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Introduction
In this master thesis the proof of Lotz in [40] that Weak Lp spaces have the Grothendieck property
is studied. The proof is slightly modified to be more explicit and easier to comprehend by introducing
lemma’s to better separate different parts of the proof that more clearly reveal its structure. Fur-
thermore, the more general Marcinkiewicz spaces are shown to sometimes have the Grothendieck
property, using the sufficient conditions for a Banach lattice to have the Grothendieck property
that Lotz derived in [40] to prove the Grothendieck property of Weak Lp spaces. For most of these
conditions that together are sufficient, proving that Marcinkiewicz spaces satisfy them is done in a
way very similar to the case of Weak Lp spaces. However, the proof of the (necessary) condition
that the dual sometimes has order continuous norm does not allow for such a simple generalization
and requires more work. Finally, by using some more recent results [19] about the existence of
symmetric functionals in the dual, the conditions that are given for the Grothendieck property of
Marcinkiewicz spaces are shown to be necessary, and we thereby obtain a characterization of the
Marcinkiewicz spaces that have the Grothendieck property.
Chapter 1 briefly summarizes well-known theory about Banach spaces required in the subsequent

chapters: the weak topology, the Grothendieck property and characterizations thereof. In chapter
2 Banach lattices are introduced and Lotz’ sufficient conditions for the Grothendieck property of
a Banach lattice are derived. In chapter 3 the Weak Lp spaces and Marcinkiewicz spaces are
introduced and after that in chapter 4 and 5 the Grothendieck property of these spaces on intervals
with Lebesgue measure is studied, and finally in chapter 6 the Grothendieck property is studied on
arbitrary measure spaces.

1



Contents

1 Grothendieck Banach spaces 3
1.1 Banach space preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Topological preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Weak topologies in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Grothendieck spaces: characterizations and necessary conditions . . . . . . . . . . . 7
1.6 Other generalizations of reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Grothendieck Banach lattices 11
2.1 Preliminaries on Banach lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 L-spaces and M-spaces and representation theorems . . . . . . . . . . . . . . . . . . 14
2.3 Characterization Grothendieck Banach lattices . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Lotz’ characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Banach function spaces 23
3.1 Weak Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Definition from Chebyshev’s inequality . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 The distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 The decreasing rearrangement function . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Normability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Marcinkiewicz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 The Weak Lp space Lp,∞(0, γ) is Grothendieck 36

5 When is the Marcinkiewicz space Mψ(0, γ) Grothendieck? 37

6 The Grothendieck property of BFS’s on arbitrary measure spaces 41

2



1 Grothendieck Banach spaces
The central mathematical structure in Section 3 will be a Banach lattice. However, since most of
the results also hold in the more general case of a Banach space, that is, without the extra structure
from the order, the introduction of a Banach lattice will be postponed to next section. First general
topologies are considered, then weak topologies in Banach spaces will be introduced, reflexivity will
be discussed, and at the end of the chapter the Grothendieck property will be defined and some
equivalences will be derived.

1.1 Banach space preliminaries
All vector spaces considered are assumed to be real. Since primarily Banach lattices will be con-
sidered afterwards, this will turn out not te be a restrictive assumption.
Because dual spaces can also be defined for ordered vector spaces introduced in the next section,

it is important to distinguish this dual from the continuous dual defined for normed vector spaces,
especially because some results in the next section hold in the more general case of ordered vector
spaces.

Definition 1.1. The algebraic dual of a vector space E is denoted by E# and consists of all linear
functionals on E to R with a vector space structure given by

(
u# + v#

)
(u) = u#(u) + v#(u) and(

αu#
)
(u) = αu#(u) for u ∈ E, u# ∈ E#, v# ∈ E# and α ∈ R.

If E is a vector space, then the evaluation of an element u# of the algebraic dual E# to an
element u of the original space E, will also be denoted using the natural pairing 〈 • , • 〉, defined by
u#(u) =

〈
u, u#

〉
.

Definition 1.2. The continuous dual of a normed vector space E is denoted by E′ and consists
of all u′ ∈ E# continuous in the topology induced by the norm on E, equipped with the norm
‖u′‖ = sup{|〈u, u′〉| : u ∈ ball(E)}, where ball(E) = {u ∈ E : ‖u‖ ≤ 1} is the closed unit ball of E.

Definition 1.3. A Banach space E is a complete normed vector space.

The continuous dual is always complete.

Definition 1.4. The continuous linear map jE from a Banach space E into its bidual E′′ defined by
(jE(u))(u

′) = u′(u) for u ∈ E and u′ ∈ E′ will be called the evaluation map or natural embedding
of E into E′′.

The evaluation map is an isometry, by the Hahn-Banach theorem.
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1.2 Topological preliminaries
Before introducing the weak topology on Banach spaces, first some general topological definitions
and remarks will be recalled.

Definition 1.5. The initial topology on a set E, with respect to a collection H of real-valued
functions on E, is the coarsest topology such that each h ∈ H is continuous and is denoted by
σ(E,H).

Lemma 1.6. (See [13, Proposition 3.4 and 3.5]) Let E be a vector space and H ⊆ E#.

(i) The topology σ(E,H) is generated by the sets h−1(O) with h ∈ H and O open in R, that is,
the following is a subbase’s: {

h−1(O) : h ∈ H,O ⊆ R open
}
.

(ii) A neighbourhood basis of 0 of the topology σ(E,H) is the collection of sets of the form

{u ∈ E : ∀n ∈ {1, . . . , N} : |〈u, hn〉| < ϵ}

with N ∈ N, h1, . . . , hN ∈ H and ϵ > 0.

(iii) the set E with the topology σ(E,H) is a topological vector space and in particular σ(E,H) is
translation invariant

(iv) σ(E,H) is Hausdorff if and only if H separates the points on E.

(v) A net (or sequence) (ut)t∈T in E converges to u in E in the topology σ(E,H) if and only if
(h(ut)t)t∈T converges to h(u) in the topology of R for every h ∈ H.

Definition 1.7. A subset A of a topological Hausdorff space X is called

1. compact if and only if every open cover of A has a finite subcover, or, equivalently, if and
only if every net in A has a subnet with limit in A.

2. relatively compact if and only if the closure Ā is compact, or, equivalently, if and only if every
net in A has a subnet with limit in X.

3. sequentially compact if and only if every sequence in A has a subsequence with limit in A.

4. sequentially relatively compact if and only if every sequence in A has a subsequence with limit
in X.

In an arbitrary topology all nets must have convergent subnets in order to be compact, but the
following result shows that for metrizable topologies this is equivalent to the sequential case, that
is, the notions of (relative) compactness and (relative) sequential compactness coincide in metric
spaces.

Lemma 1.8. (See [26, Theorem 9.2 and Theorem 9.5]) In a metric space, (relative) compactness
and (relative) sequential compactness coincide.

The following very simple observation will become useful in the proof of Lemma 1.30.
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Lemma 1.9. A subset A of a topological space X is relatively sequentially compact if and only if
all sequences in A are relatively sequentially compact.

Proof. The condition is trivially necessary. To show it is also sufficient, assume all sequences in
A to be relatively sequentially compact and let a sequence (un)

∞
n=1 in A be given. To show A is

relatively sequentially compact, we need to show that (un)∞n=1 has a subsequence with limit in X.
Since (un)

∞
n=1 is relatively sequentially compact, every subsequence has a subsequence with limit

in X. Since the sequence (un)
∞
n=1 is a subsequence of itself, relative sequential compactness of A

has been proven.

Lemma 1.10. Let X be a set equipped with two Hausdorff topologies τ and τ ′. Let τ ′ be a stronger
topology than τ . If a sequence (un)

∞
n=1 converges in τ and is relatively compact in τ ′, it converges

also with respect to τ ′.

Proof. Assume by contradiction that (un)∞n=1 converges to u in the Hausdorff topology τ , but it does
not converge to u in the stronger Hausdorff topology τ ′, while it is relatively compact in τ ′. Since
(un)

∞
n=1 does not converge in τ ′, there exists a subsequence (vn)

∞
n=1 and a τ ′-open neighborhood O

of u such that vn /∈ O for all n.
Since {un}∞n=1 is τ ′ relatively compact, the subsequence (vn)

∞
n=1 has an accumulation point w

with respect to τ ′. Clearly w 6= u. Since the topology τ is weaker than the topology τ ′, w is also an
accumulation point of (vn)∞n=1 with respect to τ . Since τ is Hausdorff it follows that w = u, which
is a contradiction.

1 2 3 4 5 6 7 8 9 10111213

u1 = u3 = u5 = u7 = u9 =u11 =u13 =

u2 = u4 = u6 = u8 =u10 =u12 =

=

=

n =

1

2

τ ′

1

2

τ

u

w

O

{vn}

Definition 1.11. If X is a topological space, then X will be called extremally disconnected if
closures of open sets are open and X will is called Stonian if additionally it is compact and Hausdorff.

1.3 Weak topologies in Banach spaces
Before introducing the Grothendieck property as a generalization of reflexivity, an alternative char-
acterization for reflexivity will be derived concerning weak topologies.

Definition 1.12. For a Banach space E, the topologies σ(E,E′) on E and σ(E′, jE(E)) on E′,
are called the weak and weak∗ topology, respectively.

Definition 1.13. A linear operator T from a Banach space E to a Banach space F is called weakly
compact if and only if images of bounded sets in E are relatively weakly compact in F .

It is easy to see that the embedding of a Banach space into its bidual is weak-weak∗ homeomorphic.
The following lemma summarizes some of the properties of the weak and weak∗ topologies and their
relationship with separability.
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Lemma 1.14. (See [44, Theorem 3.11 and p. 123 and p. 124]) The weak∗ topology on a dual
is weaker than the weak topology on this dual, which in turn is weaker than the norm topology
on the dual. The weak and weak∗ topologies on E and E′ turn their corresponding spaces into
Hausdorff locally convex topological vector spaces. For infinite dimensional spaces, the weak and
weak∗ topologies are not complete and not metrizable. A Banach space is separable if and only if
the unit ball of its dual is metrizable for the weak∗ topology, and similarly the unit ball is metrizable
for the weak topology if and only if the dual is separable.

The weak topology of an infinite dimensional space is not metrizable, but quite remarkably Lemma 1.8
also holds for the weak topology. One direction originates from [56] and the other from [20].

Theorem 1.15 (Eberlein-Šmulian theorem). (Originally from [56] and [20], also in [18, Chapter
III]) For a Banach space E, (relative) weak compactness and (relative) sequential weak compactness
in E coincide.

This theorem implies that in order to show that an operator is weakly compact, Definition 1.13, it
suffices to check that images of bounded sequences have weakly convergent subsequences.
The following fundamental result about the weak∗ topology was proved in [7, p. 123] for the

separable case and later in [2, Theorem 1.3] for the general case.

Theorem 1.16 (Alaoglu-Bourbaki). (Originally from [2, Theorem 1.3], also in [18, p. 13]) The
closed unit ball of the dual of a Banach space is weak∗ compact.

Corollary 1.17. The closed unit ball of the dual of a separable Banach space is weak∗ sequentially
compact

Proof. By Alaoglu’s theorem, Theorem 1.16, the closed unit ball of the dual is always weak∗ com-
pact. By Lemma 1.14 the weak∗ topology is metrizable on the closed unit ball of the dual of a
separable Banach space. Since in metric spaces compactness and sequential compactness coincide,
by Lemma 1.8, the closed unit ball of the dual is weak∗ sequentially compact.

Gantmacher has shown in [23] that in order to check whether a continuous linear operator is weakly
compact, one may also consider the so-called adjoint.

Definition 1.18. For any continuous linear operator T from a Banach space E into a Banach
space F , the adjoint T ′ : F ′ → E′ is defined by 〈Tu, v〉 = 〈u, T ′v〉 for all u ∈ E and v ∈ F ′.

For a continuous linear operator T : E → F , the adjoint T ′ is a continuous linear operator with
‖T‖ = ‖T ′‖ which is weak∗-to-weak∗ continuous, that is, continuous from σ(F ′, F ) to σ(E′, E).

Theorem 1.19 (Gantmacher-Nakamura). (Originally from [23, Satz 5] and [45, Theorem 1], also
in [43, Corollary 3.5.5]) A continuous linear operator T from a Banach space E into a Banach
space F is weakly compact if and only if its adjoint is weakly compact. Another equivalent condition
is that the adjoint weak∗-to-weak continuous

Lemma 1.20. (See [53, Exercise 6, p. 106] or [16, Solution 14.19]) Let E and F be Banach spaces.
A continuous linear operator T : F ′ → E′ is weak∗-to-weak∗ continuous if and only if T = S′ for a
continuous linear operator S : E → F .
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1.4 Reflexivity
Definition 1.21. A Banach space E will be called reflexive if and only if jE(E) = E′′.

By definition of the weak and weak∗ topologies, the evaluation map is a homeomorphism from the
weak topology to the the weak∗ topology.

Theorem 1.22 (Goldstine’s Theorem). (Originally from [24, Theorem III], also in [18, p. 13])
The closed unit ball of a Banach space E is dense in the closed unit ball of the bidual E′′ with
respect to the weak∗ topology σ(E′′, E′), where E is identified with a subspace of E′′ via the natural
embedding jE.

Theorem 1.23. The following are equivalent for a Banach space E: (i) E is reflexive, (ii) the unit
ball of E is weakly compact, (iii) the weak and weak∗ topologies on the dual coincide.

Proof. If E is reflexive, by definition jE(E) = E′′, so σ(E′, E′′) = σ(E′, jE(E)) follows trivially,
which proves that (i) implies (iii).
To prove (i) to (ii), first recall that the evaluation map is weak-weak∗ homeomorphic. By

Theorem 1.16 the unit ball in the bidual E′′ is weak∗ compact, and because continuous functions
preserve compactness, the preimage of the unit ball in the bidual E′′ is weakly compact. This
preimage is the unit ball of E, because the evaluation map is assumed to be onto.
Now suppose (ii) holds. Using again that the evaluation map is homeomorphic from the unit

ball of E in the weak topology to the unit ball of the bidual E′′ in the weak∗ topology, it follows
that the unit ball of E is weak∗ compact in the bidual E′′, thus weak∗ closed, because the weak∗
topology is Hausdorff, by Lemma 1.14. Since this image is also dense in the weak∗ topology by
Theorem 1.22, it is the entire unit ball of the bidual E′′, so jE is onto.
Finally suppose (iii) holds. By the Banach–Alaoglu theorem the unit ball in the dual E′ is weak∗

compact, thus weakly compact, so E′ is reflexive, by the implication (ii) to (i). It now follows that
E is reflexive, since a Banach space is reflexive if and only if its dual is reflexive.

1.5 Grothendieck spaces: characterizations and necessary conditions
It follows from Theorem 1.23 that the following definition is a generalization of reflexivity.

Definition 1.24. A Banach space for which all weak∗ convergent (null) sequences in the dual are
also weakly convergent is called a Grothendieck space (and the space is said to have the Grothendieck
property).

The restriction to null sequences in this definition is allowed by translation invariance of the topolo-
gies involved, (iii) of Lemma 1.6. We will see that in the context of Banach lattices, another
simplification can be made by considering only sequences of positive pairwise disjoint elements,
Theorem 2.21.
In this section several well-known results about the Grothendieck property will be discussed.

Certain classes of Grothendieck spaces, among which the separable and weakly compactly generated,
will be shown to be reflexive, which makes them uninteresting Grothendieck spaces. Then a few of
the numerous characterizations for the Grothendieck property we be discussed, because they will
be used later on in Lotz’ proof of the Grothendieck property of Weak Lp spaces. The section ends
with the most well-known non-trivial class of Grothendieck spaces due to Grothendieck himself.
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The following equivalent condition for the Grothendieck property can be compared with the
following: a Banach space is reflexive if and only if every weak∗ compact subset of the dual is also
weakly compact.

Lemma 1.25. A Banach space has the Grothendieck property if and only if every weak∗ sequentially
(relatively) compact subset of the dual is also weakly sequentially (relatively) compact.

Proof. First assume the Banach space E to have the Grothendieck property and let C ⊆ E′ be weak∗
sequentially relatively compact (the weak∗ sequentially compact case is similar). Let (u′n)

∞
n=1 now

be a given sequence of elements in C. Because C is assumed to be weak∗ sequentially relatively
compact, there exists a weak∗ convergent subsequence

(
u′nm

)∞
m=1

. Because E is Grothendieck this
subsequence is weakly convergent. This shows that C is weakly sequentially relatively compact. By
Eberlein-Šmulian, Theorem 1.15, it is weakly relatively compact.
Now assume that every weak∗ sequentially relatively compact subset of the dual is weakly

relatively compact. Let a weak∗ convergent sequence (u′n)
∞
n=1 in the dual E′ be given. Such a

sequence is weak∗ sequentially relatively compact as a set. By (iv) of Lemma 1.6, by Lemma 1.14,
and by Lemma 1.10, it follows that (u′n)

∞
n=1 is also weakly convergent.

weakly
compact

weakly
sequentially
compact

weak*
compact

weak*
sequentially
compact

Eberlein
Smulian reflexive

m

m
Grothendieck

An interesting consequence of Theorem 1.23 and Lemma 1.25 is that the dual of a non-reflexive
Banach space with the Grothendieck property never has a weak∗ sequentially compact unit ball,
though unit balls of duals are always weak∗ compact, by Alaoglu’s theorem, Theorem 1.16. This
implies that non-reflexive Banach spaces with the Grothendieck property cannot be weakly com-
pactly generated, by the Amir-Lindenstrauss theorem [44, Theorem 4.8]. Since separable spaces are
weakly compactly generated, examples of separable spaces with the Grothendieck property are not
very interesting, since they have to be reflexive. A direct argument of this follows from Lemma 1.14
and Lemma 1.25.
A Banach space E is weakly sequentially complete if sequences (un)∞n=1 in E are weakly con-

vergent if (〈un, u′〉n)
∞
n=1

converges for any u′ ∈ E′.

Lemma 1.26. For any Grothendieck space E its dual E′ is weakly sequentially complete.

Proof. Let (u′n)
∞
n=1 be such that (〈u′n, u′′〉n)

∞
n=1 converges for any u′′ ∈ E′′. In particular 〈u, u′n〉

converges for u ∈ E, to say ϕ(u). By the Banach-Steinhaus theorem, (u′n)
∞
n=1 is norm bounded,

so ϕ ∈ E′. Thus, (u′n)
∞
n=1 is weak∗ convergent, and by the Grothendieck property is is weakly

convergent.

8



Theorem 1.27. (See [43, Proposition 5.3.10]) The following are equivalent for a Banach space E:

(i) E is a Grothendieck space

(ii) any continuous linear operator from E into an arbitrary separable Banach space is weakly
compact.

(iii) any continuous linear operator from E into c0 is weakly compact

Proof. To prove (i) implies (ii), assume E is a Grothendieck space. By Gantmacher’s theorem,
Theorem 1.19, it suffices to show that, for any T ∈ L(E,F ), with F a separable Banach space,
T ′ is weakly compact, that is, for each sequence (u′n)

∞
n=1 in the closed unit ball of the dual of

F , the image (T ′u′n)
∞
n=1 has a weakly convergent subsequence. Let (u′n)

∞
n=1 be such a sequence.

By separability of F and Corollary 1.17, the closed unit ball of the dual F ′ is weak∗ sequentially
compact, so (u′n)

∞
n=1 has a weak∗ convergent subsequence, say

(
u′nm

)∞
m=1

. Since the adjoint of a
continuous operator is always weak∗-weak∗ continuous by Lemma 1.20, T ′ maps

(
u′nm

)∞
m=1

to a
weak∗ convergent sequence

(
T ′(u′nm))∞m=1

in E′, which is also weakly convergent by the assumption
of the Grothendieck property of E.
It is evident that (ii) implies (iii).
To prove (iii) implies (i), let (u′n)

∞
n=1 be a weak∗ null sequence in the dual E′. Since the weak

topology is stronger than the weak∗ topology and both are Hausdorff, weak relative compactness of
the set {u′n}

∞
n=1 would imply weak convergence of the sequence (u′n)

∞
n=1, by Lemma 1.10. To show

{u′n}
∞
n=1 is weakly relatively compact, consider the operator T ∈ L(E, c0) defined by

(Tu)n = 〈u, u′n〉 ,

for u ∈ E. Since weak∗ convergence implies norm boundedness (by the uniform boundedness
principle), supn‖u′n‖ is finite, and hence T is bounded. By the assumption that T is weakly
compact, and by Gantmacher’s theorem, Theorem 1.19, T ′ is also weakly compact. Since the set
of coordinate functionals of c0, (e′n)

∞
n=1, is bounded, the image

T ′{e′n} = {e′n ◦ T : n ∈ N} = {u′n} ,

for n ∈ N, is relatively weakly compact.

That separable Grothendieck spaces are reflexive also follows from the preceding theorem in the
following way. If a Grothendieck space is separable, the identity operator is weakly compact by
Theorem 1.27, so, by definition, the image of the closed unit ball is relatively weakly compact. Since
convex sets are weakly closed if and only if they are norm closed, by Mazur’s theorem, the unit ball
is weakly compact. By Theorem 1.23 this implies the space is reflexive.
Clearly the Grothendieck property is an isomorphic invariant of the class of Banach spaces. For

the following theorem some notation will have to be introduced. Let F be a closed subspace of a
Banach space E. The quotient space, denoted by E/F , is the quotient group of E by F with respect
to the vector operation +. It is a Banach space with norm

‖[u]‖E/F = inf
v∈[u]

‖v‖E ,

where u ∈ E and [ • ] : E → E/F is the quotient map.
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A closed subspace F is called complemented in a Banach space E if and only if there exists
a closed subspace G of E such that E = F ⊕ G. In this case G is isomorphic to E/F and E is
isomorphic to F ×G with norm given by

‖(u, v)‖ = ‖u‖+ ‖v‖

for u, v ∈ E.

Lemma 1.28. If E is a Grothendieck space and T : E → F is a surjective continuous linear map
onto a Banach space F , then F is also a Grothendieck space.

Proof. By Theorem 1.27 it suffices to show that a given linear continuous map S : F → c0 is
weakly compact. Since E is a Grothendieck space, S ◦ T is weakly compact. Since T is a surjective
continuous linear map, it is an open map by the open mapping theorem ([53, Theorem 2.11]), so
there exists a δ > 0 such that δ ball(F ) ⊆ T (ball(E)), so S(ball(F )) ⊆ 1

δ (S ◦ T )(ball(E)). It follows
from weak compactness of S ◦T that 1

δ (S ◦ T )(ball(E)) is relatively weakly compact, so S(ball(F ))
is relatively weakly compact as well. Therefore, S is weakly compact.

The following two results on the Grothendieck property will be used in Section 6.

Corollary 1.29. Let E be a Grothendieck space. If the closed subspaces E and F are such that
E = F ⊕ G, then F and G are also Grothendieck spaces. If F is a closed subspace, then E/F is
also a Grothendieck space.

Proof. Apply Lemma 1.28 to the projection map to see that F is Grothendieck whenever a Banach
space E is the direct sum of two closed subspaces F and G. Apply Lemma 1.28 to the the quotient
map to see that the Grothendieck property is also preserved by quotients.

Lemma 1.30. Let E be a Banach space. If for every sequence (un)
∞
n=1 in E there exists a closed

Grothendieck subspace F such that {un} ⊆ F , then E is a Grothendieck space.

Proof. The characterization of Grothendieck spaces in Theorem 1.27 is used. Let a continuous
linear map T : E → c0 be given. To show that it is weakly compact, let a bounded sequence
(un)

∞
n=1 in E also be given. By assumption there exists a closed Grothendieck subspace F such

that {un}∞n=1 ⊆ F . By the Grothendieck property of F , the restriction T |F is weakly compact, so
(Tu)

∞
n=1 has a weakly convergent subsequence. It follows that E is a Grothendieck space.

Grothendieck spaces are named after Alexander Grothendieck, because he discovered one of the
first important non-trivial class of Grothendieck spaces.

Theorem 1.31. (Originally from [25]) The Banach space of continuous functions C(K) on a
Stonian space K is a Grothendieck space.

This result was improved upon first in [6] and then in [55] requiring K to be an F -space. See the
remark after [44, Definition 4.5] for a chronological summary or the introduction of [49].
Note that the space of continuous functions on [0, 1] is not Grothendieck (since it is separable

but not reflexive).
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1.6 Other generalizations of reflexivity
The Grothendieck property is not the only generalization of reflexivity. Quasi-reflexivity, introduced
in [15], generalizes the non-reflexive space isomorphic to its bidual given in [29], with the property
that E′′/jE(E) is finite dimensional. Almost reflexivity, defined in [28] and [17] for example, also
known as weak conditional compactness, is shown to be equivalent to having no isomorphic copy of
ℓ1 in [51]. Another generalization, closely related to Banach spaces with the Grothendieck property,
is the class of weakly compactly generated Banach spaces, [38], [30], [21, Chapter 13], which equal
a closed linear span of a weakly compact subset. A quantative Grothendieck property has been
introduced in [9] and investigated in [37]. So-called c-Grothendieck spaces are Grothendieck for
c ≥ 1, but there are Grothendieck spaces not c-Grothendieck for any c ≥ 1.

2 Grothendieck Banach lattices
2.1 Preliminaries on Banach lattices
Banach lattice theory lies in the intersection of functional analysis and order theory. Like the
algebraic structure has to be compatible with the norm structure in a normed vector space, the
order structure in a Banach lattice has to be compatible with the Banach space.
The terminology concerning Banach lattices is in accordance with the terminology of Meyer-

Nieberg [43].
A real vector space E is called an ordered vector space if a partial order ≤ is defined with

αu + w ≤ αv + w if u ≤ v for u, v, w ∈ E and α ≥ 0. An ordered vector space is called a vector
lattice (or Riesz space) if any two elements u, v ∈ E have a least upper bound u ∨ v and greatest
lower bound u∧ v. For each element u ∈ E we define the positive part u+ = u∧ 0, the negative part
u− = (−u)∨ 0, and the absolute value |u| = u+ + u− = u∨ (−u). It follows that u = u+ − u−. We
write E+ for the set of all u ∈ E with u ≥ 0 and we call [u, v] = {w ∈ E : u ≤ w ≤ v} for u and v in
E an order interval. A subset of E is called order bounded if and only if it is contained in an order
interval. Two elements u, v ∈ E will be called disjoint if and only if |u| ∧ |v| = 0. This is equivalent
with |u| + |v| = |u| ∨ |v| and a necessary condition is |u| + |v| = |u+ v|. A sequence (un)∞n=1 of E
will be called disjoint only if the elements in {un}∞n=1 are mutually disjoint. Furthermore, we will
write uτ ↓ 0 for a net (uτ )τ∈T in a vector lattice with infτ∈T uτ = 0 that is decreasing, that is, such
that uτ ≤ uσ for all τ, σ ∈ T with σ ≤ τ .
A vector lattice E has the countable interpolation property if for all sequences (un)

∞
n=1 and

(vn)
∞
n=1 in E with un ≤ un+1 ≤ vn+1 ≤ vn for all n, there exists a w ∈ E such that un ≤ w ≤ vn

for all n. A vector lattice E satisfies a stronger condition called (σ-)Dedekind completeness if every
order bounded (sequence) set in E has a supremum and an infimum in E.

Definition 2.1. A Banach space E which is also a vector lattice with respect to the same linear
structure, is called a Banach lattice if |u| ≤ |v| implies ‖u‖ ≤ ‖v‖ for all u, v ∈ E.

This is not the only way to combine an ordered vector space with a normed vector space. For
example, a more general class of Banach spaces with an order structure is the class of ordered
Banach spaces, see [8].
All vector spaces considered are assumed to be real. The term complex Banach lattice sounds

contradictory, but it is possible to extend the absolute value on a real Banach lattice to the com-
plexification of the real vector space. See [39], [46], and [48, page 157].
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Definition 2.2. The order dual of an ordered vector space is denoted by E∼ and consists of all
ũ ∈ E# that map order bounded sets into bounded subsets of R. The order given by ũ ≤ ṽ if and
only if (ũ− ṽ)E+ ⊆ F+ for ũ, ṽ ∈ E∼, turns the order dual into a vector lattice.

The following formulae can be derived for the least upper bound and greatest lower bound of two
elements ũ, ṽ ∈ E∼ of the dual:

〈w, ũ ∨ ṽ〉 = sup{〈u, ũ〉+ 〈v, ṽ〉 : u, v ∈ E+ and u+ v = w} ,

〈w, ũ ∧ ṽ〉 = inf{〈u, ũ〉+ 〈v, ṽ〉 : u, v ∈ E+ and u+ v = w} ,
for w ∈ E+. The following Riesz-Kantorovich formulae can be derived for the positive part, negative
part, and absolute value of an element ũ ∈ E∼ of the order dual:〈

u, ũ+
〉
= sup

0≤v≤u
〈v, ũ〉 ,

〈
u, ũ−

〉
= inf

0≤v≤u
〈v, ũ〉 , 〈u, |ũ|〉 = sup

|v|≤u
|〈v, ũ〉| ,

for u ∈ E+. From the rightmost expression it immediately follows that for ũ ∈ E∼ and u ∈ E:

|〈u, ũ〉| ≤ 〈|u|, |ũ|〉 .

To see that the order dual E∼ is Dedekind complete ([4, Theorem 1.18]), let A be an upwards
directed order bounded subset of the order dual E∼ (this is sufficient, since any order bounded set
is contained in an upwards directed set with the same upper bounds, by [42, Theorem 15.11]). The
infimum and supremum of A can be shown to be 〈u, ã〉 = infṽ∈A〈u, ṽ〉 and

〈
u, b̃
〉
= supṽ∈A〈u, ṽ〉

for u ∈ E∼
+ . Since ã and b̃ are linear, they can be extended to the whole of E∼ by setting

〈u, ã〉 = 〈u+, ã〉 − 〈u−, ã〉 and
〈
u, b̃
〉
=
〈
u+, b̃

〉
−
〈
u−, b̃

〉
for u ∈ E.

For Banach lattices the order dual coincides with the continuous dual, which is in contrast with
the fact that the algebraic dual and the continuous dual coincide if and only if the space is finite
dimensional.

Definition 2.3. Let E and F be Banach lattices. A continuous linear operator T : E → F is called
a lattice homomorphism if it Tu ∨ Tv = T (u ∨ v) and Tu ∧ Tv = T (u ∧ v) for u, v ∈ E.

The norm of a Banach lattice is called order continuous whenever for any net (uτ )τ∈T with ut ↓ 0
we have ‖ut‖ ↓ 0. For Dedekind complete Banach lattices it suffices to check this for sequences
only.
The following is sometimes called Dini’s theorem.

Lemma 2.4. (See [43, Proposition 1.4.1]) Decreasing weakly null sequences are norm null.

Proof. Let (un)∞n=1 be a decreasing weakly null sequence in a Banach lattice E. Since 0 is clearly
contained in the closure of {un}∞n=1, certainly 0 is contained in the weak closure of the convex set
generated by the elements in the sequence. Since the weak closure of a convex set equals its norm
closure, by Mazur’s theorem, it follows that 0 is also contained in its norm closure.
Now let ϵ > 0 be given. Then there exists an M , and M positive real numbers (αm)

M
m=1 with∑M

m=1 αm = 1, and M different positive natural numbers (nm)
M
m=1, such that∥∥∥∥∥

M∑
m=1

αmunm

∥∥∥∥∥ ≤ ϵ .
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Since (un)∞n=1 is decreasing

unM =

M∑
m=1

αmunM ≤
M∑
m=1

αmunm

and because the norm preserves order, it follows that ‖unM ‖ ≤ ϵ. Since (un)∞n=1 is decreasing and
the norm preserves order, also ‖un‖ ≤ ϵ for any n ≥ nM , so (un)

∞
n=1 is a null sequence.

Lemma 2.5. Disjoint order bounded sequences in Banach lattices are weakly null.

Proof. Let u be an element of a Banach lattice E and let (un)∞n=1 ⊆ [0, u] be a disjoint sequence.
It suffices to show that 〈un, u′〉 → 0 as n → 0 for all positive u′ in the dual of E. Let such a u′ be
given. Then for any N ∈ N we have

N∑
n=1

〈un, u′〉 =

〈
N∑
n=1

un, u
′

〉
=

〈
N∨
n=1

un, u
′

〉
≤ 〈u, u′〉 ,

so
∑∞
n=1〈un, u′〉 is finite, and we have 〈un, u′〉 → 0 as n→ 0.

The following is a sliding hump argument.

Lemma 2.6. Let (um)
∞
m=1 be a weakly null sequence in a Banach space E. If (u′k)

∞
k=1 is a sequence

in the dual E′ and ϵ > 0 are such that

sup
k∈N

|〈um, u′k〉| > ϵ (1)

for all m ∈ N, then there exists subsequences (umn)
∞
n=1 and

(
u′kn
)∞
n=1

such that for all n ∈ N:∣∣〈umn , u′kn〉∣∣ > ϵ .

Proof. Take m1 = 1. By the supremum in Equation (1) for m = 1, we can let k1 be such that∣∣〈x1, x′k1〉∣∣ > ϵ. Suppose that m1 < · · · < mN and k1 < · · · < kN have been constructed such
that

∣∣〈umn , u′kn〉∣∣ > ϵ for n = 1, · · · , N . Since um is weakly null, there exists mN+1 > mN such
that

∣∣〈umN+1
, u′k
〉∣∣ < ϵ for all 1 ≤ k ≤ kN . It follows by the supremum in Equation (1) for mN+1

that there exists a kN+1 ≥ kN such that
∣∣∣〈umN+1

, u′kN+1

〉∣∣∣ > ϵ. This completes the proof (by
induction).

The following theorem contains just two of the many different equivalent conditions for the dual to
have order continuous norm.

Theorem 2.7. (See [43, Theorem 2.4.14] and [4, Theorem 4.69]) For a Banach lattice E the
following statements are equivalent:

(i) the dual of E has order continuous norm;

(ii) any disjoint bounded sequence in E is weakly null;

(iii) ℓ1 is not lattice-embeddable in E;

(iv) ℓ∞ is not lattice-embeddable in the dual of E.
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Lemma 2.8. If E is a Banach lattice for which there exists a constant 0 < α < 1 such that for
any two mutually disjoint positive elements u and v in the unit sphere of E we have

∥∥u+v
2

∥∥
E
≤ α

(that is, E is quasi-uniformly convex [36, Definition 3.31]), then the norm in the dual of E is order
continuous.

Proof. First we observe what the condition in the statement of the theorem implies for arbitrary
mutually disjoint positive non-zero elements u and v. We always have

0 ≤ u+ v ≤ (‖u‖ ∨ ‖v‖)
(

|u|
‖u‖

+
|v|
‖v‖

)
,

where the last step follows from disjointness. Taking norms and applying the quasi-uniformly convex
property yields:

‖u+ v‖ ≤ 2α(‖u‖ ∨ ‖v‖) . (2)
The proof is by contradiction. Suppose the dual E′ does not have order continuous norm. It

follows from Theorem 2.7 that there exists a disjoint sequence (un)∞n=1 in E that is not weakly null.
So there exists a norm one ϕ in the dual of E such that (〈un, ϕ〉n)

∞
n=1

is not a null sequence. Since
|〈un, ϕ〉| ≤ 〈|un|, |ϕ|〉 for all n, by replacing ϕ by |ϕ| and un by |un|, it may be assumed that ϕ and
all un’s are positive. Furthermore, by passing, if necessary, to a subsequence of (un)∞n=1, it may be
assumed also that there exists a positive ϵ such that 〈un, ϕ〉 > ϵ for all n. Since 〈un/‖un‖, ϕ〉 ≥
〈un, ϕ〉 for all n, replacing un by un

∥un∥ , it may be assumed that (un)
∞
n=1 is normalized.

Define the sequence
(
vkn
)∞
n=1

in the convex span of {un}∞n=1 recursively by v0n = un and vk+1
n =

vk2n−1+v
k
2n

2 for all n. From 〈un, ϕ〉 > ϵ for all n follows
〈
vkn, ϕ

〉
> ϵ for all n and all k. From

Equation (2), we see that
∥∥vkn∥∥ ≤ αk. Combining this we get for all n and all k:

ϵ <
〈
vkn, ϕ

〉
≤ ‖ϕ‖

∥∥vkn∥∥ ≤ αk ,

but the latter can be made arbitrary small by choosing k large enough. This is a contradiction and
the norm of the dual is thus continuous.

2.2 L-spaces and M-spaces and representation theorems
Several representation theorems will become convenient in the proofs of this chapter, but in order
to be able to present them, first some terminology will be introduced.
First of all, it will become worthwhile to abstract L1 spaces preserving the property of additivity

of the norm. Furthermore a dual notion will be introduced, abstracting from L∞ spaces, and typical
examples of both will be defined.

Definition 2.9. A Banach lattice E is called an M-space if ‖u ∨ v‖ = ‖u‖∨‖v‖ for u and v in the
positive cone of E.

Definition 2.10. A Banach lattice E is called an L-space if ‖u+ v‖ = ‖u‖ + ‖v‖ for u and v in
the positive cone of E.

Infinite dimensional M-spaces and L-spaces are not reflexive. An element u of a Banach lattice E
is called an order unit if for all v ∈ E there exists an α > 0 such that |v| ≤ αu.

Definition 2.11. For any Banach lattice E, the principal ideal Eu of a positive u in E is the set
of all v ∈ E such that |v| ≤ αu for some α > 0.
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Lemma 2.12. (See [43, Proposition 1.2.13] or [54, Proposition 7.2]) If the ideal Eu of a Banach
lattice E is normed by

‖v‖u = inf{α > 0 : |v| ≤ αu} ,

then Eu becomes an M-space with order unit u.

Proof. Let v and w be arbitrary positive elements of the principal ideal Eu of some Banach lattice E.
By definition of the norm on Eu we have v ≤ ‖v‖uu and w ≤ ‖w‖uu, so also v∨w ≤ (‖v‖u ∨ ‖w‖u)u,
which by definition means ‖v ∨ w‖u ≤ ‖v‖u ∨ ‖w‖u. The other inequality is trivial.
From the definition of the norm on Eu it immediately follows that the inclusion of Eu in E is

continuous with ‖v‖E ≤ ‖u‖E‖v‖u for v ∈ Eu. A given Cauchy sequence (vn)
∞
n=1 in Eu is thus

Cauchy in E, and therefore convergent, to say v ∈ E. To show completeness of Eu it thus remains
to show that (vn)∞n=1 converges to v in Eu, and that v ∈ Eu. Let ϵ > 0 be given. Since (vn)∞n=1 is
Cauchy in Eu, there exists an N , such that for any n,m ≥ N , |vn − vm| ≤ ϵu. Since the absolute
value is continuous, it follows by taking the limit of m to infinity that |vn − v| ≤ ϵu for any n ≥ N .
Firstly this means that |v| ≤ |vn| + ϵu, so v ∈ Eu. Secondly, by taking norms on both sides, we
obtain ‖vn − v‖u ≤ ϵ, so vn converges to v in Eu.

Theorem 2.13. (Originally from [32], also in [43, Proposition 1.4.7])

1. The dual of an L-space is an M-space with order unit.

2. The dual of an M-space is an L-space.

The following two theorems allow M-spaces and L-spaces to be concretely represented as certain
function lattices.

Theorem 2.14. (Originally from [31, Theorem 2], also in [4, Theorem 4.21 and 4.29]) If E is an
M-space with order unit u, there exists a compact Hausdorff topological space K and an isometric
and lattice isomorphic map S : E → C(K) into C(K) such that S(u) = 1.

Theorem 2.15 (Kakutani-Bohnenblust-Nakano). (Originally from [32], also in [4, Theorem 4.27]
or [43, Theorem 2.7.1]) An L-space is isometric and lattice isomorphic to a concrete L1(X,µ) space
over a locally compact space (X,µ).

Before the dual of C(K), for compact Hausdorff K, can be described more precisely using the
representation theorem Theorem 2.19, a specific L-space will be introduced, consisting of certain
signed measures.

Definition 2.16. A signed measure µ is a real-valued function defined on a σ-algebra Σ of subsets
of a nonempty set X, such that µ(∪∞

n=1An) =
∑∞
n=1 µ(An) whenever (An)

∞
n=1 are mutually disjoint

in Σ.

The set of signed measures, called ca(Σ) from “countably additive functions on Σ”, is given the
partial order defined by µ ≤ ν whenever µ(A) ≤ ν(A) for all A ∈ Σ, for µ and ν in ca(Σ). With this
partial order ca(Σ) is a vector lattice with the following expression for the supremum and infimum
([5, page 335])

(µ ∨ ν)(A) = sup
A⊇B∈Σ

(µ(B) + ν(A \B)) (µ ∧ ν)(A) = inf
A⊇B∈Σ

(µ(B) + ν(A \B)) ,
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for µ and ν in ca(Σ) and A ∈ Σ. Furthermore, the following expression for the absolute value of
an element µ of ca(Σ), also known as the variation of µ, can be derived

|µ|(A) = sup
A⊇B∈Σ

(µ(B)− µ(A \B)) = sup
π∈Π(Σ)

∑
A∈π

|µ(A)| ,

for A ∈ Σ, where Π(Σ) is the set of all partitions of Σ.

Lemma 2.17. For µ ∈ ca(Σ), define ‖µ‖ = |µ|(X). Then ca(Σ) is an L-space.

Proof. A proof that ca(Σ) is complete with respect to the given norm can be found in [12, Theorem
4.6.1]. It is trivial that the norm is additive on the positive cone.

Whenever Σ is the σ-algebra of the Borel sets of a compact Hausdorff space K, we denote ca(Σ)
by ca(K).

Definition 2.18. If K is a compact Hausdorff space with a σ-algebra of Borel sets Σ, a measure
µ ∈ ca(K) is called regular if

sup
A⊇C∈Σ
C compact

|µ|(C) = |µ|(A) = inf
A⊆O∈Σ
O open

|µ|(O) ,

for all A ∈ Σ. The set of all regular measures on Σ is denoted by rca(K), which is a closed ideal of
ca(K) ([3, Theorem 12.12]).

This space rca(K) is particularly interesting because it is the dual of the space of continuous
functions on a compact Hausdorff space K. The duality pairing is given by the integral: ϕµ(u) =
〈u, µ〉 =

∫
K
u dµ for µ ∈ rca(K) and u ∈ C(K).

Theorem 2.19 (Riesz–Markov–Kakutani). (Originally from [31, Theorem 10]) For any compact
Hausdorff space K, the mapping µ 7→ ϕµ is an isometry and a lattice isomorphism from rca(K)
onto the dual of C(K).

Combining these representation theorems, Theorems 2.14, 2.15 and 2.19, we get the following
corollary:

Corollary 2.20. The dual of any principal ideal Eu in a Banach lattice E is isometric lattice
isomorphic to both rca(K), for some compact Hausdorff K, and some concrete L1(µ).

2.3 Characterization Grothendieck Banach lattices
The following important result is due to Kühn.

Theorem 2.21. (Originally from [35, Proposition 1], also in [43, Theorem 5.3.13]) A Banach
lattice with the interpolation property whose dual has order continuous norm, is Grothendieck if and
only if any weak∗ null sequence of positive pairwise disjoint elements of the dual converges weakly.

Proposition 2.22. The dual of a Banach lattice with the Grothendieck property has an order
continuous norm.
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Proof. Since the dual is Dedekind complete, it suffices to consider only sequences (u′n)
∞
n=1 of positive

elements of the dual E′ satisfying u′ ↓ 0. It follows directly from the definition of the order on the
dual E′, see the beginning of Section 2.1, that (u′n)

∞
n=1 is a weak∗ null sequence, that is, the weak∗

topology is an order continuous topology. By the Grothendieck property, such a sequence is thus
weakly null. By Lemma 2.4 it follows that such a sequence must be norm null.

2.3.1 Lotz’ characterization
The following is a small lemma that will be used to rephrase an assertion about open disjoints sets
using disjoint functions instead.
Lemma 2.23. Let X be a compact Hausdorff space and µ ∈ rca(X). Let ϵ > 0 be given.
1. If O is an open subset of X then there exists a norm one, ‖f‖∞ = 1, continuous function f
on X whose support is contained in O, with

∣∣∫
X
f dµ

∣∣ > |µ(O)| − ϵ.

2. If f is a norm one continuous function on X, then there exists an open O subset contained
in the support of f , with |µ(O)| > 1

2

∣∣∫
X
f dµ

∣∣− ϵ.

Proof. 1. Since |µ| is regular, there exists a compact C ⊆ O such that |µ|(O \ C) < 1
2ϵ. By

the triangle inequality we thus have |µ(C)| > |µ(O)| − 1
2ϵ. By Urysohn’s lemma, there exists a

continuous function f on X whose support is contained in O such that 0 ≤ f ≤ 1 and f = 1 on C.
It follows that ∣∣∣∣∫

X

f dµ
∣∣∣∣ =

∣∣∣∣∣
∫
O\C

f dµ+

∫
C

f dµ
∣∣∣∣∣ ≥ |µ(C)| −

∣∣∣∣∣
∫
O\C

f dµ
∣∣∣∣∣

≥ |µ(C)| −
∫
O\C

|f | d|µ| ≥ |µ(C)| − |µ|(O \ C) ≥ |µ(C)| − 1
2ϵ ≥ |µ(O)| − ϵ .

2. Let a norm one continuous function f on X be given. Define A = {f 6= 0}, then∣∣∣∣∫
X

f dµ
∣∣∣∣ ≤ ∫

X

|f | d|µ| ≤ |µ|(A) .

If (P,N) is the Hahn decomposition ([22, 231E]) of µ, then

|µ|(A) = µ(A ∩ P )− µ(A ∩N) .

Without loss of generality, assume that |µ(A ∩ P )| ≥ 1
2 |µ|(A). By regularity of the measure µ, we

can pick a compact set C ⊆ A ∩N such that |µ((A ∩N) \ C)| < ϵ. Define O = A \ C, then by the
reverse triangle inequality,

|µ(O)| ≥|µ(O ∩ P )| − |µ(O ∩N)|

=|µ(A ∩ P )| − |µ((A ∩N) \ C)| ≥ 1
2 |µ(A)| − ϵ ≥ 1

2

∣∣∣∣∫
X

f dµ
∣∣∣∣− ϵ

The following characterization of relatively weakly compact sets of rca(X), for compact Hausdorff
X was used by Grothendieck to prove Theorem 1.31, and was also used by Lotz to prove the
Grothendieck property of Weak Lp spaces.
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Theorem 2.24 (Grothendieck’s weak compactness criterion). (Originally from [25, Théoremè 2],
also in [18, Theorem 14 of chapter VII] and [43, Theorem 2.5.5] for M-spaces) For any bounded
subset A of rca(K) with K a compact Hausdorff space the following are equivalent
(i) A is relatively weakly compact,

(ii) if (On)∞n=1 is a sequence of disjoint open sets in K, then (|µ(On)|n)
∞
n=1

converges to zero
uniformly in µ ∈ A,

(iii) if (fn)∞n=1 is a sequence of disjoint functions in C(K) of norm one, then
(∣∣∫

K
fn dµ

∣∣
n

)∞
n=1

converges to zero uniformly in µ ∈ A.
Partial proof. For the equivalences of (i) and (ii), see [18, page 98, Theorem VII. 14] or [10, Theorem
6.4.2]. The last equivalence follows from Lemma 2.23.

Some facts about Banach lattices are required for the main result of this section.
Definition 2.25. A subset A of a Banach lattice E is called almost (or approximately) order
bounded if and only if for any positive ϵ there exists a positive u in E such that A ⊆ [−u, u] +
ϵ ball(E).
The following theorem describes the relatively weakly compact sets of L1.
Theorem 2.26 (Dunford-Pettis). (See [43, Theorem 2.5.4]) A non-empty bounded subset A of an
L-space is relatively weakly compact if and only if A is almost order bounded.
Lemma 2.27. If E is an L-space, then the number of mutually disjoint norm one elements in
F = [−u, u] + ϵ ball(E), with u ∈ E+ and 0 < ϵ < 1, is bounded by 1

1−ϵ‖u‖.
Proof. It is first established that the absolute value of each element v ∈ F can be written as

|v| = v1 + v2 with v1 = u ∧ |v| ∈ [−u, u] and v2 = (|v| − u)
+ ∈ ϵ ball(E) .

Only the claim that the second term lies in ϵ ball(E) requires an explanation. Write v = v′1 + v′2
with −u ≤ v′1 ≤ u and v′2 ∈ ϵ ball(E). By the Riesz decomposition property, see [43, Theorem 1.1.1
(viii)], it follows from |v| ≤ |v′1|+ |v′2| that we can choose 0 ≤ v′′1 ≤ |v′1| and 0 ≤ v′′2 ≤ |v′2| such that
|v| = v′′1 + v′′2 . Using

(|v| − u)
+
= (v′′1 + v′′2 − u)

+ ≤ (u+ v′′2 − u)
+
= v′′2 ≤ |v′2|. (3)

we then find
∥∥∥(|v| − u)

+
∥∥∥ ≤ ϵ.

The number of elements in a set of mutually disjoint norm one elements G ⊆ F is

|G| =
∑
v∈G

‖v‖ ≤
∑
v∈G

‖v1‖+
∑
v∈G

‖v2‖ ,

where v1 and v2 are defined as above. The second term can be estimated by ϵ|G| and the first term
is estimated first using additivity of the norm on E+ and then using the mutual disjointness:∑

v∈G
‖u ∧ |v|‖ AL

===

∥∥∥∥∥∑
v∈G

u ∧ |v|

∥∥∥∥∥ disj
===

∥∥∥∥∥u ∧
∑
v∈G

|v|

∥∥∥∥∥ ≤ ‖u‖ . (4)

It follows that |G| ≤ ‖u‖+ ϵ|G|, so |G| ≤ 1
1−ϵ‖u‖.
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It will be convenient to introduce the following terminology, not defined in common literature.

Definition 2.28. A sequence (un)
∞
n=1 in a Banach lattice E will be called finitely disjoint if for

each N ∈ N there exists N elements in {un}∞n=1 that are mutually disjoint.

The following corollary follows immediately from Theorem 2.26 and Lemma 2.27.

Corollary 2.29. If (un)∞n=1 is a normalized finitely disjoint sequence in an L-space, then {un}∞n=1

is not relatively weakly compact.

Definition 2.30. Let E be a Banach space. A sequence (un)∞n=1 in E is called an ℓ1-basic sequence
if there exist positive constants c and C such that

c

N∑
n=1

|αn| ≤

∥∥∥∥∥
N∑
n=1

αnun

∥∥∥∥∥
E

≤ C

N∑
n=1

|αn|

for all α1, ..., αN ∈ R and all N ∈ N.

A sequence (un)
∞
n=1 of a Banach space E is an ℓ1 basic sequence if and only if (un)∞n=1 is a

Schauder basis in span{un : n ∈ N} and the map T from span{un : n ∈ N} into ℓ1, defined by
T (
∑∞
n=1 αnun) =

∑∞
n=1 αnen is a linear isomorphism, with (en)

∞
n=1 the standard basis of ℓ1.

This implies, in particular, that an ℓ1-basic sequence is not weakly convergent, since the standard
basis (en)

∞
n=1 in ℓ1 is not weakly convergent in ℓ1. The following dichotomy for norm bounded

disjoint sequences will avoid us from relying on the involved Rosenthal’s ℓ1 theorem.

Lemma 2.31. A norm bounded disjoint sequence in a Banach lattice E is either weakly convergent,
or has an ℓ1-basic subsequence.

Proof. Let (un)∞n=1 be a norm bounded disjoint sequence in the Banach lattice E which is not weakly
convergent, thus certainly not a weakly null sequence. Then there exists an element u′ in the dual
of E such that (〈un, u′〉)∞n=1 does not converge to zero. There exists a positive ϵ and a subsequence
(vn)

∞
n=1 of (un)

∞
n=1, such that |〈vn, u′〉| > ϵ for all n ∈ N. We claim that this subsequence is an

ℓ1-basic sequence. Let an N ∈ N and α1, ..., αN ∈ R be given. Then by norm-boundedness of
(vn)

∞
n=1, ∥∥∥∥∥

N∑
n=1

αnvn

∥∥∥∥∥ ≤
N∑
n=1

|αn|‖vn‖ ≤
(
sup
n∈N

‖vn‖
) N∑
n=1

|αn|.

On the other hand, using the disjointness of (vn)∞n=1,∥∥∥∥∥
N∑
n=1

αnvn

∥∥∥∥∥‖v′‖ =

∥∥∥∥∥
N∑
n=1

|αnvn|

∥∥∥∥∥‖v′‖ ≥

〈
N∑
n=1

|αnvn|, |v′|

〉

=

N∑
n=1

|αn|〈|vn|, |v′|〉 ≥
N∑
n=1

|αn||〈vn, v′〉| ≥ ϵ

N∑
n=1

|αn| ,

It follows that ∥∥∥∥∥
N∑
n=1

αnvn

∥∥∥∥∥ ≥ ϵ

‖v′‖

N∑
n=1

|αn|.

We may conclude that (vn)∞n=1 is an ℓ1-basic sequence, so (un)
∞
n=1 has an ℓ1-basic sequence.
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Lemma 2.32. Let E be a Banach space and let (u′n)
∞
n=1 be an ℓ1-basic sequence in E′. Then there

exist a δ > 0 such that for each finite subset A ⊆ N there exists uA ∈ E satisfying ‖uA‖ = 1 and
〈uA, u′n〉 > δ for n ∈ A.

Proof. Let T : span{u′n} → ℓ1 be the isomorphism T (
∑
n αnu

′
n) =

∑
αnen, with (en)

∞
n=1 the

standard basis in ℓ1. Then:

1

‖T‖

∞∑
n=1

|αn| ≤

∥∥∥∥∥
∞∑
n=1

αnu
′
n

∥∥∥∥∥ ≤
∥∥T−1

∥∥ ∞∑
n=1

|αn| , (5)

for all (αn)∞n=1 ∈ ℓ1. Define the linear functional v′′ : span{u′n}
∞
n=1 → R by〈 ∞∑

n=1

αnu
′
n, v

′′

〉
=

∞∑
n=1

αn .

Now ‖v′′‖ ≤ ‖T‖, by (5), and by construction 〈u′n, v′′〉 = 1 for n ∈ N. By the Hahn-Banach
theorem, this functional v′′ can be extended to the whole of E′ preserving its norm. Call this
extension v′′ again. By Goldstine’s theorem, there exists a net (vt)t∈T of elements in E such that
jE(vt) converges to v′′ in the weak∗ topology of the bidual E′′, and such that ‖vt‖ ≤ ‖v′′‖ ≤ ‖T‖
for all t ∈ T . By definition of the weak∗ topology and our choice of v′′, limt∈T 〈vt, u′n〉 = 1 for all
n ∈ N.
Let a finite set A ⊆ N be given. Choose t such that 〈vt, u′n〉 > 1

2 for all n ∈ A. By the
latter inequality and the bound on the norms of vt, the element uA = vt

∥vt∥ satisfies ‖uA‖ = 1 and
〈uA, u′n〉 > 1

2‖T‖
−1 for all n ∈ A. Take δ = 1

2‖T‖
−1.

Proposition 2.33. Let E be a Banach lattice and suppose that (u′n)
∞
n=1 is a finitely disjoint

sequence of positive elements in the dual of E. If there exists a positive u0 in E and a δ > 0 such
that 〈u0, u′n〉 ≥ δ for all n, then there exists a subsequence

(
u′nm

)∞
m=1

, a disjoint sequence (vm)
∞
m=1

in [0, u0] and an ϵ > 0 such that
〈
vm, u

′
nm

〉
≥ ϵ for all m ∈ N.

Proof. For n ∈ N, define the functionals w′
n ∈ E′

+ by

w′
n =

u′n
〈u0, u′n〉

.

Let Eu0
be the principal ideal in E equipped with the order unit norm ‖·‖Eu0 and let ϕn be the

restriction of w′
n to Eu0

. Since ϕn ≥ 0 and 〈u0, ϕn〉 = 1, it follows that ‖ϕn‖E′
u0

= 1 for all n.
Furthermore, the restriction map w′ 7→ w′|Eu0 is a lattice homomorphism from the dual of E into
the dual of Eu0

and so, the sequence (ϕn)
∞
n=1 is also finitely disjoint. Since the dual of Eu0

is
an L-space, by Lemma 2.12 and Theorem 2.13, it follows from Corollary 2.29 that {ϕn}∞n=1 is not
relatively weakly compact in the dual of Eu0

. Using that Eu0
is isometrically lattice isomorphic to

C(K) for some compact Hausdorff space K, by Theorem 2.14, it follows from Grothendieck’s weak
compactness criterion Theorem 2.24 that there exists a disjoint sequence (fm)

∞
m=1 in Eu0

such that
for all m we have ‖fm‖Eu0 = 1 and

sup
n∈N

|〈fm, ϕn〉| > δ ,
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for some γ. Since ϕn ≥ 0, we have |〈fm, ϕn〉| ≤ 〈|fm|, |ϕn|〉 and so, replacing fm by |fm| if necessary,
it may be assumed that 0 ≤ fm ≤ u0 for all m. Hence, setting ϵ = δγ, it follows that for all m ∈ N

sup
n∈N

〈fm, u′n〉 = sup
n∈N

〈u0, u′n〉〈fm, w′
n〉 > ϵ > 0 ,

By Lemma 2.5, fm → 0 weakly as m → ∞ and so, it follows from Lemma 2.6 that there exists a
subsequence (fmk)

∞
k=1 of (fm)

∞
m=1 and a subsequence

(
u′nk
)∞
k=1

of (u′n)
∞
n=1 such that

〈
fmk , u

′
nk

〉
> ϵ

for all k. Setting vk = fmk finishes the proof.

Theorem 2.34. (Originally from [40, Theorem 1]) Let E be a Banach lattice with the countable
interpolation property whose dual has order continuous norm. Then E is a Grothendieck space if
there exists a collection G of positive linear operators on E with lattice homomorphic adjoints, and
there exists a positive element u0 in E such that:

1. for every u ∈ E there exists a T ∈ G such that |u| ≤ ‖u‖Tu0,

2. for every sequence (un)∞n=1 of mutually disjoint elements in [0, u0] and every sequence (Tn)∞n=1

in G, there exists a non-negative v in E such that Tnun ≤ v for all n.

Proof. By Theorem 2.21 it suffices to show that weak∗ null sequences of positive pairwise disjoint
elements of the dual converge weakly. Any weak∗ convergent sequence is necessarily norm-bounded
and by Lemma 2.31 a norm-bounded disjoint sequence either converges weakly or contains a basic
ℓ1 subsequence. Suppose by contradiction that (u′n)

∞
n=1 is a weak∗ null sequence of positive pairwise

disjoint elements in the dual of E that is not weakly null. By passing to a subsequence we may
thus assume (u′n)

∞
n=1 to be an ℓ1-basic sequence.

Take an arbitrary sequence of mutually disjoint subsets of {u′n}
∞
n=1 such that the number of

elements tends to infinity. To be explicit, define for each N ∈ N,

FN =

{
n ∈ N :

(N − 1)N

2
< n ≤ N(N + 1)

2

}
.

Lemma 2.32 gives a δ > 0 and a sequence (uN )
∞
N=1 of normalized elements of E such that

〈uN , u′n〉 ≥ δ whenever n ∈ FN . The same holds for (|uN |)∞N=1, since the u′n’s are positive.
By the first requirement on G and u0, there exists a sequence (SN )

∞
N=1 in G such that |uN | ≤

SNu0. Define the map σ : N → N by setting σ(n) = N whenever n ∈ FN and let Tn = Sσ(n) for
n ∈ N. Observe that, if n ∈ N, then

〈Tnu0, u′n〉 = 〈SNu0, u′n〉 ≥ 〈|uN |, u′n〉 ≥ δ ,

where N is such that n ∈ FN .
Furthermore, for each N ∈ N, the system

{T ′
nu

′
n : n ∈ FN} = {S′

Nu
′
n : n ∈ FN}

is disjoint, as S′
N is a lattice homomorphism, by the hypothesis on G. Therefore, the sequence

(T ′
nu

′
n)

∞
n=1 is finitely disjoint and for all n ∈ N,

〈u0, T ′
nu

′
n〉 = 〈Tnu0, u′n〉 ≥ δ .
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Hence, by Proposition 2.33, there exists a disjoint sequence (vm)
∞
m=1 in [0, u0], a subsequence(

T ′
nmu

′
nm

)∞
m=1

of (T ′
nu

′
n)

∞
n=1 and an ϵ > 0 such that for m ∈ N〈

vm, T
′
nmu

′
nm

〉
> ϵ .

By hypothesis, there exists a positive v ∈ E such that Tnmvm ≤ v for all m ∈ N. This implies that
for all m ∈ N, 〈

v, u′nm
〉
≥
〈
Tnmv, u

′
nm

〉
=
〈
vm, T

′
nmu

′
nm

〉
> ϵ

which contradicts the assumption that
(
u′nm

)∞
m=1

is weak∗ null. This suffices for a proof of the
theorem.
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3 Banach function spaces
For a given σ-finite measure space (X,Σ, µ), letM(µ) denote the collection of all measurable func-
tions from X to the extended real numbers R∗, with the usual identification of µ-almost everywhere
equal functions. The vector space structure, can only be naturally defined on the subset M0(µ) of
M(µ) consisting of all f ∈ M(µ) which are finite µ-almost everywhere, and is obtained by consid-
ering pointwise operations, that is, by defining (f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x) for
all c ∈ R, all f, g ∈ M0(µ), and for µ-almost all x ∈ X. The lattice structure on M(µ) is pointwise
inherited from the natural order on R∗: f ≤ g if and only if f(x) ≤ g(x) for µ-almost all x ∈ X.

Definition 3.1. A function ρ : M(µ)+ → [0,∞] is called a function norm if and only if it satisfies
the following three conditions:

(i) ρ has trivial kernel, that is, ρ(f) = 0 implies f = 0 for f ∈ M(µ)+.

(ii) ρ is sublinear, that is, ρ(f + g) ≤ ρ(f) + ρ(g) for f, g ∈ M(µ)+ and ρ(αf) = αρ(f) for
f ∈ M(µ)+ and α ≥ 0. We set 0∞ = 0.

(iii) ρ is order preserving, that is, f ≤ g implies ρ(f) ≤ ρ(g) for f and g ∈ M(µ)+.

Furthermore, ρ is called a function quasi-norm if sublinearity is relaxed to these two conditions: there
exists a finite constant C such that ρ(f + g) ≤ C(ρ(f) + ρ(g)) for f, g ∈ M(µ)+, and ρ(αf) = αρ(f)
for f ∈ M(µ)+ and α ≥ 0.
Whenever ρ is a function (quasi-)norm, the subsetMρ(µ) = {f ∈ M(µ) : ρ(|f |) <∞} is defined

to be its corresponding (quasi-)normed function space and ρ(|f |) is denoted as ‖f‖ρ, or ‖f‖, if no
ambiguity is possible.
A complete normed function space is called a Banach function space.

Lemma 3.2. If µ is a measure and ρ is a function norm on Mρ(µ)+, then Mρ(µ) ⊆ M0(µ) is a
vector subspace and ‖·‖ρ is a norm on Mρ(µ).

Proof. To show Mρ(µ) ⊆ M0(µ), let f ∈ Mρ(µ). Clearly c1{|f |=∞} ≤ |f | for all c > 0, and so by
by property (ii) of Definition 3.1 it follows that cρ

(
1{|f |=∞}

)
≤ ρ(|f |). Hence if ρ(|f |) < ∞, then

ρ
(
1{f=∞}

)
= 0 and so, 1{|f |=∞} = 0 µ-almost everywhere, that is, f ∈ M0(µ). Trivially Mρ(µ)

is closed under scalar multiplication and closed under addition, by property (ii). By properties (i)
and (ii) ρ is a norm on Mρ(µ).

Definition 3.3. A function norm ‖·‖ρ on M(µ)+ is said to have the Fatou property if fn ↑ f in
M(µ)+ implies ρ(fn) ↑ ρ(f).

Lemma 3.4. The Fatou property of a function norm ρ implies completeness of its corresponding
normed function space.

Proof. The Fatou property implies the so-called Riesz Fisher property ([59, §65 Theorem 1]), which
implies completeness ([59, §30 Theorem 2]).

3.1 Weak Lp spaces
The terminology concerning Weak Lp spaces is in accordance with the terminology of Bennett and
Sharpley [11].
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3.1.1 Definition from Chebyshev’s inequality
The necessity to consider something like Weak Lp spaces originates from a part of functional analysis
called interpolation theory of which the the Marcinkiewicz’s interpolation theorem, and the Riesz-
Thorin interpolation theorem, [50] and [58], lie at its foundation. However, the definition of Weak
Lp spaces will be presented here without such a justification as to why such a generalization of Lp
might be interesting to consider.
The following property of functions in Lp will become the defining property of Weak Lp spaces.

Theorem 3.5 (Chebyshev inequality). (Originally from [57]) For all f ∈ Lp(µ), with 0 < p <∞:

∀y > 0 : µ({|f | > y}) ≤
(
‖f‖Lp
y

)p
. (6)

where {x ∈ X : |f(x)| > y} is denoted as {|f | > y}.
Proof. For any µ-measurable function f , monotonicity of the integral gives

ypµ({|f |p > yp}) =
∫
{|f |p>yp}

yp dµ ≤
∫
{|f |p>yp}

|f |p dµ ≤
∫
X

|f |p dµ = ‖|f |p‖L1(µ) = ‖f‖Lp(µ) .

Definition 3.6. For 1 < p < ∞, the Weak Lp spaces, denoted Lp,∞(µ), are the vector subspaces
of M0(µ) of all µ-measurable functions f with

‖f‖′p,∞ = inf{C > 0 : ∀y > 0 : µ({|f | > y}) ≤ (C/y)
p} <∞ , (7)

with the convention that the infimum of the empty set is infinity.
In Lemma 3.14 the quantity defined in Equation (7) will be shown to be a quasi-norm, which justifies
the notation ‖·‖′p,∞. The apostrophe distinguishes the quasi-norm from the equivalent norm defined
in Equation (12), proven to be a norm in Lemma 3.20. The name of Weak Lp spaces is justified
by the inclusion Lp ⊆ Lp,∞, which follows from Equation (6). On R with Lebesgue measure λ the
function f ∈ Lp,∞(λ) \ Lp(λ) defined by f(x) = |x|−1/p shows that in general Lp ( Lp,∞.
The definition of Weak Lp spaces presented here does not easily extend to the even more general

Lorentz space Lp,q(µ), and does not yield the most convenient expression for the quasi-norm, but
Equation (7) can be cast into such a form. The first step is to take a closer look at the expression
µ({|f | > y}).

3.1.2 The distribution function
The function that assigns to each positive y the left hand side of the inequality in Equation (6) is
given a name in the following definition.
Definition 3.7. For a µ-measurable function f defined on a measure space (X,Σ, µ) its distribution
function dµf , or df whenever µ is fixed, is defined by d

µ
f (y) = µ({|f | > y}) for positive y ≥ 0. A

ν-measurable g defined on a measure space (Y,Ξ, ν) is called equimeasurable with f if dµf = dνg .
Notice that if there exists some positive y0 such that df (y0) is finite, then df (y) → µ({|f | = ∞})
as y → ∞ (in particular, df (y) → 0 as y → 0 if f ∈ M0(µ)). Note that in general it may occur
that df is identically infinity (take for example f(x) = x on [0,∞)).
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Lemma 3.8. The distribution function is decreasing and right-continuous.
Proof. For a µ-measurable function f , its distribution function df is decreasing, since it is the
composition of a decreasing y 7→ {|f | > y} and an increasing µ (with the partial order ⊆ on X).
Let y be positive. To show right-continuity of the distribution function, we define An =

{|f | > y + 1/n}. Since df is decreasing, the limit limz↓y df (z) exists if the limit limn→∞ f
(
y + 1

n

)
exists. Since An ↑ {|f | > y} implies µ(An) ↑ µ({|f | > y}), it follows that limn→∞ f

(
y + 1

n

)
=

f(y).

Simplifying the expression for ‖·‖′p,∞ and substituting this definition yields the following alternative
expression (which will be shown to be a quasi-norm in Lemma 3.14.
Lemma 3.9. For 1 < p <∞ and any µ-measurable function f

‖f‖′p,∞ = sup
y>0

y(df (y))
1/p

. (8)

Proof. Substituting Definition 3.7 in Equation (7) and simplifying gives the desired result:

‖f‖′p,∞ = inf
{
C ≥ 0 : ∀y > 0 : y(df (y))

1/p ≤ C
}

= inf
{
C ≥ 0 : sup

y>0
y(df (y))

1/p ≤ C

}
= sup

y>0
y(df (y))

1/p

for f ∈ M(µ).

An intuitive way to interpret the distribution function is that it somewhat resembles the inverse
function: if X is the strictly positive real axis (0,∞) with Lebesgue measure, and f > 0 is strictly
decreasing, then df = f−1.

3.1.3 The decreasing rearrangement function
Definition 3.10. For any µ-measurable function f the decreasing rearrangement function of f ,
denoted f∗ : [0,∞) → [0,∞], is defined by

f∗(t) = inf{0 < y : df (y) ≤ t} .

Notice that if the distribution function of an almost everywhere finite measurable function f is not
everywhere infinite, then f∗(t) is finite for all positive t. The collections of such functions will be
denoted by S(µ), so

S(µ) = {f ∈ M0(µ) : ∃y0 > 0 : df (y0) <∞}
= {f ∈ M0(µ) : ∀t > 0 : f∗(t) <∞} .

Lemma 3.11. (See [14, Theorem 4.5]) For any µ-measurable function f , f∗ is decreasing and
right-continuous, f∗ = ddf , and df = df∗ , that is, f and f∗ are equimeasurable.

Proof. For any partition of (0,∞) of nonempty sets A and B with a ≤ b for all a ∈ A and all b ∈ B,
infB = supA . By Lemma 3.8, At = {0 < y : df (y) > t} and Bt = {0 < y : df (y) ≤ t} satisfy these
requirements if they are not empty, so

f∗(t) = infBt = supAt = λ(At) = ddf (t) ,
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follows in this case. When At or Bt is empty, the assertion follows trivially.
We first show that that f∗(t) > y if and only if df (y) > t, for t and y positive. From infBt =

f∗(t) > y it follows that y /∈ Bt, so df (y) > t. For the converse, first note that any yn ↓ f∗(t)
satisfies df (yn) ≤ t and by right continuity of the distribution function (Lemma 3.8) df (f∗(t)) ≤ t.
In view of this observation f∗(t) < y and df (y) > t are contradictory, since the latter inequality
implies df (df (y)) < df (t), since the decreasing rearrangement function is a decreasing function.
Let a positive y now be given. The derived equivalence gives the following equality:

{t > 0 : f∗(t) > y} = {t > 0 : df (y) > t} = (0, df (y)) ,

and by taking Lebesgue measures of both sides we obtain df∗(y) = df (y).

Lemma 3.12. For any µ-measurable function f ,

‖f‖′p,∞ = sup
t>0

t1/pf∗(t) . (9)

Proof. By Equation (8) it suffices to show that supy≥0 y(df (y))
1/p

= supt≥0 t
1/pf∗(t). Intuitively

we would like to set df (y) = t and y = d−1
f (t) = f∗(t), which is correct if f∗ is strictly decreasing.

Equation (9) is proven in two parts.
For the inequality ≥ the case ‖f‖′p,∞ = ∞ is clear, so assume ‖f‖′p,∞ <∞. Then by definition

df (y) ≤
(
‖f‖′p,∞

)p
y−p for all y ≥ 0, and so,

f∗(t) = inf{y > 0 : df (y) ≤ t} ≤ inf
{
y > 0 :

(
‖f‖′p,∞

)p
y−p ≤ t

}
= ‖f‖′p,∞t

−1/p.

This shows that supt≥0 t
1/pf∗(t) ≤ ‖f‖′p,∞.

For the inequality ≤ the case supy≥0 y(df (y))
1/p

= 0 is clear, so fix a 0 < λ < supy≥0 y(df (y))
1/p.

Now there exists a y > 0 such that λ < ydf (y)
1/p, that is, df (y) > λp

yp . Defining t = λp

yp it follows
that

f∗(t) = inf
{
z ≥ 0 : df (z) ≤

λp

yp

}
≥ y = λt−1/p ,

that is, t1/pf∗(t) ≥ λ. This shows that supt≥0 t
1/pf∗(t) ≥ λ. This holds for all 0 < λ <

supy≥0 y(df (y))
1/p, which shows that supt≥0 t

1/pf∗(t) ≥ supy≥0 y(df (y))
1/p.

3.1.4 Normability

First it will be shown in Lemma 3.14 that ‖·‖′p,∞ is in fact a quasi-norm and then an equivalent
norm will be defined.

Lemma 3.13. For µ-measurable functions f and g and s, t ∈ [0,∞),

df+g(t+ s) ≤ df (t) + dg(s) and (f + g)
∗
(t+ s) ≤ f∗(t) + g∗(s) .
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Proof. The statement of this lemma can be generalized by replacing each + on the left hand sides
of both inequalities by an arbitrary binary operator on [0,∞) increasing in both variables, so the
proof only relies on this fact.
From {|f + g| > t+ s} ⊆ {|f | > t} ∪ {|g| > s} and monotonicity and subadditivity of µ follows

df+g(t+ s) = µ({|f + g| > t+ s}) ≤ µ({|f | > t}) + µ({|g| > s}) = df (t) + dg(s) .

A similar inequality holds for decreasing rearrangement functions. Since

{df ≤ t}+ {dg ≤ s} ⊆ {df+g ≤ t+ s}

it follows that

(f + g)
∗
(t+ s) = inf{df+g ≤ t+ s} ≤ inf{df ≤ t}+ inf{dg ≤ s} = f∗(t) + g∗(s) .

Lemma 3.14. The Weak Lp spaces are quasi-normed by ‖·‖′p,∞.

Proof. Only the quasi-triangle inequality requires justification. This is an immediate consequence
of Lemma 3.13 by setting a = b = x/2. For f and g in Lp,∞(µ):

‖f + g‖′p,∞ ≤ sup
x≥0

x1/p(f∗(x/2) + g∗(x/2)) (10)

≤ sup
x≥0

(2x)
1/p
f∗(x) + sup

x≥0
(2x)

1/p
f∗(x) = 21/p

(
‖f‖′p,∞ + ‖g‖′p,∞

)
. (11)

While f 7→ f∗ does not satisfy the subadditivity required for ‖·‖′p,∞ to be a norm, replacing the
decreasing rearrangement function in the expression for ‖·‖′p,∞ with the so-called maximal function
f∗∗ turns Equation (7) into an equivalent norm. Lemma 3.20 will show that this is actually a norm.

Definition 3.15. The maximal function of a µ-measurable function f is defined for x > 0 as

f∗∗(x) =
1

x

∫ x

0

f∗(y) d y .

For a ν-measurable g, we write f ≺≺ g whenever f∗∗ ≤ g∗∗. In this case f is said to be submajorized
by g (in [47] f and g are said to be in Hardy-Littlewood-Pólya relation).

Several properties of the maximal function are summarized in the following lemma, the proof of
which is from [11, Chapter 2 Proposition 3.2].

Lemma 3.16. The maximal function is a decreasing non-negative continuous function that domi-
nates the rearrangement function. It is either finite or constant ∞.

Proof. Let a µ-measurable function f be given. Nonnegativity follows from non-negativity of f∗.
If f 6= S(µ) then f∗∗ is identically infinity, otherwise f∗∗ is finite µ-almost everywhere. Since
the antiderivative of a decreasing function is continuous, the function 1

x is continuous, and the
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product of continuous functions is continuous, f∗∗ is as well. By Lemma 3.8 and Lemma 3.11, f∗
is decreasing, so f∗(α) ≤ f∗

(
αxy

)
for 0 < x ≤ y and 0 < α, so

f∗∗(y) =
1

y

∫ y

0

f∗(y′) d y′ ≤ 1

y

∫ y

0

f∗(y′x/y) d y′ = 1

x

∫ x

0

f∗(x′) dx′ = f∗∗(x) ,

which shows the maximal function is decreasing. It dominates the rearrangement function by

f∗∗(x) =
1

x

∫ x

0

f∗(x′) dx′ ≥ 1

x
f∗(x)

∫ x

0

dx′ = f∗(x) .

Lemma 3.17. (See [11, Theorem 3.4 of Section 2]) The maximal function is subadditive, that is,
for two µ-measurable functions f and g we have (f + g)

∗∗ ≤ f∗∗ + g∗∗.
Sketch of proof. The proof is not very difficult for non-atomic or completely atomic measure spaces,
the so-called resonant measure spaces. An arbitrary totally σ-finite measure space can then be
embedded in a non-atomic measure space, a procedure called the method of retracts, to obtain the
same result for this much larger class of measure spaces.

Lemma 3.18. For all sequences (fn)∞n=1 of non-negative measurable functions and all non-negative
measurable functions f , fn ↑ f implies dfn ↑ df , f∗n ↑ f∗, and f∗∗n ↑ f∗∗.
Proof. By fn ≤ fn+1, {|fn| > t} ⊆ {|fn+1| > t} almost everywhere, for all n. By limn fn = f also
∪n{|fn| > t} = {|f | > t}. Just like in the proof of right continuity, Lemma 3.8,

lim
n→∞

dfn(t) = lim
n→∞

µ({|fn| > t}) = µ({|f | > t}) = df (t) ,

so dfn ↑ df . By Lemma 3.11 also f∗n ↑ f∗. By the monotone convergence theorem also f∗∗n ↑ f∗∗.

Definition 3.19. Let 1 < p <∞. For any µ-measurable function f let

‖f‖p,∞ = sup
x>0

x1/pf∗∗(x) . (12)

Lemma 3.20. The quasi-norms ‖·‖′p,∞ and ‖·‖p,∞ are equivalent, for measurable functions f ,

‖f‖′p,∞ ≤ ‖f‖p,∞ ≤ p′‖f‖′p,∞,

with p′ the conjugate exponent of p, that is, satisfying 1
p + 1

p′ = 1. The quasi-norm ‖·‖p,∞ is a
function norm with the Fatou property (hence

(
Lp,∞, ‖·‖p,∞

)
is a Banach function space).

Proof. One side of the equivalence follows trivially, since f∗ is dominated by f∗∗, by Lemma 3.16.
The other direction of the equivalence of norms follows from Equation (9) and

f∗∗(t) =
1

t

∫ t

0

f∗(s) d s = 1

t

∫ t

0

s−1/ps1/pf∗(s) d s ≤ 1

t

(∫ t

0

s−1/p d s
)
sup
s>0

s1/pf∗(s) = p′t−1/p‖f‖′p,∞ .

That the quasi-norm ‖·‖p,∞ is actually a norm follows from Lemma 3.17.
By Lemma 3.4 only the Fatou property has to be proven to show completeness. Since by

Lemma 3.18 (fn)∞n=1 ↑ f implies f∗∗n ↑ f∗∗ for (fn)∞n=1 a sequence of non-negative elements in Lp,∞,
the Fatou property follows from the definition in Equation (12) of the norm ‖·‖p,∞.
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Definition 3.21. A Banach function space E on (X,Σ, µ) is called rearrangement invariant if
for equimeasurable f and g in M(µ), f ∈ E implies g ∈ E and ‖f‖ = ‖g‖. The norm is called
fully-symmetric if it follows from f ∈ M(µ), g ∈ E and f ≺≺ g that f ∈ E and ‖f‖E ≤ ‖g‖E (in
[47, Theorem 7.7.1] this property is called the Hardy–Littlewood–Pólya principle.

Clearly the spaces Lp,∞ are rearrangement invariant fully-symmetric.

Lemma 3.22. Let 1 < p < ∞ and µ be a σ-finite measure. The dual of Lp,∞(µ) has an order
continuous norm.

Proof. By Theorem 2.7 it suffices to to show that the dual cannot contain ℓ∞ isomorphically. A
sufficient condition is that there exists a q ≥ 1 such that for every disjoint order bounded sequence
(un)

∞
n=1 of positive elements of the dual, we have (‖un‖)

∞
n=1 ∈ ℓq. By [43, Corollary 2.8.10], this is

equivalent with the dual having a lower q-estimate, that is, for any finite set A of pairwise disjoint
elements in the dual of Lp,∞(µ) we must have an M such that∥∥∥∥∥∑

u∈A
u

∥∥∥∥∥ ≥M

(∑
u∈A

‖u‖q
)1/q

which is equivalent to Lp,∞(µ) satisfying an upper p-estimate, with p = 1
1− 1

q

, by [43, Corollary
2.8.5]: ∥∥∥∥∥∑

u∈A
u

∥∥∥∥∥ ≤M

(∑
u∈A

‖u‖p
)1/p

.

Take any finite set of disjoints elements {fn}Nn=1 in Lp,∞(µ). Then for all y,

d∑ fn(y) =
∑

dfn(y) ≤ y−p
∑(

‖fn‖′p,∞
)p

≤ y−p
∑(

‖fn‖p,∞
)p

where the first step follows since for disjoint elements, the distribution function of the sum of
functions is the sum of distribution functions, and the last inequality follows from equivalence of
the norms, Lemma 3.20. Taking the y−p to the other side and taking the

(
1
p

)
th power, gives

∥∥∥∑ fn

∥∥∥′
p,∞

≤
(∑

‖fn‖pp,∞
)1/p

Using now the other direction of equivalence of the norms, we get∥∥∥∑ fn

∥∥∥
p,∞

≤ p′
∥∥∥∑ fn

∥∥∥′
p,∞

≤ p′
(∑

‖fn‖pp,∞
)1/p

,

and we obtain an upper p-estimate, which implies the dual to have an order continuous norm.

Lemma 3.23. For all sequences (fn)∞n=1 of positive measurable functions

dsupn fn ≤
∑
n

dfn .
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Proof. By σ-additivity of µ, for any such sequence (fn)∞n=1 and any y ≥ 0,

dsupn f (y) = µ

({
x ∈ X :

(
sup
n
f

)
(x) > y

})
= µ({x ∈ X : ∃n : fn(x) > y})

= µ(∪n{x ∈ X : fn(x) > y}) ≤
∑
n

µ({x ∈ X : fn(x) > y}) =
∑
n

dfn(y).

Proposition 3.24. (See [11, Proposition 2.3.3]) Let (µ,Σ, X) be a σ-finite non-atomic measure
and t ≤ µ(X). For any µ-a.e. finite measurable function f ,∫ t

0

f∗(s) d s = sup
{∫

A

f dµ : A ∈ Σ, µ(A) = t

}
.

An alternative expression for Equation (12) will be derived.
Theorem 3.25. For any µ-measurable function f ,

‖f‖p,∞ = sup
A⊆X

µ(A)<∞

(µ(A))
−1/p′

∫
A

|f | dµ . (13)

Proof. Let f be a non-negative µ-measurable function. Let A now be a measurable set of positive
finite measure. The Hardy–Littlewood inequality ([11, Theorem 2.2 of Section 2]) gives the second
inequality of

‖f‖p,∞ ≥(µ(A))
−1/p′

∫ µ(A)

0

f∗(s) d s = (µ(A))
−1/p′

∫ ∞

0

χ∗
A(s)f

∗(s) d s

≥(µ(A))
−1/p′

∫ ∞

0

(χAf)
∗
(s) d s = (µ(A))

−1/p′
∫
X

|χAf | dµ = (µ(A))
−1/p′

∫
A

|f | dµ ,

which proves the inequality ≥ of Equation (13).
To prove the inequality ≤, first assume that the measure µ is non-atomic, that is, there does not

exists a measurable set A of positive measure such that there does not exist a measurable subset
of A of smaller nonzero measure. It follows from Proposition 3.24 that

sup
0<t≤µ(X)

t−1/p′
∫ t

0

f∗(s) d s = sup
0<t≤µ(X)

sup
µ(A)=t

t−1/p′
∫
A

f dµ

= sup
0<t≤µ(X)

sup
µ(A)=t

(µ(A))
−1/p′

∫
A

f dµ

= sup
A⊆X

µ(A)<∞

(µ(A))
−1/p′

∫
A

|f | dµ ,

If µ(X) = ∞ this proves equality of Equation (13), otherwise including t > µ(X) does not increase
the supremum, since in this case f∗(t) = 0, so

t−1/p′
∫ t

0

f∗(s) d s = t−1/p′
∫ µ(X)

0

f∗(s) d s ≤ (µ(X))
1/p′

∫ µ(X)

0

f∗(s) d s
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for all t > µ(X). This proves the inequality ≤ of Equation (13) if µ is non-atomic.
Let (X,Σ, µ) now be an arbitrary σ-finite measure space. Let I = [0, 1] be equipped with

Lebesgue measure λ. We define Ω = X× I, equipped with the product measure µ×λ. It should be
observed that the measure µ× λ is non-atomic. For a given non-negative µ-measurable function f
we define the (µ× λ)-measurable function f̃ by f̃(x, y) = f(x) for all (x, y) ∈ Ω. It is easily checked
that f̃ and f are equimeasurable, and therefore their norms agree. It thus remains to show that

sup
A⊆X×I

(µ×λ)(A)<∞

((µ× λ)(A))
−1/p′

∫
A×I

f̃ dµ ≤ sup
A⊆X

µ(A)<∞

(µ(A))
−1/p′

∫
A

f dµ . (14)

For a given (µ× λ)-measurable set A of nonzero finite measure, define Ay = {x ∈ X : (x, y) ∈ A}.
Fubini’s theorem implies that ∫

A

f̃ d(µ× λ) =

∫
I

∫
Ay

f dµ dλ(y) . (15)

By the supremum we have∫
I

∫
Ay

f dµ dλ(y) ≤
∫
I

(µ(Ay))
1/p′ dλ(y) sup

A⊆X
µ(A)<∞

(µ(A))
−1/p′

∫
A

f dµ . (16)

By Fubini’s theorem and Hölder’s inequality∫
I

(µ(Ay))
1/p′ dλ(y) ≤

(∫
I

µ(Ay) dλ(y)
)1/p′

= ((µ× λ)(A))
1/p′

. (17)

Combining Equation (15), Equation (16), and Equation (17), we obtain Equation (14).

We end this section with some lemmata that will be needed later.

Lemma 3.26. If u, v ∈ S(0,∞)
+, then∫ t1

0

u∗(s) d s+
∫ t2

0

v∗(s) d s ≤
∫ t1+t2

0

u+ v∗(s) d s

for all t1, t2 > 0.

Proof. We may assume that
∫ t1
0
u∗(s) d s and

∫ t2
0
v∗(s) d s are finite. Given ϵ > 0, it follows from

Proposition 3.24 that there exists measurable sets A,B ⊆ (0,∞) with λ(A) ≤ t1 and λ(B) ≤ t2,
such that ∫ t1

0

u∗(s) d s ≤
∫
A

u dλ+ ϵ and
∫ t2

0

v∗(s) d s ≤
∫
B

v dλ+ ϵ .
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This implies that ∫ t1

0

u∗(s) d s+
∫ t2

0

v∗(s) d s ≤
∫
A

u dλ+

∫
B

v dλ+ 2ϵ

≤
∫
A∪B

(u+ v) dλ+ 2ϵ

≤
∫ λ(A∪B)

0

(u+ v)
∗
(s) d s+ 2ϵ

≤
∫ t1+t2

0

(u+ v)
∗
(s) d s+ 2ϵ .

Since this holds for arbitrary positive ϵ, the result follows.

Lemma 3.27. If g1, g2 ∈ S(0,∞)
+ are disjoint and if f ∈ S(0,∞)

+ is such that g1 ≺≺ f and
g2 ≺≺ f , then

g1 + g2 ≺≺ D2f ,

where Dαf is the dilation of f defined by (Dαf)(x) = f(x/α), for α > 0.

Proof. Pick disjoint f1, f2 ∈ S(0,∞) equimeasurable with f . Note that such functions exist:

f1(x) =

∞∑
n=0

f((x− n) ∨ 0)χ(2n,2n+1](x) ,

f2(x) =

∞∑
n=0

f((x− n− 1) ∨ 0)χ(2n+1,2n+2](x) .

Given positive ϵ and t, it follows from Proposition 3.24 that there exists a measurable set A ⊆ (0,∞)
with λ(A) ≤ t such that ∫ t

0

(g1 + g2)
∗
(s) d s ≤

∫
A

(g1 + g2) dλ+ ϵ .

Define A1 = A ∩ {g1 > 0} and A2 = A ∩ {g2 > 0}. Since g1 and g2 are disjoint, it follows that
A1 and A2 are disjoint, and so λ(A1) + λ(A2) ≤ λ(A). Using that g1 ≺≺ f1 and g2 ≺≺ f2, in
combination with Lemma 3.26, we find that∫

A

(g1 + g2) dλ =

∫
A1

g1 dλ+

∫
A2

g2 dλ

≤
∫ λ(A1)

0

g∗1(s) d s+
∫ λ(A2)

0

g∗2(s) d s

≤
∫ λ(A1)

0

f∗1 (s) d s+
∫ λ(A2)

0

f∗2 (s) d s

≤
∫ λ(A1)+λ(A2)

0

(f∗1 + f∗2 )(s) d s

≤
∫ t

0

(f∗1 + f∗2 )(s) d s
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Consequently, ∫ t

0

(g1 + g2)
∗
(s) d s ≤

∫ t

0

(f1 + f2)
∗
(s) d s+ ϵ ,

for all ϵ > 0 and so, for t > 0,∫ t

0

(g1 + g2)
∗
(s) d s ≤

∫ t

0

(f1 + f2)
∗
(s) d s .

Since f1 and f2 are disjoint, it follows that, for λ > 0,

df1+f2(λ) = df1(λ) + df2(λ) = 2df (λ) ,

and hence, for s > 0,
(f1 + f2)

∗
(s) = f∗(s/2) = D2f

∗(s) .

3.2 Marcinkiewicz spaces
Marcinkiewicz spaces are a class of rearrangement invariant Banach function spaces, indexed by a
function ψ, that contains the Weak Lp spaces studied in the previous section as the special case
ψ(t) = t1/p.
Throughout this section, let γ ∈ (0,∞] and let ψ : [0, γ) → [0,∞) be a concave function, which

is necessarily increasing, continuous except possibly at 0, absolutely continuous on finite intervals,
and differentiable except possibly on a countable set [52, Theorem 5.17]. Then the fundamental
theorem of Lebesgue integral calculus [52, Theorem 5.14] gives

ψ(t) = lim
t↓0

ψ(t) +

∫ t

0

ψ′ dλ ,

for all t > 0, where ψ′ is decreasing and non-negative and can be defined on the entire real axis by
setting ψ′(t) = limt↓0 ψ′(t). It will be assumed that ψ is not the zero function.
Definition 3.28. Let (X,µ) be a σ-finite measure space, with µ(X) = γ. The Marcinkiewicz space
Mψ =Mψ(µ) on (X,µ) is defined to be the fully symmetric Banach function space of all f ∈ S(µ)
for which the following is finite:

‖f‖Mψ
= sup

0<t<γ

1

ψ(t)

∫ t

0

f∗ dλ . (18)

Define ϕ : [0, γ) → [0,∞) by ϕ(t) = t
ψ(t) and

‖f‖′Mψ
= sup

0<t<γ
ϕ(t)f∗(t) , (19)

for f ∈ S(µ). Also define Mψ(s, t) =
ψ(st)
ψ(t) .

To see that the Marcinkiewicz spaceMψ is indeed a fully symmetric Banach function space with
the Fatou property, see [47, Proposition 7.10.2] and [34, Theorem II.5.2]. To find when ‖·‖′Mψ

is
equivalent to the norm ‖·‖Mψ

, it will become necessary to determine when the function 1
ϕ is an

element of Mψ. The resulting condition will depend on M.
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Lemma 3.29. (See [34, Lemma II.1.3]) For all s > 1 and all t > 0, Mψ(s, t) ≥ 1. If γ = ∞ and
inft>0 Mψ(s, t) = 1 for some s > 1, then inft>0 Mψ(s

′, t) = 1 for all s′ > 1.

Proof. The first assertion follows directly, since ψ is non-decreasing. Let s satisfy the assumption
and choose s′ > 1 arbitrary. If s′ < s then the assertion follows trivially since ψ is non-decreasing.
Assume now that s′ > s, and choose t > 0 arbitary. By concavity of ψ, the line through (t, ψ(t))
and (st, ψ(st)), given by

t′ 7→ ψ(t)(Mψ(s, t)− 1)

t(s− 1)
(t′ − t) + ψ(t) ,

lies above ψ at s′t, that is:

Mψ(s
′, t) ≤ (Mψ(s, t)− 1)

s′ − 1

s− 1
+ 1 .

Since t was arbitrary, this implies that inft>0 Mψ(s
′, t) = 1.

t st s′t

ψ(t)

Mψ(s, t)ψ(t)

Lemma 3.30. If
inf
t
Mψ(s, t) > 1 for some s > 1 , (20)

then 1
ϕ ∈Mψ. This condition is necessary if and only if γ = ∞.

Proof. To show sufficiency, let α > 1 and s > 0 be such that ψ(st) ≥ αψ(t) for all t > 0. Let
t > 0 be arbitrary. By applying this inequality n times, we get ψ(s−nt) ≤ α−nψ(t). We now
wish to replace the discrete n by a continuous x at the cost of one extra α. To see why this is
allowed, notice that since ψ is non-decreasing, ψ(s−xt) ≤ α−nψ(t) for any real x ≥ n. Therefore,
ψ(s−xt) ≤ α−⌊x⌋ψ(t) ≤ α−x+1ψ(t), where bxc is the largest integer below x. Replace s−xt by t′
and obtain: for all t′ ≤ t

ψ(t′) ≤ α− logs t
t′ +1ψ(t) = α

(
t

t′

)− logs α
ψ(t) .
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We can now bound the following integral:∫ t

0

ψ(t′)

t′
dt′ ≤ α

logs α
ψ(t)

And we obtain: ∥∥∥∥ 1ϕ
∥∥∥∥
Mψ

= sup
0<t<γ

1

ψ(t)

∫ t

0

ψ(t′)

t′
dt′ ≤ α

logs α
<∞

The proof of necessity if γ = ∞, is contained in [34, Lemma 5.3]. To see that this condition is not
sufficient if γ < ∞, consider a an arbitrary ψ that does satisfy Equation (20). Choose 0 < γ2 < γ
arbitrary and define ψ2 to equal ψ on (0, γ2) and define ψ2 to be constant ψ(γ2) otherwise. In this
case for s = γ/γ2 the condition in Equation (20) is satisfied, but 1

ϕ ∈Mψ.

Lemma 3.31. (See [34, Theorem 5.3]) The quasi-norm ‖·‖′Mψ
is equivalent to the norm ‖·‖Mψ

if
Equation (20) holds. This is necessary if γ = ∞.
Proof. Note that trivially one side of the equivalence of the norms always holds:

f∗ decreasing⇒ f∗(t) ≤ 1

t

∫ t

0

f∗ ⇒ t

ψ(t)
f∗(t) ≤ 1

ψ(t)

∫ t

0

f∗ ⇒ ‖f‖′ ≤ ‖f‖

For sufficiency of the other side of the equivalence of the norms, we use Hölder’s inequality,∫ t

0

f∗(s)ds
Hölder
≤
∫ t

0

ψ(s)

s
ds · sup

s>0

s

ψ(s)
f∗(s) ≤ ψ(t)

∥∥∥∥ψ(s)s
∥∥∥∥‖f‖′ ,

we obtain after division by ψ(t) and after taking the supremum, that ‖f‖ ≤
∥∥∥ 1
ϕ

∥∥∥‖f‖′. Lemma 3.30
shows that this is bounded.
We now prove necessity, assuming γ = ∞. Since 1

ϕ is a decreasing function,
(

1
ϕ

)∗
= 1

ϕ , so∥∥∥ 1
ϕ

∥∥∥′ = 1. By equivalence of the norms,
∥∥∥ 1
ϕ

∥∥∥ < ∞, which implies by Lemma 3.30 that condition
the Equation (20) holds.

Lemma 3.32. The condition in Equation (20) is satisfied if and only if:

lim inf
t↓0

M(s, t) > 1 and lim inf
t↑γ

M(s, t) > 1 for some s > 1 . (21)

Proof. The ‘if’ part is trivial.
Assume that there exists a sequence (tn)∞n=1 such thatM(s, tn) converges to 1. Then there exists

a subsequence (sn)
∞
n=1 that converges to 0 ≤ t′ ≤ γ with M(s, sn) → 1. By lim inft↓0 M(s, t) > 1

and lim inft↓∞ M(s, t) > 1, both t′ 6= 0 and t′ 6= γ. By continuity of M, M(s, t′) = 1, that is,
ψ(t′) = ψ(st′). By concavity and positivity of ψ this implies that ψ(t) = ψ(t′) for all t ≥ t′, which
contradicts lim inft→∞ M(s, t) > 1.

An example of a concave ψ : (0, γ) → (0,∞) that does not satisfy the condition in Lemma 3.32 at∞
is ψ(t) = ln(1 + t) and similarly an example that does not satisfy the condition at 0 is ψ(t) = 1

ln(1/t) .
An example that satisfies neither conditions is ψ(t) = ln(t+2)

t+2
1

W(1/t) , where W is the Lambert W
function defined by W (t)eW (t) = t for t > 0. Note also that the condition at 0 is satisfied if there
exists an n such that the nth derivative of ψ at t = 0 exists and is nonzero.

35



4 The Weak Lp space Lp,∞(0, γ) is Grothendieck
Lotz’ objective in [40] was to prove the Grothendieck property of Weak Lp spaces. Instead of
applying Theorem 2.34 directly to Lp,∞(X) for arbitrary measure spaces X, first an interval of the
real line with the Lebesgue measure is considered. Since in Lemma 3.22 order continuity of the
dual is established, it remains to be shown that there exists a pair (u0,G) imitating the action of
the identity on the constant-one function of C(K). The general case follows in Section 6.

Definition 4.1. A measure preserving map ϕ : X → Y between the measure spaces (X,µ) and
(Y, ν) is such that the preimages of measurable subsets A ⊆ Y are measurable and equally measured:
µ
(
ϕ−1(A)

)
= ν(A). If its inverse exists and is measure preserving as well, ϕ is called a measure

preserving isomorphism.

Lemma 4.2. For any strictly positive function in S(0, γ), for γ ∈ (0,∞), and any a > 1, there exists
a measure preserving isomorphism ϕ on (0, γ) such that λ-almost everywhere a−1f ≤ f∗ ◦ ϕ ≤ af .

Proof. For i ∈ Z define the partition Ai =
(
ai, ai+1

]
of (0,∞) and the partitions

Ωfi = f−1[Ai] and Ωf
∗

i = f∗−1[Ai] ,

of (0, γ). By equimeasurability, λ
(
Ωfi

)
= λ

(
Ωf

∗

i

)
for i ∈ Z. Moreover, λ

(
Ωfi

)
= 0 if and only if

Ωf
∗

i = ∅, since f∗ is right continuous and decreasing, Lemma 3.11. Let Ωf = ∪
{
Ωfi : λ(Ai) > 0

}
.

If λ
(
Ωfi

)
> 0 then there exists a measure preserving isomorphism ϕi from Ωfi onto Ωf

∗

i , by [52,
Theorem 12, Chapter 15 and Problem 18]. Hence there is a measure preserving isomorphism ψ

from Ωf onto (0, γ) with ψ|Ωfi = ϕi if λ
(
Ωfi

)
> 0. Let now s ∈ Ωf be given and define i to satisfy

s ∈ Ωfi , then f(s) and f∗(ψ(s)) are both in Ai, which implies that a−1f(s) ≤ f∗(ψ(s)) ≤ af(s)
for s ∈ Ωf . Because the assertion requires a bijection, the image of the null set (0, γ) \ Ωf has
to be defined. Let N ⊆ (0, γ) be an arbitrary uncountable null set. Let θ be a bijection from
C = ψ−1(N) ∪

(
(0, γ) \ Ωf

)
onto B. Let

ϕ(s) =

{
ψ(s) s ∈ (0, γ) \N
θ(s) s ∈ N

,

then ϕ is a measure preserving isomorphism with the desired property.

The isomorphisms ϕ of the previous lemma will now be considered as bounded linear operators Tϕ
on Lp,∞(0,∞) with (Tϕf)

∗
= f∗ by defining Tϕf = f ◦ ϕ for f ∈ Lp,∞(0,∞). The adjoints of such

Tϕ are clearly lattice homomorphic, since Tϕ is invertible and bipositive.

Theorem 4.3. (Originally from [40, Theorem 2]) Lp,∞((0, γ)) is Grothendieck, for all γ ∈ (0,∞].

Proof. We wish to apply Theorem 2.34. Order continuity of the norm of the dual has been shown
in Lemma 3.22. Define u0 ∈ Lp,∞ by u0(t) = 2t−1/p and define G to be the set of all Tϕ with ϕ a
measure preserving isomorphism on (0, γ).
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In order to show the first requirement of Theorem 2.34, assume that ‖f‖p,∞ ≤ 1, that is, by
equivalence of the norms, Lemma 3.20, supt t1/pf∗(t) ≤ 1, which implies f∗(t) ≤ t−1/p for all t. By
Lemma 4.2 for a = 2, there exists a measure preserving isomorphism ϕ such that,

|f |(t) ≤ 2f∗(ϕ(t)) ≤ 2(ϕ(t))
−1/p

= (Tϕu0)(t) ,

which implies ‖f‖ ≤ Tϕu0. The first requirement of Theorem 2.34 is thus satisfied.
To check the second requirement in Theorem 2.34, let a disjoint sequence (fn)∞n=1 in [0, u0] and

a sequence (Tϕn)
∞
n=1 in G be given. It suffices to show that v ≡ supn fn ◦ϕn ∈ Lp,∞. Its distribution

function can be bounded by

dsupn fn◦ϕn ≤
∑

dfn◦ϕn =
∑

dfn ≤ du0 ,

where the first estimate follows from Lemma 3.23, the second equality follows from equimeasura-
bility after composition with a measure preserving isomorphism, and the last estimate follows from
disjointness. It follows that v∗ ≤ u0

∗, so v ∈ Lp,∞.

5 When is the Marcinkiewicz space Mψ(0, γ) Grothendieck?
Proving when the Marcinkiewicz spaces have the Grothendieck property is very similar to the proof
that Weak Lp spaces are Grothendieck.
As before, let γ ∈ (0,∞] and let ψ : [0, γ) → [0,∞) be a concave function. We first determine

necessary and sufficient conditions for order continuity of the norm of the dual Mψ in the case
γ = ∞, and then consider the case γ < ∞. After these results, the necessary and sufficient
conditions for the Grothendieck property follow easily in the same way as in the previous section.
The following result is already from 1974.

Theorem 5.1. (Originally from [41, Теорема 4], also in [1, Theorem 8.6] on [0, 1] without proof)
If γ = ∞, then the dual of the Marcinkiewicz space Mψ, has order continuous norm if

inf
t
Mψ(s, t) > 1 for some s > 1 . (20 again)

Proof. To prove order continuity of the norm of the dual, we use Lemma 2.8. Let u and v thus be
two mutually disjoint positive elements in the unit ball of Mψ. By definition of the norm we have

sup
x>0

1

ψ(x)

∫ x

0

u∗ dλ ≤ 1 ,

and similarly for v, which means that
∫ x
0
u∗ dλ ≤

∫ x
0
ψ′ dλ for all x > 0, that is, u ≺≺ ψ′ and v ≺≺

ψ′. By Lemma 3.27 u+v ≺≺ D2ψ
′. Since the norm is monotone with respect to submajorization, it

follows that ‖u+ v‖Mψ
≤ ‖D2ψ

′‖Mψ
and it remains to show that ‖D2ψ

′‖Mψ
< 2. By the following
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change of variables

‖D2ψ
′‖Mψ

= sup
x>0

1

ψ(x)

∫ x

0

D2ψ
′ dλ

= sup
x>0

1

ψ(x)

∫ x

0

ψ′
(y
2

)
dλ(y)

= sup
x>0

1

ψ(x)

∫ x/2

0

ψ′(z)2 dλ(z)

= 2 sup
x>0

ψ(x/2)

ψ(x)
= 2/ inf

x>0

ψ(2x)

ψ(x)
.

Assuming Equation (20) and using Lemma 3.29 for s′ = 2 finishes the proof.

Lemma 5.4 will show that if γ is finite, the lim inf of M at t = γ is not required for order continuity
of the norm of the dual. However, a similar proof as in the case of (0,∞) does not apply, since the
Marcinkiewicz space on a finite interval is not necessarily quasi-uniformly convex. The following
example demonstrates this:

Example. Consider γ = 1 and ψ(t) = 2t ∧ 1
2 , and define the disjoint elements u, v ∈Mψ(0, 1) by

u = χ[0, 12 ]
and v = χ[ 12 ,1]

.

It is clear that u∗ = v∗ = u. To compute the norms, we evaluate Equation (19):

‖u‖Mψ
= ‖v‖Mψ

= sup
0<t<γ

1

ψ(t)

∫ t

0

u∗ dλ = sup
0<t<γ

1

2t ∧ 1
2

∫ t

0

χ[0, 12 ]
dλ = sup

0<t<γ

t ∧ 1
2

2t ∧ 1
2

= 1

Similarly we find that ‖u+ v‖Mψ
= 2, so Mψ(0, 1) is not quasi-uniformly convex, so Lemma 2.8

cannot be used to prove order continuity of the norm of the dual.

To prove the converse of the of these results, we start with the following simple observation:

Lemma 5.2. If the dual of the Marcinkiewicz space Mψ has order continuous norm, then we have
limt↓0 ψ(t) = 0. If additionally γ = ∞, then limt→∞ ψ(t) = ∞.

Proof. The proof is by contraposition. It will be shown that Mψ contains ℓ1, which suffices for a
proof, since then the dual cannot have an order continuous norm, by Theorem 2.7.
First assume that γ = ∞. Assume thus that limt→∞ ψ(t) = L < ∞. Define the map T : ℓ1 →

Mψ(0,∞) by T (ei) = Lχ(i−1,i), where (ei)∞i=1 is the natural basis of ℓ1. This map is clearly a lattice
isomorphism. To show that it is also an isomorphism onto its range, we will calculate the image of
an arbitrary element of ℓ1:

∑∞
i=1 αiei. Since the sup in the definition of the norm of f on Mψ will

never be attained at values for t for which there exists a s > t such that f(s) = f(t), there exists
an N ∈ N such that for any n ≥ N ,

‖T (αi)∞i=1‖Mψ
=

1

ψ(N)

N∑
i=1

L
∣∣ασ(i)∣∣ ≥ 1

ψ(n)

n∑
i=1

L
∣∣ασ(i)∣∣ , (22)
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where σ : N → N is such that
(
ασ(i)

)∞
i=1

is non-increasing. Since this holds for any n ≥ N , we can
also take the limit n→ ∞ and obtain:

‖T (αi)∞i=1‖Mψ
≥ 1

L

∞∑
i=1

L
∣∣ασ(i)∣∣ = ‖(αi)∞i=1‖ℓ1

One side of the equivalence of norms has been proven. Since for any N we bound the middle
expression of Equation (22) by

L

ψ(N)
‖(αi)∞i=1‖ℓ1

and since ψ(N) is bounded from below by ψ(1), the other side of the equivalence of norms has been
proven as well.
Now assume that limt↓0 ψ(t) = L > 0. Choose δ = γ if γ is finite, and otherwise choose δ = 1.

Define T : ℓ1 → Mψ(0,∞) now by T (ei) = 2i

δ χ[ δ
i+1 ,

δ
i ]
. The proof that this map is an isomorphism

onto its range is similar to the case above.

Proposition 5.3. Assume γ = ∞. If the dual of Mψ has order continuous norm, then condition
in Equation (20) is satisfied.

Proof. Suppose that the condition in Equation (20) is satisfied. As observed in Lemma 5.2, ψ(0+) =
0 and ψ(∞) = ∞. Therefore, it follows from [19, Theorem 3.4] that there exists a positive u′ ∈M ′

ψ

which is symmetric, that is, if 0 ≤ f, g ∈ Mψ and f ≺≺ g, then u′(f) ≤ u′(g). In particular, if
0 ≤ f, g ∈Mψ and f∗ = g∗, then u′(f) = u′(g).
Since 0 < u′ ∈ M ′

ψ, there exists a norm one positive u ∈ Mψ such that u′(u) > 0. Let (un)∞n=1

be a sequence of positive mutually disjoint elements inMψ, all equimeasurable with u. This implies
that ‖un‖Mψ

= ‖u‖Mψ
= 0 and u′(un) = u′(u) > 0 for all n. In particular, (un)∞n=1 does not

converge to zero weakly. It follows from Theorem 2.7 that the norm in the dual is not order
continuous, which is a contradiction. The proof is complete.

The following lemma considers the case γ <∞.

Lemma 5.4. Assume γ <∞. The dual of the Marcinkiewicz space Mψ(0, γ), has order continuous
norm if and only if, for some s > 1

lim inf
t↓0

M(s, t) > 1 . (23)

Proof. By the conditions on ψ, there exists a δ such that ψ′(δ) > 0. Define ψδ ∈ M(0,∞) by

ψδ(t) =

{
ψ(t) if t ≤ δ

ψ(δ) + (t− δ)ψ′(δ) if t ≥ δ
,

for t > 0. It remains to be shown that Mψ(0, γ) and Mψδ(0,∞) ∩ M(0, γ) are isomorphic, since
then Theorem 5.1 and Proposition 5.3 finish the proof.
Since clearly the norms of the two Marcinkiewicz spaces Mψ1 and Mψ2 on some finite interval

(0, γ) are equivalent if ψ1

ψ2
is bounded from above and below (in some neighbourhood of zero is

sufficient), Mψ(0, γ) is isomorphic with Mψδ|(0,γ)(0, γ).

39



It remains to be shown that the canonical embedding j : Mψδ|(0,γ)(0, γ) → Mψδ(0,∞) is an
isomorphism onto its range. It is trivial that ‖j(f)‖Mψδ

(0,∞) ≤ ‖f‖Mψδ|(0,γ) (0,γ)
. We use the fact

that the maximal function is decreasing, Lemma 3.16:

1

ψδ(t)

∫ t

0

(j(f))
∗
(s) d s = t

ψδ(t)

1

t

∫ t

0

(j(f))
∗
(s) d s ≤ t

ψδ(t)

1

γ

∫ γ

0

f∗(s) d s ,

for t > γ. Using ψδ(t) ≥ ψ′
δ(γ)t we find

t

ψδ(t)

1

γ

∫ γ

0

f∗(s) d s ≤ 1

γψ′
δ(γ)

∫ γ

0

f∗(s) d s ≤ ψδ(γ)

γψ′
δ(γ)

‖f‖Mψδ
(0,γ) ,

so j is indeed an isomorphism onto its range.

Theorem 5.5. Let ψ : [0, γ) → [0,∞) be a concave function. Let 0 < γ ≤ ∞. The Marcinkiewicz
space Mψ(0, γ) is a Grothendieck space if and only if either

(i) γ <∞ and lim inft↓0 M(s, t) > 1 for some (or equivalently, all) s > 1 (Equation (23)), or

(ii) γ = ∞ and lim inft↓0 M(s, t) > 1 and lim inft→∞ M(s, t) > 1 for some (or equivalently, all)
s > 1 (Equation (21)).

Proof. By Proposition 5.3, lemma 5.4, and theorem 5.1, the condition is equivalent with order
continuity of the dual M ′

ψ. Since this is required for the Grothendieck property of Mψ, it remains
to prove the Grothendieck property using the condition. We will proceed similarly as in Theorem 4.3,
now using u0(t) = 2ψ(t)t = 2

ϕ(t) instead. We will apply Theorem 2.34 again with the same G: the
set of all Tϕ with ϕ a measure preserving isomorphism on (0, γ).
In order to show the first requirement in Theorem 2.34, assume that ‖f‖ ≤ 1, that is, by

equivalence of the norms, Lemma 3.31, supt>0 ϕ(t)f
∗(t) ≤ 1, which implies f∗(t) ≤ 1

ϕ(t) for all
t. By Lemma 4.2, there exists a measure preserving isomorphism Φ such that, given an a > 1,
|f |(t) ≤ af∗(Φ(t)) ≤ a

ϕ(Φ(t)) . Choose a = 2 and the first requirement is satisfied.
The verification of the second requirement in Theorem 2.34 is identical to that in Theorem 4.3.
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6 The Grothendieck property of BFS’s on arbitrary mea-
sure spaces

The main result of this section is Proposition 6.7. The proof consists of three steps, each weakening
the assumptions on the measure space under consideration. The first (weakest) assumption is that
the measure space is ‘separable’, a property introduced in the following definition.
Definition 6.1. The Fréchet–Nikodym pseudo-metric ρ is defined on the subset Σf of the finitely
measured elements from a measure space (X,Σ, µ) by ρ(A1, A2) = µ(A14A2) for A1, A2 ∈ Σf .
An equivalence relation ∼ can then be defined on Σf , identifying sets that differ by a null set:

A ∼ B if and only if A4B is a null set for A,B ∈ Σf . This measure algebra (or Boolean algebra)
Σf/ ∼ will be denoted by Σ/µ, and the metric ρ on Σ/µ will be denoted as ρµ.
A measure space (X,Σ, µ) is called separable if its corresponding metric space (Σ/µ, ρµ) is

separable.
The following lemma describes how separable measure spaces appear in the proof of Proposition 6.7.
Lemma 6.2. (See [27, Theorem 40.B]) A countably generated σ-algebra with σ-finite measure is
separable.
The following definition of an isomorphism between measure spaces is a ‘modulo null sets’ general-
ization of an isomorphism between measure spaces.
Definition 6.3. The measure algebras of two measure spaces (X,Σ, µ) and (Y, T, ν) are called
isomorphic if a bijection ϕ : Σ/µ → T/ν exists measure preserving, µ = ν ◦ ϕ, and homomorphic
w.r.t. the set operations \, ∪, and ∩. In this case ϕ is also called a Boolean isomorphism.
The following is a non-trivial result.
Theorem 6.4. (See [27, Theorem C and Exercise 6 of Section 41] or [12, 9.3.4. Theorem] for
probability measures) Let (X,µ,Σ) be a σ-finite non-atomic measure space. If the corresponding
measure algebra is separable, then it is isomorphic to the measure algebra of the interval (0, µ(X))
with Lebesgue measure.
The following lemma defines for a given Boolean isomorphism from a measure algebra Σ/µ to a
measure algebra Ξ/ν, a natural mapping can be defined from the corresponding space of µ-almost
everywhere finite measurable functions M0(µ) to M0(ν).
Lemma 6.5. Let (X,Σ, µ) and (Y,Ξ, ν) be measure spaces and let ϕ be a Boolean isomorphism from
the measure algebras Ξ/ν to the measure algebra Σ/µ. There exists a bijective lattice isomorphism
Tϕ : M0(µ) → M0(ν) that satisfies, for f ∈ M0(µ),

{f(x) : x ∈ ϕ(B)} = {(Tϕf)(y) : y ∈ B} (24)

for all B ∈ Ξ/ν, and thus dTϕf = df and (Tϕf)
∗
= f∗.

Proof. We first define this operator Tϕ for simple non-negative functions, and proceed like in the
definition of the Lebesgue integral. Let f =

∑N
n=1 αnχAn be given, where each αi is a real positive

constant and each An ∈ Σ is a µ-measurable set. We define:

Tϕf =

N∑
n=1

αiχϕ(An) . (25)
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It follows from the properties of the Boolean isomorphism ϕ that this definition does not depend
on the specific representation of f . Substituting the expression of f as a linear combination of
indicator functions into the left side of Equation (24), and the expression in Equation (25) for Tϕf
into the right side of Equation (24), immediately reveals equality for simple functions.
We now define Tϕ for non-negative measurable functions f finite µ-almost everywhere. Let

(sm)
∞
m=1 be a sequence of positive simple functions such that sm ↑ f . We define

Tϕf = sup
m
Tϕsm . (26)

This definition clearly coincides with Equation (25) for simple non-negative functions. To see that
this does not depend on the specific representation of f , let tm ↑ f . Let M ∈ N be arbitrary and
0 < ρ < 1. It suffices to show that

sup
m
Tϕsm ≥ ρTϕtM , (27)

since by symmetry we have the reverse inequality as well. Let tM =
∑N
n=1 αnχAn and define

Xm = {sm ≥ ρtM}. Because sm(x) ↑ fm(x) for all x ∈ X, Xm ↑ {f ≥ ρtm} = X. Write sm =
smχXm + smχXCm , then

Tϕsm ≥ Tϕ(smχXm) ≥ ρTϕ(tMχXm) = ρ

N∑
n=1

αnχϕ(An∩Xm) = ρ

N∑
n=1

αnχϕ(An)∩ϕ(Xm) , (28)

where the last step follows since ϕ is homomorphic with respect to ∩. Since Xm ↑ X implies
ϕ(Xm) ↑ ϕ(X) = Y , monotone continuity from below of ν gives that taking limits in Equation (28)
yields Equation (27). We now show that Equation (24) still holds for non-negative measurable
functions f , with (sm)

∞
m=1 a sequence of positive simple functions such that sm ↑ f . Since for

simple functions we have proven Equation (24) already, for any m,

{sm(x) : x ∈ ϕ(B)} = {(Tϕsm)(x) : x ∈ B} .

This clearly implies that (since sm(x) is non-decreasing for constant x){
sup
m
sm(x) : x ∈ ϕ(B)

}
=

{
sup
m

(Tϕsm)(x) : x ∈ B

}
,

which means {(
sup
m
sm

)
(x) : x ∈ ϕ(B)

}
=

{(
sup
m
Tϕsm

)
(x) : x ∈ B

}
,

which means
{f(x) : x ∈ ϕ(B)} = {(Tϕf)(x) : x ∈ B} .

The last part of the definition of Tϕ is for not non-negative measurable functions f finite µ-almost
everywhere:

Tϕf = Tϕ
(
fχ{f≥0}

)
+ Tϕ

(
fχ{f<0}

)
, (29)

This definition is obviously compatible with the previous definitions, and the assertion still holds.
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We now show that Tϕ is bijective. We claim that Tϕ−1 is its inverse. First let a simple non-
negative function f =

∑N
n=1 αiχAn be given. The representation of Tϕf as a simple non-negative

function follows immediately from the definition of Tϕ in Equation (25). We obtain

Tϕ−1Tϕf =

N∑
n=1

αiχϕ−1(ϕ(An)) =

N∑
n=1

αiχAn
a.e.
= f .

Now let an arbitrary non-negative function f be given. Let (sm)
∞
m=1 be a sequence of positive

simple functions such that sm ↑ f . It follows that Tϕsm ↑ Tϕf , so by definition, Equation (26),
Tϕ−1Tϕf = supm Tϕ−1Tϕsm = supm sm. We have thus shown Tϕ is bijective.
It is easy to see that Tϕ is lattice isomorphic.

To reduce the general case of an arbitrary σ-finite measure space X to the non-atomic case, the
method of retracts can be used, as in the proof of Lemma 3.17, but it can also be proven by
considering the product measure space X × [0, 1]. For this we then need the following lemma.
Lemma 6.6. (See [33, Lemma 2] and [33, Proposition 1] for the converse) Let (X,Σ, µ) be a
measure space and Λ ⊆ Σ a σ-finite sub-σ-algebra of Σ. Let E be a fully symmetric rearrange-
ment invariant Banach function space over X. The conditional expectation (‘averaging operator’)
EE(·|Λ) : E → E ∩M(µΛ) defined by∫

A

EE(f |Λ) dµ =

∫
A

f dµ

for all f ∈ E and all Λ-measurable A with µ-finite measure, is a well-defined contraction.
Proof. Since all rearrangement invariant Banach function spaces are continuously embedded in
L1+L∞, by [11, Theorem 6.6 of chapter 2] or [34, Theorem 4.1 of chapter 4] (sometimes part of the
definition of a rearrangement invariant space), it suffices to show that the conditional expectation
is well-defined on L1 and on L∞.
The conditional expectation E1(·|Λ) defined on L1 is a well-defined contraction on L1 by the

Radon Nikodym theorem (see [22, p. 233D] and [22, 242J]).
To see that the conditional expectation is also a well defined contraction as an operator E∞(·|Λ) :

L∞(µ) → L∞(µ|Σ), remark that E∞(·|Λ) is the adjoint of the natural embedding j : L1(µ|Σ) →
L1(µ) ([22, 243 Notes and comments]). The defining property of the conditional expectation then
follows by choosing g = χA dµ ∈ (L∞(µ))

′ in the definition of the adjoint: 〈jf, g〉 = 〈f, j′g〉 for
f ∈ L∞(µ|Σ).
Since the norm is assumed to be fully symmetric, to show EE(·|Λ) is a contraction, it suffices to

show that f ∈ E implies EE(f |Λ) ≺≺ f . By subadditivity of the maximal function, Lemma 3.16,
and by linearity of the conditional expectation,∫ t

0

(EE(f |Λ))∗(s) d s ≤ ‖E1(f1|Λ)‖1 + t‖E∞(f1|Λ)‖∞

where f1 ∈ L1 and f∞ ∈ L∞ are such that f = f1 + f∞. Since both E1(·|Λ) and E∞(·|Λ) are
contractions, the right-hand side can be estimated by ‖f1‖1 + t‖f∞‖∞. By [11, Theorem 2.6 of
section 2], the following formula finishes the proof: for all µ-measurable f and all t > 0,∫ t

0

f∗(s) d s = inf
f=f1+f∞

{‖f1‖1 + t‖f∞‖∞} .
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Although a measure space is clearly σ-finite if it contains a sub-σ-algebra σ-finite with respect
to the restriction of the measure, a sub-σ-algebra of a σ-finite σ-algebra is not necessarily σ-finite
(consider the sub-σ-algebra {∅, X} if µ(X) > 0).
We have now made all preparations to prove the main proposition of this section. However,

to formulate the statement of the proposition, we first introduce for a fully symmetric Banach
function space E(0, γ) with the Fatou property defined on (0, γ) with Lebesgue measure, a natural
corresponding fully symmetric Banach function space E(µ) defined on X for a given arbitrary
σ-finite measure space (X,µ) with µ(X) = γ, by setting

E(µ) = {f ∈ S(µ) : f∗ ∈ E(0, γ)} and ‖f‖E(µ) = ‖f∗‖E(0,γ) . (30)

It is well-known and easy to prove that E(µ) is a fully symmetric Banach function space with the
Fatou property (see [11, Theorem 4.9]).

(
(0, γ), λ,Λ(0,γ)

)
E(0, γ)

(X,µ,Σ) E(µ)

Boolean isom. ϕ, Theorem 6.4 isom. lat. isom. Tϕ, Lemma 6.5
non-atomic separable

(
X ′ × [0, 1], µ′ × λ,Σ′ × Λ[0,1]

)
E(µ′ × λ)

(X ′ × [0, 1], µ′ × λ|Σ′×Ξ,Σ
′ × Ξ) E(µ′ × λ) ∩M(Σ′ × Ξ) with Ξ = {[0, 1],∅}

⊆ pos. contr. proj. E(·|Σ′ × Ξ), Lemma 6.6

(X ′, µ′,Σ′)separable E(µ′)

isom. lat. isom. f 7→ f ⊗ 1[0,1]

(
∪iBi, µ′′|Σ̃′′ , Σ̃′′

)
E(µ′′) ∩M

(
Σ̃′′
)
with Σ̃′′≡σ

{
Bi ∩

{
fj ≥ k

l

}}
(∪iBi, µ′′,Σ′′) E(µ′′)

⊆ closed subspace ∀(fi)∞i=1 ⊆ E(µ′′)

Grothendieck

Grothendieck

Grothendieck

Grothendieck

Grothendieck

Grothendieck

Grothendieck

Lem. 6.2

Thm. 4.3

Cor. 1.29

Lem. 1.30

Proposition 6.7. If a Banach function space E(0, γ) has the Grothendieck property, then E(µ)
also has the Grothendieck property.
Proof. Step 1: Suppose first that the measure space (X,Σ, µ) is separable and non-atomic. By
Theorem 6.4 there exists a measure preserving Boolean isomorphism ϕ from the measure algebra
Σ/µ of (X,Σ, µ) onto the measure algebra Λ(0,γ)/λ of

(
(0, γ),Λ(0,γ), λ

)
, with Λ(0,γ) the σ-algebra of

Lebesgue measurable sets in (0, γ). The isomorphism ϕ induces a bijective lattice isomorphism Tϕ
satisfying (Tϕf)∗ = f∗ for all f ∈ M0(µ), by Lemma 6.5. From the definition of E(µ) it follows that
the restriction of Tϕ to E(µ) is an isometrical isomorphism from E(µ) onto E(0, γ). Consequently,
E(µ) has the Grothendieck property.
Step 2: Suppose now that the measure space (X ′,Σ′, µ′) is separable (and possibly not non-

atomic). It will be shown that E(µ′) has the Grothendieck property by embedding it as a comple-
mented subspace of the space E(µ′ × λ), where λ is the Lebesgue measure on [0, 1]. It is easily veri-
fied that µ′×λ is a separable measure and so, by Step 1, the space E(µ′ × λ) has the Grothendieck
property. Corollary 1.29 then implies the Grothendieck property of E(µ′).
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To be explicit we will denote by

E0 =
{
f ⊗ χ[0,1] : f ∈ E(µ′)

}
the image of the norm-one embedding f 7→ f ⊗ χ[0,1] from E(µ′) into E(µ′ × λ). To see that this
mapping is norm-one, notice that

(
f ⊗ χ[0,1]

)∗
= f∗. An alternative description of E0 is given by

E0 = E(Σ× Λ0) = E(µ′ × λ) ∩M0(Σ,Λ0)

where Λ0 = {∅, [0, 1]} is the indiscrete σ-algebra. It remains to be shown that E0 is a complemented
subspace of E(µ′ × λ). By Lemma 6.6 the conditional expectation operator EE(µ′×λ)(·|Σ× Λ0) is
a positive contractive projection from E(µ′ × λ) to E0. This shows that E0 is a complemented
subspace of E(µ′ × λ), which finishes the proof.
Step 3: Suppose finally that (X ′′, µ′′,Σ′′) is an arbitrary σ-finite measure space. It suffices to

show that for any sequence (fn)
∞
n=1 in E(µ′′) there exists a closed subspace F of E(µ′′) with the

Grothendieck property such that fn ∈ F for all n, by Lemma 1.30.
To this end, suppose that (fn)∞n=1 is a sequence in E(µ′′). By σ-finiteness of (X ′′, µ′′,Σ′′) there

exists a disjoint sequence (Bm)
∞
m=1 in Σ′′ such that µ(Bm) is finite for all m and X = ∪∞

m=1Bm.
Define Σ̃′′ to be the σ-algebra generated by the sets

An,m,k,l = Bm ∩ {fn > q} ,

for n,m,∈ N and q ∈ Q, and let µ|Σ̃′′ be the restriction of µ to Σ̃′′. Since X = ∪m,qA1,m,q, it is
clear that

(
X, Σ̃′′, µ|Σ̃′′

)
is also σ-finite. It is also separable by Lemma 6.2 since Σ̃′′ is generated

by a countable collection. The Grothendieck property of E(µ′′) now follows from Step 2. Since all
of {fn}∞n=1 is contained in F ≡ E(µ′′), Lemma 1.30 finishes the proof.

The next follows from a combination of Proposition 6.7 and Theorem 5.5.

Theorem 6.8. Let (X,Σ, µ) be a σ-finite measure space. Let ψ : [0, µ(X)) → [0,∞) be a concave
function. The Marcinkiewicz space Mψ(X) is a Grothendieck space if

lim inf
t↓0

ψ(2t)

ψ(t)
> 1 and

(
µ(X) <∞ or lim inf

t→∞

ψ(2t)

ψ(t)
> 1

)
.

Let (X,Σ, µ) be a σ-finite measure space. Since the Weak Lp space Lp,∞(µ) is the Marcinkiewicz
space Mψ(µ) for ψ(t) = t1/p, the following is a simple corollary.

Corollary 6.9. If (X,Σ, µ) be a σ-finite measure space, then Lp,∞(µ) is a Grothendieck space.
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