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Abstract 17 
The development and integration of automated driving systems in vehicles hold substantial promise for 18 
fostering enhanced efficiency, environmental sustainability, and safety in transportation. Notably, at the lower 19 
levels of automation (L1, L2), the lane-keeping system emerges as a widely adopted automated driving feature, 20 
ensuring the vehicle's alignment within its designated lane. With the recent introduction of new European 21 
regulations mandating the inclusion of emergency lane-keeping systems in all new vehicles starting July 2022, 22 
a growing prevalence of such systems is anticipated in the forthcoming decades. 23 
The precision and reliability of these systems in accurately detecting road markings and their distinctive 24 
features are paramount for achieving safe and intelligent mobility solutions. To fully capitalize on the 25 
advantages these systems offer, they need to expand their operational design domain. This necessitates a 26 
comprehensive understanding of their performance across diverse road design and maintenance conditions, 27 
supporting road operators in updating standards and maintenance protocols. 28 
The primary objective of this study is to investigate how various road characteristics impact the performance 29 
of lane-keeping assistant systems. Within this framework, the paper presents an experimental evaluation of 30 
Lane-Keeping System (LSS) performance conducted on two-lane rural roads. Advanced technologies for road 31 
monitoring and LSS were employed under different road and driving conditions. 32 
Through rigorous data analysis and the application of statistical models, variables significant to the fault 33 
probability of LSS were identified, highlighting the role played by horizontal curvature and driving speed. 34 
Results underscore the relevance of horizontal curvature as a critical factor constraining the physical 35 
infrastructure, shaping the operational design domain of LSS. This research contributes valuable insights 36 
toward optimizing lane-keeping assistant systems, thereby advancing the development and deployment of safe 37 
and efficient automated driving systems in diverse road scenarios. 38 
 39 
Keywords – Automated Driving System, Lane Support System, Road Safety, Road Geometry, Road marking, 40 
Speed 41 

 42 
 43 
1. Introduction 44 

Vehicle automation has the potential to enhance driving ease and safety, offering opportunities 45 
for improved overall safety and mobility. Despite the significant potential benefits, obstacles to 46 
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mass-market penetration persist, particularly concerning the establishment of appropriate standards 47 
for liability and guidelines for certifying autonomous vehicles [9]. 48 

According to the SAE Standard J3016 definition [14], driving automation progresses through 49 
five stages, ranging from driver assistance (Level 1) to fully automated vehicles (Level 5), with an 50 
additional level indicating no automation (Level 0). The most advanced technologies currently 51 
available, such as SAE level 2 "partial automation," are prevalent on the market, and starting in 52 
2022, specific safety technologies will be mandated in new European vehicles. These mandatory 53 
safety features include Lane Support Systems (LSS), capable of detecting impending lane drifting 54 
and alerting the driver through haptic, visual, and audible methods (Level 1), or actively steering 55 
the vehicle back into the lane (Level 2). 56 

From a safety perspective, assuming the system is 100% reliable, LSS at levels 1 and 2 can be 57 
likened to rumble strips, which, based on years of data, have demonstrated safety effectiveness in 58 
reducing severe lane drift crashes by approximately 30%. Notably, rumble strips address all 59 
vehicles at the treated site, while in-vehicle systems only apply to the equipped vehicle. However, 60 
LSS provides the advantage of issuing warnings for lane drifting at all locations. Conversely, LSS 61 
performance may be compromised by system malfunctions resulting from internal factors or faults 62 
arising from road characteristics (e.g., marking quality) and environmental factors (e.g., light, 63 
weather). A recent study [15] has estimated crash prevention based on varying rates of LSS 64 
effectiveness, ranging from 20% to 100%, yet road factors influencing LSS effectiveness remain 65 
undefined due to the absence of relevant literature. 66 

At levels 3 and 4, the role of LSS becomes more critical, as a system fault during navigation 67 
could lead to disengagement of the automation, with the critical phase requiring a fallback to the 68 
driver. In this context, the paper aims to enhance understanding of LSS performance and the 69 
probability of faults, with a particular emphasis on exploring the effects of horizontal alignment. 70 

 71 
2. Technology framework 72 

The sensory components of automated driving necessitate the collection of data and information 73 
by an automated vehicle before it can make informed decisions. Fully automated driving at Levels 74 
4 or 5 entails the use of multiple sensor systems, including cameras, radar, Light Detection and 75 
Ranging (LIDAR), the Global Navigation Satellite System (GNSS), and redundant connectivity 76 
features. Currently, camera and radar systems are integral to Levels 1 and 2 automation and serve 77 
as prerequisites for higher automation levels. Mono- and stereo cameras [1], in conjunction with 78 
radar systems, provide precise evaluations of speed, distance, obstacle outlines, and moving objects. 79 

Radar sensors, operating at short (24 GHz) or long (77 GHz) range, are positioned at the front 80 
and rear of the vehicle to monitor traffic, with the ability to detect objects at distances ranging from 81 
centimeters to several hundred meters. However, radar detection can be susceptible to disturbances 82 
from electromagnetic and metallic artifacts. LIDAR systems, increasingly utilized for obstacle 83 
detection, navigable space identification, and Simultaneous Localization and Mapping (SLAM), 84 
now include advanced multiple-layer laser sensors, such as "SCALA" by Valeo and IBEO. These 85 
LIDAR sensors meet automotive specifications for long-distance obstacle detection and SLAM but 86 
generate a substantial amount of data, limiting real-time embedded application usability [11]. 87 
Additionally, laser scanners are susceptible to environmental conditions such as dirt, snow, and 88 
heavy rain. 89 

Radar, LIDAR, GNSS, and cameras, combined with high-definition maps, enable automated 90 
vehicles to navigate, identify and avoid obstacles, and interpret road markings and traffic signs. 91 
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Inertial Navigation Systems (INS) further enhance positioning accuracy by combining GNSS data 92 
with correction services and other sensors like odometers and Inertial Measurement Units (IMUs). 93 

For Levels 3 and beyond, connected and autonomous vehicles (CAVs) require precise 94 
navigation systems for accurate positioning within centimeters on highly detailed three-dimensional 95 
maps, necessitating continuous updates, especially in complex traffic environments like 96 
intersections [16] [21]. However, generating such maps poses challenges due to the vast amount of 97 
data required and the availability over the whole road network. Furthermore, the development of 98 
artificial intelligence (AI) systems for map creation is still evolving, and privacy concerns add 99 
another layer of complexity to high-definition (HD) map creation. 100 

Regarding vehicle-to-infrastructure communication (V2I), two approaches are distinguished 101 
[19] [9]: smart infrastructure with a non-intelligent vehicle and non-intelligent infrastructure with 102 
an intelligent vehicle. In the latter case, the concept of adding cooperative elements later is favoured, 103 
particularly in the United States [8]. 104 

When road infrastructure interpretation lacks strong connectivity support, camera-based 105 
machine vision emerges as the predominant sensor system for reading markings, signs, and traffic 106 
signals. While other sensors and technologies, such as LIDAR, high-definition maps, and GNSS, 107 
can support this function, their full availability is delayed due to implementation costs and the need 108 
for a comprehensive digital infrastructure with adequate network coverage (4/5G). Future research 109 
on the direct perception approach may alter perception technology requirements, potentially 110 
shifting towards increased reliance on vision-based perception and reduced demand for highly 111 
detailed a priori information like GNSS localization and HD mapping [20]. 112 

Machine vision for CAVs involves cameras and sensors feeding digital data to a signal 113 
processor, and running complex AI algorithms for control [10]. Forward-facing cameras, with 114 
medium to high sensing ranges, employ algorithms to detect and classify objects, determining the 115 
CAV's distance from them. Current camera systems use CMOS image sensors with resolutions of 116 
up to two megapixels, requiring high dynamic range, light intensity, and frame rate. The contrast 117 
between pixels in pavement markings and the road is crucial for pavement marking detection [18]. 118 

 119 
3. Data collection 120 

Open-road testing on public roads provides a real-world laboratory environment for testing and 121 
evaluating Automatic Driving Systems (ADS). This approach complements and validates closed-122 
track and Modeling and Simulation (M&S) testing while exposing systems to a diverse range of 123 
real-world conditions. The physical infrastructure and environmental conditions encountered 124 
during open-road testing are crucial attributes for defining the Operational Design Domain (ODD) 125 
of an ADS. 126 

However, open-road testing, when compared to closed-track testing, comes with certain 127 
drawbacks, including: 128 

• Lack of controllability: Public road scenarios offer limited control over ODD conditions. 129 
• Lack of replicability: Replicating public road scenarios precisely in different locations is 130 

challenging. 131 
• Lack of repeatability: Repeating public road scenarios exactly over multiple iterations is 132 

difficult. 133 
• Safety and legal liability: Testing Connected and Autonomous Vehicles (CAVs) on public 134 

roads requires specific national-level legislation governing the testing and deployment of 135 
ADSs. 136 



 

 

Advances in Transportation Studies: an international Journal 

- 4 -  

To address controllability, replicability, and repeatability issues, we employed a longitudinal 137 
approach in the experimental setup. Repeated runs were conducted in selected sections of two-lane 138 
rural roads with low traffic volume and physical conditions were identified in real-time by a mobile 139 
laboratory during the test. Additionally, to comply with safety and legal constraints, the Lane 140 
Support System (LSS) operated during the test but did not assume the Dynamic Driving Task 141 
(DDT), which remained under the control of the human driver. The system output used for driver 142 
warning (Level 1) or required for the DDT at Level 2 and above was recorded using a custom 143 
Arduino platform and software. 144 

The Automatic Road Analyzer (ARAN) [2] [3] was used to obtain measures of the road’s 145 
geometric characteristics, including cross-section, gradients, and horizontal and vertical alignments.  146 

HD images captured by three cameras provided centimeter-precise information about lane 147 
widths, shoulders, verges, and markings. The horizontal alignment, such as curve radius, was 148 
extracted by interpolating the vehicle position with sub-meter precision, independent of the 149 
satellite's views of the GPS receivers. 150 

For this study, the ARAN acquisition equipment was combined with a Mobileye 6.0 system 151 
[12], featuring a digital camera located on the front windshield inside the vehicle (Fig. 1). This 152 
Mobileye equipment, representing the state-of-the-art in vision-based ADS, is widely used by car 153 
manufacturers, including Audi, Mercedes-Benz, and Volvo, for their semi-autonomous applications 154 
[20]. 155 

 156 

 157 
Fig. 1 Mobileye 6 – in-vehicle installation 158 

Within the Mobileye camera, the EyeQ2® image processing chip plays a pivotal role, executing 159 
high-performance real-time image processing for vehicle, pedestrian, and lane detection. It also 160 
calculates dynamic distances between the vehicle and road objects [12]. In the market configuration, 161 
alerts are conveyed to the driver through the EyeWatch® display.  162 

For the present study, the focus was solely on the lane departure warning (LDW) feature. This 163 
feature triggers a visual and audio alert when a lane deviation occurs at speeds exceeding 35 km/h. 164 
It refrains from issuing warnings when the speed is below the set threshold of 35 km/h, the direction 165 
indicator is active, or the lane delimitation strips are either not traced or traced inaccurately. The 166 
lane markings observed were in good condition, characterized by a coefficient in diffuse 167 
illumination (Qd) exceeding 100 mcd/m²/lx [7]. 168 

To facilitate more comprehensive data collection, the output from the warning system, utilizing 169 
the Mobileye Standard CAN protocol, was recorded. Synchronization with ARAN data was 170 
achieved by constructing an Arduino platform and developing codes in the C language. Specifically, 171 
LDW fault events were classified into LDW not available (LDW=1) and LDW available (LDW=0), 172 
with their positions synchronized with the ARAN GPS (Global Positioning System) system. 173 

                   



 

 

Advances in Transportation Studies: an international Journal 

- 5 -  

4. Results 174 

Multiple runs were conducted under dry and daylight conditions in order to record at least four 175 
different speeds for each road section, resulting in data collection of 1934 samples (Table 1). A 176 
two-lane rural road was deliberately chosen for its more constrained conditions compared to 177 
primary rural roads, encompassing aspects such as road characteristics (e.g., minimum curve radius, 178 
lane and shoulder widths) and maintenance conditions (e.g., marking and pavement distress). 179 

All collected data were standardized to homogeneous sections, with a minimum and maximum 180 
length of 20 m and 65 m, respectively. These sections maintained a consistent value for each 181 
variable considered in the experiment. The chosen range for minimum and maximum section 182 
lengths aimed to ensure a travel time between 1 and 6 seconds, accounting for the spectrum of 183 
running speeds. This duration was deemed optimal for recording reliable Lane Support System 184 
(LSS) outputs and fault conditions presenting potential hazards for driving assistance. 185 

Factors external to the experimental setup, such as parked vehicles and edge pavement drop-186 
offs, which could introduce artefacts, were identified through a thorough review of video recordings 187 
captured by an auxiliary front camera (Fig. 2). Subsequently, these factors were eliminated from 188 
the database to enhance the overall accuracy and reliability of the collected data. 189 

 190 

  191 
Missing marking detection due to parked vehicles (false LDW off) Road edge detected as marking (false LDW on) 192 

Fig. 2 Artifact detection for data cleaning 193 

 194 
Tab. 1 presents the summary statistics for the variables contained within the database. 195 

 196 
Descriptive Statistics 
 N Minimum Maximum Mean Std. Deviation 
1/R 1934 0.000000 0.0221116

6 
0.002423
0 

0.003313750 

Average Speed 1934 35 84 55,81 10,873 
Section length [m] 1934 20.00 65.00 39.264 5.167 

Tab. 1 Summary Statistics 197 

 198 
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The considerable variability in the selected speeds across different runs, as illustrated in Fig. 3, 199 
led to a low correlation between curvature radius and running speed. This is further evidenced by 200 
the minimal value of the Pearson coefficient, as indicated in Tab. 2. 201 
 202 

 1/R Average Speed 
1/R Pearson Correlation 1 -0.209 

Sig. (2-tailed)  0.000 
N 1934 1934 

Tab. 2 Pearson correlation between 1/R and Speed 203 

 204 
Regarding the Mobileye data, the Lane Departure Warning (LDW) fault occurs when the system 205 

is unable to detect the line marking, resulting in a loss of detection.  206 
The average overall percentage of LDW faults during the test was approximately 2.12%.  207 
Fig. 4 illustrates a threshold value of curvature radius at around 200 m, below which the majority 208 

of Lane Support System (LSS) fault events can be observed. 209 
 210 

 211 
Fig. 3 Variability of speed vs. horizontal curvature 212 

 213 
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 214 
Fig. 4 LSS fault (value=1) vs. horizontal curvature 215 

For curvature radii less than 200 m, the probability of Lane Departure Warning (LDW) faults 216 
increases to 7.8%, compared to 0.88% in sections with higher radii, including tangents (refer to 217 
Tab. 3). 218 
 219 

 LDW fault Category Sample size N 
Observed 

LDW Faults Proportion 
R<200 m = 1 346 27 7.80 % 
R>200 m = 1 1588 14 0.88 % 

Tab. 3 Pearson correlation between R and Speed 220 

 221 
Conversely, Fig. 5 illustrates the dispersion of Lane Departure Warning (LDW) fault events 222 

across a broad range of speeds, predominantly below 71 km/h. This pattern is primarily observed 223 
in tests conducted in curved sections at various speeds, as depicted in Fig. 3. 224 

 225 

 226 
Fig. 5 LSS fault (value=1) vs. speed  227 

 228 
A binomial random variable, such as the Lane Departure Warning (LDW) on/off status, can be 229 

viewed as the sum of a fixed number of independent Bernoulli trials. Bayesian Inference for 230 
Binomial distributions offers a valuable tool for estimating confidence intervals for this type of fault 231 
probability. The parameter of interest is the probability π of success in a fixed number of trials that 232 
may result in either success or failure. Importantly, each trial is independent, and the probability π 233 
remains constant across all trials. 234 
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In the specific case of employing the standard uniform distribution as a non-informative prior 235 
(Beta: alpha =1, beta =1), Bayesian inference involves characterizing the posterior distribution 236 
based on observed data and subsequently constructing credible intervals to make direct inferences. 237 

The Bayesian Inference for Binomial distributions revealed a notable distinction at a 95% 238 
significance level between the two distributions of LDW fault probability for curvature radii less 239 
than or equal to 200 m and those greater than 200 m (as shown in Tab. 4). 240 

 241 
Posterior Distribution Characterization for Binomial Inference a 

 
Posterior 95% Credible Interval 
Mode Mean Var. Lower Bound Upper Bound 

R<200 0.078 0.080 0.000 0.054 0.111 
R>200 0.009 0.009 0.000 0.005 0.015 
a. Prior on Binomial proportion: Beta(1, 1). 

Tab. 4 Bayesian One Sample Inference for Binomial distributions in two different classes of curvature 242 

In the case of curvature radii less than 200 m and greater than 70 m, the speed is nearly uniformly 243 
distributed within the range of 35-71 km/h, with an average speed of 51 km/h (as depicted in Fig. 244 
3). Analyzing the 334 curved sections, dividing them into two speed classes—speeds less than or 245 
equal to 51 km/h and speeds greater than 51 km/h (refer to Tab. 5)—the posterior distributions of 246 
Lane Departure Warning (LDW) faults exhibit notably similar fault probabilities. There is a clear 247 
overlap in the confidence intervals, signifying comparable fault probabilities for both speed 248 
categories (see Tab. 6). 249 

 250 

 LSS fault Category Sample size N 
Observed 
LSS Faults Proportion 

V<51 km/h = 1 172 11 6.4 % 
V>51 km/h = 1 162 10 6.2 % 

Tab. 5 Bayesian One Sample Inference for Binomial distributions in two different classes of speed 251 

 252 
Posterior Distribution Characterization for Binomial Inferencea 

 
Posterior 95% Credible Interval 

Mode Mean Var. Lower Bound Upper Bound 
V<51 km/h 0.064 0.069 0.000 0.036 0.111 
V>51 km/h 0.062 0.067 0.000 0.034 0.110 

a. Prior on Binomial proportion: Beta(1, 1). 
Tab. 6 Bayesian One Sample Inference for Binomial distributions in two different classes of speed 253 

 254 
5. Conclusions 255 

This paper outlines the findings of an experimental study, focusing on a meticulous data 256 
collection of Lane Departure Warning (LDW) faults within sections of two-lane rural roads 257 
characterized by varying curvature radii and well-maintained lane markings. The primary objective 258 
is to underscore the pivotal role of horizontal alignment in influencing the performance of Forward 259 
Vision-based Driver Assistance Systems. The results of this study serve to complement existing 260 
knowledge, particularly emphasizing the significance of pavement marking characteristics in 261 
defining the Operational Design Domain (ODD) for Lane Support Systems (LSSs). Essential 262 
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features such as viewing geometry and viewing angle within the image processing algorithm are 263 
crucial for detecting road lane markings, especially in curved road alignments. Previous studies [4] 264 
[13] have highlighted the curvature radius and marking coefficient Qd as the most relevant road 265 
factors explaining LSS fault probability. Thresholds of Qd>150 mcd/m2/lx and R>140 m have been 266 
identified under Day and Dry testing conditions. In different environmental conditions (wet 267 
pavement, heavy rain), another study [14] highlighted the relevance of reflectivity value in wet 268 
conditions (RLw) and confirmed the importance of horizontal curvature in defining the Operational 269 
Design Domain (ODD) for Lane Support Systems (LSS). 270 

This study affirms the 200 m radius as a critical threshold for LDW performance, showcasing 271 
an escalation in fault probability from approximately 1% to about 8%, in daylight and good 272 
pavement marking conditions. The curvature radius of 200 m, particularly at varying running 273 
speeds, emerges as a significant geometric constraint in rural two-lane road networks, especially in 274 
mountainous regions where curves with a radius less than 200 m and wide deflection angle are 275 
commonplace. The horizontal curvature warrants increased consideration in LSS testing and 276 
development, particularly in sharp curves prevalent in secondary roads and specific locations like 277 
intersections, interchanges, and roadwork areas. 278 

Interestingly, the speed variability in curved sections does not exhibit significant effects in 279 
explaining system faults within the tested scenarios. 280 

While the Mobileye equipment utilized in the experiment represents the current state-of-the-art 281 
in vision-based systems, it is acknowledged that different systems may yield diverse results based 282 
on varying AI algorithms and camera systems. Nevertheless, the experiment's results underscore 283 
horizontal curvature as a specific road factor influencing LSS, emphasizing the need for its 284 
identification in defining certification testing procedures and the Operational Design Domain of the 285 
system. 286 

Ensuring the safe and widespread integration of Autonomous Vehicles (AVs) on public roads 287 
requires a clearly defined ODD for these systems which should include also other factors related to 288 
the “Scenery” of the road infrastructure, the “Environmental Conditions” and the “Dynamic 289 
Elements”, as detailed listed in ODD taxonomy for an automated driving system [5]. A shared 290 
responsibility between the public sector and Original Equipment Manufacturers (OEMs) is vital. 291 
Road agencies are called upon to maintain infrastructure conditions at optimal standards, while 292 
ongoing technological development of LSSs is imperative to expand the ODD and address the 293 
geometric features of existing roads effectively. 294 
 295 
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