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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
The variability of soil properties existed long before it was acknowledged and dealt with
by humans. Engineers have always been interested in designing the safest structures
(built on, surrounded by, or made of soils) economically (i.e. at a reasonable cost). In
the process of approaching a more realistic description of soils and thus advancing civil
engineering designs, researchers have started to relax one of the primary assumptions
used in traditional analysis; that is, that the ground is idealised as layers of material
with uniform properties. For example, the series of ICASP conferences (the International
Conferences on Applications of Statistics and Probability in Civil Engineering), has been
following the use of statistical concepts since 1971, when the first ICASP conference was
held in Hong Kong. Moving on to the 21st century, the need for adequate representation
of in-situ soil variability has been recognised in recent design codes such as Eurocode 7
(Frank, 2004; Hicks and Nuttall, 2012). As such, reliability assessments in geotechnical
projects have been receiving increasing attention from regulatory bodies in recent years,
promoting the concept of reliability-based design (Phoon, 2008).

In the field of slope engineering, reliability-based design calculations can be carried
out using modern geotechnical design software, such as the Bishop random field mod-
ule used in Deltares’ D-GeoStability software (essentially an extended 2D model based
on Calle (1985) that was documented in GeoDelft (1994)). There is also Vanmarcke’s
(1977b; 2011) simplified 3D model for slope stability calculations. However, there are
certain assumptions made in these two currently available models for 3D slope reliabil-
ity, not least the assumption of a single rigid failure of a cylindrical soil mass. Also, field
(e.g. CPT) measurements are not directly used in these calculations. In contrast, 3D ran-
dom finite element models (Spencer and Hicks, 2007; Spencer, 2007; Hicks et al., 2008;
Griffiths et al., 2009b; Hicks and Spencer, 2010; Hicks et al., 2014) are able to seek out the
3D failure surface more naturally, based on the stress–strain response of the soil, without
any prior assumptions regarding the failure mechanism attached to the method itself.

To provide a rational reliability analysis of systems such as flood defence dykes or
levees, cut slopes and highways, either for designing new structures or for strengthening
existing ones, there is a need for a performance assessment of the currently available
slope reliability models. This thesis, building on previous 2D and 3D investigations by
other researchers (Calle, 1985; Vanmarcke, 1977b; Hicks et al., 2008, 2014), investigates
the influence of spatial variability of undrained shear strength on 3D slope stability and
compares the relative performance of three methods for computing slope reliability.

1.2. OBJECTIVES AND SCOPE
The objectives of this research are:

• To investigate the influence of heterogeneity of undrained shear strength on the
stability and failure consequence of slopes that are long in the third, out-of-plane,
direction; that is, for slopes in which the length over height ratio is in the range 10-
100. In particular, to investigate the influence of heterogeneity on failure volumes
and lengths and the probability of failure;

• To investigate extended 2D and simplified 3D stochastic models for simulating
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slope reliability. In particular, by comparing with solutions obtained using the ran-
dom finite element method (RFEM), to assess the applicability of current simpler
methods of analysis for dykes; that is, to identify when these simpler models may
reasonably be used to assess slope stability and when caution may be needed;

• To demonstrate how the random finite element method may be used to conduct
a detailed 3D analysis of a representative section of a slope, and the results then
extrapolated to take account of the length effect in much longer slopes (based on
Hicks and Spencer (2010));

• To demonstrate how field measurements can be used to reduce uncertainties in
structural response, thereby resulting in a cost-effective design and/or site inves-
tigation.

In order to achieve the research objectives, a number of related topics have been covered:

• A detailed evaluation of Vanmarcke’s (1977b) model for a range of values of the
horizontal scale of fluctuation. (Chapter 4)

• The implementation of a version of Calle’s (1985) model based on finite elements.
(Chapter 5)

• An investigation of the Dutch α factor, which is used in quantifying the spatial
variability of soil properties in geotechnical design. (Chapter 5)

• An investigation of the boundary conditions used in 3D finite element analysis.
(Chapter 5)

• The quantification of potential failure volumes and lengths in 3D RFEM analyses
using a displacement threshold approach. (Chapters 4 and 5)

• The development of a high performance computing (HPC) strategy based on a
CouchDB pool server. (Chapter 3 and Appendix A)

• An investigation of the slope length effect and evaluation of a proposed power law
equation for predicting the reliability of very long slopes based on 3D RFEM (Hicks
and Spencer, 2010). (Chapter 5)

• A detailed comparison of the factor of safety distributions obtained using RFEM
and the models of Vanmarcke (1977b) and Calle (1985), for a range of horizontal
scales of fluctuation. (Chapter 5)

• The implementation and validation of a 3D conditional simulation strategy based
on Kriging for regularly spaced CPTs. (Chapter 6)

• The quantification of uncertainty reduction in structural response in terms of a
sampling efficiency index. (Chapter 6)

• An investigation into the influence of sample density on the cost-effectiveness of
site investigation. (Chapter 6)
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1.3. OVERVIEW
The outline of this thesis is as follows:

Chapter 1 introduces the objectives and scope of the thesis.
Chapter 2 gives a literature review, mainly concerning the relevant geotechnical back-

ground. Starting with a statistical description of soil variability, the chapter goes on to
discuss various stochastic methods, of differing degrees of complexity, for use in geotech-
nics. The review highlights 3D applications of the random finite element method for
slope stability problems, as well as for other geotechnical applications, and related fields.
The general review of literature in this chapter is supplemented by more focused reviews
that are contained within the later problem-specific chapters.

Chapter 3 briefly explains the methodology used in this thesis. The procedure to
carry out an RFEM analysis is outlined first. Some specific aspects related to 3D RFEM,
such as how random fields of soil properties are generated, post-processed (i.e. squashed
and/or stretched) and mapped onto finite elements, are covered. In order to carry out
the investigations in the following chapters in a reasonable time, an HPC computing
strategy suitable for Monte Carlo simulations is developed. Specifically, the pilot frame-
work based on a PiCaS module from SurfSARA is introduced.

Chapter 4 compares the relative performances of the RFEM and Vanmarcke models
for a slope that is 10 times longer than it is high (in this case, the slope length effect can
be neglected). Detailed comparisons for a range of horizontal scales of fluctuation are
provided; these include the probability density functions of the factor of safety, the po-
tential failure volumes and lengths, the differences in the means and standard deviations
of the factor of safety, and the reliability indices. The reasoning behind the differences
are explained and some insights into Vanmarcke’s model are provided.

Chapter 5 continues on from Chapter 4 to look at the reliability of much longer slopes,
where the length effect should not be neglected. It compares the relative performance
of RFEM with respect to both Vanmarcke’s and Calle’s models, taking account of length
effects for slope lengths up to 100 times the slope height. A version of Calle’s model is
implemented based on finite element analysis and the Dutch α factor used in design is
evaluated via random fields. A power law equation is validated for predicting the relia-
bility of longer slopes based on a detailed 3D RFEM analysis of a shorter representative
slope section. The performance of this approach is investigated by evaluating its accu-
racy for a range of slope lengths.

Chapter 6 is dedicated to the implementation and application of conditional simula-
tion in cost-effective designs and site investigations based on 3D Kriging theory, in view
of the fact that the simulations in the previous two chapters do not incorporate field
measurements directly (i.e. by honoring the spatial distributions). This extends research
in the Author’s team in the field of uncertainty reduction from 2D to 3D. The develop-
ment in this chapter is used to investigate the sampling efficiencies at various locations
in a clay deposit that is to be excavated to form a slope, so as to provide valuable ad-
ditional information compared to an unconditional simulation. The required sampling
intensity is also investigated to avoid redundant information in site investigations.

Chapter 7 concludes the thesis and gives recommendations for further research.
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If I have seen further,
it is by standing on the shoulders of giants.

Isaac Newton

Reliability is, after all, engineering in its most practical form.

James R. Schlesinger
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2.1. INTRODUCTION
Soil properties vary spatially in the ground as a result of the combined action of phys-
ical, chemical and/or biological processes that act at different spatial and/or temporal
scales, i.e. they fluctuate over various distances. Characterisation and modelling of spa-
tial variability is essential to achieve a better understanding of the relationships between
soil properties and geotechnical soil–structure performance. For example, in the Nether-
lands, it is particularly important to realistically assess the reliability of existing line in-
frastructures such as dykes and embankments (see Fig. 2.1), as well as the risks posed by
their failure. As such structures are characterised by a large length to cross-section ratio,
and by the three dimensional (3D) nature of soil heterogeneity, both locally and region-
ally, the length effect must be considered, e.g. by a full 3D analysis (Hicks and Spencer,
2010; Hicks et al., 2014). The benefits are cost-effective maintenance of existing dykes
and new construction of dykes with lower risk.

Real dyke failures often involve a long term behaviour under complex environmental
conditions, as in the levee failure shown in Fig. 2.2. However, cut clay slopes can some-
times fail shortly after excavation. In this case, an undrained total stress analysis can be
carried out to investigate the short term behaviour. Fig. 2.3 shows an example of a cut
clay slope failure, in a slope which was part of a large project involving the creation of
a new 8.7 km rail bed alignment at acceptable grades through the relatively mountain-
ous terrain of southwestern Pennsylvania (Kutschke, 2011). The failures shown in Figs.
2.2 and 2.3 are both localised 3D failures (most likely influenced by soil property spatial
variations) despite the apparent plane strain conditions.

This chapter provides a literature review related to the subject of this thesis and, in
particular, concentrates on the use of 3D methods of analysis in geotechnics (Sections
2.5 and 2.6). First, some evidence is given for the point and spatial characteristics of soil
parameter variability (Section 2.2); in particular relating to undrained shear strength,
which is the property considered in the current investigation. Secondly, some proba-
bilistic methods used in geotechnical engineering are summarised (Section 2.3). Thirdly,
the discretisation approaches for random fields are reviewed (Section 2.4), which are fol-
lowed by an introduction to the random finite element method (Section 2.5). Finally,
currently available approaches to 3D slope reliability analysis are reviewed (Section 2.6).

2.2. PROBABILISTIC CHARACTERISATION OF SOIL VARIABILITY
Geotechnical soil variability results mainly from three sources: inherent variability, mea-
surement error and transformation uncertainty (Phoon and Kulhawy, 1999a,b). Soil in-
herent properties fluctuate over various distances in space due to complex mineralogi-
cal and geological reasons. Measurement errors are caused by equipment, operator and
random testing errors including statistical uncertainty due to limited samples. Transfor-
mation uncertainty is introduced when transforming field or laboratory measurements
into design soil properties using empirical equations. The role of the probabilistic char-
acterisation of soil variability is two-fold (Vanmarcke, 1978): (a) it provides a format for
quantifying engineering information (gathered during site investigation, sampling and
testing) about the subsurface conditions at a site; and (b) it provides the basis for quan-
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Figure 2.1: A long river levee (source: Rijkswaterstaat), from Schweckendiek (2014)

Figure 2.2: A levee failure in Ascension Parish, Louisiana, from Rogers (2016)
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Figure 2.3: An example of a cut clay slope failure, based on Kutschke (2011)
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tifying the variability and reliability of geotechnical performance predictions.
Classical statistical characteristics of soil properties, in the case of describing the soil

properties as single variables, include the parameters defining the probability distribu-
tion, such as the mean value (µ), standard deviation (σ) or variance (σ2), and coefficient
of variation (COV) (V = σ/µ). In the case of spatial variability, an additional parame-
ter, the scale of fluctuation (SOF) (Vanmarcke, 1978), which measures the distance over
which soil property values show relatively strong correlation from point to point in space
(see, e.g., Figs. 5.8 and 5.9 for the effect of varying SOF), should be introduced.

Phoon and Kulhawy (1999a) provided a good summery of the COVs of inherent vari-
ability, scale of fluctuation and measurement error for different soil types and field tests.
In their companion paper (Phoon and Kulhawy, 1999b), they used a second-moment
probabilistic approach to evaluate the variability of design soil properties, combining all
available uncertainties consistently, based on the type of transformation model used.

2.2.1. POINT STATISTICS OF UNDRAINED SHEAR STRENGTH

The undrained shear strength (su) can be obtained by direct laboratory testing (e.g. un-
confined compression (UC) test, unconsolidated undrained (UU) triaxial compression
test, and consolidated isotropic undrained triaxial compression (CIUC) test), by direct
use of the in-situ vane shear test (VST), or by correlation with corrected cone tip resis-
tance, with standard penetration test (SPT) blow count N value, with dilatometer test
(DMT) horizontal stress index or with plasticity index (Phoon and Kulhawy, 1999b). Ac-
cording to Phoon and Kulhawy (1999a), the COV of inherent variability of undrained
shear strength of London Clays is in the range 0.1-0.3 for UU, and 0.2-0.4 for CIUC, in-
dicating the importance of mentioning the test type when reporting the COVs. The COV
of su from VST is in the range 0.1-0.4. In their companion paper (Phoon and Kulhawy,
1999b), they reported the total COV (including the COV of inherent variability, the COV
of measurement error and the COV of transformation uncertainty) of undrained shear
strength of clay to be in the range 0.1-0.6 for different types of tests (laboratory and in-
situ). A likely range for COV (of su) of 0.1-0.5 was suggested by Lee et al. (1983). Among
other examples: Lumb (1966) published COVs of 0.18 and 0.16 for marine and London
clays, respectively, based on in-situ testing; Soulie et al. (1990) reported 0.21 and 0.23
for two marine clays; Asaoka and Grivas (1982) reported values of 0.18 to 0.30 for New
York City clay; Vanmarcke (1977b) found a value of 0.32 for varved clay; Hicks and Samy
(2002) inferred a value of around 0.2 from the data of Chiasson et al. (1995).

Also, based on the results of two sampling groups (i.e. hydraulically-jacked speci-
mens and open-drive specimens) for an extensive laboratory investigation of London
clay, Hooper and Butler (1966) reported COV values ranging from 0.11 to 0.33. However,
although similar trends in the mean su were found in both groups, the average COVs
differed (0.14 and 0.28, respectively). It therefore seems probable that higher values of
COV may sometimes result from a different sampling technique, rather than from actual
(inherent) material variability (Hicks and Samy, 2002).

Low et al. (2010) reported the results of an international collaborative project, in
which a worldwide high-quality database of lightly over-consolidated clays was assem-
bled, and used to evaluate resistance factors for the estimation of intact and re-moulded
undrained shear strength from the penetration resistance of piezocone, T-bar and ball
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Table 2.1: Different measures of spatial correlation (based on Elkateb et al. (2003); Elkateb (2003))

Type of Model equation Autocorrelation Scale of Spatial
correlation distance (r ) fluctuation (θ) range (a)

Exponential ρ(τ) = exp(− τ
r ) r θ = 2r a = 3r

Gaussian ρ(τ) = exp(−( τr )2) r θ =p
πr a =p

πr
Spherical ρ(τ) = 1−1.5 τ

r +0.5( τr )3 r θ = 0.55r a = r

penetration tests. A COV range of 0.02-0.34 for the resistance factors was found from all
the sites.

Ching and Phoon (2013b) reported a range of COVs for su/σ′
v (in which σ′

v is the ef-
fective vertical stress) of 0.316–0.611 from various test procedures based on a large clay
database, highlighting that su values of a clay evaluated by different test procedures are
different due to the tests possibly involving different stress states, stress histories, de-
grees of sampling disturbance, and strain rates.

Lundberg and Li (2015) reported a COV of 0.32 for the undrained shear strength of a
soft Scandinavian clay based on CPT and VST tests.

Note that, if a mean su increasing with depth is present in a deposit, as is often the
case, then COV should be computed based on residuals by removing the depth trend;
otherwise, it may be overestimated (Hicks and Samy, 2002).

2.2.2. PUBLISHED VALUES OF THE SCALE OF FLUCTUATION
There are some commonly used correlation functions to model the spatial correlation
structure of soil variability. Different researchers use different measures. In particular,
the correlation nature can be expressed in terms of the autocorrelation distance (e.g.
DeGroot and Baecher, 1993), the scale of fluctuation (SOF) (e.g. Vanmarcke, 1977a), or
the spatial range in geostatistics (e.g. Pyrcz and Deutsch, 2014). These three commonly
used correlation models are listed in Table 2.1, together with the relationships between
the three measures of spatial correlation. Geotechnical engineers tend to use the first
two measures, i.e. the scale of fluctuation (θ) and the autocorrelation distance (r ).

Some commonly used techniques to estimate θ are as follows:

• Conduct a regression analysis (e.g. ordinary least squares) to fit an assumed the-
oretical correlation function to the sample correlation function (e.g. Jaksa et al.,
1999; Phoon et al., 2003; Uzielli et al., 2005; O’Connor and Kenshel, 2012; Firouzian-
bandpey et al., 2014; Lloret-Cabot et al., 2014; Lundberg and Li, 2015);

• Use the variance function approach suggested by Vanmarcke (1977a) (e.g. Wick-
remesinghe and Campanella, 1993; Wong, 2004; Hicks and Onisiphorou, 2005; Ke-
narsari et al., 2013);

• Use maximum likelihood estimation to estimate unknown parameters (mean, vari-
ance and SOF), assuming a joint distribution of the soil property with the cor-
responding correlation function model (e.g. DeGroot and Baecher, 1993; Fenton,
1999a; O’Connor and Kenshel, 2012);
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Table 2.2: Summary of scales of fluctuation for soil parameters (based on El-Ramly et al. (2003); Kim (2005); Li
et al. (2015a); Hicks and Samy (2002))

Property a Soil type Scale of fluctuation References

θv (m) θh (m)

C I Sand – 55 Vanmarcke (1977a)
c,ϕ Clay 0.1-5 2-30 Hsu and Nelson (2006)
c,ϕ Clay 0.5-3 10-40 Suchomel et al. (2010)
N (SPT)b Sandy soil 2.4 – Vanmarcke (1977a)
N (SPT) Akita sandy soil 1.8 – Popescu et al. (1995)
N (SPT) Alluvial – 34 DeGroot (1996)
Po (SPT) Varved clay 2.0 – DeGroot (1996)
qc (CPT) Clay ∼1.2 – Tantalla et al. (2001)
qc (CPT) – ∼1.2–1.3 – Vanmarcke (1977a)
qc (CPT) Silty clay 2.0 10-24 Lacasse and de Lamballerie (1995)
qc (CPT) Clean sand 3.2 – Kulatilake and Ghosh (1988)

North sea soil
qc (CPT) Sensitive clay 4.0 – Chiasson et al. (1995)
qc (CPT) Laminated clay – 19.2 Lacasse and Nadim (1997)
qc (CPT) Dense sand – 75 Lacasse and Nadim (1997)
qc (CPT) North sea soil – 28-76 Keaveny et al. (1989)
qc (CPT) North sea clay – 60 Tang (1979)
qc (CPT) Taranto clay 0.29-0.40 – Cafaro and Cherubini (2002)
qc (CPT) Clay, sand 0.13-1.11 – Uzielli et al. (2005)
qc (CPT) Silty clay 0.8-6.1 – Haldar and Babu (2009)
qc (CPT) Clay 1.3-4 10-62 Salgado and Kim (2013)
qc (CPT) Sand 2.2-3 35-75 Salgado and Kim (2013)
qc (CPT) Sand 0.3 – Wickremesinghe and Campanella (1993)
qc (CPT) Tarsiut core sand 1.9 24.2 Popescu et al. (1997)
Sp (CPT) Sand 0.3-0.7 3.5-15 Wong (2004); Hicks and Onisiphorou (2005)
su (VST) Sensitive clay 2 – Baecher (1983)
su (VST) Soft marine clay – 46 DeGroot and Baecher (1993)
su (VST) Very soft clay 2.2 44.2 Bergado et al. (1994)
su (VST) Sensitive clay 4.0 – Chiasson et al. (1995)
su (VST) Sensitive clay 2.0 20 Soulie et al. (1990)
su (VST) Saturated soft clay 2.4-6.2 – Asaoka and Grivas (1982)
su (VST) Soft to medium clay – 42.8-49 Bergado et al. (1994)
su (VST) Clay 2-6.2 46-60 Phoon and Kulhawy (1999a); Ching and

Phoon (2013a)
su (UU) Offshore soil 7.2 – Keaveny et al. (1989)
su (DST) Offshore soil 2.8 – Keaveny et al. (1989)
su (UC) Soft clay 4.0 80 Honjo and Kuroda (1991)
su (UC) Chicago clay 0.8 – Wu (1974)
su Marine clay, Japan 1.3-2.7 – Matsuo (1976)
su Ontario varved clay – 46 Vanmarcke (1977b)
su (DST) Clay 1.1-1.23 92.4 Ronold (1990)
su ,c,ϕ In-situ soils 1-6 30-60 Ji et al. (2012)

a Measurement: qc–CPT tip resistance; su–Undrained shear strength; Po–DMT lift-off pressure; N–
Blow count per foot; Sp–State parameter; C I–Compressibility index.
b Type of test: VST–Field vane shear test; UC–Unconfined compression test; UU–Unconsolidated
undrained triaxial test; DST–Direct shear test; CPT–Cone penetration test; DMT–Dilatometer test;
SPT–Standard penetration test.
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• Use Bartlett’s limit (e.g. Jaksa et al., 1999; Jamshidi Chenari and Oloomi Dodaran,
2010; Kenarsari et al., 2013).

Due to the general lack of measurement intensity when carrying out routine site in-
vestigations in geotechnical engineering, spatial correlation data are scarce; however, it
has been improving in recent years, as more people start to recognize the importance
of risk analysis in the decision making process. Some published values for the spatial
correlation of soil properties are listed in Table 2.2, in terms of scale of fluctuation for
the exponential correlation function (i.e. 2 times the originally published data for those
cases in which autocorrelation distances were reported, as in El-Ramly et al. (2003) and
many other publications; therefore, the magnitudes of θ will be smaller for the Gaus-
sian correlation model than those shown in the table). Note that it is not uncommon
for researchers to misuse the terms ‘scale of fluctuation’ and ‘autocorrelation distance’,
which could lead to erroneous estimates of the correlation distance by a factor of 2 or
1.77 (≈p

π). For the common exponential and Gaussian correlation functions, the scale
of fluctuation is equal to 2 and 1.77 times the autocorrelation distance, respectively. The
typical range of scale of fluctuation is between 1 m to 6 m in the vertical direction and
10-80 m in the horizontal direction, although the vertical SOF could be as small as 0.1 m
and the horizontal SOF as small as 2.0 m (Jaksa et al., 1999) (see Table 2.2).

It is noted that data for correlations in the horizontal plane are even more rare than
for the vertical direction. This is mainly due to the fact that fewer samples are usually ob-
tained in the horizontal plane in routine geotechnical site investigation (e.g. in the case
of CPT measurements, there will be relatively few CPTs in the lateral plane). Also, it is
not common practice to carry out tests horizontally (see Chapter 3 in Broere (2001)), as
was done by Jaksa et al. (1999) who performed a horizontal CPT into the face of a slope;
in that case, the amount of data points in the horizontal direction allowed an estimate of
the horizontal scale of fluctuation. However, a much higher degree of correlation is gen-
erally assumed in the horizontal plane than in the vertical direction, this being supported
by the process of deposition and available evidence. For example, the scales of fluctu-
ation in the horizontal direction were found to be, on average, 12 times greater than in
the vertical direction in Popescu et al. (1995) and Popescu et al. (1997), by comparing
closely-spaced CPT profiles taken from a hydraulic sandfill. Some values for the degree
of anisotropy of the heterogeneity of sands are: 11 in Lloret-Cabot et al. (2012), a range
of 4–40 in Lloret-Cabot et al. (2014), and 2.4–7 in Firouzianbandpey et al. (2014). Similar
values for the degree of anisotropy of the heterogeneity of clays have been reported: e.g.
10 in Soulie et al. (1990), and 13 in Phoon and Kulhawy (1999a).

Soil properties are often depth dependent, and hence field test measurements (e.g.
cone tip resistance from CPT) often exhibit a depth trend. In the case of significant
trends in soil measurement data, these need to be removed before estimating the scale
of fluctuation to ensure stationarity (Wickremesinghe and Campanella, 1993; Jaksa et al.,
1999). Non-removal of mean trends can lead to overestimation of the scale of fluctua-
tion.

Although many researchers have assumed that soil variability exhibits a finite scale
of fluctuation, which can be described by a single value of SOF, Fenton (1999b) suggested
that the nature of variability in soil parameters is best represented using a fractal stochas-
tic model corresponding to so-called Brownian motion. Based on a large database of
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CPT samples, a long memory was found in the vertical direction, due to the maximum
likelihood estimates of SOF being dependent on the size of sampling domain. A fractal
model in the horizontal direction was also supported by Jaksa and Fenton (2002), who
based their findings on 50 CPTs carried out adjacent to one another along a line, at hor-
izontal spacings of 0.5 m. In their investigation, several hundred horizontal data sets
were established by placing the tip resistance (qc ) data into a matrix, with each column
representing one of the 50 CPTs, and each row being a 5 mm increment of depth. Con-
sequently, each row yielded a 24.5 m long horizontal data set, 5 mm in thickness.

2.3. PROBABILISTIC ANALYSIS METHODS
There are various methods to conduct probabilistic analysis. These can be categorized
into three groups:

• Single variable approach

In this approach, the problem domain is assumed to have the same soil prop-
erty value throughout, sampled randomly from the assumed distribution func-
tion. This implies an infinite spatial correlation length, so that no spatial averaging
is applicable, e.g. Duncan (2000); Nguyen and Chowdhury (1984), and results in
an overestimation of the probability of failure, implying that a cost-effective de-
sign often cannot be reached. Examples highlighting this include El-Ramly et al.
(2002); Griffiths and Fenton (2004), among others.

Note that, although the concept of spatial averaging is not included in this ap-
proach, the effect can be accounted for by applying a reduction coefficient to the
variance of the input variables. The problem is then to determine the appropriate
reduction factors for the range of potential failure surfaces. For example, Christian
et al. (1994) found this factor by integrating the statistically varying shear strength
over the failure surface for the James Bay dyke, while El-Ramly (2002) conducted
a so-called MC–Christian (MC stands for Monte Carlo) analysis for the same dyke
by imposing the same reduction factor (as used by Christian et al. (1994)) on the
input variance.

• Multiple variable approach

In contrast to the above approach, this one introduces more variables; each vari-
able occupies a block of the domain, with block sizes being approximately of the
order of the SOF. The approach takes account of spatial variability in its simplest
form; that is, through a 1D consideration by incorporating the autocorrelation
function into the model, either along the critical failure surface (El-Ramly et al.,
2002) or solely along the vertical or horizontal directions (Wang et al., 2010).

A moderate number of variables is used to simulate the random field and often
these approaches facilitate a practical spreadsheet-based reliability tool by either
approximate methods or Monte Carlo simulation. However, the sacrifice is that
the anisotropic structure of the variability, which is always present whether the
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ground is natural or manmade, cannot be captured accurately, and this approach
may therefore not be applicable for some practical applications. In addition, a
potential drawback lies in the determination of an equivalent scale of fluctuation
(El-Ramly et al., 2006).

• Many variable approach

This approach takes full account of the spatial variability, either by 2D or 3D ran-
dom fields. Hundreds of variables are introduced into much smaller blocks within
the problem domain, taking account of both the horizontal and vertical SOFs; thus
2D or 3D random fields can be generated according to isotropic or anisotropic
correlation structures, by incorporating various autocorrelation functions. Its ap-
plication to various practical engineering problems can be found in Fenton et al.
(2003), Griffiths et al. (2009a), Hicks and Samy (2002) and Hicks and Onisiphorou
(2005) for 2D, and in Griffiths et al. (2009b), Hicks and Spencer (2010), Hicks et al.
(2008) and Spencer and Hicks (2007) for 3D.

An overview of the stochastic methods used for analysing slope stability problems is
shown in Fig. 2.4. Generally, slope reliability can be assessed by direct methods without
needing to know the performance function explicitly, or by using some meta-model, sur-
rogate model or response surface model to explicitly approximate the performance func-
tion. Some commonly used methods, namely the first order reliability method (FORM),
first order second moment method (FOSM), Monte Carlo Simulation (MCS) and the re-
sponse surface method, are introduced in the following sections.

2.3.1. FORM
The matrix formulation (Ditlevsen, 1981) of the Hasofer and Lind (1974) or FORM index
is

β= min
x∈F

√(
x−µµµ

)T C−1
(
x−µµµ

)
(2.1)

or equivalently,

β= min
x∈F

√
(xN )T R−1

(
xN

)
(2.2)

where

xN
i = xi −µi

σi
(2.3)

and x is a vector representing the set of random variables xi ,µµµ is a vector of mean values
µi , C is the covariance matrix, R is the correlation matrix, σi is the standard deviation,
and xN

i is a component of xN (i.e. the standardised x). F is the failure domain, which is
separated from the safe domain by the limit state surface/function (see Fig. 2.5), defined
as

G(x) =G(x1, x2, . . . , xn) = 0 (2.4)

In this equation, G(x) = 0 represents the limit state and failure occurs for G(x) ≤ 0; for
G(x) > 0, the system is safe.
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Figure 2.4: An overview of probabilistic slope stability methods considering spatial variability
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Figure 2.5: Schematic view of the FORM reliability index, based on Xu and Low (2006)

A widely used procedure for computing β (i.e. the reliability index) is to transform
the limit state surface into the space of reduced variates (xN

i ), whereby the shortest dis-
tance from the transformed limit state surface to the origin of the reduced variates is the
reliability index. The computation procedure is explained in Ang and Tang (1984).

Low and Tang (1997a) provided an alternative, more intuitive interpretation in the
original space; that is, the point denoted by the value xi which minimises the square
root in the above equation (Eq. 2.1 or 2.2) and satisfies F is the design point; that is,
the point of tangency of an expanding dispersion ellipsoid with the limit state surface
separating safe combinations of random values from unsafe combinations. The relia-
bility index β is the axis ratio R/r (Fig. 2.5) of the ellipse that touches the limit state
surface (i.e. the βσ ellipse) and the 1 standard deviation dispersion ellipse (i.e. the σ

ellipse). The method deals with correlations without orthogonal transformation (e.g.
eigen-decomposition or singular value decomposition) of the covariance matrix. The
advantage of Low and Tang’s (1997a) spreadsheet method is that iterative searching is
performed automatically by invoking a spreadsheet’s optimisation tool; hence partial
derivatives are not part of the input, which is attractive for cases with complicated or
implicit performance functions. This methodology was combined with a limit equilib-
rium method and demonstrated in Low and Tang (1997b) for a reinforced embankment
on soft ground.

As a simple illustration of the use of FORM, Fig. 2.6 shows the contours (1,2,3,4,5 and
6σ ellipses and the βσ= 2.4σ ellipse) of the probability density function of the binormal
distribution of two correlated variables, for an explicit performance function.
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Low and Tang (2004) presented a cell-object-oriented constrained optimization ap-
proach based on the expanding ellipsoid concept and equivalent normal transforma-
tion (e.g. Rosenblatt (1952) transformation and Rackwitz and Flessler (1978) transfor-
mation), for a reliability analysis involving correlated non-normals, and gave a detailed
comparison between this approach and the Hasofer–Lind method for uncorrelated and
correlated normal variates and the first order reliability method (FORM) for correlated
non-normals. Low and Tang (2007) then improved the efficiency of their methodology
by obviating the need for computations of equivalent normal means and equivalent nor-
mal standard deviations, and by changing (automatically) the dimensionless equivalent
standard normal vector.

Although FORM has the advantage of being easily embedded in an easy-to-use
spreadsheet, which makes it available to most engineers, Griffiths et al. (2009a) found
that it may lead to unconservative estimates of the failure probability if the coefficient
of variation of the shear strength parameters exceeds a critical value, due to the spatial
variability not being modelled within their FORM implementation (i.e. no spatial vari-
ability involved), for example, compared to the random finite element method (RFEM,
see Section 2.5). Note that, in their paper, no comparisons were made between RFEM
and FORM involving spatial variability in the vertical or horizontal directions as in Low
et al. (2007) and Low (2014). However, even if FORM with spatial variability is used to
model slope reliability, it would still suffer from the constraint that the number of ran-
dom variables (e.g. used in the built-in optimisation tool in a spreadsheet) should not
be too large, in order to avoid a ‘fake’ local minimum being mistaken as the global min-
imum (Wang et al., 2010). Moreover, it can only model the spatial variability partially,
along one direction (i.e. only vertical or horizontal spatial variation, or spatial variation
along the failure surface), in contrast to RFEM which is capable of fully modelling the
spatial variability in all directions.

2.3.2. FOSM
The FOSM method is an approximate approach based on a first order Taylor series ex-
pansion of the performance function (or limit state function, see Section 2.3.1) around
its mean value. In the case of slope stability, the performance function can be assessed,
for example, by Bishop’s method of slices or the finite element method.

The reliability index for the first order second moment method (Hassan and Wolff,
1999) is

β= E[F S]−1

σ [F S]
(2.5)

in which the mean (E[.]) and standard deviation (σ[.]) of the factor of safety (F S) (which
is a function of the random variables Xi ) are

E[F S] = F S(µXi ) (2.6)

µXi = E[Xi ] (2.7)
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Figure 2.6: An example showing FORM for two normally distributed variables x1 and x2, correlated by ρ, with
the explicit limit state function g (x1, x2) =−0.03x3

1 −0.25x2
2 +29.16 (µx1 = 6.0,σx1 = 1.0, µx2 = 7.0,σx2 = 0.75,

ρx1 ,x2 =−0.35), based on Griffiths et al. (2007)

and

σ [F S] =
√√√√√√ n∑

i=1

(
∂F S

∂Xi

)2

σ2 [Xi ]+2
n∑

i , j=1
i< j ,or,i> j

(
∂F S

∂Xi

)(
∂F S

∂X j

)
ρi jσ [Xi ]σ

[
X j

]

=
√√√√√√ n∑

i=1

(
∂F S

∂Xi

)2

σ2 [Xi ]+
n∑

i , j=1
j ̸=i

(
∂F S

∂Xi

)(
∂F S

∂X j

)
ρi jσ [Xi ]σ

[
X j

]

=
√√√√ n∑

i , j=1

(
∂F S

∂Xi

)(
∂F S

∂X j

)
ρi jσ [Xi ]σ

[
X j

]=√
∇g

TC∇g

(2.8)

with

∇g =
(
∂F S

∂X1
,
∂F S

∂X2
, . . . ,

∂F S

∂Xn

)T

(2.9)

Ci j =σ2ρi j (2.10)

The partial derivatives can be evaluated by

∂F S

∂Xi
= F S+

i −F S−
i

2mσ [Xi ]
(2.11)
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where
F S+

i = F S(µXi +mσ[Xi ],µX j ( j = 1, . . . ,n, j ̸= i )) (2.12)

F S−
i = F S(µXi −mσ[Xi ],µX j ( j = 1, . . . ,n, j ̸= i )) (2.13)

where, for example, m = 1 was used in El-Ramly et al. (2002).
Note that, using FOSM, the reliability index fails to be constant under different but

mechanically equivalent formulations of the same performance function. Such an in-
variant problem can be prevented if the first-order approximations are evaluated at a
point on the failure surface, e.g. as is the case with FORM.

2.3.3. MONTE CARLO SIMULATION
In this approach, a large number of sets of randomly generated values for the uncer-
tain parameters is created and the performance function for each set is computed. The
statistics of the resulting set of values of the function can be computed and the prob-
ability of failure p f calculated directly. The method has the advantage of conceptual
simplicity, but it can require a large number of values of the performance function to
obtain adequate accuracy. Furthermore, the method does not give insight into the rela-
tive contributions of the uncertain parameters that may be obtained from other methods
(e.g. FORM). The computational effort can be reduced significantly by using variance re-
duction (which is something of a misnomer, and not the same thing as the ‘variance re-
duction’ in local averages) statistical techniques, such as importance sampling (Baecher
and Christian, 2005; Ching et al., 2009) and subset simulation (Ahmed and Soubra, 2012;
Phoon, 2008), and these should be employed whenever possible.

To give an example, consider the problem of determining the probability of failure
of a system which has two random inputs, X1 and X2 (Fenton and Griffiths, 2008). The
response of the system to these inputs is some function g (X1, X2), which is also random
because the inputs are random. For example, X1 could be soil cohesion c, X2 could be
soil friction angleϕ, and g (X1, X2) could be the factor of safety of a slope (in this example,
it is assumed that there are 2 random soil properties, although in RFEM (Section 2.5) it is
more likely that g is a function of a large number of random variables). Now, assume that
system failure will occur whenever g (X1, X2) > gc . In the space of (X1, X2) values, there
will be some region in which g (X1, X2) > gc , as illustrated in Fig. 2.7, and the problem is
then to assess the probability that the particular (X1, X2) which actually occurs will fall
into the failure region. Mathematically, the goal is to try to determine the probability p f ,
where

p f = P [g (X1, X2) > gc ] (2.14)

Suppose, for example, that X1 and X2 follow a bivariate lognormal distribution with the
mean response well within the safe region and a correlation coefficient between X1 and
X2 of ρ = 0.6 (a negative correlation implies that, as X1 increases, X2 tends to decrease);
this example is shown in Fig. 2.7.

The above is a simple example for two correlated random variables. However, the
concept is exactly the same for RFEM (see Section 2.5), except that the number of corre-
lated random variables is then scaled to hundreds or thousands. In fact, if X1 represents
c1 and X2 represents c2 (where c1 and c2 are the autocorrelated cohesion), the above ex-
ample can be considered as the case for a two-variable random field (where each point in
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Figure 2.7: Monte Carlo simulation of two correlated lognormal variables with ρ=-0.6, after Fenton and
Griffiths (2008)

Fig. 2.7 can be considered as an independent random field with two random variables).
The Monte Carlo framework is central to the RFEM process outlined in Section 2.5.

2.3.4. RESPONSE SURFACE METHOD

The response surface method (RSM) is a statistical technique proposed by Box and Wil-
son (1951) to determine the optimum conditions in chemical investigations at which
some response is a maximum or minimum. The main idea of RSM is to approximate the
unknown implicit performance/response function (with regards to the input variables)
by conducting a sequence of designed experiments. It is therefore a surrogate model that
mimics the behavior of some simulation model. To explicitly constructs the relationship
between the response and the input variables, a simple nth order polynomial (Wong,
1985; Xu and Low, 2006) may be used. In the case of a slope reliability problem involv-
ing k random variables, it is sufficient to take a second-order polynomial approximation
function (Low et al., 1998),

G ′(x) = l +
k∑

i=1
mi xi +

k∑
i=1

ni x2
i (2.15)

where x is the random variable vector with components xi (i = 1,2, . . . ,k), G ′(x) is the
approximate performance function and l ,mi and ni are the coefficients that need to be
determined by experiments.

First, the values at sampling points for each variable are selected (i.e. by choosing
xi =µxi ±mσxi and x j =µx j for j ̸= i , where the value of m is usually selected to be 1.0);
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then the sampling function values (i.e. values of the function at the sampling points) can
be determined by carrying out a number of traditional slope stability analyses (i.e. limit
equilibrium analysis, limit analysis or finite element analysis). It then involves fitting a
second order polynomial to the sampling function values (at least 2k +1 model evalua-
tions are needed in order to solve for the unknown coefficients). Note that interaction
terms (i.e. xi x j , i ̸= j ) may be included to form a complete second-order polynomial
function, which could possibly lead to a better approximation of the performance func-
tion. However, the inclusion of these terms also means an increasing number of model
evaluations. For the results of example reliability analyses in Xu and Low (2006), the ef-
fect of interaction terms on the reliability index was shown to be negligible; therefore,
the interaction terms may be omitted in some cases.

Provided that the model under consideration is sufficiently smooth, quadratic poly-
nomials (Eq. 2.15) may be sufficiently accurate approximations. This is especially true
for studying the model response not too far from its mean value, i.e. for a central trend
analysis. Nonetheless, one should be careful when the estimation of the probability of
exceeding a threshold is of interest, since the polynomial approximation in the tails of
the response distribution may be poor.

After the polynomial response surface is approximated, one can proceed with either
Monte Carlo simulation by directly using the approximated function g (i.e. Eq. 2.14), or
FORM analysis by constraining xi on the explicitly approximated limit state surface G ′
(i.e. for the approximation of G in Eq. 2.4, xi is the design point when the reliability index
is minimised), or FOSM analysis by explicitly defining the derivatives (i.e. Eq. 2.9).

The advantage of using the response surface method is that an explicit performance
function, which builds up the relationship between the input variables and the geotech-
nial system response, can be approximated. This function can later be used repeatedly in
a structural response analysis in a timely fashion, effectively avoiding the computation-
ally expensive process of carrying out a detailed analysis of a structure by, for example,
the nonlinear finite element method. However, this also means that the accuracy of the
method relies on how close the true performance function is approximated. Note that
the approximation can be improved in a FORM analysis via iterations (Tandjiria et al.,
2000); i.e. by taking, for the approximated response surface at the current iteration, the
‘optimal’ values of the random variables that ‘minimise’ the reliability index as the basis
for sampling points for the next iteration (i.e. for updating the response and thereby im-
proving the approximation). For more information, the readers are refered to Tandjiria
et al. (2000), Babu and Srivastava (2007), Youssef Abdel Massih and Soubra (2008) and
Zhang et al. (2012).

A conceptual extension of the above deterministic response surface method, that
is, the stochastic response surface method (SRSM) using polynomial chaos, can also be
used for the reliability analysis of slopes (Li et al., 2011). The basic idea of SRSM is to
approximate model inputs and outputs in terms of random variables by a polynomial
chaos expansion. The unknown coefficients in the polynomial chaos expansion are de-
termined using a probabilistic collocation method (Huang et al., 2009). The major ad-
vantage of SRSM is that it allows existing deterministic numerical codes, such as a finite
element code, to be used as a ‘black-box’ within the method. Applications of SRSM can
be found in, for example, Huang and Kou (2007), Huang et al. (2007), Gavin and Yau
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(2008), Mollon et al. (2010) and Jiang et al. (2014).

2.4. DISCRETISATION OF RANDOM FIELDS
Random fields, used for representing spatially variable soil properties, have found ex-
tensive use in practical geotechnical applications (Fenton and Griffiths, 2008). There are
various methods of representing random fields in finite element analysis (Li and Der Ki-
ureghian, 1993; Matthies et al., 1997), including:

• Mid-point or nodal point method (Der Kiureghian and Ke, 1987), in which the field
within the domain of an element is described by a single random variable repre-
senting the value of the field at a central point of the element.

• Spatial averaging method (Vanmarcke and Grigoriu, 1983), which describes the
field within each element in terms of the spatial average of the field over the ele-
ment;

• Shape function method (Liu et al., 1986), which describes the random field within
an element in terms of a set of nodal values and corresponding shape functions.

• Series expansion method, such as Karhunen–Loeve expansion, which expresses
the field in terms of its spectral decomposition (Phoon et al., 2002).

Much discussion is available on the relative merits of the various methods of repre-
senting random fields in finite element analysis (Li and Der Kiureghian, 1993; Matthies
et al., 1997). The spatial averaging discretisation of the random field is used in this thesis,
due to it reflecting the simplest form of finite element representation of a continuum, as
well as the way that soil samples are typically taken and tested in practice, i.e. as local av-
erages. Another advantage of this method is that it yields accurate results even for rather
coarse meshes, according to Der Kiureghian and Ke (1987), which was also highlighted
by Matthies et al. (1997). In the Author’s opinion, this is largely due to the consistent
modelling of the variance for different element sizes.

2.5. RANDOM FINITE ELEMENT METHOD IN GEOTECHNICAL

ENGINEERING
The random finite element method (RFEM) is often used to compute geotechnical struc-
ture (e.g. slope) response (e.g. factor of safety and displacement) within a Monte Carlo
framework (Fenton and Griffiths, 2008). The procedure is as follows:

1. Generate random property fields, for example, using the local average subdivision
(LAS) method (Fenton and Vanmarcke, 1990), based on the soil property statistics,
e.g. mean, standard deviation and spatial correlation structure (type of correlation
function, and horizontal and vertical scales of fluctuation, θh and θv , respectively);

2. Map random field cell values onto the Gauss points within the finite element mesh
modelling the given problem (in this case, a slope stability problem);
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3. Carry out a traditional finite element (e.g. slope stability) analysis (Smith and Grif-
fiths, 2005);

4. Repeat the above steps for multiple realisations in a Monte Carlo analysis (see Sec-
tion 2.3.3), until the output statistics (e.g. mean and standard deviation of the fac-
tor of safety) converge.

For a given set of statistics, a probability distribution of the factor of safety can be
obtained. Moreover, the potential consequences (e.g. failure volume and failure length
in the case of slope stability) may also be quantified for each realised factor of safety.

The method has found widespread use in the field of geotechnics, as it is relatively
simple to implement and enables a comprehensive analysis of the effects of soil spatial
variability. It is widely considered to be the baseline stochastic method, against which
other methods may be compared (Spencer, 2007); for example, Fenton et al. (2003) used
RFEM as a means of validating their proposed approximate solution model (i.e. based
on the harmonic mean of random field cells within some area behind the slope face)
for slope stability. As a simulation method, RFEM can be applied to large and complex
systems, without the need to include the rigid idealisations and/or simplifications nec-
essary for analytical solutions, resulting in more realistic models. Therefore, RFEM can
be used to test if and when analytical solution methods are ineffective (e.g., because of
gross idealizations). Its biggest disadvantage is that it tends to be computationally ex-
pensive.

Griffiths and Fenton (1997, 1998) investigated the effects of spatially random perme-
ability values on seepage in 2D and 3D. They found that the ability of the flow to move
in three dimensions allowed it to more easily avoid areas of low permeability. This had
the effect of increasing the mean flow rate while reducing its variance, when compared
to the 2D solution. However, the absolute difference from 2D was not great and it was
concluded that, for the case considered, a 2D stochastic analysis provided a good, con-
servative, computationally cheaper, estimate of the global stochastic response.

Fenton and Vanmarcke (1998) used a 3D random field combined with a 1D nonlin-
ear finite element program to investigate the liquefaction risk accounting for local spa-
tial variation, due to the enormous computational requirements of a nonlinear, time-
stepping (i.e. subject to earthquake ground motion), Monte Carlo analysis in the 1990s.

Kuo et al. (2004) presented a parametric study of the effects of a layered spatially ran-
dom soil on the displacement of a pad footing, and used 3D random fields combined
with elastic–plastic FEA. They concluded that layered soils reduced the variation in foot-
ing settlement and that the soil layer closest to the foundation had the largest effect on
the settlement variance.

Jaksa et al. (2005) presented the results of Monte Carlo simulations incorporating
many 3D single-layer soil profiles with different statistical characteristics. A three-storey
building, founded on nine pad footings, was used to assess the reliability of various site
investigation strategies and test methods. They showed that the likelihood of under-
designing or over-designing a footing decreases as the scope of the investigation in-
creases.

Spencer (2007) and Spencer and Hicks (2007) used 3D RFEM with parallel comput-
ing to investigate the influence of heterogeneity on the reliability and failure of a long
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undrained clay slope, and this was extended by Hicks et al. (2008) to investigate the po-
tential failure consequences associated with different reliability levels. A comprehensive
study of the influence of spatial variability on reliability and failure consequence can be
found in Hicks and Spencer (2010) and Hicks et al. (2014). The same methodology was
used to investigate the performance of simpler 3D slope reliability methods by Li et al.
(2013) and Li and Hicks (2014).

Paiboon et al. (2013) investigated the influence of porosity and void size on effec-
tive elastic geotechnical engineering properties, using a 3D model incorporating ran-
dom fields and finite elements. The study also investigated the representative volume
element (RVE) needed to capture the essential properties of a heterogeneous material
containing voids. It was found that, for the same porosity, the larger the size of the voids,
the greater the size of the RVE. In addition, when the 3D results were compared with 2D
results obtained by the authors in a previous study (Griffiths et al., 2012), it was found
that the effective elastic stiffness was consistently greater in 3D than in 2D.

Arregui-Mena et al. (2015) carried out a stochastic thermo-mechanical analysis using
Monte Carlo simulation combined with 3D random fields of material properties for nu-
clear graphite reactor bricks. They found that the pre-service von Mises stress is around
twenty times higher when the spatial variability of material properties is introduced, and
that tiny spatial variations in the coefficient of thermal expansion and Young’s modulus
can lead to the presence of thermal stresses in bricks that are free to expand.

2.6. STOCHASTIC ANALYSIS OF 3D SLOPES
Vanmarcke (1977b) presented the first stochastic analysis of a 3D slope, considering an
idealised cylindrical failure through a slope with a heterogeneous Gaussian strength dis-
tribution. Methods for calculating the expected length of a failure, as well as the proba-
bility of failure for a given slope length, were presented. Also, predictions were compared
to the failure of a long embankment in Canada, with good agreement. The techniques
from this paper are summarised in greater detail in Chapter 4. Vanmarcke’s model led to
the investigation of Yücemen and Al-Homoud (1990), who highlighted the importance
of the critical and total slope lengths in a 3-D analysis.

Auvinet and Gonzalez (2000) concluded that, for materials that are homogeneous
only in a statistical sense, i.e. for most natural and compacted materials, the commonly
accepted concept that 2D stability analyses give results that are on the safe side with re-
spect to those given by three-dimensional analyses is not valid, based on a generalization
of simplified Bishop’s method and autocorrelated soil properties at the base of vertical
columns in a 3D limit equilibrium analysis. This suggests that 3D models are needed.
The following sections briefly review three currently available 3D approaches for slope
stability.

2.6.1. VANMARCKE’S SIMPLIFIED 3D MODEL

The first paper treating the three-dimensional slope stability problem within a proba-
bilistic framework was by Vanmarcke (1977b). In his paper, Vanmarcke considered the
reliability of earth slopes for a stochastic cohesive soil characterized by the undrained
shear strength. By considering the averaging of strength values over the failure surface of
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a cylinder and including the end resistance, Vanmarcke (1977b) developed a simplified
3D model for estimating the probability of failure of a long slope. The equilibrium equa-
tion for the cylindrical failure in a 3D slope was proposed based on an extension of the
circular arc method. Estimates for the probability of failure for a single cylindrical failure
of finite length were derived, assuming the spatially averaged shear strength over a finite
length followed a Gaussian probability distribution and had a structure controlled by a
single ‘characteristic distance’; that is, by the scale of fluctuation of the derived ‘moving
average’ variable (for a unit length) along the longitudinal direction of the slope. The
theoretical risk analysis predicted the most probable length of the failure zone along the
embankment axis, the probability of occurrence of a slope failure centered at a speci-
fied point along the embankment axis, and the probability of a slope failure anywhere
along an embankment of given total length. This was later extended to drained slopes
by Vanmarcke (1980), who accommodated frictional and cohesive components of shear
strength as well as a spectrum of drainage conditions. His approach has gained contin-
uous attention in recent years, due to its ability to account for the so-called length effect
in long soil structures (Vanmarcke, 2011; Vanmarcke and Otsubo, 2013). A detailed de-
scription is given in Chapters 4 and 5.

2.6.2. CALLE’S 2.5D MODEL

Calle (1985) proposed an extended/upgraded 2D probabilistic Bishop model for the anal-
ysis of long earth slopes and the method was incorporated in Mstab (GeoDelft, 1994).
The estimation of the probability of failure anywhere along the slope axis involves three
steps; the first step is to calculate the cross-section reliability index, using Bishop’s model
linked to a first order second moment method; the second step determines the proba-
bility of occurrence of a potentially unstable zone using down-crossing theory (Papoulis
and Pillai, 2002); the third step evaluates the probability of a real failure mode, taking
account of the contribution to the resistance of the end sections and given the presence
of a potentially unstable zone. The basic failure model and method of analysis are pre-
sented in detail in Chapter 5.

2.6.3. 3D RFEM

Spencer and Hicks (2006, 2007) and Hicks and Spencer (2010) used RFEM to compute the
reliability of a long slope cut in clay. The results showed that, for a given factor of safety
based on the mean property value, reliability is a function of the degree of anisotropy of
the heterogeneity. In particular, there are three possible failure modes, depending on the
degree of anisotropy of the heterogeneity relative to the slope geometry. 2D analysis was
shown to be equivalent to the 3D problem for an infinite scale of fluctuation in the hor-
izontal plane. For low and intermediate horizontal scales of fluctuation (i.e. relative to
the slope length), there are large differences between the 2D and 3D solutions. The same
methodology was extended by Hicks et al. (2008) to look at the consequences in terms
of volumes of material associated with potential slides, and by Hicks et al. (2014) to look
at the integrated failure length along the third dimension of the slope. They also used
this approach to demonstrate how characteristic values can be determined according to
Eurocode 7 (Hicks and Nuttall, 2012).
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Griffiths et al. (2009b) found that two-dimensional probabilistic analysis, which im-
plicitly assumes perfect spatial correlation in the out-of-plane direction, may underesti-
mate the probability of failure of slopes.

3D RFEM will be used in this thesis and its performance compared with the methods
of Vanmarcke and Calle. This will be presented in detail in Chapters 4-6.

2.7. CONCLUSIONS
A literature review relating to the work presented in this thesis has been presented. This
has covered:

1. evidence relating to the characterisation of soil variability; the COV of undrained
shear strength is in the range of 0.1–0.4 and the vertical and horizontal SOFs for
clay are in the range of 0.1–4 m and 10–90 m, respectively.

2. stochastic analysis methods; e.g. FOSM, FORM, MC and RSM.

3. the application of the random finite element method in geotechnical engineering;
this has been mainly focused on 3D applications involving seepage, liquefaction,
footings, slopes and nuclear engineering.

4. a summary of currently available methods dealing with 3D slope reliability; i.e. the
Vanmarcke, Calle and RFEM models.

Detailed literature studies relating to specific topics will be included in Chapters 4-6.
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RFEM FOR LONG SLOPE STABILITY

AND ITS HPC IMPLEMENTATION

In the field of dyke engineering, soil strength heterogeneity and the so-called length effect
have drawn much attention in recent years. Reliability and risk analysis of dykes, taking
account of the length effect, poses a great challenge for engineers and researchers. This
chapter presents the general outline of the random finite element method (RFEM) used to
investigate the length effect; that is, by analysing the reliability of longer and longer slopes
using a 3D nonlinear finite element code within a Monte Carlo framework. However,
this is computationally prohibitive for a standard desktop computer, as both the mem-
ory and run-time requirements can be very high. Moreover, thousands of realisations of
soil strength spatial variability are sometimes required to get a meaningful reliability re-
sult, although, usefully, each realisation is a largely independent calculation. To this end,
Cloud and Grid computing technologies are naturally the most suitable for running mul-
tiple independent jobs. In this chapter, an HPC computing strategy based on Grid com-
puting has been developed to carry out the work presented in later chapters.

27
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3.1. INTRODUCTION
This chapter starts with a brief introduction to the random finite element method (RFEM)
(Section 3.2), which is used in this thesis to analyse the stability of long slopes. It is then
followed by a general description of the local average subdivision (LAS) algorithm devel-
oped by Fenton and Vanmarcke (1990), as well as its implementation by Spencer (2007)
for generating anisotropic random fields of soil property values (Section 3.3). Section 3.4
is dedicated to solving the particular challenges posed when analysing very large prob-
lems, by means of HPC computing based on Grid e-infrastructures. Section 3.5 con-
cludes the chapter.

3.2. RFEM IN LONG SLOPE STABILITY
As described in Section 2.5, RFEM combines the finite element method with random
field generation techniques (Section 2.4). In slope reliability and risk assessments, this
involves generating multiple realisations of the spatial variability of soil property val-
ues and carrying out a finite element analysis for each realisation to assess the factor of
safety, as well as the potential sliding volume and length (see Fig. 3.1).

The generated random field cell values are mapped onto the slope mesh at the Gauss
point level, so as to adequately represent the spatial variability. In order to minimise the
computer run-time, a larger finite element size in the horizontal plane has been used
in this thesis; this has a negligible influence on the computed factor of safety and the
quality of the random field, due to the horizontal scale of fluctuation generally being
larger than the vertical one. Note that, in the case of an element that has a horizontal
dimension twice the vertical dimension, the value applied to each Gauss point is the
average of four adjoining random field cells (i.e. the average of two cells in both the x
and y directions), as illustrated in Fig. 3.2.

After mapping, the slopes are analysed with the strength reduction method to obtain
a distribution of the realised factor of safety (FR ) and all possible failure mechanisms
(as inferred from the computed displacements). In a detailed quantitative risk assess-
ment (QRA) framework, reliability (or the probability of failure not occuring) and failure
consequence evaluation are the two fundamental components (e.g. Huang et al., 2013).
Reliability is the probability of a structure to perform a required function under stated
conditions for a specified period of time. It is theoretically defined as the probability
of success (i.e. reliability = 1 - probability of failure) and plays a key role in the cost-
effectiveness of systems, in terms of minimizing costs and designing reliable engineer-
ing works. In the case of slope stability, reliability can be inferred from the computed
histogram of FR (with the probability of failure being found by integrating the area un-
der the normalised histogram for FR < 1.0) (e.g. Hicks and Spencer, 2010). Consequence
analysis provides quantitative information on the risk and potential hazards that may be
caused by the failure of engineering structures (e.g. Hicks et al., 2014). With this infor-
mation it is possible to improve the original design, incorporate mitigation measures, or
devise hazard and management strategies to keep the risk at acceptable levels. In long
slope engineering, the potential failure volume and length are two important indicators
of failure consequence, and therefore they are herein included in the RFEM analysis by
post-processing the displacement fields. Detailed analyses will be presented in Chapters
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4 and 5.
This thesis uses the local average subdivision method (Fenton, 1990; Fenton and

Vanmarcke, 1990) to generate random fields, as it fully accounts for spatial correlation
and averaging. The algorithm and implementation of LAS are briefly summarised in the
following sections.

3.3. RANDOM FIELD GENERATION

3.3.1. LOCAL AVERAGE SUBDIVISION
The local average subdivision process (Fenton, 1990; Fenton and Vanmarcke, 1990) pro-
ceeds in a top-down recursive manner, and a brief overview of the 3D implementation
of LAS will be covered here. LAS in 3D involves the subdivision of a parent cell (or cube)
into 8 smaller cells of the same size. Initially, the random field domain is represented
by a single cell (or cube). This is uniformly subdivided into smaller cells, stage by stage,
until the required level of subdivision of the random field has been attained.

Fig. 3.3 shows the subdivision of a parent cell at an arbitrary location within the larger
random field domain. The parent cells that are illustrated in the figure are denoted
as Pi , i = 1,2, . . . ,33 and the child or subdivided cells are denoted as Q j , j = 1,2, . . . ,23.
Fig. 3.3 only shows the subdivision of the parent cell P14. The algorithm will be repre-
sented here using vector notation (Fenton, 1994).

The values of QT = {
Q1,Q2,Q3, . . . ,Q8

}
are obtained by adding a random component

to a weighted mean. The mean term is derived from a best linear unbiased estimate
using a 3 × 3 × 3 neighborhood of the parent cell values, i.e. PT = {P1,P2,P3, . . . ,P27}.
Hence,

Q = ATP+CU (3.1)

where U is a random vector with independent standard normal elements.
Defining the covariance matrices as

R = E
[
PPT]

(3.2a)

S = E
[
PQT]

(3.2b)

B = E
[
QQT]

(3.2c)

where E[.] denotes the expectations which are derived using local average theory (i.e.
variance reduction, see Vanmarcke (1983) and Vanmarcke (1977a)) over the cell do-
mains.

The matrix A is determined by
A = R−1S (3.3)

while the lower triangular matrix C satisfies

CCT = B−STA (3.4)

At the start of the LAS process, in stage 0, a random global average is generated. In
stage 1, the domain is subdivided into 8 cells whose local averages should average to
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Figure 3.2: One finite element and four random field cells (element size 1.0 × 1.0 × 0.5 m, random field cell
size 0.25 × 0.25 × 0.25 m), after Hicks and Spencer (2010)
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Figure 3.3: Cell subdivision in 3D with a 3×3×3 neighborhood size (subdivided cell size = 2)
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preserve the global or parent average value, i.e. upwards averaging is preserved. Hence,
for the subdivision of an arbitrary parent cell at any stage in the subdivision process,
such as that illustrated in Fig. 3.3,

P14 = 1

8

8∑
i=1

Qi (3.5)

The above procedure proceeds recursively until the stage that satisfies the required
field resolution.

3.3.2. SPENCER’S IMPLEMENTATION
An existing LAS program implemented by Spencer (2007) has been used in this thesis.
The implementation uses the following 3D covariance function:

C (τ1,τ2,τ3) =σ2 exp

−2 |τ3|
θ3

−
√(

2τ1

θ1

)2

+
(

2τ2

θ2

)2
 (3.6)

where τ and θ are the lag distance and scale of fluctuation, subscripts 1–3 denote the
two lateral and vertical coordinate directions, respectively, and σ2 is the variance of the
relevant soil property. However, because the subdivision algorithm itself is incapable of
preserving anisotropy (Fenton, 1994), in this implementation an isotropic random field
is initially generated, and this field is then post-processed to give the target anisotropic
random field; that is, by squashing and/or stretching the field in the vertical and/or hor-
izontal directions, respectively.

Note that the vertical correlation structure is separated from the two horizontal di-
rections in Eq. 3.6 (Fenton and Vanmarcke, 1998); this represents the separation in the
assumed long-term laminar deposition process of the soils being modelled. Hence, it is
assumed that horizontal layers are deposited at one time, giving them linked correlation,
whereas vertical deposition occurs through time, making the correlation separate.

3.3.3. SQUASHING/STRETCHING IN 2D
Figs. 3.4–3.6 show three possible ways of post-processing an isotropic random field to
produce an anisotropic field ready for mapping to a finite element mesh. In each figure,
the starting point is an isotropic random field comprising 512 × 512 cells (i.e. as has been
generated by 9 LAS sudivision stages).

Fig. 3.4 shows an example of squashing the starting isotropic random field vertically.
In this example, the target square domain size is D = 5.0 m, the vertical scale of fluctu-
ation is θv = 0.5 m, and the anisotropy of the heterogeneity is ξ = 6, i.e. the horizontal
scale of fluctuation is θh = 3.0 m. The final cell size is dc = 0.1 m, and therefore 50 cells
are needed in the horizontal direction and 50× 6 = 300 cells (before squashing) in the
vertical direction, as these are to be squashed and replaced by 50 new square cells. The
starting isotropic field has a scale of fluctuation of θi so = 3.0 m, to ensure that the final
target field has the required horizontal and vertical SOFs. Note that, by squashing verti-
cally (and averaging each group of 6 cells to form a single new cell of 0.1 m dimension),
the vertical scale of fluctuation is scaled down to the target 0.5 m.
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The same target field can also be produced by stretching an isotropic random field
with θi so = θv = 0.5 m, as illustrated in Fig. 3.5. In this example, the horizontal SOF is
scaled up to 3.0 m and so each of the original square cells needs to be replaced by 6 new
square cells (each with their own cell value). The extra cell values can be assigned by lin-
ear interpolation between neighbouring columns of cells in the original field (Spencer,
2007), as illustrated in Fig. 3.5. Note that the original field before cropping is exactly the
same as the original field from Fig. 3.4, due to the different random field cell sizes. Here,
the cell size is dc = 1/60 m, i.e. by keeping the ratio θi so/dc = 30 the same as in Fig. 3.4 to
ensure the same amount of variance reduction at the ‘point’ level.

Squashing and stretching may also be combined to give the target field. For example,
the same target field as shown in Figs. 3.4 and 3.5 can be produced by first squashing by
a factor of 2 from an isotropic field having θi so = 2×θv = 1.0 m (Fig. 3.6). After squashing,
the intermediate field has a vertical SOF of θv = 0.5 m and a horizontal SOF of θh = 1.0
m. Hence, by stretching the squashed field horizontally by a factor of 3, the resultant
field will have a horizontal SOF of θh = 3.0 m. Note that, in order to make the variance
reduction in the final field consistent with the above figures, the cell size here is set to
dc = 1/30 m, so that θi so/dc is the same as above.

3.3.4. SQUASHING/STRETCHING IN 3D
For 3D problems, squashing, which occurs in the vertical direction, is exactly the same as
when it is done in 2D, except that multiple slices (i.e. x–z or y–z plane, see Fig. 3.7 for the
coordinate system) are being squashed. Stretching in 3D is essentially a 2D stretching in
the x–y plane, whereas stretching in 2D is a 1D stretching along the x or y axis.

Bilinear interpolation was used in the implementation of Spencer (2007) to stretch
(in the horizontal plane) 3D isotropic random fields to produce the required anisotropic
3D random fields. An example is shown in Fig. 3.7 for a target field of 19 m × 19 m × 19
m with θv = 5.0 m, θh = 30 m and a cell size of dc = 1.0 m. The stretching is illustrated
in Fig. 3.8 for the top layer in the vertical direction (i.e. the x–y plane at the maximum
z). Note that the field shown in Fig. 3.7 comprises 19 cells in each direction whereas the
field shown in Fig. 3.8b has 25 cells along each side. That is, the final field is produced by
first stretching a group of a 5 × 5 cells by a factor of ξ = 6 (Fig. 3.8a, this has to be at least
5 cells along each direction to be able to interpolate between the last two cells in each
direction, due to (4-1) × 6 < 19 < (5-1) × 6) and then cropping from the stretched field
(Fig. 3.8b). Therefore, the first layer in Fig. 3.7 corresponds to the 3/4 of Fig. 3.8b in the
up-left corner. Note that a local colour scale is used for Fig. 3.8 and that the black dots
represent the known grid/cell values.

3.4. COMPUTATIONAL CHALLENGES FOR LONGER SLOPES
In Chapter 5 of this thesis, the 3D slope analysed by Hicks et al. (2014) is increased in size
to a length of 500 m. The aim has been to quantify the range of discrete failures and their
relative frequencies in a longer slope than analysed previously, thereby enabling a com-
parative investigation of slope length dependency with other available models. This has
necessitated a 3D finite element mesh comprising 40,000 twenty-node brick elements,
191,281 nodes and 573,843 degrees of freedom. Hence, for such a physically large prob-
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Figure 3.7: Stretched 3D random field (19 × 19 × 19 cells, ξ = 6)
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(b) After stretching; cell size dc = 1.0 m

Figure 3.8: Demonstration of stretching an x − y plane (θi so = 5.0 m) to produce the top layer of the 3D
random field shown in Fig. 3.7: bilinear interpolation, ⊗ means z coordinates directed into the paper, the

dotted area indicates the zone to be cropped to produce the target top layer, and a local color scale is used in
both subfigures.
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lem the computational requirements are substantial, with regards to both run-time and
memory. A computing strategy has therefore been developed, based on Grid computing,
so that the computational analysis can be undertaken in a significantly reduced time.

Spencer (2007) showed that the direct solver was approximately ten times faster than
the iterative solver in his nonlinear plasticity, iterative factor of safety analyses. There-
fore, the direct solver has been used in this thesis. However, as the problem becomes
large, in terms of the total number of degrees of freedom or total numbers of equations
(e.g. 509,760 equations are involved in the investigation presented in Chapter 5), it re-
quires more computer memory to store the global stiffness matrix, and also more time
to factorise it and run the equilibrium iterations. For a 500 m long slope, such as that
investigated in Chapter 5, around 6 GB of memory is needed; therefore, a standard desk-
top computer, which usually has ≥ 8 GB of standard memory, is adequate for a single
realisation. However, hundreds of Monte Carlo realisations are needed to simulate the
range of spatial variability in the ground and, on average, it takes 3 hours to run a single
realisation for a problem of this size. If, for example, 2000 realisations need be run on a
desktop computer, it would take 250 days to finish. It is therefore not a feasible task for
such a machine.

As each realisation or job can be run independently on a single serial computer, Grid
computing, which is generally the allocation of jobs over a network of distributed com-
puters, is ideally suitable for Monte Carlo simulation.

The Author was granted access to the Dutch grid infrastructure and was authenti-
cated as a member in a virtual organization where 3 computing clusters were available
(4400 cores for the gina cluster, 900 cores for the rug cluster and 3800 cores for the nikhef
cluster (data from Sep. 2014)). For high memory jobs (as is the case in Chapter 5), it was
the gina cluster that was used. The computing capacity is 4400/2 = 2200 jobs (it has 3-8
GB of memory per core and therefore 2 free cores are needed for a single 6 GB job). With
these available resources, it was possible to carry out the investigation for a 500 m long
slope in a reasonable time. Usually it takes 15-18 hours (i.e. 5-6 times that of a single
realisation) to finish 2000 jobs/realisations, including the waiting time in the queue (Li
et al., 2015d). A detailed description of the computing strategy based on HPC can be
found in Appendix A.

3.5. CONCLUSIONS
This chapter has outlined the methodology used in this thesis to carry out the RFEM
analyses in the following chapters, including aspects relating to the random field gen-
erator such as squashing and stretching post-processing techniques for producing
anisotropic random fields. An HPC computing strategy based on Grid computing (Ap-
pendix A) has been developed to carry out the work much more efficiently, especially
for very large problems. Specifically, one year of serial computational analysis can be
undertaken in a single day in parallel.
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RELIABILITY ANALYSIS OF A LONG

SLOPE IN 3D: COMPARING RFEM
WITH VANMARCKE’S MODEL

An idealised 3D slope stability problem, incorporating spatial variability of undrained
shear strength, has been analysed by Vanmarcke’s (1977b) simplified method and the more
advanced random finite element method (RFEM), and the two solutions compared. Both
methods lead to predictions of reliability (or, alternatively, to probability of failure), as
opposed to a single factor of safety. However, they may give significantly different results,
depending on the scale of fluctuation (SOF) of undrained shear strength in the horizon-
tal direction relative to the slope dimensions. It is shown that, in a heterogeneous soil,
failure mechanisms seek out the weakest path. It is therefore the spatial average of mate-
rial properties over this general failure surface that determines slope stability, rather than
simple spatial averages over a pre-defined failure surface such as the cylindrical surface
assumed in the simpler model. The results demonstrate that the RFEM response of the
slope is weaker than the Vanmarcke solution in most cases and that the difference is great-
est for small SOFs, due to differences in the predicted failure length and thereby to the ex-
aggerated contribution to resistance then predicted by the cylinder ends in the Vanmarcke
solution. In contrast, for large horizontal SOFs relative to the slope length, the two meth-
ods agree. This is because the failure surfaces in the RFEM analyses then tend to be cylin-
drical and propagate along the entire length of the slope, thereby matching Vanmarcke’s
solution for this limiting case. The investigation highlights the merits of advanced meth-
ods of analysis in assessing the performance of simpler methods used in design. Moreover,
by giving a detailed comparative analysis between the RFEM and Vanmarcke models for
the stability of a slope of finite length at a single point, the chapter acts as a springboard
to the more complicated slope length dependency investigation in Chapter 5.

Parts of this chapter have been published in Engineering Geology 196, 12–23 (2015) (Li et al., 2015c).
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4.1. INTRODUCTION
The spatial variability of soil property values influences soil behaviour and the perfor-
mance of geotechnical structures (Hicks, 2007). For example, spatial variability pro-
motes the development of failure mechanisms along so-called ‘paths of least resistance’
(Hicks and Samy, 2002; Fenton and Griffiths, 2002, 2003; Fenton et al., 2003; Hicks and
Spencer, 2010), causing an apparent reduction in the property mean (Hicks and Nuttall,
2012), while, at the same time, it has the effect of variance reduction due to spatial av-
eraging of properties along the failure path (El-Ramly et al., 2002; Duncan et al., 2003; Ji
et al., 2012). However, spatial variability also increases uncertainty in design, due to lack
of knowledge regarding the actual heterogeneity existing at a site (Lloret-Cabot et al.,
2012, 2014). This has led to the increasing use of probabilistic methods to quantify the
effects of spatial variability and uncertainty in geotechnical assessments (Baecher and
Christian, 2005; Hicks, 2007; Phoon, 2008; Arnold et al., 2012).

Slope stability has been identified as an application for which a consideration of spa-
tial variability is particularly relevant. For this purpose, spatial variability has often been
modelled in 2D using an isotropic correlation structure; for example, as in Paice and
Griffiths (1997), Griffiths and Fenton (2004), Schweiger and Peschl (2005), Griffiths et al.
(2009a) and Suchomel et al. (2010). Relatively fewer studies have considered anisotropic
heterogeneity in 2D; for example, as in Hicks and Samy (2002, 2004), Hicks and On-
isiphorou (2005), Cho (2007, 2009), Arnold and Hicks (2011), Jiang et al. (2014) and Li
et al. (2015a).

However, 2D analysis represents, at best, a spatial average of properties over the third
(slope length) dimension (Catalan and Cornell, 1976). That is, the input point statistics
of the soil properties in a 2D model generally represent spatial averages over the length
dimension, as site characterisation programs are often carried out in 3D space instead of
at a particular cross-section. Hence, the derived ‘2D’ point properties are dependent on
the slope length and on the correlation distance of the property in that direction. For an
infinite correlation distance, the 2D statistics are a good representation; however, in real-
ity, this is rarely the case. Therefore, the performance prediction from a 2D probabilistic
analysis is indicative of, at best, an average performance in the slope length direction.
The implication is that the reliability of some segments will be overestimated (i.e. un-
conservative) and that of other segments will be underestimated (i.e. conservative). As a
result, mitigation measures may not be carried out effectively.

The importance of tackling slope reliability in 3D was first recognised by Vanmarcke
(1977b), who considered, from an analytical point of view, the three-dimensional slope
stability problem within a probabilistic framework, by simplifying the complicated 3D
problem to one involving a single cylindrical failure mechanism of finite length. This
was followed by Calle (1985), who developed a variation of Vanmarcke’s (1977b) model
for aiding dyke safety assessments in the Netherlands. However, it is only in recent years
that numerical methods have been used to analyse the 3D problem in greater detail;
for example, as in Spencer and Hicks (2006, 2007), Spencer (2007), Hicks et al. (2008),
Griffiths et al. (2009b), Hicks and Spencer (2010), Nuttall (2011), Hicks et al. (2014) and Ji
and Chan (2014).

In particular, Spencer and Hicks (2006, 2007), Spencer (2007) and Hicks and Spencer
(2010) used the random finite element method (RFEM) (Fenton and Griffiths, 2008) to in-
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vestigate the influence of anisotropy of the heterogeneity of undrained shear strength on
the performance of a slope that was long in the third dimension, and identified three cat-
egories of failure mode, depending on the horizontal scale of fluctuation (SOF) relative
to the slope geometry. They showed that 2D analysis is only justified for long slopes with
two dimensional failure mechanisms; moreover, discrete failures, which mainly result
from intermediate levels of anisotropy, demonstrate that the 3D nature of heterogeneity
should be considered and that 3D analysis should be carried out to assess slope reliabil-
ity in these (i.e. most) situations. However, Hicks and Spencer (2010) also showed that,
for very long slopes, such as highway embankments and flood defences, system reliabil-
ity may be assessed by carrying out a detailed analysis of a relatively short, representative
section of the slope, and then, by assuming stationarity of the property statistics, extrap-
olating the results to the system by means of simple probability theory.

This chapter investigates the relative performance of two contrasting approaches to
accounting for soil heterogeneity in analysing 3D slope reliability; that is, the analytical
method of Vanmarcke (1977b) and the more versatile (but computationally more expen-
sive) random finite element method. By considering a simple idealised slope stability
problem, the aim is to identify and evaluate those situations in which the two solutions
are similar, as well as those situations in which they are significantly different.

For this purpose, the focus is on uncertainty relating to the spatial variability of prop-
erties relative to the problem geometry, rather to uncertainty relating to (for example) the
soil constitutive behaviour. Hence, the RFEM model idealises the soil as a linear elastic,
perfectly plastic Tresca material, to make the soil behaviour consistent with Vanmarcke’s
(1977b) model which assumes only a cohesive shear strength for the soil. However, the
same methodology has also been successfully applied using more realistic models of soil
behaviour (e.g. Hicks and Onisiphorou, 2005; Arnold and Hicks, 2011).

In the following sections, Vanmarcke’s (1977b) simplified 3D model is reviewed (Sec-
tion 4.2) and the 3D RFEM model briefly introduced (Section 4.3). The relative perfor-
mance of the two approaches in analysing a simple 3D slope stability problem is then
investigated in Section 4.4.

4.2. VANMARCKE’S SIMPLIFIED 3D MODEL
Vanmarcke (1977b) was the first to consider three-dimensional slope stability within a
probabilistic framework, based on his work on the probabilistic characterisation and
modelling of soil profiles (Vanmarcke, 1977a, 1978) and the first passage time problem
(Vanmarcke, 1975). He investigated the reliability of earth slopes for cohesive soils char-
acterised by a stochastic undrained shear strength s, which was assumed to be stationary
(i.e. statistically homogeneous, implying that the first two moments are constant within
the domain of interest) along the entire slope length. Estimates of the failure probability
for a single cylindrical failure mechanism of finite length b, centred at a given point along
a slope of indeterminate length, were derived, assuming the spatially averaged shear
strength over that finite length sb (and therefore the factor of safety Fb , see equation 4.1
below) followed a Gaussian (i.e. normal) probability distribution and had a correlation
structure controlled by a single ‘characteristic distance’, δ. This distance is herein taken
to be the scale of fluctuation θ used by Vanmarcke (1983), i.e. θ = δ. By considering the
averaging of strength values over the cylindrical failure surface, and by including the end
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Figure 4.1: Diagrams showing the failure mass within a long 3D slope (based on Vanmarcke (1977b))

resistance, Vanmarcke (1977b) developed a simplified 3D model for estimating the prob-
ability of failure of a slope (of constant cross-section) that is long in the third dimension.

The proposed equilibrium equation for a cylindrical failure in a 3D slope was based
on an extension of the circular arc method in 2D, but also included a term for the added
resistance from the two vertical end faces. Hence,

Fb = Mr (b)

Mo (b)
= sbLar b +Re

W db
(4.1)

where Fb is the traditional factor of safety for the failure length b; Mr and Mo are the
resisting and overturning moments, respectively; sb is the average shear strength on the
cylindrical failure surface of length b; La is the length of the assumed circular failure arc;
r is the radius of the failure arc; W is the weight per unit length of the material located
above the sliding surface; d is the horizontal distance from the centre of rotation to the
centre of gravity of the rotating body; and Re is the contribution to the resisting moment
from the end sections. These variables are depicted in Fig. 4.1, in which C R is the centre
of rotation of the failure arc.

Using the First Order Second Moment (FOSM) approach (Section 2.3.2), Vanmarcke
(1977b) first considered the mean factor of safety, F̄b , for a cylindrical failure of length
b, by separating equation 4.1 into components for the cylindrical surface and end faces,
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i.e.

F̄b = F̄

(
1+ d0

b

)
(4.2)

where F̄ is the mean factor of safety for the plane strain condition (noting that, in equa-
tion 4.1, sb is a variable while s̄b denotes its mean),

F̄ =
s̄bLar

W d
(4.3)

and d0 is twice the ratio of the cross-sectional sliding area, A, to the arc length, La , i.e.

d0 = 2A

La
(4.4)

Hence, the term d0/b in equation 4.2, as a multiplier of F̄ , accounts for the increased
resistance to failure caused by the end faces of the cylinder. The extra term increases
the mean factor of safety, making the slope less likely to fail compared to a 2D analysis,
especially for small values of b. In addition, the resisting moment due to the end faces is
approximated by taking the length of the ‘lever arm’ to be the radius r , thereby resulting
in an upper bound for the end resistance.

The standard deviation of Fb , F̃b , as a result of the variation of the shear strength
sb over the cylindrical surface (but neglecting any uncertainty in the end resistance Re ),
was given as

F̃b = Γ(b)Vs1 F̄ (4.5)

where
Γ(b) = 1 ; b ≤ θ (4.6a)

Γ(b) =
(
θ

b

)1�2

; b > θ (4.6b)

and
Vs1 = Γ(La)Vs (4.7)

Γ(b) is a variance reduction factor for the shear strength averaged over the length b, Vs

is the coefficient of variation of the ‘point’ shear strength (although some averaging is
already implied), Vs1 is the coefficient of variation of the average strength over a unit
length of the failure surface, and Γ(La) is obtained by replacing b with La and θ with θe ,
the equivalent SOF along the failure arc, in equation 4.6. The term Γ(b)Vs1 in equation
4.5, which equals Γ(b)Γ(La)Vs , represents the variance reduction as a result of averaging
over both the cross-sectional arc La and slope length b. Thus, as b increases relative to
θ, Γ(b) reduces and so does F̃b . That is, as the length of the failed section of the slope
increases relative to θ, the effect of greater averaging of values over the failure surface is
to reduce the variance of the result.

Note that no distinction is made between the scale of fluctuation of s1 and that of
the point process s. Thus, θ in equation 4.6 is taken to be the horizontal SOF. Note also
that the variance reduction factor given by equation 4.6 is an appropriate idealisation
that may be compared with other approximations to the actual variance reduction factor
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Figure 4.2: Subdivision of the failure arc for a slope with a foundation layer

(equation 4.13), which may be obtained through adopting a specific form of the under-
lying correlation function (e.g. such as the exponential form used for the RFEM analyses
in this thesis, equation 4.14).

According to Vanmarcke (1977b), the equivalent SOF in the cross-sectional plane, θe ,
can be approximated by subdividing the failure arc La into segments (∆z1+∆z2+∆x) and
using the equation

La

θe
= (∆z1 +∆z2)

θv
+ ∆x

θh
(4.8)

where La = ∆z1 +∆z2 +∆x, and θv and θh are the vertical and horizontal SOFs, respec-
tively. The circular arc segments (∆z1,∆z2 and ∆x) subdivide the failure surface into
sections that are mainly vertical (∆z1 and ∆z2) or mainly horizontal (∆x), as illustrated
in Fig. 4.2 for a slope failure involving a foundation layer. For a slope failure in which
there is no foundation layer, as is the case for the analyses in this chapter, ∆z2 = 0.

This method of approximating θe may be compared with the approach of El-Ramly
et al. (2006), which assumed θe =

√
θvθh . Hence there was no consideration of the fail-

ure surface dependency, in contrast to Vanmarcke (1977b) who considered the equiv-
alent SOF as a function of the length and shape of the failure surface, which, in turn,
is constrained by the problem geometry. Further details on calculating θe are given in
Section 4.4.2.

Once θe is defined, it is straightforward to use equation 4.7, and then equation 4.5,
to get F̃b . As seen in equations 4.2 and 4.5, F̄b and F̃b are both dependent on the slope
failure length. For any b, the probability of failure, for a slope section centred at some
defined point along the longer slope, is the probability that Fb is less than or equal to 1.0,
i.e. P (Fb ≤ 1). As a Gaussian distribution is assumed for sb (and thereby Fb), P (Fb ≤ 1)
can be calculated using the cumulative standard Gaussian distribution function Φ. Over
the range of possible values of b, P (Fb ≤ 1) varies due to F̄b and F̃b being functions of
b for any given F̄ , θv and θh . This probability reaches a maximum at the critical failure
length bc , which, by assessing a reliability function (Vanmarcke, 1977b) as a function of
b, was derived as

bc = F̄

F̄ −1
d0 ; bc > θh (4.9a)
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bc = θh ; bc ≤ θh (4.9b)

Hence, the most likely failure length depends only on F̄ , θh and d0 (the factor accounting
for failure surface end effects). Note that F̄ has to be larger than 1.0 in equation 4.9a to
ensure a positive and meaningful failure length.

By using equations 4.2–4.9 for a given slope, the probability that a failure of length
bc will occur, p f (bc ), can be found by calculating the mean and standard deviation of
the factor of safety, and utilising the properties of the standard Gaussian distribution
function, i.e.

p f (bc ) = P (Fbc ≤ 1) = P (U ≤−βbc ) =Φ(−βbc ) (4.10)

where

βbc = (F̄bc −1)/F̃bc (4.11)

is the reliability index for the failure length bc , and

U = Fbc − F̄bc

F̃bc

(4.12)

is a standardised random variable with zero mean and unit standard deviation.

4.3. RFEM MODELLING OF 3D SLOPE RELIABILITY AND RISK
The 3D RFEM approach used in this thesis combines random fields for modelling the
spatial variability of material properties (in this case, the undrained shear strength s) and
finite elements for computing geo-structural response (in this case, the factor of safety
in a slope stability application).

The random fields of s have been generated using local average subdivision (LAS)
(Fenton and Vanmarcke, 1990), which requires as input the property mean s̄, standard
deviation s̃ and scale of fluctuation θ. The anisotropy of the heterogeneity (ξ= θh/θv ) is
modelled by defining different values of SOF in the vertical and horizontal directions (i.e.
θv and θh , respectively), as has previously been reported and implemented, for example,
by Hicks and Samy (2002) and Hicks and Spencer (2010) in 2D and 3D, respectively.

A fundamental part of the LAS algorithm is the variance function, which measures
the reduction in variance caused by averaging over a domain. It is related to the correla-
tion function for a stationary process as follows (Fenton and Griffiths, 2008):

Γ2(T ) ≡ γ(T ) = 2

T

T∫
0

ρ(τ)dτ− 2

T 2

T∫
0

τρ(τ)dτ (4.13)

where T is the averaging interval and ρ is the correlation function in 1D. This equation
can be used to construct equation 3.2 in the LAS algorithm presented in Chapter 3, while
the adopted 3D exponential correlation function is given as

ρ (τ1,τ2,τ3) = exp

−2 |τ1|
θ1

−
√(

2τ2

θ2

)2

+
(

2τ3

θ3

)2
 (4.14)
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where τ is the lag distance, and subscripts 1–3 denote the vertical and two lateral coor-
dinate directions, respectively. Note that, for a stationary random process, ρ (τ1,τ2,τ3) =
C (τ1,τ2,τ3)/σ2, where σ2 is the variance of the random soil property and C (τ1,τ2,τ3) is
refered to in equation 3.6 in Chapter 3.

Based on a series of Monte Carlo realisations, with each realisation involving a differ-
ent random field and a finite element analysis of the slope, a distribution of the realised
factor of safety (denoted as FR ) may be obtained for a given set of input statistics (i.e.
s̄, s̃,θv ,θh). The reliability of the slope can then be assessed, by calculating the reliability
index β using equation 4.11, based on the estimates of the mean and standard deviation
of FR , or by calculating the failure probability using equation 4.10, assuming a normal
distribution of FR .

In order to assess the risk associated with a given F̄ , the consequences have to be as-
sessed first. The consequence associated with each potential slope failure is here quan-
tified by estimating the slide volume, using the same strategy as reported by Hicks et al.
(2008, 2014). The computed slide volumes are a vital component in understanding the
relationship between the 3D RFEM analysis and the simplified 3D Vanmarcke solution,
as will become clear in the next section.

4.4. COMPARATIVE ANALYSES OF A SLOPE PROBLEM
Three categories of failure mode have previously been identified in the analysis of a long
3D slope in a heterogeneous soil, as reported by Spencer and Hicks (2006, 2007), Spencer
(2007) and Hicks and Spencer (2010). The occurrence of these failure mode categories
was shown to be strongly influenced by the magnitude of θh relative to the slope geom-
etry, as represented by the slope height H and length L, and may be simply summarised
as follows:

• Mode 1: For θh < H , the slope fails along its entire length and the failure mecha-
nism, which initiates from the slope toe for a depth independent s̄, passes through
weak and strong zones alike, due to the scale of fluctuation being too small to pro-
mote failure through semi-continuous weaker zones. There is therefore consid-
erable variance reduction due to the averaging of property values over the large
failure surface and this leads to a narrow range of solutions. Indeed, in the limit
when θv = θh → 0, this case is analogous to a conventional 2D deterministic anal-
ysis based on s̄.

• Mode 2: For H < θh < L/2, it is more likely for failure to propagate through semi-
continuous weaker zones, thereby forming discrete 3D failures that can either
be separate or inter-connected. In this case, there is a wide range of solutions
and slope reliability decreases as the slope length increases, due to the increased
chance of encountering a weak zone that is capable of triggering failure.

• Mode 3: For θh > L/2, there is an increasing likelihood of the failure surface ex-
tending along the slope length, in a similar manner to Mode 1, due to the spatial
variability taking on a more layered appearance. However, in contrast to Mode 1,
there is a wide range of solutions (i.e. with failure mechanisms initiating from any
depth), mainly due to the wide range of strengths possible for the soil ‘layers’ in



4.4. COMPARATIVE ANALYSES OF A SLOPE PROBLEM

4

47

the vicinity of the slope toe. In the limit when θh →∞, this case is analogous to a
2D stochastic analysis.

Note that the above classification was based on a vertical SOF equal to one fifth of the
slope height and that, for a larger θv , there may be a greater possibility of failure be-
ing attracted to semi-continuous weaker zones (i.e. Mode 2 failure). Also, the value of
θh/L at which the predominant failure mode changes from 2 to 3 is rather subjective.
Although θh/L = 1/2 seems logical (Hicks and Spencer, 2010), θh/L > 1 is more apparent
from the results in the present study, as will be observed in due course. Indeed, Hicks
et al. (2014) carried out detailed studies for long slopes, with and without a foundation
layer, and, through automatically computing slide volumes and lengths, demonstrated
that the above values of θh (relative to H and L) are merely guidelines for the transition
from one failure mode to another. In particular, they showed that Mode 2 failures are
possible for virtually any value of θh , thereby highlighting the difficulty of computing a
2D failure mechanism in a heterogeneous soil.

Keeping in mind the above failure mode categories, a series of RFEM analyses has
been conducted to compare with Vanmarcke’s (1977b) theoretical solution.

4.4.1. PROBLEM DESCRIPTION
The reliability assessment has been made for a L = 50 m long slope, of the same cross-
sectional dimensions as studied by Hicks and Spencer (2010). Hence it is H = 5 m high,
with a 45◦ slope angle, and has no foundation layer. Note that Hicks et al. (2014) carried
out detailed RFEM analyses of a similar slope, with and without a foundation layer, and
demonstrated that the absence of a foundation layer had little influence on the general
findings. Hence, no foundation layer has been considered here, in order to reduce the
computational effort. Moreover, the slope angle and height have been chosen as being
reasonable dimensions for this type of comparison, based partly on previous experience
in analysing slopes of differing angles and heights (Hicks and Samy, 2004; Fenton et al.,
2013).

Figure 4.3 shows the 3D finite element mesh discretisation used in the RFEM analy-
ses, as well as a 2D cross-section, relative to a Cartesian (i.e. x–y–z) coordinate system.
The mesh comprises 4000 20-node hexahedral elements. Each element uses 2× 2× 2
Gaussian integration, and each has dimensions of 1.0×1.0 m in plan and 0.5 m in depth,
except for along the slope face where the elements have been distorted to model the cor-
rect slope angle, as indicated in Fig. 4.3(a). The boundary conditions are a fixed base,
rollers on the back (y–z) face preventing displacement perpendicular to the face, and
rollers on the end (x–z) faces allowing only vertical displacement. Detailed explanations
for this choice of boundary conditions are given in Spencer (2007), Hicks and Spencer
(2010) and Hicks et al. (2014). In particular, Spencer (2007) discussed the various op-
tions for the end boundaries, which can have a significant influence on the response of
relatively shorter slopes as demonstrated by Griffiths et al. (2009b) who considered both
perfectly smooth and perfectly restrained boundaries for slopes up to L/H = 16. Spencer
(2007) found that restraining only the y-direction led to a bias in failures near the mesh
ends, probably due to the greater influence of weaker zones arising from the implied
symmetry of the random field about the mesh ends when allowing free movement in the
x–z plane. In contrast, he observed no such bias when restraining the mesh in both the
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（a）3D view          （b）Cross-section          
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Figure 4.3: Finite element mesh discretisation for a 50 m long slope

x and y directions, while leaving the z-direction free, and obtained results for slopes of
different lengths that were supported by probabilistic theory. Note that the Author has
investigated the location of the back (x = 0) boundary, for different values of θh , for two
cases; one with the boundary 5 m from the slope crest and the other with the boundary
at a distance of 10 m. As the differences in the computed results between the two cases
were negligible, the more efficient 5 m case has been used here.

The calculations are for a soil with a unit weight of 20 kN/m3 and a spatially varying
undrained shear strength s represented by a normal distribution. The mean undrained
shear strength is s̄ = 26 kPa, which corresponds to F̄ = 1.6 for a plane strain homoge-
nous analysis based on Taylor’s (1937) stability factor. The coefficient of variation of s is
Vs = s̃/s̄ = 0.2, which is within the range of commonly found values in practice (Hicks
and Samy, 2002) and also small enough to ensure that truncating the normal distribu-
tion, to prevent the possibility of negative values, has a negligible effect on the analysis.
In practice, the vertical scale of fluctuation can easily be found from in-situ (e.g. cone
penetration) testing and is generally small relative to the height of a slope (e.g. θv is of-
ten between 0.5-1.0 m). In contrast, the horizontal scale of fluctuation is difficult to mea-
sure, although it is generally much larger than the vertical scale of fluctuation. Hence, in
this chapter θv is held constant at 1.0 m (= H/5) throughout the investigation, whereas a
wide range of values has been considered for θh (in which θh = ξθv ).

In the RFEM analysis, the random field cell values of undrained shear strength are
mapped onto the finite element mesh at the Gauss point level (see Hicks and Spencer
(2010) for more details). As 2×2×2 Gaussian integration has been employed, this means
that, in the vertical direction, the random field cell size is 0.25×θv , whereas, in the hori-
zontal direction, the cell size is usually much smaller than θh , thereby ensuring that the
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spatial variability is modelled in sufficient detail. The clay stress–strain response is mod-
elled using an elastic–perfectly plastic Tresca soil model with the following elastic model
parameters: Young’s modulus E = 1.0×105 kPa, and Poisson’s ratio ν= 0.3 (Griffiths and
Lane, 1999). Note that, although an undrained analysis implies a Poisson’s ratio of 0.5,
the smaller value used herein aids numerical stability and efficiency, as well as promot-
ing a more realistic in-situ stress field (Wang et al., 2016). Moreover, it has negligible
influence on the predicted factor of safety in slope stability analysis using simple elasto-
plastic models.

The mesh is loaded by applying gravitational loading to generate the in situ stresses
and the factor of safety is computed using the strength reduction method (Smith and
Griffiths, 2005; Hicks and Spencer, 2010); i.e. for each realisation, the slope is repeatedly
analysed for progressively lower shear strengths, with the factor of safety (FR ) being the
amount by which the original random field cell values are scaled down to cause failure.
Hence each realisation involves taking the slope to failure and, at failure, the value of FR

is recorded, as are the slide volume and slide length.

4.4.2. VANMARCKE SOLUTION

In order to investigate Vanmarcke’s (1977b) analytical solution, an estimation of A and
La is required (equations 4.2–4.4). This follows the work of Hicks et al. (2008) and Nut-
tall (2011), and involves locating the rupture surface in a plane strain finite element (FE)
analysis of a homogeneous slope that is taken to failure using the strength reduction
method. Note that the same values of A, La and F̄ (resulting from the same critical
slip surface) can be obtained via the circular arc method within a limit equilibrium con-
text, although the definition of the factor of safety is different to the strength reduction
method within a finite element context; this is because only a purely cohesive soil is
considered herein.

Figure 4.4(a) shows that an imaginary point in space, well above the centre of the
slope face, is chosen. Next, a series of lines radiating out from this point (across the slope
mesh) are considered. The maximum value of the shear strain invariant along each line
is detected and, by connecting the locus of the maxima from all the lines, the rupture
surface is defined. The surface may then be smoothed by polynomial curve fitting us-
ing a least squares approach, and the arc length and slip area then found by numerical
integration (Fig. 4.4(b)). For the present slope geometry and failure mechanism, the
integrated length of the rupture surface is La = 12.0 m and the slip area is A = 23.0 m2.

To illustrate the use of Vanmarcke’s (1977b) solution, the case of θh = 6 m is used as
an example. Calculating the slope’s mean factor of safety, ¯Fbc , for the probable failure
length, bc , is equivalent to calculating the factor of safety for a homogenous 3D cylindri-
cal failure, assuming s = s̄ = 26 kPa and taking account of the end contributions. Firstly,
using equation 4.4 and the estimates of La = 12.0 m and A = 23.0 m2, d0 is calculated to
be 3.83 m. This is substituted into equation 4.9, along with the factor of safety based on
a plane strain analysis, F̄ = 1.6, to give the most probable failure length of bc = 10.2 m
(i.e. based on θh = 6 m). This is substituted into equation 4.2 to give the mean traditional
factor of safety for a slope failure of that length, ¯Fbc = 2.2. Note that this is considerably
higher than F̄ = 1.6, demonstrating the large increase in resistance to failure, due to the
end resistance, for the predicted short failure length.
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Figure 4.4: Determination of cross-section failure geometry
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For estimating the standard deviation of the safety factor, the equivalent SOF is de-
termined using equation 4.8. For a slope with no foundation layer, ∆z2 equals zero, as
discussed earlier. With reference to Fig. 4.4, the 12.0 m long failure arc may be crudely
approximated as a horizontal 4 m segment starting at the slope toe, plus a second 8 m
segment from the base to the top of the soil layer. Therefore, as a first approximation
∆x ≈ 8 m (i.e. the horizontal segment plus half the inclined segment) and ∆z1 ≈ 4 m (i.e.
half the inclined segment). (Note that this ratio of ∆x to ∆z1 is also the approximate ratio
of the lateral to vertical dimensions of the slide extent; i.e. 9.5/5.0, as seen in Fig. 4.4(b).)
By substituting these values, as well as θv = 1 m and θh = 6 m, into equation 4.8, θe is
evaluated.

Although this is a rather subjective method of obtaining θe , the approximated val-
ues for different θh were found to be in good agreement with the values back-figured
from 2D RFEM analyses using a numerical procedure (Jaksa et al., 1999). Specifically,
for an ensemble of random fields, the failure surfaces computed in the corresponding
slope stability analyses were identified using the ridge-finding technique illustrated in
Fig. 4.4(a), and the spatial variation of soil properties along each failure surface then
determined by identifying the random field cells through which the failure surface prop-
agated. The sample correlation functions were then calculated for all the realisations,
and a 1D exponential correlation function (i.e. equation 4.14 for only the term in τ1)
then fitted to the averaged sample correlation function to find the scale of fluctuation
along the failure surface. This was done for various horizontal scales of fluctuation (for a
given θv ), and the back-figured equivalent scales of fluctuation were found to be in good
agreement with the estimated value based on equation 4.8 and the chosen values of ∆x
and ∆z1.

Finally, ˜Fbc is estimated using equations 4.5–4.7 and Vs = 0.2, to give Γ(b) = 0.77 and
thereby ˜Fbc = 0.106 for θh = 6m. Table 4.1 lists the theoretical means and standard de-
viations of Fbc for all values of θh considered in this chapter. Note that, in contrast to
the RFEM analysis which considers a slope of fixed length (L), the Vanmarcke solution
is independent of slope length and that, for θh > L = 50 m, the derived value of bc used
to calculate ¯Fbc and ˜Fbc is also greater than 50 m (from equation 4.9). Table 4.1 shows
that, although ˜Fbc has almost converged by the time θh = 50 m (i.e. corresponding to
when bc = L), ¯Fbc continues to reduce towards F̄ = 1.6 as θh increases further. Hicks
et al. (2014) showed that, for the same cross-section, a homogeneous slope of L/H ≥ 10
behaves in a similar manner to plane strain. The fact that a larger L/H is implied for
the Vanmarcke solution is likely to be due to the overestimated end resisting moment
(referred to earlier).

4.4.3. RFEM RESULTS AND COMPARISON

Numerical simulations based on RFEM analyses comprising N = 500 realisations have
been conducted for values of θh in the range 1 ≤ θh ≤ 1000 m (with θv = 1 m in all cases).
Each realisation involves the generation of a random field of s, based on the statistics of s
and using local average subdivision (Fenton and Vanmarcke, 1990), and the subsequent
FE analysis of the slope to find the factor of safety (see Table A.1 for an indication of the
calculation times, noting that the time needed for the generation of the random field is
negligible compared to the FE calculation). Further details of the methodology can be
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Table 4.1: Means and standard deviations of Vanmarcke and RFEM factors of safety (θv = 1.0 m, F̄ = 1.60)

Vanmarcke RFEM

SOF (θh : m) Mean Standard deviation Mean Standard deviation

1 2.2 0.029 1.59 0.014
2 2.2 0.050 1.58 0.027
6 2.2 0.106 1.55 0.064

12 2.11 0.148 1.53 0.100
24 1.86 0.154 1.52 0.126
50 1.72 0.157 1.54 0.137

100 1.66 0.158 1.57 0.147
1000 1.61 0.160 1.59 0.157

found in, for example, Hicks and Spencer (2010).

Figure 4.5 shows the resulting histograms of the realised factor of safety, FR , as well
as fitted normal distributions, for θh= 6, 24 and 100 m. For each value of θh , the mean
(F̄R ) and standard deviation (F̃R ) of FR are indicated. The figure shows that the normal
distribution fits the results of the Monte Carlo simulations reasonably well and the same
was also found for other values of θh . Moreover, the output (i.e. factor of safety) means
and standard deviations were found to have converged (see Appendix B for the conver-
gence plots), indicating that enough realisations were used in the simulations. Although
more realisations would have led to a further increase in accuracy, especially for cases
in which the reliability index is high, the Author has followed the suggestion of Fenton
and Griffiths (2010); i.e. to employ the continuous fitted distribution, based on the as-
sumption that the distribution of factor of safety continues to be modelled by the fitted
distribution in the distribution tails. As this approach was considered to be sufficient for
the purposes of the comparative study in this chapter, it is the fitted normal probability
density functions (PDFs) that have been used to compare with the results obtained via
Vanmarcke’s (1977b) model.

Figure 4.6 shows the RFEM PDFs of FR , and also the slide volumes (as a percentage
of the total mesh volume) associated with individual realisations, for each value of θh ;
i.e. the slide volume is computed for each realisation and plotted as a single cross cor-
responding to the value of FR for that realisation. Fig. 4.7 summarises the results of all
realisations in terms of (a) the mean and standard deviation of FR , and (b) the mean
slide volume and mean slide length, indicating trends consistent with the longer slopes
analysed by Hicks and Spencer (2010) and Hicks et al. (2014). The corresponding solu-
tions based on Vanmarcke’s (1977b) 3D model are also shown in both figures, as is the
computed (FE) slide volume for an analysis based on a homogeneous soil (indicated
by the horizontal broken line). Note that, in Fig. 4.7(b), the Vanmarcke solutions for
slide volume and length (which are based on a slope failure at a given location within
a slope of infinite length) have been truncated at θh = 50 m, to make them consistent
with the finite slope length analysed using RFEM. Note also that, for both the RFEM and
Vanmarcke approaches, the terms ‘slide/failure volume’ and ‘slide/failure length’ here
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Figure 4.5: Probability density functions of the realised factor of safety for a 50 m long slope
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Figure 4.6: Influence of θh on PDF of factor of safety and range of RFEM slide volumes
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refer to the geometry of the mass of soil that dictates the factor of safety of the slope;
i.e. they represent the geometry of the soil mass that slides along the 3D failure surface
that would form should the shear strength in the slope be scaled down (by the factor of
safety) to cause slope failure.

The slide volume for each realisation is approximated as the volume of all elements
with an average nodal x (out-of-slope-face direction) displacement greater than some
threshold value, which is calibrated against the more rigorous ridge-finding technique
for a 2D slice taken through the centre of a homogeneous slope; i.e. it is the displacement
iso-surface that bounds the same failed volume as obtained by locating the critical slip
surface using contours of shear strain invariant (see Hicks et al. (2014) for further details).
For the present problem, this threshold value is estimated to be 26% of the maximum
computed x displacement. The mean slide volume, as plotted in Fig. 4.7(b), is then the
average of the slide volumes from all the realisations.

As the failure length constitutes an explicit part of the Vanmarcke solution, to fa-
cilitate understanding, the procedure of Hicks et al. (2014) is implemented to estimate
the mean failure length in an RFEM analysis. In each realisation, the failure length is
estimated to be the integrated length, along the slope in the longitudinal direction, for
which the x displacement is greater than the threshold displacement (for the row of ele-
ments directly above the slope toe); the failure length is then averaged over the ensemble
of realisations for a given θh . The results are shown in Fig. 4.7(b) for different values of
θh . The strong positive correlation between the mean failure length and mean failure
volume indicates that the above estimation is reasonable. Note that the estimated fail-
ure lengths for very small and very large θh are slightly less than the slope length, due to
the boundary conditions constraining the failure mechanism and displacement magni-
tudes near the mesh ends (thereby making the threshold displacement less applicable in
these locations). Moreover, the estimated failure length does not differentiate between
the number of slides over the slope length (Hicks et al., 2014).

Figures 4.6(a) and (b) suggest that, for θh = 1 m and θh = 2 m, most failures may be
categorised as Mode 1, as indicated by both the narrow range of RFEM safety factors
and narrow range of slide volumes. Moreover, most slide volumes are relatively large
(30-50% of the total mesh volume, as compared to 43.4% for the homogeneous case),
indicating failure along most of the slope length, as is also highlighted by the mean slide
volumes and lengths plotted in Fig. 4.7(b). As θh increases, the Mode 2 failure mecha-
nism becomes dominant (Fig. 4.6(c-e)), as indicated by the wider distributions of both
FR and the slide volumes. As θh increases to still larger values (Figs. 4.6(f-h)), Mode 3
mechanisms become more apparent, with the possible slide volumes now distributed
over a still larger range of FR . However, Figs. 4.6(f-g) also indicate that a high proportion
of Mode 2 failure mechanisms remain, even for values of θh around or above the slope
length, which supports the previous finding of Hicks et al. (2014) that 2D failure mecha-
nisms are very difficult to compute in a 3D heterogeneous soil slope. The results in Fig.
4.6(h) represent the limiting condition, for when θh →∞; in this case, the slide volume
remains rather stable at around 40-45%, indicating that most failure mechanisms are
Mode 3.

The corresponding solution due to Vanmarcke (1977b) is also plotted in Fig. 4.6. It
can be seen that, for values of θh associated with RFEM failure Modes 1 and 2, the RFEM
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Figure 4.7: Comparison between RFEM results and Vanmarcke’s (1977b) solution
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response (e.g. the mean factor of safety) is significantly lower than the corresponding
Vanmarcke solution: the predicted curves from the Vanmarcke solution have values of
Fbc well above the mean plane strain factor of safety of F̄ = 1.6, whereas, for RFEM analy-
ses, most FR values are slightly below this value. For larger values of θh that are nominally
associated with the RFEM transition to Mode 3, the two solutions get closer, and, for the
limiting condition of θh = 1000 m, when nearly all RFEM failures are Mode 3, there is
close agreement between the two solutions.

The above observations may be explained by the way in which the Vanmarcke so-
lution evolves (i.e. how the PDF changes with θh). For θh ≤ bc (θh = 1,2,6 m in Figs.
4.6(a-c)), the mean of Fbc does not change (see equations 4.2 and 4.9(a)). In this case,
the Vanmarcke solution predicts a most probable failure length of 10.2 m, as shown in
Fig. 4.7(b). Equation 4.2 implies that these predicted short slides are heavily influenced
by the end resistance of the failure surface, leading to a very high mean factor of safety
of F̄bc = 2.2 (Fig. 4.7(a)). In contrast, the RFEM results predict failure along most of the
slope length (Fig. 4.7(b)) and a much lower mean factor of safety (Fig. 4.7(a)), the larger
failure length being due to the small SOF causing the soil mass to behave like a homoge-
neous material (i.e. promoting a Mode 1 type failure).

For θh ≥ bc (θh = 12, 24, 50, 100, 1000 m in Figs. 4.6(d-h)), the mean of Fbc decreases
(equations 4.2 and (4.9b)). The case of θh ≈ 12 m can be considered as when the Van-
marcke PDF starts moving to the left, so giving a decreasing mean factor of safety as
shown in Fig. 4.7(a). For the limiting condition of θh = 1000 m, the influence of the end
resistance becomes negligible in the Vanmarcke solution (equation 4.2), and the two so-
lutions then coincide (Figs. 4.6(h) and 4.7(a)). In this case, the RFEM failure mechanism
fits the assumption made in Vanmarcke’s simplified model; i.e. a cylindrical failure sur-
face, as indicated in Fig. 4.6(h) by the narrow range of slide volumes which approximate
to the homogeneous slide volume of 43.4%. Moreover, the slope failure propagates along
the entire slope length (see Fig. 4.7(b)), which is also consistent with Vanmarcke’s model.

For comparative purposes, the mean and standard deviation (SD) of Fbc and FR , plot-
ted in Fig. 4.7(a), are listed in Table 4.1. Note that only the critical failure length bc is
considered in obtaining the mean and standard deviation of Fbc , whereas the mean and
standard deviation of the factor of safety FR , from the RFEM simulation, includes the
effect of failures of various lengths (especially for Mode 2 failures). It can be seen that
the mean Vanmarcke solution reduces as θh increases, i.e. due to the reduced influence
of the end contribution in equation 4.2. On the other hand, the mean RFEM solution
reduces (from 1.59 to 1.52) as θh increases to 24 m, due to the relatively greater influence
of weaker zones as the failure mechanism seeks out the weakest path. Typical RFEM
failure mechanisms are illustrated in Fig. 4.8; i.e. in terms of computed x-displacement
(out-of-slope-face) contours, for θh = 12 m. The estimated slide volumes indicate that
the automated method of estimation has been successful.

Figure 4.7(a) and Table 4.1 show that the standard deviation of the RFEM results is
less than that of the Vanmarcke results, especially for lower values of θh . This is partly
due to the approximate form of the variance reduction factor used in equation 4.6 in Van-
marcke’s (1977b) model, compared to the variance function derived from the correlation
function (equation 4.14) used in the current RFEM model; specifically, the variance re-
duction factor is approximated as, or close to, unity in Vanmarcke’s model for most val-
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（a）Vol = 16.2%         

（b）Vol = 26.5%         

（c）Vol = 35.7%         

Figure 4.8: Example failure mechanisms for θh = 12 m (Vol indicates the slide volume as a percentage of mesh
volume; displacement magnification scale = 400)
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ues of θh , whereas some reduction should be introduced (Vanmarcke, 2011), as has been
done in the RFEM model. Although the variance reduction factor in Vanmarcke’s model
is less than unity for θh = 1 m, θh = 2 m and θh = 6 m, the resulting standard deviation
is still much greater than the RFEM result, due to the short predicted failure length in
this case (equation (4.6b)). As the horizontal SOF becomes large and Mode 3 failures
start to dominate in the RFEM analyses, F̄R approaches 1.6 (from below) and F̃R tends
to a maximum which is closely related to the equivalent SOF for a cross-section taken
through the slope (i.e. using equations 4.5–4.7, with θ = θe in equation 4.7). Indeed, the
RFEM standard deviation converges toward the solution predicted by equation 4.5 as θh

becomes very large. Note that this solution is less than that for the isotropic case, i.e. for
θv = θh = ∞, in which the coefficient of variation of the factor of safety would tend to
the coefficient of variation of the undrained shear strength (i.e. the input Vs ). This is due
to the failure surface needing to pass upwards through ‘layers’ in the slope with s values
‘uncorrelated’ to those for the ‘layer’ in which failure initiates (due to the small θv of 1.0
m).

4.4.4. SUMMARISING COMMENTS

Figure 4.9 shows the difference between the Vanmarcke and RFEM solutions, as a per-
centage of the RFEM solution and as a function of θh . It is seen that the relative differ-
ences in the mean and SD of the factor of safety generally reduce as θh increases.

The biggest differences occur for values of θh associated with Mode 1 failure (in
the RFEM model), and are due to the two models predicting completely different fail-
ure lengths; as already discussed, the Vanmarcke model predicts a 10.2 m failure (and
thereby a large relative contribution from the end resistance), whereas the RFEM model
predicts failure along the entire slope length (see Fig. 4.7(b)).

The large differences for values of θh associated with Mode 2 failure (in the RFEM
model) are due to 3 factors: 1) the reduction in F̄R (in the RFEM model) due to failure
seeking to follow the weakest path; 2) the RFEM model including a wide range of possible
failure surface geometries and failure lengths; and 3) the overestimated end resistance
in the Vanmarcke model. As Mode 3 is approached (in the RFEM model), the differences
between the two solutions become smaller than 10%, due to the two methods then ac-
counting for similar failure mechanisms. Note that, although the difference between the
two solutions is relatively modest for values of θh around 50–100 m, which may be con-
sidered a reasonable range of θh for some practical applications, this is partly due to the
slope being only 50 m long (thereby encouraging more Mode 3 failures). The Author has
found that the difference between the two solutions becomes larger as the slope length
is increased for a given θh .

Interestingly, although there can be a big difference in the means and standard devi-
ations of the factor of safety predicted by the two approaches, this does not necessarily
imply a large difference in the reliability index β (equation 4.11), due to the Vanmarcke
mean and standard deviation both being larger than the mean and standard deviation
in the RFEM analysis for values of θh associated with RFEM Modes 1 and 2 (Fig. 4.7(a)).
This is illustrated in Fig. 4.10, in which β is plotted as a function of θh for four values of F̄ ,
the mean factor of safety for the plane strain condition. Note that only those reliability
indices corresponding to Modes 2 and 3 are plotted, in order to improve the visualisation
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Figure 4.9: Difference between Vanmarcke and RFEM solutions as a function of θh , expressed as a percentage
of the RFEM solution
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Figure 4.10: Reliability index versus θh for different mean plane strain factors of safety

of the differences for more likely values of θh . It is seen in Fig. 4.10(c) that, for F̄ = 1.6
(i.e. the base case), the analytical approach gives an un-conservative solution for the
reliability index relative to RFEM. Moreover, in both solutions, the reliability decreases
with an increasing SOF. This can be explained by Table 4.1, which shows an increasing
SD in the factor of safety due to a decreasing variance reduction. In general, for smaller
(and generally more practical) values of F̄ (i.e. based on a smaller mean undrained shear
strength), the difference is much larger, as seen in Fig. 4.10(d) for F̄ = 1.23.

Note that, in the above comparison, Vanmarcke’s (1977b) approach is based on esti-
mating the probability of failure of the slope for a cylindrical mechanism of the critical
length, at some given point along a slope of indeterminate length, whereas the RFEM
approach estimates the probability of failure of the slope ‘system’ for a slope of a fixed
length; i.e. all failure mechanisms are possible and these may initiate anywhere over the
slope length. However, in his paper, Vanmarcke (1977b) also considered the probabil-
ity of failure with respect to length effects, using a ‘first crossing’ technique (Vanmarcke,
1975). This was investigated by the Author (Li and Hicks, 2014) to see how, for the Van-
marcke solution, the probability of failure of a section of length bc increased with slope
length (i.e. assuming that the failed section might occur at any location along the slope).
Based on the mean rate of increase of the failure probability per unit length of the slope
(Vanmarcke, 1977b), only a small increase in the probability of failure was observed for
the 50 m long slope considered in this chapter (corresponding to a reduction in the reli-
ability index of 1-9%, see Fig. 4.10). However, research to investigate the length effect for
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much longer slopes is presented in Chapter 5.

4.5. CONCLUSIONS
A simple three dimensional slope stability problem has been analysed probabilistically
by both Vanmarcke’s (1977b) analytical approach and the random finite element method
(RFEM). For horizontal scales of fluctuation (θh) that are large compared to the slope
length, the two approaches give similar results, because most of the failure surfaces com-
puted in the RFEM analyses are then approximately cylindrical and propagate along the
entire length of the slope, thereby matching Vanmarcke’s assumption and resulting fail-
ure length for this limiting condition. In contrast, for smaller values of θh (i.e. less than
the slope length), the two approaches can give significantly different results, with the
RFEM response of the slope generally being much weaker than the Vanmarcke solution.

The large differences may be attributed to 3 factors. Firstly, there is the ability of the
RFEM simulation to seek out the weakest failure path through the slope, thereby reduc-
ing the average shear strength over the failure surface. Secondly, in reality there are many
possible failure surfaces of varying location, size and shape (as may be computed using
RFEM), and it is the spatial averages of material properties over these surfaces that are
influential, not simple spatial averages over a single predefined failure surface (of one
critical length) such as the cylindrical surface assumed in Vanmarcke’s solution. Thirdly,
the cylinder ends can significantly increase the resistance to failure in Vanmarcke’s anal-
ysis for small values of θh (cf. equation 4.2), so that the factor of safety may be greatly
overestimated.

The advantages of Vanmarcke’s solution are that it is elegant and simple to use, and
may be considered a useful and practical tool to aid in the design of slopes that are very
long in the third dimension. However, this investigation has highlighted the merits of
more advanced methods of analysis for gaining insight into the performance of simpler
models in general. In particular, they can have an important role to play in identifying
and quantifying the limitations of such models, as well as providing a possible means for
identifying how they may be improved.
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IN 3D

Embankment slopes composed of spatially variable soils have a variety of different failure
modes that are affected by the correlation distances of the material properties and the
geometry and total length of the slope. This chapter examines the reliability of soil slopes
for embankments of different length and utilises parallel computing to analyse very long
embankments (up to 100 times the slope height) for a clay soil characterised by a spatially
varying undrained shear strength. Based on a series analyses using the 3D random finite
element method (RFEM), it is first shown that the reliability of slopes of various length
can be efficiently computed by combining simple probability theory with a detailed 3D
RFEM analysis of a representative shorter slope of length 10 times the slope height. RFEM
predictions of reliability index for long slopes are then compared with results obtained
via Vanmarcke’s (1977b) simplified 3D method and Calle’s (1985) extended 2D approach.
It is shown that these methods can give significantly different results, depending on the
horizontal scale of fluctuation (SOF) relative to the slope length, with RFEM predicting a
lower slope reliability than the Vanmarcke and Calle solutions in all cases. The differences
in the solutions for the three methods are attributed to differences in the assumed and
computed failure surface geometries.

Parts of this chapter have been submitted to an international journal.
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5.1. INTRODUCTION
A feature of civil infrastructures such as railway embankments, river banks, highways,
and levees (or dykes) is a large ratio of the length dimension to the cross-sectional di-
mension. The stability of these structures is of great concern to geotechnical engineers,
due to the potential for huge economic and social impact should they fail (Wolff, 2008).
Traditionally, deterministic plane strain analyses have been carried out to assess slope
stability via a single factor of safety. More recently, probabilistic plane strain analyses
have been used to account for the uncertainty due to soil heterogeneity in slope relia-
bility assessments (Hicks and Samy, 2002; Cho, 2007; Ji et al., 2012; Jiang et al., 2014; Li
et al., 2015a). Due to such analyses quantifying the probability of failure, they are a use-
ful supplement to conventional deterministic analyses. However, in both approaches, an
infinitely long failure is implied in the third dimension, which is not physically realistic
due to the spatial variability of soil properties (as well as variations in slope geometry).
The fact that soil heterogeneity is three dimensional can make the use of a 2D analysis
debatable (Spencer and Hicks, 2006, 2007; Spencer, 2007; Griffiths et al., 2009b). Indeed,
a 3D analysis may be desirable for more realistic predictions of slope reliability (Hicks
and Spencer, 2010; Hicks et al., 2008, 2014; Li et al., 2013, 2015c; Ji and Chan, 2014; Ji,
2014).

For the aforementioned structures, the variability in the third dimension can be very
important when assessing the reliability of very long infrastructures. This is because the
longer the total length of a slope, the greater the chance that a ‘weak spot’ exists some-
where, and thus the higher the probability of a ‘system’ failure (Christian and Baecher,
2011). This total length dependency is sometimes referred to as the ‘length effect’ for
long slopes.

In order to allow adequate consideration of the total slope length, which is always
missed in conventional slope stability calculations, Vanmarcke (1977b) and Calle (1985)
proposed methods for accounting for the length effect in the selection of design fac-
tors of safety. Vanmarcke (1977b, 2011) demonstrated analytically that the length ef-
fect can be determined by considering the first crossings (or first passage, as in Vanmar-
cke (1975)) of a random process in the slope length direction, so that the probability of
failure can be evaluated as a function of the total slope length. Based on Vanmarcke’s
(1977a) concept of modelling the spatial variability of soil strength as a random process,
Calle (1985) proposed a semi-analytical model for long soil slopes using first-crossing
theory (referred to as down-crossing by Calle (1985) and out-crossing by Vrouwenvelder
(2006)). He argued that a real finite failure can only occur in a potentially unstable zone
in the longitudinal direction; that is, when, in the longitudinal direction, the average soil
strength along the potential cross-sectional failure surface drops below the strength re-
quired for stability along the finite length.

In contrast to the methods of Vanmarcke (1977b) and Calle (1985), where a cylindri-
cal failure surface is assumed, Hicks and Spencer (2010) investigated length effects for
slopes up to 200 m long using RFEM, which makes no prior assumptions regarding the
shape of the failure surface. However, a disadvantage of the numerical model was that
it was computationally expensive for a full 3D analysis. Fortunately, computing tech-
nologies have advanced significantly in recent years, with computational capacity being
extended substantially with the aid of grid and cloud computing technologies (Li et al.,
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2015d). This chapter uses these new technologies to build on the work of Hicks and
Spencer (2010) and Li et al. (2013, 2015c), with particular emphasis on the length effect
and a comparative study to compare the relative performance of the above three meth-
ods for much longer slopes (up to 500 m long).

Note that the investigation focuses on the length effect within a long ‘statistically
homogeneous’ segment of, for example, a dyke ring system, as such a system is generally
idealised in this way, with each segment characterised by statistically homogeneous soil
strength properties and loads, as well as similar cross-sectional geometries. A typical
segment has a length of 200-1000 m according to Jongejan et al. (2013). For assessing the
reliability of an embankment slope with multiple segments having distinctly different
properties (e.g. strength, load and geometry), the extended methodology presented by
Vanmarcke and Otsubo (2013) can be used by taking account of the correlations between
the segments.

In the following sections, Vanmarcke’s (1977b) model is briefly revisited (Section 5.2),
followed by an explanation of the Author’s implementation of Calle’s (1985) model (Sec-
tion 5.3). For both models, only those equations necessary for evaluating the results are
presented; for further details, the reader is referred to the original publications. Then,
after a brief review of relevant RFEM research (Section 5.4), the relative performance of
the three methods is assessed for a simple benchmark problem (Section 5.5).

5.2. VANMARCKE’S 3D MODEL CONSIDERING LENGTH EFFECT
The basic Vanmarcke model based on random field theory is presented in Chapter 4
(Section 4.2). The ‘system failure’ aspect, i.e. the dependence of failure probability on
the total length L, based on ‘first crossing’ (Vanmarcke, 1975), is presented below. Note
that, throughout this chapter, a ‘bar’ over a symbol denotes the mean of a variable and a
‘tilde’ denotes its standard deviation.

5.2.1. FIRST CROSSING OF SPATIAL AVERAGES ALONG A LONG EMBANKMENT

By idealising the 3D failure surface as a cylinder of length b in the longitudinal direction,
bounded by two vertical ends, and considering the limit equilibrium of the failure mass,
Vanmarcke (1977b) derived the factor of safety Fb (Eq. 4.1). Using FOSM, the reliability
index is defined as

βb = F̄b −1

F̃b
(5.1)

where the value of b that gives the minimum reliability index is the critical failure length
bc (given by Eq. 4.9).

Recall that the probability that a failure of length bc will occur, p f (bc ), is given by
p f (bc ) = P (Fbc ≤ 1) = P (U ≤ −βbc ) = Φ(−βbc ), where U = (Fbc − F̄bc )/F̃bc is a standard
normal random variable. By assuming that the failure length b is fixed at its critical value,
so that the reliability is minimised, the factor of safety Fb = Fbc of the finite length b = bc ,
is viewed as a function of yo , the position of the centre of the failure surface along the
longitudinal axis of the slope, as is U . The variation of U in the slope length direction,
i.e. U (y), can be viewed as a random function derived from the random process s(y)
(recalling that s is the random undrained shear strength), by keeping the length b = bc
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fixed and moving the failure cylinder along the slope length axis.
With reference to equations 4.10 and 4.12, a slope failure will occur if the safety factor,

Fbc , crosses into the unsafe domain Fbc ≤ 1 at any location yo , where bc /2 ≤ yo ≤ L−bc /2
(and L is the slope length). That is, the slope fails if U (y) crosses the failure threshold
(−βbc ) within the length interval bc /2 ≤ y ≤ L −bc /2 (see Fig. 5.1). The random function
U (y) will be Gaussian (since the moving average strength sb is assumed to be Gaussian)
and the slope reliability (or probability of no down-crossings) will have the form:

PS (L) =
{ [

1−p f (bc )
]

e
−υβbc

(L−bc )
;L ≥ bc

1−p f (L);L ≤ bc

(5.2)

where

υβbc
= 1

2π
exp(−βbc

2

2
)
√
−ρ′′

b(0) (5.3)

is the average number of excursions per unit length, or mean (decay) rate of the thresh-
old level down-crossings.

The term ρ′′
b(0) in equation 5.3 is the second derivative of the correlation function

ρb(∆y) of the moving average sb with respect to ∆y , evaluated at ∆y = 0. According to
Vanmarcke (1977a), the correlation function ρb(∆y) has the form,

ρb(∆y) = 1−
(
∆y

)2

bθ
(5.4)

where∆y is the distance between spatial averages sb . By assuming vβbc
≪ 1 and p f (bc ) ≪

1, and thereby replacing the exponential form e−u by 1−u in equation 5.2, the probability
of slope failure can be expressed as

PF (L) = 1−PS (L) ≈
{

p f (bc )+ (L−bc ) vβbc
;L ≥ bc

p f (L);L ≤ bc
(5.5)

where the term (L−bc ) vβbc
represents the length effect. The equation only works if the

resulting value of PF (L) is well below one; otherwise, the original expression (equation
5.2) must be used.

5.3. IMPLEMENTATION OF CALLE’S 2.5D MODEL
Whereas Vanmarcke’s basic model is based on variance reduction theory in the longi-
tudinal direction, Calle (1985) argued that there is not much variance reduction in that
direction for a finite length slope failure, due to real failure only being able to occur in a
so-called unstable zone where the factor of safety is less than unity. Calle (1985) first car-
ried out a basic 2D probabilistic (FOSM) Bishop slope stability analysis. This was then
extended to determine the probability of occurrence of a potentially unstable zone us-
ing the down-crossing method. Finally, the probability of failure was calculated by taking
account of the end effect (i.e. the resisting moment due to the ends of the cylindrical fail-
ure surface). As the basic probabilistic analysis is a 2D analysis and the length effect is
incorporated by the analytical solution of a first excursion problem (Papoulis and Pillai,
2002), this model has often been referred to as a ‘2.5D’ model. The basic procedure is
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Figure 5.1: Vanmarcke’s (1977b; 1980) simplified model considering system effect



5

68 5. INFLUENCE OF LENGTH EFFECT ON EMBANKMENT SLOPE RELIABILITY IN 3D

,

,

r b e
b

o b

M R
F

M
+

=

Calculate      based on 
FOSM

end resistance 

Level crossing

Critical failure length 

Basic Eq.

Variance
Reduction 

Length 
Effect

End 
Effect ( 1)b b bF Fβ = − 

( )yρ ∆

F

Γ ( )b

( ),a sL VΓ

1c
Fb d

F
=

−

Evaluate

Minimise 

bd
db
β

bβ

( )b yρ ∆
( ) ( )( )( ) 1 exp( )f b bP L Lββ β ν= Φ − +Φ − −

22 exp( )
22
b

hbβ
βν

π θ
= −

bβ

e rR M d=

Figure 5.2: Flowchart of Vanmarcke’s model



5.3. IMPLEMENTATION OF CALLE’S 2.5D MODEL

5

69

Calculate cross-sectional  
β based on FOSM/FORM

 1F
F

β −
=



mean µ
variance σ2

Level crossing
 ( )( ( ) 1) ( ) ( ) 1 exp( )P F y N Lββ β< = Φ − +Φ − −

22 exp( )
2 2h

Nβ
β

πδ
= −

( )yρ ∆

Average failure length 

Add end resistance
( )( 1) ( ( ) 1)
( )

l
f lP P F P F yβ

β
Φ −

= < = <
Φ −

Basic Eq.

Bishop
Stability 
Analysis

Length 
Effect

End 
Effect 

 2 e
l

o

MF F
M l

= +

( )zρ ∆

( )l Nββ= Φ −

2 /l e oM FM lβ β= + 

Figure 5.3: Flowchart of Calle’s model



5

70 5. INFLUENCE OF LENGTH EFFECT ON EMBANKMENT SLOPE RELIABILITY IN 3D

presented as follows, whereas, for comparative purposes, Figs. 5.2 and 5.3 compare the
main features of the Vanmarcke and Calle models in flowchart form.

The equation defining the factor of safety associated with a finite length failure, Fl , is

Fl = F + 2Me

Mo l
(5.6)

where Me is the end resisting moment for one of the two end boundaries of the cylinder,
l is the expected length of the unstable zone, and F is the cross-sectional (i.e. plane
strain) safety factor.

5.3.1. CROSS-SECTIONAL FOSM ANALYSIS
The performance function is defined as

G = F −1=Mr /Mo −1 (5.7)

where Mo and Mr are the cross-sectional overturning and resisting moments, respec-
tively, and the random variable Mr is a function of the spatially varying undrained shear
strength. The first order approximation of the performance function at the ‘mean value’
point is

G ′ = F ′−1 = F (s̄)+ {∇Fs }T(s− s̄)−1 (5.8)

where s is a vector of n random variables (i.e. undrained shear strength s1, s2, . . . , sn), s̄
is a vector of the means (s̄1,s̄2, . . ., s̄n) of the random variables, and {∇Fs } is a gradient
vector, i.e.

{∇Fs } =
(
∂F

∂s1
, . . . ,

∂F

∂si
, . . . ,

∂F

∂sn

)T

(5.9)

The mean and variance of G ′ are

Ḡ ′ = F̄ ′−1 = F (s̄)−1 (5.10a)

G̃ ′2 = F̃ ′2 = {∇Fs }T [C ] {∇Fs } (5.10b)

where [C] is the covariance matrix and its elements are determined by the correlation
coefficients between variables si and s j , and by their standard deviations s̃i and s̃ j , i.e.

Ci j = ρi j s̃i s̃ j (5.11)

Due to the horizontal SOF in practice generally being larger than the horizontal di-
mension of the cross-section, the slope is here simply modelled by n random variables
in the vertical direction (Wang et al., 2010) in the Author’s current implementation of
Calle’s model. That is, the undrained shear strength s is assumed to be fully correlated
at any given depth, while the n random variables are correlated in the vertical direction
via a squared exponentially decaying correlation function involving the vertical lag ∆z,
modified by an α factor (GeoDelft, 1994), i.e.

ρ(∆z) = (1−α)+αexp(−∆z2

δv
2 ) (5.12)
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where

α= s̃2
v

s̃2 (5.13)

and δv is the vertical correlation distance, which is related to the scale of fluctuation θ

(Vanmarcke, 1983) by a factor of
p
π (i.e. θ = p

πδ, see Table 2.1 where δ = r ). Typical
values of θv may range between 0.3 m and 3 m (Hicks and Samy, 2002), corresponding
to a range of δv of 0.17-1.7 m.

The α factor defined in equation 5.13 is based on the equality,

s̃2 = s̃2
v + s̃2

h (5.14)

in which s̃2
v is the average of the variances of different individual vertical boreholes, s̃2 is

the total ‘point’ variance and s̃2
h indicates the variance of the average values of individual

boreholes. The derivation of equation 5.14 is given in Appendix C. It may be noticed
that, when α = 1.0, equation 5.12 simplifies to the conventional squared exponential
correlation function often used in literature. In Dutch practice, α values ranging from
0.5 to 1.0 have been used (GeoDelft, 1994). The incorporation of α is to represent lateral
variations (of the average values of individual boreholes) that often exist in extensive soil
deposits (TAW, 2001); (1−α) effectively limits the variance reduction function via Eqs.
5.10b and 5.11, thereby taking account of soil variability in the third dimension within a
2D framework. A detailed explanation of the α factor will be given in Section 5.5.1.

The probability of failure is expressed as

P
[
G ′ < 0

]= P

[
G ′−Ḡ ′

G̃ ′ < 0−Ḡ ′

G̃ ′

]
=Φ

(−β)
(5.15)

where

β= Ḡ ′

G̃ ′ =
F̄ ′−1

F̃ ′ (5.16)

is the cross-sectional reliability index that can be evaluated from equations 5.10. As in
Hassan and Wolff (1999), the partial derivatives of the factor of safety with respect to
the random variables in equation 5.9 are calculated numerically, by evaluating F using
strength parameter values equal to the mean plus or minus one standard deviation, to
obtain F+ and F−, respectively, i.e.

∂F

∂si
= F+−F−

2s̃i
(5.17)

where F+ and F− have here been calculated by the finite element method, rather than by
a limit equilibrium analysis such as Bishop’s method of slices (as used by Calle (1985)).

5.3.2. DETERMINATION OF THE UNSTABLE ZONE
The probability that the factor of safety F (y) = Mr (y)/Mo , 0 ≤ y ≤ L, is less than unity
somewhere along the slope axis is given by

P (F (y) < 1) =Φ(−β)+Φ(β)
(
1−exp(−NβL)

)
(5.18)
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where F (y) < 1 denotes the event of down-crossing anywhere along the slope axis, L is
the total length of the slope, and

Nβ = 1

2π
exp(−β2

2
)
√
−ρ′′

F (0) (5.19)

is the average number of excursions per unit length (or mean down-crossing rate).
Note that equation 5.19 is equivalent to equation 5.3, the difference being that equa-

tion 5.19 takes F (y) < 1 as the down-crossing event, whereas equation 5.3 takes Fbc (y) <
1 as the down-crossing event. Therefore, the cross-sectional β is used equation 5.19 and
the βbc for a failure of length bc is used in equation 5.3. Furthermore, the second term on
the right-hand-side of equation 5.18 represents the length effect, so that equation 5.18
would simply be the probability of failure of a cross section should this term be left out.

The expected width of a potentially unstable zone can be expressed as

l =Φ(−β)/Nβ = 2πΦ(−β)exp(
β2

2
)/

√
−ρ′′

F (0) (5.20)

The double prime used in equations 5.19 and 5.20 denotes the second derivative of the
correlation function with respect to ∆y . The correlation function in the out-of-plane
direction takes the form,

ρF (∆y) = (1−α)+αexp(−∆y2

δh
2 ) (5.21)

which leads to √
−ρ′′

F (0) =p
2α/δh (5.22)

Typical values of δh range between 25 m and 100 m (GeoDelft, 1994), which is a lot larger
than the vertical correlation distance mentioned earlier.

5.3.3. PROBABILITY OF SLOPE FAILURE
Taking into account the end resistance, the probability of failure can be evaluated as

P f = P (Fl < 1) = Φ(−βl )

Φ(−β)
P (F (y) < 1) (5.23)

where the term Φ(−βl )/Φ(−β) represents the end effect and

βl =
F̄l −1

F̃l
(5.24)

With reference to equation 5.6, as Mo and Me are treated as deterministic variables, the
mean and standard deviation of Fl are given as

F̄l = F̄ + 2Me

Mo l
(5.25a)

F̃l = F̃ (5.25b)
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Note that no variance reduction in the length direction is taken into account in equation
5.25b (in contrast with equation 4.5), so this assumption implies that there is not much
averaging in the horizontal direction over the failure domain.

Substituting equations 5.25 into equation 5.24 gives the reliability index considering
the end effect, i.e.

βl =
F̄l −1

F̃l
=β+ 2Me

F̃ Mo l
=β+ 2Me

M̃r l
(5.26)

5.4. LENGTH EFFECT USING 3D RFEM
Sections 5.4.1-5.4.4 focus on how RFEM has been used to model the idealised slope that
forms the basis of the comparative study reported in Section 5.5.

5.4.1. PROBLEM DESCRIPTION

The reliability assessment has been made for a slope with the same cross-sectional di-
mensions as that studied by Hicks and Spencer (2010), but for much longer slope lengths
varying from 50 m to 500 m. The finite element mesh discretisation is also the same, and
is illustrated in Fig. 4.3 for the example of a 50 m long slope. The slope is inclined at
45◦, of height H = 5 m and rests on a firm base, while the undrained shear strength has a
coefficient of variation of V = 0.2, a vertical scale of fluctuation of θv = 1 m and a horizon-
tal scale of fluctuation θh that takes on different values for different groups of analyses.
The clay is modelled by an elastic, perfectly plastic Tresca soil model, with an elastic
modulus, E = 1.0×105 kPa, and Poisson’s ratio, ν = 0.3 (Smith and Griffiths, 2005). The
random field cell values are mapped onto the 8 Gaussian integration points within each
20-node finite element, instead of onto the element itself, in order to emulate the spatial
variability as accurately as possible (Hicks and Samy, 2002; Hicks and Spencer, 2010).

5.4.2. BOUNDARY CONDITIONS

The applied boundary conditions are a fixed base, rollers on the back (y-z) face prevent-
ing displacement perpendicular to the face, and rollers on the end (x-z) faces allowing
only vertical displacement.

Spencer (2007) investigated two options for the end-boundaries of slopes up to L/H
= 40, and found that restraining only the y-direction (i.e. to give ‘2D’ boundary condi-
tions) led to a bias in failures near the mesh ends, probably due to the greater influence
of weaker zones arising from the implied symmetry of the random field about the mesh
ends when allowing free movement in the x-z plane. In contrast, he observed no such
bias when applying an intermediate boundary condition (i.e. restraining the mesh ends
in both the x- and y-directions, while leaving the z-direction free). Meanwhile, Griffiths
et al. (2009b) investigated perfectly smooth and perfectly restrained end-boundaries,
demonstrating that the choice of boundary can have a significant influence on the re-
sponse of relatively shorter slopes up to L/H = 16.

The influence of free (i.e. 2D), ‘intermediate’ and rough end-boundary conditions
(BCs) on the response of heterogeneous slopes of different length has here been inves-
tigated for slopes up to 500 m long (i.e. L/H = 100). Fig. 5.4 shows that intermediate
and rough BCs give almost the same result for two example slope lengths. However,
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whereas all three boundary conditions give consistent results for the 500 m long slope,
the smooth boundary condition leads to a weaker response for the 50 m long slope (for
a similar ratio of θh/L).

5.4.3. RFEM RELIABILITY
In the RFEM analysis, for a given mean undrained shear strength, the slope reliability
may be defined as,

R = N f

N
(5.27)

where N f is the number of realisations in which the slope fails under its self weight (i.e.
the realised factor of safety is smaller than 1.0), and N is the total number of realisations.

Two kinds of factor of safety should be clearly defined here. The first is the factor
of safety (FT ) based on the mean undrained shear strength; that is, the safety factor
obtained by carrying out a (traditional) single deterministic analysis based only on the
mean strength. The second is the realised factor of safety (FR ) based on a Monte Carlo
simulation; that is, the distribution of realised factors of safety obtained by analysing the
stability of a slope for multiple soil strength realisations based on the same soil strength
input statistics. There is a different distribution of FR for each traditional FT and, as
mentioned above, the reliability may be assessed from the distribution of FR . Therefore,
each FT is associated with a particular reliability level, and this provides a way to link tra-
ditional and reliability-based designs (i.e. by determining the reliability associated with
a traditional FT ).

5.4.4. LENGTH EFFECT
The influence of slope length on slope reliability was investigated by Hicks and Spencer
(2010), by assuming that the event of failure not occurring in each section (of represen-
tative length in the longitudinal direction) of the slope is independent. This assumption
is thought to be reasonable for small θh relative to slope length, as 3D failures then tend
to be relatively small. Hicks and Spencer (2010) suggested a simple equation to estimate
the system reliability based on the computed reliability of a (usually shorter) represen-
tative section, i.e.

R(L A) = R(LB )
L A
LB (5.28)

where R denotes the reliability for a given mean shear strength, and L A and LB are the
respective lengths of the whole slope and the representative section.

Alternatively, equation 5.28 can be expressed in terms of the failure probability:

1−P f (L A) = [
1−P f (LB )

] L A
LB (5.29)

By taking the natural logarithm of both sides of the equation,

ln
[
1−P f (L A)

]= L A

LB
ln

[
1−P f (LB )

]
(5.30)

Hence, the probability of failure of a slope of length L A , for small P f (L A), may be given
as

P f (L A) ≈ L A

LB
P f (LB ) (5.31)
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This approximation is obtained by assuming P f (L A) ≪ 1 (and therefore P f (LB ) ≪ 1
for L A > LB ) and replacing ln(1−u) with–u in equation 5.30, noting that the following
approximation holds for u ≪ 1:

e−u = 1−u ⇔−u = ln(1−u) (5.32)

When expressed in terms of reliability, equation 5.31 becomes

R(L A) ≈ 1− L A

LB
+ L A

LB
R(LB ) (5.33)

Generally, equations 5.31 and 5.33 are a good approximation provided that P f (L A) ≤
0.05 or R(L A) ≥ 0.95, which is the usual range of practical interest. For larger P f (L A),
the original equation 5.28 should instead be used. Hicks and Spencer (2010) suggested
that equation 5.28 may be modified to give more precise predictions, by replacing L A/LB

with (L A −2H)/(LB −2H) to eliminate the end-boundary effect. In this case, equations
5.31 and 5.33 will change accordingly.

The influence of slope length on reliability is investigated here for a ‘statistically ho-
mogeneous’ slope with a length of up to 500 m, for the case of θh = 12 m. Specifically, Fig.
5.5 compares the results of 3D RFEM simulations with the predictions given by equations
5.28 and 5.33, based on the RFEM results for a 50 m long slope (i.e. LB = 50 m). The RFEM
results have been obtained by analysing 10 slopes, from 50 m to 500 m in length, in steps
of 50 m. For each slope length, N = 1000 realisations were used, except for L = 50 m
which used 5000 realisations. This was to obtain as accurate an estimate as possible for
L = 50 m, due to this result being used to predict (using equations 5.28 and 5.33) the R-FT

responses for other slope lengths. The distribution of realised factor of safety (FR ) for L =
50 m is shown in Fig. 5.6 (for FT = 1.25), to highlight that N = 5000 realisations have been
enough to generate a ‘converged’ distribution that is accurate enough for the purpose of
predicting the reliability distributions for other slope lengths. The figure demonstrates
that the computed results are closely approximated by a normal distribution, although
it is the former that have been used to derive the predicted distributions.

The slope reliability predicted using equation 5.28 shows good agreement with the
computed RFEM results, as seen in Fig. 5.5. It is also clear that the linear prediction
(equation 5.33) is sufficiently accurate for probabilities of failure less than 5%, but sig-
nificantly in error for failure probabilities greater than 20%.

5.5. ANALYSIS AND COMPARISON OF METHODS
The reliability predictions based on RFEM analyses, as described in the previous section,
are used for θh = 12, 24, 50 and 100 m to compare the relative performance of the three
models (i.e. Vanmarcke, Calle and RFEM) as a function of slope length. Before carrying
out a detailed comparison, some observations on the α factor (Eq. 5.13, Section 5.3.1)
(GeoDelft, 1994) based on random field simulations will be presented; the results of this
preliminary study will be used later in the performance evaluation.

5.5.1. OBSERVATIONS ON α FACTOR BASED ON RANDOM FIELD SIMULATION
Fig. 5.7(b) shows the horizontal variation, over a distance of 50 m, of the average
undrained shear strength in a 5 m deep soil layer, together with three examples of the
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variation in the point strength with depth taken from three borehole locations (see plan
view in Fig. 5.7(a)). For this illustration, the shear strength values have been extracted
from a single 3D random field of undrained shear strength (with a 0.5×0.5×0.5 m cell
size) generated using s̄ = 40 kPa, V = 0.2, θv = 2.0 m and θh = 8.0 m. Clearly, the average
value of s shows significant lateral variation. In this case, α= 0.87 according to equation
5.13, in which s̃2 and s̃2

v are based on all columns of random field cells making up the
50×5 m cross-section.

For the limiting case when there is no lateral variation in the average value of s, i.e.
due to θh ≫ L, α ≈ 1.0 due to s̃2

h ≈ 0. However, this is unlikely in practice, as analyses
based on α are generally carried out at a regional scale that includes large-scale varia-
tions within the sampling domain; that is, if θh is relatively large compared to the cross-
section and initial sampling domain, the only way to get a good estimate of the mean
and variance is to increase the size of the sampling domain (Fenton and Griffiths, 2008)).
Typical random field realisations, with the respective α values back-calculated from the
cross-sections shown, are illustrated in Fig. 5.8 for a finite sampling domain of L = 50 m
and H = 5 m, for θv = 1.0 m. Note that, as θh/L becomes larger, α gets nearer to 1.0 due
to the spatial variability taking on a more layered and predictable appearance. However,
for a given value of θh/L, it is not a unique value due to the influence of the spatial dis-
tribution of weaker and stronger zones (compare, for example, Figs. 5.8(a) and (b)). Fig.
5.9 shows an equivalent set of results for θv = 3 m, revealing a smaller α for a larger θv

(i.e. compared to Fig. 5.8), due to the larger values of s̃2
h .

To investigate the relationship between α and the horizontal and vertical SOFs, 200
random field realisations have been used to back-figure the average horizontal and ver-
tical variances for a vertical slice of 5 m depth over horizontal distances of both 50 m
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Figure 5.7: Illustration of cross-sectional variation in shear strength over a 50 m length of a 5 m deep clay
deposit (modelled by a 3D random field based on µs = 40 kPa, V = 0.2, θv = 2.0 m and θh = 8.0 m): (a) plan

view of borehole locations; (b) variation of s in each borehole and variation of their means
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Figure 5.8: Computed α factors based on cross-sections from typical random fields of shear strength (L = 50
m, H = 5 m and θv = 1.0 m)
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Figure 5.9: Computed α factors based on cross-sections from typical random fields of shear strength (L = 50
m, H = 5 m and θv = 3.0 m)
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and 500 m. The random fields have been generated using a random field cell size of
0.25× 0.25× 0.25 m and various combinations of θv and θh , with θv = 0.5, 1.0, 2.0 and
3.0 m and 0.5 ≤ θh ≤ 30,000 m. For each combination of θv and θh , α has been com-
puted for all 200 realisations and then averaged to give a single value. Fig. 5.10 shows the
results for the averaged α as a function of the horizontal SOF, normalised with respect
to layer length L, and vertical SOF normalised with respect to layer depth H . It is seen
that α decreases as θh/L decreases, for all values of θv considered. A smaller α basically
means that the total variance (equation 5.13) is the sum of a proportionately larger hor-
izontal variance and a proportionately smaller vertical variance (equation 5.14). For a
large ratio of θh/L there is not much difference between the means of each borehole.
This results in a value of α close to 1, due to the horizontal variance s̃2

h being relatively
small. Conversely, for a smaller ratio of θh/L, the borehole means exhibit a larger vari-
ation, as indicated by a larger s̃2

h , and thereby a smaller α (i.e. further away from 1) is
obtained. Moreover, as θv increases relative to the layer depth, α decreases further. This
is because there is less potential for the strengths of stronger and weaker zones to ‘cancel
each other out’ along each vertical borehole for a relatively larger ratio of θv /H , and this
tends to increase the variance between the borehole means.

According to variance reduction theory (Vanmarcke, 1977a), s̃2
h = (θv /H)s̃2 for rela-

tively small values of θh/L (i.e. such that the assumption that each column of cells in the
cross-section is an independent realisation is valid) and relatively small values of θv /H
(i.e. such that s̃2 from one realisation approximates closely to the point variance; i.e. the
ergodicity condition, which can only be theoretically achieved by a realisation of infinite
extent (Fenton and Griffiths, 2008)). Therefore, α can be theoretically predicted for the
case of θv /H = 0.1 in the range of 0.001 ≤ θh/L ≤ 0.1 in Fig. 5.10; i.e. α= s̃2

v /s̃2 = (s̃2 − s̃2
h)
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/s̃2 = 1− s̃2
h/s̃2 = 1−θv /H = 1−0.1 = 0.9, which closely matches the computed response.

The range of α factors found in this study (for typical values of θv /H) is consistent
with the Dutch practice, i.e. 0.5 ≤α≤ 1.0 (GeoDelft, 1994).

5.5.2. RFEM RESULTS AND COMPARISON WITH FIRST CROSSING RESULTS

Figs. 5.11(a) to (d) show results for reliability index (βlc ) versus slope length, for a factor
of safety of 1.30 based on the mean undrained shear strength, and for θh values of 12, 24,
50 and 100 m, respectively. These have been obtained from the inverse of the cumulative
normal distribution function (i.e. βlc = −Φ−1(PF ), −Φ−1(P f ) or −Φ−1(P f (L A)), using
equations 5.5, 5.23 or 5.29, respectively). For the RFEM analyses, N = 1000 realisations
have been conducted for the case of LB = 500 m (see Appendix B for the convergence
plots), and this has been used to compute results for other lengths via equation 5.29.
Note that in Figs. 5.11(a) to (d), the case of LB = 500 m is used as the RFEM reference
analysis for making further predictions, due to equation 5.29 being based on discrete
3D failures and the suggestion by Hicks and Spencer (2010) that θh ≤ L/2 to ensure the
occurrence of this type of failure; note that, in Fig. 5.11(c), θh = 50 m, which is equal to
L for the shortest slope. Also, for the same reason, the slope length in Fig. 5.11(d) is kept
in the range of 200-1000 m for the case of θh = 100 m.

Six groups of results are shown in the figures: the RFEM-based prediction using equa-
tion 5.29, Vanmarcke’s prediction based on the basic (i.e. slope length independent)
model, Vanmarcke’s prediction based on the level crossing model, the predictions based
on Calle’s model using both α = 1 and a value of α that is a function of θh/L, and a fur-
ther prediction based on Calle’s model using a changing α and a modified failure length
l (see Section 5.5.4). These are denoted in the figures as RFEM (predicted), VM (basic),
VM (length), Calle (α = 1), Calle (changing α) and Calle (changing α, modified l ), respec-
tively. In addition, a full 3D RFEM analysis is shown in Fig. 5.11(a), this being the same
FT = 1.30 analysis as appears in Fig. 5.5. Note that, in this case, the comparison between
3D RFEM and equation 5.29 is excellent, regardless of whether equation 5.29 uses the 3D
L = 50 m results (as in Fig. 5.5) or the L = 500 m results (as in Fig. 5.11(a)) to make the
prediction for other slope lengths, due to θh being 4 times smaller than the shortest (L =
50 m) slope.

As seen in Fig. 5.11, the analytical solution based on Vanmarcke’s (1977b) simplified
3D (basic) model is independent of the slope length, whereas the reliability decreases
with increasing slope length for all other models; i.e. the longer the slope, the smaller the
reliability index. For the Author’s implementation of Calle’s model, the predictions based
on a changing α, i.e. where α = f (θv ,θh , H ,L), show a larger length effect than those
based on α = 1.0. This can be explained relative to the modified correlation function
(equation 5.12); i.e. α decreases as the ratio of the horizontal scale of fluctuation to soil
layer length decreases (Fig. 5.10) and, as a smaller α effectively increases the variance of
G ′ via equations 5.10-5.12, this results in a decreased reliability index in equation 5.16.
The use of a smaller α in equation 5.12 reduces the exponential part of the variance that
can be reduced in the cross-sectional analysis, over the failure surface, and increases the
other part (i.e. the (1–α) part when considered in equation 5.11) if the total variance is
kept constant.

Fig. 5.11 shows that RFEM predicts the smallest reliability indices for the range of
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Figure 5.12: PDF of realised factor of safety for the four θh cases considered (FT = 1.30, L = 500 m): (a) θh = 12
m; (b) θh = 24 m; (c) θh = 50 m; (d) θh = 100 m

cases considered. However, as the horizontal scale of fluctuation increases from 12 to
50 m, the results predicted by Vanmarcke’s length-effect model and Calle’s model with
the modified correlation function move closer to the RFEM results and, for θh = 100 m,
the results are closer still, in particular with Calle’s α modified solution approaching the
RFEM solution. The differences with respect to the Vanmarcke and Calle models may
partly be explained by the cylinder end effects (Li et al., 2015c): specifically, through
overestimating the end resistance by assuming the mean strength in equations 4.2 and
5.25a, and by underestimating the variance of the factor of safety in equations 4.5 and
5.25b, i.e. the variance in the end resistance is not considered in Vanmarcke’s (1977b)
and Calle’s models. Vanmarcke (1980) stated that the variance associated with the end
resistance is proportional to the following factor:

c = θv

θh

d

b
(5.34)

For a smaller horizontal SOF (note that a smaller θh is associated with a smaller bc in
equation 4.9), neglecting that part of the variance associated with the end resistances
would result in a smaller F̃b , and thus a higher (overestimated) βb (see equations 4.5
and 4.11). Note that the RFEM predictions for βlc are based on the computed P f (L A),
in conjunction with equation 5.29 and the inverse of the cumulative normal distribu-
tion function Φ−1, even though the distributions of realised factor of safety are slightly
non-normal for the reference length of L A = 500 m, as illustrated in Fig. 5.12. This is in
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Figure 5.13: Frequency distributions of discrete failures for a 500 m long slope, for the four θh cases
considered: (1) θh = 12 m; (2) θh = 24 m; (3) θh = 50 m; (4) θh = 100 m

contrast to the result shown in Fig. 5.6 for L A = 50 m, and may be due (at least in part)
to the smaller number of realisations in combination with a larger domain size and an
associated greater range of possible failure mechanisms. When the computed P f (L A)
was replaced by the probability of failure based on the fitted normal PDF, there was only
a relatively small shift in the βlc predictions and the general findings of the comparative
study remained unchanged. However, further comparative studies may be appropriate
for situations in which the probability of failure is very small, as is often the case in prac-
tice.

5.5.3. DISCRETE FAILURES IN RFEM
Hicks et al. (2014) quantified the potential failure volume and length by a simple pro-
cedure using the out-of-slope-face displacement in their Monte Carlo simulations of a
100 m long slope. The failure length here refers to the unstable length computed in any
realisation due to scaling down the soil strength profile to reach slope failure using the
strength reduction method, and was estimated to be the integrated length along the row
of elements directly above the slope toe, in the longitudinal direction, for which the dis-
placement was greater than some calibrated threshold displacement. It may not be nec-
essary to differentiate between multiple failures for a relatively short (e.g. 50-100 m long)
slope, due to the relatively lower probability of encountering multiple failures. However,
for a slope length of 500 m, for example, it is informative to quantify the number of dis-
crete failures. Hence, the approach of Hicks et al. (2014) has been extended to quantify
discrete failures: i.e. it is considered to be a separate failure if the failed elements di-
rectly above the slope toe are not continuously linked (Li et al., 2015e). The frequency
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Table 5.1: Comparison of predicted failure lengths (units: m) for the three models (FT = 1.3, L = 500 m)

RFEM Vanmarcke Calle (Changing α) Calle (α = 1)

SOF (θh : m) Mean SDa Critical bc Unstable zone l Unstable zone l

12 13.3 8 16.6 6.0 4.7
24 17.7 9.9 24 11.8 9.3
50 27.4 15.2 50 24.2 19.5

100 47.5 27.3 100 47.1 39

a standard deviation

distributions for the number of discrete failures are shown in Fig. 5.13, for the four θh

cases considered and a 500 m long slope. It is seen that, for a small θh , there can be
many discrete failures, although the number decreases to 1-3 failures when θh is 100
m. Note that, although multiple failures are possible, their extents can be quite variable,
with some failures having larger displacements than others. In reality, those failures in-
volving larger displacements tend to fail first, which, in the case of a sea dyke failure for
example, will usually release the hydraulic loading before some other failures of smaller
extent develop fully themselves, resulting in fewer failures.

5.5.4. FAILURE LENGTH

In the case of multiple failures, the discrete failure length may be considered a more
consistent measure of potential failure length for slopes of different total length; that is,
in contrast to the integrated failure length, which may be more closely related to some
specific slope length. Therefore, discrete failure lengths are quantified herein for the four
values of θh considered and, for each case, the mean and standard deviation of the failure
length have been computed based on all the discrete failures identified over N = 1000
Monte Carlo realisations. The results based on a 500 m long slope are shown in Table
5.1, as are the predicted failure (i.e. critical) lengths from Vanmarcke’s model and Calle’s
model with changing α and with α= 1. It is seen that the failure length from Vanmarcke’s
model is the largest of the three models. The RFEM potential failure lengths compare
favourably with those from Vanmarcke’s model for θh = 12 m and 24 m. However, for
θh = 50 m and 100 m, the potential failure lengths from RFEM are less than those from
Vanmarcke’s model, although they show good agreement with those of Calle’s model with
changing α. However, the failure length from Calle’s model with a changing α is smaller
than those from Vanmarcke’s model for the case of θh = 12 m and 24 m.

Fig. 5.14 illustrates how the failure length changes with θh for the various models.
It is clear that, for any given θh , the wide range of possible failure lengths computed
using RFEM accounts for both the Vanmarcke and Calle solutions, although the mean
response tends to the Vanmarcke solution for smaller θh and to the Calle solution for
larger θh . However, note that for very small θh relative to the slope height (not investi-
gated in this chapter), Hicks and Spencer (2010), Hicks et al. (2014) and Li et al. (2015c)
showed that the RFEM failure length could become very long (cf. a 2D mechanism) due
to the soil then resembling a homogeneous deposit based on the mean property value.
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Figure 5.14: Potential failure length versus horizontal scale of fluctuation for the various models (FT = 1.30,
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Note that the predicted failure length in Calle’s model is the expected length of the
unstable zone (Section 5.3.2) before taking account of the end resistance. For a relatively
short unstable zone (e.g. 6.0 m in the case of θh = 12 m and 11.8 m in the case of θh =
24 m), the probability of failure decreases substantially when taking account of the end
resistance (Section 5.3.3), due to the end resistance contributing a relatively large pro-
portion of the total resisting moment. Therefore, the potential failure length is likely to
be underestimated in Calle’s model for those cases having a smaller θh , when compared
to the critical failure length in Vanmarcke’s model, which defines the smallest reliability
index incorporating the influence of the end resistance (Section 4.2). This is considered
to be the reason why the results are closer between Vanmarcke and RFEM, than between
Calle and RFEM, for these values of θh .

The differences in the predicted failure lengths for the three models may contribute
to the differences in reliability index highlighted in Section 5.5.2. As shown in Fig. 5.11, if
the expected failure length (l ) in Calle’s model is modified to be the mean failure length
found using RFEM (i.e. larger), the reliability curve for various total slope length gets
closer to the reliability curves obtained from Vanmarcke’s model and RFEM.

5.6. CONCLUSIONS
This chapter has highlighted the length effect in the 3D reliability analysis of slopes that
are very long in the third dimension. This has been achieved by comparing and evalu-
ating the relative performance of three currently available methods of analysis: the ran-
dom finite element method (RFEM), and two simpler methods proposed by Vanmarcke
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(1977b) and Calle (1985).
Based on 3D RFEM analyses and the assumption of a series system composed of

multiple independent elements, a power law equation was used to predict the reliability
of longer slopes based on the detailed analysis of a shorter slope with the same statis-
tical characteristics. This was shown to be accurate by comparing with RFEM analyses
of slopes of various length. The RFEM-based predictions were then compared with the
two simpler (level crossing) approaches, to investigate the relative performance of the
three models for different horizontal scales of fluctuation. It was found that the two
simpler models predict higher reliability indices compared to RFEM for all horizontal
scales of fluctuation relative to slope length, but especially for shorter horizontal SOFs.
It has been postulated that the differences in the results are related, at least in part, to
the different approaches regarding failure mechanism. In particular, whereas RFEM au-
tomatically takes account of various possible failure surface geometries, the two simpler
methods assume a cylindrical failure surface. Discrete failure lengths in RFEM analyses
were quantified, and the differences with respect to the failure lengths predicted by the
other two models were able to provide a reasonable explanation for the differences in
reliability indices observed for the different slope lengths.

The α factor used in Dutch practice has been investigated in detail using random
fields. It was shown to be a function of both the horizontal and vertical scales of fluctua-
tion, as well as of the depth and lateral extent of a soil structure or deposit.





6
CONDITIONAL SIMULATION OF

RANDOM FIELDS IN LONG 3D
SLOPES

A method of combining a 3D Kriging algorithm for geotechnical sampling schemes (e.g.
CPTs), with an existing 3D random field generator, is presented, to enable the simulation
of conditional random fields of soil heterogeneity. The conditional random fields match
the measurement data at the borehole locations and honour the spatial correlations of the
soil properties. The approach, Kriging combined with 3D random field generation, is val-
idated by demonstrating the consistency in the covariance structures and PDFs before and
after conditioning. Both isotropic and anisotropic random fields, conditioned upon the
measurement data, can be generated and used in subsequent analyses of structure perfor-
mance. Although the theory for generating the conditional random fields is nothing new,
the conditional random fields are here linked with finite elements, within a Monte Carlo
framework, to investigate optimum sampling locations in 3D space and the cost effective
design of a slope. The results demonstrate the potential of a 3D conditional simulation
in directing exploration programs and designing cost saving structures in geotechnical
engineering; that is, by reducing uncertainty and improving the confidence in a project’s
success.

Parts of this chapter have been published in Computers and Geotechnics 79, 159–172 (2016) (Li et al., 2016).

91



6

92 6. CONDITIONAL SIMULATION OF RANDOM FIELDS IN LONG 3D SLOPES

6.1. INTRODUCTION
Soil properties exihibit three dimensional spatial variability (i.e. heterogeneity). In geote-
chnical engineering, a site investigation may be carried out, and the data collected and
processed in a statistical way to characterise the variability (DeGroot and Baecher, 1993;
Fenton, 1999a,b; Hicks and Onisiphorou, 2005; Jaksa et al., 1999; Lundberg and Li, 2015;
Lloret-Cabot et al., 2014; Phoon and Kulhawy, 1999a; Uzielli et al., 2005; Zhao et al., 2013).
The outcomes of the statistical treatment, e.g. the mean property value, the standard
deviation or coefficient of variation, and the spatial correlation distance, may be used as
input to a geotechnical model capable of dealing with the spatial variation (e.g. a ran-
dom field simulation). However, when it comes to making use of the field data, there
arises the question: How can we make best use of the available data? The idea is to use
the data more effectively, so that it is worth the effort or cost spent in carrying out the
investigation, as well as the additional effort in post-processing the data. The aim of this
chapter is to contribute towards answering this question.

For example, cone penetration tests (CPTs) are often carried out in geotechnical field
investigations, in order to obtain data used in implementing the design of a structure.
The amount of data from CPT measurements is often larger than from conventional lab-
oratory tests. This is useful, as a large database is needed to accurately estimate the spa-
tial correlation structure of a soil property. For example, Fenton (1999b) used a database
of CPT profiles from Oslo to estimate the correlation statistics in the vertical direction,
and Jaksa et al. (1999) used a database from Adelaide to estimate the correlation dis-
tances in both the vertical and horizontal directions.

In geotechnical engineering, a substantial amount of numerical work has been done
using idealised 2D simulations based on collected in-situ data (e.g. Hicks and On-
isiphorou, 2005), although a 3D simulation would be preferable due to site data generally
being collected from a 3D space. However, there are relatively few studies simulating the
effect of 3D heterogeneity due to the high computational requirements. Examples in-
clude the effect of heterogeneity on shallow foundation settlement (Fenton and Griffiths,
2005; Jaksa et al., 2005; Kuo et al., 2004), on steady state seepage (Griffiths and Fenton,
1995, 1997, 1998) and on slope reliability (Spencer and Hicks, 2006, 2007; Spencer, 2007;
Griffiths et al., 2009b; Hicks and Spencer, 2010; Li et al., 2013, 2015c,e; Hicks et al., 2008,
2014; Li and Hicks, 2014).

The above investigations all used random fields to represent the soil spatial variabil-
ity and the finite element method to analyse geotechnical performance within a Monte
Carlo framework, a form of analysis sometimes referred to as the random finite element
method (RFEM) (Fenton and Griffiths, 2008). However, they did not make use of the spa-
tial distribution of related measurement data to constrain the random fields. In other
words, for those applications that are based on real field data, many realisations not
complying with the field data at the measurement locations will be included in the sim-
ulation, which, in turn, will result in an exaggerated range of responses in an analysis of
geotechnical performance.

Studies on conditional simulations are available in geostatistics in the field of reser-
voir engineering (Chiles and Delfiner, 2009). However, there are not many studies deal-
ing with soil spatial variability in geotechnical engineering that utilise conditional sim-
ulation (some 2D exceptions include, e.g., Vanmarcke and Fenton (1991); Lloret-Cabot
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et al. (2012); van den Eijnden and Hicks (2011); Lloret-Cabot et al. (2014)). This is partly
due to the smaller amount of data generally available in geotechnical engineering, and
partly due to there often not being a computer program specially implemented for those
situations where there are sufficient data (e.g. CPT, VST), especially in 3D. However,
unconditional random fields can easily be conditioned to the known measurements by
Kriging (Journel, 1974; Chiles and Delfiner, 2009). Hence, following the previous 2D work
of van den Eijnden and Hicks (2011) and Lloret-Cabot et al. (2012), this chapter seeks to
implement and apply conditional simulation in three dimensional space, in order to re-
duce uncertainty in the field where CPT measurements are carried out.

Usually, site investigation plans are designed to follow some regular pattern. For ex-
ample, a systematic grid of sample locations is generally used due to its simplicity to
implement (Jaksa et al., 1999). Moreover, although there are various sampling plans in
terms of layouts, it is found that systematically ordered spatial samples are superior in
terms of the quality of estimates at unsampled locations (Olea, 1984). Therefore, this
chapter will be devoted to implementting a 3D Kriging algorithm for sampling schemes
following a regular grid. This will then be combined with an existing 3D random field
generator to implement a conditional simulator. However, extension to irregular sam-
pling patterns is straightforward based on the presented framework.

The implemented approach has been applied in two idealised slope stability exam-
ples. The first demonstrates how the approach may be used to identify the best locations
to conduct borehole testing, and thereby allow an increased confidence in a project’s
success or failure to be obtained. While it is very important to pay sufficient attention to
the required intensity of a site investigation (i.e. the optimal number of boreholes) with
respect to the site-specific spatial variability, as highlighted in Jaksa et al. (2005), the first
example starts by focusing on the optimum locations for carrying out site investigations
for a given number of boreholes, before moving on to consider the intensity of testing.
The second example compares different candidate slope designs, in order to choose the
best (most cost-effective) design satisfying the reliability requirements.

For simplicity, this chapter focuses on applications involving only a single soil
layer (i.e. a single layer characterised by a statistically homogeneous undrained shear
strength), although the extension to multiple soil layers is straightforward. Moreover,
the effect of random variation in the boundary locations between different soil layers
can also be easily incorporated by conditioning to known boundary locations (e.g. cor-
responding to where the CPTs have been carried out).

6.2. CONDITIONAL SIMULATION
A conditional random field, which preserves the known values at the measurement loca-
tions, can be formed from three different fields (Journel and Huijbregts, 1978; Frimpong
and Achireko, 1998; Fenton and Griffiths, 2008):

Zr c (x) = Zr u(x)+ (Zkm(x)−Zks (x)) (6.1)

where x denotes a location in space, Zr c (x) is the conditionally simulated random field,
Zr u(x) is the unconditional random field, Zkm(x) is the Kriged field based on measured
values at xi (i = 1,2, . . . , N ), Zks (x) is the Kriged field based on unconditionally (or ran-
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domly) simulated values at the same positions xi (i = 1,2, . . . , N ), and N is the number of
measurement locations.

The unconditional random field can be simulated via several methods (Fenton, 1994);
for example, interpolated autocorrelation (Ji et al., 2012), covariance matrix decomposi-
tion, discrete Fourier transform or Fast Fourier transform, turning bands, local average
subdivision (LAS), and Karhunen–Loeve expansion (Phoon et al., 2002), among others.
The LAS method (Fenton and Vanmarcke, 1990) is used in this thesis. The Kriged fields
are obtained by Kriging (Krige, 1951), which has found extensive usage in geostatistics
(Cressie, 1990; Wackernagel, 2003). The Kriging method is briefly reviewed in the fol-
lowing section. For a brief description of the LAS algorithm, the readers are referred to
Chapter 3.

6.3. KRIGING THEORY
In contrast to conventional deterministic interpolation techniques, such as moving least
squares and the radial point interpolation method, Kriging incorporates the variogram
(or covariance) into the interpolation procedure; specifically, information on the spatial
correlation of the measured points is used to calculate the weights. Moreover, standard
errors of the estimation can also be obtained, indicating the reliability of the estimation
and the accuracy of the prediction. Kriging is a method of interpolation for which the
interpolated values are modelled by a Gaussian process governed by prior covariances
and for which confidence intervals can be derived. While interpolation methods based
on other criteria need not yield the most likely intermediate values, Kriging provides a
best linear unbiased prediction of the soil properties (Z ) between known data (Fenton,
2007; Wackernagel, 2003) by assuming the stationarity of the mean and of the spatial
covariances, or variograms. A brief review is first given to facilitate understanding of the
implementation.

Suppose that Z1, Z2, . . . , ZN are observations of the random field Z (x) at points
x1, x2, . . . , xN (i.e. Zi = Z (xi ) (i = 1, 2, . . . , N )). The best linear unbiased estimation
(BLUE) of the soil property at some location x0 is given by

Ẑ (x0) =
N∑

i=1
λi Zi =

N∑
i=1

λi (x0)Z (xi ) (6.2)

in which N denotes the total number of observations and λi denotes the unknown
weighting factor associated with observation point xi , which needs to be determined.

The Kriging estimation is a weighted average of the values of Z at each observation
point, in which the unbiased estimation requires the weights to sum up to 1, i.e.

N∑
i=1

λi = 1 (6.3)

It is the best estimator in the sense that the estimated field has the smallest variance
error σ2

e with respect to the true field. The weights in Eq. 6.2, for the estimation at any
point x0, can be found by minimising the variance of the Kriging error σ2

e , which is given
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as
σ2

e = var
[

Ẑ −Z
]= E

[(
Ẑ −Z

)2
]
− (

E
[

Ẑ −Z
])2

= E
[(

Ẑ −Z
)2

]
+0

= E
[

Ẑ 2]−2E
[

Ẑ Z
]+E

[
Z 2] (6.4)

where var[] and E[] denote the variance and expectation operators, respectively, and
where the equation makes use of the unbiasedness, that is, E

[
Ẑ −Z

]= 0.
Substituting Eq. 6.2 into Eq. 6.4, leads to

σ2
e = var

[
Ẑ −Z

]= N∑
i=1

N∑
j=1

λiλ j ci j −2
N∑

i=1
λi ci 0 + c00 (6.5)

where ci j = C
(∣∣xi −x j

∣∣) is the covariance between Z (xi ) and Z (x j ), ci 0 = C (|xi −x0|) is
the covariace between Z (xi ) and Z (x0) and c00 =C (|x0 −x0|) =C (0) =σ2 is the variance
of Z (x0), which is estimated at the target location x0. By using Eq. 6.3, Eq. 6.5 can be
rearranged as

σ2
e = var

[
Ẑ −Z

]= N∑
i=1

N∑
j=1

λiλ j (ci j −σ2)−2
N∑

i=1
λi (ci 0 −σ2)+ (c00 −σ2)

=
N∑

i=1

N∑
j=1

λiλ j
(
C

(∣∣xi −x j
∣∣)−σ2)−2

N∑
i=1

λi
(
C (|xi −x0|)−σ2)

+ (
C (|x0 −x0|)−σ2)

=−
N∑

i=1

N∑
j=1

λiλ jγ
(∣∣xi −x j

∣∣)+2
N∑

i=1
λiγ (|xi −x0|)−γ (|x0 −x0|)

(6.6)

This rearrangement makes use of the relationship between a variogram γ (τ) and a co-
variance function C (τ) (Eq. 3.6), that is

γ (τ) =C (0)−C (τ) =σ2 −C (τ) (6.7)

To minimise the error variance (i.e. Eq. 6.6), the Lagrange method is used (Wack-
ernagel, 2003). An objective function ϕ(λi ,µ) is defined by introducing the Lagrangian
parameter µ and including the condition that the weights satisfy Eq. 6.3, i.e.

ϕ(λi ,µ) =σ2
e =σ2

e −2µ

(
N∑

i=1
λi −1

)
(6.8)

The weights can then be found by setting the partial derivatives of the objective function,
with respect to all weights λi and µ, to zero. This leads to a system of equations of size
N +1, for a constant mean:

γ(x1 −x1) · · · γ(x1 −xN ) 1

...
. . .

...
...

γ(xN −x1) · · · γ(xN −xN ) 1

1 · · · 1 0




λ1

...

λN

µ

=


γ(x1 −x0)

...

γ(xN −x0)

1

 (6.9)
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Figure 6.1: Example CPT sampling strategy (k = 2, m = 5)

For a mean following some trend, the modification to Eq. 6.9 is straightforward, and
interested readers are referred to Chapter 4 in Fenton (2007).

According to Eq. 6.9, the Lagrangian parameter µ can be expressed by

µ=−
N∑

j=1
λ jγ

(∣∣x1 −x j
∣∣)+γ (|x1 −x0|) =−

N∑
j=1

λ jγ
(∣∣x2 −x j

∣∣)+γ (|x2 −x0|) = ...

=−
N∑

j=1
λ jγ

(∣∣xN −x j
∣∣)+γ (|xN −x0|)

(6.10)

Rearranging Eq. 6.6 and making use of Eq. 6.10 and Eq. 6.3 leads to

σ2
e =µ+

N∑
i=1

λiγ (|xi −x0|)−γ(0) (6.11)

where γ(0) = 0 from Eq. 6.7.
Eq. 6.9 may be expressed as

γγγlhsλλλx =γγγr hs (6.12)

Once Eq. 6.9 is solved, the estimation variance can be expressed by

σ2
e =

(
γγγlhs

−1γγγr hs

)T
γγγr hs (6.13)

where λi is essentially a function of the relative positioning of xi and x0. Note that the
left-hand-side matrix γlhs is a function of only the observation point locations and co-
variance between them. Therefore, it only needs to be inverted once, and then Eqs. 6.9
and 6.2 used repeatedly for building up the field of best estimates at different locations
in space. In contrast, the right-hand-side vector γr hs changes as a function of the spa-
tial point x0, resulting in different weight vectors λx that are used in Eq. 6.2 to get the
estimates point by point in the domain of interest.
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Figure 6.2: Example CPT data grid (k = 2): (a) plan view showing CPT locations; (b) global numbering of data
points at section A1; (c) global numbering of data points at section A2
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6.4. KRIGING IMPLEMENTATION IN 3D
In geotechnical engineering, a sampling strategy following some pattern is generally
adopted (DeGroot and Baecher, 1993). For example, CPT sampling is often planned in
the form of a regular grid on the ground surface (Jaksa et al., 1999). It is therefore desir-
able to implement the above Kriging algorithm in the context of some sampling design
with a regular pattern. While it is straightforward to implement in 2D, it is less so when
implemented in 3D. The most fundamental part is how the left-hand-side matrix of Eq.
6.12 is formed. This chapter shows an implementation of 3D Kriging for the regular grid
sampling strategy shown in Fig. 6.1. The following will be devoted to setting up the left-
hand-side matrix and the right-hand-side vector.

Suppose there are k ×m CPT locations that follow a rectangular grid at the ground
surface. That is, there are k rows in the x direction and, within each row, m CPT profiles
in the y direction (Fig. 6.1). Assuming that there are n data points for each CPT profile,
the global numbering scheme for all the CPT data points is shown in Fig. 6.2 for the case
of k = 2.

6.4.1. FORMING LHS MATRIX
Following the basic Eq. 6.12, of size N +1 = kmn+1, the left-hand-side matrix is formu-
lated as

γlhs =



v1,1 v1,2 v1,3 . . . v1,m v1,m+1 v1,m+2 v1,m+3 . . .
v2,1 v2,2 v2,3 . . . v2,m v2,m+1 v2,m+2 v2,m+3 . . .
v3,1 v3,2 v3,3 . . . v3,m v3,m+1 v3,m+2 v3,m+3 . . .

...
...

...
. . .

...
...

...
...

. . .
vkm,1 vkm,2 vkm,3 . . . vkm,m vkm,m+1 vkm,m+2 vkm,m+3 . . .

1 1 1 . . . 1 1 1 1 . . .

v1,2m . . . v1,(k−1)m+1 v1,(k−1)m+2 v1,(k−1)m+3 . . . v1,km 1
v2,2m . . . v2,(k−1)m+1 v2,(k−1)m+2 v2,(k−1)m+3 . . . v2,km 1
v3,2m . . . v3,(k−1)m+1 v3,(k−1)m+2 v3,(k−1)m+3 . . . v3,km 1

...
. . .

...
...

...
. . .

...
...

vkm,2m . . . vkm,(k−1)m+1 vkm,(k−1)m+2 vkm,(k−1)m+3 . . . vkm,km 1
1 . . . 1 1 1 . . . 1 0


(6.14)

in which vi , j is a matrix representing the correlation structure between CPTi and CPT j

(where each CPT has n data points),
vi , j =

d(i−1)n+1,( j−1)n+1 d(i−1)n+1,( j−1)n+2 d(i−1)n+1,( j−1)n+3 . . . d(i−1)n+1,( j−1)n+n

d(i−1)n+2,( j−1)n+1 d(i−1)n+2,( j−1)n+2 d(i−1)n+2,( j−1)n+3 . . . d(i−1)n+2,( j−1)n+n

d(i−1)n+3,( j−1)n+1 d(i−1)n+3,( j−1)n+2 d(i−1)n+3,( j−1)n+3 . . . d(i−1)n+3,( j−1)n+n
...

...
...

. . .
...

d(i−1)n+n,( j−1)n+1 d(i−1)n+n,( j−1)n+2 d(i−1)n+n,( j−1)n+3 . . . d(i−1)n+n,( j−1)n+n


(6.15)
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where (i , j ) = 1,2,3, . . . ,m,m + 1,m + 2,m + 3, . . . ,2m, . . . , (k − 1)m + 1,(k − 1)m + 2,(k −
1)m +3, . . . ,km and dr,s (r = (i −1)n +1, . . . , (i −1)n +n)

(
s = ( j −1)n +1, . . . , ( j −1)n +n

)
are the components of the submatrix vi , j , which can be expressed in the form of a vari-
ogram between data points r and s (Eq. 6.7 and 3.6).

6.4.2. FORMING RHS VECTOR AND SOLVING FOR UNKNOWN VECTOR

The right-hand-side vector is formulated as

γγγr hs =



v1

v2

v3

...

vkm

1


(6.16)

in which vp is a vector representing the correlation structure between the estimation
point and CPTp ,

vp =



d(p−1)n+1

d(p−1)n+2

d(p−1)n+3

...

d(p−1)n+n


(6.17)

where p = 1,2,3, . . . ,m,m+1,m+2,m+3, . . . ,2m, . . . . . . , (k−1)m+1,(k−1)m+2,(k−1)m+
3, . . . ,km and dt

(
t = (p −1)n +1, . . . , (p −1)n +n

)
are the components of the subvector

vp , which can be expressed in the form of a variogram (Eq. 6.7 and 3.6) between data
points t and the point at which the value is to be estimated (Fig. 6.2).

In Fig. 6.3, the spatial variability of the soil property is represented by a series of
discrete values assigned to cubic cells. The black cell denotes one of the cell values that
are to be estimated, whereas the red cells denote the CPT measurements.

The unknown weights vector is

λλλx =



λλλ1

λλλ2

λλλ3

...

λλλkm

µ


(6.18)
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Figure 6.3: CPT sampling profile (k = 2, m = 3, n = 5)

in which λλλq is the weights subvector for CPTq ,

λλλq =



λ(q−1)n+1

λ(q−1)n+2

λ(q−1)n+3

...

λ(q−1)n+n


(6.19)

where q = 1,2,3, . . . ,m,m+1,m+2,m+3, . . . ,2m, . . . . . . , (k−1)m+1,(k−1)m+2,(k−1)m+
3, . . . ,km.

6.4.3. COMPUTING EFFICIENCY

There are two aspects involved in the computational efficiency of the above Kriging im-
plementation. One is the total number of equations, which depends on the total number
of data points (N = k ×m ×n, where k and m are the number of CPT rows in the x and
y directions respectively, and n is the number of data points for each CPT profile, see
Fig. 6.1) contributing to the left-hand-side matrix; the other is the number of points in
the field (n f = nx ×ny ×nz , where nx , ny and nz are the number of points in the three
Cartesian directions) that need to be Kriged (i.e. how many times the algorithm will need
to be repeated, except for inverting the left-hand-side matrix). The higher the required
field resolution (n f ) and total number of known data points (N ), the longer the Kriging
will take. In the case of the CPT arrangement in Fig. 6.1, the size of matrix γγγlhs (see Eq.
6.9 or Eq. 6.14) and the size of vector γγγr hs (see Eq. 6.9 or Eq. 6.16) in 3D are m2 and
m times larger than those in 2D (i.e. a cross-section in the xz plane) respectively. The
time it takes to Krige a full 3D field depends on the processing time of each individual
step and the number of times each step has to be performed. To Krige a field of size n f ,



6.4. KRIGING IMPLEMENTATION IN 3D

6

101

conditional to N measurement points, the total time may be approximated by

t (N ,n f ) ≈ c1n f N 2 + c2N 3 (6.20)

where the first term represents the time needed for solving the system of equations for
all field points (i.e. n f times) (O(N 2)) and the second represents the time needed for
inverting the matrix γγγlhs (i.e. only once) (O(N 3)). The constants c1 and c2 are functions
of the CPU speed and the operation, and in this case are in a ratio of approximately 4:1.
Additionally, in all practical cases, n f ≫ N , so that the calculation time depends mainly
on the first term in the above equation; that is, on the number of times (i.e. n f times)
that the matrix–vector multiplication operation,λλλx =γγγlhs

−1γγγr hs , needs to be performed.
Note that n f = nx×ny×nz in 3D is ny times n f = nx×nz in 2D and N = k×m×n in 3D is m
times N = k ×n in 2D. In the examples reported in Section 6.6, all problems investigated
are very long in the third dimension compared to the cross-section. Therefore, the time
consumed in a 3D analysis is theoretically ny ×m2 times that of a 2D analysis, when
neglecting the relatively fast, one-off matrix inversion operation and other computation
overheads, such as reading/writing and memory operations.

However, despite the greater run-time requirements for Kriging in 3D, it is far less
than the time consumed in a nonlinear finite element analysis where plasticity itera-
tions are needed. For Example 1 in Section 6.6, where nx = 20, ny = 100 and nz = 20,
it took, in serial and on average, 134 hours in total for the 500 finite element analyses
forming each Monte Carlo simulation (3.0 GHz CPU), whereas Kriging 500 times took
about 2.4 hours. In contrast, 500 Kriging interpolations for a 2D cross-section analysis
took approximately 8.5 seconds. It is noted that the computation time used for Kriging
500 times is significant in comparison with a single finite element analysis, and there-
fore should not be considered a pre-processing step if utilising parallel computation for
the finite element analyses. Therefore, the computing strategy developed (Chapter 3
and Appendix A) to carry out the analyses for Examples 1 and 2 in Section 6.6 (compris-
ing around 30,000 realisations in total, and involving 30,000 3D Kriging interpolations)
was to run the analyses in parallel (each Kriging and finite element analysis serially on a
single computation node) on the Dutch national grid e-infrastructure with high perfor-
mance computing clusters (Li et al., 2015d).

Note that it is possible to prescribe an appropriate neighbourhood size in the algo-
rithm to reduce the computational burden for 3D Kriging. For example, a neighbour-
hood size of 5×7×n may be used to construct the left-hand-side matrix (see the neigh-
bourhood denoted as a rectangle in Fig. 6.2), i.e. by using only the nearest 4 CPT pro-
files). That is, only those CPT profiles that have a significant influence (i.e. a lag distance
within the range of the scale of fluctuation in Eq. 6.7) on the point to be estimated are
used to construct the left-hand-side (LHS) matrix. However, using this strategy, for each
point (or each subset of points) to be estimated, the left-hand-side matrix is different
and will need to be inverted accordingly, so this could increase the computational time
if there are a large number of points or cells to be estimated. Therefore, a choice has
to be made, to make sure that the time saved by inverting a smaller matrix, instead of a
bigger one, outweighs the time consumed by inverting the left-hand-side matrices for all
the (subgroups of) cells to be estimated for the case in which a neighbourhood is used.
And, of course, there is a trade-off between the estimation accuracy and time saved when
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Table 6.1: Comparison of uncertainty reduction ratio for using a local neighbourhood and using all the CPT
profiles

θh = 6 m θh = 12 m θh = 24 m

un (local neighbourhood) 0.7231 0.5449 0.3953
ua (all CPTs) 0.7220 0.5442 0.3946

Eu 1.5‰ 1.3‰ 1.8‰

such a neighbourhood approach is used. The accuracy will increase as more available
data are used to do the Kriging estimation, and so the neighbourhood size depends on
the required accuracy and the scales of fluctuation.

Due to the relatively fast inversion of the LHS matrix in the current investigation (the
maximum size investigated is N = 500), all CPT profiles have been used for the Kriging
in the examples in Section 6.6. However, one neighbourhood strategy was investigated
by using the 4 nearest CPT profiles, and the following uncertainty reduction ratio (a 3D
extension to the 1D definition in van den Eijnden and Hicks (2011)) has been used to
assess the approximation error:

u =

nx∑
i=1

ny∑
j=1

nz∑
k=1

σe
(
i , j ,k

)
nx ny nzσ

(6.21)

The approximation error may be evaluated by

Eu = |un −ua |
ua

(6.22)

where un and ua are the uncertainty reduction ratios when using a neighbourhood and
when all CPT profiles have been used, respectively.

One of the sampling strategies from Example 1 (Section 6.6, Fig. 6.11(b)) was used
to evaluate the approximation error and the results are listed in Table 6.1. It can be seen
that using a neighbourhood of the 4 nearest CPT profiles has been sufficient in this case.

6.5. VALIDATION OF CONDITIONAL RANDOM FIELDS
The conditional simulation of a 5 m high (z), 5 m wide (x) and 25 m long (y) clay block,
characterised by a spatially varying undrained shear strength, is presented in this sec-
tion to demonstrate the procedure and the validity of the implementation described in
Section 6.4. The idea is to show how the measured values are honoured, and to check
whether or not the statistical properties (e.g. covariance) of the random fields are main-
tained after conditioning.

The block is discretised into 20×100×20 cubic cells, with each cell of dimension 0.25
m. The mean of the undrained shear strength is 40 kPa, and the standard deviation is 8
kPa. The degree of anisotropy of the heterogeneity is ξ= 3, in which ξ = θh/θv and θv =
1.0 m. Five CPT measurement locations in the y direction are available, each comprising
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Figure 6.4: Example illustrations of the unconditional random field (a), the Kriged field based on the
randomly simulated data (b), the Kriged field based on the CPT data (c), the conditional random field (d),

cross-sections (e and f) in the longitudinal direction taken from the Kriged field (c) and from the conditional
random field (d), respectively. Dashed circle indicates the position of the first CPT in subfigures (a) and (c-d)
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Figure 6.5: Vertical (a) and horizontal (b) covariance functions averaged over 200 realisations (θv = 1.0 m, θh =
3.0 m)
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n = 20 data points at 0.25 m spacing in the vertical direction. These ‘measured’ data have
been obtained by sampling from a single independent realisation of the spatial variabil-
ity (i.e. representing the ‘actual’ in-situ variability). The interval distance between CPTs
in the horizontal direction is ∆y = 5 m, and the first CPT is located at y = 2.5 m.

Fig. 6.4 shows an example realisation, to illustrate the stages involved in construct-
ing the conditional random field. It shows (a) the unconditional field generated using
LAS, (b) the Kriged field based on the unconditionally simulated cell values at the mea-
surement locations, (c) the Kriged field based on the measured data (taken from the ref-
erence field), and (d) the conditional random field. It can be seen that the conditional
field eliminates unrealistic values from the unconditional simulation by honouring the
measurement data at the measurement locations (e.g. corresponding to the centre of the
dashed circle in the case of the first CPT). The cross-section from which the CPTs were
taken is also shown in Fig. 6.4 (e) and (f), together with the known CPT profiles. It is seen
that the known CPT profiles are honoured in the conditional random field. Note that, in
order to better visualise the fields, a local colour scale is used for all sub-figures in Fig.
6.4.

In order to validate the consistency of conditioning, apart from the PDFs of the target
distribution before and after conditioning (these have been shown to be consistent, al-
though not shown herein), the following estimator of the correlation structure along the
vertical or horizontal direction of the random field is used to back-figure the covariance
structure:

Ĉ (τ j = j∆τ) = 1

n − j

n− j∑
i=1

(
Zi − µ̂Z

)(
Zi+ j − µ̂Z

)
(6.23)

where j = 0,1, . . . ,n −1, n is the number of data points in the vertical or horizontal direc-
tion, τ j is the lag distance between cells at xi and xi+ j (vertical or horizontal component
of positions xi and xi+ j ), ∆τ is the distance between two adjacent cells vertically or hor-
izontally, µ̂Z is the estimated mean, Z is the random soil property and Zi is the sample
of Z . The correlation function is then ρ̂(τ j ) = Ĉ (τ j )/Ĉ (0) , where Ĉ (0) = σ̂2

Z and σ̂2
Z is the

estimated variance (Fenton, 1999b).
Fig. 6.5 shows the back-figured (a) vertical and (b) horizontal covariances for the

unconditional and conditional random fields averaged over 200 realisations, as well as
the sample (i.e. CPT) covariances and exact covariances (i.e. equation 3.6 with only
those terms that are associated with the vertical or horizontal direction in 1D). It can
be seen that the conditional random field preserves the covariance structure reasonably
well in both the horizontal and vertical directions, and that the correlation function fits
well the sample correlation for the first quarter of the data points (i.e. n/4) (Jaksa et al.,
1999; Uzielli et al., 2005). It is also seen that the covariance for the conditional field lies
between those for the unconditional field and the sampling points.

6.6. GEOTECHNICAL APPLICATION
Two simple examples concerning slope stability are presented in this section, in order to
illustrate how the technique presented in this chapter may be used as an aid to geotech-
nical design. The first involves finding the optimum locations for CPT profiles, in order
to minimise the uncertainty in assessing the reliability of a slope. The second involves
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a cost-effective design with regard to the slope angle when field measurements have al-
ready been made (i.e. the positions where the CPT data were taken are already known).

Both examples are presented in terms of the uncertainties in the slope response (with
respect to factor of safety). The factors of safety are calculated by 3D finite elements
using the strength reduction method (Smith and Griffiths, 2005), with the analyses being
undertaken within a probabilistic (RFEM) framework; a flowchart for carrying out such a
simulation is shown in Fig. 6.6. The undrained clay behaviour has been modelled using a
linear elastic, perfectly plastic Tresca soil model. The clay has a unit weight of 20 kN/m3,
a Young’s modulus of 100 MPa and a Poisson’s ratio of 0.3. With reference to Figs. 6.7 and
6.15, the finite element boundary conditions are: a fixed base, rollers on the back of the
domain preventing displacements perpendicular to the back face, and rollers on the two
ends of the domain, allowing only settlements and preventing movements in the other
two directions (i.e. the out-of-slope-face and longitudinal directions). A full explanation
of these boundary conditions is given in Spencer (2007) and Hicks and Spencer (2010).

The random field cell values are mapped onto the 2×2×2 Gauss points in each 20-
node finite element, in order to simulate the spatial variability more accurately (Hicks
and Samy, 2002; Hicks and Spencer, 2010). Note that the random fields (both conditional
and unconditional) have been mapped onto a finite element mesh with an element as-
pect ratio equal to 2.0 (see Fig. 6.7) to save time for the finite element analyses (Spencer,
2007). A detailed description of how the random field cell values, in this case based on a
cell size of 0.25×0.25×0.25 m, are mapped onto the larger non-cubic finite elements is
given in Hicks and Spencer (2010).

Note that CPT data, i.e. cone resistance and sleeve friction, cannot be used directly
in the analyses reported here. A conversion or transformation model is needed to re-
late the test measurement to an appropriate design property (e.g. the undrained shear
strength) (Phoon and Kulhawy, 1999b). As this chapter theoretically shows how such
converted data can be used, artificial data of undrained shear strength have been used
in the following examples.

6.6.1. EXAMPLE 1–COST-EFFECTIVE DESIGN OF SITE EXPLORATION PRO-
GRAMMES

The first example considers a proposed 45◦, 5 m high, 50 m long slope, that is to be cut
from a heterogeneous clay deposit characterised by an undrained shear strength with
the following statistics: mean 20 kPa (corresponding to a traditional/deterministic factor
of safety of FT = 1.23), standard deviation 4 kPa, vertical SOF of θv = 1.0 m and horizon-
tal SOF of θh = 6.0 m. A question arises as to how to design the sampling strategy for
the soil deposit. For example, if 5 CPTs are to be conducted in a straight line along the
axis of the proposed slope, where is the best location to site the CPTs such that the de-
signed slope will have the smallest uncertainty in the realised factor of safety FR ? Hence,
this example first investigates the influence of the CPT locations on the standard devi-
ation of the realised factor of safety, followed by the influence of CPT intensity. Fig. 6.7
shows a cross-section through the slope, and 10 possible positions to locate the CPTs
(i = 0,1, . . . ,9). Note that the CPTs are taken to be equally spaced (i.e. at 10 m centres) in
the third dimension, and that the first and fifth CPTs are located at 5 m and 45 m along
the slope axis (see Fig. 6.11(a)). Furthermore, the CPTs are carried out before the slope
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Figure 6.7: Finite element mesh and possible numbered CPT locations at a cross-section through the
proposed 50 m long slope (dashed lines indicate the excavated soil mass and numbers correspond to Gauss

point locations within the finite elements)

is excavated, in a block of soil of dimensions 10×50×5 m as indicated in the figure.
Both conditional and unconditional RFEM simulations were carried out, using 500

realisations per simulation, to investigate how the structure response (in this case, the
realised factor of safety) changes as the conditioning location changes. Fig. 6.8(a) shows
that the uncertainty in the realised factor of safety reduces after conditioning, i.e. after
making use of the available CPT information about the soil variability, as indicated by
the narrower distribution of realised factor of safety for the conditional simulation. In
this figure, the reduction in uncertainty is due to CPT data being taken from location
i = 5.

Fig. 6.8(b) shows the sampling efficiency indices with respect to the different CPT
locations, in which the sampling efficiency index is defined as

Ise = σu

σi
(6.24)

where σu is the standard deviation of the realised factor of safety for the unconditional
simulation, and σi is the standard deviation of the realised factor of safety for the con-
ditional simulation based on column position i . Hence Ise = 1 if the simulation is not
conditioned. Clearly, there exists an optimum position (in this case, i = 5) to locate the
CPTs; i.e. the uncertainty is a minimum if the CPTs are located along the crest of the
proposed slope. In contrast, when i = 0 and 1, there is little improvement, because the
potential failure planes (in the various realisations) generally pass through zones where
the shear strength is, at most, only weakly correlated to values at the left-hand boundary
(due to θh being only 6 m in this case). It is interesting to note that, although there is not
much information included in the slope stability calculation when i = 9, i.e. for the CPTs
at the slope toe, the reduction in uncertainty is still noticeable, due to the CPTs being
located in the zone where slope failure is likely to initiate. This observation highlights
that the location of additional information may matter more than how much additional
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Figure 6.8: Simulation results of Example 1 (based on θv = 1.0 m and 500 realisations per simulation):
probability density functions of realised factor of safety (ξ = 6) (a), influence of CPT location (ξ = 6) (b),

probability density functions of realised factor of safety (ξ = 12) (c), influence of CPT location (ξ = 12) (d) ,
probability density functions of realised factor of safety (ξ = 24) (e), and influence of CPT location (ξ = 24) (f)
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information there is (e.g. contrast the large difference in the amount of directly utilised
data between CPT locations i = 0 and i = 9).

However, it should be remembered that Figs. 6.8 (a)-(b) are for the case of ξ= 6 and
that ξ often takes a larger value in practice. Figs. 6.8 (c)-(f) show that, for ξ= 12 and ξ=
24, the reduction in uncertainty relative to the unconditional case is greater. Moreover,
improved values of Ise are obtained for CPT locations near the right and left boundaries,
due to the higher correlation of soil properties in the horizontal direction.

Fig. 6.9 summarises the results as a function of the degree of anisotropy of the het-
erogeneity ξ. It is seen that the best locations for carrying out the 5 CPTs are at i = 5,
6 and 7. As the value of ξ increases, the sampling efficiency indices increase due to the
decreasing Kriging varianceσ2

e , as illustrated in Fig. 6.10 for a y−z slice at i = 5 (i.e. corre-
sponding to where the CPTs are located). It is seen that, for larger values of ξ, the Kriging
variance between CPTs can drop well below the input variance of the shear strength (i.e.
σ2

e ≤ 16 kPa2). Note also that the input variance of shear strength is 42 = 16 kPa2). More-
over, carrying out CPTs at some distance to the left or right of the slope crest for higher
values of ξ can have similar effects to carrying out CPTs near the crest for smaller values
of ξ. For example, the sampling efficiency index for ξ = 24 at i = 2 is approximately the
same as that for ξ = 12 at i = 5, 6 and 7.

Note that the same reference 3D random field is used to represent the ‘real’ field sit-
uation in conditioning the random fields in each RFEM analysis. The 3D random fields
are conditioned before being mapped onto the finite element mesh, so that they are
consistent with sampling the ground before the slope is cut. Hence, for i = 6, 7, 8 and
9, although the CPT measurements are directly used for fewer cells in the FE mesh, they
nevertheless have an impact on all cell values via the lateral spatial correlation of soil
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Figure 6.11: CPT layout illustration (plan view) for a single row (a) and two rows (b)
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Figure 6.13: CPT layouts (plan views) for various numbers of boreholes (ncpt = 3, 5, 9, 17, 25 and ∆ denotes
the distance between CPTs)

properties in the original ground profile.

If a second row of CPT tests (at position j ) is to be performed in a second phase of the
site investigation (e.g. as illustrated in Fig. 6.11(b)), the above procedure can be repeated
by changing j in the range 0–9 to locate the best positions for the new CPTs, assuming
that the position of the first set of CPT profiles has been set to i = 5. This is shown in Fig.
6.12 for the case of ξ = 6. Fig. 6.12(a) shows the probability distributions of the realised
factor of safety for the unconditional simulation, the conditional simulation for one row
of CPTs at i = 5 and the conditional simulation for an additional row of CPTs at position
j = 0. It is seen that the confidence level in the project has been further increased by the
second phase of site investigation. Fig. 6.12(b) shows the sampling efficiency indices for
various locations j of the second row of CPTs. It suggests that the best location for car-
rying out the second phase of site investigation can be at either side of the slope crest (at
approximately 3 m distance from the crest for the input parameters used in this example,
i.e. θh = 6 m). To further investigate the influence of CPT intensity on the uncertainty in
the realised factor of safety, conditional simulations involving different numbers of CPTs
(and thereby different distances (∆) between adjacent CPTs) have been carried out for
the case of ξ = 6, 12 and 24. Fig. 6.13 shows the plan views of CPT layouts for ncpt = 3,
5, 9, 17 and 25 (corresponding to CPT spacings of ∆ = 20, 10, 5, 3 and 2 m, respectively),
with the locations of the CPTs in the x-direction being fixed at i = 5. Fig. 6.14 shows
the influence of CPT density on the sampling efficiency indices for the three values of
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ξ. It is seen that there is only a marginal benefit in increasing the scope of investigation
by having CPT spacings less than ∆ ≈ θh/2 especially for the ξ= 6 and 12 cases. For ξ =
24, the sampling efficiency index is as high as 4 when ∆≈ θh/2 although more CPTs (i.e.
∆ ≈ θh/4, ncpt = 9) may improve the sampling efficiency to a value of 4.5. However, the
general finding from Figs 6.9(b) and 6.11 is that the optimal sampling distance is around
θh/2 for the problem investigated, based on the assumed correlation function.

6.6.2. EXAMPLE 2–COST-EFFECTIVE DESIGN OF SLOPE GEOMETRY

In the second example, a soil deposit characterised by spatially varying undrained shear
strength is to be excavated to form a slope of a certain angle. Site investigations have
been conducted based on CPT tests. The question is: In order to satisfy a target reliability
level of, for example, 95%, as suggested in Eurocode 7 (CEN, 2004) and discussed in Hicks
and Nuttall (2012), how steep should the slope be designed?

Fig. 6.15 shows three possible slope angles, with the corresponding finite element
mesh discretisations. The slope is 5 m high and 50 m long in the third dimension, and
the left-hand boundary is taken to be 15 m from the slope toe. Five CPTs were taken
along the length of the slope at 10 m centres, at the location of the column of Gauss
points nearest the slope crest, for the 1:1 slope, as seen in the figure. The clay soil has a
mean undrained shear strength of 21 kPa, a coefficient of variation of 0.2, a vertical scale
of fluctuation of 1 m and a horizontal scale of fluctuation of 12 m.

The three candidate slopes are (vertical:horizontal) 1:2, 1:1 and 2:1. Based on only the
mean undrained shear strength, these three slopes have deterministic factors of safety
FT of 1.73, 1.29 and 1.07. Both conditional and unconditional simulations were carried
out to investigate the reliability of each slope, and, for each simulation, 500 realisations
were analysed. Note that, as in the previous example, one reference random field is gen-
erated first and assumed to represent the real field situation. The conditional random
fields used in the RFEM analyses are therefore based on CPT measurements taken from
this ‘real’ field.

The stability of the slopes were calculated by the strength reduction method by ap-
plying gravitational loading. The probability density distributions of the realised factor
of safety are shown in Fig. 6.16 for the three slopes, for both conditional and uncondi-
tional simulations. The deterministic factors of safety FT , i.e. the factors of safety based
on the mean property values, are also shown. It is seen that, if unconditional simulation
is used, there is a significant chance that the 2:1 slope will fail (the probability of failure is
the area under the pdf for the realised factor of safety smaller than 1.0). Unsurprisingly,
the gentlest (i.e. 1:2) slope has the lowest probability of failure. However, once again,
conditional simulations significantly reduce the uncertainty in the structural response,
as clearly demonstrated by the narrower probability distributions. In particular, the reli-
ability of the steepest slope increases from 77% to 99% when the CPT measurements are
taken into account.

The results show that, if unconditional simulations are used, the 1:1 and 1:2 slopes
satisfy a target reliability level of 95%, whereas the 2:1 slope does not. However, when
the additional information from the CPT profiles is used, all three cases meet the target
reliability. The message here is that the embankment may be designed to a slope angle
of 2:1 if the CPT measurements are used in the simulation, which is, of course, a more
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Figure 6.14: Influence of number of CPTs (at i = 5) on sampling efficiency for various values of ξ and θv = 1.0
m ( denotes the distance between CPTs): (a) ξ = 6 (θh = 6 m); (b) ξ = 12 (θh = 12 m); (c) ξ = 24 (θh = 24 m)
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Figure 6.15: Finite element mesh for different slope geometries
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logical thing to do, and this has implications for the soil volume to be excavated and
thereby cost, although the cost can be site dependent (e.g. on whether there are nearby
structures). A best design is a design that meets the requirements set by standards, while,
at the same time, minimising the cost. In this case, the steepest slope may be a cost
effective design.

6.7. CONCLUSIONS
An approach for conditioning 3D random fields based on CPT measurements has been
implemented and validated, and then applied to two numerical examples to illustrate
its potential use for geotechnical site exploration and cost-effective design. It has been
shown that conditional simulations based on CPT data are able to increase the confi-
dence in a design’s success or failure. Indeed, the reliability from a conditional simula-
tion can be thought of as a conditional reliability (or conditional probability of failure
not occurring), i.e. based on a ‘posterior’ distribution of the structure performance after
taking account of the spatial distribution of all the measured CPT data points. In con-
trast, the unconditional simulation based on random field theory only results in a ‘prior’
distribution of the structure response. This was clearly demonstrated by the updating of
the probability density distributions in the two numerical examples. Although Bayesian
updating is not used in this chapter, the effect is similar.

If further CPT measurements are required, the approach can be repeated for updat-
ing the response probability density function. In this way, the confidence in the proba-
bility of failure or survival will be further increased. In fact, in many cases a multi-stage
site investigation may be carried out, with the results of the initial analysis guiding fur-
ther field tests. As demonstrated in the first example, if a second stage of site explo-
ration were to be conducted, it is possible to find out the optimum location for the ad-
ditional testing. This highlights the method’s potential use in directing site exploration
programmes and thereby improving the efficient use of field measurements. For the first
example considered in this chapter, an optimal sampling distance of half the horizontal
scale of fluctuation was identified when an exponential correlation function is used. For
the second example, the conditional simulation led to a more cost-effective design.
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7.1. INTRODUCTION
Geotechnical engineers are now paying more attention to material heterogeneity in de-
signs. For example, the probabilistic analysis of slope stability is becoming routine engi-
neering practice in the Netherlands for the (strengthening) design of dike systems. De-
sign tools incorporating spatial variability considerations (e.g. the Calle (1985) model)
are available, as in software developed by Deltares (2016). By representing the soil prop-
erties as random fields, characterised by probability distributions and spatial correlation
structures, a probabilistic assessment is possible; e.g. in the case of slope stability, the
probability of failure (or, alternatively, reliability) can be computed, and, when com-
bined with a consideration of failure consequence, give rise to an understanding of the
risk involved.

However, while current probabilistic design tools provide a useful aid in the design
process, there are certain simplifications in these models that require examination. For
example, a rigid cylindrical failure is assumed in the models proposed by Vanmarcke
(1977b) and Calle (1985). It is therefore important to identify when these simplifications
are reasonable approximations and when some caution is needed. This thesis has sought
to investigate this issue for 3D slope stability analysis by comparing the performance of
these simpler probabilistic methods with the more advanced, but computationally more
expensive, random finite element method (RFEM). Indeed, it is only in recent years, with
the increasing power of computers, that more advanced methods such as RFEM can
be used to thoroughly investigate the influence of spatial variability on long 3D slope
failures. The thesis follows on from previous investigations, including those by Hicks
and Spencer (2010) and Hicks et al. (2014), who conducted parametric studies into the
influence of different aspects of heterogeneity and slope geometry on slope reliability
and performance.

Focusing specifically on 3D spatial variability in slope stability analysis, the primary
goal of this thesis has been to investigate the performance of RFEM and the two simpler
limit equilibrium based models. In short, it contains the following:

• An evaluation of the models of Vanmarcke (1977b) and Calle (1985), in which the
failure mechanisms have been idealised as a single cylindrical failure; in the for-
mer case from a 3D perspective, and in the latter case from a 2D perspective with
an extension in the third dimension.

• An investigation of slope stability problems for very long 3D slopes, in order to
evaluate the length effect.

• A step towards more realistic random field realisations of soil properties, in which
field measurements are utilised directly in the realised random fields in order to
reduce uncertainties in material variability and structural performance.

• An investigation of factors influencing the optimal sampling locations in site in-
vestigations.

Section 7.2 lists the main research conclusions from the thesis, while Section 7.3 gives
recommendations for further study.
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7.2. RESEARCH CONCLUSIONS

7.2.1. RANDOM FIELD GENERATOR AND KRIGING
Fully working 2D and 3D LAS random field generators were inherited by the Author from
Spencer (2007). Kriging algorithms in 2D and 3D were implemented by the Author based
on well-known mathematics in geostatistcs, and these were combined with the random
field generators to enable the generation of 2D and 3D conditional random fields. The
validity of the conditional simulator was demonstrated by an examination of the covari-
ance structure. Moreover, the conditional random fields were shown to match measure-
ment data at borehole locations and honour the spatial correlations of the soil proper-
ties. In this way, the simulations are fully consistent with the field data at the measure-
ment locations, thereby making best use of the measurement data.

7.2.2. PARALLELISATION
When the problem size is scaled up (as in going from 2D to 3D simulations), it is nec-
essary to parallelise the process so that the desired analyses can be run in a reasonable
time. The Author has implemented a parallelised Monte Carlo method based on two
schemes:

• Cloud computing with a master–slave relationship;

• Grid computing with a CouchDB pool server.

This allowed analyses to be run in a timely fashion, shortening job times from
years/months to days. The computing strategies can be modified without much effort
to cope with other types of application.

7.2.3. COMPARATIVE INVESTIGATION OF SLOPE MODEL PERFORMANCE
The first part of the research work in this thesis related to comparing the performance of
RFEM with Vanmarcke’s (1977b) simplified model for a geometrically long ‘linear’ slope.
The ability of 3D RFEM analysis to model failure surfaces of varying geometry, thereby
accounting for the wide range of possible failure surfaces over which strength values are
averaged (rather than simple spatial averages over a single predefined failure surface of
one critical length, such as the cylindrical surface assumed in Vanmarcke’s solution) was
highlighted as a contributing factor to the differences observed between the two models.
A second factor is the ability of RFEM to seek out semi-continuous weak zones, thereby
reducing the average shear strength over the failure surface. Thirdly, the rigid cylindrical
failure in Vanmarcke’s model gives rise to an exaggerated prediction of the slide’s end
resistance, especially for smaller values of the horizontal scale of fluctuation.

The second part of the work concerned an investigation of length effects on the re-
liability of very long slopes. The analyses demonstrated that, for a stationary random
process, the reliability changes in line with the principles of probability of multiple in-
dependent events. It was shown that a power law equation based on the assumption
of a series system composed of multiple independent elements gives a close fit to the
computed results, demonstrating that the probability of failure for long slopes may be
estimated from the detailed analysis of shorter and computationally less intensive 3D
slopes (as previously highlighted by Hicks and Spencer (2010), albeit for slopes of shorter
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length). The ability of RFEM to account for the possibility of failure at any location along
the analysed domain stimulated the comparison of RFEM with the length-dependent
models of Vanmarcke (1977b) and Calle (1985). It was shown that the three methods can
give significantly different results, depending on the value of the horizontal scale of fluc-
tuation (SOF) relative to the slope length and height, with RFEM predicting a lower slope
reliability than the two simpler methods in all cases. However, for large horizontal SOFs
compared to slope length, the results of the three methods are generally closer. Discrete
failure lengths were quantified using RFEM and compared with the failure lengths pro-
vided by the Vanmarcke (1977b) and Calle (1985) models, with the differences in failure
length (coupled with an evaluation of the different model assumptions) providing a pos-
sible reason for the differences in reliability indices. The effect of the α factor, used by
Dutch practice in Calle’s method, was thoroughly investigated and explained by variance
reduction theory. It was shown to be a function of the horizontal and vertical SOFs, and
of the slope dimensions. By incorporating this factor into the correlation function used
in Calle’s model, the reliability indices were shown be closer to the RFEM predictions.

7.2.4. INVESTIGATION OF SITE INVESTIGATION PLANS AND SLOPE DESIGNS

The conditional simulator was applied to two numerical examples to illustrate its po-
tential use for geotechnical site exploration and cost-effective design. It has been shown
that conditional simulations based on CPT data are able to increase the confidence in
a design’s success or failure. Optimum locations can be identified for the testing, as
was illustrated in the first example for 2 phases of site exploration. This highlights the
method’s potential use in directing site exploration programmes and thereby improv-
ing the efficient use of field measurements. Sampling intensity was also investigated in
the first example, with an optimal sampling distance of half the horizontal scale of fluc-
tuation being identified based on an exponential correlation function. For the second
example, conditional simulation led to the more cost-effective design of a slope (i.e. the
steepest slope), by meeting the design standards with respect to reliability while reduc-
ing the soil volume that needed to be excavated.

7.3. RECOMMENDATIONS FOR FURTHER WORK
Based on the Author’s experience, the following recommendations are made for future
work:

• Most of this thesis is devoted to reliability; that is, one minus the probability of fail-
ure. However, further developments of the framework have included the quantifi-
cation of slide volumes and lengths (i.e. the consequence) using a threshold dis-
placement approach, thereby providing a first step towards quantifying the risks
involved in a project, i.e. the probability of failure multiplied by the failure con-
sequence. So, a next step would be to quantify the risks involved in the design of
long slopes.

• The developed framework for 3D conditional simulation has been used in two
simple examples, but the same framework can be extended to include more com-
plicated examples (e.g. irregular sampling strategies such as stratified sampling,
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nested sampling, random sampling, and so on) for cost effective site investigation
plans and designs. Note also that the values obtained at the precise locations of the
measurements are rather far from being deterministic, because of measurement
uncertainties and model transformation errors. Hence, a next step could be to add
some noise on these measurements, i.e. to develop techniques to generate ran-
dom fields which are conditional, but not in an absolute manner; for example, Li
et al. (2015b) used the Markov Chain Monte Carlo method to generate conditional
samples of geologic profiles in a 2D plane. The resulting random fields would then
be random everywhere, but much less so in the neighborhood of the measure-
ments themselves. Moreover, although it has been found in this thesis that the
optimum CPT sampling space is around half of the horizontal scale of fluctuation,
the horizontal scale of fluctuation is, of course, unknown before carrying out a site
investigation. Therefore, the site investigation plans should preferably be an it-
erative process: an initial plan based on engineering judgment should be carried
out first; the point and spatial statistics can then be estimated from the initial in-
vestigation; then the site investigation plan can be refined to update the estimates
of the relevant statistics. Also, only ‘direct’ measurements corresponding to input
variables have been used in the current implementation of the conditional ran-
dom field simulator; the next step could be to incorporate indirect measurements
corresponding to system responses, such as deformations and pore pressure mea-
surements (e.g. for c-ϕ slopes), i.e. inverse modelling.

• The random finite element method is able to simulate multiple failures along the
length of a slope, although only a single failure is assumed in Vanmarcke’s and
Calle’s models, so this is one point of inconsistency in the comparison analyses
performed in this thesis. An interesting direction would be to develop, analyti-
cally, a model that is simply an extension of Vanmarcke’s model to be able to take
account of, e.g. two failures.

• The end effect in Vanmarcke’s and Calle’s models is likely to be overestimated, es-
pecially for relatively short slope failures. It may be intuitive to think that short
failures are less likely to occur due to larger end effects, but would the end effects
really be that large (in reality) when one thinks about the weakest path mecha-
nism? It would be interesting to look at the uncertainties associated with the end
faces in the two semi-analytical models.

• Different decisions (e.g. target reliability) need to be made, based on the different
length scales in a geotechnical structure. The present framework can be extended
to a larger scale, e.g. regional or national scale, based on the research presented
in Vanmarcke and Otsubo (2013), i.e. for longer slopes with multiple segments
having distinctly different properties (e.g. strength, load and geometry).

• The investigation carried out in this thesis has mainly focused on the short term
(i.e. undrained) behavior of a slope. More practical scenarios would be effective
stress analyses taking account of pore pressure accumulation and dissipation dur-
ing construction of a new structure, or during rainfall infiltration and evaporation
in the case of an existing structure.
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• At a small target probability of failure (e.g. as when the factor of safety based on
the mean shear strength is relatively large), the number of Monte Carlo realisa-
tions should be large in order to get more accurate and meaningful results around
F ≈ 1.0. In this case, subset simulation (or other estimator variance reduction
techniques) may be used to improve the performance of the Monte Carlo Method.
This has been done in 2D by various researchers. However, the gain in 3D would
be more apparent due to 3D analysis being very expensive (see for example, Xiao
et al. (2016) for the so-called auxiliary random finite element method (ARFEM)).

• A systematic comparative analysis with respect to FORM analysis for 3D slope re-
liability (e.g. Ji and Chan (2014); Ji (2014) used FORM to analyse 3D slope relia-
bility by considering only the longitudinal spatial variability) can be carried out
using the methodology presented in this thesis. In this way, the influence of spa-
tial variability in the other two directions may be investigated and the justification
provided for a simplified FORM analysis that ignores the variability in the cross-
sectional plane, thereby bypassing the high-dimensional problem that would oth-
erwise be encountered.
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A
HPC CLOUD AND GRID

COMPUTING

In the Monte Carlo simulation of a dyke, thousands of realisations of soil properties that
satisfy the point and spatial statistics of the soil often need to be generated using a ran-
dom field generator, so that the designed dyke reliability and risk (consequence) can be as-
sessed. However, the subsequent nonlinear finite element analysis for each realisation gen-
erally requires hundreds of plastic iterations before reaching an equilibrium state, which
is a time consuming process. Thus, running the analysis serially on a desktop computer
would be unfeasible. In order to make the calculations feasible, the Author has developed
a suitable framework for carrying out this kind of computational task, which, in this case,
is based on high performance computing (HPC) Cloud and Grid computing. This annex
presents the development of the computing framework for geotechnical computations in-
volving multiple realisations of physically large nonlinear problems, which has been used
in Chapters 4, 5 and 6 of this thesis.

Parts of this annex have been published in the Proceedings of the 23rd UK Conference of the Association for
Computational Mechanics in Engineering (Li et al., 2015d).
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A.1. INTRODUCTION
The Author has mainly investigated dyke safety using the random finite element method
(Li and Hicks, 2014; Li et al., 2013). For this purpose, thousands of realisations of soil
properties that satisfy the point and spatial statistics of the soil may be generated us-
ing a random field generator based on local average subdivision (Fenton and Vanmar-
cke, 1990), so that the designed dyke reliability and risk can be assessed. However, the
subsequent nonlinear finite element analysis for each realisation often requires hun-
dreds of plastic iterations before reaching an equilibrium state (Smith and Griffiths, 2005;
Spencer, 2007), which is a time consuming process. In order to make the calculations
feasible, the Author needed to develop a suitable framework for carrying out this kind of
computational task, which, in this case, is based on high performance computing (HPC)
Cloud and Grid computing. This chapter presents the development of the computing
framework for geotechnical computations involving multiple realisations of physically
large nonlinear problems.

There are basically two computing strategies for these largely independent calcula-
tions: i.e. Cloud computing and Grid computing. They will be discussed in Sections A.2
and A.3, respectively. The Author had access to the Dutch HPC Cloud service and Grid
e-infrastructures for carrying out the investigation presented in this annex.

A.2. CLOUD COMPUTING
In basic terms, Cloud computing can be seen as a virtualising environment where users
can build their own cluster comprised of multiple virtual machines (Infrastructure as a
Service, IaaS paradigm). Each virtual machine used by the user is created from a tem-
plate. This template is created from predefined resources (Orange color) provided by
surfSARA1 and user defined resources (Green color), see Fig. A.1. To deploy their ap-
plications, Cloud users install operating system images and their application software
on the Cloud infrastructure. Users are free to build their computing nodes (virtual ma-
chines) themselves by arranging CPU, memory, network and storage together. They can
interconnect them in their own private network (private cluster), or make (part of) them
reachable from the internet. The Cloud infrastructure has 960 HPC cores and 80 Light
cores (8GB RAM/core).

A.2.1. HARDWARES
The Dutch Cloud system is based on the following hardware (based on Februry, 2014):

• 30 High Performance Computing nodes:

– 19 nodes with 32 cores @ 2.13 GHz (Intel Xeon E7 "Westmere-EX")

– 11 nodes with 32 cores @ 2.70 GHz (Intel Xeon CPU E5-4650 0)

– 256 Gbyte RAM

– 2 × 10GE network

1SURFsara is a Dutch foundation that provides supercomputers, colocation, networks and high-end visualisa-
tion to academic institutions. https://www.surf.nl/en/about-surf/subsidiaries/surfsara/

https://www.surf.nl/en/about-surf/subsidiaries/surfsara/
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Figure A.1: Creation of Virtual Machines (source: Surfsara)
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• 10 "light" nodes:

– 8 cores (AMD Opteron 6212)

– 64 GByte RAM

– 1 × 10GE network

– 6 TByte local disk

• 1 High-Memory node:

– 40 cores @ 2.00 GHz (Intel Xeon CPU E7-4850)

– 2 TByte RAM

– 2 × 10GE network

– 6.4 TB local disk

– 851 SPecInt

A.2.2. ALLOCATED RESOURCES
The following resources were allocated for the Author’s project on the Cloud:

• 40,000 core hours of Cloud;

• 100GB of disk storage;

• 1TB of VirDir storage (i.e. virtual directory storage).

A.2.3. STRATEGY DESIGN
A master/worker design is implemented and adopted here. Shell scripts were written to
distribute all the jobs to the detected hosts. Once finished, the results are collected to
the master node, where the data in the separated files are loaded into one data file. This
data file is then transferred back to the virtual directory for backup and downloading to
the local machine for post processing. The procedure is shown in Fig. A.2.

The advantage is that the users control their own private environment and have full
control over their operating system (OS), libraries, etc. The disadvantage is that users
are responsible for all of the installation and maintenance. It requires significant effort
to get familiar with a few concepts, set up the virtual machines and design the workflow
pipelines, but once everything works the benefits are apparent, with effectively a linear
speed up.

A.3. GRID COMPUTING
The computing capacity on the Cloud is not as large as on the Grid, so it was decided
to also investigate using the Grid. Grid computing is a collection of geographically dis-
tributed computers, data storage facilities and services that can be dynamically joined to
reach a common goal involving non-interactive workloads with a large number of files.
A Grid user is able to use all this computing power simultaneously, without having to log
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Find available hosts

Task farming for multiple jobs/realisations

 Copy worker script to the available hosts

         Master script

Make directory structure on each VM

Copy codes or compiled programs to local VMs

Run main programs and arrange names for output !les

         Worker script

Transfer output !les to master node

Run collecting program to aggregate results

Backup resutls to VirDir and download to local machine

         Collect script

Figure A.2: Flow chart for Cloud computing: master/worker design
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in at all the different sites. For assessing the reliability of longer and longer dykes, typi-
cally 1000 realisations are needed to ensure a converged solution. As each realisation or
job is able to be run independently on a single serial computer, Grid computing is ideally
suitable for such a computational task.

Before starting to use the Grid, there are three steps that need to be finished. Firstly, a
Grid certificate needs to be authorized; secondly, a user interface account for submitting
jobs needs to be applied; thirdly, users should join a Virtual Organisation (VO) which
determines what resources the user can use.

A.3.1. ALLOCATED RESOURCES
The Author was granted access to the national computing and data storage environment
with the following resources (based on December, 2014):

• 500,000 core hours of Grid

• 500 GB of Disk storage

• 500 GB of Tape

• Computing clusters (4,400 cores for gina cluster, 900 cores for rug cluster and 3,800
cores for nikhef cluster).

All of the clusters are heterogeneous and, for example, the gina cluster has nodes with
Intel Xeon(R) CPU E5-2650 @ 2.60GHz, RAM memory 3-8 GB/core.

At first, the Author did not have a pre-knowledge about Linux and bash scripting.
After trying out the tutorials available at surfsara wiki2, the Author was able to adapt
the problem and design an implementation considering memory, wall clock time and
available storage space.

A.3.2. GRID STRATEGY DESIGN
Two approaches were tested for the Monte Carlo simulation involved in assessing the
reliability and risk of long 3D slopes:

1. Using parametric jobs through WMS;

2. Using the PiCaS (explained later) token pool server.

JDL PARAMETRIC JOBS USING WMS
The computational jobs are submitted by a JDL (job description language) file. A job
description language file is a file (called JDL file) used to describe jobs and their require-
ments, consisting of attribute value pairs. Grid middleware takes care of the distribution
of all the ‘jobs’ a user submits. Each job in the form of a JDL file is then submitted to
the Workload Management System (WMS). This system schedules the jobs and knows
which computer clusters in the Grid are ready to accept the jobs. These clusters each
consist of several machines. The Compute Element (CE) is the server which commu-
nicates with the WMS and accepts jobs. It then distributes the jobs to other machines

2https://grid.surfsara.nl/wiki/index.php/Using_the_Grid/

https://grid.surfsara.nl/wiki/index.php/Using_the_Grid/
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in the cluster, called Worker Nodes (WNs). These WNs are the machines which do the
actual work. When finished with a job they will report back to the CE, which in turn will
inform the user about the status of the job. In addition, Clusters have a storage server,
called the Storage Element (SE). These servers can be used to store files on a permanent
basis. Data on the SE’s can be replicated at other sites and jobs can be told to land only
on Worker Nodes which are close to data the jobs will operate upon.

A document about the attributes specification for the GLITE WMS is available (EGEE,
2005). One job type worth mentioning is the parametric job. A parametric job causes a
set of jobs to be generated from one JDL file. This is invaluable in cases where many
similar (but not identical) jobs must be run, as in the case of a Monte Carlo simulation
where many realisations need to be initiated from different seeds. This is achieved by
the parametric job having one or more parametric attributes described in the JDL. These
attributes are identified by the value of the key word _PARAM_; this value will be replaced
by the actual value of Parameters during the JDL expansion. The JobType in the JDL
should be Parametric.

The approach follows the procedures below:

1. Define a parametric job consisting of 50 realisations;

2. Submit 10 parametric jobs using a single bash script;

3. Check status of submitted jobs and retrieve the output results;

4. Download output files to local computer for post-processing.

The input data in this case are transferred to the Worker Nodes by sandbox (an at-
tribute in a JDL file), and the output data transferred from the WNs to the User interface
server using sandbox (if the amount of data are less than 10 MB). In the case that the
output data are more than 10 MB for each realisation, the Grid storage is needed.

THE PILOT FRAMEWORK USING PICAS
While the above approach works quite well, there are inevitably some jobs that fail (due
to time limit, system problems, etc.). It is a cumbersome task to track down these failed
jobs and resubmit them, with the potential risk of ending up with some of the resub-
mitted jobs also failing. The Pilot framework (PiCaS3, developed by Jan Bot, is a Python
module using couchDB as token pool server, see Fig A.3) was developed to handle failed
jobs automatically. The user should not look at the pilot jobs he/she has submitted, but
to the number of tokens being processed. There is no need to keep track of submitted
jobs and those (and only those) that fail are automatically identified and resubmitted.

In addition, when submitting a large number of jobs, users will often find that they
need to operate on the same database or some other static data source. For every job
submission this database then has to be copied to the node the job is running on. This
introduces a large overhead per job. A second advantage of using PiCas is the reduced
overhead of job submission. Once a pilot job is in place it will consume tokens as long as
there are any, or its wall clock time (the maximum time a job is allowed to run) is up. This
can also be advantageous for jobs that need to transfer a large data file. In those examp-

3https://github.com/jjbot/picasclient

https://github.com/jjbot/picasclient
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Login to PiCaS database

Delete tokens in database if any

 Modify main input data !le and run bash script

to prepare input datasets

         Create Tokens

Run Python scripts to create tokens and token views

Submit pilot jobs through WMS

Reset token views for failed jobs and resubmit 

until all tokens are done

    Submit pilot jobs

Run bash script to collect output data 

from Grid Storage to User Interface 

Download output data from UI to local machine

Post processing

         Collect results

Figure A.3: Flow chart for Grid computing: pilot framework
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les where a database should be downloaded from a SE to the Worker Node where the job
is running, it only needs to be downloaded once if the pilot framework is used.

Whenever a token is requested, couchDB returns the next document which is avail-
able (i.e. a token with attributes lock=0 and done=0). If a document is processed with the
Python/PiCaS script, the ‘lock’ is set to the current time. Whenever the script is done, it
sets ‘done’ to the current time. This allows multiple instances of your scripts on different
locations to work on different samples from the same collection (pool).

The working philosophy of the pilot framework is shown in Fig. A.4.
As seen in Fig. A.4, a filled token pool is needed. The CouchDB is used for this. First,

request a database with SurfSARA. Once the database is in place it should be empty. It
can be popluated using the createtokens.py script. For PiCaS to know which tokens it
whould request, a view needs to be created in CouchDB. First go to the couchdb pool
server4 and select the database. A Python script has been written to create the views.

A.4. IMPLEMENTATION OF A PILOT FRAMEWORK FOR RFEM
The pilot framework for Monte Carlo simulation has been implemented particularly for
the computational work of this thesis. The implementation makes use of the Python
library modules couchdb and picas. A number of shell scripts (.sh files) and Python script
(.py files) were written to automate the whole process.

The directory tree on the UI is:

geomodel
Runprocess

sandbox
couchdb.tar
picas.tar
scripts.tar
pilot.sh
runprocess.py
runprocess.sh
p67exe
input1
input2

runprocess.jdl
jobsubmit.sh
collect2ui

copyDirfromGrid.sh
Tokens

couchdb
picas
datasets
createTokens.py
createViews.py
resetTokens.py

4https://picas.grid.sara.nl:6984/_utils/index.html

https://picas.grid.sara.nl:6984/_utils/index.html
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deletedocs.py
p67.dat
prepinputdata.sh

The steps are:

1. Start a Grid session

2. Prepare tokens in the pool server and add input data to the tokens. This is done in
the <Tokens> dir in the Grid user interface:

(a) Upload p67.dat (the input data file) and run prepinputdata.sh to generate the
input files in sub-dir <datasets>

(b) In directory <Tokens>, run createTokens.py and createViews.py, check on the
server if the Tokens and Token views have been generated successfully

3. Try to run on the UI (the user interface computer as a computing node):

(a) Compile source code in directory <yourdirname>; this will produce an exe-
cutable, say, p67exe

(b) Copy p67exe to folder Runprocess/sandbox

(c) Run . pilot.sh $PICAS_DB $PICAS_USR $PICAS_USR_PWD

(d) If any locked tokens after some time: go back to <Tokens> directory run re-
setTokens.py and rerun pilot.sh

4. Run on the Grid by JDL:

(a) Go back to <Runprocess> dir

(b) Modify runprocess.jdl and runprocess.sh (basically the name of .exe and out-
put files names and the directory name on the Grid storage

(c) Submit jobs/job status and results retrieval

A.5. PERFORMANCE
For high memory jobs (as is the case in the current investigation), it is the gina cluster
that is used. The computing capacity is 4400/2 = 2200 jobs (it has 3-8 GB memory per
core on the gina cluster and 2 free cores are needed for a single 6 GB job).

In order to investigate the length effect, various slope lengths with the same soil
property statistics need to be analysed. Here, an example of slope length L = 50-500
m with an interval of 50 m is presented (with all cases comprising 1,000 realisations).
The timings for the 10 cases are shown in Fig. A.5 in terms of probability density func-
tions. Also, the average time and maximum time for a single realisation are tabulated in
Table A.1 in seconds, minutes and hours.

The average time of one realisation for the different cases is in the range of 15 minutes
to 3 hours, and the maximum time is in the range of 1 to 9 hours. The wall clock time
should be considered carefully, as, in the Grid system, short queues are limited to 4 hours
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Figure A.5: Timings for slope stability calculations with various slope lengths L
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and medium queues to 36 hours. The decision on the requirement for jobs to be submit-
ted to the Grid is based upon the maximum time. For example, for the first 4 cases (i.e. L
ranging from 50 m to 200 m), the short queues suffice. However, for the other cases, the
medium queues must be specified in the JDL file. There is no point in submitting short
jobs to medium queues, as the waiting time is usually longer in the medium queues. On
the other hand, if a long job is submitted to a short queue, it could result in a large pro-
portion of job failures. So, a general idea of how long one realisation takes for each case
helps to improve the calculation efficiency.

With all the available resources, it is possible to carry out a detailed investigation for
a 500 m long slope. Usually it takes 15-18 hours to finish 2,000 jobs for the 500 m case,
including the waiting time in the queue and the actual calculation time (i.e. 2.9 hours on
average). In comparison, running the analysis serially would be unfeasible, taking 250
days (3 hours × 2000 realisations / 24 = 250), which clearly demonstrates the power of
Grid computing. Even the 50 m case could take as long as 25 days (0.3 × 2000 / 24 = 25)
on a standard desktop computer, which is still unacceptable in most cases.

For scientific purposes, it is always necessary to carry out a sensitivity analysis for
several sets of statistics. For example, when investigating the influence of anisotropy of
the heterogeneity on the reliability of a long 3D slope, about 10 cases are needed. In such
cases, the benefits are clearly more apparent. It is worth mentioning that, for the 50 m
case, it takes about 30 minutes per realisation on the Cloud virtual machines, which is
2 times slower than on the Grid. This is the penalty of using virtual machines to ensure
the portability of Cloud applications across all types of real hardware.

One may choose to run 10 realisations for 1 job instead of 1 realisation per job to
reduce the job submitting overhead (i.e. mainly the waiting time in the queue, which
could take 0-5 hours depending how busy the clusters are at that moment). However,
the latter has the advantage of downloading and post-processing the output results for
one set of input data, while, at the same time, submitting a second job and waiting for
the results for a second set of input data.

A.6. CONCLUSIONS
Two computational computing strategies have been developed to cope with a tradition-
ally challenging computational task using desktop computers; one based on HPC Cloud
(small capacity) and the other based on Grid computing (larger capacity). They are par-
ticularly suitable for many largely independent calculations for physically large and time
consuming problems. These HPC strategies are readily applicable for researchers de-
manding a great deal of workload in various scientific fields and they provide a way for
researchers to work ‘out of the box’ to achieve their scientific goals. Although it takes
some time to get familiar with the computing environment that is not commonly used
by researchers in, say, the engineering field, it is well worth the effort. Bash scripts and
Python scripts developed by the Author can be easily modified. The modification is only
limited to organising the input and output files according to the user’s particular project.

Due to the high computational requirements for a probabilistic analysis of such a
physically large problem, as presented in this thesis, Grid computing technologies were
used to conduct the investigation, meaning that 1 year of serial computational analysis
could be undertaken in a single day in parallel.
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This appendix shows the convergence plots of the mean and standard deviation (SD) of
the realised factor of safety (FR ) from the RFEM analyses in Chapters 4 and 5.
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Figure B.1: Mean of the realised factor of safety versus number of MC realisations (θh = 6 m, L = 50 m)
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Figure B.2: SD of the realised factor of safety versus number of MC realisations (θh = 6 m, L = 50 m)
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Figure B.3: Mean of the realised factor of safety versus number of MC realisations (θh = 24 m, L = 50 m)
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Figure B.4: SD of the realised factor of safety versus number of MC realisations (θh = 24 m, L = 50 m)
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Figure B.5: Mean of the realised factor of safety versus number of MC realisations (θh = 100 m, L = 50 m)
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Figure B.6: SD of the realised factor of safety versus number of MC realisations (θh = 100 m, L = 50 m)
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Figure B.7: Mean of the realised factor of safety versus number of MC realisations (θh = 12 m, L = 500 m)
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Figure B.8: SD of the realised factor of safety versus number of MC realisations (θh = 12 m, L = 500 m)
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Figure B.9: Mean of the realised factor of safety versus number of MC realisations (θh = 24 m, L = 500 m)
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Figure B.10: SD of the realised factor of safety versus number of MC realisations (θh = 24 m, L = 500 m)
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Figure B.11: Mean of the realised factor of safety versus number of MC realisations (θh = 50 m, L = 500 m)
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Figure B.12: SD of the realised factor of safety versus number of MC realisations (θh = 50 m, L = 500 m)
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Figure B.13: Mean of the realised factor of safety versus number of MC realisations (θh = 100 m, L = 500 m)
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Figure B.14: SD of the realised factor of safety versus number of MC realisations (θh = 100 m, L = 500 m)
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Hereafter, and with reference to the notation used in Chapter 5, σ2
t = s̃2, σ2

v = s̃2
v , σ2

h = s̃2
h .

Consider 3 CPT profiles, where each consists of n data points: a1, a2, . . . , an ; b1,b2, . . . ,bn ;
c1,c2, . . . ,cn . The mean of each CPT profile is as follows:

ma = 1

n

n∑
i=1

ai ;

mb = 1

n

n∑
i=1

bi ;

mc = 1

n

n∑
i=1

ci .

(C.1)

The mean of all data points from the 3 CPT profiles is

µ=
(

n∑
i=1

ai +
n∑

i=1
bi +

n∑
i=1

ci

)
/3n = (ma +mb +mc )/3 (C.2)

The variance of each CPT profile is as follows:

σv1
2 = 1

n

n∑
i=1

a2
i −ma

2;

σv2
2 = 1

n

n∑
i=1

b2
i −mb

2;

σv3
2 = 1

n

n∑
i=1

c2
i −mc

2.

(C.3)

The average of the 3 vertical variances is

σv
2 = 1

3

(
σv1

2 +σv2
2 +σv3

2)= 1

3

(
1

n

n∑
i=1

a2
i −ma

2 + 1

n

n∑
i=1

b2
i −mb

2 + 1

n

n∑
i=1

c2
i −mc

2

)
(C.4)

The horizontal variance (of the 3 means) is

σh
2 = 1

3

(
ma

2 +mb
2 +mc

2)−µ2 (C.5)

Hence,

σh
2 +σv

2 = 1

3

(
1

n

n∑
i=1

a2
i +

1

n

n∑
i=1

b2
i +

1

n

n∑
i=1

c2
i

)
−µ2 = 1

3n

(
n∑

i=1
a2

i +
n∑

i=1
b2

i +
n∑

i=1
c2

i

)
−µ2 =σt

2

(C.6)



SUMMARY

Highway embankments, river dykes and sea dykes usually have a uniform cross-section
and extend for a long distance in the third dimension. These long soil structures are
generally characterised by spatially varying soil properties, i.e. soil heterogeneity. Slope
stability failures of these structures may have significant economic and societal conse-
quences. Thus, it is of particular interest for engineers to investigate the influence of soil
spatial variability on the stability and failure mechanisms of long ‘linear’ structures. For
example, earthen levee flood protection systems can be viewed as series systems, where
failure at one location, or failure of one component, can result in catastrophic failure of
the entire flood protection system and result in tragic loss of life, damage to fundamen-
tal infrastructure, and substantial economic impact to the immediate and surrounding
regions. In order to ensure the desired level of flood protection system performance,
standards in the Netherlands explicitly require probabilistic designs. For example, this
may include the use of semi-analytical tools, such as Calle’s 2.5D method and the 3D
method of Vanmarcke. However, these (semi-) analytical models make certain simplify-
ing assumptions; in particular, that of a finite length cylindrical failure mechanism.

The random finite element method (RFEM) has found increasing use for long en-
gineered slopes in recent years, due to its conceptual simplicity to implement and its
capability to comprehensively analyse the effects of soil spatial variability. As a simu-
lation method, RFEM can be applied to large and complex systems, without the need
to include some of the rigid idealisations and/or simplifications necessary for analytical
solutions, resulting in more realistic models. Therefore, RFEM can be used as a compar-
ative tool in investigating the performance of simpler methods. Its biggest disadvantage
is that it tends to be computationally expensive.

The main body of this thesis is devoted to comparative studies (in terms of statistics
of the realised factor of safety, the reliability and the failure consequences with respect
to potential failure length and volume) of the three above models, for a range of spa-
tial statistics of the soil shear strength. In particular, the relative performance of RFEM
and Vanmarcke’s model is investigated for a relatively short slope (of length 10 times
the height) for which the length effect may be ignored. For horizontal scales of fluc-
tuation that are large compared to the slope length, the two approaches give similar
results, because most of the failure surfaces computed in the RFEM analyses are then
approximately cylindrical and propagate along the entire length of the slope, thereby
matching Vanmarcke’s assumption and resulting failure length for this limiting condi-
tion. In contrast, for smaller values (i.e. less than the slope length), the two approaches
can give significantly different results, with the RFEM response of the slope generally
being much weaker than the Vanmarcke solution, apparently due to different predicted
failure lengths and the influence of the cylinder ends in the simpler model.

A second comparative study using all three models involves the so-called length ef-
fect (i.e. the increase of the probability of failure as the total slope length increases) for
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very long slopes (of length up to 100 times the height), using HPC strategies developed in
this thesis. In contrast to the level crossing approach adopted in the two (semi-) analyt-
ical models, a simple power law equation was utilised with RFEM, which was validated
based on the principles of probability of multiple independent (failure) events within
the length of the slope. It is shown that RFEM predicts the smallest reliability indices
for the range of cases considered. However, the solutions predicted by Vanmarcke’s and
Calle’s models move closer to the RFEM results at larger horizontal scales of fluctuation.
Discrete failure lengths have been quantified in RFEM and compared with predicted fail-
ure lengths using the simpler models, in order to provide a rational explanation for the
differences observed. Moreover, the α factor used with Calle’s model in Dutch practice
was investigated thoroughly via random fields for various degrees of spatial variability,
enabling a comprehensive evaluation of its influence.

While the unconditional RFEM is used as a baseline stochastic method to make the
comparative studies, the conditional RFEM was implemented and applied in the last
part of the thesis to two example geotechnical applications. The first example focuses
on the efficient design of site investigation plans (i.e. optimum locations and sampling
intensity) in a 3D soil deposit. A sampling efficiency index was defined and used as
an indicator of the efficiency of a site’s plan. A ‘posterior’ distribution of the structure
performance, after taking account of the spatial distribution of all the measured CPT
data, was derived and showed a significant reduction in the uncertainty compared to
the ‘prior’ distribution of the structure response by using the unconditional simulation
based on random field theory. An optimal sampling position for the excavation of a slope
was identified, both for a single stage of site investigation and a two stage site investiga-
tion. Moreover, an optimal sampling distance of half the horizontal scale of fluctuation
was identified when an exponential correlation function is used. The second example
is devoted to cost-effective designs of an excavated 3D slope. For the problem anal-
ysed, a steeper slope was found to be sufficiently reliable (i.e. in line with Eurocode 7)
when conditional random fields were used. This was in contrast to the finding of un-
conditional simulations, due to the greater uncertainty due to only making partial use
of available measurement data. The potential benefit of a 3D conditional simulation in
geotechnical cost-effective designs has therefore been highlighted.



SAMENVATTING

Rivier- en zeedijken en andere infrastructurele taluds hebben vaak een uniforme dwars-
doorsnede en zijn langgerekt in de richting haaks op deze doorsnede. Deze langgerekte
taluds kennen over het algemeen ruimtelijke variatie van grondeigenschappen, ofwel
heterogeniteit van de grond. Hellinginstabiliteit van deze taluds kan grote economische
en sociale gevolgen hebben. Het is om die reden van bijzonder belang dat ingenieurs de
invloed van ruimtelijke variabiliteit van de grond op de stabiliteit en bezwijkingsmecha-
nismes van deze langgerekte werken onderzoeken. Een rivierdijk bijvoorbeeld, kan ge-
zien worden als een aaneenschakeling van compartimenten, waarbij het bezwijken van
één compartiment leidt tot het falen van de volledige waterkering, met mogelijk verlies
van mensenlevens, beschadiging van cruciale infrastructuur en substantiële economi-
sche schade aan directe en aangrenzende regio’s tot gevolg. Ten einde het gewenste ni-
veau van waterkerende functie te kunnen garanderen, vereisen toetsingsnormen in Ne-
derland probabilistische ontwerpmethodes. Mogelijke probabilistische ontwerpmetho-
des zijn Calle’s 2.5D methode of de 3D methode van Vanmarcke. Deze (semi-)analytische
methodes zijn echter gebaseerd op een aantal vereenvoudigende aannames, met name
die van een cilindrisch bezwijkingsmechanisme van eindige lengte.

De random eindige elementen methode (RFEM) wordt de laatste jaren meer en meer
gebruikt voor het doorrekenen van ontwerpen van langgerekte taluds vanwege de con-
ceptueel eenvoudige implementatie en het vermogen de effecten van variabiliteit in de
grond volledig in rekening te brengen. Als simulatiemethode kan RFEM toegepast wor-
den op grote en gecompliceerde systemen, zonder de conceptuele vereenvoudigingen
die nodig zijn voor analytische methodes. Dit resulteert in een realistischer model van
het te analyseren systeem en zodanig kan RFEM gebruikt worden als referentie in het
onderzoek naar de prestaties van eenvoudigere methoden. Het grootste nadeel is echter
dat RFEM veel rekenkracht kan eisen.

De hoofdmoot van dit proefschrift is gewijd aan vergelijkingsstudies tussen de drie
eerdergenoemde modellen, voor een reeks statistieken van de ruimtelijke verdeling van
schuifsterkte van de grond. Deze vergelijkingsstudies zijn gedaan met betrekking op de
statistische verdeling van de berekende veiligheidsfactoren, de betrouwbaarheid van de
methode en de verdeling van bezwijkingslengte en–volume. Met name de onderlinge
vergelijking tussen de prestaties van RFEM en het Vanmarcke model is onderzocht. Dit
is gedaan voor relatief korte taluds (met een lengte-hoogte verhouding van 10), waar-
voor het zogenaamde lengte-effect verwaarloosd kan worden. Deze methodes blijken
vergelijkbare resultaten te geven voor horizontale correlatielengtes die groot zijn ten op-
zichte van de taludlengte, doordat de berekende glijvlakken in RFEM bij benadering ci-
lindrisch zijn en daarbij de volledige lengte van het talud beslaan. Zodoende komen ze
overeen met de aannames in de Vanmarcke methode. Voor kleinere correlatielengtes
(kleiner dan de taludlengte) kunnen beide modellen sterk afwijkende resultaten geven,
waarbij RFEM een veel zwakker gedrag voorspelt dan het Vanmarcke model. Dit blijkt
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te verklaren door het verschil in bezwijkingslengte en de invloed van de einden van het
cilindrisch schuiflichaam in het simpelere model.

Een tweede vergelijkende studie tussen de drie modellen gaat in op het zogenoemde
lengte-effect (de toenemende kans op bezwijken bij een toenemende taludlengte) voor
zeer lange taluds (tot 100 keer de taludhoogte). Hierbij wordt gebruik gemaakt van een
HPC strategie, waarvan de ontwikkeling staat beschreven in dit proefschrift. In tegen-
stellig tot de ‘level-crossing approach’ die gebruikt wordt in de twee (semi-)analytische
modellen, wordt voor RFEM een eenvoudige machtsvergelijking gebruikt. Deze machts-
vergelijking is gevalideerd aan de hand van de waarschijnlijkheid meerdere onafhan-
kelijke afschuivingen te vinden over de lengte van het talud. Simulaties tonen aan dat
RFEM leidt tot de kleinste betrouwbaarheidsindices voor de reeks aan onderzochte ca-
ses. De resultaten van de Vanmarcke en Calle modellen blijken de resultaten van RFEM
echter te benaderen voor grotere horizontale correlatielengtes. Discrete bezwijklengtes
zijn bepaald in RFEM en vergeleken met de bezwijklengtes die voorspeld worden door de
eenvoudigere modellen om zo een rationele verklaring te geven voor de waargenomen
verschillen. Tevens is de α-factor zoals deze in Nederland in de praktijk gebruikt wordt
voor Calle’s model, grondig onderzocht met behulp van random velden voor een varia-
tie aan karakteristieke waarden voor ruimtelijke variabiliteit. Dit maak een uitgebreide
gevoeligheidsanalyse mogelijk.

Als referentie voor de stochastische methodes in de vergelijkingsstudies is ongecon-
ditioneerde RFEM gebruikt. In het laatste deel van dit proefschrift is ook geconditio-
neerde RFEM geïmplementeerd. De geconditioneerde RFEM is vervolgens toegepast in
twee voorbeelden van geotechnische problemen. Het eerste voorbeeld gaat in op het
opzetten van een plan voor efficiënt bodemonderzoek (de optimalisatie van locatie en
intensiteit van metingen) in een driedimensionaal grondvolume. Een efficiëntie-index
voor individuele metingen is gedefinieerd en gebruikt als indicator voor de efficiëntie
van het plan voor een verkennend bodemonderzoek. De vergelijking van de waarschijn-
lijkheidsverdeling van het taludgedrag met en zonder het conditioneren aan de hand
van de sonderingsdata heeft een significante afname van onzekerheid als gevolg van
conditioneren aangetoond. Een optimale plaatsing van veldmetingen voor het ontwerp
van een talud is bepaald, voor verkennend bodemonderzoek bestaand uit zowel één als
twee meetrondes. Tevens is, onder aanname van een exponentiele correlatiefunctie, de
optimale meetdichtheid bepaald op een half keer de horizontale correlatielengte. Het
tweede voorbeeld is gewijd aan het 3D modelleren van een ontgraven talud. In dit voor-
beeld blijkt een steiler talud voldoende betrouwbaar te zijn (volgens Eurocode 7) wan-
neer geconditioneerde random fields worden gebruikt. Dit in tegenstelling tot ongecon-
ditioneerde simulaties, waar de onzekerheid groter is ten opzichte van geconditioneerde
simulaties door het niet optimaal benutten van beschikbare data. Hiermee is het moge-
lijke voordeel van het gebruik van geconditioneerde simulaties in een kosten-efficiënt
geotechnisch ontwerp gedemonstreerd.
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NOTATION LIST

This list defines acronyms and symbols used within the body of the thesis.

Acronyms

ARFEM auxiliary random finite element method

BLUE best linear unbiased estimation

CR centre of rotation

CIUC consolidated isotropic undrained triaxial compression test

COV coefficient of variation

CPT cone penetration test

DMT dilatometer test

DST direct shear test

FE finite element

FORM first order reliability method

FOSM first order second moment method

HPC high performance computing

LAS local average subdivision

LHS left hand side

MC Monte Carlo

MCS Monte Carlo simulation

PDF probability density function

QRA quantitative risk assessment

RFEM random finite element method

RHS right hand side

RSM response surface method

RVE representative volume element
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SD standard deviation

SOF scale of fluctuation

SPT standard penetration test

SRSM stochastic response surface method

UC unconfined compression test

UU unconsolidated undrained triaxial compression test

VM Vanmarcke

VST vane shear test

Greek letters

α factor used in Calle’s model, Chapter 5

βbc reliability index for critical failure length bc , Chapters 4, 5

β reliability index, Chapters 2, 4; reliability index in 2D, Chapter 5

βl reliability index considering the end effect, Chapter 5

βb reliability index for failure length b, Chapter 5

βlc reliability index considering length and end effects (or level crossing), Chapter 5

∆x ‘effective horizontal’ segment length along failure arc, Chapter 4

∆y lag distance between local averages sb or s1 in the slope length direction, Chap-
ter 5

∆z lag distance in the vertical direction, Chapter 5

∆z1 ‘effective vertical’ segment length along failure arc near slope crest, Chapter 4

∆z2 ‘effective vertical’ segment length along failure arc near slope toe for a slope with
a foundation layer, Chapter 4

δ ‘characteristic distance’, Chapter 4

δh horizontal correlation distance, Chapter 5

δv vertical correlation distance, Chapter 5

∆x ,∆y interval distances between CPTs in the horizontal plane, Chapter 6

γ (τ) variogram, Chapter 6

γ(T ) variance function, Chapter 4

Γ2() variance reduction factor, Chapters 4, 5
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γγγlhs left-hand-side matrix, Chapter 6

γγγr hs right-hand-side vector, Chapter 6

λi unknown weighting factor associated with observation point xi , Chapter 6

λλλq weights subvector for CPTq , Chapter 6

λλλx weights vectors, Chapter 6

µ mean value of soil property, Chapter 2; Lagrangian parameter, Chapter 6

µi mean value of variable xi , Chapter 2

µµµ vector of mean values of variables, Chapter 2

∇Fs gradient vector storing derivatives of F with respect to si , Chapter 5

ν Poisson’s ratio, Chapters 4, 5

∇g gradient vector, Chapter 2

ϕ(λi ,µ) objective function, Chapter 6

Φ cumulative standard normal distribution function, Chapters 4, 5

ϕ friction angle, Chapter 2

ρ̂ experimental correlation function, Chapter 6

ρ correlation coefficient, Chapter 2

ρ() correlation function, Chapters 4, 5

ρb correlation function of local average variables, Chapter 5

ρF correlation function of averaged shear strength over cross-sections, Chapter 5

σ2
e variance of the Kriging error , Chapter 6

σ standard deviation of soil property, Chapter 2

σ2
h variance of the average values of individual boreholes, Appendix C

σi standard deviation of variable xi , Chapter 2; standard deviation of the realised
factor of safety for the conditional simulation based on column position i , Chap-
ter 6

σ2
t total ‘point’ variance, Appendix C

σu standard deviation of the realised factor of safety for the unconditional simula-
tion, Chapter 6

σ′
v effective vertical stress, Chapter 2
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σ2
v average of the variances of different individual boreholes, Appendix C

σ̂2
X estimated variance, Chapter 6

τ lag distance, Chapters 2, 4, 5

τ1 lag distance in the vertical direction, Chapters 4, 5

τ2,τ3 lag distances in the lateral directions, Chapters 4, 5

θ scale of fluctuation, Chapters 2, 4, 5

θ1 vertical SOF, Chapter 4

θ2,θ3 lateral SOF, Chapter 4

θe equivalent SOF, Chapter 4

θh horizontal scale of fluctuation, Chapters 2, 4, 5

θv vertical scale of fluctuation, Chapters 2, 4, 5

θi so isotropic scale of fluctuation, Chapter 3

υβb
average number of excursions per unit length or mean (decay) rate of threshold
level down-crossings, Chapter 5

ξ anisotropy of the heterogeneity, Chapters 4, 5

Latin letters

A coefficient matrix in LAS, Chapter 3

A cross-sectional area above the sliding arc, Chapters 4, 5

a spatial range, Chapter 2

B covariance matrix in LAS, Chapter 3

b failure length, Chapters 4, 5

bc critical failure length, Chapters 4, 5

Ĉ experimental covariance function, Chapter 6

C covariance matrix, Chapter 2; coefficient matrix in LAS, Chapter 3

c cohesion, Chapter 2; factor defining the variance associated with the end resis-
tance, Chapter 5

c1,c2 constants used in approximation of time spent in Kriging, Chapter 6

ci soil cohesion, Chapter 2

C I compressibility index, Chapter 2
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C covariance function, Eq. 3.6, Chapter 3

c00 variance of Z (x0) estimated at the target location x0, Chapter 6

ci 0 covariace between Z (xi ) and Z (x0), Chapter 6

ci j covariance between Z (xi ) and Z (x j ), Chapter 6

[C ] covariance matrix, Chapter 5

D domain size, Chapter 3

d horizontal distance from the centre of rotation to the centre of gravity of the
rotating body, Chapter 4

d0 factor representing the end effect, Chapter 4

dc random cell size, Chapter 3

dr,s components of the submatrix vi , j , Chapter 6

dt components of the subvector vp , Chapter 6

E elastic modulus, Chapters 4, 5

Eu approximation error, Chapter 6

E[] expectation operator, Chapters 2, 6

F̄ ′, F̃ ′ mean and standard deviation of F ′, Chapter 5

F̄b mean factor of safety for failure length b, Chapters 4, 5

F̄l , F̃l mean and standard deviation of Fl , Chapter 5

F̄R mean realised factor of safety, Chapters 4, 5

F̄ mean factor of safety for the plane strain condition, Chapter 4

F̄ , F̃ mean and standard deviation of factor of safety for plane strain condition, Chap-
ter 5

F̄bc mean factor of safety for critical failure length bc , Chapters 4, 5

F̃b standard deviation of factor of safety for failure length b, Chapters 4, 5

F̃R standard deviation of realised factor of safety, Chapters 4, 5

F̃bc standard deviation of factor of safety for critical failure length bc , Chapters 4, 5

F failure domain, i.e. G(x) ≤ 0, Chapter 2; cross-sectional safety factor, Chapter 5

F ′ first order approximation of cross-sectional safety factor, Chapter 5
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F+,F− value of F evaluated using strength parameter values equal to the mean plus or
minus one standard deviation, Chapter 5

Fb factor of safety associated with failure length b, Chapters 4, 5

Fl factor of safety for finite failure of length l , Chapter 5

FR realised factor of safety, Chapters 4, 5

FT traditional factor of safety based on the mean property value, Chapter 5

Fbc factor of safety for critical failure length bc , Chapters 4, 5

F S factor of safety, Chapter 2

Ḡ ′,G̃ ′ mean and standard deviation of G ′, Chapter 5

G limit state surface/function or performance function, Chapters 2, 5

g limit state surface/function or performance function, Chapter 2

G ′ approximate performance function, Chapters 2, 5

gc critical value of limit state surface/function, Chapter 2

H slope height, Chapters 4, 5

i , j numbering subscripts; sampling column position, Chapter 6

Ise sampling efficiency index, Chapter 6

k number of rows in the x direction, Chapter 6

l expected length of a potentially unstable zone, Chapter 5

L slope length in the third dimension, Chapters 4, 5

l ,mi , ni coefficients in the polynomial performance function, Chapter 2

La length of the assumed circular failure arc, Chapters 4, 5

L A ,LB two slope lengths having the same statistical strength characteristics, Chapter 5

m factor used in FOSM and RSM, Chapter 2; number of CPT profiles within each
row in the y direction, Chapter 6

Me end resisting moment for one of the two end boundaries of the cylinder, Chapter
5

Mo overturning moment, Chapters 4, 5

Mr resisting moment, Chapters 4, 5

Mo,b overturning moment for failure length b, Chapter 5
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Mr,b resisting moment for failure length b, Chapter 5

N SPT blow count value, Chapter 2; total number of Monte Carlo realisations, Chap-
ters 4, 5; number of measurement locations, Chapter 6

n number of data points for each CPT profile, Chapter 6

Nβ average number of excursions per unit length (or mean down-crossing rate),
Chapter 5

n f number of points in the field, Chapter 6

N f number of realisations where slope failed (i.e. realised factor of safety is smaller
than 1.0), Chapter 5

nx ,ny ,nz number of points in the three Cartesian directions, Chapter 6

ncpt number of CPTs in y direction, Chapter 6

O(N 2) big O notation (the algorithm has order of N 2 time complexity for a problem of
size Z ), Chapter 6

O(N 3) big O notation (the algorithm has order of N 3 time complexity for a problem of
size Z ), Chapter 6

P vector of parent cells, Chapter 3

P () probability of an event, Chapters 4, 5

p, q numbering subscripts, Chapter 6

PF system probability of failure, Chapter 5

P f probability of failure, Chapter 5

p f probability of failure, Chapter 2

p f (bc ) probability of failure for critical failure length bc , Chapters 4, 5

P f (L A) probability of failure for a slope of length L A , Chapter 5

Po DMT lift-off pressure, Chapter 2

PS system probability of survival (i.e. reliability), Chapter 5

Pi parent cell values in LAS, Chapter 3

P[] probability of an event, Chapter 2

Q vector of child cells, Chapter 3

qc CPT tip resistance, Chapter 2

Q j child cell values in LAS, Chapter 3
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R correlation matrix, Chapter 2; covariance matrix in LAS, Chapter 3

R reliability in RFEM, Chapter 5

r autocorrelation distance, Table 2.1, Chapter 2; radius of the failure arc, Chapters
4, 5

r ′ ‘effective’ lever arm length for the end faces, Chapter 5

r, s, t numbering subscripts, Chapter 6

R,r ellipse radius in FORM, Fig. 2.5, Chapter 2

Re contribution to the resisting moment from the end sections, Chapters 4, 5

s̄b mean of sb , Chapter 4

s̄ mean undrained shear strength, Chapters 4, 5

s̄ vector of the means of n random variables, Chapter 5

S covariance matrix in LAS, Chapter 3

s vector of n random variables (i.e. undrained shear strength), Chapter 5

s̃ standard deviation of undrained shear strength, Chapters 4, 5

s̃2
h variance of the average strength values of individual boreholes, Chapter 5

s̃2
v average of the strength variances of different individual boreholes, Chapter 5

s undrained shear strength, Chapters 4, 5

s1 average shear strength over unit length, Chapters 4, 5

sb average shear strength over length b, Chapters 4, 5

Sp state parameter, Chapter 2

su undrained shear strength, Chapter 2

T averaging interval, Chapter 4

t (N ,n f ) total time spent in Kriging, Chapter 6

U standardised random variable, Chapters 4, 5

u uncertainty reduction ratio, Chapter 6

ua uncertainty reduction ratio when all CPT profiles have been used, Chapter 6

un uncertainty reduction ratio when using a neighbourhood, Chapter 6

V coefficient of variation of soil properties, Chapter 2
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VF coefficient of variation of the plane strain factor of safety, Chapter 5

Vs coefficient of variation of the ‘point’ shear strength, Chapters 4, 5

VMr coefficient of variation of the plane strain resisting moment, Chapter 5

Vs1 coefficient of variation of the average strength over the failure surface with a unit
length, Chapters 4, 5

vi , j matrix representing the correlation structure between CPTi and CPT j , Chapter
6

vp vector representing the correlation structure between the estimation point and
CPTp , Chapter 6

var[] variance operator, Chapter 6

W weight per unit length of the material located above the sliding surface, Chapter
4

x vector representing the set of random variables, Chapter 2; location point in
space, Chapter 6

xN standardised or reduced x, Chapter 2

x out-of-slope-face direction, Chapters 4, 5

xi , Xi random variable, Chapter 2

xN
i component of xN , Chapter 2

y slope length direction, Chapters 4, 5

yo centre position of the failure surface, Chapter 5

Ẑ (x0) best linear unbiased estimation (BLUE) of the soil property at location x0, Chap-
ter 6

z slope height direction, Chapter 5

Z soil properties, Chapter 6

Z1, Z2, . . . , ZN observations of the random field Z (x) at points x1, x2, . . . , xN , Chapter 6

Zi equal to Z (xi ) (i = 1, 2, . . . , N ), Chapter 6

Zkm(x) Kriged field based on measured values at xi (i = 1,2, . . . , N ), Chapter 6

Zks (x) Kriged field based on unconditionally (or randomly) simulated values at sam-
pling positions xi (i = 1,2, . . . , N ), Chapter 6

Zr c (x) conditionally simulated random field, Chapter 6

Zr u(x) unconditional random field, Chapter 6
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