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A B S T R A C T   

Time management is crucial for liner shipping services. A variety of unexpected events can disrupt liner shipping 
schedules. A real-time port capacity analysis and rescheduling the original ship operations would be necessary to 
counteract the negative effects of such disruptions. Different ship schedule recovery options can be adopted in 
response to disruptive events (e.g., ship sailing speed adjustment, skipping of disrupted ports). However, ship
ping lines face conflicting decisions when selecting ship schedule recovery options. As an example, the 
commonly-used ship speeding-up option could effectively reduce delays during the voyage but would increase 
the fuel cost. Similarly, the skipping of disrupted ports may substantially decrease the associated delays but 
would incur additional costs associated with supply chain disruptions and misconnected cargo. Nevertheless, 
there is a lack of analytical methods that enable the evaluation of competing objectives in ship schedule recovery 
and effective multi-objective solution approaches. Therefore, this study proposes a novel multi-objective model 
for ship schedule recovery that aims not only to minimize the total late ship arrivals at ports but also to minimize 
the total profit loss due to disruptive events that may occur at sea and/or at ports. An epsilon-constraint-based 
exact optimization algorithm is adopted to obtain optimal Pareto Fronts. The computational experiments con
ducted for a real-life transit route demonstrate that the adopted exact optimization algorithm is able to generate 
Pareto Fronts in a timely manner. Moreover, the conducted sensitivity analyses provide interesting insights 
regarding the effects of different disruption types and unit fuel costs on ship schedule recovery.   

1. Introduction 

A primary mode of container transportation is maritime logistics, 
which enables an effective spatial distribution of containers between 
ports across the world (Sun et al., 2021; Ma et al., 2022; Mehrzadegan 
et al., 2022; Zheng et al., 2022). In 2014, shipping logistics handled a 
total of 9.8 billion tons of maritime trade, and the global containerized 
market grew by 5.3 percent to 171 million twenty-foot equivalent units 
(TEUs) (De et al., 2021). In 2020, 815.6 million TEUs of containers were 

handled in ports worldwide (UNCTAD, 2021). In recent years, con
tainers delivered by oceangoing ships have accounted for 22% to 24% of 
the total ton-kilometer freight movements in the United States (McLean, 
2021). In addition to the United States, Europe relies heavily on the 
maritime transportation system. According to the European Commis
sion, nearly 41% of Europe’s freight transit industry is carried by short- 
sea shipping (McLean, 2021). However, with regard to other modes of 
transportation services, the sea freight industry faces unprecedented and 
disruptive conditions, such as port closures due to labor strikes, severe 
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weather conditions, and pirate attacks. 
Extreme weather incidents can severely impact ships transporting 

cargoes. Ship arrivals at ports can be seriously hampered by bad 
weather, resulting in substantial financial losses and delays. For 
example, due to the collapse of the gantry cranes during Hurricane 
Matthew in 2016, the Mediterranean Shipping Company (MSC) had to 
divert their cargo to other ports, which delayed final deliveries by 
months (ICE Cargo, 2021). In November 2020, the 14,000-TEU Apus 
was caught in a strong storm 1,600 nautical miles northwest of Hawaii, 
resulting in the loss or damage of over 1,900 containers (Marle, 2022). 
In August 2021, Hurricane Ida, one of the costliest hurricanes in the 
United States history, hit the Gulf Coast, shutting down cargo operations 
at the Port of New Orleans for several days and causing damage to the 
Ports of South Louisiana and Fourchon (Kay, 2021). The Klang Port, the 
second largest port in Southeast Asia, was one of the areas flooded as a 
result of Typhoon Rai in December 2021. The flooding ceased port op
erations and caused major disruptions for the semiconductor supply 
chain, incurring losses of $28 million (Lim, 2021). Ports may be shut 
down as a precaution by authorities in the event of bad weather. For 
instance, heavy rains and destructive winds forced the closures of the 
Ports of Kembla, Botany, and Jackson in April 2015 in Australia. Addi
tionally, the terminals of the Port of Shanghai (China) were shut down 
during Typhoon In-fa in July 2021 (ICE Cargo, 2021). Along with 
adverse weather events, the tidal effect may cause the depth fluctuation 
of berthing positions and access channels, which may further create 
navigational issues for oceangoing ships in the vicinity of ports (Dadashi 
et al., 2017; Liu et al., 2021). 

The coronavirus 2019 (COVID-19) pandemic has significantly dis
rupted global shipping and maritime activities along established trans
port routes (Pasha et al., 2021; Oyenuga, 2021). Automatic 
Identification System (AIS) receivers recorded a decline in global ship
ping activities all over the world between March and June 2020, when 
the strictest restrictions were in effect. In March 2020, the government 
of Malaysia imposed restrictions on the movement of goods, resulting in 
high stacks of non-essential goods, especially at the Klang Port, which 
caused port disruptions and a slowdown in supply chain operations 
(Menhat et al., 2021). Countries, such as Turkey, Australia, and India, 
have implemented quarantine controls for ships entering the ports for 
14 days, which have caused longer sailing times, disrupted sailing plans, 
delays in unloading cargo containers, and even shipping stoppages (Xu 
et al., 2021). The outbreak of COVID-19 led to an increase in the severity 
and frequency of port congestion events caused by various factors, 
putting the stability of global supply chains at risk. In November 2021, 
congestion at the Port of Long Beach and the Port of Los Angeles reached 
record highs, with up to 116 container ships either docked or anchored. 
In March/April 2022, the spread of the highly infectious Omicron 
variant in China resulted in the staggering lockdown of Shanghai, 
causing severe port congestion, higher freight charges, and longer cargo 
transit times (AGCS, 2022). 

Even though liner shipping disruptions are unpredictable, it is crit
ical that shipping lines deal with them in a timely and effective manner. 
An efficient disruption management strategy can give a shipping line an 
advantage over its competitors. In the last 20 years, operations research 
methods have become popular among real-time disruption management 
tools to ensure airline schedule execution (Clausen et al., 2010). There 
are apparent similarities between the airline and maritime shipping 
industries (Cheraghchi et al., 2017). Flying speed adjustments and flight 
cancellations are just some of the recovery strategies used by airlines to 
counteract the negative effects of disruptions (Marla et al., 2017). 
Certain recovery options commonly deployed in the airline industry can 
also be used in liner shipping to effectively address various disruptive 
incidents (Brouer et al., 2013). The key objective of the ship recovery 
problem is to make the required updates in a disrupted schedule to 
minimize the negative externalities caused by disruptions. Ship schedule 
recovery options may include a variety of measures, including but not 
limited to adjusting ship sailing speed during the voyage, skipping and 

swapping ports of call, and extending working hours at ports (Yu and Qi, 
2004). 

However, shipping lines face conflicting decisions when selecting 
ship schedule recovery options. As an example, the commonly-used ship 
speeding-up option could effectively reduce delays during the voyage 
but would increase the fuel cost. Similarly, the skipping of disrupted 
ports may substantially decrease the associated delays but would incur 
additional costs associated with supply chain disruptions and mis
connected cargo. Nevertheless, there is a lack of analytical methods that 
enable the evaluation of competing objectives in ship schedule recovery 
and effective multi-objective solution approaches. Therefore, this study 
proposes a novel multi-objective model for ship schedule recovery that 
aims not only to minimize the total late ship arrivals at ports but also to 
minimize the total profit loss due to disruptive events that may occur at 
sea and/or at ports. An epsilon-constraint-based exact optimization al
gorithm is adopted to obtain optimal Pareto Fronts. The computational 
experiments conducted for the EPIC (Europe Pakistan India Consortium) 
shipping route demonstrate that the adopted exact optimization algo
rithm is able to generate Pareto Fronts in a timely manner. Moreover, 
the conducted sensitivity analyses provide interesting insights regarding 
the effects of different disruption types and unit fuel costs on ship 
schedule recovery. 

The remaining sections of the manuscript are arranged as follows. 
Section 2 reviews the previously conducted studies that fall into two 
categories: (a) uncertainty modeling in port and liner shipping opera
tions; and (b) recovery of ship schedules. Then, in Section 3, the multi- 
objective ship scheduling recovery decision problem is described in 
detail. A non-linear mathematical model for the considered decision 
problem is developed in Section 4. Section 5 presents the adopted 
linearization procedures and the adopted epsilon-constraint-based 
multi-objective optimization algorithm. Section 6 provides an in-depth 
description of the numerical experiments carried out as part of this 
study. The final section of the study mainly discusses the findings and 
potential directions for future research. 

2. Literature review 

This section focuses on the most relevant findings of the previously 
conducted studies in two areas: (a) studies that examine disruptions in 
liner shipping operations and incorporate some level of uncertainty; and 
(b) studies that focus on liner shipping disruptions and propose various 
ship schedule recovery strategies. This section also outlines the contri
butions of the present study to the state-of-the-art. 

2.1. Review of the relevant efforts 

When it comes to the design of shipping line schedules, the most 
common assumption in the existing liner shipping literature is that each 
ship will arrive within a previously scheduled fixed arrival time window 
at each port without considering ship scheduling uncertainties that 
could result in delays (Wang et al., 2014; Brouer et al., 2017; Pasha et al., 
2020; Wang and Wang, 2021; Zheng et al., 2021). The study by Chuang 
et al. (2010) was one of the first attempts to explicitly model uncertain 
ship sailing time, port handling time, and container demand. The article 
proposed an algorithm that relied on fuzzy set theory to determine the 
fitness of a shipping route from its fuzzy total profit. Wang and Meng 
(2012a) designed a model to help liner shipping companies minimizing 
the overall transit cost while maintaining the required service fre
quency. The study modeled uncertain waiting time at ports due to po
tential congestion issues and uncertain time in container handling. 
Realistic numerical experiments validated the efficiency of the proposed 
iterative algorithm. Using a case study of scheduling Liquefied Natural 
Gas ships, Halvorsen-Weare et al. (2013) sought to design schedules that 
were resilient to weather changes. 

Du et al. (2015) created a fuel budgeting optimization model that 
directly captured potential severe weather conditions. The 
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mathematical model was solved using the polynomial-time method. 
Tierney et al. (2019) analyzed ship transit time data to create three 
mathematical models focusing on the following aspects: design sailing 
speed, optimum sailing speed, and optimized speed with maximum 
travel time. The study utilized buffer time to meet the expected customer 
level of service. Liu et al. (2020) developed a non-linear speed and 
bunkering optimization model under uncertain container demand. 
Piecewise linear functions were used to approximate bunker consump
tion and simplify the non-linear model. The L-shape algorithm used to 
solve the model was efficient in terms of both computational time and 
quality of produced solutions. Ding and Xie (2022) proposed a two-stage 
non-linear mathematical model with schedule-sensitive demand and 
stochastic shipment times. The model was linearized by adding nominal 
delay variables. The Bender’s decomposition algorithm was deployed 
for the linearized problem. 

All the aforementioned studies modeled liner shipping scheduling 
uncertainty without introducing any recovery options to offset the ef
fects of disruptive incidents. Another relevant group of studies investi
gated the various liner shipping schedule recovery options that can 
mitigate negative effects of disruptive incidents. Paul and Maloni (2010) 
analyzed the impact of various port network disruptions. A real-time 
assessment was conducted to conform to dynamic port services. The 
network’s overall capacity was optimized to reduce port and inventory 
costs. Jones et al. (2011) designed a modeling tool to simulate import/ 
export container movements in the United States under a variety of 
disruptive scenarios, such as security check delays and port disruptions. 
The model’s objective was to reduce the overall shipping costs. The 
method was found to be effective and could be used by a variety of 
stakeholders as a planning tool. Brouer et al. (2013) proposed an NP- 
hard model for ship schedule recovery. The model’s performance was 
evaluated on four real-world instances using the CPLEX solver and a 
variety of recovery methods. The proposed model provided comparable 
or better solutions than real-world recovery options. Li et al. (2015) 
developed an operational ship schedule recovery strategy that accounts 
for uncertainties. For long delays, the swapping of ports and the skipping 
of ports were considered as recovery approaches, while speed adjust
ment was considered for minor disruptions. 

Qi (2015) provided an overview of disruption and uncertainty 
management in liner ship schedules. A single-ship recovery model and a 
multi-ship recovery model were developed to minimize the costs asso
ciated with bunker consumption and late ship arrivals. A dynamic 
programming-based solution method was presented to solve the pro
posed models. Li et al. (2016) proposed a ship schedule recovery model 
that considers both regular and irregular disruptive incidents. The re
covery model was designed as a stochastic optimization formulation to 
minimize the cost related to the delayed arrival time and bunker con
sumption. An optimal control policy was discovered through the back
ward value iteration. As discussed earlier, some of liner shipping 
decisions are inherently conflicting. To analyze the contradictory re
lationships between objectives in liner ship scheduling, Cheraghchi et al. 
(2017), Cheraghchi et al. (2018), and Cheraghchi et al. (2020) proposed 
multi-objective models for simultaneously optimizing the competing 
objectives (i.e., minimization of total financial losses, minimization of 
total delays, and maximization of average speed compliance). Sailing 
speed adjustment was considered as the primary recovery option. 

Abioye et al. (2019) created a mathematical model to minimize ship 
financial losses for routes passing via emission control zones. The study 
considered ship speeding-up and skipping of disrupted ports as the main 
recovery options. The proposed method was found to be both energy- 
efficient and sustainable while also reducing the total monetary loss. 

Mulder and Dekker (2019) proposed a model to optimize ship schedule 
recovery by incorporating buffer time. The study used mixed-integer 
programming and Markov decision processes. Four heuristics were 
proposed to deal with the problem’s runtime restrictions and the curse of 
dimensionality. A 28.9 percent reduction in costs was achieved by 
optimizing buffer time. Mulder et al. (2019) created a method to plan 
and implement ship timetables. A stochastic dynamic program was used 
to model the execution of the timetable. The optimized timetable would 
save $4 to $10 million per route per year. Xing and Wang (2019) were 
the first to consider both the ship schedule recovery model and container 
flow recovery plan to balance schedule recovery and service costs. A 
total of three schedule recovery tiers were considered: shortening port 
and sea time, swapping port call orders, and omitting a call. The priority 
of the tiers for recovery options decreased sequentially based on the 
severity of the penalties. 

Abioye et al. (2021) presented a ship schedule recovery problem that 
took into account various recovery actions and disruptive incidents. The 
proposed non-linear ship scheduling model was solved using the BARON 
optimization solver. De et al. (2021) considered ship rerouting and port 
swapping as the primary recovery options to address weather-related 
delays. The effects of fuel prices and carbon taxes on the overall oper
ating costs of shipping were investigated. The study provided shipping 
companies with alternative ship route options for normal or disrupted 
scenarios. Asghari et al. (2022) presented an optimization model for ship 
schedule recovery, considering sailing speed adjustment and port skip
ping as the primary recovery options. A Crowd-Learning Particle Swarm 
Optimization Algorithm was used as a solution approach. Real-life sce
narios of disruptive incidents were investigated as a part of the study, 
which showed the effectiveness of the proposed solution methodology. 
Du et al. (2022a) proposed a machine learning-based approach under 
sailing and port time uncertainty. A machine learning method relied on 
speed optimization, neural network training, and reinforcement 
learning. A set of numerical studies showed that the proposed machine 
learning-based approach effectively optimized ship schedules. 

2.2. Literature summary, critical gaps, and contributions of this work 

Table 1 provides a summary of the evaluated studies, including the 
following information: the author(s), year of publication, study cate
gory, model’s objective, solution technique, important notes and major 
considerations incorporated by the reviewed studies. The conducted 
literature review shows that the minimization of the overall shipping 
cost was the most popular objective among the existing studies on liner 
shipping uncertainties and ship schedule recovery. 

Furthermore, a very limited number of studies proposed multi- 
objective mathematical formulations that can be used to capture the 
competing objectives in ship schedule recovery (Cheraghchi et al., 2017; 
Cheraghchi et al., 2018; Cheraghchi et al., 2020; Elmi et al., 2022). 
However, the proposed multi-objective mathematical models mainly 
consider the adjustment of ship sailing speed as the only recovery option 
to offset the negative impacts of disruptive incidents. Moreover, 
different metaheuristic algorithms were mostly used for multi-objective 
ship schedule recovery models (Cheraghchi et al., 2017; Cheraghchi 
et al., 2018; Cheraghchi et al., 2020; Elmi et al., 2022). Although multi- 
objective metaheuristic algorithms normally show competitive perfor
mance in terms of computational time for large-scale problems, they do 
not guarantee optimality of the obtained Pareto Fronts. Considering 
these shortcomings in the state-of-the-art, the present study offers the 
following main contributions: 
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• A new optimization model is developed for ship schedule recovery to 
effectively offset the effects of disruptive incidents in liner shipping.  

• A variety of recovery options are proposed within the multi-objective 
framework, including port skipping, port skipping with the diversion 
of containers, increasing ship sailing speeds at specific voyage legs, 
and increasing ship handling rates at specific ports.  

• An epsilon-constraint-based exact optimization algorithm is adopted 
to obtain optimal Pareto Fronts in a timely manner.  

• A set of extensive experiments are conducted for a real-life shipping 
route to evaluate the performance of the proposed algorithm and 
ship schedule recovery options.  

• The conducted sensitivity analyses provide interesting insights 
regarding the effects of different disruption types and unit fuel costs 
on ship schedule recovery. 

3. Problem Description 

3.1. Description of liner shipping transit routes 

Sea routes connecting multiple ports are primarily served by a single 

shipping line (a.k.a., liner shipping company) or an alliance. This 
research will focus on modeling shipping routes serviced by a single 
shipping company. A liner shipping route consists of several ports, 
which will be denoted as P = {1, ⋯, n}. Ships visit each port once or 
several times during a voyage. In the liner shipping literature, the 
sequence of ports to be called is known as “port rotation”. A port rotation 
generally differs from one route to another. The itineraries of the 
deployed ships and service frequency are determined in the strategic and 
tactical planning levels (Meng et al., 2014; Dulebenets et al., 2021). 
Fig. 1 shows an example liner shipping transit route of a liner shipping 
company passing through 7 ports of call. The port rotation starts from 
port “1”. Port “3” will be visited twice, while the other ports will be 
visited once. A “voyage leg” refers the distance traveled by a ship be
tween two subsequent ports on the same route. Every ship allocated for 
service of the given port rotation travels along voyage leg p from port p 
to port p + 1. At ports along the transit route, import containers are 
offloaded from ships, and export containers are loaded onto ships. Upon 
completion of service at the last port of call, each ship sails back to the 
port of origin. 

Table 1 
Review summary for the most relevant studies.  

a/ 
a 

Authors Year Category Objective(s) Solution 
Technique 

Important Notes and Major Considerations 

1 Chuang et al. 2010 USSP Maximize the overall profit Metaheuristic Developing a fuzzy Genetic Algorithm for liner 
shipping scheduling 

2 Paul and Maloni 2010 SSRP Minimize the overall shipping cost Heuristic Modeling disruptive incidents at ports 
3 Jones et al. 2011 SSRP Minimize the overall shipping cost Heuristic Simulating disruptive incidents for the United States 

freight intermodal network via a decision support tool 
4 Wang and Meng 2012 USSP Minimize the overall shipping cost Iterative method Buffer time at voyage legs 
5 Brouer et al. 2013 SSRP Minimize the overall shipping cost CPLEX Evaluated the complexity of the ship schedule recovery 

model 
6 Halvorsen- 

Weare et al. 
2013 USSP Minimize the overall shipping cost Xpress-IVE Considered the possible effects of weather changes 

7 Du et al. 2015 USSP Minimize the overall fuel consumption Iterative method Adverse weather effects on the total fuel consumption 
8 Li et al. 2015 SSRP Minimize the overall shipping cost DP Identifying an appropriate delay penalty function 
9 Qi 2015 SSRP Minimize the overall shipping cost DP Single-ship and multiple-ship models for the real-time 

ship schedule recovery problem 
10 Li et al. 2016 SSRP Minimize the overall shipping cost DP Distinguishing various regular uncertainties and 

disruptive incidents 
11 Cheraghchi 

et al. 
2017 SSRP Maximize the average speed compliance; 

Minimize the monetary loss; Minimize the overall 
delay 

Metaheuristics Application of the AIS data to assess ship schedule 
delays 

12 Cheraghchi 
et al. 

2018 SSRP Minimize the monetary loss; Minimize the overall 
delay 

Metaheuristic Evaluation of voyage distances, problem scalability, 
and ship steaming policies 

13 Abioye et al. 2019 SSRP Minimize the overall monetary loss CPLEX Considering the regulatory enforcement within 
emission control zones 

14 Mulder and 
Dekker 

2019 SSRP Minimize the overall shipping cost Heuristics Allocation of buffer times 

15 Mulder et al. 2019 SSRP Minimize the overall shipping cost Iterative method Execution of a timetable with stochastic delays 
16 Tierney et al. 2019 USSP Minimize the overall shipping cost GUROBI The liner shipping transit time was based on empirical 

data 
17 Xing and Wang 2019 SSRP Minimize the overall shipping cost LINGO Consideration of the container flow recovery problem 

with ship schedule recovery 
18 Cheraghchi 

et al. 
2020 SSRP Maximize the average speed compliance; 

Minimize the monetary loss; Minimize the overall 
delay 

Metaheuristics Development of a model for multi-objective 
optimization using the AIS data 

19 Liu et al. 2020 USSP Minimize the overall shipping cost Iterative method Optimizing the bunkering and speed of liner ships 
20 Abioye et al. 2021 SSRP Minimize the monetary loss BARON Examining various real-world disruption scenarios and 

recovery options 
21 De et al. 2021 SSRP Maximize the overall profit Heuristic Incorporated the effects of fuel prices and carbon taxes 
22 Asghari et al. 2022 SSRP Minimize the overall shipping cost Metaheuristics Consideration of emission charges in the proposed 

model 
23 Ding and Xie 2022 USSP Maximize the overall profit Iterative method Managing the risk of unexpected delays while adhering 

to tight deadlines 
24 Du et al. 2022a SSRP Minimize the overall shipping cost Heuristic A machine learning-based solution for liner shipping 

optimization 

Used Abbreviations: Category [USSP – uncertainties in the ship scheduling problem; SSRP – the ship schedule recovery problem]; Solution Technique [BARON – 
optimization solver; CPLEX – optimization solver; DP – Dynamic Programming; GUROBI – optimization solver; LINGO – optimization solver; Xpress-IVE – optimization 
solver]; Important Notes and Major Considerations [AIS – Automatic Identification System]. 
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3.2. Service of ships at ports 

The port arrival time windows (TWs) at each port of call are defined 
by the port operators and liner shipping companies in the tactical level 
of liner shipping planning (Pasha et al., 2021). Planned port arrival TWs 
are specified by the following two components: (1) τst

p , p ∈ P (hours) 
represents the negotiated start of TW at port p; and (2) τend

p , p ∈ P (hours) 
denotes the negotiated end of TW at port p. If a ship arrives before the 
expected arrival TW, it normally waits for service at the waiting area 
located near the port. The waiting time (τwait

p , p ∈ P – hours) at ports can 
be obtained from the following formulas: 

τwait
p+1 = τst

p+1 −
(

τdep
p + τsail

p

)
∀p ∈ P, p < n (3.1)  

τwait
1 = τst

1 −
(

τdep
p + τsail

p

)
+φ • V∀p ∈ P, p = n (3.2) 

where: τst
p+1, p ∈ P – negotiated arrival TW start at port p+1 (hours); 

τst
1 – negotiated arrival TW start at port “1” (hours);τdep

p , p ∈ P – planned 
ship departure time from port p (hours); τsail

p , p ∈ P – planned ship sailing 
time at voyage leg p (hours); φ – original negotiated service frequency of 
ports (hours); and V – number of allocated ships (ships). 

The total turnaround time is the additional term (φ • V) included on 
the right side of the waiting time formula. The total turnaround time 
represents the time required by the ships to visit all of the ports on the 
particular liner shipping transit route and return to the starting port 
(Abioye et al., 2019; Pasha et al., 2021). However, disruptions during 
the ship voyage can increase the planned total turnaround time of ships. 
Following the agreements between liner shipping companies and port 
operators, port operators are able to provide a set of container handling 
rates Hp =

{
1,⋯,mp

}
, p ∈ P for ship service. The planned handling time 

(τhand
p , p ∈ P – hours) at port p can be obtained based on the original 

container demand (dport
p , p ∈ P – TEUs) and handling productivity (prph,

p ∈ P, h ∈ Hp – TEUs/hour) as follows: 

τhand
p =

∑

h∈Hp

(dport
p

prph

)

xph∀p ∈ P (3.3) 

where: xph, p ∈ P, h ∈ Hp – the parameter adopted to specify if 
container handling rate h is chosen at port p (=1) or else (=0). 

It should be noted that a handling rate with higher handling pro
ductivity reduces the ship handling time but increases the port handling 
cost incurred by the shipping line. The unit handling cost (cport

ph , p ∈ P, h ∈

Hp – USD/TEU) will be calculated based on the requested handling rate 
at port p. Disruptive events (such as labor strikes, bad weather, port 
congestion, and even port closure) that mainly happen at ports cannot be 
foreseen in the tactical level and may cause severe delays in expected 
waiting time and handling time at ports (Li et al. 2015). Furthermore, 

delays due to disruptions at a given port of call may spread across the 
voyage, affecting the ship arrival times at subsequent ports. The delayed 
arrival time of ships at port p (τdel

p , p ∈ P – hours) can be obtained using 
the following formula: 

τdel
p ≥ τarr

p − τarr
p ∀p ∈ P (3.4) 

where: τarr
p , p ∈ P – ship arrival time at port p for the recovered 

schedule after the occurrence of disruptive incidents (hours); τarr
p , p ∈ P – 

original planned ship arrival time at port p (hours). 

3.3. Ship sailing speed and fuel consumption modeling 

One of the primary premises of this study is the homogeneous nature 
of the ships assigned for service on the shipping line’s transit route 
(Wang et al., 2014; Abioye et al., 2019). It means that all ships in the 
fleet serving a specific liner shipping route have the same technical 
specifications, including the structure of the engines, engine capacity, 
maximum sailing speed, etc. Throughout the tactical level planning, the 
liner shipping companies set the sailing speed of ships (sp, p ∈ P – knots) 
at each transit leg of the voyage (Pasha et al., 2021). If disruptive in
cidents happen when ships sail at sea, the sailing speed might be reduced 
at particular voyage legs (e.g., sailing speed reduction due to a severe 
storm at sea). Thus, the sailing speed for the recovered ship schedule or 
“recovered ship sailing speed” (sp, p ∈ P – knots) might be lower than the 
sailing speed that was planned at the tactical level (sp < sp, p ∈ P). In 
order to offset the delays caused by disruptions, the shipping line may 
decide to increase the sailing speed at certain transit legs, and, hence, 
the recovered ship sailing speed would be higher than the planned ship 
sailing speed at the transit legs after the implementation of sailing speed 
adjustment. However, for the scenarios with high unit fuel prices, the 
shipping line may decide to endure the delay and do not use the sailing 
speed adjustment strategy to prevent high fuel costs. Furthermore, the 
recovered ship sailing speed is directly associated with the sailing speed 
upper and lower bounds. The upper bound on ship sailing speed (smax – 
knots) is imposed by the power of the ship main engine (Pasha et al., 
2021). Moreover, the lower bound (smin – knots) should be satisfied to 
prevent the wear of the ship main engine (Pasha et al., 2021). Based on 
the available literature (Kontovas, 2014; Zhao et al., 2019; Pasha et al., 
2021), the following formula will be adopted to obtain the bunker fuel 
consumption at leg p (fp, p ∈ P – tons/nmi) considering the recovered 
ship sailing speed and ship payload: 

fp =
γ(sp)

(α− 1)

24
•

(dsea
p • AWT + LWT

TWT + LWT

)2/3

∀p ∈ P (3.5) 

where: α, γ – coefficients of the fuel consumption function; dsea
p – 

number of containers on board the ship at voyage leg p (TEUs); AWT – 
standardized 20-foot container cargo weight (tons); LWT – total ship 

Fig. 1. Example liner shipping transit route.  
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empty weight (tons); and TWT – total ship maximum allowable 
container weight (tons). 

Note that the bunker fuel consumption function coefficients are 
generally derived based on the daily bunker fuel consumption infor
mation collected from different ships. The power adjustment “(α − 1)” 
and coefficient “24” in the denominator of equation (3.5) are used to 
convert the bunker fuel consumption from tons per day to tons per 
nautical mile (Wang and Meng, 2012b). Furthermore, the power of “2/ 
3” is used to capture the changes in bunker fuel consumption due to the 
changes in ship payload (Kontovas, 2014). 

3.4. Disruptions and ship schedule recovery 

This study proposes four primary options shipping lines can employ 
to compensate for the time losses due to disruptive incidents throughout 
the ship voyage. These recovery options include: (1) port skipping 
without the diversion of containers to alternative ports; (2) port skipping 
with the diversion of containers to alternative ports; (3) increasing ship 
sailing speeds at specific voyage legs; and (4) increasing ship handling 
rates at specific ports. The shipping line may elect to tolerate the delays 
caused by disruptive incidents. However, if these delays last for a sig
nificant amount of time at a particular port, the shipping line might 
decide to bypass that port. Skipping ports could help liner shipping 
companies to reduce the extra cost induced by disruptive incidents. 
When ships bypass a port because of unforeseen disruptive incidents, a 
port skipping cost should be paid to the port operators to compensate for 
the cost of allocated yard storage space, reserved handling equipment, 
and unsatisfied demand. In addition, skipping a port prevents the 
designated import and export cargoes from being delivered or picked up, 
respectively. Fig. 2(a) illustrates an example of a recovery option, where 
port “3” experienced a disruptive incident, and the shipping line decided 
to skip that port. 

The unsatisfied demand due to port skipping could be diverted to 
other ports and transported via alternative inland modes to ensure the 
shipments arrive at their final destinations. In that case, there will be an 
extra cost (e.g., container handling and transporting costs at an 

alternative port) that the shipping line should cover. Fig. 2(b) depicts a 
scenario, in which a ship was supposed to stop at five different ports 
(“1”, “2”, “3”, “4”, and “5”), but the shipping line decided to bypass port 
“3” due to a disruptive incident at that port. Moreover, the export 
cargoes that were planned to be loaded on board the ship at port “3” 
were diverted to port “4”, where the available handling equipment could 
be further used to complete the export container loading process. In the 
meantime, the import containers that were planned to be unloaded at 
port “3” could be unloaded at alternative port “4”. The intermodal 
connections of port “4” could be further used to transport the shipments 
to their final destinations. The options of port skipping with and without 
the diversion of containers to alternative ports are viewed as effective to 
compensate for substantial time losses due to large-scale disruptive in
cidents (Elmi et al., 2022). 

Another recovery option for the shipping line is to increase the 
sailing speed of ships along the voyage legs during the journey to get 
back on schedule and maintain the same arrival time at each subsequent 
port. It is assumed in this research that adjusting the transit speed could 
not be applied by the shipping line for the ship sailing along the voyage 
leg that experiences a disruptive incident. An illustration of a ship speed 
adjustment recovery option is shown in Fig. 2(c). In this example, the 
shipping schedule was disrupted at sea along voyage leg “2” that con
nects ports “2” and “3”. The shipping company decided to speed up the 
ships sailing along voyage legs “3” and “4” to get back on schedule. In 
particular, the ship sailing speed was increased from the original speed 
of 15 knots at voyage leg “3” to 21 knots. Furthermore, the ship sailing 
speed was increased from the original speed of 14 knots at voyage leg 
“4” to 20 knots. 

At the tactical level of liner shipping planning, the handling rates are 
negotiated by a given shipping line with port operators at each port of 
call (Meng et al., 2014; Dulebenets et al., 2021). It is assumed that the 
shipping line can also request certain port operators (i.e., the ones that 
have available handling equipment) to provide a higher handling rate 
for ship service at a given port in order to offset the delays incurred 
throughout the voyage at the operational level. Higher handling rates 
correspond to higher productivity and faster service at ports. The 

Fig. 2. Recovery options: (a) port skipping; (b) port skipping with the diversion of containers; (c) ship sailing speed adjustment at sea; and (d) handling rate 
adjustment at ports. 
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decision variable for handling rate selection at ports can be denoted as 
xph, p ∈ P, h ∈ Hp (=1 if h is the requested handling rate at port p; else =
0). If a shipping line requests a higher handling rate, proportionally 
higher port handling costs will be applied. Equation (3.6) can be used to 
obtain the recovered ship handling time at port p (τhand

p , p ∈ P – hours) 
based on the actual container demand for the recovered ship schedule 
(dport

p , p ∈ P – TEUs) and handling productivity (prph, p ∈ P, h ∈ Hp – 
TEUs/hour): 

τhand
p =

∑

h∈Hp

(
dport

p

prph

)

xph ∀p ∈ P (3.6) 

Fig. 2(d) shows an example of implementing the handling rate 
adjustment recovery option, where the disruptive incident happened 
when the ship was sailing between ports “1” and “2”. The ship arrival at 
port “2” was delayed, so the shipping line requested a higher handling 
rate at port “2”. The implementation of the handling rate adjustment 
recovery option at port “2” enabled the ship leaving port “2” in a timely 
manner and sailing to port “3” based on the planned schedule. The op
tions of ship sailing speed adjustment at sea and handling rate adjust
ment at ports are viewed as effective to compensate for small to 
moderate time losses due to small- and medium-scale disruptive in
cidents (Elmi et al., 2022). The shipping line may employ any of the 
proposed recovery options to restore the ship original schedule. 
Depending on the nature of disruptive incidents and their consequences, 
the shipping line may decide to apply several various recovery options 
throughout the voyage. However, if the shipping company determines 
that the price of implementing multiple recovery options (or even one 
recovery option) is too high, it may opt to bear the costs associated with 
the consequences of the disruption without using any recovery options. 

3.5. Container inventory throughout ship voyage 

A ship that bypasses a port due to the disruption would be unable to 
deliver the associated import containers and/or collect the associated 
export containers. However, if a shipping line decides to divert the 
containers to alternative ports that have an inland connection with the 
skipped port, the import and export container shipments can be handled 
accordingly. In particular, the export containers could be delivered from 
the skipped port via the inland connection and then loaded on board the 
ship at an alternative port. Furthermore, the import containers that were 
originally scheduled to be offloaded at the skipped port can be offloaded 
at an alternative port, and the intermodal connections of the alternative 
port could be used for the delivery of container shipments to their final 
destinations. Therefore, port skipping and container diversion decisions 
directly affect the total number of containers to be transported by the 
ships throughout their voyage and, hence, the overall container 
inventory. 

A detailed example of port skipping and container diversion opera
tions is provided in Fig. 3. In the considered example, the port rotation 
has five ports of call, and port “3” experienced a disruptive event. The 
shipping line decided to skip port “3” and divert the associated cargo to 
port “4”, which has an inland connection with port “3”. Therefore, the 
container demand of 400 TEUs from port “3” with 60% of import con
tainers and 40% of export containers (dport

3 = 400 TEUs, IMP3 = 60%) 
was handled at port “4”. Since no import containers were unloaded and 
no export containers were loaded at port “3”, the number of containers 
on board the ship at voyage leg “3” connecting ports “3” and “4” was the 
same as the number of containers on board the ship at voyage leg “2” 
connecting ports “2” and “3” (i.e., dsea

2 = dsea
3 = 6, 000 TEUs). The 

container demand of 800 TEUs at port “4” with 40% of import con
tainers and 60% of export containers was handled upon arrival of the 
ship at port “4”. The number of containers on board the ship at voyage 
leg “4” connecting ports “4” and “5” can be estimated based on the 

number of containers on board the ship at voyage leg “3”, the number of 
import containers that were unloaded at port “4” (i.e., 800 • 0.40 = 320 
TEUs), the number of export containers that were loaded at port “4” (i.e., 
800 • 0.60 = 480 TEUs), the number of import containers diverted for 
unloading at port “4” from port “3” that experienced a disruption (i.e., 
400 • 0.60 = 240 TEUs), and the number of export containers diverted 
for loading at port “4” from port “3” that experienced a disruption (i.e., 
400 • 0.40 = 160 TEUs) as follows: dsea

4 = 6,000 − (800 • 0.40 
− 800 • 0.60) − (400 • 0.60)+(400 • 0.40) = 6, 080 TEUs. 

Based on the considered example, the total number of containers to 
be transported by the ship at voyage leg p* +1 for the recovered ship 
schedule (dsea

(p*+1), p
* ∈ P – TEUs) can be obtained based on the total 

number of containers to be transported by the ship at voyage leg p* 

(dsea
p* , p* ∈ P – TEUs), the number of import containers 

[dport
(p*+1) • IMP(p*+1), p* ∈ P – TEUs] and export containers 

[dport
(p*+1) •

(
1 − IMP(p*+1)

)
, p* ∈ P – TEUs] handled at port p* + 1, the 

number of import containers diverted for unloading at port p* +1 from 
the alternative ports that experienced a disruption [ddiv

p(p*+1) • IMPp,p,p* ∈

P, p ∕= p*– TEUs], and the number of export containers diverted for 
loading at port p* +1 from the alternative ports that experienced a 
disruption [ddiv

p(p*+1) •
(
1 − IMPp

)
, p, p* ∈ P, p ∕= p* – TEUs] using the 

following formulas: 

dsea
(p*+1) = dsea

p* −
[
dport
(p*+1) • IMP(p*+1) − dport

(p*+1) •
(
1 − IMP(p*+1)

) ]

• (1 − xskip
(p*+1))−

∑

p∈P:p∕=(p*+1)

ddiv
p(p*+1) • IMPp +

∑

p∈P:p∕=(p*+1)

ddiv
p(p*+1)

•
(
1 − IMPp

)
∀p* ∈ P, p* < n

(3.7)  

dsea
(1) = dsea− 0 −

[
dport
(1) • IMP(1) − dport

(1) •
(
1 − IMP(1)

) ]

• (1 − xskip
(1) )−

∑

p∈P:p∕=(1)

ddiv
p(1) • IMPp +

∑

p∈P:p∕=(1)

ddiv
p(1) •

(
1 − IMPp

)
(3.8) 

where: dport
p , p ∈ P – original container demand at port p (TEUs); IMPp,

p ∈ P – planned percentage of unloaded import containers from a ship at 
port p (%); xskip

p = 1 if disrupted port p will be skipped (else = 0); ddiv
pp* ,∀

p, p* ∈ P, p ∕= p* – number of diverted containers from disrupted port p to 
alternative port p* (TEUs); and dsea− 0 – total number of containers on 
board the ship prior to docking at its first port (TEUs). 

When the shipping line makes container diversion decisions, it is 
necessary to keep in mind that the total number of containers on board 
the ships should not exceed their capacity. Such operational condition 
can be satisfied by imposing the following constraint set: 

Fig. 3. An example of port skipping and container diversion operations.  
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dsea
p • AWT ≤ TWT∀p ∈ P (3.9) 

where: AWT – standardized 20-foot container cargo weight (tons); 
and TWT – total ship maximum allowable container weight (tons). 

3.6. Competing objectives 

One of the primary objectives in ship schedule recovery is to mini
mize the total delays due to the occurrence of disruptive incidents 
throughout the voyage. The minimization of delays would assist the 
shipping line with maintaining an acceptable level of service for the 
existing customers and have their shipments delivered with the least 
delays possible. As discussed earlier, a variety of recovery options could 
be implemented by the shipping line to reduce or completely eliminate 
the delays due to the occurrence of disruptive incidents, including port 
skipping without the diversion of containers to alternative ports, port 
skipping with the diversion of containers to alternative ports, increasing 
ship sailing speeds at specific voyage legs, and increasing ship handling 
rates at specific ports. However, the shipping line will incur additional 
costs in order to implement any of the aforementioned recovery options. 
In particular, in case of port skipping, the shipping line will have to 
compensate the operator of the skipped port for the reserved handling 
equipment. Moreover, the costs associated with misconnected cargo will 
be applied as well. In case the shipping line decides to implement port 
skipping with the diversion of containers to alternative ports, the 
additional costs will be incurred for the handling of the diverted cargo at 
alternative ports and the inland transport of the shipments to their final 
destinations. The sailing speed adjustment option will increase the fuel 
consumption cost, whereas the handling rate adjustment option will 
increase the container handling costs at ports. The tradeoffs among the 
competing objectives should be carefully analyzed by the shipping line 
when planning multi-objective ship schedule recovery. 

4. Multi-Objective mathematical formulation 

In this part of the manuscript, the notations used for the mathe
matical formulation of the multi-objective ship schedule recovery 
problem in the present study are explained in detail, along with the 
formulation itself. 

4.1. Adopted notations 

4.1.1. Sets  

Sets Definition of Sets 

P = {1,⋯, n} set of port visits for the specific liner shipping route (port 
visits) 

Hp =
{
1,⋯,mp

}
,p ∈

P 
set of available port handling rates at port p (port handling 
rates)  

4.1.2. Decision variables  

Decision Variables Description of Decision Variables 

Δsea
p ∈ R∀p ∈ P sailing speed adjustment of a ship at voyage leg p (knots) 

xph ∈ B∀p ∈ P,h ∈ Hp =1 if port handling rate h will be chosen at port p (else = 0) 

xskip
p ∈ B∀p ∈ P =1 if disrupted port p will be skipped (else = 0) 

xdiv
pp* ∈ B∀p,p* ∈ P,p ∕=

p* 

=1 if there is a container diversion from disrupted port p to 
port p* (else = 0)  

4.1.3. Auxiliary variables  

Auxiliary Variables Description of Auxiliary Variables 

τarr
p ∈ R+∀p ∈ P recovered ship arrival time at port p (hours) 

τwait
p ∈ R+∀p ∈ P recovered ship waiting time at port p (hours) 

τhand
p ∈ R+∀p ∈ P recovered ship handling time at port p (hours) 

(continued on next column)  

(continued ) 

Auxiliary Variables Description of Auxiliary Variables 

τdep
p ∈ R+∀p ∈ P recovered ship departure time from port p (hours) 

sp ∈ R+∀p ∈ P recovered ship sailing speed at voyage leg p (knots) 

τsail
p ∈ R+∀p ∈ P recovered ship sailing time at voyage leg p (hours) 

τdel
p ∈ R+∀p ∈ P recovered ship delayed arrival time at port p (hours) 

STT ∈ R+ recovered ship total turnaround time of the considered 
shipping route (hours) 

fp ∈ R+∀p ∈ P recovered fuel consumption by ship main engines at voyage 
leg p (tons/nmi) 

dsea
p ∈ R+∀p ∈ P number of containers on board the ship at voyage leg p 

(TEUs) 

dport
p ∈ R+∀p ∈ P recovered container demand at port p (TEUs) 

xdd
p ∈ B∀p ∈ P =1 if the diverted containers from a disrupted port will be 

serviced at alternative port p (else = 0) 
ddiv

pp* ∈ N∀p,p* ∈ P,

p ∕= p* 

number of diverted containers from disrupted port p to 
alternative port p* (TEUs) 

FCC ∈ R+ total recovered fuel consumption cost (USD) 
TPC ∈ R+ total recovered handling operations cost at ports (USD) 
CDC ∈ R+ total recovered container diversion cost (USD) 
REV ∈ R+ total recovered revenue obtained by the shipping line (USD)  

4.1.4. Parameters  

Parameters Description of Parameters 

n ∈ N number of ports to be visited for the specific liner shipping 
route (port visits) 

mp ∈ N∀p ∈ P number of handling rates that a shipping line can request 
at port p (port handling rates) 

dport
p ∈ R+∀p ∈ P original container demand at port p (TEUs) 

IMPp ∈ R+∀p ∈ P planned percentage of unloaded import containers from a 
ship at port p (%) 

τst
p ∈ R+∀p ∈ P negotiated arrival time window start at port p (hours) 

τarr
p ∈ R+∀p ∈ P original planned ship arrival time at port p (hours) 

prph ∈ R+∀p ∈ P,h ∈ Hp container handling productivity with handling rate h at 
port p (TEU/hour) 

φ ∈ R+ original negotiated service frequency of ports (hours) 
V ∈ N number of allocated ships (ships) 
dleg

p ∈ R+∀p ∈ P length of voyage leg p (nmi) 

α, γ ∈ R+ fuel consumption function coefficients 
AWT ∈ R+ standardized 20-foot container cargo weight (tons) 
LWT ∈ R+ total ship empty weight (tons) 
TWT ∈ R+ total ship maximum allowable container weight (tons) 
dsea− 0 total number of containers on board the ship prior to 

docking at its first port (TEUs) 
smax ∈ R+ maximum allowed speed for ships (knots) 
smin ∈ R+ minimum allowed speed for ships (knots) 
sp ∈ R+ sailing speed of ships according to the original ship 

schedule at voyage leg p (knots) 
δport

p ∈ R+∀p ∈ P anticipated duration of port p disruption (hours) 
δsea

p ∈ R∀p ∈ P anticipated ship speed change at disrupted voyage leg p 
(knots) 

yport
p ∈ B∀p ∈ P =1 if port p is disrupted (else = 0) 

ysea
p ∈ B∀p ∈ P =1 if voyage leg p is disrupted (else = 0) 

zskip
p ∈ B∀p ∈ P =1 if skipping disrupted port p is feasible (else = 0) 

ypp* ∈ B∀p,p* ∈ P,
p ∕= p* 

=1 if diverting the cargo from disrupted port p to port p* is 
feasible (else = 0) 

Cport
p ∈ R+∀p ∈ P available capacity of the port terminal to accommodate 

the diverted containers at port p (TEUs) 
Cland

p ∈ R+∀p ∈ P available capacity for inland transportation of the 
diverted containers at port p (TEUs) 

cport
ph ∈ R+∀p ∈ P,h ∈ Hp unit cost related to container handling at port p with 

handling rate h (USD/TEU) 
cfuel

p ∈ R+∀p ∈ P unit fuel consumption cost at voyage leg p (USD/ton) 

coper ∈ R+ unit basic ship operational cost (USD/hour) 
cskip

p ∈ R+∀p ∈ P cost related to skipping port p (USD) 

cmis
p ∈ R+∀p ∈ P unit misconnected cargo cost at port p (USD/TEU) 

cd− port
pp* ∈ R+∀p,p* ∈ P,

p ∕= p* 

unit cost related to handling diverted containers from 
disrupted port p to port p* (USD/TEU) 

cd− land
pp* ∈ R+∀p,p* ∈ P,

p ∕= p* 

unit cost related to inland transportation of containers 
diverted from disrupted port p to port p* (USD/TEU) 

(continued on next page) 
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(continued ) 

Parameters Description of Parameters 

ccargo
p ∈ R+∀p ∈ P unit freight rate that a shipping line can accumulate after 

cargo delivery at port p (USD/TEU) 
SOC ∈ R+ total original cost related to basic ship operations (USD) 
TP ∈ R+ total original profit anticipated by the shipping line (USD)  

4.2. Mathematical model 

A mixed-integer non-linear programming model for the Multi- 
Objective Ship Schedule Recovery Problem, abbreviated as MOSSR-1, 
can be formulated using the following objective functions and constraint 
sets. The first objective function (F1) of MOSSR-1, represented by 
equation (4.1), aims to minimize the total late ship arrivals at ports. The 
second objective function (F2) of MOSSR-1, represented by equation 
(4.2), seeks to minimize the total profit loss, and its constituent parts are 
motivated by economic considerations that include the following: (i) 
total original profit; (ii) total recovered revenue; (iii) operational cost of 
the ships; (iv) total recovered bunker fuel consumption cost; (v) total 
recovered container handling cost; and (vi) total cost of container 
diversion. 

minF1 =
∑

p∈P
τdel

p (4.1)  

minF2 = TP − (REV − SOC − FCC − TPC − CDC) (4.2) 

The constraint sets of MOSSR-1 can be divided into six groups. 
Constraints (4.3) through (4.7) form the first constraint group of the 
MOSSR-1 model devoted to sailing speed and bunker fuel consumption 
estimations. Constraint set (4.3) computes the recovered ship sailing 
speed at every voyage leg, considering the possible sea disruptions and 
ship sailing speed adjustments. In particular, the recovered ship sailing 
speed at voyage leg p (sp,p ∈ P) is estimated based on the planned ship 
sailing speed at that voyage leg (sp, p ∈ P), anticipated change in ship 
sailing speed due to a disruption (δsea

p , p ∈ P), and sailing speed adjust
ment of a ship at that voyage leg (Δsea

p ,p ∈ P). Note that the ship sailing 
speed adjustment decision variable is multiplied by the term “(1 − ysea

p )”, 
where ysea

p = 1 if voyage leg p experiences a disruption (else = 0). 
Therefore, the ship sailing speed adjustment cannot be implemented at 
voyage legs that are subject to disruptions. Such an assumption can be 
justified by the fact that it may be difficult or even impossible for a ship 
to maintain a specific speed level and/or reach the desired speed 
adjustment level at the disrupted voyage legs due to added resistance, 
unfavorable winds, waives, currents, etc. (Du et al., 2021; Du et al., 
2022b). The upper and lower bounds of ship recovered sailing speed are 
defined by constraint sets (4.4) and (4.5), respectively. On the other 
hand, constraint sets (4.6) and (4.7) compute the recovered ship sailing 
time and recovered bunker fuel consumption of ships at every voyage 
leg, respectively. 

sp = sp + δsea
p • ysea

p +Δsea
p • (1 − ysea

p )∀p ∈ P (4.3)  

sp ≤ smax∀p ∈ P (4.4)  

sp ≥ smin + δsea
p • ysea

p ∀p ∈ P (4.5)  

τsail
p =

dleg
p

sp
∀p ∈ P (4.6)  

fp =
γ(sp)

(α− 1)

24
•

(dsea
p • AWT + LWT

TWT + LWT

)2/3

∀p ∈ P (4.7) 

Constraint sets (4.8) through (4.14) form the second constraint group 
of the MOSSR-1 model, which estimates the major recovered time ele
ments related to ship service at ports. These time components are as 
follows: (1) recovered ship waiting time at ports (computed using 

constraints (4.8) and (4.9)); (2) recovered ship arrival time at ports 
(computed using constraints (4.10) and (4.11)); (3) recovered ship 
arrival delays (computed using constraints (4.12)); (4) recovered ship 
departure time from ports (computed using constraints (4.13)); and (5) 
recovered total ship turnaround time (computed using constraints 
(4.14)). 

τwait
(p+1) ≥ τst

(p+1) − (τdep
p + τsail

p )∀p ∈ P, p < n (4.8)  

τwait
(1) ≥ τst

(1) − (τdep
p + τsail

p )+ STT∀p ∈ P, p = n (4.9)  

τarr
(p+1) = τdep

p + τsail
p ∀p ∈ P, p < n (4.10)  

τarr
(1) = τdep

p + τsail
p − STT∀p ∈ P, p = n (4.11)  

τdel
p ≥ τarr

p − τarr
p ∀p ∈ P (4.12)  

τdep
p = τarr

p + τwait
p + τhand

p ∀p ∈ P (4.13)  

STT =
∑

p∈P
τsail

p +
∑

p∈P
τwait

p +
∑

p∈P
τhand

p (4.14) 

Constraint sets (4.15) through (4.19) form the third constraint group 
of the MOSSR-1 model, aiming to determine the feasibility of container 
diversion option and the ports that will handle the diverted demand. 
Constraint set (4.15) ensures that only disrupted ports could be skipped 
by the shipping line. Constraint set (4.16) assures that a port can only be 
skipped if it is a viable option. Constraint set (4.17) specifies that the 
container demand can be diverted from a port only if the port is skipped. 
Constraint set (4.18) ensures that the diversion of containers from a 
skipped port to alternative ports is possible. Constraint set (4.19) spec
ifies which ports will receive the diverted containers from the disrupted 
ports. 

xskip
p ≤ yport

p ∀p ∈ P (4.15)  

xskip
p ≤ zskip

p ∀p ∈ P (4.16)  

xdiv
pp* ≤ xskip

p ∀p, p* ∈ P, p ∕= p* (4.17)  

xdiv
pp* ≤ ypp*∀p, p* ∈ P, p ∕= p* (4.18)  

xdd
p* ≤

∑

p∈P:p∕=p*

xdiv
pp*∀p* ∈ P (4.19) 

Constraint sets (4.20) through (4.26) form the fourth constraint 
group of the MOSSR-1 model, aiming to ensure the feasibility of 
handling the diverted containers at alternative ports and compute the 
recovered ship handling time. The diverted container demand to an 
alternative port is calculated by constraint set (4.20). Constraint set 
(4.21) ensures that the container demand to be diverted from a given 
port will not exceed the original container demand of that port. 
Constraint set (4.22) assures that the existing capacity at the selected 
alternative port is adequate to meet the diverted demand. Constraint set 
(4.23) ensures that the inland transportation capacity of the selected 
alternative port is sufficient to distribute the diverted container demand 
to the respective destinations. Constraint set (4.24) calculates the 
recovered number of containers to be handled at each port. Constraint 
set (4.25) guarantees that only one of the available container handling 
rates will be selected at each port. Constraint set (4.26) computes the 
recovered container handling time while considering the possibility of 
skipping a disrupted port and cargo diversion. 

ddiv
pp* = dport

p • xdiv
pp*∀p, p* ∈ P, p ∕= p* (4.20)  
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∑

p*∈P:p*∕=p

ddiv
pp* ≤ dport

p ∀p ∈ P (4.21)  

∑

p∈P:p∕=p*

ddiv
pp* ≤ Cport

p* • xdd
p*∀p* ∈ P (4.22)  

∑

p∈P:p∕=p*

ddiv
pp* ≤ Cland

p* • xdd
p*∀p* ∈ P (4.23)  

dport
p* = dport

p* •
(

1 − xskip
p*

)
+

∑

p∈P:p∕=p*

ddiv
pp*∀p* ∈ P (4.24)  

∑

h∈Hp

xph = 1∀p ∈ P (4.25)  

τhand
p = [

∑

h∈Hp

(
dport

p

prph

)

• xph + δport
p • yport

p ] •
(

1 − xskip
p

)
∀p ∈ P (4.26) 

Constraint sets (4.27) through (4.29) form the fifth constraint group 
of the MOSSR-1 model, which ensures that the changes in the number of 
containers on board the ships will stay within the acceptable limits 
defined by the capacity of deployed ships. In particular, constraint sets 
(4.27) and (4.28) compute the total number of containers to be trans
ported by the ship at each voyage leg for the recovered ship schedule, 
taking into account port skipping and container diversion decisions. 
Constraint set (4.29) assures that the total number of containers on 
board each ship will not exceed its capacity. 

dsea
(p*+1) = dsea

p* −
[
dport
(p*+1) • IMP(p*+1) − dport

(p*+1) •
(
1 − IMP(p*+1)

) ]

• (1 − xskip
(p*+1))−

∑

p∈P:p∕=(p*+1)

ddiv
p(p*+1) • IMPp +

∑

p∈P:p∕=(p*+1)

ddiv
p(p*+1)

•
(
1 − IMPp

)
∀p* ∈ P, p* < n

(4.27)  

dsea
(1) = dsea− 0 −

[
dport
(1) • IMP(1) − dport

(1) •
(
1 − IMP(1)

) ]

• (1 − xskip
(1) )−

∑

p∈P:p∕=(1)

ddiv
p(1) • IMPp +

∑

p∈P:p∕=(1)

ddiv
p(1) •

(
1 − IMPp

)
(4.28)  

dsea
p • AWT ≤ TWT∀p ∈ P (4.29) 

Constraints (4.30) through (4.34) form the sixth and final constraint 
group of the MOSSR-1 model, which estimates all of the individual cost 
elements required for the calculation of the MOSSR-1 objective func
tions (4.1) and (4.2). In particular, the total operational cost is calcu
lated using constraint set (4.30). Constraint sets (4.31)-(4.34) compute 
the recovered total fuel cost, recovered total port handling cost, recov
ered total container diversion cost, and recovered total revenue. 

SOC = coper • φ • V (4.30)  

FCC =
∑

p∈P
cfuel

p • dleg
p • fp (4.31)  

TPC =
∑

p∈P

∑

h∈Hp

cport
ph • dport

p • xph +
∑

p∈P
(cskip

p + cmis
p • dport

p ) • xskip
p (4.32)  

CDC =
∑

p∈P

∑

p*∈P

(cd− port
pp* + cd− land

pp* ) • ddiv
pp* (4.33)  

REV =
∑

p∈P
ccargo

p • dport
p •

(
1 − xskip

p

)
+
∑

p∈P

∑

p*∈P

ccargo
p • ddiv

pp* (4.34)  

5. Proposed solution approach 

This section contains a detailed description of the solution method
ology proposed, including the MOSSR-1 mathematical model 

linearization procedures and an exact multi-objective optimization al
gorithm for ship scheduling recovery. 

5.1. Preliminary linearization procedures 

Constraint sets (4.6), (4.7), and (4.26) are normally used in liner 
shipping studies to estimate recovered ship sailing time, recovered 
bunker fuel consumption, and recovered port handling time, respec
tively (Wang et al., 2014; Abioye et al., 2019; Abioye et al., 2021). 
However, these constraint sets make the MOSSR-1 mathematical model 
non-linear. The MOSSR-1 model can be reduced in computational 
complexity using certain linearization procedures. First, the recovered 
and original ship sailing speeds can be replaced with their reciprocals 
(vp = 1

sp
∀p ∈ P; v̇p = 1

sp
∀p ∈ P). Accordingly, the projected sailing speed 

decrease due to disruptive incidents (δsea
p , p ∈ P – knots) and the 

adjustment in ship sailing speed (Δsea
p , p ∈ P – knots) will have to be 

modified as well. Let ˙δsea
p , p ∈ P (knots− 1) and ˙Δsea

p , p ∈ P (knots− 1) 
specify the projected ship sailing speed decrease and the adjustment in 
ship sailing speed at voyage leg p, respectively. Second, the non-linear 
bunker fuel consumption function for the recovered ship schedule fp, p ∈

P (tons) can be linearized using the piecewise linear secant approxi
mation method, which has been widely used in the liner shipping 
literature (Wang and Meng, 2012a; Wang et al., 2013). Hence, the 
recovered linear bunker fuel consumption function FCpk, p ∈ P, k ∈ K can 
be represented with a set of secant segments denoted as K = {1,⋯, k}. 

For the purpose of linear bunker fuel consumption function 
modeling, additional variable bpk, p ∈ P, k ∈ K can be introduced, such 
that bpk = 1 if the bunker fuel consumption at voyage leg p is estimated 
using linear secant segment k (else = 0). Let stk, edk, k ∈ K denote the 
reciprocal ship speed values at the start and at the end of linear secant 
segment k; SLk, INk, k ∈ K specify the values for the slope and the 
intercept of linear secant segment k; and M1 and M2 represent 
comparatively big positive numbers. Then, the MOSSR-2 mathematical 
model, which is a partial linearization of the MOSSR-1 model, can be 
formulated using objective functions (5.1) and (5.2) and constraint sets 
(4.8)-(4.30), (4.32)-(4.34), and (5.3)-(5.11) as follows: 

Partially Linearized Multi-Objective Ship Schedule Recovery Prob
lem (MOSSR-2): 

minF1 =
∑

p∈P
τdel

p (5.1)  

minF2 = TP − (REV − SOC − FCC − TPC − CDC) (5.2) 

Subject to: Constraint sets (4.8)-(4.30) and (4.32)-(4.34) 

vp = v̇p + ˙δsea
p • ysea

p + ˙Δsea
p • (1 − ysea

p )∀p ∈ P (5.3)  

vp ≥
1

smax∀p ∈ P (5.4)  

vp ≤
1

smin +
˙δsea
p • ysea

p ∀p ∈ P (5.5)  

τsail
p = dleg

p • vp∀p ∈ P (5.6)  

∑

k∈K
bpk = 1∀p ∈ P (5.7)  

stk • bpk ≤ vp∀p ∈ P, k ∈ K (5.8)  

edk +M1 •
(
1 − bpk

)
≥ vp∀p ∈ P, k ∈ K (5.9)  
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FCpk ≥ (SLk • vp + INk) •

(dsea
p • AWT + LWT

TWT + LWT

)2/3

− M2 •
(
1 − bpk

)
∀p

∈ P, k ∈ K
(5.10)  

FCC =
∑

p∈P

∑

k∈K
cfuel

p • dleg
p • FCpk (5.11) 

The first objective function (5.1) in the proposed MOSSR-2 mathe
matical model aims to minimize the total late ship arrivals at ports, 
while the second objective function (5.2) aims to minimize the total 
profit loss. The reciprocal value of sailing speed is calculated using 
constraint set (5.3) at every voyage leg for the recovered schedule. The 
reciprocal value limits for sailing speed are defined using constraint sets 
(5.4) and (5.5). Constraint set (5.6) uses the reciprocal value of sailing 
speed to compute ship sailing time for the recovered schedule at every 
voyage leg. Constraint set (5.7) assures that just one linear segment is 
used to calculate the recovered bunker fuel consumption of ships at 
every voyage leg. Constraint sets (5.8) and (5.9) define the maximum 
and minimum reciprocal values of sailing speed that can be adopted to 
compute the recovered bunker fuel consumption of ships at a given 
voyage leg using the selected linear segment. The recovered bunker fuel 
consumption of ships is computed by constraint set (5.10) using the 
reciprocal value of sailing speed at every voyage leg. The total recovered 
fuel cost to be imposed to the shipping line is determined by constraint 
set (5.11). 

Fig. 4 shows linearized approximations of non-linear bunker fuel 
consumption function with one, two, three, and four linear secant seg
ments. Based on the previous studies related to liner shipping opera
tions, the upper and lower bounds for the ship’s sailing speed were 
limited to 15 and 25 knots (Pasha et al., 2021), while the value of bunker 
fuel consumption was obtained using the following function: FC(v) =

0.012•(v)− 2

24 . The provided examples clearly show that the level of accuracy 

for the fuel consumption approximating function improves as the 
number of linear secant segments increases. Nevertheless, the lineari
zation procedures adopted herein are unable to fully linearize the entire 
optimization model due to the presence of a highly non-linear constraint 
set (4.26), which estimates the recovered port handling time. 

5.2. Exact multi-objective optimization algorithm 

In contrast to single-objective optimization models, multi-objective 
optimization models do not have just one solution that contains the 
best values for all the considered objective functions. In particular, the 
MOSSR-2 mathematical formulation has two conflicting objective 
functions, and the best possible value of one objective function will lead 
to the worst value for the second objective function. As mentioned 
earlier, a variety of recovery options could be implemented by the 
shipping line to reduce or completely eliminate the delays (i.e., mini
mize the value of F1) due to the occurrence of disruptive incidents, 
including port skipping without the diversion of containers to alterna
tive ports, port skipping with the diversion of containers to alternative 
ports, increasing ship sailing speeds at specific voyage legs, and 
increasing ship handling rates at specific ports. However, the shipping 
line will incur additional costs in order to implement any of the afore
mentioned recovery options (i.e., an increase in the value of F2 will be 
observed). On the contrary, taking measures to reduce the total cost, 
such as decreasing the sailing speed to reduce the total fuel consumption 
cost (improving F2), may increase the total delay (worsening F1). Within 
the context of multi-objective optimization, a Pareto Front (PF) is a 
collection of optimal solutions that are not dominated by other solu
tions. This set of solutions does not allow for any of the objective 
functions to be improved upon without negatively impacting the per
formance of the other functions (Dulebenets, 2018; Mavrotas, 2009). For 
multi-objective optimization, PFs can be used to analyze tradeoffs be
tween competing objectives and find the best solution that compromises 
these objectives. 

Fig. 4. Examples of recovered bunker fuel consumption approximations with: (a) one linear secant segment; (b) two linear secant segments; (c) three linear secant 
segments; and (d) four linear secant segments. 

Z. Elmi et al.                                                                                                                                                                                                                                     



Computers & Industrial Engineering 183 (2023) 109472

12

An Exact Multi-Objective Optimization Algorithm for Ship Schedule 
Recovery (EMOA-SSR) was adopted in this study to develop PFs for the 
MOSSR-2 mathematical model. The EMOA-SSR algorithm is inspired by 
the epsilon-constraint method, which is one of the most popular exact 
algorithms for multi-objective optimization (Mavrotas, 2009). In the 
epsilon-constraint method, the most important practical objective 
function is minimized, while the other objective function is limited by an 
upper bound. Then, by repeatedly modifying the upper bound values, 
the Pareto Front (PF) is generated. Pseudocode 1 (PS-1) outlines the 
primary EMOA-SSR steps. First, a data structure is created to store the PF 
points. Then, the corner PF points are determined in steps 2 and 3. The 
corner PF point [F*

1; F2(F*
1)] represents a solution that has the minimum 

F1 value, and the F2 is constrained by an upper bound ε2. Likewise, the 
corner PF point [F1

(
F*

2
)
; F*

2] represents a solution that has the minimum 
F2 value, and the F1 is constrained by an upper bound ε1. The corner PF 
points [F*

1; F2(F*
1)] and [F1

(
F*

2
)
; F*

2] will be obtained by solving the 
MOSSR-2-F1 and MOSSR-2-F2 mathematical models, which can be 
formulated as follows: 

Partially Linearized Multi-Objective Ship Schedule Recovery Prob
lem with the F1 minimization (MOSSR-2-F1): 

minF1 =
∑

p∈P
τdel

p (5.12) 

Subject to: (4.8)-(4.30), (4.32)-(4.34), and (5.3)-(5.11) 

F2 = TP − (REV − SOC − FCC − TPC − CDC) (5.13)  

F2 ≤ ε2 (5.14) 

Partially Linearized Multi-Objective Ship Schedule Recovery Prob
lem with the F2 minimization (MOSSR-2-F2): 

minF2 = TP − (REV − SOC − FCC − TPC − CDC) (5.15) 

Subject to: (4.8)-(4.30), (4.32)-(4.34), and (5.3)-(5.11) 

F1 =
∑

p∈P
τdel

p (5.16)  

F1 ≤ ε1 (5.17)   

PS-1. Exact Multi-Objective Optimization Algorithm for Ship Schedule Recovery 
(EMOA-SSR) 

EMOA-SSR(InputData,NPF, ε1, ε2)

in: InputData - input parameters for MOSSR-2; NPF - total defined number of PF points; 
ε1 - upper bound on the objective F1; ε2 - upper bound on the objective F2 

out: PF - PF set identified for MOSSR-2 

(continued on next column)  

(continued ) 

1: |PF|←NPF ◃ Establishment of the PF storing data structure 
2: [F*

1 ; F2(F*
1)]←MOSSR-2-F1(InputData, ε2) ◃ Identify the corner point F*

1 

3: [F1
(
F*

2
)
; F*

2]←MOSSR-2-F2(InputData, ε1) ◃ Identify the corner point F*
2 

4: ε←
F2
(
F*

1
)
− F*

2
(NPF − 1)

◃ Determine the upper bound interval for F2 

5: i←1 ◃ Start the iteration counter 
6: ε2i←F*

2 ◃ Establish the first F2 upper bound 
7: PF←PF ∪ [F1

(
F*

2
)
; F*

2] ◃ Add the corner point F*
2 

8: while |PF| ≤ (NPF − 2) do 
9: i←i+1 ◃ Update the iteration counter 
10: ε2i←ε2i +ε ◃ Update the ε2i value 
11: [F*

1i; F2(F*
1i)]←MOSSR-2-F1(InputData, ε2i) ◃ Solve MOSSR-2-F1 with the updated 

ε2i 

12: PF←PF ∪ [F*
1i; F2(F*

1i)] ◃ Add the PF point generated in the previous step 
13: end while 
14: PF←PF ∪ [F*

1; F2(F*
1)] ◃ Add the corner point [F*

1; F2(F*
1)]

15: return PF  

The illustration of corner PF points [F*
1; F2(F*

1)] and [F1
(
F*

2
)
; F*

2] is pro
vided in Fig. 5. The objective F2 values at the two corner PF points along 
with the total number of PF points (NPF) are used in step 4 in the 
equation that determines the upper bound interval for F2 (this interval is 
denoted as ε). In step 6, the initial F2 upper bound (ε2i) is set to F*

2. Next, 
in step 7, the construction of the PF begins with the point F*

2; more 
specifically, the corner PF point [F1

(
F*

2
)
; F*

2] is added to the PF data 
structure. Then, in steps 8–13, the EMOA-SSR algorithm begins an 
iterative procedure. Within the loop in step 10, the value for the F2 upper 
bound increases by ε at each iteration. In step 11, the MOSSR-2-F1 
mathematical model is solved using the established upper bound on F2, 
and a new PF point is produced. Step 12 adds the newly generated point 
to the PF data structure. The process terminates when the number of 
newly generated PF points reaches NPF − 1. After the required algo
rithmic iterations have been completed, the EMOA-SSR algorithm will 
move on to step 14 and append the final PF point. This point will 
correspond to the best possible solution for the objective F1 

(
[
F*

1; F2
(
F*

1
) ]

). 

6. Computational experiments 

The following sections of the manuscript present the results of nu
merical experiments designed to assess the computational performance 
of the adopted EMOA-SSR algorithm and demonstrate the ability of the 
presented multi-objective mathematical formulation to provide useful 
managerial insights. A set of analyses were performed on a Dell system 
equipped with an Intel(R) CoreTMi7 processor and 32 GB of RAM. The 
EMOA-SSR algorithm was implemented in MATLAB 2021b. The EMOA- 

Fig. 5. Illustration of the corner and intermediate PF points.  
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SSR algorithm directly relies on the MOSSR-2-F1 and MOSSR-2-F2 
mathematical models, which were both coded using the GAMS software 
and solved using BARON with the target optimality gap of 0.1%. 

6.1. Input data adopted 

The numerical experiments were carried out for the EPIC (Europe 
Pakistan India Consortium) shipping route. Currently, the Compagnie 
Maritime d’Affrètement and Compagnie Générale Maritime (generally 
referred to as “CMA CGM”) serves this shipping route (CMA CGM, 
2022). The considered transit route with a total of 14 ports of call pro
vides a maritime connection between North Europe, Middle East, and 
India. The Port of Jeddah (Saudi Arabia) is visited twice by the ships 
deployed under normal operational conditions. Fig. 6 depicts a graphical 
representation of the considered shipping route. The list of port visits 
and distances between these ports (shown in square brackets and 
expressed in nautical miles) can be presented as follows (Ports.com, 
2022): 

1. Port of Jebel Ali, United Arab Emirates [302] → 2. Port of Khalifa, 
United Arab Emirates [748] → 3. Port Qasim, Pakistan [1,113] → 4. Port 
of Nhava Sheva, India [429] → 5. Port of Mundra, India [2,496] → 6. 
Port of Jeddah, Saudi Arabia [3,035] → 7. Tanger Med Port, Morocco 
[1,367] → 8. Port of Southampton, England [293] → 9. Port of Rotter
dam, Netherlands [309] → 10. Port of Bremerhaven, Germany [393] → 
11. Port of Antwerp, Belgium [244] → 12. Port of Le Havre, France 
[1,397] → 13. Port of Algeciras, Spain [3,006] → 14. Port of Jeddah, 
Saudi Arabia [2,371] → 1. Port of Jebel Ali, United Arab Emirates. 

Table 2 shows the input data that were adopted for the mixed integer 
multi-objective ship schedule recovery mathematical model throughout 
the conducted computational experiments. The numerical data were 
derived primarily from the existing literature on liner shipping (Wang 
and Meng, 2012a,b; Wang et al., 2014; Alharbi et al., 2015; Pasha et al., 
2020; Abioye et al., 2021; CMA CGM, 2022; PBT International, 2022). 
Note that since the EPIC shipping route is passing through the emission 
control areas (i.e., English Channel and North Sea), it was assumed that 
the shipping line had to use ultra-low sulfur fuel oil (ULSFO) within the 
emission control areas and very-low sulfur fuel oil (VLSFO) outside the 
emission control areas. 

In order to obtain useful managerial insights for shipping lines using 
the developed multi-objective mathematical model, five possible 
disruption scenarios were considered. In the first scenario, it was 
assumed that the disruptive incidents occurred at sea and ports. In 
particular, the Port of Qasim (Pakistan), the Port of Rotterdam 
(Netherlands), and the Port of Bremerhaven (Germany) all experienced 

Fig. 6. Illustration of the Europe Pakistan India Consortium shipping route.  

Table 2 
The values of the parameters used in computational experiments.  

Parameter Value 

Number of ports to be visited: n (port visits) 14 
Number of offered handling rates at ports: m (port 

handling rates) 
3 

Demand for containers at ports: dport
p , p ∈ P (TEUs) U[200;2, 000]

Percentage of import containers at ports: IMPp, p ∈ P (%) U[40; 60]
Container handling productivity: prph, p ∈ P, h ∈ Hp 

(TEUs/hour) 
U[50; 200]

Negotiated service frequency of ports: φ (hours) 168 
Number of allocated ships: V (ships) 10 
Coefficients of fuel consumption:α, γ α = 3.0, γ = 0.012 
Standardized 20-foot container cargo weight: AWT (tons) 9 
Total ship empty weight: LWT (tons) 50,000 
Total ship maximum allowable container weight: TWT 

(tons) 
200,000 

Payload of the ship prior to docking at its first port: dsea− 0 

(TEUs) 
U[4, 000;7, 000]

Minimum allowed speed for ships: smin (knots) 15 
Maximum allowed speed for ships: smax (knots) 25 
Original sailing speed of ships: sp, p ∈ P (knots) U[15; 18]
Duration anticipated for disruptive incidents at ports: δport

p ,

p ∈ P (hours) 
U[10; 100]

Variation anticipated in the ship speed due to disruptive 
incidents: δsea

p , p ∈ P (knots) 
− U[1.0;3.0]

Handling capacity at ports to meet the diverted demand: 
Cport

p , p ∈ P (TEUs) 
U[200;2, 000]

Capacity for inland transportation to meet the diverted 
demand: Cland

p , p ∈ P (TEUs) 
U[200;2, 000]

Unit cost of ship handling at ports: cport
ph , p ∈ P, h ∈ Hp 

(USD/TEU) 
hcav

+U[0;50]

Average cost of ship handling at ports: hcav (USD/TEU) U[400;700]

Unit fuel consumption cost: cfuel
p , p ∈ P (USD/ton) 800 (VLSFO); 1,200 

(ULSFO) 
Unit basic ship operational cost: coper (USD/hour) (350,000/168) 
Cost of port skipping: cskip

p , p ∈ P (USD) μ⋅hcav⋅dport
p 

Inconvenient factor of port skipping:μ 1.10 
Unit penalty for misconnected containers at ports: cmis

p , p ∈

P (USD/TEU) 
U[50; 100]

Unit cost of handling diverted containers: cd− port
pp* , p, p* ∈ P,

p ∕= p* (USD/TEU) 

U[400;700]

Unit cost of inland transportation of containers: cd− land
pp* , p,

p* ∈ P, p ∕= p* (USD/TEU) 

U[600;800]

Unit cost of container shipping between ports p and p + 1: 
ccargo

p , p ∈ P (USD/TEU) 
U[4, 000;6, 000]

Total original profit anticipated by the shipping line: TP 
(USD) 

70,000,000  
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disruptions in port operations due to severe weather. The disruptions 
were expected to last for δport

3 = 79 hours, δport
9 = 78 hours, and δport

10 = 49 
hours, respectively. In addition, a pirate attack at voyage leg “6” be
tween the Port of Jeddah (Saudi Arabia) and the Port of Tanger Med 
(Morocco) caused a sailing speed reduction of δsea

6 = 1.34 knots. The first 
disruption scenario was assumed to be the base scenario. In the second 
scenario, the disruptive incidents occurred at ports of call only. More 
specifically, the Port of Qasim (Pakistan), the Port of Rotterdam 
(Netherlands), and the Port of Bremerhaven (Germany) all experienced 
disruptions with the expected duration of δport

3 = 79 hours, δport
9 = 78 

hours, and δport
10 = 49 hours, respectively. 

In the third scenario, the disruptive incidents were assumed to 
happen at the port early in the ship voyage. In particular, the Port of 
Qasim (Pakistan) experienced a disruptive incident with the expected 
duration of δport

3 = 79 hours. In the fourth scenario, the disruptive in
cidents occurred at the ports later in the ship voyage. More specifically, 
ship services were disrupted at the Port of Rotterdam (Netherlands) and 
the Port of Bremerhaven (Germany). The disruptive incidents were 
projected to last for δport

9 = 78 hours and δport
10 = 49 hours, respectively. In 

the fifth scenario, no disruptive incidents were reported during the ship 
voyage. This is a perfect scenario in which the original schedule of the 
liner shipping company is not interrupted at any point during the 
voyage. 

6.2. Solution methodology assessment 

Time complexity is a crucial metric to consider when assessing the 
computational performance of the adopted solution approach. Algo
rithms requiring excessive processing time to produce solutions are 
undesirable. As previously stated, the adopted EMOA-SSR algorithm is 
inspired by the canonical ECON method. Therefore, the EMOA-SSR time 
complexity will be affected with the PF size – |PF|. Furthermore, the 
EMOA-SSR time complexity will be influenced with the number of linear 

secant segments used in the approximation for the bunker fuel con
sumption function – |K| (see Fig. 4). An increase in the number of linear 
secant segments in the approximating function would increase the size 
of the MOSSR-2-F1 and MOSSR-2-F2 mathematical models and, hence, 
will increase the EMOA-SSR computational time. In order to perform the 
time complexity analysis of the EMOA-SSR algorithm, a total of 81 
scenarios were developed. The desired number of PF points increased 
from four to twenty (with a two-point increment), and the number of 
linear secant segments increased from four to twelve (with a one-point 
increment). The analysis was conducted for the base disruption sce
nario with disruptive incidents at sea and ports. 

The EMOA-SSR algorithm was launched for each combination of the 
PF size and number of linear secant segments. Moreover, three repli
cations were performed to estimate the average values of computational 
time. The results of the time complexity analysis are depicted in Fig. 7 
and more details are reported in Table 3. The objective function values 
at the PF solutions are not reported for the considered scenarios, since no 
significant changes in the objective function values at the PF solutions (i. 
e., less than 0.24%) were observed after increasing the number of secant 
segments in the approximating bunker fuel consumption function 
beyond four segments. It can be observed that the EMOA-SSR algorithm 
is much more sensitive to the number of linear secant segments used in 
the approximation for the bunker fuel consumption function compared 
to the desired number of PF points. In particular, substantial increases in 
the computational time were recorded after increasing the number of 
linear secant segments used in the piecewise approximating function. 
However, based on the previously conducted analysis (see Fig. 4), the 
piecewise approximating function with four linear secant segments 
provides a precise approximation of the bunker fuel consumption 
function. Hence, the EMOA-SSR algorithm with four linear secant seg
ments and twenty PF points was further used to obtain the managerial 
insights as a part of the conducted computational experiments. 

Fig. 7. Time complexity analysis results for the EMOA-SSR algorithm.  

Table 3 
Average EMOA-SSR computational time for the considered scenarios (reported in seconds).  

|K|\|PF| 4 6 8 10 12 14 16 18 20 

4  8.90  11.88  19.20  21.34  31.10  38.21  39.46  108.51  113.48 
5  19.21  23.16  34.66  74.15  91.32  100.70  105.80  120.17  148.01 
6  47.57  67.31  82.49  112.17  131.05  171.84  175.91  183.88  196.89 
7  179.88  224.36  309.73  333.97  365.21  394.80  710.71  812.19  869.34 
8  322.64  345.21  502.64  688.00  789.51  851.77  910.29  940.99  966.18 
9  513.10  653.21  1,260.24  1,301.42  1,372.73  1,893.03  1,959.05  2,078.14  2,153.38 
10  2,776.58  2,876.02  3,227.05  3,965.16  4,093.93  4,314.49  4,432.99  4,777.40  4,852.13 
11  7,234.02  7,450.32  7,492.46  7,520.00  13,618.11  14,217.11  16,667.28  16,921.64  18,611.06 
12  16,268.32  22,160.84  23,791.07  30,892.82  44,757.27  52,911.45  53,709.32  56,605.57  63,148.06  
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6.3. Managerial implications 

This section of the manuscript describes the managerial implications 
derived from the solutions obtained for the MOSSR-2 mathematical 
model. In particular, the solutions derived at the corner PF points were 
thoroughly analyzed. Additionally, several sensitivity analyses were 
carried out for various disruption scenarios to assess their impact on the 
selected ship schedule recovery options. The supplementary set of 
sensitivity analyses examined the effects of changes in the unit fuel cost 
on the decision variables of the MOSSR-2 mathematical model. Twenty 
problem instances were generated to reveal the managerial implications 
by changing the originally planned ship arrival time (τarr

p , p ∈ P – hours) 
at each port of the EPIC shipping route as follows: τarr

p+1 =

τarr
p +(dleg

p /sp)∀p ∈ P – hours, where dleg
p , p ∈ P – length of voyage leg p 

(nmi); and sp = U[15;18]∀p ∈ P – sailing speed of ships based on the 
originally planned schedule (knots). 

6.3.1. Analysis of the solutions at the corner Pareto Front points 
The first analysis aimed to conduct a detailed evaluation of the 

corner PF solutions (i.e., the solutions that yield the minimum total late 
ship arrivals at ports [F*

1] and the solutions that yield the minimum total 

profit loss [F*
2]). The EMOA-SSR algorithm was executed for all the 

considered problem instances and the base disruption scenario with 
disruptive incidents at sea and ports. The following information was 
collected for the recovered ship schedules at the corner PF points: (1) the 
value of F1 objective; (2) the value of F2 objective; (3) the average sailing 
speed adjustment of ships weighted by the length of voyage legs – 
Δsea− w = (

∑
p∈Pdleg

p • Δsea
p )/(

∑
p∈Pdleg

p ); (4) the average sailing speed of 
ships weighted by the length of voyage legs – sw =

(
∑

p∈Pdleg
p • sp)/(

∑
p∈Pdleg

p ); (5) the total sailing time – τsail =
∑

p∈Pτsail
p ; 

(6) the total waiting time – τwait =
∑

p∈Pτwait
p ; (7) the total handling time 

– τhand =
∑

p∈Pτhand
p ; (8) the total turnaround time – STT; (9) the total 

bunker fuel consumption – FC =
∑

p∈P
∑

k∈KFCpk; (10) the total number 

of skipped ports – xskip =
∑

p∈Pxskip
p ; (11) the total number of container 

diversion moves – xdiv =
∑

p∈P
∑

p*∈Pxdiv
pp* ; (12) the total number of 

diverted containers – ddiv =
∑

p∈P
∑

p*∈Pddiv
pp* ; and (13) total number of 

containers on board the ships over all voyage legs – dsea =
∑

p∈Pdsea
p . 

The relative changes in the mean values of all the considered vari
ables over the twenty problem instances were calculated by comparing 

Table 4 
Analysis of the solutions at the corner PF points for the considered problem instances.  

F*
1 Corner Point 

Instance F1, hours F2, 106 

USD 
Δsea− w, 
knots 

sw, 
knots 

τsail, hours τwait , 
hours 

τhand , 
hours 

STT, hours FC, tons xskip xdiv ddiv, 
TEUs 

dsea, 
TEUs 

1 209.37 30.00 4.73 21.56 811.73 0.00 90.76 902.48 2,516.90 3 1 513 57,211 
2 248.17 30.00 4.24 21.07 830.54 1.00 90.78 922.31 2,067.69 3 1 513 56,698 
3 51.34 30.00 2.93 19.76 885.56 17.62 96.19 999.37 2,359.57 3 1 513 56,698 
4 93.93 30.00 4.48 21.32 821.13 0.00 83.25 904.37 2,196.84 3 1 513 56,698 
5 160.76 30.00 4.28 21.11 829.08 42.44 88.35 959.87 2,320.21 3 1 513 57,211 
6 119.56 30.00 4.53 21.36 819.32 12.57 94.72 926.61 2,253.17 3 1 513 56,698 
7 238.43 30.00 4.94 21.77 804.04 13.69 90.76 908.48 2,516.90 3 1 513 57,211 
8 84.20 30.00 4.16 20.99 833.68 6.55 77.04 917.26 2,128.76 3 1 513 57,211 
9 70.17 30.00 4.07 20.90 837.54 7.47 87.47 932.48 2,422.05 3 1 513 57,211 
10 69.33 30.00 4.28 21.12 828.91 13.09 94.72 936.73 2,253.17 3 1 513 56,698 
11 364.84 30.00 4.62 21.45 815.85 15.79 92.74 924.37 2,455.46 3 1 513 56,698 
12 308.20 30.00 4.86 21.69 806.95 0.00 92.24 899.19 2,207.85 3 1 513 56,698 
13 210.96 30.00 4.22 21.05 831.39 43.26 94.72 969.37 2,253.17 3 1 513 56,698 
14 175.75 30.00 4.10 20.93 836.09 1.00 91.27 928.36 2,315.30 3 1 513 56,698 
15 283.54 30.00 3.92 20.75 843.50 13.49 89.65 946.64 2,113.00 3 1 513 56,698 
16 115.16 30.00 4.91 21.75 804.91 1.00 80.16 886.07 2,220.03 3 1 513 56,698 
17 360.15 30.00 4.48 21.31 821.20 5.00 97.31 923.51 2,348.02 3 1 513 56,698 
18 276.61 30.00 4.15 20.98 834.18 0.00 89.65 923.84 2,113.00 3 1 513 56,698 
19 383.23 30.00 5.35 22.19 788.92 1.00 90.92 880.84 2,359.92 3 1 513 57,211 
20 169.20 30.00 4.22 21.05 831.52 1.94 91.27 924.73 2,315.30 3 1 513 56,698 
Mean 199.65 30.00 4.37 21.21 825.80 9.84 90.20 925.85 2,286.81 3 1 513 56,851 
F*

2 Corner Point 
Instance F1, hours F2, 106 

USD 
Δsea− w, 
knots 

sw, 
knots 

τsail, hours τwait , 
hours 

τhand , 
hours 

STT, hours FC, tons xskip xdiv ddiv, 
TEUs 

dsea, 
TEUs 

1 2,500 4.70 1.09 17.92 976.84 0.00 419.71 1,396.55 1,626.56 0 0 0 57,622 
2 2,500 4.61 1.16 17.99 972.68 0.00 429.87 1,402.55 1,640.93 0 0 0 57,622 
3 2,500 4.36 0.19 17.02 1,028.12 1.00 433.85 1,462.98 1,368.83 0 0 0 57,622 
4 2,500 4.60 1.31 18.15 964.61 1.00 433.85 1,399.46 1,655.60 0 0 0 57,622 
5 2,500 4.45 0.60 17.43 1,004.33 0.00 433.85 1,438.18 1,484.86 0 0 0 57,622 
6 2,500 4.59 1.10 17.93 976.03 1.00 429.87 1,406.90 1,631.50 0 0 0 57,622 
7 2,500 4.67 1.66 18.49 946.65 0.00 429.87 1,376.52 1,710.24 0 0 0 57,622 
8 2,500 4.68 1.09 17.92 976.86 1.00 423.69 1,401.55 1,626.49 0 0 0 57,622 
9 2,500 4.57 1.08 17.91 977.19 1.00 433.85 1,412.04 1,624.45 0 0 0 57,622 
10 2,500 4.46 0.65 17.48 1,001.22 0.00 433.85 1,435.07 1,497.05 0 0 0 57,622 
11 2,500 4.73 1.35 18.18 962.84 0.00 419.71 1,382.55 1,662.14 0 0 0 57,622 
12 2,500 4.83 1.54 18.37 952.87 1.00 415.48 1,369.35 1,698.56 0 0 0 57,622 
13 2,500 4.48 0.69 17.52 998.88 0.00 433.85 1,432.73 1,517.46 0 0 0 57,622 
14 2,500 4.73 1.34 18.17 963.06 1.00 419.71 1,383.77 1,662.21 0 0 0 57,622 
15 2,500 4.69 1.07 17.90 977.81 0.00 419.71 1,397.52 1,620.66 0 0 0 57,622 
16 2,500 4.72 1.32 18.15 964.38 1.00 419.71 1,385.09 1,652.74 0 0 0 57,622 
17 2,500 4.74 1.41 18.24 959.58 1.00 419.71 1,380.29 1,674.08 0 0 0 57,622 
18 2,500 4.74 1.40 18.23 960.11 1.00 419.71 1,380.82 1,669.97 0 0 0 57,622 
19 2,500 4.91 1.83 18.66 937.84 1.00 411.15 1,349.99 1,748.11 0 0 0 57,622 
20 2,500 4.57 1.09 17.92 976.54 1.00 433.85 1,411.40 1,621.63 0 0 0 57,622 
Mean 2,500 4.64 1.15 17.98 973.92 0.60 425.74 1,400.27 1,619.70 0 0 0 57,622  
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the corner point F*
1 to the corner point F*

2 (see Table 4). Since the corner 
point F*

1 has the optimum value for the objective function F1, the mean 
value of F1 at the corner point F*

1 (199.65 h) was 92.01% lower than that 
of at the corner point F*

2 (2,500 h). On the other hand, the second 
objective function F2 has the lowest value at the corner point F*

2, so the 
mean value of F2 at the corner point F*

2 (4.64 × 106 USD) was 84.53% 
lower than that of at the corner point F*

1 (30 × 106 USD). The mean 
values for Δsea− w (the average sailing speed adjustment of ships 
weighted by the length of voyage legs) and sw (the average sailing speed 
of ships weighted by the length of voyage legs) were both found to be 
significantly lower at the corner point F*

2 than those of at corner point F*
1. 

Such results can be explained by the fact that the shipping line chose the 
sailing speed adjustment option and sail at higher speeds in order to 
minimize the total ship late arrivals at ports and reach the best value for 
F1 (i.e., the corner point F*

1). On the contrary, if more emphasis is given 
to the total profit loss minimization (i.e., the corner point F*

2), the 
shipping line had to use the sailing speed adjustment option on a limited 
basis to reduce the associated bunker fuel costs. Indeed, the bunker fuel 
consumption values were on average 41.19% lower at the corner point 
F*

2 compared to the corner point F*
1. Moreover, the relative difference 

between the mean values of total sailing time and total turnaround time 

at the corner point F*
1 and the corner point F*

2 were found to be − 15.21% 
and –33.88%, respectively. 

Some interesting insights were also revealed for xskip (port skipping 
decision variable). Port skipping was found to be a common option for 
the F*

1 ship schedules mainly due to the fact that the objective function F1 

is solely focused on the minimization of total ship late arrivals at ports 
without considering the costs that are associated with the port skipping 
decision. As a result, the mean value for the total handling time at the 
corner point F*

1 was found to be 78.81% lower than that of at the corner 
point F*

2, which confirms the wide implementation of the port skipping 
option at the corner point F*

1 to offset the delays due to disruptive in
cidents. 

Furthermore, port skipping with the diversion of containers was 
identified to be a more popular option for the F*

1 ship schedules 
compared to the F*

2 ship schedules, since the container diversion costs 
are not captured directly by the objective function F1. The computa
tional experiments also show a more substantial deviation in the total 
number of containers on board the ships over all voyage legs for the F*

1 
ship schedules compared to the F*

2 ship schedules, which can be expli
cated by port skipping and container diversion decisions. Based on the 
conducted analysis, it can be concluded that the proposed multi- 
objective optimization model for ship schedule recovery can effec

Fig. 8. Pareto Fronts obtained for the considered disruption type scenarios and problem instances “1” through “12”.  
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tively assist shipping lines with the analysis of various schedule recovery 
options under competing objectives. 

6.3.2. Sensitivity analysis for the disruption types 
The second analysis aimed to determine the impacts of disruption 

types on ship schedule recovery under multi-objective settings. A total of 
five scenarios of disruption types were considered, including the 
following: (1) disruptive incidents occur at sea and ports (i.e., the base 
scenario); (2) disruptive incidents occur at ports only (i.e., disruptions at 
the Ports of Qasim, Rotterdam, and Bremerhaven); (3) disruptive in
cidents occur at the port early in the voyage (i.e., disruption at the Port 
of Qasim); (4) disruptive incidents occur at the ports later in the voyage 
(i.e., disruptions at the Port of Rotterdam and the Port of Bremerhaven); 
and (5) no disruptive incidents occur throughout the ship voyage. More 
details regarding the considered scenarios of disruptive incidents and 
their effects are provided in Section 6.1 of the manuscript. The adopted 
EMOA-SSR algorithm was executed for all the disruption type scenarios 
and all the considered problem instances. The obtained PFs are illus
trated in Fig. 8 for the problem instances “1” through “12”, but similar 
patterns were noticed for the remaining problem instances. 

It can be observed that the obtained PFs vary substantially for 
different disruption types. As expected, the PFs with the largest total 
port arrival delays and total profit loss were recorded for the scenario 
when disruptive incidents were reported at sea and ports (i.e., the base 
scenario). Substantial total port arrival delays and total profit loss were 

also determined for the scenario with disruptive incidents at ports only 
(i.e., scenario “2”). However, it is anticipated that the total port arrival 
delays and total profit loss would be even larger without the imple
mentation of ship schedule recovery options, which were proposed in 
this study (i.e., port skipping without the diversion of containers to 
alternative ports, port skipping with the diversion of containers to 
alternative ports, increasing ship sailing speeds at specific voyage legs, 
and increasing ship handling rates at specific ports). 

Furthermore, throughout the computational experiments, the im
pacts of disruption types on sailing speed, port handling time, port 
skipping, and container diversion decisions were analyzed, and the re
sults are presented in Table 5 for all the obtained PF points and problem 
instance “1”, but similar patterns were noticed for the remaining prob
lem instances. Lower ship sailing speeds were generally observed for the 
scenario with disruptive incidents reported at sea and ports. Such a 
finding can be explained by the fact that the shipping line was only able 
to partially offset the delays due to disruptions at sea and ports by 
implementing the sailing speed adjustment recovery strategy (i.e., the 
desirable sailing speed level was not achieved even after increasing 
sailing speed). The handling rate selection was mainly governed by the 
delay and financial perspectives, not by the types of disruptions (see 
Table 5). More specifically, if the objective was to minimize the total 
profit loss (the best solution for which corresponds to PF#1 representing 
the F*

2 ship schedule), the shipping line generally requested lower 
handling rates for all the disruption scenarios to avoid additional 

Table 5 
Analysis of sailing speed, port handling time, port skipping, and container diversion decisions for all the PF points obtained for problem instance “1”.  

PF# Weighted Sailing Speed (knots) Total Port Handling Time (hours) 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

1 17.92 18.26 17.38 16.84 15.85 419.71 433.85 320.33 368.33 241.33 
2 18.35 21.78 22.23 21.55 21.49 349.26 373.40 264.72 311.74 193.74 
3 20.42 22.48 22.01 22.02 22.10 272.63 301.03 183.13 263.65 140.16 
4 20.75 22.08 22.52 21.34 22.56 240.93 260.01 139.54 232.42 95.41 
5 20.36 21.92 22.46 22.38 23.14 224.86 253.61 95.66 204.13 95.41 
6 20.84 21.93 21.99 21.86 23.14 175.99 185.08 92.53 174.78 95.41 
7 20.93 21.83 22.67 21.91 23.14 157.79 158.39 92.53 177.26 95.41 
8 20.73 21.99 22.69 21.83 23.14 157.79 148.41 95.27 140.06 95.41 
9 20.84 22.04 22.67 22.54 23.14 123.27 137.88 92.53 96.18 95.41 
10 20.75 21.83 22.72 21.76 23.14 113.23 127.98 99.06 119.60 95.41 
11 20.75 20.90 22.72 21.51 23.14 113.23 94.58 99.06 116.99 95.41 
12 20.67 21.77 22.72 21.86 23.14 109.94 127.98 99.06 131.48 95.41 
13 20.75 21.91 22.72 21.53 22.71 113.23 136.54 99.06 118.96 102.48 
14 20.75 21.58 22.72 21.61 23.14 101.31 121.14 99.06 122.05 95.41 
15 20.75 21.58 22.72 21.53 23.14 101.31 121.14 99.06 118.36 95.41 
16 20.81 21.75 22.72 21.51 23.14 97.93 127.44 99.06 118.36 95.41 
17 20.76 22.24 22.72 21.35 23.14 97.93 86.24 99.06 110.98 95.41 
18 20.24 20.54 22.72 21.61 23.44 79.82 79.91 99.06 121.95 95.41 
19 20.55 20.66 22.72 21.41 23.14 86.03 79.82 99.06 81.86 95.41 
20 21.56 21.53 22.72 22.70 23.39 90.76 76.17 99.06 72.24 95.41 
PF# Total Number of Skipped Ports Total Number of Container Diversion Moves 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
1 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 1 0 0 0 0 
3 1 1 1 0 0 1 1 1 0 0 
4 1 1 1 0 0 1 1 1 0 0 
5 1 1 1 1 0 1 1 1 1 0 
6 2 2 1 1 0 2 2 0 1 0 
7 2 2 1 1 0 2 2 0 1 0 
8 2 2 1 2 0 2 2 1 2 0 
9 3 3 1 2 0 3 3 0 2 0 
10 3 3 1 2 0 3 3 0 2 0 
11 3 3 1 2 0 3 3 0 2 0 
12 3 3 1 2 0 3 3 0 2 0 
13 3 3 1 2 0 3 2 0 1 0 
14 3 3 1 2 0 2 2 0 1 0 
15 3 3 1 2 0 2 2 0 1 0 
16 3 3 1 2 0 2 2 0 1 0 
17 3 3 1 2 0 2 2 0 1 0 
18 3 3 1 2 0 1 1 0 1 0 
19 3 3 1 2 0 2 1 0 0 0 
20 3 3 1 2 0 1 1 0 0 0  
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container handling costs at ports. On the contrary, if the objective was to 
minimize the total late ship arrivals at ports (the best solution for which 
corresponds to PF#20 representing the F*

1 ship schedule), the shipping 
line generally requested higher handling rates for all the disruption 
scenarios to better offset the disruption effects regardless of additional 
container handling costs at ports. 

The port skipping and container diversion recovery strategies were 
mainly used for the first two disruption scenarios (i.e., disruptive in
cidents occur at sea and ports and disruptive incidents occur at ports 
only), when the objective was to minimize the total late ship arrivals at 
ports (see Table 5). Fewer port skipping and container diversion moves 
were recorded for the scenario without disruptions and for the scenarios 
with limited disruptions (e.g., disruptive incidents occur at only one port 
early in the voyage). Such a finding confirms that the port skipping and 
container diversion recovery strategies can be effective to offset the 
impacts of major disruptions. These recovery strategies are generally not 
used for the cases with minor disruptions mainly due to the costs asso
ciated with port skipping and handling of the diverted demand. Based on 
the conducted analysis, it can be concluded that the proposed multi- 
objective optimization model and the EMOA-SSR algorithm can effec
tively assist shipping lines with the analysis of impacts from different 
disruption types and selection of the appropriate recovery options. 

6.3.3. Sensitivity analysis for the unit fuel cost 
The third analysis aimed to determine the impacts of unit fuel cost 

values on ship schedule recovery under multi-objective settings. A total 
of four scenarios for the unit fuel cost values were considered, including 
the following: (1) VLSFO = 400 USD/ton and ULSFO = 600 USD/ton (i. 
e., a 50% reduction in the unit fuel prices compared to the base sce
nario); (2) VLSFO = 800 USD/ton and ULSFO = 1,200 USD/ton (i.e., the 
base scenario); (3) VLSFO = 1,600 USD/ton and ULSFO = 2,400 USD/ 
ton (i.e., a 100% increase in the unit fuel prices compared to the base 
scenario); and (4) VLSFO = 2,400 USD/ton and ULSFO = 3,600 USD/ton 
(i.e., a 200% increase in the unit fuel prices compared to the base sce
nario). The adopted EMOA-SSR algorithm was executed for all the unit 
fuel cost scenarios, all the considered problem instances, and the base 
disruption scenario with disruptive incidents at sea and ports. The ob
tained PFs are illustrated in Fig. 9 for the problem instances “1” through 
“12”, but similar patterns were noticed for the remaining problem in
stances. Furthermore, the average values of ship sailing speed weighted 
by the length of voyage legs were estimated throughout the experiments 
and are presented in Fig. 10 for the considered unit fuel cost scenarios 
and problem instances. Note that Fig. 10 shows the information for the 
F*

2 corner point only, since the unit fuel cost is not included in the F1 

objective function directly (hence, no clear patterns were identified for 

Fig. 9. Pareto Fronts obtained for the considered unit fuel cost scenarios and problem instances “1” through “12”.  
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Fig. 10. Average weighted ship sailing speed values for the considered fuel cost scenarios and problem instances.  

Fig. 11. Total port handling time values for the considered fuel cost scenarios and problem instances.  
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the F*
1 corner point solutions after changing the values of the unit fuel 

cost). 
It can be observed that inferior PFs were generally obtained for the 

scenarios with higher unit fuel cost. Such results can be justified by the 
fact that higher bunker fuel consumption costs increase the total profit 
loss. When the unit fuel cost was fairly low (e.g., scenario “1”), the 
shipping line used the ship sailing speed adjustment option for the 
majority of the considered problem instances to offset the delays caused 
by disruptive incidents throughout the voyage (see Fig. 10). However, 
the ship sailing speed adjustment option will not be an effective strategy 
and cannot be used to the same extent for the scenarios with high unit 
fuel cost, which can be confirmed by lower ship sailing speeds recorded 
for the scenarios with high unit fuel cost. The conducted computational 
experiments also show that an increase in the unit fuel cost impacted the 
selection of handling rates at ports of call (see Fig. 11). In particular, an 
increase in the unit fuel cost prompted the shipping line selecting higher 
handling rates at ports of call, which caused a reduction in the total port 
handling time. Therefore, the handling rate adjustment recovery strat
egy became preferential over the sailing speed adjustment strategy for 
the scenarios with high unit fuel costs. No changes in port skipping 
decisions and container diversion moves were observed after changing 
the unit fuel cost. Based on the conducted analysis, it can be concluded 
that the proposed multi-objective optimization model and the EMOA- 
SSR algorithm can effectively assist shipping lines with the analysis of 
impacts from unit fuel cost changes and selection of the appropriate 
recovery options, which can be viewed as critical considering the 
existing uncertainties on the energy market. 

7. Concluding remarks and future research 

Liner shipping and maritime transportation in general play a critical 
role for supply chain management. However, different unexpected 
events can disrupt liner shipping services. The rescheduling of original 
ship operations would be necessary to counteract the negative effects of 
such disruptions. Different ship schedule recovery options can be 
adopted in response to disruptive incidents. However, shipping lines 
face conflicting decisions when selecting ship schedule recovery options 
(e.g., the ship speeding-up option could effectively reduce delays during 
the voyage but would increase the fuel cost). Nevertheless, there is a lack 
of analytical methods that enable the evaluation of competing objectives 
in ship schedule recovery and effective multi-objective solution ap
proaches. Therefore, this study proposed a new type of the multi- 
objective mathematical formulation for ship schedule recovery that 
aims not only to minimize the total late ship arrivals at ports but also to 
minimize the total profit loss due to disruptive incidents that may occur 
at sea and/or at ports. An exact optimization algorithm was adopted to 
obtain optimal Pareto Fronts. 

The computational experiments that were conducted for the EPIC 
(Europe Pakistan India Consortium) shipping route demonstrated that 
the proposed exact optimization algorithm is able to generate Pareto 
Fronts in a timely manner. The results also showed that port skipping 
and port skipping with the diversion of containers were popular ship 
schedule recovery options when more emphasis was given to the total 
delay minimization objective. Furthermore, it was found that port 
skipping and container diversion decisions could cause substantial 
fluctuations in the total number of containers transported on board the 
ships. The conducted sensitivity analyses showcased that the port arrival 
delays and total profit losses could be significantly affected by the nature 
of disruptive incidents throughout the ship voyage. Moreover, the ship 
sailing speed adjustment option might not be an effective strategy for the 
scenarios with high unit fuel cost, and shipping lines could incur lower 
financial losses by using alternative schedule recovery options or even 
enduring the delays caused by disruptive incidents. It can be concluded 
that the proposed multi-objective optimization model for ship schedule 
recovery and the presented exact optimization algorithm can effectively 

assist shipping lines with the analysis of various schedule recovery op
tions under competing objectives. 

Based on the outcomes of this study, several future research oppor
tunities were identified. First, more emphasis should be given to the 
development of novel forecasting methods to accurately predict the 
frequency and duration of disruptive incidents. Second, the accuracy of 
bunker fuel consumption modeling could be enhanced by incorporating 
additional relevant factors, including but not limited to ship age, ship 
size, and history of previous maintenance activities. Third, alternative 
measures should be considered to further improve environmental sus
tainability of liner shipping services under normal and disruptive 
operational conditions (e.g., installation of scrubbers). Fourth, the pro
posed multi-objective exact optimization algorithm could be evaluated 
against alternative methods (e.g., common types of multi-objective 
metaheuristic algorithms, decomposition methods applied in multi- 
objective settings, and relaxation techniques). Fifth, this study 
assumed that the cargo can be diverted from a skipped port that expe
rienced a disruption to one alternative port. The future research could 
explore different cargo diversion options, where the cargo can be 
diverted to multiple alternative ports based on their port handling and 
inland transportation capacity. Last but not least, collaborative oppor
tunities among alliance partners can be explored further to better 
respond to different types of disruptive incidents in liner shipping 
services. 
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draft. Marta Borowska-Stefańska: Methodology, Data curation, 
Investigation, Writing – original draft. Szymon Wiśniewski: Method
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