42)

Hence, xt+1|Xt ∼ N (m′, 1 + (s′)2). Notice that the posterior predictive distribution of xt+1 is
very similar to the posterior distribution µ|Xt, as they have the same mean m′. In regard to the
variance, though, the posterior predictive has an additional term 1, which is the variance of the
distribution we assumed on the observations. This can be seen as the additional uncertainty that
is involved with the prediction next to the uncertainty of the parameter. So, one can imagine that
the posterior predictive looks like the posterior distribution, but with less concentration around the
mean. In Figure 4.3 the posterior predictive is shown for xt+1 given four different scenario’s of
observation, which are the same as in Example 4.2. We can immediately see that the densities
are much wider than in Figure 4.2, confirming the computation for the variance. Notice that since
the prior is very concentrated around 1, this also works through the posterior predictive via the
posterior.
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Figure 4.3: The posterior predictive distribution for observations x1 = · · · = xn = 7% with four
scenario’s n = 1, 100, 1000, 10000 (Example 4.3).

It is not always possible to derive the integral in (4.29) in closed-form. In such cases we have
to simulate the posterior predictive. If the posterior is known, this should not be a difficult task
as the likelihood is known by assumption. Let x = (x1, . . . , xn) be n observations, where xi ∼ q(θ)
i.i.d. and q(θ) is some known distribution. Suppose that the posterior p(θ|x) is known as well, but
p(x̃|x) cannot be derived analytically. Then, we can simulate the posterior predictive by random
sampling, which is the simulation algorithm described in Algorithm 1. In Example 4.4 we show
how the posterior predictive can be simulated.

Algorithm 1: Simulation for the posterior predictive distribution.

Input : Observations x = (x1, . . . , xn) with xi ∼ q(xi; θ) and known posterior p(θ|x).
Result: Posterior predictive samples x̃(1), . . . , x̃(S).

1 for s = 1 to S do
2 Sample θ(s) ∼ p(θ|x);
3 Sample x̃(s) ∼ q(x̃; θ(s));

Example 4.4. Consider the same setting as in Example 4.1. Recall that we have one observation
x ∼ N (µ, 1) and that we choose the improper prior p(µ) ∝ 1(0,+∞)(µ). Consequently, the posterior
is a truncated Normal distribution, so µ|x ∼ N (x, 1, 0,+∞) as in (4.16). This means we have to
compute the following integral to obtain the posterior predictive distribution for a new independent
observation x̃.
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p(x̃) =

∫
p(x̃|µ′)p(µ′|x)dµ′ (4.43)

=

∫ +∞

0

e−
1
2 (x̃−µ′)2

√
2π

e−
1
2 (µ

′−x)2

(1− Φ(−x))
√
2π
dµ′. (4.44)

Unlike Example 4.3, where we had two Normal distributions integrating to another Normal dis-
tribution, we cannot express the posterior predictive in (4.44) in closed-form as another probability
distribution. However, to see how x̃|x is distributed we can use Algorithm 1, which means that we
have to sample for s = 1, . . . , S

µ(s) ∼ Ntrunc(x, 1, 0,+∞), (4.45)

x̃(s) ∼ N (µ(s), 1). (4.46)

We will do this S = 100000 times for observation x = 1, x = 5 and x = 10. The results of the
simulation are presented in Figure 4.4. We can see that most simulated values for x̃ are concentrated
around x. Since x ∼ N (µ, 1) and µ > 0, the simulated values of x̃ can become negative, but the
average of those simulations cannot become negative.

Figure 4.4: The simulation of the posterior predictive distribution in case of x = 1, x = 5 or
x = 10 (Example 4.4).

4.2 Markov Chain Monte Carlo Methods

In the previous section we have seen that sometimes the posterior predictive distribution cannot
be expressed analytically, so we have to resort to random sampling. As we will see in Chapter



4.2. MARKOV CHAIN MONTE CARLO METHODS 35

6, in many practical situations even the posterior distribution cannot be expressed in closed-form.
This means that we need a method to approximate the posterior with simulations. This is where
Markov Chain Monte Carlo methods, or MCMC in short, come into play. In a nutshell, as the name
suggests MCMC methods belong to a type of simulation techniques that are based on generating
Markov chains by simulating a lot of samples (Monte Carlo). Specifically, Robert and Casella (2004,
p. 268) define a MCMC method as “any method for the simulation of a distribution f producing
an ergodic Markov chain

(
X(t)

)
whose stationary distribution is f”. This definition can be

broken down into three key concepts — Markov chains, ergodicity and the stationary distribution.
We will elaborate on these three concepts.

A Markov chain is a sequence of random variables
(
X(t)

)
= X(0), X(1), . . . , X(t) if for any

i = 0, . . . , t it holds that

P(Xi+1 = x|X0 = x0, . . . , Xi = xi) = P(Xi+1 = x|Xi = xi), (4.47)

where x0, . . . , xt are realizations of the random variables X0, . . . , Xt. The expression in (4.47) is
also called the Markov property. We have already seen an example of a Markov chain in Chapter 3.
Recall that the AR(1) process (see Figure 3.1) is characterized as a process where the state variable
at the current time xt only depends on the state at the previous time xt−1. In many practical cases
a Markov chain is quite a restrictive assumption for a real-life process. However, it still allows for
some indirect influence of the process through time as opposed to the assumption of i.i.d. random
variables.

Subsequently, the second concept of ergodicity is quite a technical one. So, we will not provide the
definition given by Robert and Casella (2004), but discuss the notion of ergodicity. In particular, an
ergodic Markov chain is irreducible and aperiodic. Essentially, irreducibility means that the Markov
chain

(
X(t)

)
can reach some point x′ from any starting point X0 = x0 with positive probability

(Robert and Casella, 2004, p. 231). So, it should not matter where the Markov chain begins as
every other point can be reached if we “wait” long enough — but not infinitely long. Moreover,
aperiodicity means that the Markov chain does not return to some point with a fixed pattern and
does not “get stuck” at some point. Together, irreducibility and aperiodicity are sufficient to ensure
that a Markov chain explores the entire space in a finite amount of time.

The third concept of reaching the stationary distribution f , is the goal of a MCMC method.
Specifically, the stationary distribution f of a Markov chain

(
X(t)

)
is a distribution such that

Xt ∼ f implies that Xt+1 ∼ f . This is the distribution that the Markov chain converges to and
through the way that the Markov chain is constructed the stationary distribution is the same as
the target distribution if the MCMC is run long enough.

4.2.1 Random Walk Metropolis

In this subsection we will discuss the MCMC method that is used for parameter estimation in
our research, the Random Walk Metropolis algorithm or RWM in short. Suppose we have some
posterior distribution p(θ|x) with a multidimensional parameter θ = (θ1, . . . , θd) ∈ D ⊂ Rd and
observations x = (x1, . . . , xn). We denote the target distribution, which in this case is the posterior,
as P (θ) := p(θ|x). Then, the Random Walk Metropolis algorithm explores the parameter space
D by constructing a random walk θ(0),θ(1),θ(2), . . . by iteratively drawing a proposal θ′ from a
symmetric proposal density q(θ′|θ(t)) and accepting or rejecting θ′ based on an acceptance rule.
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Consequently, a Normal distribution is often chosen as symmetric proposal density. Then, the
random walk with a Normal distribution is constructed as follows.

θ(t+1) = θ(t) + Z, Z ∼ N (0, Idσ
2), (4.48)

d
= N (θ(t), Idσ

2), (4.49)

where 0 ∈ Rd, Id ∈ Rd×d is the d-dimensional identity matrix and the scale is denoted by σ. In
particular, the scale can be seen as some “step size” of how far the typical proposal can be from the
last element of the random walk. Subsequently, the proposal θ′ gets either accepted and becomes
the new element of the random walk θ(t+1), or gets rejected and a new proposal θ′ ∼ N (θ(t), Idσ

2)
is generated again. Important to note is that when the proposal is rejected, the last element of
the random walk becomes the new last element again, so θ(t+1) = θ(t). Now, the key of the RWM
algorithm is that it accepts every proposal θ′ that is “more likely” than the last element of the
random walk θ(t) based on the target distribution P (θ), but does not reject a proposal that is “less
likely” beforehand. Instead, the proposal can still be accepted, but the less likely the proposal the
less likely it will be that the proposal is accepted. This acceptance rule is formalized by defining
the so-called acceptance ratio α as

α = min

(
1,
P (θ′)

P (θt)

)
∈ [0, 1], (4.50)

and drawing some random uniformly distributed number u ∼ U(0, 1), where we accept the proposal
θ′ if u < α and reject θ′ if u > α. Notice that this acceptance rule has precisely the behaviour that
we want. Consider the case that P (θ′) > P (θt). Then the fraction in (4.50) will be larger than one,
which results into α = 1. An acceptance ratio α = 1 means that no matter the value of u ∈ (0, 1),
u < α will always hold and θ′ is always accepted. Next, consider the case that P (θ′) < P (θt), then
the smaller P (θ′) is, the smaller α will be. A very small α means that the probability of u < α is
also very small, which results into a small probability of accepting θ′.

The choice of the proposal density together with the definition of the acceptance ratio ensures
that the random walk explores the parameter space D, while it spends most time in the regions
of D that have a high probability according to P (θ). Together, they ensure that the generated
Markov chain θ(0),θ(1), . . . ,θ(t) — the random walk in this case — is ergodic and for large enough
t converges to the desired target distribution P . The RWM algorithm can be summarized as follows
in Algorithm 2. Notice that the provided RWM algorithm has a multidimensional scale σ ∈ Rd,
which is adjustable for each parameter θ = (θ1, . . . , θd) resulting into the variance for q given by
Idσ

2 = diag(σ2
1 , . . . , σ

2
d).
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Algorithm 2: Random Walk Metropolis

Input : Starting point θ(0) ∈ Rd, scale σ ∈ Rd and number of iterations T

Result: Sequence of accepted states: θ(1),θ(2), ...,θ(T ) d∼ P (θ)
1 for t = 1 to T do

2 Generate a proposal state θ′ ∼ N (θ(t), Idσ
2)

d
= q(θ′|θ(t));

3 Compute the acceptance ratio: α = min
(
1, P (θ′)

P (θ(t))

)
;

4 Generate a uniform random number: u ∼ U(0, 1);
5 if u < α then
6 Accept the proposed state;

7 θ(t+1) = θ′;

8 else
9 Reject the proposed state;

10 θ(t+1) = θ(t);

Remark. It can happen that the log-posterior is needed instead of the posterior if, for example, the
log-likelihood is already known and obtaining the likelihood is numerically not possible. In which
case, the RWM algorithm can be used in a slightly adjusted way. Instead of α we compute the
log-transformation log(α). In particular, we have

log(α) = min

(
log(1), log

(
P (θ′)

P (θ(t))

))
(4.51)

= min
(
0, log(P (θ′))− log

(
P
(
θ(t)
)))

, (4.52)

for which u < α implies that log(u) < log(α).

Furthermore, we note that the Random Walk Metropolis algorithm is actually a special case of
the Metropolis-Hastings algorithm. Specifically, the more general Metropolis-Hastings algorithm
does not require the proposal density q to be symmetric. As a consequence, the acceptance ratio
for the RWM algorithm in (4.50) is a simplification of the so-called detailed balance condition the
Markov chain has to satisfy. Essentially, the detailed balance condition means that the probability
of the Markov chain moving from some point x to another point y has to be the same as moving
from y to x (Robert and Casella, 2004, p. 230). This condition results into the more general
acceptance ratio of the Metropolis-Hastings algorithm

α = min

(
1,

P (θ′)q(θ(t)|θ′)
P (θ(t))q(θ′|θ(t))

)
. (4.53)

Then, a symmetric proposal density q results into the acceptance ratio as in (4.50) since q(θ(t)|θ′) =
q(θ′|θ(t)).

4.2.2 Convergence of the Markov Chains

When running the RWM algorithm there are essentially two input variables we can vary, the scale
σ and the starting point θ(0). In this section we elaborate on how the two input variables affect
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the convergence of the Markov chains
(
θ(T )

)
and how we can evaluate whether the chains have

converged to the stationary distribution P .

Influencing Convergence with Starting Point and Scale

First, recall that because of ergodicity of the Markov chains, that is the independence of starting
points, the starting point does not matter in theory. However, it does affect the speed of convergence.
If the starting point is in a low density region of the target distribution, then the chains have to
explore the parameter space longer until they find the higher density regions. These first iterations
for exploring are called the burn-in period. In contrast, if the starting point is already at a high
density region of the target distribution, the burn-in period will not be as long or not necessary. So,
even though ergodicity guarantees convergence from any starting point, in practice a good starting
point θ(0) will result into faster convergence. According to Young and Smith (2005) the maximum
likelihood estimator is often used as starting point. Given the little to no initial knowledge about
the posterior the MLE can serve as a practical choice.

Then, the scale σ is perhaps the most important input variable to affect of convergence. Specif-
ically, a scale can affect the convergence either by being too small or too large. A scale that is too
large will result into proposals θ′ that lay in a low density region of P and will be rejected often
(small α). One can imagine that as soon as a proposal in a high density region is accepted, the
proposals from the new element of the Markov chain will often not be near the accepted proposal,
but again in a low density region. On the contrary, a scale that is too small will accept propos-
als often (large α), because a proposal will often be relatively better than the last element of the
Markov chain. However, the chain will improve too slowly with every iteration resulting into slow
convergence. A good scale should balance exploring the low density regions and finding the high
density regions. Roberts and Rosenthal (2001) show that the optimal scale should result into an
average acceptance ratio of ᾱ ≈ 0.234, where ᾱ is defined as

ᾱ := n−1{accepted proposals}. (4.54)

In practice, an average acceptance ratio ᾱ between 0.1 and 0.4 will provide good convergence as
well. We show the significance of the choice for both the starting point and the scale in Example
4.5.

Example 4.5. Consider a random variableX = (X1, X2) that is distributed according to a bivariate
Normal distribution, X ∼ N (µ, I2), with known mean µ = [5, 5]T and variance I2. Then, the target
distribution P (x) is defined as

P (x) = (2π)−1 exp

{
−1

2
(x− µ)T (x− µ)

}
. (4.55)

We run the RWM algorithm with T = 10000 iterations to approximate P for x1 and x2 for three
different cases. The first one is with a starting point and a scale such that the convergence is fast
and the average acceptance ratio is between 0.1 and 0.4. The second case is with a starting point
in a low density region and a small scale. Finally, the third case is again with a starting point in a
low density region, but with a large scale.

1. A starting point at the mean x(0) = [5, 5]T in a high density region and scale σ = [1.5, 1.5]T ;
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2. A starting point at x(0) = [20,−10]T in a low density region and a small scale σ = [0.01, 0.01]T ;

3. A starting point at x(0) = [20,−10]T in a low density region and a large scale σ = [7, 7]T ;

The results are presented in Figure 4.6 as trace plots of the Markov chains of x1 and x2 and the
average acceptance ratio ᾱ is provided in Table 4.5. The average acceptance ratio’s are as expected
for each case and are unsurprising if we look at the trace plot of the chains for x1 and x2. If a
chain converges it can be seen in the trace plot as it reaches some value and progresses as white
noise around that value. In Figure 4.6a we can see that this is directly the case and the trace plots
indeed resemble a white noise. In the case of a starting point that is in a low density region with
a small scale we see in Figure 4.6b that after 10000 iterations the chains are still not even close
to the mean µ, around which most of the density is concentrated. Then, for the last case we can
see in Figure 4.6c that the chains reach the high density region quite fast, but the proposal density
struggles to consistently generate a new proposal that is close to the last element of the chain.

Table 4.5: The average acceptance ratio for the three different scenario’s of the RWM run of
Example 4.5.

Scenario ᾱ

High density x(0), “optimal” σ 0.3963

Low density x(0), small σ 0.9382

Low density x(0), large σ 0.0343

Convergence Diagnostics

In Example 4.5 we have seen that the convergence can be influenced with the starting point and
the scale, where we looked at the average of the acceptance ratio’s and trace plots. Besides visually
evaluating convergence, we can statistically test the convergence as well. Intuitively, one would
expect that when a Markov chain reaches the stationary distribution it would not show some
trend to another value anymore. Geweke (1991) presents a convergence diagnostic, also called the
Geweke diagnostic, that essentially tests whether the first segment and the last segment of the
chain have significantly different means. In particular, consider a Markov chain

(
X(T )

)
. Then, the

Geweke diagnostic is a test to assess whether the mean of the first segment of the Markov chain
X(0), . . . , X(TA) and the last segment X(TB), . . . , X(T ) are significantly different or the same. The
Geweke diagnostic and the test based on this statistic are given in Definition 4.6 and Theorem 4.7,
which are based on Geweke (1991, pp. 6-7) and Robert and Casella (2004, pp. 508-509) respectively.

Definition 4.6. (Geweke diagnostic). Let
(
X(T )

)
= X(0), . . . , X(T ) be a sequence of observations.

Let TA = TτA and TB = TτB, where τA, τB with τA + τB < 1 are the first and last portions of the
sequence. Then, the Geweke diagnostic is defined as

G =
X̄TA

− X̄TB√
σ2
A

TA
+

σ2
B

TB

, (4.56)

where X̄TA
and X̄TB

are defined as
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X̄TA
= T−1

A

TA∑
t=0

X(t), (4.57)

X̄TB
= T−1

B

T∑
t=T−TB+1

X(t), (4.58)

and σ2
A and σ2

B are defined as

σ2
A = T−1

A

TA∑
t=0

(
X̄TA

−X(t)
)2
, (4.59)

σ2
B = T−1

B

T∑
t=T−TB+1

(
X̄TB

−X(t)
)2
. (4.60)

Theorem 4.7. Consider the Geweke diagnostic G as defined in Definition 4.6. Consequently, as
T −→ ∞ it follows that G −→ N (0, 1). So, for large T and some significance level α, we can test
for

{
H0 : The means of the first and last segments of

(
X(T )

)
have no significant difference,

HA : The means of the first and last segments of
(
X(T )

)
have significant difference,

(4.61)

by the following acceptance rule

{
Accept H0, if |G| < zα/2,

Reject H0, if |G| > zα/2,
(4.62)

where zx = Φ(x) with Φ(·) the standard Normal cdf.

We note that for large T the terms σ2
A and σ2

B approximate the asymptotic variance of the
Markov chain based on their respective subsample. The asymptotic variance is related to the
spectral density, which is originally used by Geweke (1991). We refer to Robert and Casella (2004,
p. 508) for the exact relationship between the asymptotic variance and the spectral density and we
refer to Brockwell and Davis (1991, Section 4.4) for more detailed information on spectral analysis
of time series in general as it goes beyond the scope of this chapter. Furthermore, Geweke (1991)
suggests τA = 0.1 and τB = 0.5. Finally, in Example 4.8 we show how the Geweke diagnostic can
be used in practice.

Example 4.8. Consider the same setting as in Example 4.5. Recall that we looked at three different
cases of a RWM run with T = 10000 iterations. Then, using τA = 0.1 and τB = 0.5 we obtain TA =
1000 and TB = 5000. Now, the Geweke diagnostic can be computed by calculating x̄i,TA

, x̄i,TB
, σ2

i,A

and σ2
i,B for i = 1, 2. We use a significance level of α = 0.05, so zα/2 ≈ 1.96. The results for the
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Markov chains of parameters x1 and x2 and the three scenario’s are presented in Table 4.7. For the
first two scenario’s the Geweke test gives unsurprising results, since the trace plot already indicated
a white noise for the chains in the first scenario and an obvious trend in the chains for the second
scenario (Figure 4.6a and Figure 4.6b resp.). The results of the Geweke test for the last scenario
might be surprising at first sight, but recall that this test only assesses whether the means of the
first and last segment are significantly different. For the third scenario with bad convergence this
is indeed the case (Figure 4.6c). This result shows that evaluating convergence is tricky and needs
both visual methods and tests to assess it correctly.

Table 4.7: The results of the Geweke diagnostic G and test decision of Example 4.8.

Scenario xi |G| Accept/reject H0

High density x(0), “optimal” σ
i = 1 0.04862 Accept H0

i = 2 0.04303 Accept H0

Low density x(0), small σ
i = 1 4.87621 Reject H0

i = 2 5.87521 Reject H0

Low density x(0), large σ
i = 1 0.05936 Accept H0

i = 2 0.22985 Accept H0
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(a) Starting point x(0) = [5, 5]T and scale σ = [1.5, 1.5]T .

(b) Starting point x(0) = [20,−10]T and scale σ = [0.01, 0.01]T .

(c) Starting point x(0) = [20,−10]T and scale σ = [7, 7]T .

Figure 4.6: Trace plots of (x1, x2) for the three different cases of Example 4.5.
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Literature on Modeling Yield Curves and
Volatility

In this chapter we discuss our findings in the literature about yield curve modeling and volatility
modeling. There are several methods to estimate the yield curve, but we will only focus on the
so-called Nelson-Siegel model, of which a variant is used by the DSTA. Other methods to estimate
the yield curve include cubic splines and B-splines, for which we refer to Filipovic (2009, Chapter
3). In Section 5.1 we discuss the original Nelson-Siegel model (C. R. Nelson and Siegel, 1987) and
work towards the Dynamic Nelson-Siegel (DNS) model (Diebold et al., 2006), which is the starting
point of our research in volatility modeling. In the subsequent section we discuss how to model
volatility in the DNS framework and we provide some concluding remarks, on which we base our
approach to modeling volatility.

5.1 Nelson-Siegel Yield Curves

The Nelson-Siegel model is a parametric estimation method, which means that the yield curve
can be described with a finite set of parameters. In particular, a yield curve is estimated by the
Nelson-Siegel model as

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
, (5.1)

and can be described by the parameters {β1,t, β2,t, β3,t, λt}, where βi,t, i = 1, 2, 3 are latent variables
and λ is the exponential decay parameter (Diebold and Li, 2006, p. 341). The factors that are
multiplied with β1,t, β2,t, β3,t are called loadings. We notice that the definition of the Nelson-Siegel
yield curve as in (5.1) is not the original definition of C. R. Nelson and Siegel (1987), but is a
slightly modified but equivalent definition given by Diebold and Li (2006, p. 341). The formulation
of Diebold and Li (2006) minimizes high correlation between β2,t and β3,t and is easier to interpret
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economically. We will first elaborate on the effect of the parameters β1,t, β2,t, β3,t on the shape of
the yield curve and afterwards we will discuss the effect of λt on the yield curve shape.

5.1.1 Interpretation of the Latent Variables

The latent variables β1,t, β2,t, β3,t can be interpreted as the level, slope and curvature of the yield
curve, which are associated with the long-term, short-term and medium-term maturities of the yield
curve respectively. The interpretation for the parameters can be derived from (5.1). The long-term
parameter β1,t is associated with the level of the yield curve, because a change in β1,t changes the
yields with the same amount as the loading is equal to one. Additionally, by taking limits we obtain

lim
τ→+∞

yt(τ) = lim
τ→+∞

{
β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)}
(5.2)

= β1,t. (5.3)

Subsequently, the short term parameter β2,t is associated with the (downward) slope of the yield
curve. Particularly, if the slope is defined as the linear difference between the yield at τ ↓ 0 and
τ → +∞, then

lim
τ↓0

yt(τ) = lim
τ↓0

{
β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)}
(5.4)

= β1,t + β2,t, (5.5)

from which it follows that

lim
τ→+∞

yt(τ)− lim
τ↓0

yt(τ) = β1,t − (β1,t + β2,t) (5.6)

= −β2,t. (5.7)

Finally, the interpretation of the medium-term parameter β3,t as curvature is a result of the
corresponding loading converging to zero for both limits τ ↓ 0 and τ → +∞ and becomes more
obvious if we plot the loadings for each βi,t, i = 1, 2, 3. The plot of the loadings is provided in
Figure 5.1, where we see that the loading of β3,t indeed converges to zero for both ends. However,
it has some “hump” for the medium-term maturities.
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Figure 5.1: The loadings for βi,t, i = 1, 2, 3 for maturities τ ∈ (0, 360].

So, one can imagine that a linear combination of the loadings, where β1,t and β2,t, β3,t are
variable, result into different yield curve shapes. In Figure 5.2 we show some yield curves for
different values of βi,t, i = 1, 2, 3, where we fixed two βi,t’s and vary the third one. The values at
which the two βi,t’s are fixed are provided in the legends of the plots in Figure 5.2. For this specific
example λt is fixed as λt := λ = 0.0609, which Diebold and Li (2006) use in their paper as well.
We can see that the effect of β1,t, β2,t on the level and slope respectively are as expected from (5.3)
and (5.7), whereas β3,t seems to mostly affect the short-term and medium-term yields.

Figure 5.2: Different Nelson-Siegel yield curve shapes for a variable βi,t, i = 1, 2, 3 and fixed
λ = 0.0609.
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5.1.2 Interpretation of the Decay Parameter

The exponential decay parameter λt determines how well the Nelson-Siegel yield curve fits either
the long maturity yields (small λt) or short maturity yield (large λt) (Diebold and Li, 2006, p.
341). This is due to the effect of λt on how fast the yield curve converges to the level. In Figure 5.3
a plot with variable λt and fixed βi,t, i = 1, 2, 3 is shown. We can see that λt determines whether
the maximum of the β3,t loading is reached at shorter or longer maturities. Koopman et al. (2010)
present a model with time-varying λt, which means that the loadings of the latent variables also
change with time. However, we will not consider time-varying loadings in our research, so we refer
to Koopman et al. (2010) for further discussion on such models.

Figure 5.3: Different Nelson-Siegel yield curve shapes for a variable λt and fixed
β1,t = 0, β2,t = −0.01, β3,t = 0.04.

5.1.3 Dynamic Nelson-Siegel Model

The Dynamic Nelson-Siegel model is proposed in a paper by Diebold et al. (2006), in which they
translate the original Nelson-Siegel model in a state-space framework. So, instead of treating the
latent variables βi,t, i = 1, 2, 3 as some fixed parameter for each yield yt(τ), the authors assume
that the latent variables are state variables of a state-space model. This means that the latent
variables, which are now state variables, follow a first order vector autoregressive process, denoted
by VAR(1). So, the latent variables are a process on itself as well (and have dynamics) defined by
the authors as
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β1,t − µ1

β2,t − µ2

β3,t − µ3

 =


ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33



β1,t−1 − µ1

β2,t−1 − µ2

β3,t−1 − µ3

+


η1,t

η2,t

η3,t

 , (5.8)

⇔ βt − µ = Φ(βt−1 − µ) + ηt, (5.9)

where ηt ∼ N (0,Ση). Subsequently, the authors relate the state variable βt with the yields via the
same loadings as the original Nelson-Siegel model. Suppose that for each time point t there are M
yield observations for maturities τ1, . . . , τM , then the observation equation for the yields is given by


yt(τ1)

...

yt(τM )

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

...
...

...

1 1−e−λτM

λτM
1−e−λτM

λτM
− e−λτM



β1,t

β2,t

β3,t

+


ε1,t
...

εM,t

 , (5.10)

⇔ yt = Λβt + εt, (5.11)

where εt ∼ N (0,Σε). Moreover, the authors notice that Σε is often taken as a diagonal matrix,
which means that the yield noise terms for different maturities are assumed to be uncorrelated.
Intuitively, this means that it is assumed that the different segments of the yield curve have their
own “dynamics” in the market. Additionally, this also simplifies the model significantly as it reduces
the number of covariance parameters from 1

2M(M + 1) to only M . On the contrary, according to
the authors Ση is often assumed to be non-diagonal, which allows the underlying drivers of the
yield curve, βt, to be correlated. Furthermore, it is also assumed that εt and ηt are independent
of each other at time t. Then, the general DNS model is given by{

yt = Λβt + εt, εt ∼ N (0,Σε),

βt − µ = Φ(βt−1 − µ) + ηt, ηt ∼ N (0,Ση),
(5.12)

which satisfies Definition 3.1 of a state-space model. Diebold et al. (2006) recommend using the
state-space approach instead of the method described in Diebold and Li (2006) since the state-space
framework allows us to take into account the uncertainty of both the yield observations and the
state variables. Moreover, we can use the Kalman filter described in Section 3.3 to estimate the
state variables βt. Additionally, the state-space representation assumes that the state variables βt

and the yields yt are stochastic processes. This enables extensions with, for example, stochastic
volatility in the noise terms. However, using a state-space approach can also have some drawbacks.
As we have seen in Section 3.3 the Kalman filter requires initial values for the state variable, β̂0

0

and covariance matrix P 0
0 . It could be possible that the estimates of βt show strong dependency on

the initial state values if the observation noise variance is large and, as a result, the observations
do not contribute significantly to the Kalman gain (Kt ≈ 0). Furthermore, the state-space variant
of the Nelson-Siegel model has — potentially much — more parameters than the original model.
So, there is a risk of overfitting, which means that it is possible that the model will not capture the
actual dynamics of the bond yields outside the data well.
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5.2 Modeling Yield Curve Volatility

In this section we discuss the different ways we can model volatility. In the financial context,
volatility is a measure that describes the degree of variation of some asset price over time. It
can be seen as some measure of uncertainty of the market. Oosterlee and Grzelak (2019, p. 28)
describe volatility as a “statistical measure of the tendency of an asset to rise or fall sharply within
a period of time”. So, volatility gives some sense to what extend a process exhibits rapid or slow
movements. A market with high volatility is expected to have larger price swings, which means
that the prices deviate more from their mean value in a short period of time. On the contrary, low
volatility suggests a more stable and predictable market environment, where prices do not deviate
a lot from their mean over a longer period of time. So, we want to use a type of model that can
capture such sharp movements. In the first subsection we discuss two popular types of such models.
In the following subsection we discuss these standard volatility models in the context of the DNS
framework.

5.2.1 Standard Volatility Models

When modeling volatility we generally have the choice between two popular types of volatility
models. The first volatility model is the Generalized Autoregressive Conditional Heteroskedasticity
model, or GARCH in short, originally introduced by Bollerslev (1986). The second volatility model
is the Stochastic Volatility model, or SV in short, introduced by Taylor (1982). Both models are
typically used to model the so-called returns or relative gains of an asset (Shumway and Stoffer,
2011, pp. 280-281), which is the percentage gain or loss of an asset price. The notion of asset
returns is related to the idea of a bond yield, but it is mostly associated with stocks. Nevertheless,
as we will see in the next subsection both models are also used to model volatility in bond yields.

GARCH Model

First, we discuss the standard GARCH model. Suppose the returns yt of an asset are given by

yt = σtεt, (5.13)

where εt ∼ N (0, 1) and σt is the volatility, which is the standard deviation of yt. Notice that this
implies yt ∼ N (0, σ2

t ). Then, a GARCH(p, q) model is defined as

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j , (5.14)

with αi > 0 for i = 0, . . . , p, βj > 0 for j = 1, . . . , q and
∑p

i=1 αi+
∑q

j=1 βj < 1. The autoregressive
part refers to the fact that the return at time t, yt, is dependent on the past return yt−1 via σt.
Moreover, the conditional heteroskedasticity refers to the variance of the returns σ2

t changing over
time, which are conditional on the past return yt−1. Often a GARCH(1, 1) model is used, given by{

yt = σtεt, εt ∼ N (0, 1),

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1.

(5.15)

Notice that the specification for the volatility σt as a GARCH process does not have some
stochastic noise term. The only stochastic process in the definition of the GARCH volatility is the
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past return y2t−1, but the past values of the return are already known. That is why the volatility
is “conditionally non-stochastic” (Shumway and Stoffer, 2011, p. 288) and is called “time-varying
volatility” in some literature (Koopman et al., 2010).

SV Model

Next, we discuss the standard SV model. Suppose again that the returns yt of an asset are given
by (5.13). In the SV model it is assumed that the volatility is a stochastic process on its own and
the squared log-volatility is considered as a latent variable following an autoregressive process. So,
the volatility in a SV(p) model is defined as

log
(
σ2
t

)
= ϕ0 +

p∑
j=1

ϕj log
(
σ2
t−j

)
+ wt, (5.16)

where wt ∼ N (0, σ2
w) is the noise of the squared log-volatility process. The SV model is usually

specified with ht := log
(
σ2
t

)
. In this case the volatility ht is indeed stochastic as it has a stochastic

noise term. Then, in the case of SV models, the basic SV(1) model is often considered{
yt = eht/2εt, εt ∼ N (0, 1),

ht = ϕ0 + ϕ1ht−1 + wt, wt ∼ N (0, σ2
w).

(5.17)

Hautsch and Ou (2008a) provide a comprehensive list of different extensions of the standard
stochastic volatility model. We will not discuss those models in detail and refer to the authors
for a more detailed discussion. Some interesting extensions include the Stochastic Volatility with
normally distributed Jumps (SVJ) model and the Asymmetric Stochastic Volatility (ASV) model,
which tries to model the asymmetry that sudden negative price changes have more (negative) impact
on a stock price compared with positive price changes.

Comparison

Gerlach and Tuyl (2006) compare the GARCH(1, 1) model, the SV(1) model and some extensions
of both with each other on daily CAD/USD exchange rate data and S&P500 daily return index
data. The authors find that in general the SV models outperform the GARCH models, but the
best model in their research is a GARCH(1, 1) with a Student’s-t distributed noise (t-GARCH).
Moreover, S. Kim and Shephard (1998) also compare the standard SV model with a standard
GARCH and t-GARCH model, but for a JPY/USD exchange rate. They find that the t-GARCH
and SV perform arguably comparable, but both models fit the data better than the standard
GARCH model. So, at least for exchange rate data, the SV model seems to model the data
better than the standard GARCH model. Nevertheless, a t-GARCH model could be an interesting
extension as well. Preminger and Hafner (2010) argue that the SV model seems to provide better
fit to data as it has two noise terms. In general, the volatility in the SV model requires an extra
stochastic process to be modeled, whereas the volatility in the GARCH model is driven by past
observations (y2t−1) and recursively on itself (σ2

t−1). So, a GARCH model requires generally less
computational effort than a SV model. According to Hautsch and Ou (2008a) another difficulty
of SV models is that the likelihood cannot be derived into some closed-form expression. This is in
line with Preminger and Hafner (2010) that state that GARCH models are preferred in practical
situations.
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All in all, the literature seems inconclusive on what model to use for volatility modeling in
practice, so it seems dependent on what is considered more important. Hence, a SV model seems to
be more flexible in the sense that it allows for more complex extensions, but at cost of tractability
and computational effort. Meanwhile, a standard GARCH model seems to be more practical and
computationally more efficient.

5.2.2 Extensions of DNS with Volatility

In the literature researchers have incorporated volatility in yield curve models based on the original
DNS model in various ways. One of the more popular models is the DNS with GARCH observation
or GARCH state noise (Koopman et al., 2010). Another DNS model with volatility is a three-layer
hierarchical model with SV in the state noise (Hautsch and Ou, 2008b). We will first discuss the
model with GARCH observation noise by Koopman et al. (2010), as we will use a slightly modified
version of this model (see Subsection 6.3.1). On the contrary, we will not elaborate on the GARCH
state noise extension as the idea is very similar to the GARCH observation noise extension and we
refer to Harvey et al. (1992) for a more detailed discussion on both type of extensions. Moreover,
we will also discuss the model introduced by Hautsch and Ou (2008b). This way we can present
the typical ways of adding volatility, through the observation noise or the state noise and through
a GARCH or SV process. Finally, we provide some advantages and drawbacks of the discussed
approaches.

DNS with GARCH Observation Noise

The DNS model with GARCH observation noise is the model that Koopman et al. (2010) intro-
duce as DNS-GARCH. The extension proposed by the authors is based on an approach originally
introduced by Harvey et al. (1992). In this approach the observation noise εt is decomposed into
a one-dimensional noise term ε∗t , through which GARCH effects are introduced, and a Gaussian
white noise term ε+t as

εt = Γε∗t + ε
+
t , (5.18)

where Γ ∈ RM is the so-called volatility loading that determines how much of the GARCH effects
translate to the volatility of the yields with different maturities, ε∗t ∼ N (0, ht) and ε

+
t ∼ N (0,Σ+

ε ).
The one-dimensional noise term is also referred to as a “common shock” process since it is the term
that introduces some underlying volatility process for all maturities. Here, the variance of the noise
term ε∗t , denoted by ht, is the volatility that is modeled as a GARCH(1, 1) process

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1, (5.19)

where γ0, γ1, γ2 > 0 to ensure positive ht, γ1 + γ2 < 1 and h0 = γ0(1 − γ1 − γ2)
−1. Then, the

resulting model is given by


yt = Λβt + Γε∗t + ε

+
t , ε

∗
t ∼ N (0, ht) and ε

+
t ∼ N (0,Σ+

ε ),

βt = (I − Φ)µ+Φβt−1 + ηt, ηt ∼ N (0,Ση),

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1.

(5.20)
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Notice that the volatility ht is now dependent on the past observation noise term ε∗t−1. This noise
term is not directly observable, so we cannot use data as would be the case with past observations
Yt−1. The authors use the suggestion of Harvey et al. (1992) to use the expected value of (ε∗t−1)

2

given past observations Yt−1. So, the volatility can be approximated as

ht = γ0 + γ1E[(ε∗t−1)
2|Yt−1] + γ2ht−1, (5.21)

for which Harvey et al. (1992) note that this conditional expectation can be written as

E[(ε∗t−1)
2|Yt−1] = E[ε∗t−1|Yt−1]

2 +Var[ε∗t−1|Yt−1], (5.22)

which are exactly the conditional expectation and variance that are estimated by the Kalman filter.
Hence, if the scalar noise term ε∗t is augmented to the state vector as (βt, ε

∗
t ), then the Kalman

filter can be modified such that ht is approximated for each iteration by

ht ≈ γ0 + γ1
[
((ε̂∗)t−1

t−1)
2 + (pε)

t−1
t−1

]
+ γ2ht−1, (5.23)

where (ε̂∗)t−1
t−1 is the state estimate from the filtering step of the Kalman filter and (pε)

t−1
t−1 is the

variance estimate for the specific state from the filtering step of the Kalman filter, which is equal
to the last diagonal entry of the covariance matrix P t−1

t−1 . This results in the following conditionally
Gaussian state-space model.

yt =
[
Λ Γ

] [βt

ε∗t

]
+ ε+t , ε

+
t ∼ N (0,Σ+

ε ), (5.24)[
βt

ε∗t

]
=

[
(I − Φ)µ

0

]
+

[
Φ 0

0 0

][
βt−1

ε∗t−1

]
+

[
ηt

ε∗t

]
,

[
ηt

ε∗t

]
∼ N

([
0

0

]
,

[
Ση 0

0 ht

])
, (5.25)

where the state is conditionally Gaussian given the past value of the now state variable ε∗t−1 and
the variance ht−1 itself. Notice that the GARCH observation noise term ε∗t is now both a state
variable and a noise term, of which the original authors Harvey et al. (1992) also note that this is
“somewhat unusual” (p. 131).

In summary, the DNS-GARCH model allows modeling volatility without a lot of additional
computational burden. However, requiring that bond yields across all maturities are driven by the
same volatility process is quite restrictive. Although the volatility loadings Γ = [Γ1, . . . ,Γ11]

T try
to model the different volatilities for the various maturities.

DNS with SV State Noise

The DNS model with SV state noise is the model that Hautsch and Ou (2008b) introduce as the
Stochastic Volatility Nelson-Siegel (SVNS) model, for which they also introduce a MCMC algorithm
for state and parameter estimation (Hautsch and Yang, 2012). Consider the modified DNS model

{
yt = Λβt + εt, εt ∼ N (0,Σε),

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,Ση),
(5.26)
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where βi,t for i = 1, 2, 3 are uncorrelated and follow their distinct AR(1) process. Notice that
the authors define the AR processes without a mean-reversion term (I − Φ)µ, but just a standard
intercept term µ as opposed to the original authors Diebold et al. (2006). Then, Hautsch and Ou
(2008b) add the volatility process via the state noise Ση by assuming the state noise is time-varying
Ση = Ση,t = diag(h1t , h

2
t , h

3
t ) and that it follows a SV(1) process given by
log h1t

log h2t

log h3t

 =


µ1
h

µ2
h

µ3
h

+


ϕ1h 0 0

0 ϕ2h 0

0 0 ϕ3h



log h1t−1

log h2t−1

log h3t−1

+


ξ1t

ξ2t

ξ3t

 , (5.27)

⇔ diag(log Ση,t) = µh +Φhdiag(log Ση,t−1) + ξt, (5.28)

where ξt ∼ N (0,Σh), Σh = diag((σ1
h)

2, (σ2
h)

2, (σ3
h)

2) and hit for i = 1, 2, 3 are called the factor
volatilities. An advantage of this model is that it allows for natural interpretation like the origi-
nal DNS model of Diebold et al. (2006). The authors interpret h1t as underlying macroeconomic
volatility that touches the entire yield curve as it is the variance of the yield curve level. The second
factor h2t is the volatility in the yield curve slope, which can be interpreted as the volatility in yield
spreads, given by yt(+∞) − yt(0). Finally, the third factor h3t is associated with the volatility in
bond yields with a medium-term maturity. It is also a straightforward approach, which follows the
idea similar to the approach of Diebold et al. (2006) treating βt as a latent variable. A drawback
of this model is that we cannot use the theory of state-space models on this three-layer model di-
rectly. In order to estimate the volatility factors and the latent variables of this model the authors
propose using a so-called Gibbs sampler and the Metropolis-Hastings algorithm. However, if we
have T observations of bond yields for M different maturities and six latent variables, then we have
to estimate 6T latent variables and 19 +M parameters. One can imagine that this becomes very
difficult to employ in practice. So, even though a three-layer model allows for a natural way to
add volatility in the DNS model, it also requires a lot of computational effort to use. Perhaps a
modified model with SV volatility through the observation noise could balance performance and
computational efficiency as this would result into a state-space model, for which we can use particle
filters. However, we have not encountered this variant in the literature.

5.2.3 Concluding Remarks

In this section we reviewed literature on modeling yield curve volatility to find an appropriate
volatility extension for a DNS model. We have found that a GARCH process and a Stochastic
Volatility process are the most common ways to model volatility. Additionally, such a volatility
process can be added through the observation noise or through the state noise in state-space models.
The literature seems inconclusive to what model is preferred in the context of interest rates. How-
ever, a big advantage of the volatility extension with a GARCH process of Koopman et al. (2010)
is that it lets us use a modified Kalman filter that does not require much computational effort. In
contrast, we have to resort to more computationally heavy algorithms like Sequential Monte Carlo
when using a SV process to model volatility as in the model of Hautsch and Ou (2008b). However,
it seems that a SV(1) process outperforms a standard GARCH(1,1) process in modeling volatility
for at least exchange rate data. Additionally, a SV extension in the observation noise could be an
interesting volatility extension as it could balance performance and required computational power.

In summary, a GARCH extension as proposed by Koopman et al. (2010) in either the observation
or state noise seems the most practical extension that shows relatively good performance, whereas
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a SV extension in the state noise as proposed by Hautsch and Ou (2008b) shows good performance,
but a high computational cost. Moreover, a SV extension in the observation noise could be an
interesting extension balancing computational effort and performance due to the aforementioned
reasons, but we have not encountered such a volatility extension in the literature that could assert
this claim.
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6

Bayesian Yield Curve Modeling

In this chapter we first provide the general Bayesian setting for a state-space yield curve model. In
particular, we discuss the theoretical setting and the practical details of using the Random Walk
Metropolis algorithm. In the subsequent section we discuss the linear state-space yield curve models
that are explored. Next, we also discuss the explored nonlinear yield curve models. Additionally,
we will discuss the prior choice for the parameters for each model. Finally, in the last section we
will derive the posterior predictive distribution for the models and provide a simulation algorithm
based on that derivation for one-step ahead and h-step ahead forecasts.

For the readability, it is important to note that we have worked in a modeling cycle, where the
various extended models are based on the results of the baseline state-space model (benchmark
DNS). So, in this chapter we will provide the discussion of the models conceptually and provide
the necessary preliminary work that is needed to produce the actual results. This means that the
analyses that have resulted into the extensions can be found in Chapter 7.

6.1 Bayesian Setting

In this section we elaborate on the Bayesian setting of estimating parameters for the different
yield curve models. Suppose we have T yield observations for M maturities, denoted by YT =
{y1, . . . ,yT } ∈ RM×T , where for each time point t = 1, . . . , T

yt = (yt(τ1), . . . , yt(τM ))T . (6.1)

Let ψ = {ψ1, . . . , ψd} ∈ Rd denote the collection of parameters of a state-space yield curve
model. Then, we are interested in the posterior distribution p(ψ|YT ). From Bayes’ theorem (4.5)
we know that

p(ψ|YT ) ∝ L(Yt|ψ)p(ψ), (6.2)

= eℓ(Yt|ψ)p(ψ) (6.3)

55
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Notice that the log-likelihood is precisely the log-likelihood from (3.82) that is computed (ap-
proximated) by the (modified) Kalman filter. In this setting we can write the log-likelihood as

ℓ(Yt|ψ) = −MT

2
log(2π)− 1

2

T∑
t=1

log |Σt| −
1

2

T∑
t=1

ϵTt Σ
−1
t ϵt, (6.4)

where ϵt denotes the innovation term and Σt denotes the variance-covariance matrix as in Theorem
3.10. In order to keep the computational effort low for the RWM algorithm we assume that the
parameters are mutually independent, i.e. ψi ⊥ ψj for i ̸= j. This also enables us to specify a prior
on each parameter separately. Essentially, the assumption of independent parameters also reflects
our lack of knowledge about the dependence structure between the parameters. This means that
the posterior can be simplified further to

p(ψ|YT ) ∝ eℓ(Yt|ψ)p(ψ) (6.5)

= eℓ(Yt|ψ)
d∏

i=1

p(ψi). (6.6)

The expression of the posterior in (6.5) means that if we specify the priors of the parameters for
a model, then together with the (modified) Kalman filter we have all ingredients to use the Random
Walk Metropolis algorithm.

6.1.1 Employing the Random Walk Metropolis Algorithm

Suppose we have chosen the priors and define the target distribution as P (ψ) := p(ψ|YT ). Then,
in order to estimate the posterior of the parameters ψ for a model we need to specify the input
variables of the RWM algorithm. As we have seen in Example 4.5 a good starting point can save
a lot of time and a right scale is important for the convergence of the chains. However, there is
no straightforward method that guarantees the RWM algorithm to converge and depending on the
order of a parameter the algorithm can be quite sensitive on changes in scale σ. That is why we
will discuss how we choose the starting point ψ(0) and adjust the scales σ1, . . . , σd systematically.
Moreover, we also discuss how we assess convergence.

Then, as discussed in Section 4.2.2, we will choose the maximum likelihood estimator (MLE)
as the starting point, denoted by ψ(0) := ψMLE . Since the MLE cannot be derived analytically,
we have to use an optimization method to approximate the MLE. The used optimization method
is a minimizer called L-BFGS-B, which is a so-called quasi-Newton optimization method1. The
L-BFGS-B minimizer searches for the optimal set of parameters based on a projected gradient.
Consequently, if we use non-informative priors, then the MLE will provide us with a starting point
in a high density posterior region. In addition, the L-BFGS-B minimizer requires some initial values
and search bounds for each parameter as well. So, we will provide both when presenting the results
of the parameter estimation.

Moreover, as aforementioned there is no straightforward way of obtaining scales σ = {σ1, . . . , σd}
that result into the converging RWM chains right away. That is why we use a trial-and-error based
approach, where we start with very small scales and adjust the scale per parameter. Whether a

1https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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scale has to be changed is based on whether we see a white noise pattern visually for that particular
parameter, indicating convergence. The trace plot for each parameter will be the main visual aid
in assessing convergence together with the running mean of the chains. If a run seems successful
visually we test for “actual” convergence with the Geweke diagnostic test (Theorem 4.7).

6.2 Linear Yield Curve Models

In this section we present the explored models that are variations of the DNS model as in (5.12) or
are linear extensions of the DNS model. In this section we also elaborate on the current model that
is used by the DSTA and the method that is currently employed to estimate the latent variables
and parameters.

6.2.1 Current Model and Method

The DSTA uses the Nelson-Siegel model as in Diebold and Li (2006) and their two-step yield curve
estimation approach. We note that this is not the only model used by the DSTA to calculate
interest rate scenario’s, but this model is used for calculating the interest rate costs. Consequently,
we will refer to this model and method as the current model and method. Then, the used model is
essentially the original Nelson-Siegel model for the yields yt(τ) as in (5.1), but instead of treating
the latent variables as parameters it is assumed that βi,t, i = 1, 2, 3 follow their distinct AR(1)
process.

Suppose there are T yield observations for M maturities at each time t. The first step of the
two-step estimation approach fixes λ at some value and estimates the values of β1,t, β2,t, β3,t with
the ordinary least squares (OLS) method for each separate time point t by

β̂t = (ΛTΛ)−1ΛTyt, (6.7)

where Λ ∈ RM×3 is the observation matrix as in (5.12). Then, the λ value that minimizes the
residual sum of squares (RSS) can be found by solving

λopt = min
λ∈D

∥∥∥yt − Λβ̂t

∥∥∥2
2
, (6.8)

where D ∈ R is the search region for λ. Subsequently, the second step is based on using the
fixed value λopt to estimate the AR(1) parameters for each βi,t, i = 1, 2, 3. So, by fixing λopt the
latent variables can be estimated with the OLS method as in (6.7), which results in a sequence of

estimated latent variables (β̂T ) = {β̂1, . . . , β̂T }. Then, using the sequence of estimates (β̂T ) the
AR(1) parameters µi, ϕi in

β̂i,t = µi + ϕ1β̂i,t−1 + ηi,t (6.9)

are estimated with the conditional maximum likelihood method and ηi,t is modeled as a realization
of a normal distribution, which has zero mean and has a variance that is equal to the variance of
the residuals of the AR(1) fit. Finally, the latent variables are simulated by using the estimated

parameters µ̂i, ϕ̂i, η̂i,t and the bond yields can be computed by using the estimated latent variables

and the Nelson-Siegel model as in (5.1). Using the last estimated latent variables β̂t as starting
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point an h-step ahead forecast is made by simulating the latent variables S number of times, which
is shown in Figure 6.1.

Figure 6.1: An example of S = 100 simulations of β1,t, that goes 50 steps (months) ahead (Source:
DSTA).

Consequently, the average of the S simulated paths of the latent variables at each time t is used
as the forecast and the 5% of the top values of the simulations is used as a “worst-case” scenario
forecast. An example of an actually used forecast is shown in Figure 6.2.

Figure 6.2: An example of a forecast for the Dutch 10 years (maturity τ = 360 months) bond
yield with the average forecasts (solid lines) and the worst-case scenario’s (dashed lines)
performed in November 2021 (yellow) and May 2022 (blue) and compared with the observed
yields (solid green line) (Source: DSTA).

6.2.2 Benchmark DNS Model

All of the explored models are in the state-space framework. This allows us to use the theory
of state-space models in Chapter 3, but complicates comparing the performance of these models
(likelihoods, BIC values) and the methods (Bayesian approach, one-step filtering) with the current
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model and methods as described in the previous section. That is why we specify the benchmark DNS
as starting point of modeling the bond yields with a state-space model to have some benchmark for
further extensions within the state-space framework.

The benchmark DNS model is essentially a simplified version of the general DNS model in (5.12).
For this model we assume that λ is a parameter that is not dependent on time t and that the bond
yields yt(τi) for every maturity τi have the same uncorrelated observation noise variance. In other
words, we assume that the noise of the market observations is within the same bandwidth for yields
across all maturities. This is a more restrictive assumption than Diebold et al. (2006) propose, but
in the same line of thought. Then, the observations are modeled as

yt = Λβt + εt, εt ∼ N (0,Σε), (6.10)

where yt, εt ∈ R11, βt ∈ R3. Additionally, Λ ∈ R11×3 and Σε ∈ R11×11 are given by

Λ =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

...
...

...

1 1−e−λτ11

λτ11
1−e−λτ11

λτ11
− e−λτ11

 , Σε =


σ2 . . . 0
...

. . .
...

0 . . . σ2

 . (6.11)

The latent variables βt are assumed to follow their distinct AR(1) process. We assume the
AR(1) process to be the same as the current model, which is a slightly modified version of the
process Diebold et al. (2006) propose. The difference between the two formulations is that the
general DNS model assumes some long-term mean reversion, whereas the current DSTA model
assumes a standard AR(1) process. For this benchmark we also assume the noise variance of the
latent variables to be equal, which is a very restrictive assumption. Intuitively, it is not obvious
that the level, slope and curvature of the yield curve have a similar bandwidth. However, this is
assumed for the sake of having a simple benchmark with not too much parameters. As a result, we
model the latent variables as

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,Ση), (6.12)

where βt,ηt ∈ R3, and µ ∈ R3,Φ,Ση ∈ R3×3 are given by

µ =


µ1

µ2

µ3

 , Φ =


ϕ1 0 0

0 ϕ2 0

0 0 ϕ3

 , Ση =


q2 0 0

0 q2 0

0 0 q2

 . (6.13)

So, the benchmark DNS state-space model is defined as{
yt = Λβt + εt, εt ∼ N (0,diag(σ2, . . . , σ2)),

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,diag(q2, q2, q2)),
(6.14)

with εt and ηt independent noise processes.
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Prior Choice for the Parameters

The parameters of this model are ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ, q}. Notice that we should take
extra care of the standard deviation parameters σ, q. An essential assumption for standard deviation
or variance parameters is that they should be positive, but should preferably also be “invariant of
rescaling” (Bailer-Jones, 2017, p. 115). This means that we choose the following improper prior

p(σ) ∝ 1

σ
, (6.15)

where p(q) is defined analogously. Moreover, notice that a reparametrization with the log-transform
results into

p(log σ) ∝ 1, (6.16)

where the same holds for p(log q). Additionally, we usually require the AR(1) parameters to be
|ϕi| < 1, i = 1, 2, 3 in order to prevent explosive behaviour of the autoregressive processes. However,
for the RWM algorithm we do not enforce a hard boundary on ϕi, i = 1, 2, 3 by choosing, for
instance, a uniform distribution U(−1, 1), because we want the chains to be able to explore the
regions a bit above one or under minus one. After all, the likelihood term should result into
|ϕi| < 1, i = 1, 2, 3 if an explosive AR(1) is not a good model for the latent variables βi,t, i = 1, 2, 3.
Finally, the parameters µ1, µ2, µ3 are the intercept parameters of the latent variables, for which we
do not specify any prior knowledge as well. We provide the choice of the priors in Table 6.3.

Table 6.3: The prior distribution for the parameters of the Benchmark DNS model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ log q

Prior p(ψi) 1(0,+∞) 1 1 1 1 1 1 1 1

6.2.3 DNS with Distinct State Noise

The DNS model with distinct state noise terms, or DNS-SN in short, is the same as the benchmark
DNS model, but with distinct noise variance for each state instead of equal noise variance. This
means that the yields and latent variables are modeled with the following state-space model

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,Ση), (6.17)

where βt,ηt ∈ R3 and µ ∈ R3,Φ,Ση ∈ R3×3 are given by

µ =


µ1

µ2

µ3

 , Φ =


ϕ1 0 0

0 ϕ2 0

0 0 ϕ3

 , Ση =


q21 0 0

0 q22 0

0 0 q23

 . (6.18)

So, the DNS-SN model is defined as the state-space model{
yt = Λβt + εt, εt ∼ N (0,diag(σ2, . . . , σ2)),

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,diag(q21 , q
2
2 , q

2
3)),

(6.19)

with εt and ηt again independent noise processes.
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Prior Choice for the Parameters

The parameters of this model are ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ, q1, q2, q3}. For this model the
same holds again for the standard deviation parameters and the autoregression parameters. The
choice of the prior for each parameter is provided in Table 6.4.

Table 6.4: The prior distribution for the parameters of the DNS-SN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ log q1 log q2 log q3

Prior p(ψi) 1(0,+∞) 1 1 1 1 1 1 1 1 1 1

6.2.4 DNS with Autoregressive Observation Noise and Random Walk
States

The DNS model with autoregressive observation noise and random walk states, or DNS-ARRW,
is the benchmark DNS model with two extensions. The first extension is the assumption that the
observation noise εt can be decomposed as

εt = ε
′
t + νt, (6.20)

(6.21)

where ε′t ∈ R11 is a first order autoregressive component and νt ∈ R11 is a Gaussian white noise
component. The autoregressive part ε′t can be seen as some underlying process that models under-
lying market processes that have some memory or prolonged effect on the bond yield, whereas the
white noise part νt can be seen as the remaining noise. The process εt is modeled as

ε′t = Aε′t−1 + ξt, ξt ∼ N (0,Σξ), (6.22)

where ε′t, ξt ∈ R11, and A,Σξ ∈ R11×11 are defined as

A =


α1 . . . 0
...

. . .
...

0 . . . α11

 , Σξ =


σ2
ξ . . . 0
...

. . .
...

0 . . . σ2
ξ

 . (6.23)

The second extension is the assumption that the latent variables βt are a random walk process
instead of an AR(1) process. Essentially, this is an AR(1) process with autoregression parameters
equal to one. So, we model βt as

βt = µ+ βt−1 + ηt, (6.24)

which means that we assume that the level, slope and curvature of the yield curve are mainly
governed by their past value and some random noise.
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Finally, bringing the two extension together we obtain the following model.
yt = Λβt + ε

′
t + νt, νt ∼ N (0,Σν),

βt = µ+ βt−1 + ηt, ηt ∼ N (0,Ση),

ε′t = Aε′t−1 + ξt, ξt ∼ N (0,Σξ),

(6.25)

where yt, εt,νt, ξt ∈ R11, βt,ηt ∈ R3 and Λ ∈ R11×3 is defined as in the previous models. Moreover,
A,Σξ ∈ R11×11 are defined as in (6.23) and Σν is defined as

Σν =


σ2
ν . . . 0
...

. . .
...

0 . . . σ2
ν

 . (6.26)

Rewriting this into a linear state-space model is straightforward and is given by
yt =

[
Λ I

] [βt

εt

]
+ νt, νt ∼ N (0,Σν),[

βt

εt

]
=

[
µ

0

]
+

[
I O

OT A

][
βt−1

εt−1

]
+

[
ηt

ξt

]
,

[
ηt

ξt

]
∼ N

(
0,

[
Ση O

OT Σξ

])
,

(6.27)

where O ∈ R3×11 is the matrix with zero-only entries.
Recall that it follows from Corollary 3.8 that this state-space model is observable, which is

already shown in Example 3.9. So, the DNS-ARRW model is a well-defined state-space model, for
which we can correctly use the Kalman filter and related state-space theory.

Prior Choice for the Parameters

The parameters of this model are ψ = {λ, µ1, µ2, µ3, q, σν , α1, . . . , α11, σξ}. For this model the same
holds again for the standard deviation parameters and the autoregression parameters. The choice
of the prior for each parameter is provided in Table 6.5.

Table 6.5: The prior distribution for the parameters of the DNS-ARRW model.

Parameter ψi λ µ1 µ2 µ3 log q log σν α1 α2 α3

Prior p(ψi) 1(0,+∞) 1 1 1 1 1 1 1 1

Parameter ψi α4 α5 α6 α7 α8 α9 α10 α11 log σξ

Prior p(ψi) 1 1 1 1 1 1 1 1 1

6.3 Nonlinear Yield Curve Models

In this section we discuss the nonlinear extensions of the benchmark DNS model, which are the DNS
with GARCH observation noise as introduced by Koopman et al. (2010) (see Subsection 5.2.2) and
the DNS model with distinct observation and state noise and a GARCH observation noise, which
is also based on Koopman et al. (2010).
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6.3.1 DNS with GARCH Observation Volatility

We use the slightly modified version of the DNS-GARCH model of Koopman et al. (2010) without
the mean-reversion term that has volatility modeled through the observation noise. The DNS model
with GARCH Observation Volatility, or DNS-OV in short, is given by

yt =
[
Λ Γ

] [βt

ε∗t

]
+ ε+t , ε+t ∼ N (0,Σ+

ε ),[
βt

ε∗t

]
=

[
µ

0

]
+

[
Φ 0

0 0

][
βt−1

ε∗t−1

]
+

[
ηt

ε∗t

]
,

[
ηt

ε∗t

]
∼ N

(
0,

[
Ση 0

0 ht

])
,

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1,

(6.28)

where yt, ε
+
t ∈ R11, βt,ηt ∈ R3, ε∗t , ht, γ0, γ1, γ2 ∈ R, Λ ∈ R11×3,Ση,Φ ∈ R3×3 and µ ∈ R3 are the

same as for the benchmark DNS model. In addition, Γ ∈ R11 and Σ+
ε ∈ R11×11 are defined as

Γ =


Γ1

...

Γ11

 , Σ+
ε =


(σ+)2 . . . 0

...
. . .

...

0 . . . (σ+)2

 . (6.29)

In the concluding remarks of the literature review on modeling volatility we (Subsection 5.2.3)
already argued the advantages and drawbacks of certain volatility extensions. The reason for
choosing the GARCH model in the observation noise of Koopman et al. (2010) is twofold. First,
modeling the volatility with a GARCH model results into a yield curve model that is still a state-
space model, which means that we can use the modified Kalman filter to estimate states as described
in Subsection 5.2.2. This reduces a lot of required computational effort compared with other filters
like particle filters, which would mean that we have to employ two simulation algorithms (simulation
for state estimation and RWM for parameter estimation). So, we can still perform parameter
estimation in a practical amount of time. Secondly, Koopman et al. (2010) find that the extension
with a GARCH process in the observation noise outperforms the one with a GARCH process in
the state noise.

Prior Choice for the Parameters

The parameters of this model are ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ
+, q, γ0, γ1, γ2,Γ1, . . . ,Γ11}. Notice

that γ0 = 0.0001 is fixed and considered as a known constant for parameter identification purposes
(Koopman et al., 2010, p. 332). For this model the same holds again for the standard deviation
parameters and the autoregression parameters. Additionally, for the GARCH parameters γ1, γ2 the
interval (0, 1) is a hard constraint in the sense that it ensures that h0 ∈ R and h0 > 0. So, for the
GARCH parameters γ1, γ2 we assume a uniform distribution on the interval (0, 1). There could be
a scenario that γ1 > 0.5 and γ2 > 0.5 resulting into γ1 + γ2 > 1. Regarding this scenario we can
give a preview that in practice we see that as γ1 increases, γ2 decreases, preventing that the chains
of both parameters result into γ1 + γ2 > 1. Furthermore, volatility is a process that is positive,
since it is essentially a variance. So, we also assume that Γi > 0, i = 1, . . . , 11 to guarantee positive
volatility processes for the yield of each maturity. Then, the choice of the priors are provided in
Table 6.6.
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Table 6.6: The prior distribution for the parameters of the DNS-OV model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ+

Prior p(ψi) 1(0,+∞) 1 1 1 1 1 1 1

Parameter ψi log q γ1 γ2

Prior p(ψi) 1 U(0, 1) U(0, 1)

Moreover, we note that we originally used the RWM algorithm to approximate the posterior for
the parameters Γ1, . . . ,Γ11 as well, with priors p(Γi) ∝ 1(0,+∞) for i = 1, . . . , 11. However, since
these parameters represent the proportion of volatility of a maturity relative to each other, the chains
of the RWM runs show high mutual correlation. Consequently, the chains of Γi, i = 1, . . . , 11 do not
show convergence. Because of the difficult convergence and since the maximum likelihood estimates
are similar to the results of Koopman et al. (2010), we fix the maximum likelihood estimates of
Γi, i = 1, . . . , 11. However, the uncertainty in the volatility process is still modeled as we still
approximate the GARCH(1,1) parameters γ1, γ2. For further details we refer to Section 7.4.

6.3.2 DNS with GARCH Observation Volatility and Distinct Observa-
tion and State Noise

The DNS model with GARCH observation volatility and distinct observation and state noise, or
DNS-OVOSN in short, is the model for which we have combined several findings from the results
of the previous models. Essentially, the basis is the DNS-OV model, but with distinct state noise

Ση =


q21 0 0

0 q22 0

0 0 q23

 , (6.30)

and observation noise for which the short (24 and 36 months), medium (48 to 108 months) and
long-term (120, 240 and 360 months) maturities have the same variance. So, the observation noise
covariance Σ+

ε ∈ R11×11 is given by

Σ+
ε =


ΣS

ε ∅
ΣM

ε

∅ ΣL
ε

 , (6.31)

where ΣS
ε = diag(σ2

S , σ
2
S) ∈ R2×2,ΣM

ε = diag(σ2
M , . . . , σ

2
M ) ∈ R6×6 and ΣL

ε = diag(σ2
L, σ

2
L, σ

2
L) ∈

R3×3. Additionally, the volatility loadings of different maturities are grouped together in the same
way as the observation noise covariance. So, the volatility loading vector Γ ∈ R11 is defined as

Γ = [ΓS ,ΓS ,ΓM ,ΓM ,ΓM ,ΓM ,ΓM ,ΓM ,ΓL,ΓL,ΓL]
T . (6.32)
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This means that the DNS-OVOSN model is defined as follows.

yt =
[
Λ Γ

] [βt

ε∗t

]
+ ε+t , ε+t ∼ N (0,Σ+

ε ),[
βt

ε∗t

]
=

[
µ

0

]
+

[
Φ 0

0 0

][
βt−1

ε∗t−1

]
+

[
ηt

ε∗t

]
,

[
ηt

ε∗t

]
∼ N

(
0,

[
Ση 0

0 ht

])
,

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1,

(6.33)

where yt, ε
+
t ∈ R11, βt,ηt ∈ R3, ε∗t , ht, γ0, γ1, γ2 ∈ R, Λ ∈ R11×3,Φ ∈ R3×3 and µ ∈ R3 are

the same as the benchmark DNS model, while Γ ∈ R11,Ση ∈ R3×3,Σ+
ε ∈ R11×11 are defined as

aforementioned.

Prior Choice for the Parameters

The parameters of this model are ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σS , σM , σL, q1, q2, q3, γ0, γ1, γ2,ΓS ,
ΓL,ΓM}. Notice that we have fixed γ0 = 0.0001 again. Subsequently, the choice of the priors
for each parameter is the same as for the previous models. So, we have chosen priors that are
uninformative on the specific domains of the parameters. In addition, we note that the volatility
loadings ΓS ,ΓM ,ΓL are fixed again on the maximum likelihood estimates as was the case for the
DNS-OV model due to the same reason of high mutual correlation resulting into bad convergence.

Table 6.7: The prior distribution for the parameters of the DNS-OVOSN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σS

Prior p(ψi) 1(0,+∞) 1 1 1 1 1 1 1

Parameter ψi log σM log σL log q1 log q2 log q3 γ1 γ2

Prior p(ψi) 1 1 1 1 1 U(0, 1) U(0, 1)

6.4 Bayesian Forecasting

In this section we will derive the posterior predictive distribution for the one-step ahead future
yield yt+1 given previous observations of bond yields Yt. As we will see the posterior predictive
distribution cannot be expressed in some closed-form. Therefore, we will also provide a simulation
algorithm based on random sampling, which is a modified version of Algorithm 1. Moreover, we
also derive the posterior predictive distribution for the multiple steps ahead yield yt+h given the
observations Yt together with a simulation algorithm. Notice that a step in the context of the used
data means a month, since we use monthly data.

6.4.1 Derivation of the Posterior Predictive Distribution

We are interested in the posterior predictive distribution p(yt+1|Yt). In order to derive the posterior
predictive distribution we need the different (in)dependence relations of the models. Since all the
models in Sections 6.2 and 6.3 are standard state-space model in the sense that they satisfy the



66 CHAPTER 6. BAYESIAN YIELD CURVE MODELING

independence relations (3.7) and (3.8), the analytical part holds for every used model. Then, we
can derive the posterior predictive distribution as

p(yt+1|Yt) =
∫ ∫

p(yt+1,ψ,βt+1|Yt) dψ dβt+1 (6.34)

(3.7)
=

∫ ∫ ∫
p(yt+1|ψ,βt+1, Yt)p(βt+1|ψ,βt)p(ψ,βt|Yt) dψ dβt+1 dβt (6.35)

(3.8)
=

∫ ∫ ∫
p(yt+1|ψ,βt+1)p(βt+1|ψ,βt)p(βt|ψ, Yt)p(ψ|Yt) dψ dβt+1 dβt. (6.36)

Notice that the expression of the posterior predictive distribution has become a three double
integral with a product of four normal distributions. This cannot be expressed in some straight-
forward closed-form. This means that we have to resort to simulating the posterior predictive
distribution.

6.4.2 One-Step Ahead Simulation

Simulating the posterior predictive distribution based on (6.36) is a less tedious task than one
might expect from the integral form. It turns out that all components are already known or are
already simulated for the posterior distribution. Notice that p(ψ|Yt) is precisely the posterior
distribution that we have already simulated with the Random Walk Metropolis algorithm. In
addition, p(βt|ψ, Yt) is the filter distribution that is estimated from the (modified) Kalman filter.
Moreover, the state-transition distribution p(βt+1|ψ,βt) and the distribution p(yt+1|ψ,βt+1) are
known as well, because these are the distribution that are defined by specifying the state-space
model. Specifically, the state-transition and observation distributions are given by the state and
observation equations respectively. From the known distributions we can derive a random sampling
simulation algorithm, which is presented in Algorithm 3.

Algorithm 3: Simulation for the posterior predictive distribution of a yield curve model.

Input : Posterior distribution p(ψ|Yt) estimated by Algorithm 2.

Result: Posterior predictive samples y
(1)
t+1, . . . ,y

(S)
t+1.

1 for s = 1 to S do
2 Sample ψ(s) ∼ p(ψ|Yt);
3 Sample β

(s)
t ∼ p(βt|ψ(s), Yt);

4 Sample β
(s)
t+1 ∼ p(βt+1|ψ(s),β

(s)
t );

5 Sample y
(s)
t+1 ∼ p(yt+1|ψ(s),β

(s)
t+1);

Using this algorithm we can compute a forecast estimator as ŷt+1 = 1
S

∑S
s=1 y

(s)
t+1 and compute

the associated credible regions as the q-th percentile of the simulated samples.

6.4.3 Multiple-Step Ahead Simulation

Besides one-step ahead forecasting we are also interested in forecasting yields that are multiple
steps ahead. In particular, developments like interest rate hikes by central banks usually affect
bond yields over a time period longer than one month. So, multiple step ahead forecasts are
interesting for comparing the predicting power of the different models.
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Subsequently, suppose that we want to forecast h steps ahead. Then, the posterior predictive
distribution of yt+h given the observations Yt can be derived as

p(yt+h|Yt) =
∫

· · ·
∫
p(yt+h, . . . ,yt+1|Yt) dyt+h−1 . . . dyt+1 (6.37)

=

∫
· · ·
∫
p(yt+1|Yt)

h∏
j=2

p(yt+j |yt+j−1, . . . ,yt+1, Yt) dyt+h−1 . . . dyt+1, (6.38)

where p(yt+1|Yt) is the posterior predictive distribution as in (6.36) and for j = 2, . . . , h, the pos-
terior predictive distribution p(yt+j |yt+j−1, . . . ,yt+1, Yt) is the same as in (6.36), but conditioned

on Yt,yt+1, . . . ,yt+j−1. Let Ŷt+j = {Yt,yt+1, . . . ,yt+j} denote the observations until time t and
the future observations from time t+ 1 to t+ j. In particular, we have

p(yt+j |Ŷt+j−1) (6.39)

=

∫ ∫ ∫
p(yt+j |ψ,βt+j)p(βt+j |ψ,βt+j−1)p(βt+j−1|ψ, Ŷt+j−1)p(ψ|Ŷt+j−1) dψ dβt+j dβt+j−1.

Then, based on (6.37) and (6.39) we can extend Algorithm 3 to a multiple step ahead simulation
algorithm. Essentially, the idea of simulating multiple steps ahead instead of only one step is that
we simulate S paths that are h steps long, for which each path naturally has the same set of
parameters ψ(s). In Algorithm 4 we present a simulation scheme to forecast multiple steps ahead.
Notice that for h = 1 this is exactly Algorithm 3.

Algorithm 4: Simulation for the h-step ahead forecasts of a yield curve model.

Input : Posterior distribution p(ψ|Yt) estimated by Algorithm 2.

Result: h-step ahead paths {y(1)
t+1, . . . ,y

(1)
t+h}, . . . , {y

(S)
t+1, . . . ,y

(S)
t+h}.

1 for s = 1 to S do
2 Sample ψ(s) ∼ p(ψ|Yt);
3 for j = 0 to h− 1 do

4 Sample β
(s)
t+j ∼ p(βt+j |ψ(s), Ŷ

(s)
t+j);

5 Sample β
(s)
t+j+1 ∼ p(βt+j+1|ψ(s),β

(s)
t+j);

6 Sample y
(s)
t+j+1 ∼ p(yt+j+1|ψ(s),β

(s)
t+j+1);

Then, using this algorithm we can compute a forecast estimator for future time t+ j as ŷt+j =
1
S

∑S
s=1 y

(s)
t+j for j = 1, . . . , h and compute the associated credible regions as the q-th percentile of

the simulated samples.
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Results

In this chapter we will discuss the results for each model. As mentioned in Chapter 6, the results are
grouped per model in chronological order. In particular, we provide three analyses per model. First,
we discuss the estimated parameters obtained from the RWM algorithm. Secondly, we will discuss
the estimated states obtained from the (modified) Kalman filter in the in-sample analysis sections.
Here, in-sample means the “train data”. Finally, we will discuss the one-step ahead forecasts of
each model. Then, in Section 7.6 we will compare the in-sample performance and the 12-months
ahead forecasts of the current model and method with our explored models and method.

Before we dive into the actual results, we give some additional remarks on the in-sample analysis
and forecasts. Recall that our motivation to model yields is driven by the fact that the current
model and method are not able to realistically forecast a worst-case scenario of the yield curve,
which is the upper bound of the 95% credible region, because of the volatile bond yields observed
in the market. Specifically, past forecasts have been performed by the DSTA in May 2022 and in
November 2021. Since the bond yields have increased quickly from November 2021 on, we will model
the yield curves from March 2001 (t = 0) until November 2021 (t = 249) for the in-sample analyses
and try to forecast from that point in time. Especially, because the yields across maturities have
risen between two to four percentage points (190-380 bps) in the twelve months since November
2021 after a period of relatively stable and low yields. In addition, we will also provide a one-step
ahead forecast for each model from August 2008 (t = 90) to September 2008 (t = 91), which has
the largest absolute yield difference for a maturity (82 bps for the 24 months yield) and can be seen
as a “worst-case” or “black swan” month.

69
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7.1 Results of Benchmark DNS

In this section we go through the parameter, in-sample and forecasting results for the benchmark
DNS model as specified in (6.14). Recall that the model is given by{

yt = Λβt + εt, εt ∼ N (0,diag(σ2, . . . , σ2)),

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,diag(q2, q2, q2)),
(7.1)

with parameters ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ, q}.

7.1.1 Parameter Estimation

We denote the scales of the RWM algorithm as σRWM to avoid confusion. Then, the starting point
and scales that result into converging chains are provided in Table 7.1 and 7.2.

Notice that for the benchmark DNS model we also have tried to estimate the Kalman filter
initial state and initial covariance matrix β̂0 = [β̂0

1 , β̂
0
2 , β̂

0
3 ]

T and P 0
0 = diag(p2, p2, p2). However,

we could not find appropriate scales to find converging chains for these parameters. A reason for
the difficult convergence could be that the observations give relatively strong new information as
it seems that the observation noise is relatively small compared to the state noise. So, it could be
that the initial values for the Kalman filter do not affect the log-likelihood strongly. That is why
we will fix the initial values for the Kalman filter at the MLE values and try to find the posterior
distribution of the model parameters ψ for this and the other models.

Table 7.1: The MLE values as RWM starting points ψ(0) of the parameters approximated by the
L-BFGS-B minimizer and the corresponding log-likelihood value for the benchmark DNS model.

Parameter ψi λ β̂0
1 β̂0

2 β̂0
3 p µ1 µ2

Bounds (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (−∞,∞) (−∞,∞)

Initial guess 0.1 0.0 0.0 0.0 1.0 0.0 0.0

MLE value 0.04771 0.00089 0.00016 -0.00012 0.99944 1× 10−5 -0.00044

Parameter ψi µ3 ϕ1 ϕ2 ϕ3 σ q

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (10−4,∞)

Initial guess 0.0 0.0 0.0 0.0 0.1 0.1

MLE value -0.00051 0.99301 0.97716 0.98113 0.0006 0.00312

Log-likelihood 15333

Table 7.2: The scales σRWM for each parameter of the benchmark DNS model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ log q

Scale σi,RMW 0.0003 0.00016 0.00016 0.00016 0.004 0.0045 0.003 0.0062 0.013
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Then, we run the RWM algorithm with the MLE values as starting points and the provided
scales for 25000 iterations. The results are shown as trace plot for each parameter in Figure 7.3
and the estimated posterior distribution for each parameter is shown as a histogram in Figure 7.4.
The average acceptance ratio of this run is ᾱ ≈ 0.3919. This is higher than the 0.234 we aim for,
but the average acceptance ratio is still reasonably between 0.1 and 0.4. Furthermore, the results
of the Geweke diagnostic test with τA = 0.1, τB = 0.5 and significance level α = 0.05 (Theorem 4.7)
for the chains of each parameter are provided in Table 7.5. Recall that the Geweke diagnostic gives
an indication whether the first and last segments have significantly different means. Consequently,
the means of the first and last segments of the chains show no significant difference if |G| < 1.96.
Then, the test results indicate that this is indeed the case. So, overall we assume that the chains
have converged.

Figure 7.3: Trace plot of the chains of each parameter of the benchmark DNS model.
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Figure 7.4: Histogram with the mean of the posterior distribution for each parameter of the
benchmark DNS model.

Table 7.5: The results of the Geweke diagnostic test for the chains of each parameter of the
benchmark DNS model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2

Statistic |G| 0.24665 0.16128 0.30633 0.20658 0.17749 0.38589

Means differ significantly? No No No No No No

Parameter ψi ϕ3 σ q

Statistic |G| value 0.23123 0.23258 0.37681

Means differ significantly? No No No

We use the maximum a posteriori estimator (MAPE), denoted by ψ̂MAPE , for the further
analyses. It turns out that the MLE is also the set of parameter values that yields the MAPE.
Moreover, we notice that the parameters ϕ1, ϕ2, ϕ2 are very close to one. This could indicate that
the AR(1) processes of the state variables might have a so-called unit root. So, it is interesting to see
whether ϕi = 1, i = 1, 2, 3 would also provide a good fit. After all, if a model with ϕi = 1, i = 1, 2, 3
can model the yields comparably well, then this reduces the amount of parameters by three, which
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is preferable for model extension that result in much more parameters.
In order to test for a unit root in the AR process of a time series, one can usually use a unit root

test such as the Dickey-Fuller (DF) or augmented Dickey-Fuller (ADF) test (Shumway and Stoffer,
2011, Section 5.2). However, this requires us to have the actual observations of the state variables,
which are not available per definition. Another option could be to use the estimated state variables
as time series, on which a unit root test can be performed. However, in that case we have to specify
the parameters before we can estimate the states. This would result into a situation where we test
whether the state variables can be modeled by ϕi = 1, i = 1, 2, 3 while using ϕi < 1, i = 1, 2, 3 to
estimate the state variables. So, one can imagine that the usual unit root testing does not allow us
to perform a sound test. Then, another way to compare whether it makes sense to model the state
variables as random walks instead of an AR(1) process is by fixing ϕi = 1, i = 1, 2, 3, finding the
MLE for this model and compare the log-likelihoods of the random walk and autoregressive model.
Hence, we also provide the MLE of the model with unit roots, denoted by ψ̂MLE . The parameter,
log-likelihood and BIC values are shown in Table 7.6.

Table 7.6: The MAPE values ψ̂MAPE for the benchmark DNS model without unit roots and
MLE values ψ̂MLE for the benchmark DNS model with unit roots and the corresponding
log-likelihood (LL), BIC and AIC values.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2

MAPE ψ̂MAPE
i 0.04771 0.00001 -0.00044 -0.00051 0.99301 0.97716

MLE ψ̂MLE
i 0.04772 -0.00022 0.0 0.00005 (1.0)* (1.0)*

Parameter ψi ϕ3 σ q

MAPE ψ̂MAPE
i 0.98113 0.0006 0.00312

MLE ψ̂MLE
i (1.0)* 0.0006 0.00312

Model fit measure LL BIC AIC

No unit roots 15333 -30616 -30648

Unit roots 15329 -30625 -30646

* Fixed parameters.

We can see that the benchmark DNS model without unit roots (ϕi < 1, i = 1, 2, 3) has a higher
log-likelihood value, but the difference with the model that has unit roots (ϕi = 1, i = 1, 2, 3) is
relatively small. However, the additional benefit of fixing ϕi = 1, i = 1, 2, 3 is the reduction in
the amount of parameters. We see that the model with the unit roots has a quite lower BIC than
the model without, which indicates that fixing ϕi = 1, i = 1, 2, 3 sufficiently improves the model
with less parameters. So, modeling the state variables as a random walk could be an interesting
extension and we explore this in the DNS-ARRW model (Section 7.3).

7.1.2 In-Sample Analysis

In this section we discuss the estimated states and provide some yield curve estimations of various
dates. Using the estimated states we can obtain the estimated yields for the observed maturities.
We discuss the residuals of the resulting estimated yields as well.
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Estimated State Variables and Yields

We use the Kalman filter with the MLE values of the initial state β̂0 and initial standard deviation
p as in Table 7.1 and the MAPE values for the model parameters as in Table 7.6. The estimated
state variables β̂t until November 2021 are shown in Figure 7.7.

Figure 7.7: The estimated state variables β̂1,t, β̂2,t, β̂3,t obtained by the Kalman filter and the

estimated yields ŷt = Λβ̂t for t = 1, . . . , 249 with the benchmark DNS model.

We see that the level of the yield curves overall has decreased, which is as expected. More
interestingly, we notice that during economic recessions (2007-2009, 2014-2015) or global turmoil
like the covid-19 pandemic (2020-2021) the slope of the yield curves is around or slightly above
zero. This means that the model can capture flat or slightly inverted yield curves when we expect
the yield curve to be actually inverted. Moreover, we can see that the curvature of the yield curves
until 2012 seems to be relatively less pronounced compared with the period after 2012. Perhaps
this could be related with the start of the Quantitative Easening (QE) program of the ECB around
2015. Due to this program, the ECB started to buy various assets, of which government bonds, to
decrease interest rates in an already low interest rate environment.

Residuals Analysis

We also discuss how well the benchmark DNS model fits the observed yields. To this end, the
residuals as well as the ACF and PACF are analyzed. The residuals, ACF and PACF are shown
in Figure 7.9, 7.10 and 7.11. Notice that the benchmark DNS model seems to approximate the
yields quite well during periods of low volatility, whereas the residual is larger in periods of sudden
increases or decreases of yields. The residuals, however, do not seem to resemble white noise as
we have assumed. We perform the Ljung-Box test on the residuals to test whether the residuals
are significantly a white noise process or not. In Table 7.8 the results of the Ljung-Box test with a
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significance level α = 0.05 and lag h = 1 is shown. A lag of h = 1 means that serial correlation is
tested between each residual at time t and t − 1. We can see that the p value for the residuals of
every maturity is extremely low and far less than the significance level α = 0.05, which indicates
that the residuals are significantly not a white noise process.

Table 7.8: Results of the Ljung-Box test for serial correlation in the residuals of the estimated
yields for each maturity with the benchmark DNS model.

Maturity τi 24 36 48 60 72 84

p value 7.1× 10−27 1.5× 10−31 1.4× 10−29 4.9× 10−30 8.0× 10−19 1.8× 10−24

White noise? No No No No No No

Maturity τi 96 108 120 240 360

p value 1.7× 10−32 1.3× 10−36 4.2× 10−36 9.7× 10−39 1.3× 10−42

White noise? No No No No No

The ACF and PACF strengthen the idea that the observation noise might not model the remain-
ing effects that are not captured by the current state variables βt well. An inspection of the ACF
and PACF indicates that the observation noise shows some autoregressive behaviour. Moreover,
notice that these effects could also stem from the state noise. However, since the state variables
are not observable we cannot analyse the residual for the state variables. So, we only focus on the
observation noise for the residuals analysis. In order to know what process would be appropriate
to model the observation noise we compare the BIC values of different ARMA(p, q) models for
the residuals. It seems that the most significant orders are p, q = 0, 1, 2, so we compare all eight
different combinations. The results are provided in Table 7.12. It seems that the most appropriate
model for the observation noise is an AR(1) model. Together with the findings of the unit roots in
the AR(1) process for the state variables these two results are explored in the DNS-ARRW model
in Section 7.3.
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Figure 7.9: Residuals of the estimated yields for each maturity with the benchmark DNS model.
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Figure 7.10: ACF of the residuals for each maturity with the benchmark DNS model.

Figure 7.11: PACF of the residuals for each maturity with the benchmark DNS model.
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Table 7.12: Results of the residuals fit of different ARMA models with order p, q.

(p, q) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

AIC -32721 -32801 -36264 -36096 -35968 -36214 -35980 -35793

7.1.3 Forecasting Analysis

In this section we present the results of the one-month ahead forecast of the yield curve in De-
cember 2021 (t = 250) and September 2008 (t = 91). The forecast is based on simulations of the
posterior predictive distribution (Algorithm 3). For each maturity a posterior predictive sample
is simultaneously simulated 1000 times. The forecast is shown in Figure 7.13 together with the
observed yield curve of the forecast dates (December 2021 and September 2008) and the previous
dates (November 2021 and August 2008). In both forecasts we also show the uncertainty that we
would expect from only the observation noise. We provide the interval ±σ, which shows the uncer-
tainty that is within ±1 standard deviation. We can see that the observed yield curve of December
2021 is entirely captured within the credible region of the forecast, whereas the observation noise
would indicate that these values are very unlikely. However, the credible interval is still quite wide,
as 95% of the are within one yield percentage point. For example, the bond yield for a maturity
of 24 months in December 2021 is likely to be any value between −1.5% and −0.2%. A reason
for the variability in the simulated yields could be that the state noise is two orders larger than
the observation noise. This could result into a large deviation in the simulated state values β̂T+1,
which carries through to the yields. Recall that we assumed for the benchmark DNS model that the
state noise of β1,t, β2,t, β3,t are equal. However, looking at the interpretation of the state variables,
it is quite restrictive to assume that the level, slope and curvature of the yield curve show equal
variance. So, it could be that the state noise variance q2 settles for some value that is too large for
one state variable and too small for another. One way to reduce the variability in the state variable
simulation could be to let each state variable have its distinct variance. We explore this further in
Section 7.2 for the DNS-SN model.

Moreover, we notice that for the one-step ahead forecast of September 2008 the shortest-term
maturity of 24 months is not within the 95% credible region, whereas the long-term maturities of
120, 240 and 360 are close to the mean values of the posterior predictive samples. However, we can
see that the forecast of September 2008 is close to the yield curve of the prior month, which has
seen the largest shift in the short-term maturities and to a lesser extent in the long-term maturities.
Consequently, the forecast yields are for the most part inside the 95% credible region, whereas the
shape of the yield curve is harder for the benchmark DNS model to forecast correctly when a large
shock occurs.
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Figure 7.13: The one-month ahead forecast (dashed red line) of December 2021 (left) and
September 2008 (right) with 95% credible regions (red surface) and with uncertainty due to the
observation noise ±σ (blue surface).

7.2 Results of DNS-SN

In this section we discuss the parameter, in-sample and forecasting results for the DNS-SN model.
Recall that this model has distinct state noise variances for each state as specified in (6.19) and is
given by

{
yt = Λβt + εt, εt ∼ N (0,diag(σ2, . . . , σ2)),

βt = µ+Φβt−1 + ηt, ηt ∼ N (0,diag(q21 , q
2
2 , q

2
3)),

(7.2)

with parameters ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ, q1, q2, q3}. Notice that we do not model the state
variables as random walks in this model, because we want to be able to check what affects the
credible regions of the forecast. If we model the state variables as random walks and we model
distinct state noise variance, then it is hard to assess what modification leads to a more accurate
(or less accurate) forecast.

7.2.1 Parameter Estimation

The scales and starting point that result into convergence of the RWM algorithm are presented in
Table 7.15 and 7.14.
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Table 7.14: The MLE values as RWM starting points ψ(0) of the parameters approximated by the
L-BFGS-B minimizer and the corresponding log-likelihood value for the DNS-SN model.

Parameter ψi λ β̂0
1 β̂0

2 β̂0
3 p µ1

Bounds (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (−∞,∞)

Initial guess 0.1 0.0 0.0 0.0 1.0 0.0

MLE value 0.04862 0.00272 0.00036 -0.0002 0.9989 −6× 10−5

Parameter ψi µ2 µ3 ϕ1 ϕ2 ϕ3 σ

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞)

Initial guess 0.0 0.0 0.0 0.0 0.0 0.1

MLE value -0.00044 -0.0011 0.99496 0.97722 0.96224 0.00059

Parameter ψi q1 q2 q3

Bounds (10−4,∞) (10−4,∞) (10−4,∞)

Initial guess 0.1 0.1 0.1

MLE value 0.00203 0.0035 0.00501

Log-likelihood 15392

Table 7.15: The scales σRWM for each parameter of the DNS-SN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2

Scale σi,RMW 0.00045 0.0002 0.0002 0.00035 0.0077 0.0103

Parameter ψi ϕ3 log σ log q1 log q2 log q3

Scale σi,RMW 0.013 0.009 0.026 0.0265 0.027

Then, we run the RWM algorithm again with the MLE values as starting points and the pre-
sented scales for 20000 iterations. For each parameter the trace plot is shown in Figure 7.16 and the
estimated posterior distribution for each parameter is presented as a histogram in Figure 7.17. The
average acceptance ratio of this run is ᾱ ≈ 0.1339. This indicates that the rate of convergence might
be a bit slow, but it is still satisfactorily between 0.1 and 0.4 and it seems that the starting point is
already in a high density region. Moreover, we use the Geweke test again with τA = 0.1, τB = 0.5
and significance level α = 0.05, of which the results are shown in Table 7.18. We can see that the
test indicates no significant difference between the means of the first and last segments for every
parameter. All in all, we assume the chains to have converged. Subsequently, we use the maximum
a posteriori estimator (MAPE) again for the in-sample analysis. For the DNS-SN model the MAPE
is equal to the MLE as well and is provided in Table 7.19.
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Figure 7.16: Trace plot of the chains for each parameter of the DNS-SN model.
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Figure 7.17: Histogram with the mean of the posterior distribution for each parameter of the
DNS-SN model.

Table 7.18: The results of the Geweke diagnostic test for the chains of each parameter of the
DNS-SN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2

Statistic |G| 0.10725 0.11116 0.25567 0.11244 0.10288 0.18105

Means differ significantly? No No No No No No

Parameter ψi ϕ3 σ q1 q2 q3

Statistic |G| 0.16364 0.01710 0.26996 0.29633 0.47054

Means differ significantly? No No No No No
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Table 7.19: The MAPE values ψ̂MAPE for the DNS-SN model and the corresponding
log-likelihood (LL), BIC and AIC values.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2

MAPE ψ̂MAPE
i 0.04862 -0.00006 -0.00044 -0.0011 0.99496 0.97722

Parameter ψi ϕ3 σ q1 q2 q3

MAPE ψ̂MAPE
i 0.96224 0.00059 0.00203 0.0035 0.00501

Model fit measure LL BIC AIC

Value 15392 -30723 -30762

7.2.2 In-Sample Analysis

In this section we discuss the estimated states and provide some yield curve estimations of various
dates as well as the residuals.

Estimated State Variables and Yields

We use the Kalman filter with the MLE values of the initial state β̂0 and initial standard deviation
p as in Table 7.14 and the MAPE values for the model parameters as in Table 7.19. The estimated
state variables β̂t until November 2021 are shown in Figure 7.20. We can see that the estimated
states are almost the same as the benchmark DNS model. Consequently, the difference in the
residuals for both models are between 10−5 − 10−4 and thus negligible. So, we refer to the in-
sample analysis of the benchmark DNS model in Subsection 7.1.2.

Figure 7.20: The estimated state variables β̂1,t, β̂2,t, β̂3,t obtained by the Kalman filter and the

estimated yields ŷt = Λβ̂t for t = 1, . . . , 249 with the DNS-SN model.
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7.2.3 Forecasting Analysis

In this section we present the results of the one-month ahead forecast of the yield curve in December
2021 and in September 2008. For each maturity the posterior predictive values are simultaneously
simulated 1000 times. Recall that the reason for modeling distinct state noise variances is because
we expect that this might make the 95% credible region more accurate. In Figure 7.21 we can see
that the 95% credible regions for both forecasts are indeed narrower than for the benchmark DNS
model. The uncertainty captured by the observation noise ±σ is comparable with the benchmark
DNS model, which is not surprising as the observation noise variance for the DNS-SN model is
also relatively small compared with the state noise variances. Moreover, the DNS-SN model has
difficulty in forecasting the shock in the short-term yields from August 2008 to September 2008 as
well.

Figure 7.21: The one-month ahead forecast (dashed red line) of December 2021 (left) and
September 2008 (right) with 95% credible regions (red surface) and the uncertainty due to the
observation noise ±σ (blue surface).

7.3 Results of DNS-ARRW

In this section we present the parameter, in-sample and forecasting results for the DNS-ARRW
model. Recall that this model has autoregressive (AR) observation noise and random walk (RW)
state variables as specified in (6.27) and is given by

yt =
[
Λ I

] [βt

ε′t

]
+ νt, νt ∼ N (0,Σν),[

βt

ε′t

]
=

[
µ

0

]
+

[
I O

OT A

][
βt−1

ε′t−1

]
+

[
ηt

ξt

]
,

[
ηt

ξt

]
∼ N

(
0,

[
Ση O

OT Σξ

])
,

(7.3)
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with parameters ψ = {λ, µ1, µ2, µ3, q, σν , α1, . . . , α11, σξ}.

7.3.1 Parameter Estimation

The used scales and parameters resulting into convergence of the RWM algorithm are provided
in Table 7.22 and 7.23. Notice that this model does not only have more parameters than the
previous models, but it also has more state variables. The state variables are the three Nelson-
Siegel variables βt and the eleven autoregressive noise state variables ε′t. This means that the table
with MLE values contains 14 additional parameter estimates compared with the parameters that
are estimated with the RWM algorithm.

First we remark that the starting point 1× 10−5 for σν (ca. -11.51 for log σν) seems to be so far
off a high density region that it results into bad convergence for the other parameters as wel. The
chain of log σν moves consistently towards around -8.8, so we have used a modified starting point
of -8.8 (ca. 0.00015 for σν). Then, we run the RWM algorithm with the MLE values as starting
point for the rest of the parameters and the provided scales for 30000 iterations. The trace plot
and histogram for each parameter is shown in Figure 7.24 and 7.25. We see interesting behaviour
of the chains for the parameters. First, notice that the MLE as starting point for the DNS-ARRW
model does not seem to be as good as in the previous models. For every parameter except for
µ1, µ2, µ3 and q the chains move significantly to other values. Especially the AR(1) parameters
αi, i = 1, . . . , 11 and σξ show a lot of movement from their original starting point. This shows
one of the drawbacks of finding the MLE with a deterministic minimizer compared to exploring
the parameter space stochastically with an MCMC method. It is likely that the used minimizer
has encountered some local extremum. Consequently, we consider the first 10000 iterations as a
so-called burn-in period, which are the iterations needed to reach the high density posterior region.
Moreover, the RWM run has a average acceptance ratio of ᾱ ≈ 0.1636, which indicates a reasonable
rate of convergence close to 0.234. Moreover, we have performed the Geweke diagnostic test on the
chains of each parameter with τA = 0.1, τB = 0.5 and a significance level of α = 0.05, of which the
results are provided in Table 7.26. The test indicates that the first and last segments of the chains
for each parameter show no significant difference. So, overall we assume that the chains of each
parameter has converged.

Table 7.22: The scales σRWM for each parameter of the DNS-ARRW model.

Parameter ψi λ µ1 µ2 µ3 log q log σν α1 α2 α3

Scale σi,RMW 0.00045 0.00013 0.00013 0.00013 0.0125 0.0328 0.018 0.0223 0.0175

Parameter ψi α4 α5 α6 α7 α8 α9 α10 α11 log σξ

Scale σi,RMW 0.0155 0.0303 0.0293 0.0333 0.028 0.027 0.0093 0.0093 0.021
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Table 7.23: The MLE values as RWM starting points ψ(0) of the parameters approximated by the L-BFGS-B minimizer and the
corresponding log-likelihood value for the DNS-ARRW model.

Parameter ψi λ β̂0
1 β̂0

2 β̂0
3 ε̂′01 ε̂′02 ε̂′03 ε̂′04 ε̂′05

Bounds (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)

Initial guess 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MLE value 0.04058 8× 10−5 −2× 10−5 −3× 10−5 −1× 10−5 −1× 10−5 −1× 10−5 −2× 10−5 −2× 10−5

Parameter ψi ε̂′06 ε̂′07 ε̂′08 ε̂′09 ε̂′010 ε̂′011 p µ1 µ2

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (−∞,∞) (−∞,∞)

Initial guess 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

MLE value −2× 10−5 −2× 10−5 −2× 10−5 −2× 10−5 −1× 10−5 −2× 10−5 0.98332 -0.00023 2× 10−5

Parameter ψi µ3 q σν α1 α2 α3 α4 α5 α6

Bounds (−∞,∞) (10−4,∞) (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)

Initial guess 0.0 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5

MLE value 4× 10−5 0.00392 1× 10−5 0.57525 0.64171 0.61361 0.62992 0.54652 0.54793

Parameter ψi α7 α8 α9 α10 α11 σξ

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞)

Initial guess 0.5 0.5 0.5 0.5 0.5 0.1

MLE value 0.55042 0.62659 0.79915 0.64509 0.99683 0.00033

Log-likelihood 16385
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Figure 7.24: Trace plot of the chains for each parameter of the DNS-ARRW model.

Figure 7.25: Histogram with the mean of the posterior distribution for each parameter of the
DNS-ARRW model.
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Table 7.26: The results of the Geweke diagnostic test for the chains of each parameter of the
DNS-ARRW model.

Parameter ψi λ µ1 µ2 µ3 q σν α1

Statistic |G| 0.20076 0.15447 0.13643 0.13241 0.11896 0.46536 0.56309

Means differ significantly? No No No No No No No

Parameter ψi α2 α3 α4 α5 α6 α7 α8

Statistic |G| 0.76768 0.53971 0.26085 0.31863 0.10559 0.83157 0.00641

Means differ significantly? No No No No No No No

Parameter ψi α9 α10 α11 σξ

Statistic |G| 0.15668 0.06212 0.07709 0.37153

Means differ significantly? No No No No

We use the MAPE again as the set of parameters for the in-sample analysis. Since the MLE
does not seem to be as close to the highest density region of the posterior as for the previous models,
we see that the MAPE is different from the MLE. The MAPE is provided in Table 7.27. Notice
that we provide the exponential transformation of MAPE value for the log-transformed parameters.
It seems that the shortest and two longest maturities show the most persistent “memory” of the
past state values, since the three autoregression parameters α1, α10 and α11 are above 0.9. For
the longest maturities this seems quite intuitive, because longer-term maturities tend to change
more gradually as those bond yields are associated with longer time horizons. However, it is quite
surprising that the shortest-term maturity also shows such persistence of past values in the process.
One would expect that the shortest-term maturities are more prone to news and unexpected short
term developments. However, as we will see in the in-sample analysis the high values of α1, α10 and
α11 seem to be mainly the result of the original Nelson-Siegel state variables βt having difficulty
with modeling the short and long-term ends of the yield curve.

Table 7.27: The MAPE values ψ̂MAPE for the DNS-ARRW model and the corresponding
log-likelihood (LL), BIC and AIC values.

Parameter ψi λ µ1 µ2 µ3 q σν α1

MAPE ψ̂MAPE
i 0.03163 -0.0002 −3.2× 10−6 −2.2× 10−5 0.00374 0.00015 0.94262

Parameter ψi α2 α3 α4 α5 α6 α7 α8

MAPE ψ̂MAPE
i 0.61878 0.79963 0.84313 0.58212 0.59090 0.53659 0.70086

Parameter ψi α9 α10 α11 σξ

MAPE ψ̂MAPE
i 0.71697 0.99686 0.99724 0.00026

Model fit measure LL BIC AIC

Value 16457 -32815 -32878
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7.3.2 In-Sample Analysis

In this subsection we discuss the in-sample results based on the MAPE parameters in the previous
subsection.

Estimated State Variables and Yields

Using the Kalman filter with the MAPE values for the model parameters and the MLE values as
initial values for the Kalman filter we obtain the estimated state variables (β̂t, ε̂

′
t). In Figure 7.28

the estimated state variables are shown and in Figure 7.29 the estimated yields resulting from the
estimated states are shown.

It seems that the additional observation noise states ε̂′t mostly affect the state variable β̂2,t
associated with the slope of the yield curve. The slope state variable moves more gradually and
does not reach zero after a short period around 2008. So, it looks like the observation noise states
ε̂′t adopt some of the slope effects on the yield curve. Additionally, the observation noise states
ε̂′t are most pronounced for the longest two maturities associated with ε̂′10,t and ε̂′11,t after 2008,

which corresponds with the smaller β̂2,t values after 2008. Between 2010 and 2014 the shortest-
term maturity of 24 months associated with ε̂′1,t is more pronounced. Moreover, it looks like
the periods of higher volatility of 2008-2012 and 2020-2021 correspond mainly with the longest
maturities ε̂′10,t, ε̂

′
11,t and to a lesser extent ε̂′1,t. This seems to be mainly due to the fact that the

original state variables βi, i = 1, 2, 3 have difficulty in modeling the short and long ends of the
yield curves. So, the observation noise state variables for those maturities ε̂′1,t, ε̂

′
10,t and ε̂

′
11,t need

to be more pronounced and as a result have higher AR(1) parameters α1, α10, α11. This becomes
more obvious if we look at the estimated yield curves in Figure 7.30. Notice that the term ε̂′t is

not dependent of the maturity τ in the observation equation as opposed to the term Λβ̂t, in which
entries of Λ are dependent on τ . This means that we cannot easily vary τ to obtain the yield for
maturities between the fixed maturities τ1 = 24, . . . , τ11 = 360 as with the benchmark DNS and
DNS-SN model. So, the estimated yield curves in Figure 7.30 are based on the estimated β̂t, while
the actual yield estimates for the observed maturities are based on all state variables and provided
as well for completeness. The yield curves that are shown are at the three dates where ε̂′1,t, ε̂

′
10,t

and ε̂′11,t are the most extreme. In Figure 7.30 the observed yield curve is shown together with
the estimated yield curve in July 2017 (minimum of ε̂′10,t), December 2013 (minimum of ε̂′11,t) and
January 2011 (maximum of ε̂′1,t). We can see that the yield estimates with only the state variables

β̂ are most accurate for maturities up to 120 months, but the estimates for the long-term maturities
of 240 and 360 months are quite off without ε̂′t.
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Figure 7.28: The estimated state variables β̂1,t, β̂2,t, β̂3,t and ε̂
′
1,t, . . . , ε̂

′
11,t for t = 1, . . . , 249 of the

DNS-ARRW model obtained by the Kalman filter.

Figure 7.29: The estimated yields ŷt = Λβ̂t + ε̂
′
t for t = 0, . . . , 249 for the DNS-ARRW model.
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Figure 7.30: The in-sample observed (crosses) and estimated yield curves based on the state

variables β̂t (smooth curves) and based on all states (circles) in July 2017 (blue), December 2013
(orange) and January 2011 (green). The estimated yields are based on the DNS-ARRW state
variables inside the parentheses in the legend.

Residuals Analysis

The residuals of the DNS-ARRW model are shown for each maturity in Figure 7.31. Recall that
we have modeled the observation noise νt as a Gaussian white noise, denoted by νt ∼ N (0,Σν).
For the previous models this did not seem as a realistic assumption, because the residuals showed
significant serial correlation. However, for the DNS-ARRW model we essentially model part of the
observation noise as an AR(1) process (ε′t), so we would expect that the remainder, νt, resembles
a white noise more. The plot of the residuals shows that the order of the error is at least one order
of magnitude smaller than the residuals of the benchmark DNS and DNS-SN model.
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Figure 7.31: Residuals of the estimated yields for each maturity with the DNS-ARRW model.

In order to know whether the residuals are governed by a white noise process, we perform the
Ljung-Box test again with a significance level of α = 0.05 and lag h = 1. The results of the Ljung-
Box test are provided in Table 7.32. We see that the residuals of the DNS-ARRW model are indeed
a white noise for every maturity except for maturity τ8 = 108 months. In order to keep the results
a bit organized we only note that the ACF and PACF of the residuals for every maturity except
for τ8 = 108 show only a significant correlation for lag zero as we would expect for a white noise.
Then, we focus only on the ACF and PACF of the residuals for maturity τ8 = 108, which are shown
in Figure 7.33 and notice that the ACF and PACF show a sharp decrease of correlation already
after lag one. Although, the correlations at lag h = 1, 2, 3 show slightly significant correlations we
can conclude that the residuals overall seem to be a white noise process.
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Table 7.32: Results of the Ljung-Box test for serial correlation in the residuals of the estimated
yields for each maturity with the DNS-ARRW model.

Maturity τi 24 36 48 60 72 84

p value 0.62737 0.71795 0.76524 0.24038 0.06023 0.13120

White noise? Yes Yes Yes Yes Yes Yes

Maturity τi 96 108 120 240 360

p value 0.05813 0.00818 0.22076 0.89934 0.29605

White noise? Yes No Yes Yes Yes

Figure 7.33: The ACF and PACF of the residuals of the estimated yields for the maturity of
τ8 = 108 months.

7.3.3 Forecasting Analysis

In this subsection we dive into the forecasting analysis of the one-month ahead forecast of the yield
curve in December 2021 and September 2008 for the DNS-ARRW model. For each maturity the
posterior predictive value is simultaneously simulated 1000 times. The forecasts are presented in
Figure 7.34. First, notice that the credible regions of the forecasts are quite wide. For the shortest-
term maturity we see that 95% of the simulated yields are inside a bandwidth of ca. 150 bps, between
-1.5% and 0.0%. So, although the DNS-ARRW model captures the yields that it has already seen
well, it has more difficulty in accurately forecasting the “direction” of the yields compared with the
benchmark DNS and DNS-SN models. Although, the forecast of the yield curve in September 2008
captures the shock in the the short-term maturity yields better due to the wider credible regions.
However, it would be preferable if the accuracy of the short-term forecast would not improve at
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the cost of less accurate forecasts of the medium-term and long-term maturities. Subsequently,
the standard deviation parameters σν , σξ and q have comparable orders of magnitude as their
benchmark DNS counterparts σ and q, so it seems unlikely that so much additional variability in
the simulations would stem from simulating (see steps 3 and 4 of Algorithm 3)

yt+1 ∼ N (Λβt+1 + ε
′
t+1,Σν), (7.4)[

βt+1

ε′t+1

]
∼ N

([
µ+ βt

Aε′t

]
,

[
Ση O

OT Σξ

])
. (7.5)

Consequently, it seems more likely that the variability of the DNS-ARRW forecast originates from
the relatively large uncertainty of the posterior samples of α2, . . . , α9. It could be that the combi-
nation of a large sample variance in the posterior for mostly the autoregression parameters results
into more variability in the simulated yields.

Figure 7.34: The one-month ahead forecast (dashed red line) of December 2021 (left) and
September 2008 (right) with 95% credible regions (red surface) and the uncertainty due to the
observation noise ±σν (blue surface).

Subsequently, we have already seen in the in-sample analysis in Figure 7.28 that there is quite
some difference between the AR(1) processes of the short, medium and long-term maturities. Recall
that we also assumed that all of these processes have equal variance by assuming they all have a
white noise term distributed as N (0, σ2

ξ ). It seems that this assumption could be too restrictive as
well and perhaps results into σξ being some “average” value that fits the best for all maturities, but
does not model the separate maturities well. Furthermore, notice that the uncertainty due to the
observation noise σν is even smaller for this model than the previous ones, which is the uncertainty
of the observed yields one would expect from only the model. One way we could tackle this issue
is comparable to how we modeled the distinct state noise terms for the DNS-SN model. We could
introduce distinct state noise terms for this model as well. However, a drawback of this extension is
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that the resulting model would have 14 state noise variance parameters, which means 12 additional
model parameters next to q and σξ. In order to prevent adding perhaps too much parameters,
we can assume that the various segments of the yield curve have equal variance. In particular, we
can assume that the short-term (24-36 months), medium-term (36-108 months) and the long-term
(120-360 months) segments of the yield curve have similar variances σS

ξ , σ
M
ξ , σL

ξ respectively. As a
result, we can define the noise variance Σξ of the autoregressive ε′1,t, . . . , ε

′
11,t as

Σξ =


ΣS

ξ ∅
ΣM

ξ

∅ ΣL
ξ

 ∈ R11×11, (7.6)

where ΣS
ξ = diag

(
(σS

ξ )
2, (σS

ξ )
2
)

∈ R2×2, ΣM
ξ = diag

(
(σM

ξ )2, . . . , (σM
ξ )2

)
∈ R6×6 and ΣL

ξ =

diag
(
(σL

ξ )
2, . . . , (σL

ξ )
2
)

∈ R3×3. We will use this approach of grouping the short, medium and

long-term maturity segments of the yield curve for the last model DNS-OVOSN in Section 7.5
when modeling the observation noise covariance Σ+

ε and the volatility loadings Γ.

7.4 Results of DNS-OV

In this section we discuss the results of the parameter estimation and the in-sample and forecasting
analysis for the DNS model with volatility modeled through the observation noise, DNS-OV in
short, as specified in (6.28). Recall that this model is given by



yt =
[
Λ Γ

] [βt

ε∗t

]
+ ε+t , ε+t ∼ N (0,Σ+

ε ),[
βt

ε∗t

]
=

[
µ

0

]
+

[
Φ 0

0 0

][
βt−1

ε∗t−1

]
+

[
ηt

ε∗t

]
,

[
ηt

ε∗t

]
∼ N

(
0,

[
Ση 0

0 ht

])
,

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1,

(7.7)

with parameters ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ
+, q, γ0, γ1, γ2,Γ1, . . . ,Γ11}.

7.4.1 Parameter Estimation

In this subsection we provide the scales and starting points that result into convergence of the RWM
algorithm. Like the DNS-ARRW model, the DNS-OV model has an additional state variable. This
means that we have to find starting points for four state variables, the original state variables
of the Nelson-Siegel model βt and the “common shock” state variable ε∗t . Recall that the term
(ε∗t−1)

2 is approximated by ((ε̂∗)t−1
t−1)

2 + (pε)
t−1
t−1. So, the approximation of the GARCH process is

dependent on the variance estimation (pε)
t−1
t−1 of the common shock state variable ε∗t . Consequently,

due to the possible sensitivity of the GARCH process to the value of (pε)
t−1
t−1 we define the initial

covariance matrix as P 0
0 = diag(p01, p

0
2, p

0
3, p

0
ε) to have a more accurate initial state when employing

the Kalman filter. Furthermore, recall that we have fixed γ0 = 0.0001, so this parameter is not
taken into account when we estimate parameters. In this subsection we first discuss the RWM run
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with the volatility loadings Γ1, . . . ,Γ11 with scales as in Table 7.36 and the MLE values as starting
points shown in Table 7.35 except for γ1 and γ2, for 30000 iterations. Particularly, the starting
points for γ1 and γ2 are set to 0.7 and 0.05 respectively for better convergence as the chains tend
to those values starting from their MLE value. Next, we will discuss the RWM run without the
volatility loadings with scales as in Table 7.38 and the same starting points as the run with the
volatility loadings, which has been run for 50000 iterations.
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Table 7.35: The MLE values as RWM starting points ψ(0) of the parameters approximated by the L-BFGS-B minimizer and the
corresponding log-likelihood value for the DNS-OV model.

Parameter ψi λ β̂0
1 β̂0

2 β̂0
3 ε̂∗0 p01 p02 p03 p0ε

Bounds (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (10−4,∞) (10−4,∞) (10−4,∞)

Initial guess 0.1 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

MLE value 0.04037 1× 10−5 0.0 −1× 10−5 0.0 0.9999 0.99986 0.9998 1.0

Parameter ψi µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 σ+ q γ1

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (10−4,∞) (10−4,1)

Initial guess 0.0 0.0 0.0 0.99 0.99 0.99 0.01 0.01 0.45

MLE value −3× 10−5 -0.00044 -0.00069 0.99333 0.97646 0.97039 0.00043 0.0028 0.43733

Parameter ψi γ2 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Bounds (10−4,1) (10−5,∞) (10−5,∞) (10−5,∞) (10−5,∞) (10−5,∞) (10−5,∞) (10−5,∞) (10−5,∞)

Initial guess 0.45 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MLE value 0.43075 0.04923 0.05653 0.07105 0.08012 0.09581 0.10413 0.11165 0.11645

Parameter ψi Γ9 Γ10 Γ11

Bounds (10−5,∞) (10−5,∞) (10−5,∞)

Initial guess 0.1 0.1 0.1

MLE value 0.12224 0.11382 0.08914

Log-likelihood 15850
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Random Walk Metropolis with Volatility Loadings

Recall that we already gave a preview of the slow convergence of the volatility loadings Γ1, . . . ,Γ11

in Section 6.3.1. In Figure 7.37 the matrix correlation plot of the volatility loadings Γ1, . . . ,Γ11

are shown for a RWM run with scales as in Table 7.37 and starting points as mentioned at the
beginning of this section. Then, we can see the high mutual correlation between Γ1, . . . ,Γ11, which
is increasing as the maturities get closer to each other. Consequently, we fix these parameters at
the maximum likelihood estimation values as provided in Table 7.35 and we focus mainly on the
GARCH(1,1) parameters γ1 and γ2 in order to model parameter uncertainty of the volatility process.
So, the results of the in-sample and forecasting analysis are based on the posterior approximation
of the remainder of the parameters and Γ1, . . . ,Γ11 fixed as we will see in the remaining part of this
section. Finally, we note that the average acceptance ratio for this RWM run is ᾱ ≈ 0.1047, which
is already quite low with the chains of the volatility loadings that still have to converge.

Table 7.36: The scales σRWM for each parameter of the DNS-OV model for a RWM run with the
volatility loadings Γ1, . . . ,Γ11.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ+

Scale σi,RMW 0.00023 0.00017 0.00017 0.00016 0.0038 0.0039 0.0038 0.0039

Parameter ψi log q γ1 γ2 Γ1 Γ2 Γ3 Γ4 Γ5

Scale σi,RMW 0.0078 0.019 0.0065 0.00092 0.0009 0.00089 0.00089 0.00089

Parameter ψi Γ6 Γ7 Γ8 Γ9 Γ10 Γ11

Scale σi,RMW 0.00089 0.00089 0.00091 0.00091 0.00093 0.00095
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Figure 7.37: The matrix correlation plot of the samples of the DNS-OV volatility loading parameters Γ1, . . . ,Γ11 from a RWM
run with 30000 iterations.
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Random Walk Metropolis without Volatility Loadings

Recall that the starting points for the RWM run without the volatility loadings are the same as
with the volatility loadings. The used scales resulting into convergence are provided in Table 7.38.

Table 7.38: The scales σRWM for each parameter of the DNS-OV model without the volatility
loadings Γ1, . . . ,Γ11.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σ+

Scale σi,RMW 0.00025 0.00018 0.0002 0.00018 0.0045 0.006 0.005 0.009

Parameter ψi log q γ1 γ2

Scale σi,RMW 0.013 0.025 0.012

First, we note that the average acceptance ratio of this RWM run is ᾱ ≈ 0.2539, which in-
dicates a good rate of convergence. The trace plots of each parameter is shown in Figure 7.39
and shows reasonable white noise patterns for every parameter. In addition, the corresponding
histograms for each parameter are shown in Figure 7.40. Particularly, the results for the param-
eters λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σ

+, q are similar to the previous models as they concentrate narrowly
around similar mean values. On the contrary, the results for the GARCH(1, 1) parameters γ1, γ2
show a relatively high sample variance as 95% of the samples for the parameters are in the range
γ1 ∈ (0.615, 0.899) and γ2 ∈ (0.003, 0.132). Recall that γ1, γ2 indicate the amount of volatility that
can be attributed to either the common shock process ε∗t or to the volatility ht itself respectively
as the GARCH(1, 1) process is given by

ht = 0.0001 + γ1
(
ε∗t−1

)2
+ γ2ht−1. (7.8)

Then, the uncertainty for these parameters could be due to the yield observations not providing
strong enough evidence for a particular value of γ1 and to a lesser extent γ2. Perhaps the monthly
yield data exhibits too little volatility to provide precise estimates for these parameters, leading to
a wider range of plausible values. Additionally, the results of γ1 and γ2 are also in contrast with
the estimated values of Koopman et al. (2010), which are γ1 ≈ 0.471 and γ2 ≈ 0.506. In our case
the volatility seems to originate mainly from the common shock process ε∗t and to a small extent
from the volatility process ht itself. This means that the estimated volatility is prone to changes in
the common shock process, but the effects do not persist for a longer period.
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Figure 7.39: Trace plot of the chains for each parameter of the DNS-OV model.
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Figure 7.40: Histogram with the mean of the posterior distribution for each parameter of the
DNS-OV model.

Moreover, we have performed the Geweke test on the chains of each parameter with τA =
0.1, τB = 0.5 and a significance level of α = 0.05. The results of the test are provided in Table 7.41
and indicate that the means of the first and last segments of the chains are not significantly different.
So, together with the results of the trace plot we assume that the chains of every parameter has
converged. Furthermore, we will use the MAPE again for the in-sample analysis as provided in
Table 7.42. Notice that the MAPE values result into a relatively high log-likelihood and better BIC
and AIC values than the benchmark DNS, which are 15333, -30616 and -30648 respectively.

Table 7.41: The results of the Geweke diagnostic test for the chains of each parameter of the
DNS-OV model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3

Statistic |G| 0.25450 0.01977 0.11419 0.03951 0.05494 0.11137 0.05938

Means differ significantly? No No No No No No No

Parameter ψi σ+ q γ1 γ2

Statistic |G| 0.00094 0.05955 0.26693 0.29422

Means differ significantly? No No No No
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Table 7.42: The MAPE values ψ̂MAPE for the DNS-OV model and the corresponding
log-likelihood (LL), BIC and AIC values.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3

MAPE ψ̂MAPE
i 0.04068 1× 10−6 -0.00038 -0.0006 0.98866 0.97613 0.97465

Parameter ψi σ+ q γ1 γ2

MAPE ψ̂MAPE
i 0.00043 0.0028 0.81126 0.0036

Model fit measure LL BIC AIC

Value 15850 -31573 -31654

7.4.2 In-Sample Analysis

In this subsection we present the results for the in-sample analysis for the DNS-OV model. Notice
that this model has an additional volatility related state variable, so we also provide an estimation
of the volatility as opposed to the previous models.

Estimated State Variables and Yields

We use the Kalman filter with the additional estimation of the GARCH(1, 1) process as described

in Subsection 5.2.2 to obtain the estimates of the state variables (β̂, ε̂∗). We have used the MLE

values of the initial state (β̂0,
(
ε̂∗0
)
) and the initial standard deviations p01, p

0
2, p

0
3, p

0
ε for the Kalman

filter as in Table 7.35 and the MAPE values as in Table 7.42.
The results of estimating the state variables and the yields are shown in Figure 7.43. It is

interesting to see that the common shock state variable ε̂∗t seems to affect the curvature β̂3,t the
most, compared to the estimated state variables of the benchmark DNS model. Moreover, we can
see that the common shock process is most significant between 2008 and 2014. This period coincides
with yield curves that decrease quite significantly and the range between the short and long-term
maturity yields increases. In order to better grasp the behaviour of the common shock process
ε̂∗t we compare the yield curves in January 2009 and December 2010 of the first two peaks of ε̂∗t
with the yield curves in January 2003 and January 2020 with relatively small ε̂∗t values, which are

shown in Figure 7.44. We note that the yield curves are based on the state variables β̂1, β̂2, β̂3
again, since it is difficult to interpolate the intermediate yields correctly with the additional Γε̂∗t
term similar to the DNS-ARRW model. Nevertheless, the yield curves still show which maturities
and in which way the common shock process ε̂∗t affects the most. For completeness, we have also
provided the actual yield estimates based on all state variables. Then, we can see that the process
ε̂∗t is not very pronounced for quite flat yield curves as in January 2020. Moreover, it seems that
ε̂∗t is most pronounced if the yield curve has a large range of yields. Specifically, it seems that a
large ε̂∗t is the case when the yield curve has a quite steep medium-term segment as in January
2009 and December 2010. Although, the medium-term segment of the yield curve in January 2003
also shows some general steepness. In particular, the medium-term yields range ca. 80 bps between
the medium-term maturities (48 vs 108 months) in January 2003, while that difference is around
120 and 150 bps in January 2009 and December 2010 respectively. This is in line with the common
shock process ε̂∗t mainly affecting the curvature β̂3,t, which has most effect on the medium-term
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maturities of the yield curve. So, it seems that ε̂∗t models some underlying process affecting the
volatility mainly through medium-term maturities.

Figure 7.43: The estimated state variables β̂1,t, β̂2,t, β̂3,t and ε̂
∗
t for t = 1, . . . , 249 obtained by the

Kalman filter and the estimated yields ŷt = Λβ̂t + Γε̂∗t with the DNS-OV model.
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Figure 7.44: The in-sample observed (crosses) and estimated yield curves based on only the state

variables β̂t (smooth curves) and based on all states (circles) in January 2003 (blue), January
2009 (orange), December 2010 (green) and January 2020 (red). The estimated yields are based on
the DNS-OV state variables inside the parentheses in the legend.

Recall that the volatility for the yields of some maturity y(τi) is given by multiplying the
squared volatility loading Γ2

i , which is the maturity-specific volatility factor, with the volatility
ht, which is the variance of the common shock process ε̂∗t . In Figure the values of Γ1, . . . ,Γ11 of
maturity 24, . . . , 360 respectively are presented. We can see that the volatility loading increases
from a maturity of 24 months until it reaches the highest volatility loading at a maturity of 120
months before decreasing for the maturities of 240 and 360 months. This suggests that the common
volatility ht is more prominent for the medium-term maturities around 120 months and the long-
term maturities. The volatility loadings are based on the entire in-sample interval from March
2001 to November 2021, so the values could indicate that over the whole period bond yields with a
maturity around 120 months experience relatively more volatility than the shorter-term maturities.
Then, in Figure 7.46 the volatility is shown for the yields with maturities 24, 72 and 360 months,
given by Γ2

1ht,Γ
2
5ht and Γ2

11ht respectively. Notice that the volatility resembles the common shock
process, which is not too surprising as γ2 is close to zero. Consequently, this leaves the volatility ht
mainly affected by the term γ1

(
ε̂∗t−1

)2
, which can be seen in the fact that ht shows quite sudden

peaks that do not persist longer through time.
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Figure 7.45: The values of the DNS-OV volatility loadings Γ1, . . . ,Γ11 for maturities 24, . . . , 360
months respectively.

Figure 7.46: The volatility process ht of the DNS-OV model and the volatilities Γ2
iht for

i = 1, 5, 11 corresponding to maturities of 24, 72 and 360 months respectively.

Residuals Analysis

The residuals of the yields of the DNS-OV model compared with the benchmark DNS model are
shown for each maturity in Figure 7.47. Recall that the observation noise ε+t in this model is
assumed to be a white noise distributed as ε+t ∼ N (0,Σ+

ε ), so one would expect the residuals to
show no serial correlation. We can see that the DNS-OV model estimates the yields more accurately
for the for the longer-term maturities of 96 months to 360 months. Moreover, the residuals for the
short-term and medium-term maturities of 24 to 84 months are estimated quite similarly to the
benchmark DNS model. So, the greatest advantage of the DNS-OV model seems to be in the
accuracy of the long-term maturities of the yield curve. Subsequently, we perform a Ljung-Box test
with significance level α = 0.05 and lag h = 1 to test whether the residuals show serial correlation.
The results of the test are provided in Table 7.48. Notice that the p values for the residuals of each
maturity is very low indicating that the residuals for the DNS-OV yield estimates are not a white
noise process significantly.
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Figure 7.47: Comparison of the residuals of the estimated yields for each maturity between the
DNS-OV model and the benchmark DNS model.

Table 7.48: Results of the Ljung-Box test for serial correlation in the residuals of the estimated
yields for each maturity with the DNS-OV model.

Maturity τi 24 36 48 60 72 84

p value 1.5× 10−16 1.9× 10−25 3.6× 10−24 4.9× 10−22 2.7× 10−21 5.5× 10−25

White noise? No No No No No No

Maturity τi 96 108 120 240 360

p value 1.8× 10−25 3.5× 10−30 1.4× 10−31 1.9× 10−38 1.6× 10−24

White noise? No No No No No

7.4.3 Forecasting Analysis

In this subsection we discuss the results of the one-month ahead forecasts of the yield curve in
December 2021 and September 2008. The posterior predictive values are simulated 1000 times
simultaneously for each maturity. The forecasts are shown in Figure 7.49. First, we notice that the
95% credible regions of the forecast yield curves have some “bulge” for the medium-term maturities,
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which we have not seen for the previous models. So, it seems that the DNS-OV model has relatively
more variability in the medium-term maturities compared with the other maturities. This could
be due to the common shock process ε̂∗t seemingly affecting the medium-term yields more than the
yields of other maturities. Moreover, it is interesting to see that modeling the volatility process
explicitly does not result in a better forecast of the shape of the yield curve compared to the
benchmark DNS model for the black swan scenario in September 2008. Similarly as the DNS-
ARRW model, this could be due to the observation noise σ+ and the state noise variances q being
the same across all maturities resulting in a higher variability for maturities that might have a lower
variance if modeled separately. Consequently, we argue that these results give additional reason
to model distinct state noise variances and model the observation noise variances grouped for the
different segments of the yield curve.

Figure 7.49: The one-month ahead forecast (dashed red line) of December 2021 (left) and
September 2008 (right) with 95% credible regions (red surface) and the uncertainty due to the
observation noise ±σ+ (blue surface).

7.5 Results of DNS-OVOSN

In this section we discuss the results of the parameter estimation, and the in-sample and forecasting
analysis for the last model, the DNS-OVOSN model. This model is a combination of all the previous
findings from the results and the literature. Particularly, this is the DNS model with GARCH
observation volatility based on Koopman et al. (2010), but with distinct state noise variances and
the observation noise variances as well as the volatility loadings grouped by the short (24, 36
months) , medium (48 to 108 months) and long-term (120 to 360 months) segments of the yield
curve. Recall that the model is specified in 6.33 and given by
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Ση 0

0 ht

])
,

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1,

(7.9)

with parameters ψ = {λ, µ1, µ2, µ3, ϕ1, ϕ2, ϕ3, σS , σM , σL, q1, q2, q3, γ0, γ1, γ2,ΓS ,ΓM ,ΓL}.

7.5.1 Parameter Estimation

In this subsection we elaborate on the RWM run that results into convergence for the chains of
each parameter. In particular, we provide the starting points and scales resulting into convergence
in Table 7.50 and Table 7.51. However, we first note that due to slow convergence we have set the
starting points for γ1, γ2 as 0.7 and 0.2 respectively instead of their MLE values. Then, we also
note that this model also has an additional common shock state variable ε∗t that has a GARCH
variance ht. Since the GARCH process requires an approximation to employ the Kalman filter, we
define the initial covariance matrix as P 0

0 = diag(p01, p
0
2, p

0
3, p

0
ε) again to have a more accurate initial

guess for the log-likelihood computation. Moreover, for this model we have again fixed γ0 = 0.0001.
Additionally, we note that the high correlation between ΓS ,ΓM ,ΓL and the fact that they represent
values in relation to each other results into bad convergence similar to the DNS-OV model. So,
we use the MLE values in Table 7.51 for the volatility loadings again and use the RWM algorithm
for the other parameters. Moreover, this RWM run has been run for 60000 iterations and has an
average acceptance ratio of ᾱ ≈ 0.1696. This indicates a reasonable rate of convergence, especially
with the high dimensionality (15 parameters to be estimated) of this model in mind.

Table 7.50: The scales σRWM for each parameter of the DNS-OVOSN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 log σS

Scale σi,RMW 0.00027 0.00018 0.0002 0.00035 0.0045 0.0065 0.0095 0.021

Parameter ψi log σM log σL log q1 log q2 γ1 γ2

Scale σi,RMW 0.01 0.015 0.016 0.017 0.029 0.0135

Then, the results are shown as a trace plot in Figure 7.52 and the histogram of the distri-
butions of each parameter are shown in Figure 7.53. We notice that the chains of the param-
eters converge relatively well, but the transformed state noise variance parameters log q2, log q3,
the GARCH parameters γ1, γ2 and to a lesser extent the transformed observation noise variances
log σS , log σM , log σL seem to converge a bit slower than the GARCH parameters and the state noise
variance counterpart q of the DNS-OV model. As a consequence, the scales of those parameters
are relatively large, which result into more uncertain parameter estimation. Part of the slower
convergence of γ1, γ2 can be due to the volatility loadings being less specific as not every maturity
has its own volatility loading, but is grouped together in its respective segment of the yield curve.
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Additionally, the slower convergence of the observation noise variance parameters could be due to
a possible mismatch between the maturities we have grouped together and the actually related ma-
turities. Subsequently, we have also performed the Geweke diagnostic test with τA = 0.1, τB = 0.5
and a significance level of α = 0.05, of which the results are presented in Table 7.54. We can see
that the test indicates that the means of the first and last segments of the chains of each parameter
do not differ significantly. So, considering the trace plot and the Geweke test results, it is reasonable
to assume that the chains of the parameters have converged.

Subsequently, the MAPE is used for the in-sample analysis again and is provided in Table 7.55.
Interestingly, the GARCH parameters γ1, γ2 for the DNS-OVOSN model are similar to the values of
the GARCH parameters for the DNS-OV model as both are close to 0.8 and 0.01 respectively. More-
over, we notice that the observation noise standard deviation σ+

L for the the long-term maturities
is more than two times larger than the observation noise standard deviations of the medium-term
and short-term maturity yields σ+

M and σ+
S respectively. This could indicate that the DNS-OVOSN

model has more difficulty in estimating the long-term maturities. Additionally, we also notice that
the state noise standard deviations q1, q2 and q3 are similar to the state noise standard deviations
of the DNS-SN model, which are 0.00203, 0.0035 and 0.00501 for β1,t, β2,t, β3,t respectively for the
latter model. Finally, we can see that the BIC and AIC values for this model with the MAPE
values are in-between the previous models as its goodness-of-fit is better than the benchmark DNS
(BIC: -30616, AIC: -30648) and DNS-SN model (BIC: -30723, AIC: -30762), but worse than the
DNS-ARRW model (BIC: -32815, AIC: -32878) and DNS-OV model (BIC: -31573, AIC: -31654).
The large difference with the DNS-OV model is somewhat remarkable, since the DNS-OVOSN has
more flexibility in the noise processes, but has more restricted volatility loadings. So, one could
argue that the volatility loadings have a greater benefit for the in-sample fit compared to distinct
noise variance.
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Table 7.51: The MLE values as RWM starting points ψ(0) of the parameters approximated by the L-BFGS-B minimizer and
the corresponding log-likelihood value for the DNS-OVOSN model.

Parameter ψi λ β̂0
1 β̂0

2 β̂0
3 ε̂∗0 p01 p02 p03 p0ε

Bounds (10−4,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞) (10−4,∞) (10−4,∞) (10−4,∞) (10−4,∞)

Initial guess 0.1 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

MLE value 0.05046 3× 10−5 0.0 −1× 10−5 0.0 0.99959 0.99956 0.99964 1.0

Parameter ψi µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 σ+
S σ+

M σ+
L

Bounds (−∞,∞) (−∞,∞) (−∞,∞) (−1,1) (−1,1) (−1,1) (10−4,∞) (10−4,∞) (10−4,∞)

Initial guess 0.0 0.0 0.0 0.99 0.99 0.99 0.01 0.01 0.01

MLE value -0.00014 -0.00057 -0.00174 0.99696 0.96545 0.94801 0.00036 0.00042 0.00097

Parameter ψi q1 q2 q3 γ1 γ2 ΓS ΓM ΓL

Bounds (10−4,∞) (10−4,∞) (10−4,∞) (10−4,1) (10−4,1) (10−5,∞) (10−5,∞) (10−5,∞)

Initial guess 0.01 0.01 0.01 0.45 0.45 0.1 0.1 0.1

MLE value 0.00172 0.00302 0.00511 0.42753 0.40834 0.02793 0.0496 0.02986

Log-likelihood 15574
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Figure 7.52: Trace plot of the chains for each parameter of the DNS-OVOSN model.

Figure 7.53: Histogram with the mean of the posterior distribution for each parameter of the
DNS-OVOSN model.
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Table 7.54: The results of the Geweke diagnostic test for the chains of each parameter of the
DNS-OVOSN model.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 σS

Statistic |G| 0.14260 0.00862 0.02018 0.19667 0.00349 0.07271 0.20770 0.10458

Means differ significantly? No No No No No No No No

Parameter ψi σM σL q1 q2 q3 γ1 γ2

Statistic |G| 0.02203 0.00759 0.32864 0.29421 0.37467 0.39821 0.51710

Means differ significantly? No No No No No No No

Table 7.55: The MAPE values ψ̂MAPE for the DNS-OVOSN model and the corresponding
log-likelihood (LL), BIC and AIC values.

Parameter ψi λ µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 σS

MAPE ψ̂MAPE
i 0.05012 -0.00017 -0.00049 -0.00181 0.99414 0.97066 0.94294 0.00036

Parameter ψi σM σL q1 q2 q3 γ1 γ2

MAPE ψ̂MAPE
i 0.00043 0.00095 0.00174 0.00314 0.00497 0.87940 0.01600

Model fit measure LL BIC AIC

Value 15576 -31047 -31114

7.5.2 In-Sample Analysis

In this subsection we discuss the in-sample results of the DNS-OVOSN model. Since this model
also has a volatility process, we will compare the estimated volatility of the DNS-OVOSN model
with the DNS-OV model.

Estimated State Variables and Yields

We use the Kalman filter in a similar way as we have used for the DNS-OV model to estimate
the state variables (β̂t, ε̂

∗
t ). We note that we have used the MLE values of the initial state and

initial standard deviations for the Kalman filter as in Table 7.51 and the MAPE values of the model
parameters as in Table 7.55 for this analysis.

The results of the state and subsequent yield estimation are presented in Figure 7.56. The
original Nelson-Siegel state variables are similar to the estimates of the benchmark DNS model.
Although, we can see that the DNS-OVOSN model also seems to affect the curvature β̂3,t the most.
Moreover, the common shock process ε̂∗t shows interesting behaviour. First, the common shock
process exhibits a quite large negative shock in 2003 and around 2015, which we have not seen
for the DNS-OV model. In addition, the process ε̂∗t shows more smaller negative shocks along the
entire period of 2001 to 2021, whereas the common shock process for the DNS-OV model generally
showed positive shocks. Secondly, both models DNS-OVOSN and DNS-OV show extreme positive
peaks between 2008 and 2012, but the DNS-OVOSN model shows less persistent behaviour of ε̂∗t .
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Interestingly, the common shock of DNS-OVOSN seems to model the volatility following both the
dotcom crash (2000-2002) and the financial crisis (2008-2009) as opposed to the DNS-OV model
that has only estimated high volatility around 2008 to 2012. The negative shock coincides with a
short period, in which the yields decrease significantly while the medium-term yields stay closer to
the short-term yields. On the contrary, the positive shocks seem to coincide with a period that also
sees significant decreases of yields, but with medium-term yields that seem further away from both
short-term and long-term yields. In order to have a better grasp of these yield curves we show the
yield curves on three dates in a similar way as the DNS-ARRW and DNS-OV models in Figure 7.57.
Recall that these yield curves are based on the state variables β̂t, so without the common shock
process. However, in order to show the effect of ε̂∗t on the estimated yields, the estimates based on
all state variables are shown as well. The three considered dates are May 2003 (negative peak of ε̂∗t ),
May 2009 (positive peak of ε̂∗t ) and January 2020, which sees a relatively low value of ε̂∗t . Then, we
can see that the observed yields in May 2003 have short-term and medium-term segments that are
increasing more linearly and have ca. 200 bps between the maturities of 24 and 120 months, while
the gap between the maturities of 120 and 360 months is ca. 90 bps. In contrast, the observed
yields in May 2009 increase faster for the short-term maturities before increasing slowly for the
long-term maturities. Specifically, the gap between the maturities of 24 and 120 months is ca. 300
bps, whereas the gap between the maturities of 120 and 360 months is around 50 bps. So, it seems
that ε̂∗t models some underlying process affecting the volatility not only in increases or decreases
of the medium-term yields like the DNS-OV model, but it also seems to affect the “steepening” or
“flattening” of the yield curve.

Figure 7.56: The estimated state variables β̂1,t, β̂2,t, β̂3,t and ε̂
∗
t for t = 1, . . . , 249 obtained by the

Kalman filter and the estimated yields ŷt = Λβ̂t + Γε̂∗t with the DNS-OVOSN model.
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Figure 7.57: The observed (crosses) and estimated yield curves based on only the state variables

β̂t (smooth curves) and based on all states (circles) in May 2003 (blue), May 2009 (orange) and
January 2020 (green). The estimated yields are based on the DNS-OVOSN state variables inside
the parentheses in the legend.

Then, recall that the volatility process ht is the variance of the common shock process ε̂∗t . The
volatility loadings determine to what extent this volatility is translated to each specific maturity.
For the DNS-OVOSN model we have assumed that each segment of the yield curve has its own
volatility loading ΓS ,ΓM and ΓL for the short, medium and long-term maturities respectively. In
Figure 7.58 the volatility loadings of the DNS-OVOSN model are compared with the volatility
loadings of the DNS-OV model. Recall that restricting the number of volatility loadings had
significant impact on the in-sample fit of the DNS-OVOSN model, but it allows for less parameters
and consequently for less overfitting. We can see that the volatility loadings for the DNS-OVOSN
model are lower than the loadings of the DNS-OV. This might be due to the modeling of distinct
state noise variances and observation noise variances. Specifically, if the noise processes are more
“tailored” to each state or segment of the yield curve, then we can expect that the noise process can
explain more of the random errors between the estimated and observed yields. This could result
into less need for the volatility for each maturity to explain the random errors, resulting into smaller
volatility loadings. Additionally, the volatility loadings of the DNS-OVOSN model seem to follow a
similar pattern as the loadings of the DNS-OV model, in which the loadings increase and decrease
as the maturity increases. Subsequently, the three volatility loadings of DNS-OVOSN result into
three types of volatility. In particular, in Figure 7.59 the short, medium and long-term volatility
processes Γ2

Sht,Γ
2
Mht,Γ

2
Lht are shown together with the volatility loadings of the DNS-OV model

for the maturities of 24, 72 and 360 months. Similar to the common shock process, we see that
there is quite some volatility around 2003, 2009 and 2015 for the DNS-OVOSN model, whereas the
volatility of the DNS-OV model concentrates mainly around 2008 to 2012.



116 CHAPTER 7. RESULTS

Figure 7.58: The values of the DNS-OVOSN volatility loadings ΓS ,ΓM ,ΓL (blue) compared with
the DNS-OV volatility loadings Γ1, . . . ,Γ11 (orange) for maturities 24, . . . , 360 months
respectively.

Figure 7.59: Comparison between the volatility process ht of the DNS-OVOSN model (blue) and
the DNS-OV model (red) together with the DNS-OVOSN volatilities Γ2

Sht,Γ
2
Mht,Γ

2
Lht (blue) and

the DNS-OV volatilities Γ2
1ht,Γ

2
5ht,Γ

2
11ht (red) corresponding to maturities of 24, 72 and 360

months.

Residuals Analysis

The residuals of the yields estimated by the DNS-OVOSN model are compared with the benchmark
DNS model for each maturity in Figure 7.60. Similar to the previous models we have assumed that
the observation noise follows a Normally distributed white noise ε∗t ∼ N (0,Σ+

ε ), so we would expect
that the residuals show no serial correlation. We can see that the DNS-OVOSN model seems to
estimate the short-term maturities of 24 and 36 months quite well and even show improvement
compared to the benchmark DNS model. Subsequently, the medium-term maturities of 48 to 108
seem to be comparable to the benchmark DNS model and do not show the same improvements as
the DNS-OV model. Finally, the residuals of the long-term maturities of 120 to 360 months seem
to perform comparable or to some extent worse than the benchmark DNS model. In particular,
the DNS-OVOSN model seems to have difficulty with estimating the yields of the longest-term
maturity of 360 months. We have seen that grouping the volatility loadings by segments of the
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yield curve resulted into less in-sample performance based on the BIC and AIC values compared
with the DNS-OV model. So, the worse performance on the longest-term maturity could be caused
by a suboptimal grouping of the 360 months maturity with the 240 and 120 months maturities as
one long-term segment with the same observation noise variance and volatility loading.

Figure 7.60: Comparison of the residuals of the estimated yields for each maturity between the
DNS-OVOSN model and the benchmark DNS model.

Then, we perform a Ljung-Box test with significance level α = 0.05 and lag h = 1 to test
whether the residuals resemble a white noise process. The results are provided in Table 7.61. We
note that the p values for the residuals of every maturity are significantly low, which indicates that
the residuals of the yields estimated by the DNS-OVOSN model show significant correlation. So,
the residuals are not likely a white noise process.
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Table 7.61: Results of the Ljung-Box test for serial correlation in the residuals of the estimated
yields for each maturity with the DNS-OVOSN model.

Maturity τi 24 36 48 60 72 84

p value 3.0× 10−18 6.1× 10−21 8.7× 10−28 4.0× 10−30 1.6× 10−26 1.4× 10−32

White noise? No No No No No No

Maturity τi 96 108 120 240 360

p value 3.9× 10−28 4.1× 10−27 3.7× 10−35 3.7× 10−32 5.6× 10−45

White noise? No No No No No

7.5.3 Forecasting Analysis

In this subsection we discuss the results of the one-month ahead forecasts of the yield curve in
December 2021 and September 2008. Again, for each maturity the posterior predictive values are
simultaneously simulated 1000 times. Notice that the 95% credible regions have a much smaller
“bulge” around the medium-term maturities compared with the DNS-OV forecasts. So, it seems
that the variability of the medium-term yields is not significantly affected. This is in line with our
in-sample findings that the common shock process ε̂∗t seems to affect the medium-term yields more
in the “steepening” or “flattening” of the yield curve as opposed to the common shock process of
the DNS-OV model that seemingly affects the yields across the maturities. Moreover, the increase
of the yields and the shape of the yield curve in December 2021 seem to be reasonably forecast as
they are inside the credible region and close to the mean of the forecasts. On the other hand, the
forecast of the shortest-term maturity of 24 months seems to be further away from the observed
yield than was the case for the DNS-OV model, but not by a large amount. In particular, the
absolute difference between the lower bound of the 95% credible region of the DNS-OVOSN for
the 24 month maturity is 21 bps compared to the DNS-OV model with 18 bps. In summary, the
DNS-OVOSN seems to have a comparable one-month ahead forecasting performance even though
it has more restricted volatility loadings.
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Figure 7.62: The one-month ahead forecast (dashed red line) of December 2021 (left) and
September 2008 (right) with 95% credible regions (red surface) and the uncertainty due to the
observation noise ±σ+ (blue surface).

7.6 Comparison with Current Model and Method

In this section we compare the explored models with the current model and method that is employed
by the DSTA, as described in Subsection 6.2.1. We will compare the current model and method
with our explored models and the Bayesian approach for in-sample performance and forecasting
performance.

7.6.1 In-Sample Comparison

As aforementioned, in this subsection we compare all the explored model with the current model.
Notice that for the current model we have no log-likelihood approximation as is the case for the
explored state-space models. So, we cannot compare the current model based on goodness-of-fit
measures as the BIC or the AIC. Consequently, we will use the so-called root mean squared error,
or RMSE in short. We will compute the RMSE for each maturity for every model, defined as

RMSE(τi) =

√√√√ T∑
t=1

(ŷt(τi)− yt(τi))
2

T
, (7.10)

where ŷt(τi) is the estimated yield at time t for maturity τi, yt(τi) is the corresponding observation
of the yield at time t and T = 249. Additionally, we also compute the total RMSE of every model,
which is defined as

Total RMSE =

M∑
i=1

RMSE(τi), (7.11)
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where M denotes the total number of maturities (M = 11 in our case). In Table 7.63 the RMSE
values of the models are given for each maturity and in the last row the total RMSE is provided.
These in-sample RMSE values are also visualized in Figure 7.64 for each maturity. Together the
values give a indication of how much the in-sample yield estimations deviate from the observed
yields. We have divided the linear yield curve models without volatility and the nonlinear yield
curve model with volatility modeling.

First, we notice that the DNS-ARRW model outperforms all the other models with regard to
fitting in-sample yield data. In the one-step ahead forecasting analysis of the DNS-ARRW model in
Subsection 7.3.3 we have seen that the 95% credible region of the forecast was quite wide compared
to the other models. This can be put into two perspectives. On the one hand, this could mean
that the DNS-ARRW model perhaps is overfitting the in-sample yield data, which results into less
accurate forecasts of out-of-sample yields. On the other hand, it could also indicate that the DNS-
ARRW can potentially forecast the 95% credible region upper bound (worst-case scenario) well if we
forecast multiple steps ahead. This is discussed into more detail in the next section. Then, overall
we can see that the volatility model DNS-OV outperforms every other model except for the DNS-
ARRW model and the DNS-OVOSN model for three shorter-term maturities. Additionally, the
DNS-OVOSN seems to have a good performance on the short-term and medium-term maturities,
but the in-sample performance on the long-term maturities drops significantly. Moreover, the
performance of the current model is comparable with the benchmark DNS and DNS-SN models.
This means that the current model performs relatively good compared with its closest state-space
counterparts. Moreover, looking at the more complex extensions (DNS-ARRW, DNS-OV), a lot of
additional performance can be gained with model extensions for at least the in-sample estimation
of the yields. Furthermore, the DNS-OV and the DNS-ARRW models are the only models that
consistently outperform the current model in fitting the in-sample yield data across all maturities.
Additionally, the DNS-OVOSN model outperforms the current model as well for the maturities of
24 to 108 months. However, as we have seen in the in-sample analysis of the DNS-OVOSN model
(Subsection 7.5.2) this could be the result of grouping the volatility loadings of those maturities
too restrictively.

In summary, the current model and method seem to perform quite well compared to the bench-
mark DNS and DNS-SN models. However, the DNS-ARRW and the DNS-OV models outperform
the current model and method for every maturity and to a lesser extent the DNS-OVOSN model
for only the short-term and medium-term maturities.
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Table 7.63: Comparison of the in-sample RMSE of each model for the different maturities and the
total RMSE for each model. The best performance inside the type of models is in bold.

Linear Yield Curve models Volatility models

Maturity Current DNS Benchmark DNS DNS-SN DNS-ARRW DNS-OV DNS-OVOSN

24 0.000387 0.000507 0.000451 0.000066 0.000331 0.000229

36 0.000587 0.000576 0.000579 0.000077 0.000423 0.000283

48 0.000561 0.000565 0.000561 0.000090 0.000459 0.000505

60 0.000514 0.000574 0.000549 0.000083 0.000438 0.000464

72 0.000348 0.000411 0.000384 0.000063 0.000367 0.000342

84 0.000364 0.000378 0.000369 0.000051 0.000304 0.000310

96 0.000340 0.000359 0.000355 0.000043 0.000185 0.000250

108 0.000446 0.000467 0.000466 0.000059 0.000249 0.000357

120 0.000582 0.000621 0.000614 0.000066 0.000401 0.000696

240 0.000506 0.000549 0.000526 0.000050 0.000489 0.000620

360 0.000769 0.000791 0.000778 0.000057 0.000284 0.001166

Total 0.005406 0.005799 0.005632 0.000707 0.003931 0.005223

Figure 7.64: Visualization of the in-sample RMSE of each model for the different maturities.
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7.6.2 Twelve-Months Ahead Forecast Comparison

In this subsection we compare the forecasting performance of the current model, denoted as Current
DNS, with the explored models similar to the in-sample comparison. In particular, the 12-months
ahead forecasts from December 2021 to November 2022 based on 1000 simulation paths are com-
pared. Recall that the aim of this thesis is to improve the forecasts of bond yields. Consequently,
we compare the worst-case forecasts that are defined as the upper bound of the 95% credible region
of the forecasting simulations. A drawback of this method is that it does not take into account
the direction of the mean forecasts or the lower bound of the credible regions. However, one can
argue that if the worst-case scenario of the yield forecasts is not close to the actual yields, then a
model or a method loses significance in practice as is the case with the current model and method.
Subsequently, the RMSE of the worst-case forecasts for each model with the Bayesian approach
is compared with the worst-case forecasts of the current model and method. The RMSE for each
maturity as well as the total RMSE is provided in Table 7.65. The RMSE values for each model
and maturity are also visualized in Figure 7.66. Furthermore, the 12-months ahead forecasts of the
yields for every maturity are shown in Figure 7.68, 7.67 and 7.69 for the benchmark DNS model,
the DNS-ARRW model and the DNS-OVOSN model respectively. The additional 12-months ahead
forecasts of the other models can be found in Appendix A.2. The reason for only showing those
three selected models is that the benchmark DNS model serves as a baseline for using a Bayesian
forecasting approach. In addition, the forecast of the DNS-ARRW model is shown since it consis-
tently shows the best performance on the measures that we have considered for the in-sample and
forecasting comparison. Moreover, we also show the forecast of the DNS-OVOSN model since this
model combines all of the earlier findings of the explored models.

In Table 7.65 we can see that the DNS-ARRW model outperforms all the other models for
each maturity except for the benchmark DNS model for the shortest-term maturity of 24 months.
Interestingly, looking at Figure 7.66 the DNS-ARRW model seems to have more accurate forecasts
for the longer-term maturities as opposed to the other models that tend to have a quite stable per-
formance across maturities (Benchmark DNS, DNS-OV) or better medium-term forecasts (Current
DNS, DNS-SN, DNS-OVOSN). However, looking at the corresponding 12-months ahead forecast of
the DNS-ARRW model in Figure 7.67, this seems to be mainly due to the fact that the RMSE does
not consider the difference between an observed yield being inside or outside the credible region.
Since the DNS-ARRW has wider credible regions for all future months, this results into a little
higher RMSE for the first few months while the RMSE decreases as the model approaches the
observed yields further away in time significantly. It seems likely that the additional variability in
the simulated yields stems from the relatively large variance in the posterior samples of the AR(1)
parameters α2, . . . , α9 similar to the one-month ahead forecasts. For a more detailed discussion on
this uncertainty we refer to Subsection 7.3.3. Furthermore, the relatively wide credible regions can
indicate an inaccurate forecast as there seem to be as many simulation paths steeply decreasing as
increasing. On the contrary, if we would not have known the actual development of the yields in
November 2021, then after one year in November 2022 this worst-case forecast would have been the
closest to the actual yields compared with the other models.
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Table 7.65: Comparison of the RMSE for the worst-case (upper bound of the 95% credible region)
forecasts of each model for the different maturities and the total RMSE for each model. The best
performance inside the type of models is in bold.

Linear Yield Curve models Volatility models

Maturity Current DNS Benchmark DNS DNS-SN DNS-ARRW DNS-OV DNS-OVOSN

24 0.007795 0.005448 0.007268 0.006064 0.006732 0.008801

36 0.008559 0.005495 0.007815 0.004969 0.006741 0.009801

48 0.008937 0.005486 0.008042 0.004569 0.006554 0.009748

60 0.009407 0.005795 0.008387 0.004462 0.006798 0.009912

72 0.009603 0.005752 0.008499 0.004291 0.006777 0.009829

84 0.009675 0.005714 0.008556 0.004147 0.006655 0.009748

96 0.009568 0.005612 0.008511 0.003987 0.006323 0.009430

108 0.009635 0.005573 0.008655 0.003993 0.006258 0.009274

120 0.010206 0.005962 0.009150 0.004131 0.006588 0.009841

240 0.009641 0.005466 0.008770 0.004312 0.006058 0.008903

360 0.008052 0.004147 0.007326 0.003520 0.004733 0.007194

Total 0.101079 0.060451 0.090978 0.048446 0.070210 0.102481

Figure 7.66: Visualization of the worst-case 12-months ahead forecast (upper bound of the 95%
credible region) RMSE of each model for the different maturities.
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Then, in Figure 7.68 the comparison between the current model and the benchmark DNS model
is shown. We can see that in general the current model has narrower credible regions and does
not seem to capture the variability in the higher yields compared to the benchmark DNS model.
This is in line with our expectation that the current model does not seem to model the upward
trend of the yields of the period after November 2021. Although, the benchmark DNS model has
credible regions that are quite wide, especially for the longer-term maturity forecasts. The most
significant difference between the two models is mainly the Bayesian approach to estimating the
parameters as opposed to the MLE-based parameter estimation of the current model. So, it seems
that the additionally modeled uncertainty of the parameters results into better quantification of
the uncertainty especially in allowing more variability in increasing yield forecasts.

Furthermore, it is also interesting to see that the DNS-OVOSN model has the worst performance
based on the RMSE of the worst-case forecast. The performance of this model is the closest
to the current model. It seems that especially for the shorter-term maturities (24, 36 and 48
months) the current model has better worst-case forecasts, whereas the DNS-OVOSN model has
improved forecasts on mainly the longer-term maturities (240 and 360 months). Then, looking at
the comparison of the forecasts of both models in Figure 7.69, we can see that for most of the
maturities the forecasts are very close. However, the current model seems to still simulate more
yield paths that decrease compared to the DNS-OVOSN model. Specifically, for the maturities of
24 to 48 months we can see that the credible region of the current model forecasts are concentrated
to yields that are a little lower than the credible region of the DNS-OVOSN forecasts. Moreover, for
the long-term maturities of 240 and 360 months the current model seems to have credible regions
that are overall a little lower than the credible region of the DNS-OVOSN model.

In summary, the forecasts of the current model seem to allow for more variability in the lower
yields and to some extent the benchmark DNS model as well. In contrast, the forecasts of the
DNS-OVOSN model are comparable with the current model, but the DNS-OVOSN forecasts seem
to allow for more upward yield simulations whereas the current model seems to simulate yields that
are more concentrated in lower yields. Overall it seems that the forecasts of the DNS-ARRW model
seem to approach the actually observed yields the closest. So, we consider the DNS-ARRW model
to have the best forecasting power based on the ability to simulate the variability of the yields.
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Figure 7.67: The 12-months ahead forecasts of the current model (Current DNS) and the DNS-ARRW model with their
respective 95% credible region (CR) based on 1000 path simulations.
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Figure 7.68: The 12-months ahead forecasts of the current model (Current DNS) and the Benchmark DNS model with their
respective 95% credible region (CR) based on 1000 path simulations.
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Figure 7.69: The 12-months ahead forecasts of the current model (Current DNS) and the DNS-OVOSN model with their
respective 95% credible region (CR) based on 1000 path simulations.
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8

Conclusion and Discussion

In this final chapter we provide the answer to our main research question in the conclusion in
Section 8.1. Then, in Section 8.2 we discuss some of the limitations of our research and some
recommendations on further research that stem from these limitations.

8.1 Conclusion

The aim of this thesis was to research whether extending the current DNS model employed by the
DSTA with volatility modeling and using a Bayesian approach to modeling yields can improve yield
forecasts. In order to model volatility in a DNS type of model, we started with a baseline state-
space model, the benchmark DNS model that resembles the current model the closest. Then, we
used the findings of the in-sample and forecasting results to explore modifications to the benchmark
DNS model and we used the findings from the literature review on modeling volatility in the DNS
framework to arrive at used the volatility models. Moreover, the Bayesian approach on modeling
yield curves allowed us to incorporate additional uncertainty from the parameters. Subsequently,
we will proceed with answering the subquestions and the main research question.

Subquestion 1: How to model bond yields and how can we extend those models with
stochastic volatility?

When incorporating stochastic volatility we had the choice to model volatility as a GARCH process
or as a SV process. In addition, we also had the choice to model the volatility through either the
observation noise or through the state noise. In the end, we chose to model the volatility through
the observation noise as a GARCH process based on a paper of Koopman et al. (2010) that assumes
one common volatility process. In this type of model, every maturity has its own volatility loading
translating the amount of common volatility that a specific maturity is subject to. This model
allowed us to use the Kalman filter in a slightly modified way, resulting into quite efficient state
estimation as opposed to more computationally demanding methods as Sequential Monte Carlo or
a particle filter.

129
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Subquestion 2: How can a Bayesian approach improve uncertainty quantification in
yield curve forecasts?

The Bayesian approach to yield curve modeling means that we assumed explicit uncertainty of
the model parameters. Then, using the Random Walk Metropolis algorithm we obtained samples
from the approximated posterior distribution, which allowed us to simulate multiple-steps ahead
forecasts. We have seen that the additional parameter uncertainty resulted into more variability
of the yields, especially resulting into credible regions that had more weight in the increasing
yields. Moreover, for more complex models we have seen that the RWM algorithm was able to
find parameter sets that had better in-sample performance than the MLE-based estimation of the
parameters.

Subquestion 3: How do the different models and methods compare?

Overall, the current model and method (current DNS) performed relatively better than expected
compared with the explored models. In particular, the current DNS had an in-sample performance
that was mid-range, but still outperforming the basic models like the benchmark DNS and DNS-
SN model. For the longer-term maturities the current DNS model even had better in-sample
performance than the last volatility model DNS-OVOSN, with a similar overall performance. In
contrast, the DNS-ARRW and DNS-OV model outperformed the current DNS model significantly
in-sample. Subsequently, the advantage of the Bayesian forecasting method became more clear when
we considered the 12-months ahead forecasts. The benchmark DNS, DNS-ARRW and DNS-OV
models were able to better capture the uncertainty of especially the increasing yields in their worst-
case forecasts. Moreover, the DNS-SN and DNS-OVOSN models did not have better worst-case
forecasts, but it seems that these models at least simulated less steeply decreasing yields compared
with the current DNS.

Main Research Question: How to model interest rate volatility and quantify forecasting
uncertainty with a Bayesian approach in order to forecast interest rate costs better?

First, considering the difference between methods, we conclude that it seems that the Bayesian
approach to parameter estimation and forecasting is able to account for more variability in yields
and also seems to simulate the direction of the forecasts slightly better than the current MLE-based
method for most models. Then, considering the models with a GARCH volatility process, the
results are mixed. Although the volatility models DNS-OV and DNS-OVOSN seem to have a good
in-sample performance, the forecasting power of the DNS-OVOSN is similar to the current model
and the DNS-OV model is still outperformed by the benchmark DNS and the DNS-ARRW models.
Of course, we did not consider all parameters of the volatility models to have uncertainty, since
we fixed the volatility loadings. Moreover, grouping the volatility loadings with other maturity
combinations than for the DNS-OVOSN model might also lead to better forecasts, but we will
elaborate more on these two points in the discussion. So, we argue that extending the DNS model
with volatility modeling has potential for better forecasts compared with the current DNS model
with the aforementioned caveats. All in all, the DNS-ARRW model has been the only model
that consistently has good in-sample and forecasting performance and significantly improved the
12-months ahead forecasts.
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8.2 Discussion and Further Research

This brings us to the last section of this thesis. Throughout our research we have had to make
decisions and assumptions in the explored models and the used MCMC and state estimation al-
gorithms. In this section we discuss the limitations of those decisions and we recommend further
research that could improve the Bayesian yield curve modeling and forecasting methods that we
have used.

First, we fixed the volatility loadings Γ for both volatility models at their MLE values because
of difficult convergence of the corresponding chains when using the Random Walk Metropolis algo-
rithm. As a result, eleven parameters of the DNS-OV and three parameters of the DNS-OVOSN
model did not contribute to the parameter uncertainty in the one-month and 12-months ahead
forecasts. We have seen for the DNS-ARRW model that the additional parameter uncertainty can
result into more variability in yield simulations. In addition, the volatility models seem to capture
the direction of the forecasts slightly better than the other models. So, considering the parameter
uncertainty of the volatility loadings seems promising. Then, there are two ways the parameter
identification could be tackled in a better way. First, we could consider fixing only one of the
volatility loadings as they are proportions relative to each other and include the remainder of the
volatility loadings in the RWM run in order to have some baseline proportion value. Additionally,
we could use more advanced MCMC algorithms. In particular, the so-called Metropolis-Adjusted
Langevin Algorithm, or MALA in short, could be considered. This MCMC algorithm involves using
gradients at each iteration and is in general better-suited for high-dimensional parameter spaces
than the RWM algorithm.

In addition, we have used the total RMSE of the worst-case forecasts of every model. Since these
are the upper bounds of the 95% credible regions of the forecasting simulations, the RMSE does
not take into account whether the observed yields are “inside” or “outside” the credible regions.
Arguably, the error stemming from observed yields inside the credible regions are preferable over
observations being outside the credible regions as this means that the observation is included in
the forecast uncertainty. Subsequently, the lower bound of the credible regions or the direction
of the forecast is not directly accounted for in the current forecast performance measure. So, it
could be better to use tools specifically developed for forecasts comparisons. One such tool is the
Diebold-Maiorano test, which tests whether two forecasts differ significantly.

Then, we have chosen to extend the benchmark DNS model with a GARCH volatility process
through the observation noise. The choice for a GARCH process proposed by Koopman et al. (2010)
was mainly driven by the fact that we could use the Kalman filter without too many modifications,
which is relatively computationally fast and does not entail too many estimations compared with
Sequential Monte Carlo or particle filters. Additionally, modeling the volatility through the obser-
vation noise was driven by the promising results of the original authors compared with the state
noise variant. However, a more promising and more intuitive extension would be a SV(1) volatility
process through the state noise from a modeling perspective as we noted in the concluding remarks
of the literature review. Such a model allows for actual stochastic volatility that is its own stochastic
process instead of conditionally deterministic. However, this comes at cost of more approximations
as the likelihood cannot typically be derived analytically for SV(1) models.

Moreover, we have assumed that a better model includes volatility since we have seen that bond
yields have been quite volatile in the past one to two years. So, our assumption is mostly driven
by market observations. However, modeling volatility does not consider the underlying cause of
the volatility, which are the interest rate hikes of the European Central Bank. Specifically, the
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interest rate hikes or decreases are fundamental for bond yield increases or decreases. So, especially
for monthly data it could be reasonable that volatility has less effect on the underlying dynamics
of bond yields compared with actual interest rate “jumps”. Consequently, two directions could
be worth exploring. First, it could be interesting to incorporate the stochastic volatility model
with jumps (Hautsch and Ou, 2008a), or SVJ in short, which extends the SV(1) process with a
Normally distributed jump magnitude variable multiplied with a Bernoulli jump occurrence variable.
Another way of incorporating the interest rate hikes, or any macro-economical process, could be
by augmenting it to the state variable or adding the effect directly as some external variable to the
state-space model.

Subsequently, we have assumed Gaussian noise terms for all DNS type of models. However,
it is readily known that for many financial processes extreme events are more likely to happen
than the Normal distribution accounts for. So, perhaps non-Gaussian noise terms can also increase
forecasting power without having to resort to more complex volatility or jump processes. For
non-Gaussian models one could think of applying Extreme Value Theory by using the Generalized
Extreme Value (GEV) distribution, or in general of the Student’s-t distribution. Particle filters
proposed by Kitagawa (1996) could be considered for such state-space models.

Furthermore, we have only considered the DNS type of models for modeling yield curves from
the beginning. Naturally, other methods exist as well to model yield curves. A lot of literature
exists on interest rate models, particularly in the context of pricing models. The reason for staying
in the DNS framework is driven by the fact that it is “parsimonious” as the original authors (C. R.
Nelson and Siegel, 1987) call their original model, so it contains relatively few variables which makes
these type of models easy to interpret. However, other methods besides the DNS type of models
could have better forecasting performance.

Lastly, as mentioned in Section 2.4 we have used the direct bond yield data without discounting
the cash flow since we are mostly interested in bond yield trends observed in the market. So, the
results of this thesis cannot be used for direct pricing of bonds as they do not reflect the time value
of money like a zero-coupon yield curve would. So, in further research it would be preferable to
prepare the yield data well, especially if the goal is to use the modeled yields for portfolio strategies
or pricing interest rate related instruments.
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A

Additional Results

In this appendix we provide some additional results for the interested reader. Specifically, in Section
A.1 the matrix correlation plots and the running mean of the chains of the RWM runs that result
into convergence are shown. In Section A.2 the additional 12-months ahead forecasts are shown of
the DNS-SN and the DNS-OV model. Moreover, the relevant subsection, in which these additional
results are mentioned, are provided as well.
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A.1 RWM Convergence

A.1.1 Benchmark DNS

Figure A.1: The matrix correlation plot of the RWM samples of the benchmark DNS model (see Subsection 7.1.1).
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Figure A.2: The running mean of the chains for each parameter of the benchmark DNS model
(see Subsection 7.1.1).
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A.1.2 DNS-SN

Figure A.3: The matrix correlation plot of the RWM samples of the DNS-SN model (see Subsection 7.2.1).
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Figure A.4: The running mean of the chains for each parameter of the DNS-SN model (see
Subsection 7.2.1).
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A.1.3 DNS-ARRW

Figure A.5: The matrix correlation plot of the RWM samples of the DNS-ARRW model (see Subsection 7.3.1).



A.1. RWM CONVERGENCE 143

Figure A.6: The running mean of the chains for each parameter of the DNS-ARRW model (see
Subsection 7.3.1).
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A.1.4 DNS-OV

Figure A.7: The matrix correlation plot of the RWM samples of the DNS-OV model (see Subsection 7.4.1).
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Figure A.8: The running mean of the chains for each parameter of the DNS-OV model (see
Subsection 7.4.1).
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A.1.5 DNS-OVOSN

Figure A.9: The matrix correlation plot of the RWM samples of the DNS-OVOSN model (see Subsection 7.5.1).



A.1. RWM CONVERGENCE 147

Figure A.10: The running mean of the chains for each parameter of the DNS-OVOSN model (see
Subsection 7.5.1).
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A.2 Twelve-Months Ahead Forecasts

A.2.1 DNS-SN

Figure A.11: The 12-months ahead forecasts of the current model (Current DNS) and the DNS-SN model with their respective
95% credible region (CR) based on 1000 path simulations (see Subsection 7.6.2).
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A.2.2 DNS-OV

Figure A.12: The 12-months ahead forecasts of the current model (Current DNS) and the DNS-OV model with their respective
95% credible region (CR) based on 1000 path simulations (see Subsection 7.6.2).
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