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a b s t r a c t 

This paper proposes a lookahead approximate dynamic programming methodology for aircraft mainte- 

nance check scheduling, considering the uncertainty of aircraft daily utilization and maintenance check 

elapsed time. It adopts a dynamic programming framework, using a hybrid lookahead scheduling policy. 

The hybrid lookahead scheduling policy makes the one-step optimal decision for heavy aircraft mainte- 

nance based on deterministic forecasts and then determines the light maintenance according to stochastic 

forecasts. The objective is to minimize the total wasted utilization interval between maintenance checks 

while reducing the need for additional maintenance slots. By achieving this goal, one is also reducing the 

number of maintenance checks and increasing aircraft availability while respecting airworthiness regula- 

tions. We validate the proposed methodology using the fleet maintenance data from a major European 

airline. The descriptive statistics of several test runs show that, when compared with the current practice, 

the proposed methodology potentially reduces the number of A-checks by 1.9%, the number of C-checks 

by 9.8%, and the number of additional slots by 78.3% over four years. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The aircraft maintenance check scheduling (AMCS) problem de- 

ermines when and how often a type of maintenance check should 

e performed on an aircraft. AMCS for a large fleet and several 

heck types is an intricate problem due to its combinatorial na- 

ure and real-life operational constraints. To ensure aircraft airwor- 

hiness, maintenance planners of airlines have to schedule mainte- 

ance inspections regularly for each aircraft before it reaches cer- 

ain thresholds. These thresholds are in the units of calendar days 

DY), flight hours (FH), or flight cycles (FC), stated in the mainte- 

ance planning document (MPD), as shown in Table 1 . The main- 

enance planners allocate aircraft to maintenance slots on specific 

ays, in which one maintenance slot is one day of availability of 

 hangar for performing aircraft maintenance. The maintenance 

chedule developed by maintenance planners is, however, subject 

o frequent disruptions. Weather conditions or flight disruption can 

mpact aircraft utilization and further cause deviation from the 

riginal maintenance plan. Besides, the non-routine tasks/works 

ffect the maintenance elapsed time and, therefore, the duration 

hat an aircraft stays on the ground. These uncertainties make 

he AMCS problem challenging, as the maintenance planners have 
∗ Corresponding author. 
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o regularly adapt the aircraft maintenance schedule. Following a 

anual or deterministic scheduling approach may result in insuf- 

cient hangar availability in specific moments, requiring the cre- 

tion of extra maintenance slots, which are much more costly than 

egular maintenance slots. 

In practice, maintenance planners of airlines usually grouped 

he aircraft maintenance tasks into letter checks depending on the 

evel of detail: A-, B-, C-, and D-check, as shown in Table 2 . A- and

-checks are considered light maintenance, and C- and D-check as 

eavy maintenance. Furthermore, C-/D-checks are more detailed 

nspection than A-/B-checks and require more maintenance re- 

ources (e.g., tools, workforce, and aircraft spare parts) and time to 

omplete the maintenance tasks. Hence, C-/D-checks have higher 

riorities than A-/B-checks. In some cases, airlines can distribute 

he tasks within a B-check into successive A-checks or incorporate 

he items to be maintained in a D-check into multiple C-checks. 

e still adopt the classic letter check classification, and the AMCS 

ptimization is equivalent to allocating A-/B-/C-/D-checks for the 

ight aircraft at the right time. 

The current focus, in the literature and practice, has been 

rimarily on the short-term maintenance planning, such as A- 

B-check scheduling ( Lagos, Delgado, & Klapp, 2020; Sriram 

 Haghani, 2003 ), line maintenance planning ( Papakostas, Pa- 

achatzakis, Xanthakis, Mourtzis, & Chryssolouris, 2010; Shaukat, 

atscher, Wu, Delgado, & Larrain, 2020 ), or coupled in the litera- 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Definitions of aircraft usage parameters according to MPD. 

Usage Parameter Abbreviation Description 

Calendar Days DY A 24-hour period 

Flight Hours FH The elapsed time between wheel lift off and touch down 

Flight Cycles FC A complete take-off and landing sequence 

Table 2 

Aircraft letter check and corresponding inspection interval ( Ackert, 2010 ). 

Check Maintenance Type Interval Maintenance Tasks 

A-check Light maintenance 2–3 months External visual inspection, filter replacement, lubrication etc. 

B-check Light maintenance Rarely mentioned Tasks are commonly incorporated into successive A-checks 

C-check Heavy maintenance 18–24 months Thorough inspection of the individual systems and components 

D-check Heavy maintenance 6–10 years Thorough inspection of most structurally significant items 
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ure with the definition of the aircraft routing for the next three to 

ix days of operations ( Ba ̧s dere & Bilge, 2014; Liang, Feng, Zhang, 

u, & Chaovalitwongse, 2015 ). However, one primary deficiency 

f a short-term horizon for aircraft maintenance planning is that 

t often neglects the importance of heavy maintenance schedul- 

ng. Optimizing short-term maintenance activities can result in a 

reedy policy deferring all letter checks to their due dates. If the 

aintenance planners defer a letter check, they may not see any 

aintenance capacity problem in the coming one or two months. 

et, the maintenance check overload can happen a year later. In 

ther words, one may get a false impression that the maintenance 

esources meet the demands of letter checks in a short period, but, 

s time moves on, the following letter checks can pile up and cause 

oaring demand for maintenance in the future. Although some au- 

hors were aware of this issue in the 1970’s ( Boere, 1977 ), it was

ot straightforward to estimate the cost of current maintenance 

ecisions for the future. 

In 2015, the AIRMES project was launched by the European 

ommission to optimize end-to-end maintenance activities within 

n operator’s environment ( European Commission, 2015 ). One of 

he work packages within AIRMES has the mission of addressing 

he AMCS problem and minimizing the long-term aircraft mainte- 

ance costs for all maintenance check types. Aircraft maintenance 

s one of the main direct operating costs of an airline. In 2018, the 

pend of global maintenance, repair, and overhaul (MRO) repre- 

ented 9%–10% of total operational costs, which was valued at $69 

illion, excluding overhead (e.g., lighting, equipment, and any little 

xtras), for a total number of 27.5 K aircraft ( IATA’s Maintenance 

ost Task Force, 2019 ). This spending was equivalent to $2.5M per 

ircraft per year. Base maintenance (including all check types) ac- 

ounts for 20% of the $2.5 M, excluding the cost for engine mainte- 

ance and components. An aircraft will be removed from the rev- 

nue schedule when it is undergoing maintenance, which could 

epresent a loss of $75K–$120 K of commercial revenue per day. 

oreover, if airlines have to create additional maintenance slots, 

hey have to spend more money to let the maintenance technicians 

ork overtime or hire another company to perform the mainte- 

ance checks at a much higher cost. Therefore, airlines are lay- 

ng increasing emphasis on improving their aircraft availability and 

lanning their maintenance more carefully and efficiently. 

Deng, Santos, & Curran (2020) proposed a solution to determin- 

stic AMCS resulting from the AIRMES project. However, one of the 

imitations is that the optimization model described in Deng et al. 

2020) assumes complete information and does not include future 

ncertainty. Despite other disruptions, such as flight delays, the 

aintenance schedule is affected by the elapsed time of mainte- 

ance checks. The stochastic AMCS has not been tackled so far, not 

ven adequately studied. Since it is in general impossible for air- 

ines to follow a long-term aircraft maintenance schedule without 

djustment, maintenance planners have to update the maintenance 
815 
chedules from time to time due to flight disruptions or changes in 

aintenance tasks execution. 

For each aircraft letter check, the maintenance tasks are di- 

ided into two parts: routine maintenance tasks and non-routine 

aintenance tasks. For a specific check type, the routine mainte- 

ance tasks are the ones that are repeatedly scheduled and exe- 

uted during the checks. The non-routine tasks include, e.g., re- 

lacement of major components (e.g., aircraft engines or landing 

ears), airworthiness directives ( Transport Canada, 2008 ), engineer- 

ng orders ( Commercial Aviation Safety Team, 2013 ), deferred tasks, 

on-scheduled maintenance tasks that result from faults or addi- 

ional maintenance needs found when executing the routine task. 

hese non-routines can be up to 50% of the workload performed 

uring a maintenance check ( Alfares, 1999; Samaranayake & Kiri- 

ena, 2012 ). Most non-routine tasks are only known a few weeks 

r days before a maintenance check starts, and some during the 

ircraft maintenance check execution. 

To cope with uncertainties and respond to changes in mainte- 

ance activities promptly, we propose a fast, short-term decision- 

aking solution without comprising the long-term benefit. This 

ork is the continuation of our previous maintenance planning 

ptimization solution ( Deng et al., 2020 ), extending the AMCS to 

 stochastic framework that considers uncertainty associated with 

ircraft utilization and maintenance check elapsed time. A looka- 

ead approximate dynamic programming (ADP) methodology is 

resented and used, for the first time, to address the stochastic 

aily decisions for the AMCS. The contributions of this paper in- 

lude: 

• Methodology : The proposed hybrid policy of the lookahead ADP 

methodology is original and novel. It uses deterministic fore- 

casts to estimate the number of extra maintenance slots in the 

future for heavy maintenance and stochastic forecasts to esti- 

mate the extra slots for frequent light maintenance. 
• Application : The proposed methodology is more robust than the 

previous deterministic approach present in the literature, both 

in terms of fewer expected number of maintenance changes 

and additional maintenance slots. 
• Practicality : It takes only seconds to determine the optimal 

maintenance check for the next day, significantly reducing the 

time needed for updating the letter check schedule. The pro- 

posed lookahead ADP methodology can help maintenance plan- 

ners develop and adapt short-term maintenance check sched- 

ules within seconds without compromising the long-term effi- 

ciency of the solution. 

The rest of the paper is divided into six sections. Following 

he introduction, Section 2 gives an overview of the literature 

bout stochastic scheduling. Section 3 defines and formulates the 

tochastic AMCS problem. A lookahead ADP methodology is pre- 

ented in Section 4 , including the associated model framework and 
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 hybrid lookahead policy. In Section 5 , we show two case studies 

rom a European airline. The last section concludes the paper and 

ives an outlook on future work. 

. Literature review 

Several publications address the aircraft maintenance related 

roblems considering the stochastic elements. The earliest one can 

e traced back to 1966, in which Jorgenson, McCall, & Radner 

1966) provided a unified view of maintenance from the theoretical 

erspective and its application on aircraft equipment. This techni- 

al report mainly focuses on the aircraft component level, and the 

rimary source of uncertainty is the failure rate of aircraft equip- 

ent. The optimization model and associated solution techniques 

escribed are dedicated to individual aircraft systems or compo- 

ents. It is worth mentioning that the fleet size of airlines was 

uch smaller back then since traveling by plane was expensive 

nd dangerous in the 1960s ( Brownlee, 2013 ), and the maintenance 

rograms were process-oriented ( SKYbrary, 2019 ). 

Other than finding optimal maintenance policies for aircraft 

ystems or components, some research works focus on minimizing 

he total time needed for aircraft maintenance activities consider- 

ng uncertainties. Tsai & Gemmill (1998) applied tabu search on the 

oordination of aircraft maintenance activities to reduce the dura- 

ion of all project activities, which was shown efficient for both de- 

erministic and stochastic problems. The main idea behind the tabu 

earch is to apply local search to improve an initial sequence of 

aintenance activities. But different from the classic tabu search, 

he authors introduced multiple tabu lists and randomized short- 

erm memory to prevent solutions from being revisited, which sig- 

ificantly improved algorithm efficiency. Besides, multiple starting 

chedules were used to diversify local search to improve the opti- 

ality. To evaluate the performance of the tabu search, the authors 

ompared the results from the tabu search and simulated anneal- 

ng. The outcomes showed that tabu search outperformed simu- 

ated annealing in terms of a better aircraft maintenance schedule 

nd shorter computation time. 

Rosenberger et al. (20 0 0) was aware that airline planning mod- 

ls did not explicitly consider stochastic elements in operations, 

hich often led to discrepancies between the initial schedule and 

ctual performance. To better capture the impact of uncertainty 

n daily airline operations (e.g., flight planning, crew paring, and 

aintenance scheduling), SimAir was developed to simulate and 

valuate plans and recovery policies. SimAir consists of three mod- 

les: a random event generator to give random disruption, such as 

ate arrival, ground time delay, or unscheduled maintenance delay; 

 recovery module to propose a recovery policy (revised schedule); 

 controller module to determine if a flight should be canceled 

ue to disruption and whether or not a recovery policy should 

e accepted. The recovery module adopts a relatively trivial push- 

ack strategy. For instance, if an unscheduled maintenance event 

auses a flight delay, the departure time of the flight will be de- 

erred until the unscheduled maintenance tasks are finished. Al- 

hough there were not many optimization techniques involved in 

his study, Rosenberger et al. (20 0 0) still provides insights into 

ow random disruptions affect the daily operation of airlines and 

ow airlines recover from disruptions, which also prompts us to 

evelop a dynamic optimal decision-making model for AMCS. 

As mentioned in Rosenberger et al. (20 0 0) , stochastic simula- 

ion is a way of capturing uncertainty, particularly very essential in 

ircraft maintenance operations. The reason is straightforward: air- 

raft system or component failure appears to be random, and the 

aintenance activities are tightly coupled with each other in a se- 

uence. Any delay in executing a task can have snowball effects on 

he following maintenance activities, which may eventually lead to 

 maintenance delay. Gupta, Bazargan, & McGrath (2003) applied 
816 
tochastic modeling and simulation on aircraft line maintenance 

maintenance near the gate or terminal between aircraft arrival 

nd departure) to investigate the potential of improving mainte- 

ance management. This research aimed at minimizing the total 

umber of technicians working overtime under the uncertainty of 

aintenance activities. The authors applied a genetic algorithm to 

ddress the problem. The results from stochastic optimization indi- 

ated that the workload was likely to be better spread across shifts. 

Aircraft maintenance operations are often plagued by plan- 

ing difficulties because of maintenance activities and flight arrival. 

aintenance delay or bad weather often results in late departure 

nd, in the end, late arrival of a flight. Some airlines have been try- 

ng to plan a robust aircraft maintenance schedule or maintenance 

ersonnel rosters in the past few years. For example, Bruecker, 

en Bergh, Belin, & Demeulemeester (2015) proposed a model en- 

ancement (ME) algorithm for planning robust aircraft mainte- 

ance personnel rosters to cope with stochastic flight arrival. The 

ptimal aircraft maintenance personnel rosters minimize the total 

abor costs while achieving a certain service level. The main idea 

as to use stochastic simulation to simulate the flight arrivals and 

llocation of maintenance capacity to flights for several weeks. And 

his helps airlines to identify the flights that often cannot be main- 

ained in time. Based on the simulation results, the algorithm ad- 

usted workforce configuration by adding workforce to reduce the 

verage number of flights that cannot be maintained; after that, a 

ixed-integer programming model was formulated and addressed 

y commercial solver CPLEX. The proposed algorithm was tested 

sing the data from Sabena Technics (an aircraft maintenance com- 

any located at Brussels Airport). It was demonstrated to provide 

obust solutions. Following this idea, we use simulation to simu- 

ate aircraft utilization and maintenance elapsed time in this re- 

earch, which gives us an estimation of when an aircraft needs to 

e maintained and how long a maintenance check lasts. 

Several other studies about operational aircraft maintenance 

an be found in Papakostas et al. (2010) , Eltoukhy, Chan, Chung, 

 Qu (2017) , Eltoukhy, Wang, & Chan (2018) and Lagos et al. 

2020) , yet none of them deal with AMCS. The main reason is that 

MCS involves both long-term (e.g., C-/D-check) and short-term 

lanning (e.g., A-/B-check), and the goal of short-term planning 

ay contradict the long-term objective. For instance, one com- 

on goal for short-term maintenance planning is to minimize the 

ost ( Moudani & Mora-Camino, 20 0 0; Sriram & Haghani, 2003 ). To

chieve this goal, airlines tend to defer replacing components as 

lose to their estimated due dates as possible, leading to ground- 

ng an aircraft too often and lower aircraft availability and thus 

ower revenue; or defer maintenance checks to their estimated due 

ates, which can result in capacity issues in the long term and 

uch higher costs for creating extra maintenance capacity. On the 

ther hand, the long-term goal is often to maximize profits. How- 

ver, due to data availability, it is difficult to calculate the long- 

erm labor and material costs or the long-term revenues generated 

rom commercial operations. Therefore, it is necessary to have an 

bjective that suits both short-term and long-term planning. With- 

ut revenue or maintenance cost data, minimizing total unused FH 

 Ba ̧s dere & Bilge, 2014; Boere, 1977 ) is a good objective to unify

he planning of all A-, B-, C- and D-checks since minimizing the 

otal unused FH can also reduce the number of letter checks and 

aximize aircraft availability for commercial operations. 

In theory, AMCS is close to the resource-constrained project 

cheduling problem (RCPSP), e.g., RCPSP has resource constraints 

nd uncertain task duration ( Li & Womer, 2015 ), and AMCS 

as maintenance capacity constraints and uncertain maintenance 

heck elapsed time. The main difference is that AMCS also has 

ncertainty in aircraft utilization, which impacts the due dates of 

he following maintenance checks. Hence, the start/due date of a 

aintenance check depends on its previous execution and the uti- 
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ization of the aircraft. Li & Womer (2015) proposed an approxi- 

ate dynamic programming (ADP) approach for RCPSP based on a 

ookahead policy, combining a priority-rule heuristic for reducing 

roblem dimensions and a lookup table for improving optimality. It 

as shown to perform well on 120 tasks in case studies. Although 

i & Womer (2015) has small problem sizes in its case studies and 

he dimension of AMCS is too high to create a lookup table, it pro-

ides us inspiration and insights for developing an efficient looka- 

ead policy for AMCS. 

Based on our findings during the literature review, we draw 

he following conclusions. First of all, many papers propose ro- 

ust short-term operational aircraft maintenance plans, recovery 

olicies, or maintenance personnel rosters to cope with uncer- 

ainty. However, to our best knowledge, there is no literature found 

bout AMCS optimization except for Deng et al. (2020) . Secondly, 

tochastic simulation is a useful method to predict incidents (e.g., 

ystem failure, unscheduled maintenance, or flight delay). The sim- 

lation outcomes can provide insights about uncertainty and help 

aintenance planners make better aircraft maintenance check de- 

isions. Lastly, even if one manages to find the optimal letter check 

chedule, it will most likely fail during real-life operations because 

f the rapid changing of aircraft utilization and maintenance envi- 

onments, which requires lots of time or effort to recreate a new 

chedule. Since maintenance planners may need to update the let- 

er check daily, it would be desirable to have a stochastic AMCS 

odel to provide the optimal letter check decision every 24 hours 

ccording to the actual fleet utilization. 

. Problem formulation 

This paper adopts the same definitions and assumptions pre- 

ented in Deng et al. (2020) to formulate the stochastic AMCS (S- 

MCS) problem. The nomenclature and corresponding definition 

an be found in Appendix A . In essence, the S-AMCS is a typical

arkov Decision Process (MDP) consisting of: 

• A set of decision epochs { t 0 , t 0 + 1 , . . . , T } 
• A set of states { s t } called the state space 
• A set of associated actions from a state s t , X t ( s t ) = { X 

π ( s t ) } , 
called the action space , where X 

π ( s t ) is the scheduling policy 

function 

• The immediate reward/cost of doing an action, C t ( s t , x t ) , where 

s t is the state and x t is the action 

• The transition probability p ( s t+1 | s t ) of changing a state s t to a 

new state s t+1 

tate space 

We define the state vector s t as a set of attributes that influence 

ur decisions and this set also includes available maintenance slots 

f each check type: 

 t = { A t , M t , N t } , A t = { a t,i } N t i =1 , M t = 

{
M 

k 
t 

∣∣k ∈ K 

}
, 

K = { A-check , B-check , C-check , D-check } . (1) 

here A t is a collection of attributes from all aircraft, M t is the 

et of hangar capacity of all check types, and the capacity of each 

heck type is denoted by M 

k 
t . N t is the fleet size that may change

uring the planning horizon. a t,i = 

{
a k 

t,i 

∣∣k ∈ K 

}
and a k 

t,i 
, contains 

he attributes of aircraft i on t , with respect to check type k : 

 

k 
t,i = { z k t,i (ω t ) , δ

k 
t,i , η

k 
t,i , ︸ ︷︷ ︸ 

Type 1 
(
a (1) ,k 

t,i 

)
DY 

k 
t,i , FH 

k 
t,i , FC 

k 
t,i , y 

k 
t,i , ︸ ︷︷ ︸ 

Type 2 
(
a (2) ,k 

t,i 

)
L i 
(
y k t,i 

)
, fh t,i , fc t,i , �L ω i 

(
y k t,i 

)
, �fh 

ω 
t+1 ,i , �fc 

ω 
t+1 ,i ︸ ︷︷ ︸ 

Type 3 
(
a (3) ,k 

t,i 

)
} (2) 

These attributes can be divided into three types: 
817 
Type 1 a (1) ,k 
t,i 

: Attributes at time t that impact the action x t and 

are modified when there is new information or after a main- 

tenance check starts, including z k 
t,i 

(ω t ) , the actual end date 

of type k check of aircraft i computed on day t; δk 
t,i 

, a binary

variable to indicate if aircraft i is undergoing type k check 

on day t; ηk 
t,i 

, a binary variable to indicate if aircraft i needs 

an extra slot of type k check on day t . Here ω t is the infor-

mation arriving on t . 

Type 2 a (2) ,k 
t,i 

: Attributes at time t that are updated every time 

based on their value at time t − 1 , including DY 

k 
t,i , FH 

k 
t,i and 

FC 

k 
t,i , the utilization parameters (DY, FH, and FC) of aircraft 

i of type k check on day t; y k 
t,i 

, next maintenance label for 

type k check of aircraft i on day t . 

Type 3 a (3) ,k 
t,i 

: Attributes at time t that depend on exogenous 

information and can be estimated according to historical 

aircraft utilization and maintenance data, including L i 
(
y k 

t,i 

)
, 

mean estimated elapsed time of next check with label y k 
t,i 

of aircraft i ; fh t,i and fc t,i , the average daily fight hours 

and flight cycles of aircraft i at day t; �L ω 
i 

(
y k 

t,i 

)
, �fh 

ω 
t+1 ,i 

and �fc 
ω 
t+1 ,i , the uncertainties of maintenance check elapsed 

time, daily flight hours and daily flight cycles, respectively. 

The uncertainties come from the attributes of Type 3 , the air- 

raft utilization, and maintenance check elapsed time. For aircraft 

tilization, maintenance planners only obtain the exact aircraft FH 

nd FC at the end of the day. For the actual maintenance check 

lapsed time, it is only known when a letter check starts. The up- 

ate of each type of attributes is presented later in Section 3.2 . 

ction space 

In S-AMCS, the action space associated with a state s t is a set of

aintenance check actions. An action x t of the day t is to perform 

ne or several maintenance checks or do nothing: 

 t = 

{ {
χ k 

t,i 

}N t 

i =1 

∣∣∣ N t ∑ 

i =1 

χ k 
t,i ≤ M 

k 
t 

} 

k ∈ K 

(3) 

here, each χ k 
t,i 

is a binary decision variable in which: 

k 
t,i = 

{ 

1 a type k check for aircraft i is planned to start at time t 

0 otherwise ( including the case that aircraft 

i is undergoing a type k check ) 

(4) 

or example, given 3 aircraft, there is 1 slot for A-check and 1 slot 

or C-check (1 slot is 1 day of availability of a hangar), and A- 

heck can be merged in C-check, there are 25 actions, as shown 

n Table 3 . 

mmediate reward 

For an aircraft i , the value of unused FH on a day t is equal to

he summation of the FH loss due to an A-/B-/C-/D-check sched- 

led for that day: 

 t,i = 

∑ 

k ∈ K 
χ k 

t,i 

(
I i k -FH − FH 

k 
t,i 

)
(5) 

here χ k 
t,i 

is a binary variable to indicate if aircraft i starts a type 

 check on t , and I i 
k -FH 

is the interval of type k check of aircraft

 in terms of FH. The immediate reward , or so called contribution 

unction , is: 

 t ( s t , x t ) = 

N t ∑ 

i =1 

( 

C t,i + λ
∑ 

k ∈ K 
ηk 

t,i 

) 

(6) 

he first term on the right-hand side of (6) reflects the unused 

H of aircraft i , the second term is a penalty for creating an addi-

ional slot of type k check on the day t . The penalty λ is introduced 
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Table 3 

An example of action space for three aircraft AC-1, AC-2 and AC-3, one A-check slot and one C- 

check slot. A-check can be merged in C-check without using an A-check slot. { { AC- i , AC- j } , AC- j } 
means performing A-check on aircraft i , and both A- and C-check of aircraft j. 

Action Aircraft Selection Total Possibilities 

0 A-check and 0 C-check — 1 

0 A-check and 1 C-check { —, AC-1 } , { —, AC-2 } , { —, AC-3 } 3 

1 A-check and 0 C-check { AC-1 , —} , { AC-2 , —} , { AC-3 , —} 3 

1 A-check and 1 C-check { AC-1 , AC-1 } , { AC-1 , AC-2 } , { AC-1 , AC-3 } 9 

{ AC-2 , AC-1 } , { AC-2 , AC-2 } , { AC-2 , AC-3 } 
{ AC-3 , AC-1 } , { AC-3 , AC-2 } , { AC-3 , AC-3 } 

2 A-check and 1 C-check { { AC-2 , AC-1 } , AC-1 } , { { AC-3 , AC-1 } , AC-1 } 9 

{ { AC-1 , AC-2 } , AC-2 } , { { AC-3 , AC-2 } , AC-2 } 
{ { AC-1 , AC-3 } , AC-3 } , { { AC-2 , AC-3 } , AC-3 } 
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ecause creating one extra slot is equivalent to hiring a group of 

echnicians to perform a maintenance check on extra work-hours 

n the day t or subcontracting the maintenance check to a third 

arty MRO. This action is costly, and it should only be an option if 

t avoids an aircraft on the ground waiting for a maintenance slot. 

ence, the value of λ should be much larger than C t,i . 

ransition probability 

The transition probability indicates the possibility of changing 

 state s t to a new state depending on the new information ω t+1 .

ere we use Fig. 1 to illustrate MDP and state transition from stage 

 0 to stage t 0 + 1 . In this example, s t 0 is the initial state and 

{
x t 0 , j 

}
s the set of associated actions. After making a decision x t 0 , j , we 

ove from s t 0 to ˆ s t 0 , j but the new information ω t 0 +1 has not ar- 

ived yet. ω t 0 +1 is a stochastic variable arriving on t 0 + 1 , each re-

lization of ω t 0 +1 , ω 

l 
t 0 +1 

, is associated with a transition probability 

p t 0 +1 ,l , meaning that ω t 0 +1 has a probability p t 0 +1 ,l of becoming 

 

l 
t 0 +1 

. As a result, ˆ s t 0 , j has a probability p t 0 +1 ,l of becoming s l 
t 0 +1 , j 

. 

To facilitate understanding of the S-AMCS model, this section 

rst describes the objective function in Section 3.1 , then the state 

ransition in Section 3.2 , and the constraints in Section 3.3 . 

.1. Objective function 

In the AMCS problem, the most common objectives are mini- 

izing total maintenance costs ( Moudani & Mora-Camino, 20 0 0; 

riram & Haghani, 2003 ), and minimizing the total unused FH of a 

eet ( Ba ̧s dere & Bilge, 2014; Boere, 1977; Deng et al., 2020 ). In this

ork, we chose the latter, i.e., minimizing the total unused FH, as 

n Deng et al. (2020) because of the following reasons: 

- The available cost data is unreliable and hard to associate with 

a specific maintenance check; 

- Maintenance checks are mandatory, and the total maintenance 

costs of an airline can only be reduced if the number of air- 

craft checks over time is also reduced; 

- One day of an aircraft out of operations is more costly than 

the daily cost of a maintenance check. 

Our objective is to minimize the sum of the total contributions 

or all states visited during the time horizon, discounted by a factor 

. That is, we search for the optimal AMCS policy ( π ) that mini-

izes the contribution of our scheduling decisions over the time 

orizon [ t 0 , T ] : 

in 

π
E 

{ 

T ∑ 

t= t 0 
γ t−t 0 C t ( s t , X 

π ( s t ) ) 

∣∣∣s t 0 
} 

(7) 

here π is the scheduling policy that generates actions based on 

 t , s t 0 denotes the initial state. X 

π ( s t ) maps the state s t to an ac-

ion under policy π , and C t ( s t , X 

π ( s t ) ) refers to (6) . The optimal S- 

MCS policy can be found by recursively computing the Bellman’s 
818 
quation: 

 t (s t ) = min 

x t 

{ 

C t ( s t , x t ) + γ
∑ 

s t+1 

p 
(
s t+1 

∣∣s t )V t+1 (s t+1 ) 

} 

(8) 

here p 
(
s t+1 

∣∣s t ) is the probability of transitioning from state s t to 

tate s t+1 . Eq. (8) expresses the value of being at state s t , by con-

idering the immediate contribution of an action x t and the future 

alue V t+1 (s t+1 ) . 

.2. State transition in stochastic aircraft maintenance check 

cheduling 

The main difference in model formulation between AMCS pre- 

ented in Deng et al. (2020) and S-AMCS in this paper is that S- 

MCS has a two-phase state transition, post-decision update after 

erforming an action, and pre-decision update after revealing new 

nformation. As a result, there are two state vectors associated to 

he update, post-decision state vector ˆ s t and pre-decision state vec- 

or s t . The post-decision state vector before the arrival of new in- 

ormation is notated and defined as: 

ˆ 
 t = S X ( s t , x t ) (9) 

here S X denotes the state transition function without knowing 

ny new information. In S-AMCS, we assume that the new infor- 

ation { ω t } T +1 
t= t 0 +1 is revealed when a maintenance check starts, or 

n aircraft ends its daily operation, then we update the state vec- 

or: 

 t+1 = S W 

(
ˆ s t , ω t+1 

)
(10) 

here S W is the transition function updating ˆ s t to s t+1 according 

o the actual maintenance check elapsed time, daily FH and FC. A 

istory of such a process, including the sequence of actions and 

volution of states, can be represented as: (
ˆ s t 0 −1 , ω t 0 , s t 0 , x t 0 , ̂  s t 0 , ω t 0 +1 , s t 0 +1 , x t 0 +1 , . . . , s t−1 , x t−1 , ̂  s t−1 , ω t , s t , 

. . . , s T , x T , ̂  s T , ω T +1 , s T +1 , . . . 
)

(11)

The reason for including the post-decision state ˆ s t 0 −1 as the ini- 

ial state and initial information ω t 0 in (11) is that some aircraft 

ight be undergoing maintenance checks in the initial state, ω t 0 

s equivalent to knowing when those initial ongoing maintenance 

hecks will be completed on the day t 0 . The state transition from t

o t + 1 can be summarized in the following equations: 
 

s t = S W 

(
ˆ s t−1 , ω t 

)
x t = X 

π (s t ) 
ˆ s t = S X ( s t , x t ) 

for t = t 0 , t 0 + 1 , . . . , T . (12) 

As shown in Fig. 2 , the state transition updates the attributes 

ver the time horizon in two phases: pre-decision phase (Phase 1) 

pdates the set of post-decision attributes ˆ s t−1 to s t before per- 

orming any action, and post-decision (Phase 2) updates s t to ˆ s t 
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Fig. 1. An example of state transition from stage t 0 to stage t 0 + 1 in stochastic AMCS. 
{

x t 0 , j 

}
is the set of possible actions associated with s t 0 and 

{
ˆ s t 0 , j 

}
is the set of resulting 

post-decision states. The pre-decision state s j 
t 0 +1 , 1 

is only known when new information ω 

j 
t 0 +1 

arrives and p t 0 +1 , j is the probability of transitioning the state ˆ s t 0 , 1 to s 
j 
t 0 +1 , 1 

. 
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fter performing an action x t . The new information, ω t , arrives at 

he beginning of day t . According to the new information ω t , the 

re-decision phase (before making any new decision) renews the 

angar capacity, aircraft availability, maintenance check elapsed 

ime, and aircraft utilization based on actual FH and FC. This in- 

icates, e.g., how many hangars can be used to perform mainte- 

ance checks on the day t , which aircraft is available for operation, 

nd when an ongoing maintenance check will finish. In the post- 

ecision phase, we update the aircraft usage parameters of each 

heck type according to its actual daily utilization, and we also up- 

ate the hangar occupation according to actual maintenance check 

lapsed time. Since we divide attributes of a state into three types, 

he transition of each type is presented separately in the following 

ub-sections. 

.2.1. Update of Type 1 attributes 

Since the actual elapsed time is only known when the check 

tarts, namely, the new information arrives at t , in Phase 1, i.e., the 

re-decision phase in Fig. 2 , we first check if t is the end day for

n ongoing check before any action, or give the actual end date of 
819 
 type k check if it starts at t − 1 for all aircraft: 

 

k 
t,i (ω t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if ˆ z k 
t−1 ,i 

= t − 1 

ˆ z k 
t−1 ,i 

+ �L ω 
i 
(y k 

t−1 ,i 
) if χ k 

t−1 ,i 
= 1 

ˆ z k 
t−1 ,i 

otherwise 

(13) 

f the end date of a type k check of an aircraft i is t − 1 , z k 
t,i ( ω t )

s set to 0. If the check just starts on t − 1 , z k 
t,i ( ω t ) is updated by

he expected end date ˆ z k 
t−1 ,i ( ω t ) plus the extra time �L ω 

i 

(
y k 

t−1 ,i 

)
, 

here �L ω 
i 

(
y k 

t−1 ,i 

)
follows a certain distribution and its value de- 

ends on the realization ω t . If the check started at least two days

go and the end date is larger than the current calendar day t , it 

eans the check is still ongoing and z k 
t,i ( ω t ) has the same value as 

ˆ  k 
t−1 ,i ( ω t ) . According to the status of aircraft i , we update ˆ δk 

t−1 ,i 
to 

k 
t,i 

: 

k 
t,i = 

{ 

0 if z k 
t,i 

= 0 

ˆ δk 
t−1 ,i 

otherwise 
(14) 
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Fig. 2. A two-phase attribute update mechanism: Phase 1 updates ˆ s t−1 to s t before doing any action; after performing an action x t , Phase 2 updates s t to ˆ s t . ω t includes the 

information of actual maintenance check elapsed time and actual aircraft daily utilization. A t = { a t, 1 , . . . , a t,N t } , M t = 

{
M 

k 
t 

∣∣k ∈ K }, ˆ M t = 

{
ˆ M 

k 
t 

∣∣k ∈ K } and ˆ M 

k 
t = M 

k 
t −

∑ N t 
i =1 

ˆ δk 
t,i 
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a

he hangar capacity (available maintenance slots) also needs to be 

pdated for time t accordingly: 

 

k 
t = 

∑ 

h k 

M 

k 
t,h k 

−
N t ∑ 

i =1 

δk 
t,i (15) 

here M 

k 
t,h k 

is the maintenance capacity of a hangar h k specifically 

or type k check at time t . The number of additional slots of type 

 check, ηk 
t,i 

, is updated according to χ k 
t,i 

: 

k 
t,i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if ∃ h k , ∑ 

t + L i 
(

y k 
t ,i 

)
τ= t M 

k 
τ,h k 

− χ k 
t,i 

L i 
(
y k 

t,i 

)
≥ 0 

min h k 

{
χ k 

t,i 
L i 
(
y k 

t,i 

)
−∑ 

t + L i 
(

y k 
t ,i 

)
τ= t M 

k 
τ,h k 

} 

otherwise 

(16) 

t is worth mentioning that we use a generic index h k to repre- 

ent a hangar in this paper. If one wants to consider multiple lo- 

ations of performing the aircraft maintenance check, each hangar 

 k would have to be associated with a location l h and the decision 

ariable δk 
t,i 

will be replaced by δ
l h ,k 

t,i 
. 

In Phase 2 (post-decision phase in Fig. 2 ), the action x t is taken

nto account to update Type 1 attributes. For all aircraft that start 

ype k check on day t ( χ k 
t,i 

= 1 ), the values of z k 
t,i 

and δk 
t,i 

need to

e updated. The z k 
t,i 

is updated according to: 

ˆ 
 

k 
t,i = 

{
t + L i 

(
y k 

t,i 

)
if χ k 

t,i 
= 1 

z t,i otherwise 
(17) 

ote that L i 
(
y k 

t,i 

)
refers to the mean elapsed time according to his- 

orical maintenance check data. The mean elapsed time is used in 

his study since no sufficient data points were available to statis- 

ically infer reliable maintenance elapsed time predictions. Follow- 

ng this update, the values of δk 
t,i 

can also be renewed: 

ˆ k 
t,i = 

{
1 if χ k 

t,i 
= 1 

δk 
t,i 

otherwise 
(18) 

.2.2. Update of Type 2 attributes 

Once the decision of the day t is known, the update of Type 

 attributes is trivial. The aircraft usage parameters are updated 
820 
ccording to the following equations: 

Y 

k 
t+1 ,i = 

(
1 − ˆ δk 

t,i 

)(
DY 

k 
t,i + 1 

)
(19) 

nd the aircraft FH and FC are renewed according to new informa- 

ion ω t : 

k 
t+1 ,i = 

(
1 − ˆ δk 

t,i 

)(
�k 

t,i + 

(
1 − max 

k ′ � = k 
{ ̂  δk ′ 

t,i } 
)[

ψ t,i + �ψ 

ω 
t+1 ,i 

])
, 

� ∈ { FH , FC } , ψ ∈ { fh , fc } . (20) 

here k ′ refers to the check type that is different from k , if k =
-check , k ′ can be any other check type (B-/C-/D-check) except 

or A-check. The usage parameters are reset to 0 if a maintenance 

heck of type k is scheduled on the day t (i.e., ˆ δk 
t,i 

= 1 ). Otherwise,

he parameters are either increased by the average daily aging of 

he aircraft or remain the same, if a maintenance of the type other 

han k is scheduled (i.e., ˆ δk ′ 
t,i 

= 1 ). �ψ 

ω 
t+1 ,i 

follows a normal distri- 

ution and ψ t,i is the mean daily utilization of aircraft i according 

o airline estimation. Note that the decision variables χ k 
t,i 

do not 

xplicitly impact the update of Type 2 attributes. χ k 
t,i 

are used to 

pdate Type 1 attributes directly, as shown in (16) –(18) . ˆ δk 
t,i 

and 

ˆ k ′ 
t,i 

are part of the results of Type 1 attributes update using deci- 

ion variables χ k 
t,i 

. Overall, χ k 
t,i 

and δk 
t,i 

function differently in the 

-AMCS model. We use χ k 
t,i 

to indicate the action related to type k 

heck on aircraft i on day t, and δk 
t,i 

to indicate whether aircraft i 

s undergoing a type k check or in commercial operations on day 

. 

After an action is determined, the maintenance labels for both 

ype k checks are updated consequently. The maintenance labels 

f an aircraft i are updated to the next label using the following 

quation: 

 

k 
t+1 ,i = 

{
y k 

t,i 
+ 1 if χ k 

t,i 
= 1 

y k 
t,i 

otherwise 
(21) 

.2.3. Update of Type 3 attributes 

The Type 3 attributes are exogenous variables that are updated 

ccording to lookup tables, or provided by an airline, or estimated 

ccording to historical data of airline. They refer to: 

• L i 
(
y k 

t,i 

)
is the mean elapsed time from historical maintenance 

data. 
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• fh t,i and fc t,i are estimated according to historical daily aircraft 

FH and FC. 
• �L ω 

i 

(
y k 

t,i 

)
follows an empricial distribution. �fh 

ω 
t+1 ,i and 

�fc ω t+1 ,i follow normal distributions. Their values all depend on 

the realization of ω t+1 . The new information ω t+1 arrives on 

day t + 1 . 

Besides, we obtain M t+1 from the input data from airlines. We 

lso have ˆ N t = N t . ˆ N t is updated to N t+1 according to the lifespan 

nd utilization of each aircraft. 

.3. Constraints formulation 

There are two types of constraints in the AMCS optimiza- 

ion: maintenance check intervals and operational constraints. The 

aintenance checks are usually scheduled before the correspond- 

ng usage parameters reach maximums. This can be described as 

ollows, for each check k , aircraft i , and time t: 

Y 

k 
t,i + 1 ≤ I i k -DY (22) 

k 
i,t + ψ i,t ≤ I i k - � (23) 

here � ∈ { FH , FC } and ψ ∈ { fh , fc } . This assessment is made on 

ay t based on the mean daily FH and FC, before any new infor- 

ation arrives. If an aircraft reaches its maximum utilization but 

here is no maintenance slot available, an additional slot will be 

reated to cope with extra maintenance demand. 

The next constraint verifies whether or not there are sufficient 

aintenance slots for a type k check in all hangars during the en- 

ire mean maintenance elapse time L i 
(
y k 

t,i 

)
: 

k 
t,i ≤

∑ t+ L i ( y k t,i ) 
τ= t M 

k 
τ,h k 

L i 
(
y k 

t,i 

) , ∀ h k , k ∈ K, t ∈ [ t 0 , T ] . (24) 

 i 

(
y k 

t,i 

)
is estimated according to historical data. Note that the ac- 

ual maintenance elapsed time of a type k check can be smaller 

r larger than L i 
(
y k 

t,i 

)
. If additional slots are needed for an ongoing 

heck, they will be created and updated according to (16) . 

Some airlines require a minimum number of days ( d k ) be- 

ween the start dates of two checks of the same type to prepare 

he maintenance resources, such as tools, workforce, aircraft spare 

arts and to avoid parallel peaks of workloads at the hangar, mean- 

ng that: 

• If d k > 0 , there can be at most one aircraft starting a type k

check at time t . 
• If d k > 0 and there is a type k check starting at t , no type k

check is allowed to start in [ t, t + d k − 1 ] . 

The requirement for the start date can be translated into the 

ollowing equations for all time t: 

N t 
 

i =1 

χ k 
t,i ≤

⎧ ⎨ 

⎩ 

1 if d k > 0 and 

N t ∑ 

i =1 

χ k 
τ,i = 0 , ∀ τ ∈ [ t − d k , t − 1 ] 

M 

k 
t otherwise 

(25) 

q. (25) indicates that there can be at most one type k check start- 

ng in [ t − d k , t − 1 ] if d k > 0 , otherwise there can be at most M 

k 
t 

tarting on a day. 

.4. Optimization model 

After the introduction of the objective function, state transition, 

nd constraints, the optimization problem is to minimize (7) , sub- 

ect to constraints (13) –(25) . 
821 
. Methodology 

In the S-AMCS optimization, the goal is to find a policy pre- 

cribing how to determine maintenance checks optimally in the 

ace of uncertainty. However, it is, in general, difficult due to com- 

utational tractability. There are three main hindrances preventing 

s from computing such a policy: 

H1 Multi-dimensional state vector s t , i.e., each aircraft has many 

attributes 

H2 Multi-dimensional action vector x t , i.e., selecting different 

combinations of aircraft for letter checks 

H3 Very large outcome space, i.e., the number of outcome 

states is very large 

In particular, H.2 and H.3 are closely correlated. For example, 

f the maintenance capacity of the day t is M 

k 
t for type k check, 

e would have the following number of possible actions for type 

 check: 

 

 ∈ K 

M 

k 
t ∑ 

m k =0 

N t ! 

( N t − m k ) ! m k ! 
(26) 

here N t ! 

( N t −m k ) ! m k ! 
represents the possible selections of aircraft for 

ype k check. The number of outcome states on day t is the same 

s (26) . As a result, the number of possible states on the day T 

s: 

T ∏ 

= t 0 

∏ 

k ∈ K 

M 

k 
t ∑ 

m k =0 

N t ! 

( N t − m k ) ! m k ! 
(27) 

ven though for an example of two check types, A-check and C- 

heck, a small fleet with ten aircraft, and one daily slot available 

or each check type, we would have 121 possible actions and asso- 

iated outcome states on the first day, and more than 1.7 million 

ossible sequences of actions just after three days. 

A potential solution to address the S-AMCS problem formu- 

ated as MDP is dynamic programming (DP). Deng et al. (2020) ad- 

ressed the deterministic AMCS (D-AMCS) optimization by defin- 

ng maintenance check priority, applying a thrifty algorithm to es- 

imate if the remaining slots will be sufficient, discretization, and 

tate aggregation under the DP framework. However, an exact DP- 

ased methodology is not suitable for S-AMCS since it relies on de- 

erministic aircraft daily utilization and maintenance elapsed time. 

he DP-based methodology set forth by Deng et al. (2020) keeps 

 set of workable states for each day t using discretization and ag- 

regation, from which it computes the workable states for t + 1 . 

ut in S-AMCS, once we make a maintenance decision on t , there 

ill be only one state on t + 1 after revealing the new information. 

orking with a set of workable states and exploring the optimal 

equence of actions is no longer possible. 

In this section, we present a one-step lookahead approximate 

ynamic programming (ADP) methodology that uses simulations 

f aircraft utilization rates, maintenance elapsed times to estimate 

he future cost of each action via a thrifty policy, based on which 

e further determine high-quality current maintenance check de- 

isions (for the day t). The lookahead ADP has a dynamic and 

daptive nature and allows it to take advantage of the information 

hat only becomes available between decision points. 

This section presents the detail of the lookahead ADP method- 

logy for S-AMCS. It begins with a brief introduction to the ADP 

oncept in Section 4.1 . Section 4.2 presents how Monte Carlo sam- 

ling is used to simulate uncertainty. Section 4.3 defines main- 

enance check priority for each aircraft and Section 4.4 defines 

asic rules for S-AMCS. After that, we describe two reference S- 

MCS policies in Section 4.5 as benchmarks. Section 4.6 presents 

he detail of the lookahead ADP methodology. The last subsection 

 Section 4.7 ) shows an analysis of algorithm complexity. 
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.1. Approximate dynamic programming 

Approximate Dynamic Programming (ADP) is a modeling frame- 

ork, based on an MDP model, that offers several strategies 

or tackling the curses of dimensionality in large, multi-period, 

tochastic optimization problems ( Powell, 2011 ). ADP has been a 

esearch area of great interest for the last 30 years and is known 

nder various names (e.g., reinforcement learning, neuro-dynamic 

rogramming). The idea is to make decisions by optimizing instant 

eward ( myopic policy); or look ahead to future reward ( lookahead 

olicy) to make decisions; or use approximation techniques, such 

s simulation and machine learning to approximate the optimal 

olicy (policy function approximation) or the value function (value 

unction approximation), instead of solving (8) . Policy function ap- 

roximation ( McGrew, How, Williams, & Roy, 2010; Novoa & Storer, 

009 ) or value function approximation ( Cai, Wong, & Heydecker, 

009; Medury & Madanat, 2013; Schmid, 2012; Zhang & Adel- 

an, 2009 ) usually requires a model, either parametric or non- 

arametric, to capture the features of a state. 

In the S-AMCS, the fleet size and aircraft maintenance capacity 

ary during the planning horizon, e.g., new aircraft may phase-in, 

nd old aircraft can phase-out/retire, and the maintenance slots are 

ifferent on workdays than on public holidays. The lookahead ADP 

s so flexible that it works even though the fleet size or mainte- 

ance capacity changes over time. Besides, it does not necessar- 

ly require training of the model. The essence of the lookahead 

pproach is a lookahead policy that can, ideally, find the optimal 

aintenance check action based on the estimations of the costs 

f all actions from a future period. The key is to approximate the 

alue V t+1 ( s t+1 ) in (8) using Monte Carlo sampling and simulation. 

.2. Modeling of uncertainty 

Inspired by Rosenberger et al. (20 0 0) and Gupta et al. 

2003) , we use stochastic simulation to capture uncertainty (gen- 

rate information). A set of sample paths { w 

n } , or so-called 

ew information, is generated by Monte Carlo sampling ( Vujic, 

018 ). Each sample path is a sequence of information w 

n = 

 

ω 

n 
t 0 +1 

, ω 

n 
t 0 +2 

, . . . , ω 

n 
T +1 

} 
. We apply the classic Monte Carlo sam- 

ling on the sampling of aircraft daily FH and FC from historical 

ata. For the aircraft daily FH, we first compute the mean ( μi ) and

ariance ( σi ) from historical aircraft daily utilization, then sample 

fh 

ω 
t,i from normal distribution N 

(
μi , σ

2 
i 

)
, and �fc ω t,i also follows 

he same process. 

On the other hand, we use Monte Carlo sampling for mainte- 

ance check elapsed time according to its empirical distribution. 

or example, given a set of C-check label and extra elapsed time 

in working days) of aircraft i : 

-1: { −1 , 0 , 1 , −2 , 2 , 0 , 0 , 0 , 0 , 2 , −1 , 0 , 0 , 0 , 1 , −1 } (28) 

here “-1” means C-1 finishes one day earlier, “-2” means C-1 

nds two days earlier, “1” indicates that it takes one more day than 

xpected, and “2” indicates that C-1 lasts two days longer than av- 

rage. This gives the following empirical distribution: 

According to the distribution described in Table 4 , we can em- 

loy Monte Carlo sampling for the extra days needed for C-1. Sim- 

larly, we do this for all the maintenance checks. After Monte Carlo 
Table 4 

Empirical distribution of extra days for a check C-1. 

Extra Days -2 -1 0 1 2 

Probability 0.0625 0.1875 0.5000 0.1250 0.1250 

4

s

c

b

822 
ampling, the new information ω t+1 has the form of: 

 t+1 = 

{
ω 

A 
t+1 , ω 

B 
t+1 , ω 

C 
t+1 , ω 

D 
t+1 

}
, (29) 

herein ω 

k 
t+1 = 

{
�L ω i 

(
y k t,i 

)
, �fh 

ω 
t+1 ,i , �fc 

ω 
t+1 ,i 

}
, t ∈ [ t 0 , T ] , k ∈ K. (30) 

or each sample path { ω t+1 , ω t+2 , . . . , ω T +1 } , we mak e letter c heck 

ecisions from t to T using pre-defined rules and policies (de- 

cribed in Sections 4.3, 4.4 and 4.5.2 ), and we call this process one 

imulation . 

.3. Defining maintenance check priority 

As mentioned earlier, one major challenge in stochastic AMCS 

s the multi-dimensional action vector. According to (26) , there are 
 

k ∈ K 
∑ M 

k 
t 

m k =0 
N t ! 

( N t −m k ) ! m k ! 
actions on day t . To reduce the number of 

aintenance check actions, we propose a priority solution in the 

revious work ( Deng et al., 2020 ), i.e., defining priorities for the 

eet according to the rule of earliest deadline first for each check 

ype. This rule does not specifically take any assumption on fleet 

ize. It is common in maintenance scheduling and also convenient 

o implement in practice. Different from Deng et al. (2020) , we use 

he term expected remaining utilization in S-AMCS to indicate the 

aintenance check deadline. The reason is that we can only esti- 

ate the expected remaining utilization according to the mean daily 

H and FC of each aircraft and corresponding inspection interval. 

he expected remaining utilization unifies three different usage pa- 

ameters of each aircraft (DY/FH/FC). It is defined by the fewest 

ays to the next letter check: 

 

k 
t,i = min 

{
R 

k -DY 
t,i , R 

k -FH 
t,i , R 

k -FC 
t,i 

}
(31) 

he R k -DY 
t,i 

, R k -FH 
t,i 

and R k -FC 
t,i 

refer to the expected remaining utiliza- 

ion with respect to each usage parameter and associated interval 

pecified by the MPD: 

 

k -DY 
t,i = argmax 

r∈ N 

{
r ≤ I i k -DY − DY 

k 
t,i 

}
(32) 

 

k - �
t,i = argmax 

r∈ N 

{
t+ r ∑ 

τ= t 
fh τ,i ≤ I i k - � − �k 

t,i 

}
(33) 

here � ∈ { FH , FC } , ψ ∈ { fh , fc } , ψ τ,i and fc τ,i denote the average 

aily FH and FC of aircraft i ; N is the set of natural numbers and k

ndicates the check type. After the expected remaining utilization is 

alculated, we sort 
{

R k 
t,i 

}N t 

i =1 
in ascending order: 

˜ 
 

k 
t, 1 , 

˜ R 

k 
t, 2 , 

˜ R 

k 
t, 3 , . . . , ˜ R 

k 
t,N t 

, ˜ R 

k 
t,i ≤ ˜ R 

k 
t,i +1 , 

˜ R 

k 
t,i ∈ 

{
R 

k 
t,i 

}N t 

i =1 
. (34) 

he fleet is scheduled maintenance check according to the se- 

uence presented in (34) : aircraft with lower expected remaining 

tilization is given a higher check priority. Given hangar capacity 

 

k 
t for the type k check on day t , after assigning priorities to the 

ntire fleet, the number of actions for type k check of day t is 

educed from C 

0 
N t 

+ C 

1 
N t 

+ · · · + C 

M 

k 
t 

N t 
to M 

k 
t + 1 . The number of out- 

ome states of each action of type k check is also reduced to 1. 

ince heavy maintenance (e.g., C-/D-check) is more restrictive and 

emanding in terms of resources, it has a higher priority than light 

aintenance (e.g., A-/B-check). 

.4. Basic scheduling rules for stochastic aircraft maintenance check 

cheduling 

We define the following basic rules for making maintenance 

heck decisions before presenting the scheduling policies. These 

asic rules are the prerequisites for the stochastic AMCS: 
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(i) An aircraft i is considered to be allocated a type k check only 

if its expected remaining utilization is lower than the thresh- 

old R k 
lb 

(i.e., when R k 
t,i 

≤ R k 
lb 

). This threshold is usually spec- 

ified by airlines to prevent scheduling maintenance checks 

too often on the same aircraft. 

(ii) If the number of type k check slots is sufficient, the aircraft 

with lowest expected remaining utilization ˜ R k 
t, 1 

= min i 

{
R k 

t,i 

}
has highest priority for type k check. 

(iii) If aircraft i has a higher type k check priority than aircraft j(
R k 

t,i 
< R k 

t, j 

)
but the remaining slots of type k check are only 

sufficient to accommodate a type k check for aircraft j rather 

than for aircraft i , swap the priorities between aircraft i and 

j for type k check. 

(iv) If an aircraft reaches its maximum utilization of type k check 

on the day t and there is no available slot, additional slots 

will be created until the type k check is finished. 

.5. Reference scheduling policies 

To address the S-AMCS, we propose to use ADP to sched- 

le aircraft maintenance checks based on fleet status, following 

re-defined policies. In this subsection, we introduce two simple 

cheduling policies, the myopic policy and thrifty policy. These two 

olicies are simple scheduling policies that work as benchmarks 

or our lookahead policy. The myopic policy is a greedy approach 

hat serves as an upper bound for the average aircraft utilization 

nd a lower bound for the total number of maintenance checks. 

n the contrary, the thrifty policy is a conservative approach that 

rovides a lower bound for the average aircraft utilization and an 

pper bound for the total number of maintenance checks. 

.5.1. Myopic policy 

The Myopic policy is one of the most elementary policies. It 

akes a maintenance check decision according to the minimum 

mmediate contribution, without looking into the future cost. For 

ach day t , the myopic policy enables us to make maintenance 

heck decisions only if an aircraft reaches the inspection interval 

f type k check. This is equivalent to assuming V t+1 (s t+1 ) = 0 in

8) : 

 

∗
t = argmin 

x t ∈ X t 
{ C t ( s t , x t ) } (35) 

here X t denotes the set of actions associated with s t , X t = 

 

X 

π ( s t ) } . The myopic policy runs very fast and if it results in no 

dditional slot in S-AMCS (e.g., there is infinite aircraft mainte- 

ance capacity), then (35) is already the optimal policy. However, 

onsidering the limited maintenance capacity in practice, myopic 

olicy often leads to poor solutions in terms of creating lots of ad- 

itional maintenance slots. 

.5.2. Thrifty policy 

The thrifty policy is a conservative policy that schedules main- 

enance checks whenever there is an available slot ( Deng et al., 

020 ) according to the maintenance check priority of all aircraft 

nd all check types. If several hangars fit the most maintenance 

hecks, we choose the hangars with the closest value. Similar to 

he myopic policy, the thrifty policy makes maintenance check de- 

isions without looking into the future cost. It only checks whether 

he available slots from t matches the mean maintenance check 

lapsed time (the actual elapsed time is only known at t + 1 af- 

er a maintenance check is decided). It runs even faster than the 

yopic policy but results in low aircraft utilization and a relatively 

arge number of maintenance checks. 
823 
.6. Lookahead approximate dynamic programming 

The lookahead approximate dynamic programming (ADP) 

ethodology consists of two parts, a dynamic programming frame- 

ork and a hybrid lookahead policy. The dynamic programming 

ramework is the same as described in Deng et al. (2020) , consist- 

ng of a forward induction approach, a priority solution, and the 

asic scheduling rules mentioned in Section 4.4 for AMCS. The hy- 

rid lookahead policy combines deterministic and stochastic fore- 

asts. 

To address the S-AMCS, we need to solve the following equa- 

ion: 

 

∗
t = argmin 

x t ∈ X t 

{
C t ( s t , x t ) + γV t ( s t ) 

}
(36) 

t means that we use a lookhead policy to generate V t ( s t ) as an ap- 

roximation of V t ( s t ) in (8) based on simulations of future aircraft 

tilization and maintenance check elapsed time and then make 

ecision by solving (36) . Since there are limited maintenance re- 

ources and capacities in the stochastic AMCS, creating extra main- 

enance slots beyond the maintenance capacity of airlines is one of 

he major operating costs. Therefore, we first use the thrifty policy 

iscussed in Deng et al. (2020) to explore the future and estimate 

he number of additional maintenance slots that would be needed 

f an action is taken: 

 k 

(
ˆ s t , t + t h 

)
= 

N t ∑ 

i =1 

t+ t h ∑ 

τ= t 
ˆ ηk 
τ,i , k ∈ K. (37) 

here ˆ ηk 
τ,i 

denotes the number of additional slots created on day 

, without knowing any information from t + 1 , and t h is a pos-

tive integer. Note that computing g k 
(

ˆ s t , t + t h 
)

in (37) requires ˆ s t 

 ̂  s t = S X ( s t , x t ) ), the mean aircraft daily utilization, and the mean 

lapsed time for the entire fleet. Obtaining g k 
(

ˆ s t , t + t h 
)

is equiva- 

ent to applying the thrifty policy from t + 1 to t + t h . 

As C-checks happen every 18–24 months and D-checks occur 

very 5–6 years, and the daily utilization of an aircraft follows a 

ormal distribution, in the long term, the sequence of daily uti- 

ization can be considered independent and identically distributed. 

ccording to the law of large numbers, the observed cumulative 

tilization of an aircraft since its previous C-/D-check is very close 

o the mean daily utilization multiplying the elapsed days. Hence, 

e can use the average daily utilization of each aircraft to simulate 

hen the coming C-/D-checks take place. Besides, C-/D-checks are 

sually not allowed to perform during the commercial peak sea- 

on in practice, such as summer, Easter, or Christmas holidays, in- 

icating that C-/D-checks are jammed in the non-commercial pe- 

iods. Therefore, similar to the aircraft daily utilization, the impact 

f uncertainty from C-/D-check elapsed time can be significantly 

iminished. However, (37) cannot predict the future extra main- 

enance slots for the other check types that happen more often, 

.g., A-/B-checks. The future period [ t, t + t h ] to look ahead is too 

arge in (37) , and A-/B-check occurs too often to anticipate using 

nly the mean aircraft daily utilization. Hence, to provide a more 

ccurate prediction on the extra maintenance slots for A-/B-check, 

e propose a hybrid policy combining deterministic and stochastic 

orecasts: 

- Step 1 : Determine the one-step optimal C- and D-check ac- 

tions based on deterministic forecasts 

- Step 2 : Determine the one-step optimal A- and B-check ac- 

tions using stochastic forecasts 

.6.1. Determine the one-step optimal C- and D-check actions using 

eterministic forecasts 

Before determining the optimal C- and D-check actions, it is 

orth mentioning that wasting an available maintenance slot at 
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resent can result in a shortage of maintenance slots in the future. 

rom the perspective of an airline, skipping a maintenance slot on 

he day t 1 means that some technicians are idle (not performing 

aintenance works), and the airline still needs to pay for those 

echnicians. On the other hand, when we create one extra slot on 

he day t 2 ( t 2 > t 1 ), the airline has to spend more money to com-

ensate for the extra work from the technicians or to subcontract 

he maintenance check. Therefore, we want to penalize both the 

aste of an available slot on day t and the extra costs for creat- 

ng more slots in [ t + 1 , t + t h ] . We giv e a penalty t o the objectiv e

alues when all the following conditions are met: 

( C.1) There are sufficient slots for a type k check, namely, 

∃ i, R k 
t,i 

≤ R k 
lb 

and constraint (24) holds. 

( C.2) g k 
(

ˆ s t , t + t h 
)

> 0 , i.e., there is at least one extra mainte-

nance slot of type k check created in [ t, t + t h ] . 

( C.3) There is no action of type k check, i.e., 
∑ N t 

i =1 
χ k 

t,i 
= 0 . 

According to this logic, we use the following approximation for 

 t ( s t ) in (8) : 

 t ( s t ) ≈ V 
(1) 

t ( s t ) = 

∑ 

k 

(
λg k 

(
ˆ s t , t + t h 

)

+ max 
R k 

t,i 
≤R k 

lb 

⎧ ⎪ ⎨ 

⎪ ⎩ 

sgn 

⎛ 

⎜ ⎝ 

∑ 

t + L i 
(

y k 
t ,i 

)
τ= t M 

k 
τ,h k 

L i 
(
y k 

t,i 

) − χ k 
t,i 

⎞ 

⎟ ⎠ 

⎫ ⎪ ⎬ 

⎪ ⎭ ︸ ︷︷ ︸ 
sgn 

(
g k 
(

ˆ s t , t + t h 
))︸ ︷︷ ︸ 
[ 

1 − sgn 

( 

N t ∑ 

i =1 

χ k 
t,i 

) ] 
︸ ︷︷ ︸ 

ξ

)
(38) 

here V 
(1) 
t ( s t ) corresponds to the deterministic forecast , i.e., a fore- 

ast that does not include expression of the associated uncertainty, 

ollowing Powell (2011) , where λ is a large constant (cost per extra 

lot) to prevent creating unnecessary additional maintenance slots, 

is a large constant to prevent the waste of an available slot, and 

sgn” is the sign function: 

gn (α) = 

{ −1 if α < 0 

0 if α = 0 

1 if α > 0 

(39) 

e only keep the optimal C- and D-check actions for day t: 

 

∗
t, det = 

{
x A ∗t, det , x 

B ∗
t, det , x 

C ∗
t, det , x 

D ∗
t, det 

}
= argmin 

x t ∈ X t 

{ 
C t ( s t , x t ) + γV 

(1) 

t ( s t ) 

} 
(40) 

 

C ∗
t = x C ∗t, det , x D ∗t = x D ∗t, det . (41) 

n (40) , “det” is the abbreviation for “deterministic”. For C-/D- 

heck, we use the deterministic forecasts, namely, the mean daily 

tilization and maintenance elapsed time, to assess whether the 

aintenance slots are sufficient in the future in the thrifty algo- 

ithm for [ t + 1 , t + t h ] , then determine the best C- and D-check 

ction. In this way, we tremendously reduce ADP algorithm com- 

lexity for prediction of coming C-/D-checks. After obtaining the 

ptimal C-/D-check actions from (40) to (41) , we fix x C ∗t and x D ∗t . 

.6.2. Determine the one-step optimal A- and B-check actions using 

tochastic forecasts 

Since the aircraft A-/B-check occurs once every few months, the 

ncertainty in daily aircraft utilization can significantly impact the 

ates of A-/B-checks. We can rely on the stochastic forecasts to es- 

imate when the A- and B-checks are likely to occur in a shorter 

uture period [ t + 1 , t + t l ] ( t l � t h ) . For each maintenance check 

ction, we carry out Monte Carlo simulations: 

 

n 
t+1 = 

{ 
ω 

n 
t+1 , ω 

n 
t+2 , . . . , ω 

n 
t+ t l +1 

} 
, n = 1 , 2 , . . . , n sample , t ∈ [ t 0 , T ] . (42) 
824 
 

ω 
k 

(
ˆ s t , t + t l , w 

n 
t+1 

)
= 

N t ∑ 

i =1 

t+ t l ∑ 

τ= t 
ηk 

τ,i 

(
ω 

n 
τ+1 

)
, k ∈ K. (43) 

 k 

(
ˆ s t , t + t l 

)
= 

1 

n sample 

n sample ∑ 

n =1 

g ω k 

(
ˆ s t , t + t l , w 

n 
t+1 

)
(44) 

imilar to (38) , we use the following approximation for V t ( s t ) in 

8) : 

 t ( s t ) ≈ V 
(2) 

t ( s t ) = 

∑ 

k 

(
λG k 

(
ˆ s t , t + t l 

)

+ max 
R k 

t,i 
≤R k 

lb 

⎧ ⎪ ⎨ 

⎪ ⎩ 

sgn 

⎛ 

⎜ ⎝ 

∑ 

t + L i 
(

y k 
t ,i 

)
τ= t M 

k 
τ,h k 

L i 
(
y k 

t,i 

) − χ k 
t,i 

⎞ 

⎟ ⎠ 

⎫ ⎪ ⎬ 

⎪ ⎭ 

sgn 
(
G k 
(

ˆ s t , t + t l 
))[ 

1 − sgn 

( 

N t ∑ 

i =1 

χ k 
t,i 

) ] 
ξ

)
(45) 

n contrast to V 
(1) 
t ( s t ) , V 

(2) 
t ( s t ) uses the sample realizations to 

pproximate V t ( s t ) . V 
(2) 
t ( s t ) corresponds to the stochastic forecast 

 Powell, 2011 ). After that, we determine the optimal A- and B- 

heck actions: 

 

∗
t = 

{
x A ∗t , x B ∗t , x C ∗t , x D ∗t 

}
= argmin 

{ x A t ,x 
B 
t ,x 

C ∗
t ,x D ∗t, } ∈ X t 

{ 
C t 
(
s t , 
{

x A t , x 
B 
t , x 

C ∗
t , x D ∗t, 

})
+ γ λV 

(2) 

t ( s t ) 

} 
(46) 

Note that we use the deterministic forecasts from [ t + 1 , t + t h ] , 

nd stochastic forecasts from [ t + 1 , t + t l ] t o make the mainte- 

ance check decision only for the day t . After that, we move to 

 + 1 and update the state according to new information. We re- 

eat the same process on t + 1 to determine the maintenance 

heck action for the day t + 1 . We call (40) –(46) a lookahead ADP

ethodology. The detail of the lookahead ADP methodology is pre- 

ented in Algorithm 1 . 

.7. Algorithm complexity 

To assess the algorithm complexity of the lookahead ADP 

ethodology, we count how many times the state transition func- 

ion (12) is called to find the best action x ∗t of the day t . For an ac-

ion x t , we mean a set of maintenance check actions for all check 

ypes of the day t . For comparison purpose, we also provide the 

lgorithm complexity analysis for the myopic and thrifty policies. 

There is only one state s t on a day t in S-AMCS, and s t has at

ost n act actions after sorting the priorities for all maintenance 

heck types and all aircraft: 

 act = 

∏ 

k ∈ K 
n 

k 
act = 

∏ 

k ∈ K 
(M 

k 
t + 1) (47) 

n the myopic policy, we have to check all actions and find the one 

esulting the minimum daily contribution, without looking into the 

uture cost. It means that if there are n act actions on the day t , we

ave to call (12) n act times in any case in the myopic policy. Hence,

he algorithm complexity of the myopic policy is n act . 

For thrifty policy, we allocate the maintenance checks when- 

ver there are sufficient available maintenance slots based on the 

ean elapsed time of the maintenance checks. Namely, we check 

he hangar capacity first and see how many checks the hangars 

an accommodate. We then choose the action that fits the most 

aintenance checks in the hangars following the priorities defined 

n Section 4.3 . If several hangars fit the most maintenance checks, 

e choose the hangars with the closest value. Therefore, we just 
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Algorithm 1 A Lookahead ADP methodology for stochastic aircraft maintenance check scheduling optimization. 

1: Initialize ˆ s t 0 −1 � Initial input data 

2: t ← t 0 
3: ˆ s t−1 ← ̂ s t 0 −1 

4: procedure Approximate Dynamic Programming 

5: while t 0 < T do 

6: ω t ← −
{
�L ω 

i 

(
y k 

t−1 ,i 

)
, �fh 

ω 
t,i , �fc ω t,i 

}N t 

i =1 
� Arrival of new information 

7: s t ← S W 

(
ˆ s t−1 , ω t 

)
� Pre-Decision update 

8: procedure Find the one-step optimal maintenance check action 

9: X t ← { x t | x t = X 

π ( s t ) } � Generate a set of actions according to Eq. (3) 

10: Compute and sort aircraft remaining utilization using Eq. (31)– (34) � Define maintenance check priority 

11: procedure Determine the best C- and D-check decisions 

12: g k 
(

ˆ s t , t + T 
)

← 

∑ N t 
i =1 

∑ t+ T 
τ= t ˆ ηk 

τ,i 
, k ∈ K 

13: V 
(1) 
t ( s t ) ← Eq. (38) 

14: 
{

x A ∗
t, det 

, x B ∗
t, det 

, x C ∗
t, det 

, x D ∗
t, det 

}
← argmin x t ∈ X t 

{ 
C t ( s t , x t ) + γV 

(1) 
t ( s t ) 

} 
� ˆ s t = S X ( s t , x t ) 

15: x C ∗t ← x C ∗
t, det 

, x D ∗t ← x D ∗
t, det 

� Find the optimal C- and D-check actions 

16: end procedure 

17: procedure Determine the best A- and B-check decisions 

18: w 

n 
t+1 

= 

{ 
ω 

n 
t+1 

, ω 

n 
t+2 

, . . . , ω 

n 
t+ t l +1 

} 
n = 1 , 2 , . . . , n sample , t ∈ [ t 0 , T ] � Monte Carlo sampling 

19: g ω 
k 

(
ˆ s t , t + t l , w 

n 
t+1 

)
← 

∑ N t 
i =1 

∑ t+ t l 
τ= t η

k 
τ,i 

(
ω 

n 
τ+1 

)
� Simulation 

20: G k 

(
ˆ s t , t + t l 

)
← 

1 
n sample 

∑ n sample 

n =1 
g ω 

k 

(
ˆ s t , t + t l , w 

n 
t+1 

)
21: V 

(2) 
t ( s t ) ← Eq. (45) 

22: 
{

x A ∗t , x B ∗t , x C ∗t , x D ∗t 

}
← argmin {

x A t ,x 
B 
t ,x 

C ∗
t ,x D ∗t, 

}∈ X t { 
C t 
(
s t , 
{

x A t , x 
B 
t , x 

C ∗
t , x D ∗t, 

})
+ γ λV 

(2) 
t ( s t ) 

} 
23: end procedure 

24: x ∗t ← 

{
x A ∗t , x B ∗t , x C ∗t , x D ∗t 

}
� Optimal maintenance check action found 

25: ˆ s ∗t ← S X 
(
s t , x 

∗
t 

)
� Post-Decision update 

26: ˆ s t ← ˆ s ∗t 
27: end procedure 

28: t ← t + 1 

29: end while 

30: end procedure 
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eed to call (12) only once on the day t in the thrifty policy and

he algorithm complexity of thrifty policy is 1. 

In the lookahead ADP methodology, it makes the aircraft main- 

enance check decisions in two steps. It first determines the one- 

tep optimal actions for aircraft C- and D-checks, and then for air- 

raft A- and B-checks. In the first step, we apply the thrifty algo- 

ithm to compute the number of extra maintenance slots for the 

eriod of [ t + 1 , t + t h ] . Since we only need to call (12) once for 

ach day in the thrifty algorithm, computing the number of extra 

aintenance slots for [ t + 1 , t + t h ] is equivalent to calling (12) t h 
imes. Multiplying t h with the number of actions n act implies the 

lgorithm complexity of the first step: 

 act t h (48) 

n the second step of the lookahead ADP methodology, we fix the 

ptimal C- and D-check actions obtained from the previous step, 

hen use Monte Carlo simulations to estimate the number of ex- 

ra A- and B-check slots for the future period [ t + 1 , t + t l ] . For 

ach sample path, we use the thrifty algorithm to compute the ex- 
825 
ra slots, that is, running the thrifty algorithm on [ t + 1 , t + t l ] . It 

eans that we call (12) t l times for each sample path. The total 

umber of sample paths n sample makes us call (12) n sample t l times 

or each action. Since we already determine the optimal aircraft 

- and D-check decisions in the first step, the number of actions 

n the second step, n A act × n B act , is smaller than n act . The algorithm

omplexity of the second step is: 

 

A 
act n 

B 
act n sample t l (49) 

umming (48) and (49) gives the following algorithm complexity 

f determining the optimal action on a day t in the lookahead ADP 

ethodology: 

 act t h + n 

A 
act n 

B 
act n sample t l < n act 

(
t h + n sample t l 

)
(50) 

e can see that the lookahead ADP methodology has polynomial 

ime complexity, which is suitable for practical implementation to 

he S-AMCS problem. 
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Table 5 

Maintenance check intervals of Airbus A319, A320 and A321 ( AIRBUS, 

2017 ). 

Aircraft A-Check C-Check D-Check 

Type DY FH FC DY FH FC DY 

A319 120 750 750 730 7500 5000 2192 

A320 120 750 750 730 7500 5000 2192 

A321-1 120 750 750 730 7500 5000 2192 

A321-2 120 750 750 1096 12000 8000 2192 
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. Case study 

The proposed ADP methodology for S-AMCS is evaluated using 

he aircraft maintenance data and daily utilization from a European 

irline ( Deng, 2020 ). The test fleet is the Airbus A320 family (A319,

320, A321-1, and A321-2), consisting of 40–50 aircraft. The air- 

ine distributes the tasks within B-check into successive A-checks 

no B-check), merges the D-checks in C-checks, and labels them as 

eavy C-checks. Table 5 presents the associated inspection inter- 

al of each aircraft type. Two case studies are presented: the first 

ase focuses on September 25 th 2017–December 31 st 2020 and has 

ircraft type A319, A320, and A321-1 since we have the C-check 

chedule of this period from the airline for comparison; the sec- 

nd case focuses on the period of March 20 th 2019 to December 

1 st 2022 and has all four aircraft types. For each test case, there 

re five policies/methodologies tested: 

M.1 Lookahead ADP with deterministic and stochastic forecasts, 

labeled as “ADP-DS”

M.2 The optimal deterministic AMCS schedule planned by Deng 

et al. (2020) , labeled as “DP-based”

M.3 Myopic policy, labeled as “Myopic”

M.4 Thrifty policy, labeled as “Thrifty”

M.5 Lookahead ADP methodology itself using only deterministic 

forecasts, labeled as “ADP-D”

The ADP-D includes only (38) —(40) and make the optimal 

MCS decision x ∗t = x ∗
t, det 

. We benchmark the outcomes from M.1 

gainst the results from M.2 to M.5. 

.1. Maintenance actions 

The airline has at most two A-check slots per workday 

 max 
{

M 

A 
t 

}
= 2 ) and three C-check slots per day during the C- 

heck period ( max 
{

M 

C 
t 

}
= 3 ), but there are at least three days be-

ween the start dates of two successive C-checks ( d C = 3 ). The air-

ine needs these three days to prepare the maintenance tools. It 

eans that there could be at most one C-check starting on a day. 

ccording to the requirements of our airline partner, D-checks are 

erged within C-check in the following pattern: 

-1 , C-2 , C-3 ︸︷︷︸ 
D-check 

, C-4 , C-5 , C-6 ︸︷︷︸ 
D-check 

, C-7 , C-8 , C-9 ︸︷︷︸ 
D-check 

, . . . (51) 

oreover, D-check has to be performed within the interval of 2192 

Y. The maximum of two A-checks slots on weekdays and the pos- 

ibility of merging A- into C-check together lead to 12 possible 

ombinations of total daily A- and C-check actions, as shown in 
able 6 . i

Table 6 

Possible aircraft maintenance check actions on a da

Maintenance Check Action 1 2 3 4 

Number of A-Checks 0 0 1 1 

Number of C-Checks 0 1 0 1 

826 
.2. Key performance indicators 

To discuss the results, we use a set of key performance indica- 

ors (KPIs) for each type of letter check. These KPIs are the average 

H of the entire fleet, the total number of maintenance checks, the 

otal number of extra slots, and the average computation time of 

aking the optimal decision for a day. 

To validate the proposed lookahead ADP methodology, we use 

00 test runs for each test case. Each test run corresponds to 

ne test sample path generated using Monte-Carlo sampling, from 

hich we can see how well the lookahead ADP copes with uncer- 

ainty and how robust this methodology is. After one test run, we 

btain a set of associated average FH of the fleet, the total number 

f maintenance checks, the total number of extra slots, and the av- 

rage computation time of making the optimal decision for a day. 

ach of the KPIs is the mean of 100 test runs. For example, the KPI

verage FH of the entire fleet is the mean of 100 average FH re- 

ulting from 100 test runs. And this also applies to the calculation 

f other KPIs for all the policies/methodologies to be tested. 

To simulate the performance of the DP-based methodology over 

he test sample paths, we first plan the optimal maintenance check 

chedule for the deterministic AMCS model and then test the op- 

imal schedule over the sample paths and adjust the A-/C-check 

hen necessary. An additional maintenance slot is created every 

ime the maintenance schedule becomes unfeasible. 

For the other policies/methodologies, we plan the optimal 

aintenance check day by day, from the first day to the last day 

f the planning horizon, considering the new information provided 

er day, according to the sample path. The test cases are further 

sed to support a sensitivity analysis on some of the model pa- 

ameters. All the aircraft A- and C-check schedules are generated 

sing the same input data and under the same operational con- 

traints of the airline, as described in Deng et al. (2020) . 

.3. Model parameters 

We assign 21 and 210 to R A 
lb 

and R C 
lb 

following the current prac- 

ice of our airline partner. λ is given 10 5 suggested by our air- 

ine partner based on the results presented in Deng et al. (2020) . 

etting λ = 10 5 can avoid creating unnecessary additional mainte- 

ance slots. We assign 10 20 to ξ to penalize the action of wast- 

ng available maintenance slots of a day when the lookahead pol- 

cy predicts a non-zero extra maintenance slot in the future. The 

eason for having ξ  λ is that, in the situation of wasting an 

vailable slot of a day t 1 when the lookahead policy predicts an 

xtra maintenance slot on a day t 2 > t 1 , the airline still has to

ay for technicians for being idle on t 1 and have a higher cost to 

ompensate the extra work from technicians on t 2 . Therefore, we 

se ξ = 10 20 to prevent this circumstance. For ADP-DS, we use 50 

ample paths in Monte Carlo simulation to evaluate each action, 

.e., n sample = 50 (600 in total for 12 actions). For ADP-D, we use 

nly the mean daily aircraft utilization and the mean maintenance 

heck elapsed time. 

Both test cases are conducted using parallel computing on a 

uad-core workstation. We look six months ahead for A-check 

 t l = 183 ), and four years ahead for C-check ( t h = 1461 ) to esti-

ate the cost of creating additional maintenance slots. The reason 

s that if the algorithm allocates an A-/C-check to an aircraft, we 
y t . 

5 6 7 8 9 10 11 12 

2 2 3 3 4 4 5 5 

0 1 0 1 0 1 0 1 
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Table 7 

Model parameters for Stochastic AMCS optimization. 

Parameters Description Value Unit 

R A 
lb 

A utilization threshold to prevent scheduling A-check too often ( Deng et al., 2020 ) 21 day 

R C 
lb 

A utilization threshold to prevent scheduling C-check too often ( Deng et al., 2020 ) 210 day 

γ Discount factor for Stochastic AMCS model 1 —

λ Cost of creating an additional maintenance slot 10 5 FH 

ξ Penalty for the waste of an available maintenance slot 10 20 FH 

n sample The number of sample paths for Monte Carlo simulations 50 —

t l A future time period for A-check to look ahead in rolling horizon 183 day 

t h A future time period for C-check to look ahead in rolling horizon 1461 day 

Table 8 

Comparison of KPIs for September 25 th 2017–December 31 st 2020 for 100 test sample paths. The numbers labeled with “∗” are 

estimated or extrapolated according to the historical maintenance data of the airline. ADP-D represents the lookahead ADP with 

only deterministic forecasts. ADP-DS represents the lookahead ADP with both deterministic and stochastic forecasts. 

KPI 2017–2020 Airline Stochastic Results (100 test runs) 

(1194 days) Schedule DP-based Myopic Thrifty ADP-D ADP-DS 

C-check Mean Average FH 6646.8 6785.4 7142.1 6200.6 6849.2 6838.4 

Mean Extra Slots 15 90.4 368.4 0.0 6.5 5.7 

Mean Total Checks 88 77.0 75.3 83.1 79.2 79.4 

A-check Mean Average FH 695 . 0 ∗ 713.3 744.6 573.6 705.9 703.5 

Mean Extra Slots ≥ 15 ∗ 20.4 367.3 0.0 1.6 0.8 

Mean Total Checks 750 ∗ 727.0 698.4 893.6 733.6 735.9 

Mean Total Extra Slots 30 ∗ 110.8 735.7 0.0 8.1 6.5 

95% Confidence Interval —– [ 109 . 41 , 112 . 19 ] [ 732 . 23 , 739 . 17 ] [ 0 , 0 ] [ 7 . 32 , 8 . 88 ] [ 5 . 88 , 7 . 12 ] 

Computation Time/day [s] —– 0.02 0.09 0.05 0.35 2.63 
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an always anticipate the next check. A summary of model param- 

ters is presented in Table 7 . 

.4. Outcomes for the test case 2017–2020 

We first look at the KPIs of the test case 2017–2020. An ideal 

chedule/S-AMCS policy should result in better KPIs, i.e., higher av- 

rage FH, fewer total checks, and fewer extra maintenance slots for 

oth check types than the maintenance check schedule of the air- 

ine. As shown in Table 8 , the schedules from DP-based method- 

logy and the myopic policy both result in more than 90 extra C- 

hecks slots and 20 extra A-checks slots on average for the 100 test 

ample paths, compared with the C-check schedule and A-check 

stimation of the airline (15 additional slots for each check type). 

t means that the optimal A- and C-check schedule from the deter- 

inistic AMCS generated by the DP-based methodology is not ro- 

ust to uncertainty. Without looking into the future cost, the my- 

pic policy is too greedy in A- and C-check scheduling. Although 

hese two approaches achieve higher aircraft utilization for both 

heck types, the airline has to face extra costs to create additional 

aintenance capacity if any of the two approaches is executed. 

Conversely, the thrifty policy does not need to create any ex- 

ra maintenance slot for all 100 test sample paths. The thrifty pol- 

cy is too conservative, and the associated mean average FH for C- 

heck is 6.7% lower than the C-check schedule of the airline. For 

-check, the associated mean average FH is 17.5% lower. There is a 

rade-off between aircraft utilization and the number of extra slots. 

he thrifty policy is more robust to uncertainty, yet at the cost of 

chieving a lower aircraft utilization. 

The lookahead ADP methodology with only deterministic fore- 

asts, ADP-D, leads to higher mean average aircraft utilization and 

ewer extra maintenance slots for both check types and 100 test 

ample paths, compared with the C-check schedule and A-check 

stimation of the airline. It outperforms the optimal schedule gen- 

rated by the DP-based methodology and the myopic and thrifty 

olicies. 

The proposed lookahead ADP methodology that combines de- 

erministic and stochastic forecasts, ADP-DS, creates the second 
827 
east mean extra slots (after the myopic ), 0.8 extra slots on average 

or A-check, and 5.7 for C-check. The associated mean average FH 

or A-check/C-check is 8.5 and 191.6 higher, respectively, compared 

ith the C-check schedule and A-check estimation of the airline. 

esides, the differences in mean average FH between ADP-D and 

DP-DS is only 0.34%/0.16% for A-/C-check, meaning that these two 

pproaches are equivalently promising in terms of aircraft utiliza- 

ion. Even so, due to the stochastic forecasts on extra A-check slots, 

he ADP-DS leads to 50% fewer A-checks and 12.3% fewer C-checks 

han the ADP-D. 

Fig. 3 shows the distributions of total extra slots under the ADP- 

 and ADP-DS for the 100 test runs. We can observe that ADP-DS 

reates no more than 15 additional slots for all the test runs, and 

n 86% of test runs, it uses less than ten extra slots. For ADP-D, the

irline may need to create more than 20 additional slots to cope 

ith the uncertainty, and the chance of creating more than ten 

xtra slots is higher than 33%. Therefore, according to the results 

f 100 test sample paths, ADP-DS outperforms ADP-D in fewer ad- 

itional slots for both check types and almost the same average 

ircraft utilization. Furthermore, Table 9 shows that a Student’s t- 

est rejects the null hypothesis that the two methods have similar 

erformance, at a 5% significance level. That is, the outcomes from 

he two methods do have mean values that significantly differ from 

ach other. 

.5. Outcomes for the test case 2019–2022 

As mentioned in the previous test case, an ideal schedule/S- 

MCS policy should result s in better KPIs, i.e., higher average FH 

nd fewer total checks for both check types than the maintenance 

heck schedule of the airline while creating fewer extra mainte- 

ance slots. Table 10 shows that the KPIs of the second test case 

ollow a similar trend to the first test case. The myopic policy re- 

ults in the highest aircraft utilization, yet creating the most extra 

lots for both check types. The thrifty policy leads to the lowest 

ircraft utilization and the least extra slots as expected. In the sec- 

nd test case, the optimal schedule from deterministic AMCS ob- 

ained from the DP-based methods becomes more robust to un- 
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Fig. 3. Distributions of total extra slots under two methodologies for the test case 2017–2020, under 100 test sample paths: (a) Distribution of total extra slots under the 

ADP-D (lookahead ADP using only deterministic forecasts); (b) Distribution of total extra slots under the ADP-DS (lookahead ADP using both deterministic and stochastic 

forecasts). 

Table 9 

Student’s t -test on the results from ADP-D and ADP-DS for the test case 2017–2020. 

t -value p -value Degrees of Freedom Pooled Estimate of the Population Standard Deviation 

3.0477 0.0030 99 5.0859 

Table 10 

Comparison of KPIs for March 20 th 2019–December 31 st 2022 for 100 test sample paths. The numbers labeled with “∗” are estimated 

or extrapolated according to the historical maintenance data of the airline. ADP-D represents the lookahead ADP with only deterministic 

forecasts. ADP-DS represents the lookahead ADP with both deterministic and stochastic forecasts. 

KPI 2019–2022 Airline Stochastic Results (100 test runs) 

(1383 days) Estimation DP-based Myopic Thrifty ADP-D ADP-DS 

C-check Mean Average FH 6700 . 0 ∗ 6920.9 7469.4 6361.7 6794.1 6808.6 

Mean Extra Slots ≥ 20 . 0 ∗ 20.9 426.8 0.0 4.0 4.0 

Mean Total Checks 100 ∗ 90.0 88 94.0 90.8 90.6 

A-check Mean Average FH 695 . 0 ∗ 708.8 744.2 614.1 699.3 697.9 

Mean Extra Slots ≥ 20 . 0 ∗ 19.4 517.5 0.9 12.0 3.0 

Mean Total Checks 1030 ∗ 1003.0 959.6 1151.8 1017.9 1019.9 

Mean Total Extra Slots ≥ 40 . 0 ∗ 40.3 944.3 0.9 16.0 7.0 

95% Confidence Interval —– [ 38 . 98 , 41 . 62 ] [ 940 . 15 , 948 . 51 ] [ 0 . 72 , 1 . 08 ] [ 15 . 02 , 16 . 98 ] [ 6 . 19 , 7 . 81 ] 

Computation Time/day [s] —– 0.02 0.09 0.05 0.35 2.63 
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ertainty than the first test case, and it creates only 19.4/20.9 ex- 

ra A-/C-check slots for the period of 2019–2022, compared with 

he 20.4/90.4 extra A-/C-check slots used in 2017–2020. Besides, its 

ssociated mean average FH is the second-highest for both check 

ype, only after the myopic policy. 

Both ADP-D and ADP-DS have better performance than the es- 

imation of the airline, in terms of higher mean average FH, fewer 

ean total checks and mean extra slots for both check types. In 

act, the advantage of ADP-DS becomes more notable in this test 

ase. For C-check scheduling and 100 test sample paths, ADP- 

S even outperforms ADP-D in almost all aspects. For A-check 

cheduling, the extra slots created in the ADP-DS is 75% fewer than 

n ADP-D. Both methods take just seconds to produce the plan for 

ne day and less than two minutes to produce the schedule for the 

ext month. However, the ADP-DS computation time is 7.5 times as 

DP-D due to the Monte Carlo simulations to estimate the cost of 

erforming an A-check action. Looking at the distribution of extra 

t

828 
lots in Fig. 4 , we are aware of the fact that ADP-DS uses fewer

han 18 slots in all 100 test sample paths, and in 75% of the test

uns, there are less than ten total extra slots. But for ADP-D, the 

irline may need more than 30 additional slots to cope with un- 

ertainty, and the chance of creating more than ten extra slots is 

ikely to be higher than 90%. Therefore, in the second test case, the 

DP-DS is still the best option for the stochastic AMCS. Besides, a 

tudent’s t -test also confirms that the results from ADP-D and ADP 

re significantly different, as shown in Table 11 . 

.6. Discussion 

In the two test cases, we see that the optimal maintenance 

heck schedule from the long-term deterministic AMCS model will 

ikely fail. That is, in the long term, the airline would have to cre- 

te many additional maintenance slots to cope with the uncertain- 

ies from aircraft utilization and maintenance check elapsed time. 
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Fig. 4. Distributions of total extra slots under two methodologies for the test case 2019–2022, under 100 test sample paths: (a) Distribution of total extra slots under the 

ADP-D (lookahead ADP using only deterministic forecasts); (b) Distribution of total extra slots under the ADP-DS (lookahead ADP using both deterministic and stochastic 

forecasts). 

Table 11 

Student’s t -test on the results from ADP-D and ADP-DS for the test case 2019–2022. 

t -value p -value Degrees of Freedom Pooled Estimate of the Population Standard Deviation 

13.1804 1.6381 ×10 −23 99 6.8283 
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n the other hand, since it takes only 2–3 seconds for the looka- 

ead ADP methodology to determine the daily optimal mainte- 

ance checks, whenever there are changes in maintenance tasks 

r activities, the airline can use the lookahead ADP methodol- 

gy to update the maintenance check schedule promptly. More- 

ver, for each test case, more than 96% of the test runs have the 

ame schedule in the first week, meaning that it is possible for the 

aintenance planners to update the maintenance check schedule 

eekly. 

Since there is no data about the cost of creating an additional 

-/C-check slot, it is impossible to evaluate to what extent re- 

ucing aircraft utilization and having maintenance checks earlier 

s better than creating extra maintenance slots. In the case study, 

e assumed that creating an additional maintenance slot is costly, 

ore expensive than the cost of anticipating the maintenance 

heck a few flight hours before the end of the interval. Neverthe- 

ess, regardless of the real trade-off considered by the user, the 

ookahead ADP methodology using both deterministic and stochas- 

ic forecasts outperforms the myopic policy, thrifty policy, DP-based 

ethodology described in Deng et al. (2020) and the lookahead 

DP methodology itself using only deterministic forecasts. 

.7. Sensitivity analysis for 2019–2022 

This subsection investigates the impact of model parameters of 

he lookahead ADP methodology on the results of the S-AMCS, for 

he test case Mar 20 th 2019–Dec 31 st 2022. We are in particular 

nterested in the following aspects: 

Q1 Reducing the number of sample paths for Monte Carlo sim- 

ulations makes the lookahead ADP methodology faster. How 

will that affect the results (KPIs)? 

Q2 How much could we improve the KPIs if we increase the 

number of sample paths for Monte Carlo simulations in the 

lookahead ADP methodology? 
829 
Q3 If we vary the cost of generating an extra maintenance slot 

in the lookahead ADP methodology, how will that affect the 

solutions (KPIs)? 

To investigate Q.1–Q.3, we set up the test scenarios as presented 

n Table 12 . The baseline scenario is the ADP-DS from Table 10 . For

.1, if we can still achieve the KPIs within 5% from the ones in 

he baseline scenario after reducing the number of sample paths 

or the Monte Carlo simulation, e.g., to 20, it will make the looka- 

ead ADP methodology at least twice faster. In that case, we would 

uggest using n sample = 20 for the lookahead ADP methodology. For 

.2, if we increase the number of sample paths for the Monte 

arlo simulation, e.g., from 50 to 80, but achieve no more than 

% improvements in the reduction of extra slots, we suggest us- 

ng n sample = 50 . For Q.3, we want to know how many more ex-

ra maintenance slots will be created if we reduce the penalty of 

enerating one additional maintenance slot, e.g., from λ = 10 5 to 

= 100 . 

We generate 100 test sample paths for each scenario and ap- 

ly the lookahead ADP on the S-AMCS. The results are presented 

n Table 13 . For Scenario 1 , we observe that reducing the number

f random sample paths from 50 to 20 in the Monte Carlo simula- 

ion increases the mean total extra slots by 1.1 (0.9 for C-check and 

.2 for A-check). At the same time, there is only a minor improve- 

ent in aircraft utilization. It also means that the airline needs to 

reate extra slots more frequently than the baseline scenario. Com- 

aring Fig. 5 a and 5 b, we can see the total extra slots scatter

etween 2 to 35 in Scenario 1 , one occurrence for 24, one for 26,

ne for 33 and one for 35 extra slots. It indicates that there would 

e a 4% chance that the airline may need more than 24 extra slots 

hen we use only 20 sample paths in the Monte Carlo simula- 

ion. Since the total number extra slots increase by 15.7% com- 

ared with Scenario 0 , we would not suggest reducing the number 

f sample paths for the Monte Carlo simulation from n sample = 50 

o n sample = 20 . 
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Table 12 

Test scenarios for sensitivity analysis. 

Test Scenario Description 

Scenario 0 Baseline scenario, as pre-computed in Section 5.5 . 

Scenario 1 Conditions from Scenario 0 and n sample = 20 (240 in total for 12 actions) 

Scenario 2 Conditions from Scenario 0 and n sample = 80 (960 in total for 12 actions) 

Scenario 3 Conditions from Scenario 0 and λ = 100 

Table 13 

Sensitivity analysis for the test case March 20 th 2019–December 31 st 2022 using 100 random sample 

paths. For each sample path, we use the lookahead ADP methodology to make AMCS decisions for 

the entire planning horizon. 

KPI of 100 Runs (2019–2022) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

C-check Mean Average FH 6808.6 6819.5 6798.0 6820.6 

Mean Extra Slot 4.0 4.9 3.8 5.4 

Mean Total Checks 90.6 90.7 90.8 90.4 

A-check Mean Average FH 697.9 697.9 697.4 704.5 

Mean Extra Slot 3.0 3.2 2.9 15.4 

Mean Total Checks 1019.9 1020.1 1020.6 1010.0 

Mean Total Extra Slots 7.0 8.1 6.7 20.8 

95% Confidence Interval [ 6 . 19 , 7 . 81 ] [ 6 . 90 , 9 . 30 ] [ 5 . 88 , 7 . 52 ] [ 19 . 45 , 22 . 15 ] 

Mean Merged A- in C-Check 17.6 16.3 17.6 13.5 

Computation Time/day [s] 2.63 1.21 4.09 2.63 

Fig. 5. Distributions of total extra slots under different parameters for the lookahead ADP methodology: (a) Distribution of total extra slots of baseline scenario; (b) Distri- 

bution of total extra slots when n sample = 20 ; (c) Distribution of total extra slots when n sample = 80 ; (d) Distribution of total extra slots when λ = 100 . 
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In Scenario 2 , increasing the number of sample paths for the 

onte Carlo simulation from n sample = 50 to n sample = 80 reduces 

he number of extra slots by 4.2% compared with Scenario 0 . Al- 

hough Fig. 5 c shows that in 76% of the 100 test cases, n sample = 80

esults in fewer than 10 extra maintenance slots, only 1% higher 

han Scenario 0 , the improvement is not significant since the com- 

utation time increases by more than 50%. Hence, we would not 

uggest increasing the number of sample paths for the Monte Carlo 

imulation from n sample = 50 to n sample = 80 . 

The KPIs of Scenario 3 indicate that decreasing the cost of cre- 

ting an extra maintenance slot from 10 5 FH to 100 FH increases 

he mean total extra slots by 197%, from 7.0 to 20.8 (details can be

een in Fig. 5 a and 5 c). The A-check contributes to most of the

xtra slots. The approximation of cost function, V 
(1) 
t ( s t ) in (38) , re- 

uires that as long as the lookahead ADP methodology predicts an 

xtra C-check slot needed in [ t, t + t h ] and there are sufficient C- 

heck slots on the day t , it will choose to perform a C-check. Since

here is at most one C-check on the day t , due to a minimum of

 days between the start dates of two C-checks, changing the cost 

f creating an extra slot λ only has a minor impact on C-check 

cheduling. On the other hand, since we can perform multiple A- 

hecks on a day, decreasing λ will inevitably increase the number 

f extra A-check slots (see Fig. 5 d). Consequently, there is more 

exibility in performing aircraft A-check because of the creation of 

xtra A-check slots, and the number of merged A- in C-checks is 

educed by 23.3%. 

. Conclusion 

This paper proposes a lookahead approximate dynamic pro- 

ramming (ADP) methodology to address the stochastic aircraft 

aintenance check scheduling (S-AMCS), considering the uncer- 

ainty of aircraft daily utilization and maintenance elapsed time. 

he lookahead ADP methodology consists of a dynamic program- 

ing framework and a hybrid lookahead policy with deterministic 

nd stochastic forecasts. The lookahead ADP methodology can pro- 

ide daily optimal maintenance check decisions and minimize the 

otal unused FH between checks. It increases aircraft availability 

nd reduces the frequency of creating extra maintenance slots in 

he long term. Eventually, it leads to a significant saving in main- 

enance operation cost and possibly additional revenue from com- 

ercial operation. 

The lookahead ADP methodology uses deterministic forecasts 

rst to determine the optimal aircraft C- and D-check actions. 

ased on the optimal C- and D-check actions, it uses stochastic 

orecasts to find the best A- and B-check actions. The deterministic 

orecasts are the estimations of costs of creating extra maintenance 

lots using the mean aircraft daily utilization and mean mainte- 

ance check elapsed time. The stochastic forecasts are the estima- 

ions of the costs of generating additional maintenance slots using 

onte Carlo simulations. The lookahead ADP methodology deter- 

ines the daily optimal maintenance check decisions in a matter 

f seconds, which is suitable for practical day-to-day implementa- 

ion. 

To evaluate the proposed lookahead ADP methodology, we 

resent two case studies using the historical maintenance data of 

n A320 family fleet from a European airline. On the one hand, in 

oth test cases, we see how that, in the long term, the optimal 

- and C-check schedules from the deterministic AMCS create ad- 

itional maintenance slots to cope with the uncertainty from air- 

raft utilization and maintenance elapsed time. On the other hand, 

omparing the KPIs from the maintenance schedule/estimation of 

he airline and the KPIs from the lookahead ADP methodology, 

e can infer that the lookahead ADP methodology reduces the 

otal number of letter checks and the number of extra mainte- 

ance slots. The reduction of maintenance checks and additional 
831 
aintenance slots, in the long term, leads to a significant saving 

n aircraft maintenance costs and generates additional revenue for 

he airline. The maintenance planners can use the lookahead ADP 

ethodology to update the maintenance check decisions imme- 

iately whenever changes occur in the maintenance activities or 

asks. 

This original and novel study is the first to propose lookahead 

DP to make optimal maintenance check decisions daily for the 

-AMCS. The lookahead ADP methodology can help maintenance 

lanners react to changes in maintenance activities or tasks faster 

nd promptly update the maintenance check decisions. Mainte- 

ance planners can even use the proposed methodology to up- 

ate short-term schedules (e.g., for the following three days or one 

eek) in 20 seconds once new information is obtained, keeping 

he letter check schedule optimized for the short term without 

ompromising the long-term feasibility. Besides, it also opens the 

oor for future research on related topics, such as incorporating 

ondition-based maintenance by considering the health prognos- 

ics and diagnostics and defining the tasks to be performed within 

ach maintenance check. In this case, we plan the maintenance 

asks for each maintenance check according to real-time monitor- 

ng rather than fixed intervals. Although this would significantly 

ncrease the model complexity, it would extend the S-AMCS to the 

ask level, producing an optimally integrated maintenance check 

nd task execution plan. 
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ppendix A. Nomenclature 

Indexes: 

h k Index for a hangar of type k check 

i Aircraft Index 

k Index for maintenance check type 

t Index of calendar day 

Parameters: 

d k Minimum interval between the start dates of two type k checks. 

I i 
k -DY 

Interval of type k check of aircraft i in terms of calendar days (DY) 

I i 
k -FH 

Interval of type k check of aircraft i in terms of flight hours (FH) 

I i 
k -FC 

Interval of type k check of aircraft i in terms of flight cycles (FC) 

K Collection of maintenance check type, 

K = { A-check , B-check , C-check , D-check } 
n act The number of actions on day t

n sample The number of sample paths generated by Monte Carlo sampling 

R k 
lb 

Lower-bound of expected remaining utilization for type k check 

t l A time period for approximation of future cost for A-/B-check 

t h A time period for approximation of future cost for C-/D-check 

T Final day in planning horizon 

t 0 First day in planning horizon 

γ Discount factor 

λ Daily penalty for having an additional slot for type k check 

ξ A large number to prevent the waste of an available maintenance 

slot 

Exogenous Variables: 

fc t,i Average daily flight cycles usage for aircraft i at day t

�fc 
ω 
t,i Extra daily FC usage for aircraft i at day t , follows certain 

distribution 

( continued on next page ) 

http://www.airmes-project.eu
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fh t,i Average daily flight hours usage for aircraft i at day t

�fh 
ω 
t,i Extra daily FH usage for aircraft i at day t , follows certain 

distribution 

L i (y k 
t,i 

) Mean estimated elapsed time of next check with label y k 
t,i 

of 

aircraft i 

�L ω 
i 

(
y k 

t,i 

)
Extra time needed for the maintenance check labeled as y k 

t,i 
, 

follows certain distribution 

W The set of all sample paths 

ω t New information that arrives on day t , 

ω t = 

{
�L ω 

i 

(
y k 

t−1 ,i 

)
, �fh 

ω 
t,i , �fc 

ω 
t,i 

}
Decision Variables: 

x k t A set of actions with respect to type k check on day t , 

x k t = 

{ {
χ k 

t,i 

}N t 

i =1 

} 
x t A set of actions on day t , x t = 

{ {
χ k 

t,i 

}N t 

i =1 

∣∣∣∑ N t 
i =1 

χ k 
t,i 

≤ M 

k 
t 

} 
k ∈ K 

x ∗t The optimal action among { x t } 
X t ( s t ) The set of actions of day t from s t , X t = { X π ( s t ) } 
X π (s t ) Scheduling policy function, X π (s t ) = 

{
X π

k 

(
s k t 

)}
k ∈ K 

χ k 
t,i 

Binary variable to indicate if aircraft i starts type k check on t

Immediate Reward: 

C t ( s t , x t ) Contribution of choosing action x t on s t 
State Variables: 

A t A t = { a t, 1 , . . . , a t,N t } 
ˆ A t Post-decision attributes before new information arrives 

A k t A k t = 

{
a k t, 1 , . . . , a t,N t 

}
a t,i The attributes of aircraft i in the beginning of day t

a k 
t,i 

The attributes of aircraft i in the beginning of day t for type k 

check 

DY k t,i Total DY of aircraft i in the beginning of day t for type k check 

FC k t,i Cumulative FC of aircraft i at t since last type k check 

FH 

k 
t,i Cumulative FH of aircraft i at t for type k check 

M t M t = 

{
M 

k 
t 

∣∣k ∈ K }
ˆ M t ˆ M t = 

{
ˆ M 

k 
t 

∣∣k ∈ K }
M 

k 
t Hangar capacity of type k check, M 

k 
t = 

∑ 

h k 
M 

k 
t,h k 

ˆ M 

k 
t 

ˆ M 

k 
t = M 

k 
t −

∑ N t 
i =1 

ˆ δk 
t,i 

M 

k 
t,h k 

Capacity of a hangar h k specifically for type k check on day t

N t Total number of aircraft on day t
ˆ N t Post-decision fleet size before new information arrives, ˆ N t = N t 
R k 

t,i 
Remaining utilization of aircraft i before the next type k check 

s t Pre-decision state variable, s t = { A t , M t , N t } 
ˆ s t Post-decision state variable before new information arrives 

s k t State variable with respect to type k check, s k t = 

{
A k t , M 

k 
t 

}
y k 

t,i 
Next maintenance label for type k check of aircraft i on day t

z k 
t,i 

The actual end date of type k check of aircraft i computed on day t

ˆ z k 
t,i 

The estimated end date of type k check of aircraft i computed on 

day t

δk 
t,i 

Binary variable to indicate if aircraft i is undergoing type k check 

on day t

ηk 
t,i 

Binary variable to indicate if aircraft i needs an extra slot of type k 

check on day t

� � ∈ { FH , FC } 
�k 

t,i 
�k 

t,i 
∈ { FH 

k 
t,i , FC k t,i } 

ψ 

k 
t,i 

ψ 

k 
t,i 

∈ { fh k t,i , fc 
k 
t,i } 

Others: 

S X ( s t , x t ) Transition function from s t to ˆ s t , ˆ s t = S X ( s t , x t ) before arrival of 

new information 

S W 
(

ˆ s t , ω t 

)
Transition function from ˆ s t to s t+1 , s t+1 = S W 

(
ˆ s t , ω t 

)
when the new 

information is known 

V t (s t ) The value of being in a state s t 
π Scheduling policy 
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