
Evaluating CodeGemma-7B for Dutch Code Comment Generation

Sander Vermeulen

Supervisors: Maliheh Izadi, Arie van Deursen, Jonathan Katzy

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Sander Vermeulen
Final project course: CSE3000 Research Project
Thesis committee: Maliheh Izadi, Arie van Deursen, Jonathan Katzy, Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

ABSTRACT
Interest in Large Language Models is growing, especially in soft-
ware development tasks such as code completion and comment
generation. However, most Large Language Models are primarily
trained on English language data, raising concerns about their effec-
tiveness when applied to other languages. This research investigates
the performance of CodeGemma-7B, a transformer-based model, in
generating code comments in Dutch, addressing the multilingual
model training and evaluation gap. Using a dataset of Java source
code containing Dutch comments, we aim to assess the model’s
ability for non-English use cases by evaluating the comments it
generates.

Our process involved several stages, starting with collecting a
dataset of Java files from GitHub that included common Dutch
words. We filtered and masked the dataset and inferred new com-
ments. Additionally, we trained a custom tokenizer to investigate
the potential inefficiencies of the Gemma tokenizer when applied
to Dutch code. For the qualitative analysis, we employed an open
coding approach to identify common errors and patterns in the
generated comments. Quantitative analysis was performed using
BLEU-4 and ROUGE-L scores to compare the generated comments
against the original ones, considering comment and context lengths.

Qualitative analysis revealed common errors, such as syntac-
tically correct but factually faulty statements, unintended code
snippets, and linguistic errors. These findings highlight areas for
improvement in factual accuracy and model biases. Quantitative
results showed high similarity scores, with 26% of the comments
getting a BLEU-4 score above 0.95, and 28% getting a ROUGE-L
score above 0.95. Additionally, the custom tokenizer we trained
showed better efficiency than the Gemma tokenizer, with our tok-
enizer having a 5.35% better compression factor.

KEYWORDS
Automatic Code Completion, Transformers, LanguageModels, Eval-
uation, Open Coding, CodeGemma, Tokenization, Datasets, Open
Source

1 INTRODUCTION
Large Language Models (LLMs) are becoming an increasingly pop-
ular tool for aiding in software development. However, as the ma-
jority of these models are primarily trained in English, questions
arise about the effectiveness of these LLMs when applied to code
in other languages. It has become clear that these LLMs are an
effective tool for generating one or more complete lines of code
[20, 25, 50]. Despite this, it is important to realize that models are
often trained and evaluated in English, with training and evaluation
in other languages being less common. For example, Mistral “only
works in English”1, CodeGen2.5 “is intended for...English prompts”2
and CodeLlama is “intended for commercial and research use in
English”3. The mentioned models have shown significant promise
in both code completion and natural language, the combination

1https://mistral.ai/news/la-plateforme/
2https://huggingface.co/Salesforce/codegen25-7b-multi_P
3https://huggingface.co/meta-llama/Llama-2-7b-hf

required for generations such as code comments. The fact that these
models are primarily trained in English is significant, given that
English is only the third most spoken language globally. Mandarin
has more than twice as many speakers, and the number of Spanish
speakers also exceeds the English-speaking population4.

Some advancements have been made in the natural language
field, with the release of new language models trained in multiple
languages. For instance, the MaLA-500 model has been designed
to understand 534 languages [33]. More examples have also been
released as of recent [1, 12, 27, 34, 39, 41, 46]. However, these models
remain in the minority compared to the models trained on a specific
language set, and multilingual code completion models are even
less common. A possible step could be to use metrics that assess
how models perform across various languages, rather than just
evaluating them in the set of intended languages. Recently, tools
like MultiQ [24], have been introduced to address this. In the case
of MultiQ, the model can be tested in 137 different languages to
evaluate if there is any linguistic discrimination.

This paper explores whether a model trained predominantly
in one language can still function effectively when applied in lan-
guages outside of the intended use. Specifically, this paper examines
how CodeGemma-7B [17] performs when prompted with Dutch
context. CodeGemma has been primarily trained on English lan-
guage data from publicly available code [17], thus the performance
in other languages is uncertain. The goal is to determine if the
model can adapt to different languages or if specific tuning would
be required to function properly.

Therefore, the leading question answered by this paper is:
How effective is the CodeGemma-7B model in generating

code comments for programming in Dutch?
To find an answer to this question, we will investigate the following
research questions:
RQ1 What kind of errors does the model make?
RQ2 How well does the generated output match the original

according to ROUGE [32] and BLEU [37] metrics?
RQ3 What kind of inefficiencies exist in the tokenizer used by

the model?
We are particularly interested in the areas where the model strug-

gles most, as it then becomes clear what areas need improvement.
It is important to note that this paper specifically evaluates the
model’s performance in generating code comments. We are not
considering other types of code generation as programmers who
code in Dutch often use English function/variable names, compli-
cating the evaluation of the model’s output quality for these cases.
By focusing solely on code comments, we can more effectively de-
termine whether the model correctly understands its context and
whether there is a correlation between the language of the code,
the comments, and the model’s performance

This research employs an open coding approach for our qual-
itative analysis. This method systematically looks at generated
comments to identify patterns and errors, categorizing them into a
taxonomy. This structured analysis helps us understand common
mistakes and areas for improvement, providing insights into the
4https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers

1

https://mistral.ai/news/la-plateforme/
https://huggingface.co/Salesforce/codegen25-7b-multi_P
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers

model’s performance. Additionally, we will use Java source code
publicly available on GitHub for our evaluation. We chose Java
because it is widely available, well-documented, and follows a clear
Javadoc standard.

2 BACKGROUND AND RELATEDWORKS
2.1 Transformer-based Language Models
We investigate CodeGemma-7B, a transformer-based model. Trans-
formers [47] were originally introduced as an advancement over
the traditional recurrent neural network architecture [44], particu-
larly for tasks in machine translation. The transformer architecture
utilizes attention mechanisms to understand language nuances and
ambiguities. These models also establish dependencies between
the input and output, allowing for parallel processing and improv-
ing accuracy. The transformer architecture consists of two main
modules, the encoder and decoder, each containing an attention
mechanism.

Self-attention is a mechanism that selects important information
from a large dataset by focusing on internal correlations [47]. In text,
it calculates the relevance between words to address long-range
dependencies. Multi-head self-attention extends this by perform-
ing parallel attention calculations, allowing the model to capture
various dependencies simultaneously [47]. This process is crucial
in transformers, enhancing the model’s understanding of input
sequences.

The Transformer’s encoder module [47] consists of multiple
layers containing multi-head attention and feed-forward neural
networks [9]. It captures dependencies within the input sequence
and gradually extracts features for encoding. The decoder module
[52], also composed of layers with similar components, includes an
encoder-decoder attention mechanism. This mechanism ensures
that during decoding, attention is computed on the input sequence
while maintaining causality to generate grammatically correct out-
puts. Masks are used to prevent the model from accessing future
information, ensuring that predictions depend only on past and
current data.

2.2 Model Details
CodeGemma is a model that is based on the Gemma model, trained
on “500 billion tokens of primarily English language data from
web documents, mathematics, and code” [17]. The version we are
using, CodeGemma-7B, is trained with an 80% code and 20% natural
language mixture [17]. The corpus consists of publicly available
code repositories that have been deduplicated and filtered [17]. The
CodeGemma models are trained using the fill-in-the-middle (FIM)
task methodology, focusing on their ability to predict and generate
code snippets in various contexts. This technique involves training
the models to fill gaps in code, the method used for code completion
tasks.

2.3 Code Completion
The release of LLMs like GPT-3 [10] in natural language processing
have indicated that increasing the number of parameters can ensure
superior performance on unseen tasks. This resulted in the use of
LLMs for code-related tasks, specifically in code generation.

For transformer-based language models, there are several classes
of generation: encoder-only models like BERT [19] are typically
trained with a masked language modeling objective. However,
encoder-only models are losing popularity for the completion task.
Encoder-decoder architecture is taught with a span prediction objec-
tive [42], used onmodels like BART [29]. Decoder-only architecture,
which generates tokens autoregressively, is the architecture used
by the CodeGemma model. The decoder-only architecture has been
applied to various language and code generation tasks, showing
effectiveness without an explicit encoding phase.

At first, model families such as Codex [13], CodeGen [36] and
PolyCoder [49] were primarily focused on Left-to-Right pretraining.
However, the fill-in-the-middle objective has become increasingly
popular with the release of model families like StarCoder [30],
Stable-Code [38], CodeLlama [40], CodeQwen [7], InCoder [21]
and CodeGemma [17] showing their effectiveness.

The CodeGemma-7B model is trained using a method based on
the fill-in-the-middle task [8]. The fill-in-the-middle task originates
from masked language modeling for training encoder-only models
[19] and T5-style span corruption for training encoder-decoder
models [30]. When it comes to code generation, multiple examples
have been released showing the effectiveness of FIM as a pretraining
objective for decoder-only models [21, 48].

2.4 Multilingual LLMs
Language models have already been studied in various aspects for
how they perform. Multiple papers have been released exploring
the performance of LLMs with source code and software documen-
tation [2, 26, 31]. However, these papers predominantly consider
English. Recently, there has been an interest in looking at how
well multilingual LLMs perform and how they handle different
languages [22, 28, 35, 53]. These models have shown that they can
compete with multiple language-specific models for the same task
while staying competitive in English. Additionally, some studies
have explored how these models behave when used with languages
they were not originally designed for [4, 33]. These papers show
that, even though the vast majority of the model’s training data is
English, the models can still perform well in different languages.

2.5 Benchmarking LLMs
Current solutions exist for evaluating the performance of LLMs.
However, the effectiveness of these benchmarks is limited. Some of
the widely-used benchmarks are HumanEval [14] and MBPP [6],
though both of these benchmarks are limited to single Python func-
tions. Moreover, research suggests that these functions are subject
to data contamination [51]. Extensions for these benchmarks have
come out since their release, like HumanEval-X [54], and MBXP [5],
which expands the benchmarks to other programming languages.
Despite this, all of these benchmarks risk having models be tuned
towards yielding favorable results, as the size of the benchmarks is
limited. For example, HumanEval-X only has 5 programming lan-
guages, each with a limited 164 examples. MBXP is slightly better
with 13 programming languages, each with around 950 examples.

2

3 APPROACH
To answer the research questions, we conducted both qualitative
and quantitative research. The qualitative part focused on creating
a taxonomy to label errors in the generated comments, while the
quantitative part involved analyzing metrics and the tokenizer.

3.1 Qualitative
To gain deeper insights into the types of errors made by the model,
and to answer RQ1, we conducted a qualitative analysis using an
open coding approach. This involves inspecting the generated com-
ments to identify potential mistakes and patterns.

We located the original comments, and took a random selec-
tion of comments, taking only one randomly selected comment
from each repository. We then attempted to re-generate these com-
ments using our model. Using a set of predefined labels, we checked
each generated comment for errors and labeled them accordingly.
We discarded comments whose first few words were originally
auto-generated. We deemed this necessary as the model would
attempt to regenerate these auto-generated comments which often
include author, date, or version fields which is unreasonable for
our model to reproduce. Additionally, any comments that were
originally commented out code or in the form of licenses were also
discarded.

The set of labels has been created through an iterative process
in a group of 5 experts, each with a different combination of lan-
guage and model. We would label a predefined number of generated
comments, note down any remarks we had, and update our labels
accordingly. Once we had decided on a final version, we gathered all
the labels into a taxonomy, indicating areas and specific challenges
the model struggles with the most. The final set of labels used is
shown in Appendix C.

3.2 Quantitative
To answer RQ2 and RQ3, we will quantitatively evaluate the perfor-
mance of our model, we will look at metrics run on the generations
and at the tokenization of the model.

3.2.1 Metrics. RQ2 will be answered by finding out how similar
the original comment is to the generated comment, according to the
BLEU and ROUGEmetrics. BLEU (Bilingual Evaluation Understudy)
measures how closely the generated text matches the reference text
by counting matching phrases [37], we will use BLEU-4 which
counts matching 4-gram phrases. ROUGE (or Recall-Oriented Un-
derstudy for Gisting Evaluation) is a set of metrics. We will use
ROUGE-L for our evaluation, which measures the longest common
subsequence between generated and reference texts [32]. We will
then analyze the resulting metric scores separately to see if there is
any correlation between the score and the file size, or score and orig-
inal comment length. We will also look at the overall distribution
of scores.

3.2.2 Tokenization. RQ3 will be answered by looking at the com-
pression factor of the Gemma tokenizer and comparing it against
our own. To do this, we will train our own tokenizer using our
dataset and compare the results of the tokenization on the dataset
between ours and those from the Gemma tokenizer.

We have adjusted our vocabulary size to avoid overfitting as
much as possible. The Gemma tokenizer uses a vocabulary size of
256,000 [45]. We have estimated that Java code accounts for roughly
10.75% of the code on GitHub. This number has been taken as the
average between the percentage of pull requests, stars, pushes,
and issues to Java repositories in Q1 20245. We have subsequently
reduced our vocabulary size by this percentage, resulting in a vo-
cabulary size of 27,520. Additional factors could be considered, such
as the Gemma tokenizer also being trained on natural language
data, or the overlap of Java keywords with other programming
languages. However, we have decided not to consider these factors
due to resource limitations.

4 DATA
The following section outlines how we collected our data, explain-
ing every step in the process to ensure reproduction is possible.
Before we can use the data for comment generation, we have to
prepare the data. This consists of four steps detailed below: collec-
tion, filtering, masking, and selection. Only after this is completed
can we generate new comments.

4.1 Data Collection
Our dataset is made up of Java source code gathered from GitHub.
We utilized the GitHub search API, searching for Java files that
included a word in the list of the 2500 most common Dutch words6
with a maximum of 100 files per word, and collected all the files we
found into a single dataset. Figure 1 shows the distribution of file
lengths, excluding files with more than 8,192 tokens. In total, our
source dataset consists of 139,488 files (with 3,634,499 comments).

Figure 1: Distribution of file lengths

Before using these files for further processing, we apply several
filtering steps. First, we remove all files that do not contain com-
ments by excluding those that do not have either “//” or “/*”. Next,
we filter out files with a content length of more than 8,192 tokens.
The upper bound has been set to ensure we do not exceed the
model’s context size7. Figure 2 shows the distribution of comment
lengths after these filtering steps.

5https://madnight.github.io/githut/
6https://github.com/oprogramador/most-common-words-by-language
7https://huggingface.co/blog/codegemma

3

https://madnight.github.io/githut/
https://github.com/oprogramador/most-common-words-by-language
https://huggingface.co/blog/codegemma

Figure 2: Distribution of comment lengths

4.2 Data Prepossessing
The second-to-last step before we can make inferences on the
dataset is span-masking. We must find the existing comments, re-
move them, and add special delimiters to tell the model where
to generate new tokens. Figures 3 and 4 show an example of the
masking we are applying.

Figure 3: Pre-masking code Figure 4: Post-masking code

The first step of this masking is to find the comments. We use a
regular expression to locate all comments in a file. Then, we strip
each comment down to the first three words for block comments
and the first two for line comments. We have chosen to keep the
first few words to aid the model in predicting the right language,
as our model is not instruction-based. The number of words we
keep at the beginning is short enough to avoid giving the model
too much information but still sufficient to indicate the language.
We encourage research into finding the optimal number of words
that provide the best hint without revealing too much or having to
discard short comments.

The final step is adding the before-, after-, and at-cursor to-
kens so the model knows where to base its context for FIM pre-
diction. In our case, we used the default tokens being respectively
<|fim_prefix|>, <|fim_suffix|>, and <|fim_middle|>.

4.3 Random Selection
The final step is to take a small dataset sample. We make sure
to include only one comment per repository. We have done this
to prevent potential issues where a single author or repository
repeatedly makes a certain error, which could skew our results.
By taking a random sample of our dataset, we aim to achieve an
equal distribution of comments, giving us the most unbiased results
possible.

We shuffle the dataset and remove all files belonging to the same
repository, keeping only one file per repository. Finally, we take

a random comment from each file. In our case, out of the 139,488
original files (with a total of 3,634,499 comments), we filter down to
89,686 comments before random sampling and are left with 4,999
comments after sampling.

4.4 Inference
After processing the data, we can begin generating comments. We
used the HuggingFace library for Python for both tokenization and
the pipeline. First, we have to tokenize our prompts. CodeGemma
uses the Gemma tokenizer (shared with the natural language ver-
sion of CodeGemma called Gemma).

For the maximum number of new tokens for the generation, we
set a limit of 81 as indicated by the red line in Figure 2. This number
has been based on the 95th percentile of token lengths from all
original comments. To run our model we used DelftBlue [18], a
supercomputer, using one NVIDIA Tesla A100 80GB GPU, an Intel
XEON E5-6448Y 32C 2.1GHz CPU (of which 24 cores used), and
128GB of RAM.

After we have generated our results, we have subsequently run
metrics on them. We have run both BLEU-4 and ROUGE-L to com-
pare how well the generated results match the original comments.

5 RESULTS
Our findings consist of both qualitative and quantitative aspects.
Qualitatively, we provide a taxonomy outlining the encountered
errors. Quantitatively, we present metrics and tokenization com-
parisons.

5.1 Qualitative
RQ1 is answered in the form of a taxonomy. We manually looked
at 1,200 comments and labeled them according to a predefined
set of labels. The distribution of which comments were deemed
acceptable, had an error, or were excluded is shown in Figure 5.

Figure 5: Distribution of evaluated comments

Our results show themodel’s promising performance for generat-
ing Dutch source code comments in Java. The distribution indicates
that the majority of comments were deemed acceptable. We have
excluded 356 comments, leaving us with 844 comments we have
manually evaluated. Of these, 449 comments were considered ac-
ceptable. This gives a rate of 53% of non-excluded comments being
acceptable, with the remaining comments having some error.

In total, 611 labels have been assigned to the comments with
errors. Utilizing these labels, we created a taxonomy that includes
all the assigned labels, displayed in Table 1. We have four main
categories of errors: model specific, linguistic, semantic, and syntax
errors. Model specific errors in our case mean inherent limitations
of the model itself, while the other error categories are errors that
can happen for any generation task. Additionally, the distribution
of error labels is shown in Figure 6.

4

Figure 6: Distribution of error labels

The distribution of the labels we have assigned shows clear
patterns. Our most commonly assigned label is educated guess
(SE-HA3), in which the model makes a syntactically correct but
factually faulty statement. The second most common label was
late termination (MS-LT), in which the model continues generating
while it should have stopped. This label is often paired with others,
mainly the code-snippet category (SE-CS) and the repetition cate-
gory (MS-RE). Either of these labels frequently causes the model to
generate more than it should.

The third most common label is SE-CS2, where the model tries
to include code alongside the comment. However, in many cases,
the model generates code that describes the flawed comment it
produced, rather than generating a comment that accurately reflects
the intended code. Notably, this label is nearly always paired with
the late termination label, appearing 84% of the time SE-CS2 is
assigned. The remaining labels are clustered toward model-specific
errors, with the few language errors mostly falling under the LG-
GR4 label used for misspellings and LG-GR6 used for incoherence,
missing punctuation, syntax errors, and related language mistakes.

Additionally, there are a few labels with only 0 or 1 assignments.
This might indicate that the label is unnecessary. However, these
labels were decided upon by a group of 5 experts, each with a
different language. Thus, the labels with very few assignments show
that our model and language combination handles these cases well,
while other model-language combinations might struggle.

Overall, we can infer that the model struggles most with gen-
erating factual information from the surrounding code and often
resorts to guessing, as indicated by the SE-HA3 label. Addition-
ally, the model frequently struggles with late termination, with
most cases generating code instead of only producing the intended
comment.

Failure category plus label ID Count

Model Errors
Model Specific

(MS-IG) Incoherent Generation
(MS-CC) Copy Context
Memorization

(MS-ME1) Contains PII
(MS-ME2) Contains URL
(MS-ME3) Verbatim Memorization

(MS-ET) Early Termination
(MS-LT) Late Termination
Repetition

(MS-RE1) Pattern Repetition
(MS-RE1) Verbatim Repetition

Linguistic
Grammar

(LG-GR1) Plurality
(LG-GR2) Conjugation
(LG-GR3) Gendering
(LG-GR4) Spelling
(LG-GR5) Capitalization
(LG-GR6) Cohesion

(LG-IS) Usage of Incorrect Synonym
Wrong Language

(LG-WL1) Undesired Translations
(LG-WL2) Incorrect Language

Semantic
(SE-MD) Missing Details
(SE-TS) Too Specific
Hallucination

(SE-HA1) Misplaced Facts
(SE-HA2) Contextual Discrepancy
(SE-HA3) Educated Guess

Code Snippet Inclusion
(SE-CS1) Commented Out Code
(SE-CS2) Code Intended to Run

Syntax
Incorrect Comment Format

(ST-IF1) Style Inconsistency
(ST-IF2) Omitted Identifier

611
234
1
33
36
35
0
1
11
109
44
18
26
81
64
1
1
3
35
1
23
1
16
9
7

285
32
3

159
16
5

138
91
10
81
11
11
10
1

Accepted Comments 449
Excluded Comments 356

Table 1: Taxonomy of failure categories

5

5.2 Quantitative
Our quantitative results are divided into two parts: we used metrics
to score our inferences and analyzed the compression factor of the
tokenization. First, we review the metrics scores, followed by the
tokenization results.

5.2.1 Metrics. RQ2 is answered by determining how well the gen-
erated output matches the original according to ROUGE-L and
BLEU-4 metrics. We have evaluated 4,999 inferenced comments us-
ing these metrics, where scores range from 0 to 1, with 1 indicating
the best match according to these metrics. Figures 7 and 8 show
the distribution of the scores.

Figure 7: BLEU-4 scores distribution

Figure 8: ROUGE-L scores distribution

The distributions show a significant spike in scores higher than
0.95. Specifically, 1,304 out of 4,999 inferences achieve a score above
0.95 for BLEU-4, while 1,416 do so for ROUGE-L. We have deter-
mined these scores are due to the original and generated texts being
extremely close or equal. Thus, the model produces text extremely
similar to the original 26% of the time according to BLEU-4 and 28%
of the time according to ROUGE-L. Additionally, we investigated
how many generated comments exactly matched their original
counterparts, for which we found 1,247 instances (24.9%), closely
matching the results of BLEU-4 and ROUGE-L.

To better understand these high metric scores, we conducted
further investigations. We found that the comments scoring 1.0 on
both metrics had an average length of only 8.5 tokens, while the
overall average length was 25.9 tokens. This indicates that these
equal scores are significantly easier for the model to achieve the
shorter the comment is. Moreover, when a longer comment scored

1.0, it often matched an existing comment in the file, allowing the
model to replicate it.

To better understand the score distributions, we examined poten-
tial correlations between the scores and the length of the original
comment. Furthermore, we investigated if there was any correla-
tion between the size of the context surrounding the comment and
the score.

First, we compared the results of BLEU-4 and ROUGE-L to the
length of the original comment. These results are displayed in Fig-
ures 9 and 10. We have limited the displayed scores to a maximum
token length of 81. This is due to the model having a maximum
token generation length of 81, and is thus incapable of fully repro-
ducing any comments longer than this, skewing our results. Figures
without the 81 token limit are shown in Appendix A.

Figure 9: BLEU-4 score com-
pared to original length

Figure 10: ROUGE-L score
compared to original length

As evident from the figures, the expected trend of the score
getting worse the longer the original comment gets is not visible.
For BLEU-4, the trend is nearly flat, and for ROUGE-L, there is even
a slight upward trend. This contradicts our earlier findings that
only short comments achieve a score of 1.0. However, these results
might be influenced by the behavior of our metrics. In shorter
comments, there is less text to compare, so a single error made by
the model might have a greater impact than multiple errors do in
longer comments.

For a second comparison, we also evaluated how the scores
correlate to the length of the files they were inferred from. Figures
11 and 12 show the comparison of file lengths versus scores.

Figure 11: BLEU-4 scores com-
pared to file size

Figure 12: ROUGE-L scores
compared to file size

Here, we see a slight trend between the file length and the scores
produced by the model, with higher average scores for longer files,

6

although the correlation is not as strong as anticipated. We assumed
that providing the model with more context would improve its
performance, but this effect appears minimal. At first sight, it might
seem that data points cluster more in the lower left corner of the
graphs, though this is primarily due to more files existing in this
range, not because the scores are substantially lower.

5.2.2 Tokenization. To answer RQ3, we have trained our own tok-
enizer on the dataset we also used for inference. More details can
be found in the Approach section. To analyze which tokenizer per-
forms best, we have tokenized every file in our processed dataset
and compared the token length between our tokenizer and the
Gemma tokenizer using a box plot. The comparison is displayed in
Figure 13.

Figure 13: Custom-trained tokenizer vs Gemma tokenizer

The results show noticeablymore files exceeding the 8,192 tokens
mark for our tokenizer. Despite this, the standard deviation and
mean are lower than those of the Gemma tokenizer. Specifically, the
standard deviation of our tokenizer is 3.57% lower, and the mean
is 5.06% lower than the Gemma tokenizer. The full distribution of
token lengths is shown in Appendix B.

To further investigate the performance difference, we calculated
the compression factor, inspired by previous research [3]. As we
are dealing with code, we have decided to adjust the formula to
only look at characters, as words are hard to define. Additionally,
we calculate the factor for each file separately and take the mean
afterward. The function we used is as follows:

Compression Factor =

∑ (
generated tokens

chars

)
number of files

The compression factor indicates the efficiency of storing infor-
mation. A lower compression factor indicates less splitting of tokens
across characters, thus the lower the value, the more effectively the
tokenizer compresses information. Better compression can trans-
late into improved model performance, as shown in research on
information density in vision transformers [15].

Our custom-trained tokenizer achieves a compression factor of
0.270, demonstrating an improvement of 5.35% compared to the
Gemma tokenizer which has a compression factor of 0.285. This
indicates that our custom-trained tokenizer is more efficient at
storing the same amount of information.

This improvement of 5.35% can translate into better model per-
formance. With the same information needing fewer tokens, gener-
ating new text will also require fewer tokens. Not only does that

mean the model will be able to generate text faster, but it will also
mean that the model will potentially generate fewer errors. This
is because if it has to create fewer tokens, there are also fewer
opportunities for the model to make a mistake.

6 DISCUSSION
6.1 Implication
The findings of this research have several implications for the
field of natural language processing and code generation. First,
the CodeGemma-7B model’s ability to generate comments for Java
code written in Dutch shows the potential of non-multilingual
models to understand and generate code comments in different lan-
guages. This suggests that models like CodeGemma-7B can be used
effectively in various language settings, even when not advertised
as such, making them more useful and versatile.

The intended use of the CodeGemma-7B model states that it is
only designed for English, suggesting that individuals who can-
not speak or use English for their use case cannot use the model.
However, our research shows that even though the model is not
specifically trained for other languages, it can still work well in
languages like Dutch. This finding broadens the potential use cases
of the model beyond its original scope, suggesting that users in
non-English environments could still benefit from its capabilities.

Our research on tokenization has highlighted how important
it is to improve the efficiency and effectiveness of tokenizers in
languages other than English. Compared to the Gemma tokenizer,
our custom-trained one achieved a 5.35% better compression factor,
meaning it handles information condensing and processing more
efficiently. These findings indicate the possibilities for improving
tokenizers through language-specific training beyond English.

Additionally, the observed patterns in the model’s outputs show
the need for further improvement in multilingual code generation
models. The most prominent errors were grammatically correct but
factually incorrect statements (SE-HA3) and late terminations (MS-
LT). Previous research on late terminations suggests that models
need specific training to learn when to stop [16]. Fixing these mis-
takes is important for making themodels more reliable and accurate,
which is important for their use in real-world applications.

6.2 Recommendations
To improve the performance and reliability of CodeGemma-7B, it is
important to improve its training to reduce biases, such as factually
incorrect statements and unintended code snippets in generated
comments. Using bias detection and mitigation techniques will help
the model produce accurate and relevant comments in different lan-
guages. Tests across various programming and natural languages
should be done to understand performance differences better. Stan-
dardized benchmarks for multilingual code generation should be
created and used to allow consistent and reliable comparisons be-
tween different models. Finally, during the training of tokenizers,
multiple languages should be considered to further improve model
effectiveness.

6.3 Future work
Due to time constraints, we have only tested CodeGemma-7B on
Dutch for generating Java source comments. Future work could

7

expand on one or more of these aspects. It might be interesting
to compare different models in a multilingual scenario. Other lan-
guages could be investigated to see if models struggle more with
some languages than others. Finally, different programming lan-
guages could be tested to see if there are performance differences
in this area.

6.4 Limitations
Due to the nature of this project, time was limited. This caused us
to make choices to keep within the time constraints. In our case,
we have only looked at 1,200 comments, while ideally, this number
would be as high as possible. Additionally, we have only researched
a small subset of all possible combinations we could look at for
complete research. For instance, we focused on Java, which might
perform differently than other programming languages. Finally, we
have only investigated the Dutch language.

Furthermore, the process of evaluating comments and assigning
labels was conducted by a single expert. However, we held meetings
twice per week with five experts. Through iterative updates, we
regularly adjusted our taxonomy based on our findings. Addition-
ally, we established clear inclusion and, where necessary, exclusion
criteria to maintain consistent labeling practices. All of these steps
have been made to ensure consistent labeling.

Finally, we trained our tokenizer only on our dataset and tried
to account for this by reducing the vocabulary size. This might
skew our results due to our relatively small dataset of training
data. Moreover, many other factors should ideally be considered,
such as the multitude of programming languages the tokenizer has
to support, the natural languages, and the fact that any of these
can overlap. However, we set these factors aside due to time and
resource limitations.

7 RESPONSIBLE RESEARCH
For our research, we have focused on several key topics related to
responsible research: reproducibility, integrity, and the ethical use
of machine learning.

7.1 Reproducibility
Reproducibility is a key concern in computer science [43]. This
concern also applies to our work, since we use and process datasets.
To ensure our results are accessible and responsible, we have taken
the following steps:

• Our paper is publicly accessible8
• The code we used is publicly accessible9
• The CodeGemma-7B model is an open-source model, which

increases transparency, reproducibility, and reliability [11].
• Our datasets are publicly accessible, including the source

dataset10, pre-processed11, post-processed12 and labeled
datasets13.

• We have detailed our approach and steps for reproduction
in the Approach and Data sections.

8https://repository.tudelft.nl
9https://github.com/AISE-TUDelft/LLM-of-Babel
10https://huggingface.co/datasets/AISE-TUDelft/LLM-of-Babel-NL2
11https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Processed
12https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Inferenced
13https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Labeled

7.2 Integrity of Results
Research is competitive and time-constrained, which pressures
researchers to produce positive results. We have taken care to con-
sider our own biases and outlined possible shortcomings in the
Limitations section. We have tried to avoid bias whenever possible
and have explained our choices if we identified potential bias.

7.3 Ethical Aspects
Our dataset consists of open-source data from public GitHub repos-
itories. This means there could be personal or sensitive information
in our dataset [23]. If we spotted such information manually, we
removed it. However, it is not feasible to manually check every
entry, so there might still be instances of sensitive information in
our datasets. Nonetheless, we made sure to only use our data for
evaluating LLMs to avoid any potential issues.

8 CONCLUSION
This study investigated the potential and challenges of using the
CodeGemma-7B model for generating comments. The model’s abil-
ity to understand and generate code comments in languages like
Dutch shows significant promise in natural language processing and
code generation. However, issues such as producing syntactically
correct but factually incorrect statements and including unintended
code snippets highlight the need for further refinement.

Improving these aspects through better training processes and
bias mitigation techniques is important for improving the model’s
accuracy and reliability. Comprehensive evaluations and standard-
ized benchmarks are also necessary to gauge the model’s perfor-
mance across different languages and to allow for consistent com-
parisons.

Additionally, our tokenization results showed the importance
of efficient tokenization. Our custom tokenizer outperformed the
Gemma tokenizer, showing the potential benefits of training tok-
enizers tailored to specific languages.

In conclusion, CodeGemma-7B shows promise in generating
code in multiple languages, but it needs further improvements
to reach its full potential and be useful in different programming
environments.

ACKNOWLEDGMENTS
Special thanks to Jonathan Katzy for his guidance throughout the
process, meeting twice every week to discuss roadblocks and of-
fering valuable advice. Without Jonathan’s expertise, this project
would not have been possible. Additionally, I would like to thank
Yongcheng Huang, Paris Loizides, Gopal Panchu, and Maksym
Ziemlewski for their contributions to the pipelines and defining
the labels.

REFERENCES
[1] Ife Adebara, AbdelRahim Elmadany, Muhammad Abdul-Mageed, and Alcides

Alcoba Inciarte. 2023. SERENGETI: Massively Multilingual Language Models
for Africa. In Findings of the Association for Computational Linguistics: ACL 2023,
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 1498–1537. https://doi.org/10.
18653/v1/2023.findings-acl.97

[2] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premku-
mar Devanbu, and Arie van Deursen. 2023. Extending Source Code Pre-Trained
Language Models to Summarise Decompiled Binaries. In 2023 IEEE International

8

https://repository.tudelft.nl
https://github.com/AISE-TUDelft/LLM-of-Babel
https://huggingface.co/datasets/AISE-TUDelft/LLM-of-Babel-NL2
https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Processed
https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Inferenced
https://huggingface.co/datasets/srvermeulen/LLM-of-Babel-NL-Labeled
https://doi.org/10.18653/v1/2023.findings-acl.97
https://doi.org/10.18653/v1/2023.findings-acl.97

Conference on Software Analysis, Evolution and Reengineering (SANER). 260–271.
https://doi.org/10.1109/SANER56733.2023.00033

[3] Zaid Alyafeai, Maged S. Al-shaibani, Mustafa Ghaleb, and Irfan Ahmad. 2022.
Evaluating Various Tokenizers for Arabic Text Classification. Neural Process.
Lett. 55, 3 (aug 2022), 2911–2933. https://doi.org/10.1007/s11063-022-10990-8

[4] Jordi Armengol-Estapé, Ona de Gibert Bonet, and Maite Melero. 2022. On
the Multilingual Capabilities of Very Large-Scale English Language Models.
In Proceedings of the Thirteenth Language Resources and Evaluation Conference,
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis (Eds.). European Language
Resources Association, Marseille, France, 3056–3068. https://aclanthology.org/
2022.lrec-1.327

[5] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng LI, Yuchen
Tian, Ming Tan, Wasi Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan
Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Sid-
dhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan,
Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth,
and Bing Xiang. 2023. Multi-lingual evaluation of code generation models. In
ICLR 2023. https://www.amazon.science/publications/multi-lingual-evaluation-
of-code-generation-models

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

[7] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji
Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men,
Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng
Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical
Report. arXiv:2309.16609 [cs.CL]

[8] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christi
McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient Training of Language
Models to Fill in the Middle. arXiv:2207.14255 [cs.CL]

[9] G. Bebis and M. Georgiopoulos. 1994. Feed-forward neural networks. IEEE
Potentials 13, 4 (1994), 27–31. https://doi.org/10.1109/45.329294

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[11] David Burbridge. 2023. How to use open-source data and materials in your
research. https://www.editage.com/insights/how-to-use-open-source-data-
and-materials-in-your-research?refer=scroll-to-1-article&refer-type=article

[12] Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). 2019. Proceedings of
the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguistics, Minneapolis, Minnesota.
https://aclanthology.org/N19-1000

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[15] Xiangyu Chen, Ying Qin, Wenju Xu, Andrés M Bur, Cuncong Zhong, and
Guanghui Wang. 2022. Improving vision transformers on small datasets by
increasing input information density in frequency domain. In IEEE/CVF Interna-
tional Conference on Computer Vision Workshops (ICCVW), Vol. 2.

[16] Eugene Choi, Kyunghyun Cho, and Cheolhyoung Lee. 2023. A Non-monotonic
Self-terminating Language Model. In The Eleventh International Conference on
Learning Representations. https://openreview.net/forum?id=vw-5EgYbJZr

[17] CodeGemma Team, Ale Jakse Hartman, Andrea Hu, Christopher A. Choquette-
Choo, Heri Zhao, Jane Fine, JeffreyHui, Jingyue Shen, Joe Kelley, JoshuaHowland,
Kshitij Bansal, Luke Vilnis, Mateo Wirth, Nam Nguyen, Paul Michel, Peter Choy,
Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shubham Agrawal, Siqi Zuo, Tris
Warkentin, and Zhitao et al. Gong. 2024. CodeGemma: Open Code Models Based
on Gemma. https://goo.gle/codegemma

[18] Delft High Performance Computing Centre (DHPC). 2024. DelftBlue Supercom-
puter (Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. https://doi.
org/10.18653/v1/N19-1423

[20] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-collaboration Code
Generation via ChatGPT. arXiv:2304.07590 [cs.SE]

[21] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations. https://openreview.net/forum?id=hQwb-
lbM6EL

[22] Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker
de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana
Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata, and
Andrea Zaninello. 2024. MedMT5: An Open-Source Multilingual Text-to-Text
LLM for the Medical Domain. In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro
Lenci, Sakriani Sakti, and Nianwen Xue (Eds.). ELRA and ICCL, Torino, Italia,
11165–11177. https://aclanthology.org/2024.lrec-main.974

[23] Nicolas E. Gold and Jens Krinke. 2022. Ethics in the mining of software reposito-
ries. Empirical Softw. Engg. 27, 1 (jan 2022), 49 pages. https://doi.org/10.1007/
s10664-021-10057-7

[24] Carolin Holtermann, Paul Röttger, Timm Dill, and Anne Lauscher. 2024. Evalu-
ating the Elementary Multilingual Capabilities of Large Language Models with
MultiQ. arXiv:2403.03814 [cs.CL]

[25] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: multi-
token code completion by jointly learning from structure and naming sequences.
In Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 401–412. https://doi.org/10.1145/3510003.3510172

[26] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recommen-
dation for software repositories using multi-label classification algorithms - em-
pirical software engineering. https://link.springer.com/article/10.1007/s10664-
021-09976-2

[27] Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). 2020. Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Online. https://aclanthology.org/
2020.acl-main.0

[28] Viet Lai, Nghia Ngo, Amir Pouran Ben Veyseh, Hieu Man, Franck Dernoncourt,
Trung Bui, and Thien Nguyen. 2023. ChatGPT Beyond English: Towards a Com-
prehensive Evaluation of Large Language Models in Multilingual Learning. In
Findings of the Association for Computational Linguistics: EMNLP 2023, Houda
Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Lin-
guistics, Singapore, 13171–13189. https://doi.org/10.18653/v1/2023.findings-
emnlp.878

[29] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

9

https://doi.org/10.1109/SANER56733.2023.00033
https://doi.org/10.1007/s11063-022-10990-8
https://aclanthology.org/2022.lrec-1.327
https://aclanthology.org/2022.lrec-1.327
https://www.amazon.science/publications/multi-lingual-evaluation-of-code-generation-models
https://www.amazon.science/publications/multi-lingual-evaluation-of-code-generation-models
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2207.14255
https://doi.org/10.1109/45.329294
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.editage.com/insights/how-to-use-open-source-data-and-materials-in-your-research?refer=scroll-to-1-article&refer-type=article
https://www.editage.com/insights/how-to-use-open-source-data-and-materials-in-your-research?refer=scroll-to-1-article&refer-type=article
https://aclanthology.org/N19-1000
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=vw-5EgYbJZr
https://goo.gle/codegemma
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2304.07590
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://aclanthology.org/2024.lrec-main.974
https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1007/s10664-021-10057-7
https://arxiv.org/abs/2403.03814
https://doi.org/10.1145/3510003.3510172
https://link.springer.com/article/10.1007/s10664-021-09976-2
https://link.springer.com/article/10.1007/s10664-021-09976-2
https://aclanthology.org/2020.acl-main.0
https://aclanthology.org/2020.acl-main.0
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2020.acl-main.703

[30] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C.
Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y. Zhuo, T. Wang, O. Dehaene,
M. Davaadorj, J. Lamy-Poirier, J. Monteiro, O. Shliazhko, N. Gontier, N. Meade,
A. Randy, M-H. Yee, L. K. Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R.
Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang, N.
Fahmy, U. Bhattacharyya, S. Gunasekar, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger,
H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B.
Dolan-Gavitt, D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M.
Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra, and H. de Vries. [n. d.].
StarCoder: May the Source be With You! Transactions on machine learning
research ([n. d.]). https://par.nsf.gov/biblio/10483982

[31] Zheng Li, Yonghao Wu, Bin Peng, Xiang Chen, Zeyu Sun, Yong Liu, and Doyle
Paul. 2023. SeTransformer: A Transformer-Based Code Semantic Parser for Code
Comment Generation. IEEE Transactions on Reliability 72, 1 (2023), 258–273.
https://doi.org/10.1109/TR.2022.3154773

[32] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[33] Peiqin Lin, Shaoxiong Ji, Jörg Tiedemann, André F. T. Martins, and Hinrich
Schütze. 2024. MaLA-500: Massive Language Adaptation of Large Language
Models. arXiv:2401.13303 [cs.CL]

[34] Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen,
Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo,
Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov,
and Xian Li. 2022. Few-shot Learning with Multilingual Language Models.
arXiv:2112.10668 [cs.CL]

[35] John Mendonça, Patrícia Pereira, Helena Moniz, Joao Paulo Carvalho, Alon Lavie,
and Isabel Trancoso. 2023. Simple LLM Prompting is State-of-the-Art for Robust
and Multilingual Dialogue Evaluation. In Proceedings of The Eleventh Dialog
System Technology Challenge, Yun-Nung Chen, Paul Crook, Michel Galley, Sarik
Ghazarian, Chulaka Gunasekara, Raghav Gupta, Behnam Hedayatnia, Satwik
Kottur, SeungwhanMoon, and Chen Zhang (Eds.). Association for Computational
Linguistics, Prague, Czech Republic, 133–143. https://aclanthology.org/2023.dstc-
1.16

[36] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In The Eleventh Interna-
tional Conference on Learning Representations. https://openreview.net/forum?
id=iaYcJKpY2B_

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https://doi.org/10.3115/
1073083.1073135

[38] Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James
Baicoianu, Ashish Datta, Maksym Zhuravinskyi, Dakota Mahan, Marco Bel-
lagente, Carlos Riquelme, and Nathan Cooper. 2024. Stable Code Technical
Report. arXiv:2404.01226 [cs.CL]

[39] Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). 2023. Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Toronto, Canada.
https://aclanthology.org/2023.acl-long.0

[40] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950 [cs.CL]

[41] Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Anastasia Ko-
zlova, Vladislav Mikhailov, and Tatiana Shavrina. 2024. mGPT:
Few-Shot Learners Go Multilingual. Transactions of the Associ-
ation for Computational Linguistics 12 (01 2024), 58–79. https:
//doi.org/10.1162/tacl_a_00633 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00633/2325676/tacl_a_00633.pdf

[42] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2019. MASS: Masked
Sequence to Sequence Pre-training for Language Generation. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, 5926–5936. https://proceedings.mlr.press/v97/song19d.html

[43] V.C. Stodden. 2010. Reproducible research: Addressing the need for data and
code sharing in computational science. Computing in Science and Engineering 12
(01 2010), 8–13. https://doi.org/10.1109/MCSE.2010.113

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing

Systems, Z. Ghahramani, M.Welling, C. Cortes, N. Lawrence, and K.Q.Weinberger
(Eds.), Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[45] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhu-
patiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose
Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clé-
ment Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric
Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory
Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob
Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway,
Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Kather-
ine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey,
Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana,
Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian
Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, So-
ham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu
hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis
Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen
Kenealy. 2024. Gemma: Open Models Based on Gemini Research and Technology.
arXiv:2403.08295 [cs.CL]

[46] Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz
Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(Eds.). 2021. Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Online. https://aclanthology.org/
2021.naacl-main.0

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[48] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

[49] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming (San Diego,
CA, USA) (MAPS 2022). Association for Computing Machinery, New York, NY,
USA, 1–10. https://doi.org/10.1145/3520312.3534862

[50] Jingfeng Yang, Hongye Jin, Ruixiang Tang, XiaotianHan, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the Power of
LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Trans. Knowl. Discov.
Data 18, 6, Article 160 (apr 2024), 32 pages. https://doi.org/10.1145/3649506

[51] Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica.
2023. Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples. arXiv:2311.04850 [cs.CL]

[52] Yilin Yang, Longyue Wang, Shuming Shi, Prasad Tadepalli, Stefan Lee, and
Zhaopeng Tu. 2020. On the Sub-layer Functionalities of Transformer Decoder.
In Findings of the Association for Computational Linguistics: EMNLP 2020, Trevor
Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics,
Online, 4799–4811. https://doi.org/10.18653/v1/2020.findings-emnlp.432

[53] Xiang Zhang, Senyu Li, Bradley Hauer, Ning Shi, and Grzegorz Kondrak. 2023.
Don’t Trust ChatGPT when your Question is not in English: A Study of Mul-
tilingual Abilities and Types of LLMs. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
7915–7927. https://doi.org/10.18653/v1/2023.emnlp-main.491

[54] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evalua-
tions on HumanEval-X. arXiv:2303.17568 [cs.LG]

10

https://par.nsf.gov/biblio/10483982
https://doi.org/10.1109/TR.2022.3154773
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2401.13303
https://arxiv.org/abs/2112.10668
https://aclanthology.org/2023.dstc-1.16
https://aclanthology.org/2023.dstc-1.16
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2404.01226
https://aclanthology.org/2023.acl-long.0
https://arxiv.org/abs/2308.12950
https://doi.org/10.1162/tacl_a_00633
https://doi.org/10.1162/tacl_a_00633
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00633/2325676/tacl_a_00633.pdf
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00633/2325676/tacl_a_00633.pdf
https://proceedings.mlr.press/v97/song19d.html
https://doi.org/10.1109/MCSE.2010.113
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://arxiv.org/abs/2403.08295
https://aclanthology.org/2021.naacl-main.0
https://aclanthology.org/2021.naacl-main.0
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3649506
https://arxiv.org/abs/2311.04850
https://doi.org/10.18653/v1/2020.findings-emnlp.432
https://doi.org/10.18653/v1/2023.emnlp-main.491
https://arxiv.org/abs/2303.17568

A METRIC SCORES
Figures 14 and 15 show the comparison of metric scores compared
to comment length without limiting the results to a maximum of
81 tokens. Figures 16 and 17 have been added to show the same
with the 81 token limitation for comparison.

Figure 14: BLEU-4 scores com-
pared to original comment
lengths

Figure 15: ROUGE-L scores
compared to original com-
ment lengths

Figure 16: BLEU-4 scores com-
pared to original comments
below 81 tokens

Figure 17: ROUGE-L scores
compared to original com-
ments below 81 tokens

B TOKENIZER DISTRIBUTIONS
Figure 18 shows a graph of all tokenized lengths. Figures 19 and
20 show the distribution of token lengths for the custom and the
Gemma tokenizer respectively.

Figure 18: Tokenized lengths of custom vs Gemma tok-
enizer

Figure 19: Custom tokenizer distribution

Figure 20: Gemma tokenizer distribution

11

C TAXONOMY LABEL DEFINITIONS
Label Error Category Inclusion Criteria

MS Model Specific Model-specific Model specific errors are all errors which are related to the workings of LLMs
MS-IG Incoherent Generation Model-specific Model outputs random words which have no logic between them
MS-CC Copy Context Model-specific Model copies the surrounding context verbatim
MS-ME Memorization Model-specific Model recognized the code to some capacity
MS-ET Early Termination Model-specific Model stops generating in the middle of prediction, while the comment is clearly not complete

or did not generate anything
MS-LT Late Termination Model-specific The comment continues producing content even though it should have stopped earlier.

e.g. 1. When it includes unnecessary empty tags (@version)
2. Continues adding line comments even though it is unnecessary

MS-RE Repetition Model-specific Model generates and repeats what it has already said it in some capacity
MS-RE1 Pattern repetition Repetition Model generated a repeating pattern: eg. 1,2,3,4,5,6,
MS-RE2 Verbatim repetition Repetition Model generated verbatim repetition: eg. i am repeating i am repeating i am repeating
LG Linguistic Error Linguistic Linguistic errors are all errors related to the linguistic content of the generated text
LG-GR Grammar Linguistic Language is correct, grammatical mistake was made.
LG-IS Usage of incorrect synonym Linguistic Usage of a similar word with an incorrect meaning in context (e.g. home -> house)
LG-WL Wrong language Linguistic The model predicts a comment (or significant part of it) in a language other than the target

language
SE Semantic error Semantic Semantic errors are all errors related to the semantics or meaning of the generated content
SE-MD Missing details Semantic 1) Description does not fully describe the content of the summarized code.

2) Current information does not describe the full functionality of code being summarized.
3) Current information does not describe the entire purpose of the summarized code.
4) Generated comment is too generic

SE-TS Too specific Semantic Generated comment is too specific. Includes detailed summary of every line, which defeats
the point of documentation and summarization

SE-HA Hallucination Semantic Category for hallucination generations, i.e. factually incorrect or not related to input prompt
SE-CS Code snippet inclusion Semantic Model generates actual code outside of comment
SE-CS1 Commented out code Code Snippet Code that resides in a code block
SE-CS2 Code intended to run Code Snippet Code that the model intends to run
ST Syntax Syntax Syntax errors are all errors which are related to the syntax of the comments
ST-IF Incorrect comment format Syntax 1) Model uses outdated format of javadoc

2) Model uses comment format that is inconsistent with the standards
3) Errors with javadoc format

MS-ME1 Contains PII Memorization Personally identifiable information is included in the generated comment (fictional or did
not occur in the original prompt)

MS-ME2 Contains URL Memorization URL for a file or repository is included
MS-ME3 Verbatim Memorization Memorization 1) The model memorized the content verbatim

2) The text would not be generated if not for memorization
LG-GR1 Plurality Grammar Incorrect usage of plurality rules (the subject and verb in a sentence do not agree in number.

For example, "The book are on the table" should be "The book is on the table.")
LG-GR2 Conjugation Grammar Incorrect usage of conjugation rules
LG-GR3 Gendering Grammar Incorrect gendering in case the language has gendered nouns
LG-GR4 Spelling Grammar Incorrect spelling
LG-GR5 Capitalization Grammar Prediction capitalizes letters that grammatically are not correct to capitalize: e.g. all capitals,

every word begins with capital
LG-GR6 Cohesion Grammar 1) Mistake in using a language that involves organizing words and phrases that don’t make

sense (incoherence).
2) Missing (or inappropriate usage of) a comma or a quotation mark
3) Lack of local cohesion, which is logical and grammatical consistency between consecutive,
adjacent sentences in paragraphs. Significant disorders of the coherence of the statement are,
for example, paragraphs built from a sequence of sentences that are neither logically nor
grammatically related to each other (a stream of loose thoughts, associations).
4) Syntax errors in writing refer to mistakes in the arrangement of words and phrases in a
sentence that violate the rules of grammar and sentence structure - Run-On Sentences: These
happen when two or more independent clauses are joined without appropriate punctuation
or conjunctions. For instance, "I like to read I also enjoy writing." - Misplaced Modifiers:
This error occurs when a word or phrase is placed too far away from the word it is meant
to modify, leading to confusion or ambiguity. For example, "Running quickly, the bus was
missed." This suggests that the bus was running quickly, not the person. - Double Negatives:
Using two negative words in a sentence can create confusion or ambiguity. For example, "I
don’t want none of that" should be "I don’t want any of that." - Lack of Parallel Structure: This
occurs when a list of items in a sentence is not presented in a parallel manner. For example,
"She likes hiking, to swim, and reading." This should be "She likes hiking, swimming, and
reading." 12

Error Category Inclusion Criteria

LG-WL1 Undesired translations Wrong language Translations that are correct but undesired in the language because the words are
seldomly used in that context

LG-WL2 Incorrect language Wrong language The model predicts a comment (or significant part of it) in a language other than the
target language

SE-HA1 Misplaced Facts Hallucination Randomly inserted facts (such as names, dates, or events) are present in the content
and do not align with the context or expected content. For example, referencing an
event that did not happen or mentioning the wrong/fictional person.

SE-HA2 Contextual Discrepancy Hallucination Hallucination not grounded in the provided context.
SE-HA3 Educated Guess Hallucination 1) Syntactically correct but semantically or factually incorrect

2) Grounded in the provided context.
ST-IF1 Style Inconsistency Incorrect comment format 1) Model uses outdated format of javadoc

2) Model uses comment format that is inconsistent with the standards
3) Model repeated auto-generated-comment like format which is not informative
enough, instead of generating an actual description
4) Model does not follow the javadoc format that is present in the rest of the file (if
present format is correct)

ST-IF2 Omitted Identifier Incorrect comment format 1) Model starts enlisting @params, but misses some of them
2) Generation started with a tag @return but then doesn’t have @params
3) Generated @params, but does not have @return for a method that does not return
void

E Excluded 1) Too little context (short file)
2) Autogenerated content
3) Original comment is in wrong language
4) Code that is commented out

M Miscellaneous Anything that does not fall into any of the above categories

13

Label

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Transformer-based Language Models
	2.2 Model Details
	2.3 Code Completion
	2.4 Multilingual LLMs
	2.5 Benchmarking LLMs

	3 Approach
	3.1 Qualitative
	3.2 Quantitative

	4 Data
	4.1 Data Collection
	4.2 Data Prepossessing
	4.3 Random Selection
	4.4 Inference

	5 Results
	5.1 Qualitative
	5.2 Quantitative

	6 Discussion
	6.1 Implication
	6.2 Recommendations
	6.3 Future work
	6.4 Limitations

	7 Responsible Research
	7.1 Reproducibility
	7.2 Integrity of Results
	7.3 Ethical Aspects

	8 Conclusion
	Acknowledgments
	References
	A Metric Scores
	B Tokenizer Distributions

