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Abstract

In today’s automotive applications, radar is widely used to estimate the target position and velocity with
respect to the radar position. Estimating the position of the target in terms of range and velocity is fairly
advanced and accurate. However, resolving two closely spaced targets in the azimuth domain which have the
same range and relative radial velocity as seen from the radar is still a very challenging problem that needs to
be addressed. The azimuth resolution that can be achieved by a radar sensor is directly proportional to the
number of antenna elements in the radar, that is increasing the number of elements improves the resolution
capability. But increasing the aperture of the single radar mounted on the automobile is not desirable as it is
cost ineffective and not easy to fit in the design of the automobile. Thus a study is performed on combining
the data from multiple radar sensors which are distributed over the fascia of the car along the horizontal
axis. In this thesis, methods to achieve higher angular resolution in azimuth using multiple radar sensors is
presented.

The system design and geometry for a distributed system consisting of FMCW radar sub-systems is stud-
ied along with the signal model for the same. The interpretation of near field and far field region around the
radar sensors is presented. In this thesis, the Range-Doppler processing of the data is performed first and
the snapshot related to the range and Doppler bin where the target is detected is extracted to perform the
Direction of Arrival (DOA) estimation. This is done as it is computationally efficient and the DOA estimation
can be performed on every snapshot and hence the changes in the target position can be detected faster. The
signal model for DOA estimation using single sensor and distributed sensors is provided for single snapshot
case. Sparse signal processing technique is chosen to estimate the DOA in this thesis as it has better perfor-
mance and certain advantages in DOA estimation of target using single snapshot compared to other methods
like Beam forming or MUSIC. The theory behind compressive sensing technique is discussed along with the
concept of block sparsity to fuse the data from multiple sensors. A new algorithm called Block Focal Under
determined System Solver (FOCUSS) is proposed to incoherently combine the data from multiple sensors in
order to achieve a better performance. This method benefits from the spatial diversity gain by combining the
data from multiple sensors. However, the resolution improvement achieved by the incoherent combining of
the data from multiple sensors is still limited by the largest aperture of the sub-system used and hence a way
to coherently combine the data from multiple sensors is presented. Coherent FOCUSS algorithm is proposed
which combines the data from multiple sensors coherently and the virtual aperture of such combining is
given by the separation between the sensors and hence it can achieve very high resolution in azimuth. Such
a method has some drawbacks when the target is non-isotropic or the distance between the sensors is too
large, which is also discussed in this thesis. A method called Fusion FOCUSS is introduced to overcome some
of the drawbacks of coherent processing, whose resolution capability is in between that of Block FOCUSS and
Coherent FOCUSS.

Simulations are performed to evaluate the performance of the proposed algorithms and for comparison
purpose the results obtained from Block Orthogonal Matching Pursuit (BOMP) algorithm is provided. Monte
Carlo runs are performed for different scenarios consisting of varying SNR, target phase and baseline of the
distributed system. The performance of the algorithms with varying SNR values is presented. The penalty
incurred in performing coherent processing on a non-isotropic target is discussed. The problem of off-grid
targets is studied and a possible solution for the same is implemented as discussed in literature. Results
obtained by performing an experimental evaluation in the anechoic chamber to study the performance of
Block FOCUSS is presented along with the explanation of results. We also propose some ideas for future work
to further investigate the problem.
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1
Introduction

In this chapter, an introduction to the Direction of Arrival (DOA) estimation problem is provided along with
the current state of art study. The motivation to solve the problem of DOA estimation in automotive radar with
the use of distributed system is given in Section 1.1. The research objective of the thesis which is to achieve
high resolution DOA estimation along with the novelty in this thesis is given briefly in Section 1.2. Section
1.3 discusses the current state of art in distributed radar and discusses the gaps in the existing methods. An
outline of the thesis structure is presented in Section 1.4. Section 1.5 concludes the Chapter.

1.1. Motivation
In the last decade the interest in safety of drivers, passengers, pedestrians and other road users has increased
significantly with the growth in automotive industry and economy of the nations. Radars play an important
role in this as they can be used for detection of pedestrians, cyclists, other automobiles and in estimating
other road objects. Radar is not sensitive to lighting and weather conditions and is used to measure the line
of sight distance, radial velocity and angular position of the remote objects. Radar was initially used in appli-
cations like distance warning, crash avoidance and has now evolved into being used in multiple applications
like automatic emergency brake, blind spot detection, adaptive cruise control or lane change assistant [1].
Nowadays, automotive radars operate at a frequency range of 24 GHz or 76 - 81 GHz and a research on higher
frequency bands over 100 GHz is ongoing [2]. Also typically a bandwidth ranging from 100 MHz to 1 GHz
is used, based on the target application. Radar in automotive application is mainly used to estimate the dis-
tance to the target, the radial velocity of the target relative to the movement of the automobile and the angular
location that the target has relative to the car. With advances in signal processing techniques and improve-
ment in hardware used in radar, the estimation of distance or range of the target and the velocity estimation
has been improved over the years. However, resolving targets in the angular domain, called Direction of Ar-
rival (DOA) estimation, is still a challenging task because it requires spatial sampling of the reflected signals.
Though there have been plenty of study and literature available in this regard, there is still a lot of scope to
further improve on the DOA estimation of the targets in a cost-effective way.

The angular resolution that can be achieved is inversely proportional to the antenna array size of the radar
used. One of the ways to achieve higher resolution capability is to simply increase the array size in the radar,
but this is cost ineffective and not easy to fit in the design of the automobile. This type of design is also not
desirable by automobile manufacturers as placing a single large radar unit on the fascia of the automobile
might impact the aesthetics of the automobile. Hence, in this thesis we look for a way to combine the data
from multiple smaller radar units that are spread out on the fascia of a car. Having multiple radar units that
are distributed across the fascia will benefit from the spatial diversity gain as discussed in [3]. Distribution of
the radar sensors on the car fascia can increase the resolution as it provides a larger virtual aperture. However,
combining the data from multiple sensors can be challenging in different ways. When an extended target like
a car is present in the near field of the radar, it can appear as a non-isotropic target to the system under con-
sideration. The Radar Cross Section (RCS) observed by individual sensors can be different for such extended
targets and the target will be perceived incoherently by the radar sensors [3]. In this thesis a study to increase
the angular resolution of the DOA estimation by developing radar algorithms to combine data from multiple
such radar systems will be performed.

1



2 1. Introduction

1.2. Research objective and Novelty
High resolution in DOA estimation can be achieved by having an antenna array with large aperture. But,
constructing a very large array has practical limitations in cost and size. Hence, smaller radar sub-systems
can be used instead and the data from these sub-systems can be combined to form a large virtual aperture.
The objective of the thesis is to improve angular resolution of an automotive radar system by combining the
data from multiple radar sub-systems that are distributed on the fascia of the automobile. Combining data
from multiple radar sub-systems is studied and presented in literature in the automotive radar applications
[4]. The current state of art employs a single radar sensor to perform parameter estimations on targets in the
surrounding area of the automobile. Multi-static mode of operation of the radar using multiple radar sensors
is a topic that is relatively new in automotive radar application [4] and needs further exploration. There have
been some studies with incoherent combining of the data from multiple radar systems [5], but they do not
consider the isotropic property of target in choosing the best processing technique. For a distributed system,
due to its larger spatial extension, it has a higher probability of observing a target in the near field of the
system. Especially, nearby targets will be seen under a different angle by the individual radar sensors and
therefore a different RCS might be experienced. Targets that are observed isotropically need to be processed
differently than those that are experienced in a non-isotropical way. In this thesis we propose a method for
coherent processing of the target as well as incoherent processing. Since, one does not a-priori know whether
the target is isotropic or non-isotropic in the given Field of View (FOV), both processing techniques will be
impacted if one makes a wrong assumption. The quantification of this impact is a novel topic.

Exploring algorithms that exploit sparsity in the signal model to solve the DOA estimation problem using
multi-static signals is also an under explored domain. The approach of carrying out Range-Doppler pro-
cessing on received radar data, quantizes targets in the range and Doppler domain. After Range-Doppler
processing, DOA estimation is carried on these Range-Doppler bins that contain sufficient energy. This is the
method commonly used in automotive radar because of its low-complexity nature. For this reason the same
processing steps are followed, and it is beyond the scope of this thesis to depart from this mode of operation.
Because of latency, it is desirable for the automotive use case to carry out DOA estimation using data collected
from a single system cycle (single snapshot DOA estimation). In this thesis estimating DOA of targets using
compressive sensing (CS) algorithms for single snapshot are provided. A new block sparsity CS algorithm is
proposed which is an extension of Focal Under determined System Solver (FOCUSS) algorithm, called the
Block FOCUSS. Block FOCUSS performs an incoherent combination of the data from multiple sensors using
block sparsity. We can further benefit from the entire virtual aperture of the distributed system by coherently
fusing the data from multiple sensors. Since we operate at millimetre wavelengths, even a small displace-
ment in the target position with respect to a sensor can lead to a large change in phase of the waveform that
is perceived by the sensor. This makes it difficult to combine the signals coherently. In this thesis a new al-
gorithm called Coherent FOCUSS is proposed for combining the data coherently from multiple sensors by
compensating for the phase difference that occurs due to the path length difference of the signal towards
the sensors. Further, an algorithm to fuse the coherent and incoherent processing of data is proposed using
modified FOCUSS called Fusion FOCUSS. As per our knowledge this is the first time the Block FOCUSS (B
FOCUSS) and Fusion FOCUSS, variants of FOCUSS algorithm is being discussed. Also it is the first time co-
herent combining of data from multiple radar sub-systems to achieve higher angular resolution is discussed
using the phase compensation method.

1.3. Literature review
In this section, the current state of art of the problem of DOA estimation using radar is discussed along with
its application in distributed radars. The literature study is divided into two main parts. In the first part a
study performed on the different methods of DOA estimation is presented. In the second part, the literature
studied on DOA estimation using distributed radars is discussed.

1.3.1. DOA estimation algorithms
In this subsection, a literature overview for single radar DOA estimation algorithms is provided. The three
methods that are well known are the non-parametric methods (beam forming), parametric methods (MUSIC,
ESPRIT) based estimation and the sparse signal processing methods. The traditional beam forming method
is well studied and is also used widely in communication and sensing to estimate the DOA of the targets
[6]. In this method the resolution capability is limited by the single target spectral main-lobe width, which is
proportional to the aperture of the array. In order to achieve a resolution of 2◦ a sensor with large aperture
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of ∼60 times the wavelength is necessary. However to use this method it is not necessary to have a prior
knowledge on the number of sources present in the scene, but it is difficult to determine the number of
targets present from the beam forming spectrum.

Next set of methods are based on parameter estimation or also called as the sub-space methods. In these
methods the signal sub-space and the noise sub-space are separated to estimate the signal parameters and
thus correct estimation of number of sources present in the signal is important. If the number of sources
assumed or estimated is wrong then the results can suffer from inaccuracy [7]. Two main algorithms in this
method are MUSIC and ESPRIT. The MUSIC algorithm is based on analyzing the covariance matrix of the
received signals and the signal and noise sub-space are separated to estimate the signal [7]. While using
MUSIC, if the rank of the covariance matrix is not sufficient then separating signal sub-space from noise sub-
space is not possible, thus there needs to be pre-processing steps that should be performed to improve the
rank of the covariance matrix. Methods like Forward Backward spatial smoothing is proposed in literature
to improve the rank of the covariance matrix [8].ESPRIT estimates the signal parameters via the rotational
invariance techniques, it exploits the invariant structure of the stacked smoothed matrix in spatial domain to
estimate the DOA [9]. In this thesis we are interested in estimating the DOA using a single snapshot. These
methods usually require more than one snapshot in order to achieve optimal performance. There is literature
that proposes estimating the DOA by MUSIC using single snapshot [10], but it is not straightforward and the
performance is not optimal. Instead of sequential Range-Doppler DOA processing, one can also try to jointly
estimate 2 or 3 parameters. The joint estimation of range and DOA to achieve super resolution is proposed
in [11] which combines Discrete Fourier Transform with MUSIC algorithm for the Ultra Wide band MIMO
automotive radar angle-range imaging. But this requires the use of multiple snapshots.

Sparsity based algorithms are comparatively new in the field of automotive radar, but literature is widely
available on different algorithms to estimate the DOA using this technique. These are sparsity based algo-
rithms which estimate the sparse signal from an under determined system of equations [12]. An advantage
of this method is that prior knowledge of number of targets is not necessary. Sparse signal processing al-
gorithms can be broadly classified into two main categories with grid based algorithms and grid less based
algorithms [13]. Some of the grid based algorithms are BPDN, MP, OMP and FOCUSS, while there are also
grid-less algorithms that are present [13]. Another advantage of sparsity based algorithms is the performance
of these algorithms in estimating the DOA using a single snapshot is good [14] and has no additional steps
(like fixing the rank of covariance matrix for MUSIC). The algorithms discussed in this Section are all super
resolution algorithms. Considering these advantages, in this thesis we employ sparsity based algorithms to
solve the DOA estimation problem. Furthermore, there has been a lot of study performed on the array design
itself, where sparse arrays are employed [15]. Estimating the DOA of targets in automotive radar application
through CS algorithm is explained in detail in [12].

1.3.2. DOA estimation with a distributed system
Using a distributed system to perform the DOA estimation provides lot of advantages. In [3], it is shown that
with non-coherent processing, a target’s RCS spatial variations can be exploited to obtain a diversity gain
for target detection and for estimation of various parameters, such as angle of arrival and Doppler. Signals
received by the system can be processed to yield high resolution estimates of angle of arrivals of radar targets
by combining the data from multiple sensors. Multiple radars suitably placed can also be operated in multi-
static mode of operation which provides more data and thus improves the estimation accuracy of DOA. In [3]
the RCS of the complex target and the signal model is provided along with the relation between the correlation
of the signal and the distance between the sensors and also to the distance of the target from the sensors.
It states that complex targets can be modelled using a large number of scatterers and have a diverse RCS
patterns which varies as a function of angle. This angular variation needs to be accounted for in the combined
processing of data from multiple sensors.

Estimating range, velocity and DOA of targets using CS in distributed radar units have been discussed
in literature in multiple applications including passive wireless LAN radar network [16], ground surveillance
radar network [17] and Multiple Input Multiple Output (MIMO) radar with widely separated antennas [18].
There are also other algorithms that are employed for distributed radar networks separated by large distances.
One such system is LOFAR which combines the data from multiple radio telescopes in a central processing
system by collecting all the data from telescopes that are spread over large distances [19]. But these methods
require precise synchronization and also a robust central processing system, also as the sensors themselves
are fixed in the ground the challenges faced by these systems are different than a sensor mounted on a moving
car. However, there have been research that proves that synchronization between radar sensors spread out on
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the automobile is feasible as shown in [20]. There are also studies performed where the radars are placed on
a ship, to provide Multi-function Array Radar (MFAR) antenna, that provides high-resolution high-speed data
collection simultaneously [21]. This system consists of multiple receivers spread out on a large ship while a
transceiver system is employed to transmit the signals. Target localization performed by non coherent com-
bining of data from multiple sensors which use single transmitter and multiple receivers that are distributed
is discussed in [22]. In this publication the block sparsity method is used to combine the data from multiple
sensors. In [23] a coherent imaging method is provided from distributed radar sensors which models the time
uncertainty as an unknown time delay in the optimization problem. A CS algorithm called FISTA is employed
to solve this optimization problem, however in this paper they do not consider the non-isotropic property of
the targets. They always consider that the targets are in the far field region and the sensors see the same RCS
of the target.

In [24], a method to perform 2D MUSIC to estimate the position of the target is presented. This proposes
a method to estimate the Range-DOA using MUSIC by combining the data from a distributed system by com-
bining the covariance matrix from multiple sub-systems. This is an incoherent fusion of data to perform joint
DOA estimation. Along with the use of MUSIC the thesis also provides a CS based algorithm called C-SALSA
to estimate the range and DOA of the target. However the joint estimation of range and DOA requires mul-
tiple snapshots, which loses the advantage of performing single snapshot DOA estimation. Also, performing
joint Range-DOA estimation requires higher memory, but in single snapshot DOA estimation only the de-
tected targets from Range-Doppler processing is saved in memory and thus a large saving in memory can be
achieved. Thus we do not consider the joint estimation method in this thesis.

There is also some research performed in Fraunhofer Research Institute (FHR) on distributed systems
for automotive applications [5] [25] [15]. A study is performed on incoherent combining of the data from
multiple radar sensors separated by a certain distance, in this case the resolution is limited by the aperture
of the largest sub-array present in the system. Performance analysis is done for multiple array configurations
and even for sparse sub-arrays with apertures larger than the equivalent uniform linear array. They make
use of a CS based algorithm called Block Orthogonal Matching Pursuit (BOMP) to combine the data from
multiple sensors. BOMP is a greedy algorithm but it is computationally efficient when compared to other
sparsity based algorithms. But in this literature only the incoherent combining of the scene is discussed and
thus the resolution that can be achieved is limited. Also a comparison study of different CS based algorithms
is provided in [15] which shows that there are other algorithms like FOCUSS which perform better than OMP,
thus using FOCUSS to combine the data from multiple sensors can provide better resolution. We explore this
algorithm further in this thesis to perform block sparse estimation of DOA in Chapter 3. We also explore a
method to perform coherent combining and a mix of coherent and incoherent combining of the data from
multiple sensors to obtain higher angular resolution as discussed in Chapter 4.

1.4. Outline of thesis
This thesis consists of total six chapters and the remainder of the thesis is as follows. The system model and
signal model of the distributed system that is used in this thesis is explained in Chapter 2. The near field
behaviour in relation to a distributed system is discussed along with the isotropic properties of targets. This
chapter also provides an overview of Range-Doppler processing performed on the data and the extraction of
the single snapshot after Range-Doppler processing. The signal model for DOA estimation of a distributed
system is discussed and the compressive sensing theory needed to estimate the DOA is provided. Chapter 3
discusses the block sparsity method to combine the data from multiple sensors. The FOCUSS algorithm is
explained and a new algorithm called Block FOCUSS which is an extension of FOCUSS is presented. Block
FOCUSS incoherently combines the data from multiple sensors. Chapter 4 discusses the necessary coher-
ent conditions in order to perform coherent fusion of the data from multiple sensors. The phase difference
observed at the sensors due to the path length difference of the signal from the target is discussed. A new
method to perform DOA estimation, called Coherent FOCUSS is presented. The new algorithm accounts for
the phase difference that occurs due to the path length difference in the signal model. The drawbacks of
this method for a distributed system with large baseline and therefore increased sparsity, is explained. A new
method is proposed whose resolution capability is between the coherent and incoherent algorithms called
the Fusion FOCUSS. This algorithm provides a way to combine the coherent and incoherent apertures of
the distributed system. In Chapter 5, the performances of the several FOCUSS variants are determined and
compared to the BOMP algorithm which is considered as state of the art. Comparisons are done on basis
of Monte Carlo simulations. An evaluation of the algorithm performance for varying Signal-to-Noise Ratio
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(SNR) is performed and the results are presented. The penalty incurred in performing coherent processing
on a non-isotropic target is discussed. As the CS algorithms used in this thesis are grid based algorithms,
they suffer from off-grid problems, which is discussed as well and a solution discussed in literature is pro-
vided to overcome this problem. Along with simulations, an experimental evaluation of the performance of
the proposed algorithms is performed in an anechoic room. The results obtained by these experiments are
presented and the measurements are discussed. Chapter 6 summarizes the work done in this thesis along
with the key outcomes. In this chapter we also propose some ideas for future work to further investigate and
continue the work on DOA estimation for distributed systems.

1.5. Conclusions
To improve the safety of traffic participants, there is a strong motivation to improve the performance of radar
sensors in the car. With increased demand for safety and advances in autonomous driving, it becomes more
important to resolve targets with high resolution. Enhancing the resolution of the DOA estimation by using
distributed radar sensors is promising and methods to perform coherent fusion of the data from multiple
sensors is an area that needs to be explored. Coherent distributed radar is an upcoming technology in the
automotive radar domain. A literature survey discusses the current state of the art in DOA estimation tech-
niques for single sensor and for distributed sensors. It is shown that there are methods to tackle the DOA
estimation problem for a distributed system, but there is still room for improvement. No literature was found
that proposes coherent processing of the data from multiple sensors when the target is in the near field, which
is addressed in this thesis. To solve the problem of achieving high resolution DOA estimate using distributed
sensors, two main methods are proposed in this thesis which are coherent processing and incoherent pro-
cessing of the data. A novel Block FOCUSS algorithm is proposed for performing incoherent processing of
DOA estimation of targets. Also, a novel way of coherent processing of the data is proposed using Coherent
FOCUSS algorithm. This algorithm coherently combines the data obtained from multiple sensors by ac-
counting for the observed phase difference in the definition of the sensing matrix. Further, an algorithm to
fuse the coherent and incoherent processing of the data is proposed using modified FOCUSS called Fusion
FOCUSS.





2
System and signal model

In this chapter, a system consisting of multiple radar sub-systems is discussed. A general signal model is
provided which is further used in the DOA estimation algorithm. The system operation and signal model
for all the configurations are discussed. In Section 2.1 the geometry of the system is presented. In Section
2.2 RCS of targets in near field and far field region of the imaging scene is studied. Section 2.3 gives signal
model for a complex scatterer, an overview of Range-Doppler processing of signals and extraction of snapshot
after Range-Doppler processing. Section 2.4 provides the generic signal model for DOA estimation of the
target. Further it discusses different modes of operation of the system and the signal model for each of those
configurations. It also provides the basics of compressive sensing techniques and the optimization problem
in terms of CS. Section 2.5 mentions the system assumptions made in the scope of this thesis and a conclusion
is provided in section 2.6.

2.1. System definition
In this thesis, a system is defined as a collection of multiple radar sub-systems. Please note that the term sen-
sor is used interchangeably with sub-systems in the entire thesis. A sub-system or sensor considered in this

Figure 2.1: System setup

7
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thesis is always a radar with a Multiple Input Multiple Output (MIMO) configuration unless mentioned oth-
erwise. Each radar sub-system is assumed to comprise of NT x transmitters and NRx receivers, which forms a
virtual array comprising of total NT x ·NRx receiver elements (NT xRx ). Unless mentioned the transmitters and
receivers in the MIMO are always spaced in such a way that the equivalent virtual array forms a Uniform Lin-
ear Array (ULA). The effective aperture of such a ULA is equivalent to (NT x NRx ) ·λ/2, where λ is wavelength
of the signal. In this thesis we only discuss the system consisting of 2 radar sensors, but the same geome-
try of the setup can be used for multiple radar sensors as the equations can be translated according to the
placement of these sensors. There is a central processing unit which interacts with all the sub-systems and
combines the data obtained from these radar sensors.

A system consists of 2 radar sub-systems as depicted in Fig 2.1. The radar sub-systems are called M1
(left sensor) and M2 (right sensor), separated by a distance of B , which is also referred to as the baseline of
the system. The positions of the radar sub-systems are indicated as B/2 and -B/2 indicating the distance
between them to be B . The center of the distributed system is considered to be at the origin marked as 0. The
distance of radar sub-system from the center is also given as dm , such that B = 2 ·dm .

If a target is present at range R from center of the system as shown in Fig 2.1, from system geometry, it
can be seen that it is present at range R1 from sensor M1 and at range R2 from sensor M2. The DOA of the
target with respect to M1 is considered to be ϕ, with respect to M2 it is ψ and with respect to center of the
distributed system it makes an angle of θ.

From the geometry of this system, the following relation between the range and DOA of the target can be
derived as

R1 =
√

R2 +d2
m +2Rdm sin(θ) (2.1)

R2 =
√

R2 +d2
m −2Rdm sin(θ) (2.2)

ϕ= arcsin

(
R sin(θ)+dm

R1

)
(2.3)

ψ= arcsin

(
R sin(θ)−dm

R2

)
(2.4)

Using Eqs 2.1 - 2.4, if the position of the target in range and azimuth is known with respect to center of
the system, its range and DOA from the individual radar sensors can be derived. These equations are used to
define a common grid perspective for the system, which is discussed in Section 2.3.

To get some insight into how the range difference as seen from M1 and M2 sensor varies, a plot is provided
which shows how the difference between R1 and R2 varies for a given target position in x and y co-ordinate
system. The plot is provided for varying target positions in x and y co-ordinates from -80 m to 80 m along the

(a) 3D plot (b) 2D projection

Figure 2.2: Difference in Range R1 and R2 for baseline of 1.8m for every target position in x-y co-ordinates. (a) 3D plot showing the
difference in ranges. (b) 2D projection of the plot in (a)
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x axis and 0 to 80 m along the y axis, the radar sensors are placed on either side of the origin. The Fig 2.2 shows
the difference between R1 and R2 plotted as a function of target in x and y co-ordinates. The baseline (B) used
between the 2 sensors is 1.8 m and the waveform with carrier frequency 78 GHz and bandwidth of 250 MHz is
considered. For a bandwidth of 250 MHz the range resolution obtained is ∼0.6 m, hence any range difference
less than this number will see the target in the same range bin. The plot also marks two points as references
which shows the region where the difference in range is about 0.6 m in Fig 2.2 (b), it can be observed that as
the position of the target in y axis moves away from origin, the broadside angle where the target falls in the
same range bin also increases. As the targets are moved away from broadside the range difference between
the 2 sensors increase and thus the targets will be resolved in range.

2.1.1. Near field and far field definition
For a point target the reflected wave received from the target is a spherical wave, but at large distance from
the sensor (far-field) this can be approximated with a planar wave. The distance which determines when a
wave can be approximated as a planar wave is given by Fraunhofer distance [26] as shown below

Fraunhofer distance ∼ 2D2

λ

D : Aperture of the radar sensor

λ : wavelength of the signal

If distance of the target from the radar sensor is greater than Fraunhofer distance then the waves received
can be approximated as planar waves and the target is said to be in the far field region. If distance of the
target is lesser than Fraunhofer distance then the target is said to be in the near field region of the radar [26].
The Fraunhofer distance is directly proportional to the aperture of the radar being used, i.e., as the aperture
increases probability that the target is in the near field region increases for a given target position.

As radar is operated in the mm-wave frequency range (∼76 GHz to 81 GHz) the Fraunhofer distance for
a uniform MIMO with 3 transmitters and 4 receivers is around 28 cm. This means that the target is almost
always in the far field region as seen by individual radar sensors [27]. But when a distributed system is present
with a virtual aperture equal to the baseline B as shown in Fig 2.1 the Fraunhofer distance is determined by
baseline separation B . Hence for large baseline separations the far field assumption of the target as seen
from the entire distributed system might not be valid. It needs to be noted that the target is still in the far field
region as seen by just sensor M1 or M2 in Fig 2.1, but it might not be in the far field region for the whole system
with aperture B . When the target is not in the far field then the received wave reflected from the target is no
longer planar and is spherical, hence the linear relationship in phase along all the sensors in the distributed
sensor is lost. But the linear relationship within a single sensor M1 or M2 still holds good as the far field
assumption hold good for the sub-systems. Thus when the targets are in near field, we need to consider that
the targets DOA as seen by the sensors is different and this needs to be taken into account in the combined
DOA estimation.

2.2. Isotropic property of targets
A complex target is made up of multiple scatterers and has varying Radar Cross Section that changes with
center frequency and aspect angle. Consider a target to be made up of Q scatterers with varying complex
amplitude, then an example realization of RCS of a target randomly placed inside the perimeter of a 20 cm
x 20 cm space can be depicted as shown in Fig 2.3. If the two radar sensors M1(left sensor) and M2(right
sensor) are separated by a baseline separation, then DOA of the target as seen by M1 and M2 is not the same
as discussed in Section 2.1. From Fig 2.3 it can be seen that if the DOA of the target is even slightly different,
then a different RCS of the target is observed (represented as Left and Right lines in the figure). Such targets
are said to be non-isotropic in the field of view of the radar system. If the target is isotropic in the field of view
of the radar system then the RCS seen by the system is same across both M1 and M2 sensors. Note that further
on in the thesis report when the target is mentioned to be isotropic or non-isotropic, it is always in reference
to the field of view (FOV) of the radar and does not mean that the target has the same property for 360°view.
In this thesis the FOV of the system is defined as the overlapping region of the view of both the radar sensors.

Consider an extended target with a complex RCS. In this scenario the signal received by the antenna el-
ements can be seen as coherent reception (for isotropic targets) or incoherent reception (for non-isotropic
targets) based on the distance between the antenna elements and the distance of the target to the system.
The target with complex RCS can be considered as a radiating object with beam-width of Rλ/∆x, can be
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Figure 2.3: RCS of an extended target (20cm x 20cm) made up of Q(100) scatterers

derived by extending [28, Example 5.3.3]. If the antennas are located in an area defined by the projection of
the beam of the reflecting object on the antenna array, then the signal received from the target is correlated,
else the signals received by the different radars are mutually uncorrelated [3]. This can be given analytically
as explained in [3] as follows, the target response observed from the left and right most antennas in the array
is uncorrelated if the equation below is satisfied

B > Rλ

L
(2.5)

B: Aperture of the antenna array
R: Range of the target from the Rx antenna

L: the length of the target (the occupied target length)

The signal received is correlated if the distance between the antenna elements (B) is less than the beam
width which is given in Eq 2.5. For sub-systems the aperture is much smaller when compared to the dis-
tributed system, hence from Eq 2.5 it is seen that for a distributed system it is more difficult to receive corre-
lated signals while for individual sub-system the signal might still be correlated. Fig 2.4 shows an illustration
on how the scattered beam form the target is received at the radar system. Right image shows that the radar
system receives the same beam for an isotropic target, making the received signal to be correlated. Left image
shows that the radar system receives different beams for a non-isotropic target, making the received signal to
be uncorrelated as per Eq 2.5.

To understand what the Eq 2.5 means for different baselines and length of the target, some simple plots
are made which vary the range (R) and length (L) of the target for a carrier frequency of 78 GHz. Based on
the baseline used a classification is performed to determine if the signal received from the target is correlated
or not. From Fig 2.5 it is shown that as the length of the target increases the probability that the signals
are correlated reduces, also when the range of the target from the radar increases the probability that the
signals are correlated increases. As the baseline reduces we see the region where the signals are correlated

Figure 2.4: Non-isotropic scatterer (Left) ; Isotropic scatterer (Right)
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Figure 2.5: Region of correlated signal as a function of Range and length of target for different baseline values

increases and the region of non correlated signals reduce. This can be seen as the reduction of slope of the line
between the 2 regions in the plots as the baseline reduces. This is an important plot that helps us determine if
coherent or incoherent processing needs to be performed on the received signals. Note that when performing
incoherent processing one can benefit from the non correlated signals as they provide a diversity gain in
space [3], where as while performing coherent processing if the signals are non correlated then it can lead to
errors. Hence it is important to understand the property of the target before determining the right processing
technique which is not an easy step.

2.3. Signal model
Automotive radar applications widely use Frequency Modulated Continuous Wave (FMCW) waveform for
the operation of radar even though there are multiple waveforms available, as FMCW waveform has many
advantages. It is simple to implement in the hardware as the Analog to Digital converter (ADC) in the receiver
operates at a beat sampling frequency, lower than the frequency deviation in the FMCW ramp. It is also low
cost and the pulse radiation with high peak power is not present [29]. The signal model for the system dis-
cussed in previous Section 2.1 is discussed here. The assumption that the transmitted signals from different
transmitters are independent and also the noise at each receiver element is Gaussian independent noise [30]
is made. Further, it is to be noted that the position of all the sensors are known and each sensor is coherent
in itself. If the sub-systems are fully synchronized then multi-static mode of operation can be used, if not
mono-static configuration is used. The signal models for both these configurations are discussed. The per-
fect synchronization between the radar sub-systems is relatively not easy, however it is not impossible. In[20]
it is discussed on how the synchronization between the radar sub-systems can be achieved.

Dechirp operation is performed on the received signal of a FMCW MIMO sensor and the signal is digitized
with the help of ADC in the receiver [31]. The dechirped FMCW signal obtained by a single antenna element
for a point target can be written as follows
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s(t ) = A exp( j 2πατt )exp

(
− j 2π

(
fcτ+ 1

2
ατ2

))
(2.6)

α= Bandwidth (BW )
Chirp duration (T )

In Eq 2.6, A is the complex amplitude of the target which consists of effects of target RCS, propagation loss,
amplitude of transmitted signal and antenna loss, Tau (τ) is the time delay with which the radar waveform
is received from the target after transmission (called the round trip delay), fc is the carrier frequency of the
FMCW waveform and α is the ratio of bandwidth (BW) over FMCW chirp duration. For a system consisting
of multiple antennas and multiple sub-systems the Eq 2.6 can be extended to incorporate a variable n which
represents the index of virtual channels formed for the radar system, given by Eq 2.7 for a sensor with Single
Input Multiple Output sensor. By employing a coding scheme such as Time division multiplexing or Doppler
division multiplexing this system can be extended to work as Multiple Input Multiple Output where each vir-
tual channel can be distinguished. For example if a single MIMO sensor is present then the number of virtual
channels is NT x NRx . A system consisting of 2 such MIMO sensors will have 4 ·NT x NRx virtual channels if the
system is fully synchronized. 2 ·NT x NRx of these virtual channels correspond to the mono-static responses
and 2 ·NT x NRx of them to the bi-static responses, which is further explained in Section 2.4.2

s(t ,n) = A exp
(

j 2πατn t
)

exp

(
− j 2π

(
fcτn + 1

2
ατ2

n

))
(2.7)

In Section 2.2, it is shown that the response received from a target is made up of multiple complex valued
signal with different gain and phase for each scatterer. A target comprising of Q scatterers [3] can be modelled
by extending the Eq 2.7 of a point target to include the effect from Q scatterers in the target as in Eq 2.8

s(t ,n) =
Q∑

q=1
Aq exp

(
j 2πατq,n t

)
exp

(
− j 2π

(
fcτq,n + 1

2
ατ2

q,n

))
(2.8)

In above Equation, Aq is the complex valued response from each reflection point. The targets will have
different time delay (τn) for each virtual antenna. Though the (τn) within each sub-system is comparable for
point targets, each individual scatterer for extended target has a slightly different (τn) and hence the sum over
Q scatterers will have different sum for each antenna pair n, this is the non-isotropic aspect of the extended
target that is modeled in Eq 2.8.

Further, the equation for an imaging scene consisting of K extended targets can be represented as given
in Eq 2.9

s(t ,n) =
K∑

k=1

Q∑
q=1

Ak,q exp
(

j 2πατq,k,n t
)

exp

(
− j 2π

(
fcτq,k,n + 1

2
ατ2

q,k,n

))
(2.9)

The time delay observed between each antenna element for each target is different as depicted in Eq 2.9.
The above equation can be extended for multiple chirps, which is denoted by the slow time variable mT ,

where T is the pulse repetition time and m represents the chirp number in the slow time. This is given by the
below Eq 2.10.

s(t ,mT,n) =
K∑

k=1

Q∑
q=1

Ak,q exp
(

j 2πατq,k,n,mT t
)

exp

(
− j 2π

(
fcτq,k,n,mT + 1

2
ατ2

q,k,n,mT

))
(2.10)

The time delay observed between each chirps for each target is different as depicted in Eq 2.10.

2.3.1. Range Doppler estimation
Range and Doppler estimation of the target present in the field of the radar is performed on the dechirped re-
ceived FMCW waveform. Range estimation is performed in order to determine the distance of the target from
the radar and Doppler estimation is done to determine the relative radial velocity of the target. Processing
of the received FMCW waveform is done in order to estimate the range and velocity of the target [29]. After
dechirping process of the FMCW waveform a beat signal is produced with a frequency which is the difference
between the transmit frequency and the received frequency. The beat frequency comprises of propagation
delay of the waveform which is used to determine the range of the target respectively [32].



2.3. Signal model 13

Figure 2.6: Radar data cube

Radar transmits a sequence of chirps (pulses) and receives a sequence of chirps reflected back from the
target. The singular data values collected from radar after dechirping of all the received chirps from all the
antennas are saved in the radar data cube format [32] as depicted in Fig 2.6.

The samples acquired within a chirp are referred to as fast time samples. It represents the sampling in
fast range. They are used to estimate the range of the target as these samples will have the reflected signal
back from the target, whose delay can be used to estimate the range of the target (for example, by doing
Fast Fourier Transform (FFT) along the fast time axis, along variable t in Eq 2.10 we can estimate the range).
The complex-valued baseband samples from different pulses from the same range bin are represented along
the slow time axis. The Pulse Repetition Interval (PRI) determines the amount of chirps (or pulses) sent per
second. Typical PRIs are much longer than the fast-time sampling interval. Because of the long sampling
intervals, samples taken across multiple pulses are referred to as slow time. Processing data in the slow-
time dimension (along variable mT in Eq 2.10) allows us to estimate the Doppler spectrum at a given range
bin. Coherent integration over multiple pulses by means of FFT will give us the shift in Doppler frequency

Figure 2.7: Extracting spatial samples after Range Doppler processing from radar data cube [33]
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experienced by a moving object as the phase changes over time. The spatial samples are collected based on
the number of transmitter receiver pairs present as they represent the reflections from an object in the spatial
dimension. This is used mainly for estimating DOA in the automotive radar applications. Based on the delay
between arrival of signals as seen from one receiver antenna to another, the DOA can be estimated.

The beat frequency (or beat signal) is produced by demodulation of the received chirp. The beat signal
can be analysed with an FFT to determine which frequencies are present in the beat signal (a beat frequency
corresponds with a time-of-flight and hence with a target at a certain range). By determining the beat fre-
quency, the time-of-flight and thus the range of a target is estimated. To determine the Doppler frequency
of the target a second FFT is performed along the slow-time samples (along the chirps) of the data. In auto-
motive radar applications usually a 2D-FFT is performed along the fast time and slow time dimension of the
radar data in order to determine the range and Doppler of the target [34]. The range resolution and Doppler
resolution is determined by bandwidth of the FMCW waveform and integration time of the FMCW chirps
respectively [34]. Once the target is localized in range bin and Doppler bin after Range-Doppler processing
of the signal, the spatial samples corresponding to a Range-Doppler bin can be extracted to perform the DOA
estimation of the target, Fig 2.7 [33]. The extracted spatial samples together are called a snapshot. For a MIMO
sensor consisting of NT x transmitters and NRx receivers, a snapshot consists of NT x NRx spatial samples.

In this thesis, going forward when we discuss about DOA estimation, note that the DOA estimation is
always done after Range-Doppler processing and also on one snapshot obtained after Range-Doppler pro-
cessing. Single snapshot DOA estimation is preferred in automotive applications as it has very low latency,
since it calculates the DOA for every snapshot individually [35]. Low latency is an important requirement
in automotive applications due to safety requirements, which enables the automobile to act in time when
needed. In addition to this it also benefits from the processing gain achieved from Range-Doppler processing
performed prior to DOA estimation.

2.4. DOA estimation method
After Range-Doppler processing is performed on received data, target detection is performed and the snap-
shot corresponding to the range and Doppler bin which contains the target is extracted to obtain the spatial
samples, Fig 2.7. DOA estimation is performed on these extracted snapshots. In the section the signal model
for DOA estimation using single sensor and distributed sensor is discussed along with the signal model to
perform DOA estimation.

2.4.1. DOA estimation for Single system
The impinging wave-front on the antenna array has a linearly increasing time delay when the target is located
in the far field of the antenna array for a ULA with respect to the first element, as depicted in Fig 2.8. This
constant delay between the arrival of the wave-front can be translated into a phases shift when the signal is
sufficiently narrow band from one antenna element to the other [6]. The Fig 2.8 shows a Uniform Linear Array
(N elements) with separation between the elements as d , Rx0 is the first element and is used as the reference
element, the time delay of arrival of the wave-front on the consecutive array elements is a function of path
length as shown in the Fig 2.8. This path length difference translates to corresponding phase shift between
the signals received by array elements.

If the received samples after Range-Doppler processing of N-receiver array elements are represented as y,

Figure 2.8: Impinging wave-front on a ULA from target
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then the signal model for the received samples for K targets can be gives as

y = Ak x+n (2.11)

y ∈CN×1;x ∈CK×1;Ak ∈CN×K

Ak = [a (θ1)a (θ2) . . . .a (θK )]

a(θ) : steering vector
x : impinging source vector ; n : noise vector

The steering vector a(θ) represents the impinging signal from the target present at an angle θ from the
array elements, which is given as Eq 2.12

a(θ) =
[

1,e j 2π d sin(θ)
c ,e j 2π 2d sin(θ)

c , . . . ,e j 2π (N−1)d sin(θ)
c

]T
(2.12)

To perform DOA estimation of the target, a steering matrix or beam-forming matrix A is defined, whose
columns consists of steering vectors as defined by Eq 2.12 for all possible DOA of targets in the defined Field
of View. The given FOV region is divided into Ns grid points with certain spacing between each grid point.
The steering vector is defined for each of these grid points, which constitute the columns of the matrix A,
refer to Eq 2.13.

A = [a (θ1)a (θ2) . . .a (θNs)] (2.13)

A ∈CN×Ns

Ns : number of grid points in search grid

For example, if the FOV is −90◦ to +90◦, the grid points separated by 1◦ will have 181 columns in the
steering matrix A. In this thesis the targets are assumed to be on the grid for the signal model consideration
unless mentioned otherwise. A search is made along these points to find the DOA’s of the targets in the FOV.
In this definition steering matrix A is made up of all possible target positions in the defined FOV.

The signal model for the DOA estimation is gives by Eq 2.14

y = Ax+n (2.14)

y ∈CN×1;x ∈CNs×1;A ∈CN×Ns

DOA estimation algorithms like beam-forming, MUSIC, ESPRIT, compressive sensing algorithms etc., can
be further employed to estimate the DOA of the targets using Eq 2.14,

2.4.2. DOA estimation for Distributed system
In the previous section, the signal model for a single radar system was discussed. This can be extended
to a system consisting of multiple sub-systems. Consider a system explained in Section 2.1, consisting of
2 sub-systems separated by a baseline separation of B , Fig 2.1. In this thesis we consider that each sub-
system is made up of antenna elements in a MIMO configuration with NT x transmitters and NRx receiver
elements. The total receiver array elements consists of NT x NRx virtual elements, let this be represented as
N (= NT x NRx ). From Fig 2.1 it is seen that if a target makes an angle θ to the center of the distributed system,
then the angle that the target makes with respect to sensor M1 (φ) and sensor M2 (ψ) can be calculated by
Eq 2.1 - 2.4 as the range of the target is approximately known after Range-Doppler processing. As the near
field model needs to be considered for the target as shown in Section 2.2, the angle that the target makes with
respect to the 2 sensors is different. In this case a small difference in the range of the target from 2 sensors
can cause a change in the phase of the received signal from target as received by the 2 sensors [36]. Hence the
two mono-static responses that are received by the 2 sensors can have different phases and this can impact
the DOA measurement. If the target is in motion then this also has an effect on Doppler estimate, but in this
thesis we consider only stationary targets and hence ignore this effect.

• Mono-static configuration

When the system is operated in the mono-static configuration, the transmitter and receiver are both
co-located, thus the Direction of Departure (DOD) and Direction of Arrival of the wave is the same, ref
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Figure 2.9: (a): Mono-static response and (b): Bi-static response

Fig 2.9. Using Eq 2.1 - 2.4 the grid points in the sensing matrix A defined for the target as a function of
θ as explained in Eq 2.13 is translated to the angles ϕ and ψ. The two sensing matrix A(ϕ) and A(ψ) are
derived from the angle θ used in defining the sensing matrix A in Eq 2.13 as shown in Eq 2.15 and Eq
2.16.

A1 =
[
a
(
ϕ1

)
a
(
ϕ2

)
. . .a

(
ϕNs

)]
(2.15)

A2 =
[
a
(
ψ1

)
a
(
ψ2

)
. . .a

(
ψNs

)]
(2.16)

A1,A2 ∈CN×Ns

Ns : number of grid points in search grid

Note that every column in matrix A1 and A2 are steering vectors pointing to the target present in the
same location, corresponding to DOA θ as seen from the center of the distributed systems. In this
manner a common grid is defined for the entire system, where the corresponding DOA from sensor M1
and M2 are estimated for every DOA point defined by the system center as shown in Fig 2.1.

If y1 and y2 are the snapshots obtained from sensor M1 and M2 respectively after Range-Doppler pro-
cessing, and they sense the target as x1 and x2, then the signal model for the mono-static configurations
is given as in Eq 2.17 and 2.18.

y1 = A1x1 +n1 (2.17)

y1 ∈CN×1;x1 ∈CNs×1;A1 ∈CN×Ns

y2 = A2x2 +n2 (2.18)

y2 ∈CN×1;x2 ∈CNs×1;A2 ∈CN×Ns

• Multi-static configuration

When the system is operated in the bi-static (or multi-static for higher number of sensors) configura-
tion, the transmitter and receiver elements are not co-located, thus the DOD and DOA of the wave are
different, ref Fig 2.9. In Fig 2.9 when M1 is transmitting and M2 is receiving the DOD is given by ϕ and
DOA is given by ψ. The sensing matrix A is thus defined as the Kronecker product of DOD and DOA
as shown in Eq 2.19 and Eq 2.20. A3 is used to represent the sensing matrix of the bi-static response
when M1 is transmitting and M2 is receiving; A4 is used to represent the sensing matrix of the bi-static
response when M2 is transmitting and M1 is receiving.

A3 =
[
aM1M2

(
ϕ1 ⊗ψ1

)
aM1M2

(
ϕ1 ⊗ψ2

)
. . .aM1M2

(
ϕNs ⊗ψNs

)]
(2.19)

A4 =
[
aM2M1

(
ψ1 ⊗ϕ1

)
aM2M1

(
ψ2 ⊗ϕ2

)
. . .aM2M1

(
ψNs ⊗ϕNs

)]
(2.20)
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Figure 2.10: Position of array elements in sensors M1 and M2

A3,A4 ∈CN×Ns

Ns : number of grid points in search grid

The steering vectors aM1M2
(
ϕ⊗ψ)

is the bi-static response with M1 transmitting and M2 receiving,
which is calculated as the Kronecker product give by Eq 2.21. An example of the element positions in the
distributed system with sensors M1 and M2 is depicted in Fig 2.10. The element positions are marked
in the x axis in terms of wavelength used. Sensor M1 is positioned around -4λ and M2 is positioned
around +4λ, the position of each antenna element in the sensor is shown in the figure as well. Let T x1

and Rx1 be the transmitters and receivers in M1 sensor, T x2 and Rx2 be the transmitters and receivers
in M2 sensor, then

aM1M2(ϕ⊗ψ) = aT x1(ϕ)⊗aRx2(ψ) (2.21)

aT x1(ϕ) = exp
(

j 2πdTx1 sin(ϕ)
)

aRx2(ψ) = exp
(

j 2πdRx2 sin(ψ)
)

dTx1 : array containing Transmitter element positions for M1
dRx2 : array containing Receiver element positions for M2

The steering vectors aM2M1
(
ψ⊗ϕ)

is the bi-static response with M2 transmitting and M1 receiving,
which is calculated as the Kronecker product give by Eq 2.22.

aM2M1(ψ⊗ϕ) = aT x2(ψ)⊗aRx1(ϕ) (2.22)

aT x2(ψ) = exp
(

j 2πdTx2 sin(ψ)
)

aRx1(ϕ) = exp
(

j 2πdRx1 sin(ϕ)
)

dTx2 : array containing Transmitter element positions for M2
dRx1 : array containing Receiver element positions for M1

Note that in Eq 2.22, the DOD and DOA are interchanged and hence the beam-steering vectors are also
reversed compared to Eq 2.21.

If y3 is the snapshot obtained after Range-Doppler processing with M1 transmitting and M2 receiving,
the target is observed as x3, then the signal model for this bi-static configuration is given as in Eq 2.23.

y3 = A3x3 +n3 (2.23)

y3 ∈CN×1;x3 ∈CNs×1;A3 ∈CN×Ns

If y4 is the snapshot obtained after Range-Doppler processing with M2 transmitting and M1 receiving,
the target is observed as x4, then the signal model for this bi-static configuration is given as in Eq 2.24.

y4 = A4x4 +n4 (2.24)

y4 ∈CN×1;x4 ∈CNs×1;A4 ∈CN×Ns
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2.4.3. Problem formulation for DOA estimation using compressive sensing
Compressive sensing is a fairly new topic in the field of automotive radar, however there is various literature
available that explains the concepts involved in compressive sensing in detail [37] [38] [39] [12]. In this section
the important concepts needed in estimation of DOA of the targets using compressive sensing techniques are
discussed. Recalling the generic signal model for DOA estimation of a radar system, Eq 2.14 we have

y = Ax+n

Here the sensing matrix can be seen as comprising of a sensing matrix Φ and a representation basis Ψ,
i.e., A =ΦΨ. Ψ works as a selection matrix that selects the required M rows out of N available rows. For the
radar scenario the representation basis is chosen to be spike representation basis i.e., Ψ= I (Identity matrix).
Hence here A =Φ and is called the sensing matrix [12].

In the above equation, the sensing matrix A has more number of columns than rows, as there are limited
number of receiver elements in the radar sensor, whereas the FOV is divided into grid points covering the
entire FOV as finely as needed. Here FOV represents the overlapping perceivable region of the 2 sensors in
the azimuth domain. We consider the overlapping region of the radar sensors due to the assumption that is
made in Section 2.5 that the target is observable by both the sensors. This makes Eq 2.14 an under-determined
system of equations as there are less equations than unknowns. Such an under-determined system of equa-
tions has infinitely many solutions and cannot be solved in regular least squares manner [40]. Note that the
columns of the sensing matrix are called as atoms and the grid points that determine the DOA of the targets
is referred to as dictionary of the sensing matrix. This is a grid-based definition of the CS problem which
assumes that the target is on one of the defined grids in the sensing matrix [13]. Compressive sensing theory
proposes that a unique solution to this under-determined system of equation can be found if, the vector x
that needs to be estimated is sparse [37] i.e., the number of non-zero elements in x ¿ Ns , where Ns is the
number of columns in A and the sensing matrix has good coherence properties. The number of non-zero
elements in a vector is called the cardinality of a vector, car d(x) = K implies that the vector x has only K
non-zero elements. As long as K ¿ Ns a unique solution can be found to Eq 2.14 using compressive sens-
ing techniques. The condition of sparsity for a guaranteed unique recovery of x is given by coherency of the
sensing matrix, A(µ). A(µ) depends on design of the sensing matrix which should be such that the columns
(or atoms) of A are nearly orthogonal to each other. Note that this value provides a sufficient recovery for
the unique recovery of sparse signal but is not a necessary condition [41]. Calculation of this value and the
impact it has on the solution is discussed in detail in Appendix A.

Moreover, the vector x that is to be estimated here represents the number of targets present in the angular
domain (azimuth) after Range-Doppler processing as discussed in Section 2.3 and this is considered sparse
as most targets are already resolved in the range and Doppler dimension.

Fig 2.11 shows a pictorial representation of Eq 2.14 without noise n. y is the received data samples from
N receiver antenna elements, A is the sensing matrix and x is the source vector that needs to be estimated. In
this figure, the x shown has cardinality of 3(K = 3) i.e., there are 3 non-zero values and the rest of the elements

Figure 2.11: Pictorial representation of equation to estimate DOA without additive noise
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are zero. This represents 3 targets in the FOV of the radar with DOA (θ1,θ2 and θ3) equivalent to the DOA
defined by the corresponding columns in defining the sensing matrix. The problem is now to estimate which
columns of A contribute to the source vector x given the measurement vector y. Once the columns of A that
contribute in estimating the non-zero value in x is known, we can extract the DOA corresponding to that
particular column of A [39]. Fig 2.11 implies that measurement vector y can be well approximated by linear
combination of K atoms in the sensing matrix A [13].

2.4.4. Optimization problem statement
The optimization problem without noise to solve for x in Eq 2.14 is given by the l0−norm optimization as
follows

x̂ = argmin
x

‖x‖0 s.t. y = Ax (2.25)

l0−norm is given as the number of non-zero values in a vector. However, l0− norm is NP hard to solve
and not a convex problem. Hence, the optimization problem can be relaxed to use l1− norm. l1− norm is a
convex function and also promotes sparsity [37]. The optimization problem can thus be written as

x̂ = argmin
x

‖x‖1 s.t. y = Ax (2.26)

In general, the p-norm of a vector is defined as

‖x‖p = p
√∑ |xi |p (2.27)

As l0− norm promotes sparsity but is NP hard to solve, a lp− norm can be used where the value of p
is chosen to be 0 and 1. This will take the results closer to the sparse solution. Introducing noise to this
optimization problem defined in Eq 2.26 we get the following regularization problem usually known as the
Least Absolute Shrinkage and Selection Operator (LASSO) [13].

x̂ = argmin
x
λ‖x‖1 +‖Ax−y‖2

2 (2.28)

In Eq 2.28, λ> 0 is the optimization parameter which needs to be chosen appropriately based on standard
deviation of the Noise [42].

2.5. System assumptions for scope of thesis
Given the extent of the scope of distributed radar a number of assumptions are made to focus on the core
problem of DOA estimation in distributed radar setups. The following assumptions are made in this thesis

• The responses obtained in a single sub-system is correlated among all the receiver elements contained
in that sub-system.

• The targets are considered to be in the near field region of the system. However, it is shown that the
target can be considered to be present in the far field region as seen from a single sub-system.

• The targets are visible by all the sub-systems present in the system.

• Stationary objects are considered i.e., the relative velocity of the target is considered to be zero.

• Targets are resolved only in range and azimuth, and we do not consider elevation estimation in the
thesis.

• The imaging domain is considered sparse in the angular domain (for the given FOV in automotive radar
this is a valid assumption as there will be fewer targets that fall in the same range and Doppler bin after
Range-Doppler processing).
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2.6. Conclusions
In this chapter, the system design and signal model is discussed for the distributed radar system. The system
geometry is studied for a system consisting of two sensors and the target position is parameterized with re-

spect to the center of the distributed system. The equations are presented which can be used to obtain the
range and DOA of the target with respect to each radar sensor, which will be used to determine the common
grid while combining the data from multiple sensors. The statistical scattering property of the target is stud-
ied when the target is in the near field and the far field region. It is observed that the target RCS can change
based on the observation angle and also the distance of the target to the radar. Hence, coherent processing
of the data to estimate DOA is not possible in all scenarios. Also, based on the distance of the target from the
radar, the target is either in near field or far field of the radar. Through illustrations it is shown that, for larger
baseline separation the probability that the target is in the near field region is higher, for the given position
of the target. Thus, we need to consider the near field model in order to estimate the DOA from a distributed
system. The signal model for a complex scatterer is discussed and a generic signal model is given for DOA
estimation using a single radar along with a brief overview of Range-Doppler processing, for a FMCW wave-
form. The single snapshot extracted after Range-Doppler processing is used for the estimation of DOA. This
is further extended to obtain the signal model for mono-static and bi-static configurations of the distributed
system, which depends on the DOD and DOA of the target. Compressive sensing theory is discussed in brief
which says that if the signal to be estimated is sparse, then the signal can be recovered successfully with lesser
number of measurements than the unknowns. The optimization problem in terms of l1-norm optimization
is provided as this norm promotes sparsity and helps to recover the original signal. System assumptions
considered in the thesis are presented.



3
Generalized Block FOCUSS algorithm

This chapter introduces a new generalized Block FOCUSS algorithm to estimate the DOA of targets by com-
bining the responses from multiple radar sub-systems. This method can be applied for both mono-static
and multi-static configurations of the system and for the near-field and the far-field region. Section 3.1 dis-
cusses how sparsity in the solution space can be exploited in a distributed system using the principle of block
sparsity to combine the data from sub-systems. Section 3.2 introduces the existing FOCUSS algorithm and
shows how it can be extended to Block FOCUSS to solve the problem of data fusion. In Section 3.3 a compar-
ison is done between existing BOMP algorithm and Block FOCUSS algorithm, and the performance of Block
FOCUSS is also discussed. Section 3.5 concludes this chapter.

3.1. Block sparsity of distributed system
In Chapter 2, Section 2.4.3 formulates the DOA estimation problem for a single radar sensor as a compressive
sensing problem. To fuse the data from multiple radar sensors, it is important that the block sparsity concept
is understood.

Consider the system defined in Section 2.1 (Fig 2.1), it consists of two sensors that are looking at the same
imaging scene, i.e., a target present is visible to both the sensors. A system consisting of 2 sensors looking at
the same target scene can be depicted as shown in Fig 3.1 (Fig borrowed from [43]). 2 mono-static and 2 bi-
static responses are received from such a system as explained in Section 2.4.2 based on the system coherency.
Since the 2 sensors are looking at the same target scene and their sensing matrix is defined for a common grid
perspective as mentioned in Section 2.4.2 the four vectors are sparse at the same location. These four vectors
are said to be jointly sparse or that they share the same support [13].

It is to be noted that when vectors are considered to be block sparse (sparse at the same location), it means
that the non-zero values occur in the same position in the vector x but it does not mean that the non-zero
value is the same in all the vectors. This is a very important point because for targets that are perceived in a
non-isotropic fashion by individual sub-systems, the RCS seen by each sensor can be different and thus we
cannot assume that the non-zero value in all vectors x is the same [43]. This is a general problem formulation
that can therefore work on both isotropic and non-isotropic targets and can also be used on sub-systems
which are mutually incoherent (in which case bi-static response is unavailable).

Also, in Fig 3.1 only two measurement vectors are depicted for the mono-static responses, this can be
easily extended for multiple measurement vectors. For example if the bi-static responses of the system are
considered as well then there will be four measurement vectors (y1,y2,y3 and y4) that are sparse in the same
location.

There are algorithms like Block Orthogonal Matching Pursuit (BOMP) which can be used to solve the
optimization problem that considers the signal to be estimated is block sparse as discussed in [43] [44]. This
algorithm extends the existing OMP algorithm to consider that the signal to be estimated is block sparse. In
this thesis we propose a new method to estimate the signal which is an extension of an alternative algorithm
with higher performance, FOCUSS [42].

21
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Figure 3.1: Block sparsity principle [43]

3.1.1. Optimization problem for block sparse signal
In Section 2.4.4, the CS optimization problem for a single radar sensor to solve for x was given by Eq 2.28. The
optimization problem to solve for x of the distributed system can be given as shown in Eq 3.1, where L is the
number of virtual apertures that are available (L = 4 for 2 MIMO sensors i.e., 2 mono-static apertures and 2
bi-static apertures), x vector is sparse at the same location for all the snapshots (block sparse).

x̂ = arg min
x1,..xL

L∑
l=1

∥∥yl −Al xl
∥∥2

2 +λ‖x‖2,1 (3.1)

Here yl ,xl and Al represents measurement vector, source vector and sensing matrix respectively for each
aperture l (l = 1, . . . ,L). Note that Al is defined for each aperture in the common grid perspective as discussed
in Eq 2.15, 2.16, 2.19 and 2.20. To understand what ‖x‖2,1 is let’s consider a matrix X comprising of the vectors
x1, ..xL as columns of the matrix. Then the matrix X is given as

X =


x(1)

1 x(1)
2 · · · x(1)

L
x(2)

1 x(2)
2 · · · x(2)

L
...

...
...

x(N )
1 x(N )

2 · · · x(N )
L

 (3.2)

X ∈CN×L

N : number of array elements in a single sensor (NT xRx )

Each row in X corresponds to a point on the grid and each element in the row corresponds to the target
RCS seen by the responses from different sensors [44]. A vector v is constructed by taking the l2 norm along
the rows of X as shown below

v =


l2

(
x(1)

1 x(1)
2 · · · x(1)

L

)
l2

(
x(2)

1 x(2)
2 · · · x(2)

L

)
...

...
...

l2

(
x(N )

1 x(N )
2 · · · x(N )

L

)

 (3.3)

The l2-norm of a vector is defined as square root of the sum of absolute squares of its entries, thus the l2

norm of a row of X is given as

l2

(
x(n)

1 , x(n)
2 , · · · , x(n)

L

)
=

√√√√ L∑
l=1

∣∣∣x(n)
l

∣∣∣2
(3.4)

Thus the ‖x‖2,1 norm can be given from Eq 3.3 as



3.2. FOCUSS 23

‖x‖2,1 = ‖v‖1 (3.5)

The fusion of data from multiple snapshots is done while calculating the ‖x‖2,1 norm of the data, which
promotes row sparsity (block sparsity) in X [44]. It is important to note that the matrix X is not explicitly
constructed at any point in solving the algorithm, it is just used here for the understanding of ‖x‖2,1 norm.

3.2. FOCUSS
Focal Under-determined System Solver(FOCUSS) is one of the on-grid high resolution algorithms that can be
used to solve the compressive sensing problem. There are multiple solvers that are available in literature that
can be used to solve the CS problem to estimate the DOA of the target using a single sensor. Some of these
algorithms are Orthogonal Matching Pursuit (OMP), Basis Pursuit (BP), Basis Pursuit Denoising (BPDN) and
NESTA. In [25] a comparison is provided between these algorithms. It is shown that FOCUSS is a good choice
which is robust to noise, provides a high resolution estimation and at the same time not as computation-
ally demanding as NESTA. It is a good balance between greedy algorithms like OMP and BPDN which are
very fast but provide lower resolution estimation and the NESTA algorithm which provides higher resolution
compared to OMP but is very slow in time.

In Eq 3.1, the optimization problem is given in terms of l1−norm optimization as l1−norm promotes
sparsity. FOCUSS algorithm however uses lp−norm (Eq 2.27) instead of l1−norm, where 0 < p < 1 [42], which
also promotes sparsity. The optimization problem to solve for block sparse signal using Block FOCUSS can
thus be written as

x̂ = arg min
x1,..xL

L∑
l=1

∥∥yl −Al xl
∥∥2

2 +λ‖x‖2,p (3.6)

FOCUSS is based on the iterative re-weighted least squares technique and was originally designed to ob-
tain a sparse solution by successively solving least squares optimization problem and is widely used to deal
with compressive sensing problems. The advantages of FOCUSS are its relative low computation and stable
results; only a few iterations tend to be enough to achieve a rather good approximating solution [42]. The
choice of parameter p is dictated by the speed of convergence and sparsity of the solution generated. Values
of p ≤ 1 give sparse solutions, hence for sparse reconstruction p lies in [0,1]. The convergence rate is given
as 2− p, thus the algorithm converges faster for smaller values of p, but there is a higher likelihood to get
trapped in the local minima [42]. In practice the default value of p = 0.8 have been found to represent a good
compromise between speed of convergence and quality of the generated sparse solution [45].

FOCUSS algorithm consists of two parts [42]:

1. Find a low-resolution estimate of the sparse signal

2. Prune this solution to a sparse solution.

A weighting matrix W is constructed in each iteration of the algorithm using the p-norm of the data vector
that is estimated. The algorithm stops when the following criteria is satisfied

‖x̂k − x̂k−1‖2

‖x̂k−1‖2
< δ (3.7)

In Eq 3.7, k represents the current iteration number in the algorithm, x̂k−1 and x̂k represent the estimated
signal in (k −1)th and k th iteration respectively. δ is chosen as 10−8 by default in this thesis, it is a user selected
parameter and can be changed to fine tune for faster convergence [45].

The steps involved in FOCUSS algorithm for a single snapshot is explained in detail in the following Sec-
tion 3.2.1. It is followed by the steps involved in performing Block FOCUSS algorithm for multiple apertures,
which is introduced for the first time in literature as per our knowledge in Section 3.2.2.

3.2.1. FOCUSS algorithm
In order to understand the working of FOCUSS algorithm, lets consider a signal model for a single sensor
without noise, the optimization problem for this in terms of lp−norm can be written as

x̂ = argmin
x

‖x‖p s.t. y = Ax (3.8)
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Algorithm 1 FOCUSS algorithm for a single snapshot (noiseless case)

1: Initialize k = 0; W0 = I; δt = 10−8; δ0 = 1;λ= noise variance
2: while δk > δt do
3: k = k +1
4: qk = (AWk−1)† y
5: xk = Wk−1qk

6: Wk = diag
(‖xk‖p

)
7: δk = ‖xk−xk−1‖2

‖xk−1‖2

FOCUSS algorithm finds the weighted minimum norm ‖W−1x‖, where W is a weighting matrix which
satisfies the following equation

x = W (AW)† y (3.9)

† : symbol used to define Moore-Penrose inverse

We can re-write Eq 3.9 by introducing a vector q that satisfies the equation

x = Wq

where, q̂ = argmin
q

‖q‖p s.t. y = AWq (3.10)

The optimization problem is now defined for a new vector q, Note that ‖q‖ = ‖W†x‖, thus the optimization
objective in Eq 3.10 is preserved.

If we solve the above Eq 3.10 for estimating q, then x can be estimated by substituting the value of q in Eq
3.10.

W is the weighting matrix which is calculated from the p-norm of the solution of x obtained from previous
iteration in the algorithm. If the algorithm has k-iterations then for the k th iteration W is calculated as follows

Wk = di ag
(‖xk−1‖p

)
(3.11)

W ∈CNs×Ns

Wk =


∣∣xk−1;1

∣∣p 0 · · · 0
0

∣∣xk−1;2
∣∣p · · · 0

...
...

. . .
...

0 0 · · · ∣∣xk−1;Ns

∣∣p


For the initialization of x before the start of the algorithm, in this thesis we chose to initialize it as the least

square solution of the problem y = Ax by setting W0 to the Identity matrix I [42].
In summary, the FOCUSS algorithm is explained in Algorithm 1
For the signal model with noise, the regularization problem can be found by applying the Tikhonov reg-

ularization as seen in Eq 3.12. The parameter λ dictates the regularization, which determines the trade-off
between finding a sparse solution and convergence of the problem [46]. The regularization problem stated
in Eq 3.10 can be written as

q̂k = argmin
(‖AWk q−y‖2

2 +λ‖q‖p
)

(3.12)

In Eq 3.12, the ‖AWk q−y‖2
2 part controls the error of the solution and the p-norm of q controls the sparsity.

Based on this regularization problem the step 4 in Algorithm 1 can be modified as shown below for a signal
model with noise.

Step 4 : qk = AH
k

(
Ak AH

k +λI
)−1

y

Where Ak = AWk withλ≥ 0
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To see how the solution is minimized, we can understand by seeing the objective that is minimized, which
is

∥∥∥W†x
∥∥∥2 = ‖q‖2 =

N∑
i=1,wi 6=0

(
xi

wi

)2

(3.13)

In Eq 3.13, the relatively large entries in W reduce the contribution of corresponding elements in x to the
cost and vice versa [42]. By multiplying the weighting matrix W with sensing matrix A FOCUSS selects the
columns of A that best represents the solution vector x, or in turn the DOA of the targets and hence less error
prone compared to greedy algorithms. In FOCUSS the cost function is implicitly generated in the process of
computation and not explicitly specified [42].

3.2.2. Block FOCUSS algorithm
In Section 3.2, the optimization problem for multiple apertures which are sparse at the same location (block
sparse) was provided in Eq 3.6. In this Section a modification of Algorithm 1 (discussed in previous Section
3.2.1) to include block sparsity of multiple snapshots is provided.

Looking at Algorithm 1 it is seen that x is used only in Step 6 in the calculation of the weighting matrix
W. Hence the FOCUSS algorithm can be modified to incorporate the block sparsity of multiple snapshots by
modifying this step. Since we assume that the vectors xl (l varies from 1, . . . ,L) for L apertures is sparse in the
same locations, the combined estimate of xl ’s is obtained in each iteration as the 2-norm solution to give a
single x from all the xl ’s. Step 6 of Algorithm 1 can thus be replaced by the following step for Block FOCUSS
algorithm.

Step 6 : Wk = diag
(‖xk‖2,p

)
Where ‖xk‖2,p = ‖v‖p ; from Eq 3.5

Hence an additional step will be added in Step 6, where we also calculate the 2-norm of xm and then
calculate the Weighting matrix W. The steps involved in Block FOCUSS algorithm to solve for Block sparse
signals of multiple snapshots is shown in Algorithm 2. The noiseless case is considered for easy comparison
with Algorithm 1. The steps involved for the signal model with noise is also discussed in detailed in Algorithm
3. In this case the value for λ is chosen as the minimum of the noise variances from all the apertures.

Algorithm 2 Block FOCUSS algorithm for multiple apertures (noiseless case)

1: Initialize k = 0; W0 = I; δt = 10−8; δ0 = 1
2: while δk > δt do
3: k = k +1
4: for l = [1,2, . . .L] do
5: qk,l = (Al Wk−1)† yl

6: xk,l = Wk−1qk,l

7: Calculate Wk →‖vk‖2 for all xk,l (l = 1, . . . ,L) from Eq 3.3
8: Calculate Wk → Wk = diag

(‖vk‖p
)

9: δk = ‖xk−xk−1‖2
‖xk−1‖2

Algorithm 3 Block FOCUSS algorithm for multiple apertures (with noise)

1: Initialize k = 0; W0 = I; δt = 10−8; δ0 = 1;λ= noise variance
2: while δk > δt do
3: k = k +1
4: for l = [1,2, . . .L] do

5: qk,l = AH
k,l

(
Ak,l AH

k,l +λI
)−1

yl Where Ak,l = Al Wk withλ≥ 0
6: xk,l = Wk−1qk,l

7: Calculate Wk →‖vk‖2 for all xk,l (l = 1, . . . ,L) from Eq 3.3
8: Calculate Wk → Wk = diag

(‖vk‖p
)

9: δk = ‖xk−xk−1‖2
‖xk−1‖2
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3.3. Performance and comparison of Block FOCUSS with BOMP
In this thesis, we will compare the proposed Block FOCUSS algorithm with state of the art BOMP algorithm
for fusion of data from multiple radar sensors. Hence it is important to understand how the two algorithms
work. In Section 3.2 a detailed explanation of FOCUSS and Block FOCUSS is given. Detailed steps involved in
the implementation of BOMP algorithm are discussed in [44]. There are some small errors in the algorithm
steps discussed in [44] and hence the steps involved are given in Algorithm 4 after corrections.

It is important to understand the working of BOMP algorithm. Block OMP or BOMP is an extension of
a greedy algorithm called OMP. OMP is a greedy algorithm and thus a fast algorithm in obtaining a sparse
solution. OMP can be extended to BOMP by combining the estimated vector x at each iteration from all the
apertures by performing a 2-norm of the vectors (or along the rows of matrix X, Eq 3.2). In every iteration
of the algorithm the matched filter response is obtained and the strongest target(with highest energy) in the
scene is declared as a target. The residue after the estimation from the previous iteration is calculated and
in the next iteration it tries to find the next possible strongest source present in the residue by finding the
matched filter response with this residual signal. Each iteration thus adds the next strongest source vector to
the list of declared targets, making the algorithm greedy in nature. The iteration ends when the residue goes
below a certain defined threshold or the number of targets to be estimated is known a prioiri. In the ideal
case, the algorithm takes K iterations if K targets are present in the imaging scene.

Thus, it becomes very important to define a right threshold for the algorithm, else we might end up with
lot of false targets detected which are of lower energy from the left over residue. This threshold can change
from one system to another and needs to be fine tuned for the given system. Also, the performance of the
algorithm for low SNR is not as good as it is for higher SNR values [45]. Another important point to be noted
is that BOMP suffers from ghost targets being detected, reason being if there is an error in the initial target
estimation the algorithm tries to find another target in the left over residue in the following iteration. Hence,
there are some limitations with this algorithm.

On the other hand Block FOCUSS is an extension of the FOCUSS algorithm which is also algorithmically
very efficient and is robust for noise in comparison with OMP [45]. The computational efficiency of FOCUSS
can be improved by replacing the pseudo-inverse step with a computation of Singular Value Decomposi-
tion (SVD) of WA as explained in [47]. Further improvement in computational efficiency can be considered

Algorithm 4 BOMP algorithm for multiple apertures

1: Initialize k = 0;rl = yl ; δt = user defined threshold for stoppingthe algorithm; I = null set
2: while δk > δt do
3: k = k +1
4: for l = [1,2, . . .L] do
5: Matched filter response: mk,l = AH

l rk,l

6: Construct a vector for L apertures and for N grid points in dictionary as

ζ=


`2

(
m(1)

1 m(2)
1 · · · m(L)

1

)
`2

(
m(1)

2 m(2)
2 · · · m(L)

2

)
...

...
...

`2

(
m(1)

N m(2)
N · · · m(L)

N

)


7: Find the index n of the maximum entry of ζ (thereby identifying the pixel on the grid with the highest

energy value) and merge n into an index set Ik = Ik−1 ∪ {n}
8: Construct a partial sensing matrix Ek,l which only constitutes the columns of Al listed in Ik .
9: Compute the complex weights wk,l , which is the least square solution of the over determined linear

equation

yl = Ek,l wk,l

i.e., wk,l = pinv(Ek,l )yl

Here, vector wk,l lists the reflectivities of the targets found in the index set Ik .
10: Find the residual signal rk,l

rk,l = yl −Ek,l wk,l

δk = ‖rk,l‖2
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through hardware acceleration to improve the feasibility of the algorithm in a practical implementation.

In [48], a comparison is provided for FOCUSS with OMP in terms of Mean Square Error (MSE) of the re-
covered samples. It is shown that the MSE of FOCUSS is much lower than OMP. In [42] proof of convergence
is given for FOCUSS algorithm. Also, in FOCUSS the initial estimate calculated (x0) is not simply increased
as the algorithm advances. In fact the largest entries in x0 can also become zero when the algorithm con-
verges to x̂ [42]. Significant improvement in computation of the algorithm can be achieved along with better
convergence and performance properties can be gained by pruning the diminishing entries at each iteration
[42]. The FOCUSS algorithm converges asymptotically to a fixed point for any starting point x0 as proven in
[42]. It is seen that by initializing sufficiently closer to the solution, only few iterations are needed in order to
converge to the true solution.

In [45], an extensive study is done comparing the performance of FOCUSS algorithm with other algo-
rithms which also includes OMP for multiple measurement vectors. It is seen that FOCUSS performs much
better than OMP in terms of achieved MSE and also the authors state that there is no significant increase in
the computational efficiency of FOCUSS with multiple measurement vectors(multiple snapshots extracted
from different Range-Doppler measurement over time from single sensor) as there is still only one pseudo
inverse computation per iteration. With the availability of multiple measurement vectors in time from the
same sensor in future, to extend the FOCUSS algorithm is fairly easy and also computationally efficient. Also
a detailed study is performed in the angular resolution achieved in DOA estimation using a single ULA and
sparse array radar unit for different algorithms in [15]. To compare the two algorithms few important charac-
teristics of the algorithms are used like mean square error, false alarms and probability of resolution. These
parameters will help determine the performance of the algorithms. It can be seen that for both ULA and
sparse array configuration FOCUSS has much better angular resolution performance than OMP.

Thus, it is seen that using FOCUSS over greedy algorithms like OMP has much to be gained in perfor-
mance for a very small increase in computational efficiency. FOCUSS provides a relatively inexpensive way
to accurately estimate the sparse signals [42]. This is the reason why we chose to extend the FOCUSS algo-
rithm to be used for estimating the signal from multiple snapshots which are sparse at the same location
(block sparse) instead of using existing algorithms like BOMP.

3.4. Simulation
A simple simulation is performed to demonstrate the results obtained using Block FOCUSS. Two targets
placed at a range of 20 m from the radar and separated by 3◦ in DOA is considered. The frequency used is
78 GHz and the Bandwidth is 250 MHz. A high SNR scenario of 30 dB is considered in this simulation. Two
radar sensors separated by a baseline of 128λ is used where each sensor consists of 3 transmitters and 4
receivers forming 12 virtual antenna elements. To find the theoretical resolution a study of the ambiguity
function (AF) is performed. The details about AF and how it is calculated is explained in Appendix B. Fig

-60 -40 -20 0 20 40 60

Theta [degree]

-40

-35

-30

-25

-20

-15

-10

-5

0

5

A
F

 n
or

m
al

iz
ed

 [d
B

]

AF for incoherent processing with baseline of 128lambda

Figure 3.2: AF for incoherent processing



28 3. Generalized Block FOCUSS algorithm

-20 -15 -10 -5 0 5 10 15 20

Broadside angle [degrees]

-12

-10

-8

-6

-4

-2

0

2

4

N
or

m
al

is
ed

 p
ow

er
 [d

B
]

DOA estimation by incoherent processing for BL 128lambda

FOCUSS using one sensor
Block FOCUSS
BOMP
True DOA 1
True DOA 2

Figure 3.3: DOA estimation using incoherent processing

3.2 depicts the AF obtained from incoherent processing of the responses obtained from the two sensors. As
shown in the plot, the AF is equivalent to that of an AF of the sub-aperture present in the system for incoher-
ent processing. This is because Block FOCUSS performs incoherent processing, thus the distributed sensors
are not treated as one large aperture. This restricts the resolution to the sub-aperture used in the distributed
system. The theoretical resolution that can be achieved is calculated by measuring the MLW of the AF which
is ∼ 8.5◦ (which agrees with the theoretical limit for a sensor consisting of 12 ULA). The Block FOCUSS al-
gorithm is a super resolution algorithm, thus the resolution obtained should be better than the theoretical
resolution. The dictionary spacing is 1◦ with scan angles from −45◦ to +45◦. By performing incoherent pro-
cessing there is a spatial diversity gain that is still beneficial, which will help in attaining better resolution
than using a single sensor [3]. Having multiple sensors that are looking at the same target from different an-
gles can bring in different perspective and can help resolve the two closely spaced targets. This is depicted
in Fig 3.3, the two targets are placed at 1◦ and −2◦ shown by the dotted lines in the plot. The output of the
FOCUSS algorithm by processing data from a single sensor is shown along with the output of the Block FO-
CUSS and the BOMP algorithms which process the 4 responses (2 mono-static and 2 bi-static) from the two
sensors incoherently. The single sensor case fails to resolve these two targets separated by 3◦, whereas the
Block FOCUSS algorithm succeeds in resolving them. It is shown that the BOMP algorithm fails to resolve
the two targets as well. To study and compare the performance of the algorithms, Monte Carlo runs are per-
formed and parameters like probability of resolution, root mean square error and probability of false alarms
are calculated which is presented in Chapter 5.

3.5. Conclusions
In this chapter, block sparsity is explained and how it can be used to fuse data from multiple radar sensors
is discussed. Block sparsity works on the principle that the DOA to be estimated from multiple sensors is
sparse at the same location, namely, they have the same support. Block sparsity does not assume that the
RCS of targets seen is same from all the sensors. Thus, it can be used as a general algorithm for all cases
of system coherency and for isotropic or non-isotropic targets. The FOCUSS algorithm which uses lp -norm
optimization is explained and the steps to perform the algorithm are discussed. The Block FOCUSS is derived
from the FOCUSS algorithm by combining the estimated signal from virtual apertures in each iteration, by
performing a l2,1-norm. In each iteration the signal obtained after performing l2,1-norm on all the virtual
apertures, is used to define the new weighting matrix. Performance of the Block FOCUSS algorithm and
comparison of the same with state of the art BOMP algorithm is studied. The study shows that FOCUSS
performs much better in terms of convergence to the true solution for a small increase in computational
complexity when compared to OMP. Thus, Block FOCUSS algorithm which is an extension of FOCUSS is
preferable over BOMP which is an extension of OMP, in order to estimate targets in the angular domain for a
distributed system. In simulation it is shown that, for a system with baseline of 128λ and an effective aperture
of 6λ, the Block FOCUSS algorithm can resolve two targets separated by 3◦, whereas single sensor and BOMP
algorithm fails to do so.
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Coherent processing of signals

This chapter introduces a special case of signal processing for data obtained from a distributed system, when
the sub-systems are fully coherent. In the previous chapter a way to perform DOA estimation of targets by
incoherently combining the data from multiple sensors was presented. In this method the resolution that
can be obtained is still limited by the largest sub-aperture in the distributed system. This chapter provides a
way to combine the data coherently such that the resolution achieved is proportional to the aperture of the
distributed system. It provides a way to achieve higher angular resolution when the radars are fully synchro-
nized and targets are isotropic. This is possible when the targets are seen to be isotropic with respect to the
distributed system as discussed in Section 2.2. Section 4.1 discusses the properties of system and targets to
perform coherent processing and also the pre-processing steps needed to ensure coherency are discussed.
In Section 4.2 a Coherent FOCUSS algorithm is introduced. The ambiguity function of a distributed system
and the limitations of coherent processing are discussed in Section 4.3. Section 4.4 presents a way to com-
bine mono-static and bi-static responses of the system in an incoherent and coherent fashion respectively by
employing Fusion FOCUSS algorithm. Coherent FOCUSS and Fusion FOCUSS algorithms in the way they are
presented in this thesis are novel. Section 4.6 concludes the chapter.

4.1. Coherency of system and targets
In Chapter 3, the Block FOCUSS algorithm was proposed to solve the problem of DOA estimation using data
from multiple radar systems. In this method the coherency of the system is not necessary, i.e., the sub-
systems can be mutually incoherent and still the Block FOCUSS algorithm can be applied for the mono-static
responses. If the radars are fully coherent then multi-static responses can also be combined to get a better
estimate of true positions of the targets. In this algorithm the targets should be visible by both the radars but
the nature of the target is not considered as it does not matter if the RCS seen by different apertures are not
same.

In this section, we introduce a special way to process the data if it is known a prior that the system is fully
coherent and the target is perceived in an isotropic way by the entire system, i.e., the RCS of the targets ob-
served by all the sub-systems within the system is same. When the system is fully coherent it is important to
decide if coherent combining of data needs to be performed based on the properties of the target. This is in-
deed not an easy way to determine, the conditions under which a target is considered isotropic is discussed in
Section 2.2. In this thesis we propose the coherent combining of the data assuming we are able to determine
the isotropic nature of targets and the system is fully coherent. Under these conditions the distributed system
can be treated as one large sparse array, with a large number of elements missing in between the sub-systems

Figure 4.1: Combined physical aperture of the distributed system
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Figure 4.2: Mono-static and bi-static response of distributed system

(the number of missing elements depends on the separation of the sensors in the distributed system). This is
depicted in Fig 4.1, where the virtual elements formed by sensors M1 and M2 are shown, which are separated
by a distance referred to as the baseline. Baseline represents the physical aperture of the system i.e., if the
sub-systems together are considered to form one large virtual array with elements missing in the center, then
the physical aperture that can be achieved is depicted by the baseline separation between M1 and M2. Thus
we can benefit from this as the azimuth resolution that can be achieved is directly proportional to the array
virtual aperture that is formed by the 2 sensors.

• Coherency of system

In order to perform DOA estimation by treating the distributed system as one large array, it is extremely
important that the sub-systems are fully coherent. Only then we ensure that an isotropic target can
be processed in a coherent way. Achieving complete coherency between the sub-systems is not easy,
however it is not impossible either. [20] provides detailed steps that can be followed to achieve the
synchronization and coherency between all the sub-systems. In this thesis, we assume that the sub-
systems used in the distributed system are mutually coherent.

When the sub-systems are mutually coherent, the chirps transmitted from one sub-system can be
received and properly dechirped as explained in Section 2.3 by the other sub-systems without any
anomalies (like frequency offset, time offset, phase offset). Moreover the bi-static responses of the
system provide additional data points and helps to get a better estimate of the true signal.

• Isotropic property of targets

In Section 2.2, the isotropic nature of targets is studied in detail. To recall, if the RCS of a target at a
certain distance is identical regardless from which angle it is observed, the target is called isotropic,
if not it is said to be non-isotropic, Fig 2.4. When the target is isotropic in a certain angular sector,
the responses received by all the sub-systems are correlated and the RCS seen by all the sub-systems
remains the same in the given angular sector. For a given baseline separation of the radar system, the
distance of the target at which the target is perceived in an isotropic manner can be calculated using Eq
2.5.

If it is known that the target is isotropic as seen from the distributed radar then we can perform coherent
processing on the received signal by combining data from all the sub-systems coherently in order to
achieve higher angular resolution.

4.1.1. Distributed array configuration
In the system geometry discussed in Section 2.1, M1 and M2 sensors are considered to be identical (can differ
in orientation) and placed at equidistant from the center, separated by a distance of B as shown in Fig 2.1.
Then the virtual apertures of the mono-static and bi-static responses are as shown in Fig 4.3 [20]. The two bi-
static responses of M1 and M2 forms a virtual ULA in the center of the system. The responses of mono-static
and bi-static can be generated using Eq 4.1 [5], where dT x and dRx represents the transmitter and receiver
element positions in the sensor. If a sensor comprises of NT x and NRx transmitter and receiver elements
respectively, then the virtual array with these elements can be calculated as

d Virt = d Tx ⊕d Rx :=
[

d Tx
1 +d Rx

1 ,d Tx
1 +d Rx

2 , · · · ,d Tx
NTx

+d Rx
NRx

]
(4.1)

Extending the Eq 4.1 for a distributed system with 2 sensors separated by a baseline B it can be shown
that the virtual array for the mono-static and bi-static responses can be calculated as explained in the below
steps. If d T x

1 ,d Rx
1 ,d T x

2 ,d Rx
2 are the absolute positions of the antenna elements when the 2 sensors are in the

center. M1 sensor comprises of d T x
1 ,d Rx

1 and M2 sensor comprises of d T x
2 ,d Rx

2 elements then we have the
following
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• For the left sensor M1 we have

d T x
M1 = d T x

1 −B/2

d Rx
M1 = d Rx

1 −B/2

dV i r t
M1 = (

d Tx
1 ⊕d Rx

1

)−B

• For the right sensor M2 we have

d T x
M2 = d T x

2 +B/2

d Rx
M2 = d Rx

2 +B/2

dV i r t
M2 = (

d Tx
2 ⊕d Rx

2

)+B

• For the bi-static response where M1 is transmitting and M2 is receiving (Left to Right or in short L2R)
we have

d T x
M1 = d T x

1 −B/2

d Rx
M2 = d Rx

2 +B/2

dV i r t
M1M2 =

(
d Tx

M1 −B/2
)⊕ (

d Rx
M2 +B/2

)= d Tx
M1 ⊕d Rx

M2

• For the bi-static response where M2 is transmitting and M1 is receiving (Right to Left or in short R2L)
we have

d T x
M2 = d T x

2 +B/2

d Rx
M1 = d Rx

1 −B/2

dV i r t
M2M1 =

(
d Tx

M2 +B/2
)⊕ (

d Rx
M1 −B/2

)= d Tx
M2 ⊕d Rx

M1

From the above expressions, it is shown that the baseline value cancels in the bi-static responses and thus
B has not influence on the relative positions of the virtual antenna elements of the two bi-static responses.

Figure 4.3: Mono-static and bi-static response for a 3 × 4 MIMO sub-system M1 and M2
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Figure 4.4: Mono-static and bi-static response for a 3 × 4 identical sub-systems M1 and M2 which have different orientation

But for the mono-static responses B is present in the expression, hence for coherent processing of all re-
sponses, B has to be known exactly. But for coherent combining of just the bi-static responses and also for
incoherent combining of responses we need not know the absolute value of B . Also if the orientation of M1
and M2 sensors are different, as seen from the above expressions it is shown that the 2 bi-static responses are
not the same.

Fig 4.3 (top) shows an example explaining Eq 4.1 for a distributed system as discussed in above steps.
M1 and M2 are identical sensors and both have 3T x ′s and 4Rx ′s spaced as shown in figure. The baseline
separation between M1 and M2 is 8λ. The resultant virtual positions from the mono-static and bi-static
responses are as shown in the Fig 4.3 (bottom). From the figure, the 2 bi-static responses from M1 and M2
sensors are seen to overlap, this is because the positions of transmitting and receiving elements in M1 and M2
are symmetrical around the origin. Thus, we see that by using 2 mono-static and 2 bi-static responses from
the sensors we can achieve a large virtual aperture consisting of 4 small virtual apertures as shown in Fig 4.3.

Fig 4.4 shows an example explaining Eq 4.1 for a distributed system as discussed in above steps. M1
and M2 are identical sensors which are mirrored in their orientation and have a certain offset in the receiver
elements as shown in the top of figure. The baseline separation between M1 and M2 is 16λ. The resultant
virtual positions from the mono-static and bi-static responses are as shown in the Fig 4.4 (bottom). From the
figure, the 2 bi-static responses from M1 and M2 sensors are seen to form a larger aperture in the center and
do not overlap as in Fig 4.3, this is because the positions of transmitting and receiving elements in M1 and
M2 are not centered around the same location and the 2 sensors are mirrored.

4.1.2. Signal Model for DOA estimation by coherent processing
For coherent processing, the sensing matrix can be written as a matrix consisting of columns with beam
steering vectors representing the virtual elements of the whole array. For example if we have M1 and M2 both
containing 12 element virtual ULA, then the sensing matrix will be made up of columns of size 4×12 elements,
where 2 of them represent the mono-static virtual arrays and the other 2 the bi-static virtual arrays, i.e., the
entire system is treated as one big array. For the system defined in Fig 2.1 the steering matrix for each of the
virtual response is discussed in Section 2.4.2 which is given by Eq 2.15, 2.16, 2.19 and 2.20. The steering matrix
for the mono-static responses of M1 and M2 are represented as A1andA2 respectively, the bi-static response
obtained when M1 is transmitting and M2 is receiving is represented by A3 and the bi-static response with
M2 transmitting and M1 receiving is given by A4. Since the RCS observed by all the responses are assumed to
originate from isotropic targets we can write the optimization problem as seen by one large array with virtual
responses as shown in Fig 4.3.

yc = Ac x+n (4.2)
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y1

y3

y4

y2

=


A1

A3

A4

A2

 [x]+n (4.3)

yc ∈C4N×1;x ∈CNs×1;Ac ∈C4N×Ns

In Eq 4.2 yc is obtained by stacking snapshots from the 4 apertures in a single column, Ac is obtained by
stacking the sensing matrices of 4 virtual arrays vertically as shown in Eq 4.3. Here the x to be estimated is
the same for all apertures. Thus, by solving this system of equation x can be estimated using CS techniques
which is discussed in Section 4.2.

4.1.3. Phase compensation due to path length difference
In order to perform DOA estimation in a coherent fashion as discussed in previous section it is important that
the initial phase of received signal from all the apertures are same, else the DOA estimation will lead to errors.
In Section 4.1 the coherency of system and isotropic property of targets are explained which ensures that all
apertures experience the same phase of a target. However, the phase perceived by the apertures can still be
different which arises from the path length difference. To correct for this we need to know the distance to
the target for each aperture. With Range-Doppler processing a coarse estimation of range is obtained whose
uncertainty is related to the range resolution. Due to this inability to precisely measure the range of the target
we do not exactly know what the path length difference is and hence cannot be corrected. Range resolution
is inversely proportional to the bandwidth of the signal used, hence even if the radar uses a bandwidth of
3G H z −5G H z (typically considered to be large BW), the range resolution that can be achieved is limited to
few centimetres. This means that the target can be present anywhere in the range cell whose resolution is few
centimetres. Thus, there is an error in the range measurement of the target when compared to the true target
position that occurs due to the quantization of the target to center of the range cell. The wavelength of the
signal used for automotive radar is usually in the millimetre (mm) range, even an error of few millimetres can
make the phase of the signal to wrap around multiple times (a factor of 2π) as it travels back from the target
to radar. This is called as Range-Angle coupling as explained in [36]. Fig 4.5 depicts this phenomenon for a
system with 2 sensors M1 and M2. The shaded elliptical regions show the single range cell of the 2 sensors
at range R1 and R2. When the target is at position T1 or T2 as shown in the figure, the target is detected at
T0 by the sensors as it is quantized to the center of the range cell. Thus, the actual distance of a target from
the sensors is different than the one measured by the sensor if the target is not at the center of the range cell.
Because the range of the target measured by sensors M1 and M2 can vary in multiples of wavelengths (based

Figure 4.5: Phase change due to path length difference between target and the 2 sensors
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on the resolution of range cell), the phase of the waveform received is also different. This phase change due
to the path length difference needs to be corrected in order to process the signal coherently. From Eq 2.6 the
phase (β), which is the total phase is given as follows

β= fcτ+1/2ατ2 (4.4)

In the above equation, fc is the carrier frequency of the transmitted signal, τ is the time delay or round
trip delay given as 2R/c, where R is the range of the target from radar and c is the constant for speed of
electromagnetic wave, α is the ratio of bandwidth to chirp duration. For the 4 responses that are obtained for
the system explained in Section 2.1 (Fig 2.1) the τ value can be calculated as

τ1 = 2R1/c
τ2 = 2R2/c

τ3 = (R1 +R2)/c
τ4 = (R1 +R2)/c

(4.5)

In the above equation, τ1 andτ2 are the round trip delay for the 2 mono-static responses, τ3 andτ4 are the
round trip delay for the 2 bi-static responses. As the range R1 and R2 cannot be precisely estimated due to the
range quantization error discussed, there will be a phase difference in the received signal as seen by different
responses. This phase difference needs to be compensated in order to coherently process the signals. From
Eq 4.5 τ3 andτ4 have the same value and hence the phase of the bi-static responses due to the path length
difference will be same. The phase difference of the mono-static responses can be compensated with respect
to the bi-static responses by multiplying with the phase difference observed between the two. If β1, β2, β3

and β4 are the phase differences of the 2 mono-static responses and 2 bi-static responses respectively due to
the path length difference as given in Eq 4.4, then the difference between the mono-static and the bi-static
responses can be approximated as

β1 −β3 ≈ fc (R1 −R2)/c = (R1 −R2)/λ
β2 −β3 ≈ fc (R2 −R1)/c =−(R1 −R2)/λ

∆β= (R1 −R2)/λ
(4.6)

In the above equation only β3 is used, but note that the value of β3 and β4 is same. Also, the τ2 term in
the difference is left out as the value is too small and hence the difference between them is negligible. The
modelled phase difference can be compensated for each response by accounting for it in the definition of
sensing matrix, by multiplying each column of the sensing matrix with the corresponding phase difference.
The steps for this is explained below:

1. For every θ in the dictionary of sensing matrix A, the corresponding angles and range of the target with
respect to 2 sensors is calculated using Eq 2.1 - Eq 2.4

2. The phase difference due to different path lengths between the responses is calculated for each column
(θ), given as ∆βn (n = 1 : Ns ) using Eq 4.6 (∆βn = (R1n −R2n)/λ)

3. The new sensing matrix is defined by multiplying each column of the sensing matrix with the corre-
sponding phase difference that is calculated in Step 2. This is represented below, where Eq 2.15 and Eq
2.16 for sensing matrix is re written as

A∗
1 = A∗(ϕ) =

[
a
(
ϕ1

) ·e− j 2πβ1 ; a
(
ϕ2

) ·e− j 2πβ2 ; . . . ;a
(
ϕNs

) ·e− j 2πβN s
]

(4.7)

A∗
2 = A∗(ψ) =

[
a
(
ψ1

) ·e j 2πβ1 ; a
(
ψ2

) ·e j 2πβ2 ; . . . ;a
(
ψNs

) ·e j 2πβN s
]

(4.8)

Note that A3 and A4 remain the same as the phase difference between mono-static responses are cal-
culated with respect to the bi-static responses

By following the above mentioned steps, the phase difference caused due to path length difference ob-
served by the radar sensors is compensated for every DOA of the target that is considered in the dictionary
defined for sensing matrix. Thus making the phase of the targets as perceived by the sensors to be coherent.
Please note that this compensation works for a radar with infinite range resolution or a sensor which can esti-
mate the range of the target to millimeter precision in this case. We propose a method to compensate for the
phase change that occurs due to path length difference, in order to do so it is important to determine precisely
the true range of the target else there might be ambiguities that arise due to the applied phase compensation.
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4.2. Coherent FOCUSS
As discussed in Section 4.1, coherent processing can be done to improve the angular resolution if the targets
and the system are isotropic and coherent respectively. In this section the steps involved in performing coher-
ent processing using FOCUSS algorithm is discussed in detail. In Section 3.2.1 the steps involved in FOCUSS
algorithm for a system in the form y = Ax+n is discussed. From Eq 4.2 the problem formulation for coherent
processing of the virtual apertures is given. Section 4.1.3 discusses the phase compensation that needs to be
applied to the columns of the sensing matrix for mono-static apertures. Thus the system of equations to solve
the problem in a coherent fashion can be written as

y1

y3

y4

y2

=


A∗

1
A3

A4

A∗
2

 [x]+n (4.9)

In Eq 4.9 A∗
1 and A∗

2 are given by Eq 4.7 and Eq 4.8 respectively. The Eq 4.9 can be re-written by defining a
new vector yc comprising of all the snapshots stacked and a new sensing matrix Ac by stacking the 4 sensing
matrices as in Eq 4.9. The new equation is given as

yc = Ac x+n (4.10)

To solve the above Eq 4.10, we can make use of the FOCUSS algorithm discussed in Algorithm 1 where y
and A are now replaced by new vector yc and new sensing matrix Ac .

4.3. Ambiguity function of the distributed system
By performing coherent processing of multiple apertures, a higher angular resolution can be obtained as the
virtual aperture of the array is now equivalent to that of twice the baseline of the system. This can be validated
by looking at the ambiguity function of the distributed array. The ambiguity function can be calculated as a
matched filter response as explained in Appendix B. If we have 2 sensors M1 and M2 separated by a baseline
separation of 16λ, then the virtual aperture for this is shown as in Fig 4.6. In this configuration shown, the
receiver element positions of the sub-system in the uniformly distributed MIMO are offset by a multiple of
lambda relative to the transmitter element positions. This is done in order to get a virtual array in which the 2
bi-static responses don’t overlap. The virtual element positions for the 2 mono-static and 2 bi-static responses
are depicted in the Fig 4.6 with the notation ‘Left to Left (L2L)’, ‘Right to Right (R2R)’ , ‘Left to Right (L2R)’ and
‘Right to Left (R2L)’ respectively. The ambiguity function for such an array is depicted in Fig 4.7. In the Figure
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Figure 4.6: Mono-static and bi-static response for a 3 × 4 MIMO sub-system M1 and M2
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Figure 4.7: Ambiguity function for coherent and incoherent processing for 16λ baseline

Figure 4.8: Ambiguity function for coherent and incoherent processing for 64λ baseline (mono-static responses only)

the plot "incoherent" (blue plot) shows the AF for the individual mono-static array, it has the same AF and
forms an envelope for the coherent array. The plot "coherent" (red plot) shows the AF obtained by coherent
processing of the data as studied in Section 4.2.

From the Fig 4.7, the Main Lobe Width (MLW) of the coherent processing is much narrower than that of the
incoherent processing. The MLW of the incoherent processing is ∼ 8.5◦ and that of the coherent processing
is ∼ 1.6◦. From this it can clearly be inferred that coherent processing has a much better resolution capability
than incoherent processing as it has a larger virtual aperture. The MLW will reduce further with increase of
the baseline in order to get a larger virtual aperture, but this comes at a cost of increase in Side Lobe Level
(SLL). The increase in SLL can be understood, because when the baseline increases, the virtual array becomes
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Figure 4.9: Comparison of AF for different sub-apertures with baseline separation 64λ

more sparse. For a sparse array, high SLL is a problem, Fig 4.8 shows the AF response of just the mono-static
responses with a baseline of 64λ. In this context the side lobes of the overall response is seen to be very high
which is caused due to the grating lobes of the sparse distributed aperture. It is seen that the MLW is narrower
but the side lobes have significantly increased which is caused by the absence of more elements between the
2 sensors due to increased baseline when compared to 16λ baseline. Having such high number of side lobes
can lead to pointing errors in the DOA estimation. What this means for coherent processing is explained next.

In [21], the AF response for a distributed system with one large virtual aperture consisting of multiple
smaller sub-apertures (formed by the sub-systems) is explained in detail. The key take-away from this is that
the overall AF response of the coherent processing is a product of individual sub-systems aperture and a two
element array with a spacing of 2B . Since a 2 element array with 2B spacing is highly sparse it will result in
multiple grating lobes. This is demonstrated in Fig 4.9, where the AF for a distributed system with 2 different
sub-apertures is depicted. A sub-system forming a 12 element ULA and a 24 element ULA is considered for
comparison, note that the aperture of 24-ULA is double than that of the 12-ULA. The coherent processing
suffers from high side lobes in this as discussed, but the side lobes follow the AF response of the incoherent
processing (which is nothing but the response of the sub-system aperture or sub-aperture). Thus, the side
lobes are suppressed in the overall response due to the sub-aperture MLW. Thus the side lobes is a function of
the baseline of the distributed array, but the entire response is a product of 2 element array with an aperture
of 2B and the sub-aperture. The ratio of the distributed aperture (baseline) to the aperture of the sub-system
needs to be defined appropriately to avoid the problems of side lobes. Note that in Fig 4.8 and Fig 4.9 only
the mono-static responses are considered to understand the concept, by adding the bi-static responses some
of the side lobes are further suppressed as the sparsity in the distributed array reduces, as it can be seen as
addition of 2 more array elements in between the 2B separated sensors.

These very high SLL caused by the grating lobes of the sparse distributed array can lead to pointing errors
when estimating the DOA of the target. The SNR needs to be very high in order to not land in one of these
side lobes while estimating the DOA, which in general is hard to achieve.

This problem of side lobes can also be reduced by introducing more sensors in the system, in this study
we consider only 2 sensors, but by introducing another sensor in the center of the system the number of
multi-static responses will increase in the powers of 2, thus reducing the sparsity and in turn the side lobes
in the distributed array. Another method is to design the system in such a way that the ratio of distributed
aperture and sub-aperture is reasonable and acceptable.
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4.4. Coherency of bi-static responses
In previous section, it was shown that the AF response of the coherent processing of all the sub-apertures can
lead to very high side lobes for larger baseline separation and it is very difficult to suppress them for higher
baselines. This can be a problem in applications like automotive radar where the sensor positions cannot
be very closely spaced, the manufacturers of the automobile might prefer to separate the sensors by optimal
placement of them on the car fascia which can lead to high SLL as seen in Section 4.3. In such scenarios
coherent processing of the entire aperture can be inefficient due to very large side lobes, which can cause
pointing errors especially for lower SNR values as the side lobe is very close to the main lobe and the target
DOA can be wrongly estimated to fall in one of the adjacent side lobe. One possible solution for this is to
process only the bi-static responses coherently and the 2 mono-static responses incoherently.

In [49], the coherency of bi-static response is discussed in detail. The conditions under which the bi-static
responses can be assumed to be coherent are stated as follows:

• The mono-static responses are strongly correlated

• Bi-static angle is very small (less than 10◦). The bi-static angle is the angle made between the transmit-
ter, target and receiver in the distributed radar where the transmitter and receiver are not co-located.

• Individual reflectors present in the imaging scene are omni-directional and are not in the shadow of
each other

When the above conditions are satisfied for a given system and imaging scene, it can be assumed that
the bi-static responses are coherent. Fig 4.11 shows the AF response for the incoherent processing of the
mono-static responses and coherent processing of bi-static responses. The sensors M1 and M2 have receiver
positions offset from the uniform array position in order to obtain twice the virtual aperture formed by the 2
bi-static responses [20] as shown in Fig 4.10 (for a MIMO sensor with 3 transmitter and 4 receivers). From Fig
4.11 it is seen that the MLW of the bi-static responses that are coherently processed is half that of individual
mono-static responses that are incoherently processed. This implies that we have a factor of 2 improvement
in the angular resolution that can be gained by processing the bi-static responses coherently.

4.4.1. Fusion FOCUSS
Previous section shows that by processing only the bi-static responses coherently, the angular resolution
can be increased by a factor of two. To perform the DOA estimation by fusion of data i.e., processing the
mono-static responses incoherently and the bi-static responses coherently a modified version of FOCUSS is
provided in this section, which is called the Fusion FOCUSS. Fusion FOCUSS profits from the large virtual
aperture of the coherent bi-static responses but avoids the complications of exploiting coherence from all

Figure 4.10: Virtual positions of mono-static and bi-static apertures formed by 2 sensors with 3Tx and 4Rx elements
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Figure 4.11: Comparison of AF for mono-static and bi-static responses for 64λ baseline

Algorithm 5 Fusion FOCUSS algorithm for incoherent combining of mono-static and coherent combining of
bi-static responses (with noise)

1: Initialize k = 0; W0 = I; δt = 10−8; δ0 = 1;λ= noise variance
2: Construct yb and Ab from bi-static responses as in Eq 4.11
3: while δk > δt do
4: k = k +1
5: for l = [1,2, . . .L] do . Eg: l = 1,2 for y1, y2 and l = 3 for yb

6: qk,l = AH
k,l

(
Ak,l AH

k,l +λI
)−1

yl Where Ak,l = Al Wk withλ≥ 0
7: xk,l = Wk−1qk,l

8: Calculate Wk →‖vk‖2 for all xk,l (l = 1, . . . ,L) from Eq 3.3
9: Calculate Wk → Wk = di ag

(‖vk‖p
)

10: δk = ‖xk−xk−1‖2
‖xk−1‖2

the responses (path length difference compensation problem). Fusion FOCUSS is same as Block FOCUSS ex-
cept that the sub-apertures now have different number of spatial samples, the bi-static responses have twice
the number of spatial samples as that of the mono-static responses. The concept in this remains the same as
Block FOCUSS, a common grid of dictionary elements is defined for all the sub-apertures, the sensing ma-
trices for each of them is defined which has same number of columns and the DOA estimation is performed
by trying to minimise the lp−norm of x as shown in Eq 3.8. There is however an extra step involved in this,
which is the construction of the sensing matrix for the bi-static responses. If the assumption that the bi-static
responses are coherent holds, as discussed in Section 4.4, then the system of equations for bi-static responses
can be combined as [

y3

y4

]
=

[
A3

A4

]
[x]+n (4.11)

yb = Ab x+n (4.12)

Eq 4.11, gives the system of equations for the bi-static responses that are coherent. A single measurement
vector yb is constructed by taking the spatial samples from the same Range-Doppler bin of both bi-static
modes. A single sensing matrix Ab is obtained by stacking the two sensing matrices A3 and A4 which are
given in Eq 2.19 and Eq 2.20. For a system with 2 sensors such as the one shown in Fig 2.1 there will be now
3 apertures in total instead of the 4 that was discussed in Section 3.2.2. The 2 apertures from the 2 mono-
static responses which are considered to be mutually incoherent and the other aperture is the combined,
coherently assumed, 2 bi-static responses. Thus now we have L = 3 instead of L = 4 which was the case for
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Block FOCUSS algorithm where all the responses were treated to be mutually incoherent. After this step,
the steps for Fusion FOCUSS are same as Block FOCUSS which is explained in detail in Algorithm 5. The
dimension of the estimated vector xl is same for each L even though the size of the measurement vector yl

and sensing matrix Al are different as the same dictionary is used for all the apertures (refer to Algorithm 5).

4.5. Simulation

A simple simulation is performed to demonstrate the results obtained by using Coherent FOCUSS. Two tar-
gets placed at a range of 20 m from the radar and separated by 1◦ in DOA is considered. The frequency used
is 78 GHz and the bandwidth is 250 MHz. A high SNR scenario of 30 dB is considered in this simulation. Two
radar sensors separated by a baseline of 64λ is used where each sensor consists of 3 transmitters and 4 re-
ceivers forming 12 ULA. The theoretical resolution for a baseline separation of 64λ is shown to be ∼ 1.6◦ in
Section 4.3. The simulation results of coherent processing is depicted in the Fig 4.12, the two targets are
placed at 0◦ and −1◦ which is shown by the dotted lines in the plot. The dictionary spacing is 1◦ with scan
angles from −45◦ to +45◦. The output of the Coherent FOCUSS algorithm is shown along with the output
of the Block FOCUSS and the BOMP algorithms for comparison. From the figure it is shown that Coherent
FOCUSS is able to resolve the two closely spaced targets separated by 1◦, whereas the Block FOCUSS and the
BOMP fails to resolve the targets. The result from the Block FOCUSS and the BOMP is hard to distinguish
in the plot as they have the same result. This shows that Coherent FOCUSS has better resolution capability
than incoherent processing, which is inline with the theory explained in this chapter. To study and com-
pare the performance of the algorithms, Monte Carlo runs are performed and parameters like probability of
resolution, mean square error and probability of false alarms are calculated which is presented in Chapter 5.

Simple simulation is performed to evaluate the functionality of the Fusion FOCUSS and the results are
depicted in Fig 4.13. Similar setup described above for coherent processing is used, but now the two targets
are placed 2◦ apart, one at 1◦ and the other at −1◦ depicted by dotted lines. The sensors are designed with a
receiver offset and are mirrored in orientation with respect to each other such that, the bi-static aperture is
double than that of a single mono-static aperture as depicted in Fig 4.4. It is ensured that the RCS received by
both the bi-static responses are same in this scenario. Thus, the bi-static responses are processed coherently,
whereas the mono-static responses are processed incoherently. The Fusion FOCUSS is employed to perform
this combined coherent and incoherent processing. It is shown in the Fig 4.13 that the Fusion FOCUSS is able
to resolve the two targets separated by 2◦, whereas the Block FOCUSS fails to do so. Block FOCUSS detects a
single target at −1◦ and fails to detect the target at 1◦. Thus, we get better resolution by processing the bi-static
responses coherently as they form a virtual array with virtual aperture double than the mono-static response
as explained in Section 4.4.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Broadside angle [degrees]

-6

-4

-2

0

2

4

N
or

m
al

is
ed

 p
ow

er
 [d

B
]

DOA estimation by coherent processing for BL 64lambda

Coherent FOCUSS
Block FOCUSS
BOMP
True DOA 1
True DOA 2

Figure 4.12: DOA estimation using coherent processing
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Figure 4.13: DOA estimation using Fusion processing of coherent and incoherent apertures

4.6. Conclusions
In this chapter, the necessary conditions to perform coherent processing of the data in order to estimate
the DOA of targets is discussed. The condition is that the system consisting of multiple sensors should be
fully coherent and the target present in the imaging scene must be isotropic. When this condition is met the
coherent processing can be performed by ensuring the phase of the reflected signal from the target is same
across both the sensors. But due to the path length difference of the target to the two sensors, the phase of
the target as seen by the virtual apertures can vary. As we cannot determine the range of the target precisely
due to range quantization errors, finding the phase difference caused by the path length difference of the
wave is nearly impossible. In this chapter, a method to compensate for the phase difference due to the path
length difference is provided by defining a new sensing matrix. This sensing matrix accounts for this phase
difference by compensating for the difference in every possible DOA defined in the dictionary of the sensing
matrix. Coherent FOCUSS algorithm is then performed using this new sensing matrix to estimate the DOA
of targets. Coherent processing has a much better resolution than the incoherent processing, the gain in
resolution is proportional to the baseline separation between the sensors. But this method is limited by the
high side lobes that are produced with increase in the baseline. The high side lobes next to each other for
low SNR cases will cause pointing errors. Also, due to the range quantization error it is impossible to exactly
correct for the phase difference observed due to path length difference, which makes coherent processing of
mono-static responses difficult. A new method of processing is introduced in order to avoid the high side
lobes, which exploits the bi-static responses to be coherent and treats the mono-static responses as being
mutually incoherent. By choosing the appropriate array design for the sensors, the bi-static responses can
be designed to have double the aperture than the individual mono-static responses. Thus, it gives a factor of
two improvement in angular resolution that can be achieved when compared to the single aperture case. But
the theoretical resolution is still lower in Fusion FOCUSS when compared to coherent processing. The steps
involved in the Fusion FOCUSS algorithm is discussed, which solves the coherent-incoherent combining of
the bi-static and mono-static responses respectively. In simulation it is shown that, for a system with an
effective aperture of 64λ, the Coherent FOCUSS algorithm can resolve two targets separated by 1◦, whereas
Block FOCUSS and BOMP algorithm fails to do so as their effective aperture is 6λ (equivalent to that of the
sub-system used). Simulation results also show that Fusion FOCUSS with the coherent bi-static aperture
of 12λ (twice that of individual mono-static response) resolves two targets separated by 2◦, whereas Block
FOCUSS fails to do so.





5
Performance analysis of DOA estimation

In this chapter, the performance analysis of the Block FOCUSS and the Coherent FOCUSS algorithms that
are discussed in Chapter 3 and 4, are presented. Comparison of the proposed Block FOCUSS and Coherent
FOCUSS algorithm is done alongside the BOMP algorithm using MATLAB software. Monte Carlo runs are
performed to evaluate the performance parameters RMSE, probability of resolution and probability of false
alarm for the proposed algorithms and the BOMP algorithm. The performance parameters for varying sce-
narios are studied. An experiment that is performed in the anechoic chamber to evaluate the performance of
the Block FOCUSS algorithm is presented. Section 5.1 discusses the simulation parameters used in MATLAB
to design the radar system. In Section 5.2 the simulation results obtained for various scenarios is analysed
along with the effects of SNR. Section 5.3 explains the penalty incurred in performing coherent processing
on a non-isotropic target. In Section 5.4 the drawback of using an on-grid algorithm when the target is not
exactly on the grid is discussed and a possible solution to overcome this problem is presented. Section 5.5
presents the results obtained from performing an experiment to estimate the DOA of the targets in the lab of
TU Delft by using trihedral reflectors as targets.

5.1. Simulation parameters
The system parameters used for the MATLAB simulation are given in Table 5.1. Two sub-systems are used
where each sensor has 3 transmitters and 4 receivers uniformly spaced as shown in Fig 4.3 in each sensor.
The overlapping FOV of the sensors is considered to be −45◦ to +45◦. Different baseline separation values are
considered for the performance analysis as mentioned in the table. The parameters of the FMCW waveform
used for the simulation is given in Table 5.2.

5.1.1. Performance evaluation parameters
In order to evaluate the performance of the algorithms, Monte Carlo runs are executed and the parameters
RMSE, probability of resolution, probability of false alarm and average number of false alarms are considered.
The algorithm outputs the possible detected target positions. A thresholding operation is performed where
only the targets detected with the signal power greater than the defined threshold is considered as a valid
target. For example if the algorithm outputs four possible targets and two of them have a normalised power
level above -15 dB and two of them below -15 dB then only two targets are considered as valid detections.

Table 5.1: Parameters for the distributed system used in MATLAB simulations

Parameter Value

Number of sub-systems (M) 2
Number of Tx in each sensor (NT x ) 3
Number of Rx in each sensor (NRx ) 4

Baseline values (BL) 16λ,128λ
Joint Field of View −45◦ to 45◦
System coherency Fully coherent

43



44 5. Performance analysis of DOA estimation

Table 5.2: Parameters for the FMCW waveform used in MATLAB simulations

Parameter Value

Center frequency ( fc ) 78 GHz
Bandwidth (BW ) 250 MHz
Number of chirps 256

Number of samples per chirp 256
Acquisition time 25.6 µs

Settle time 5 µs
Reset time 5 µs

Table 5.3: Parameters for MATLAB simulations and algorithm parameters

Parameter Value

Number of experiments in each Monte Carlo trial (Nmc ) 500
Detection Window (DTW) [−3◦,+3◦] around the ground truth

Detection threshold -15 dB
Dictionary used for sensing matrix −45◦ to 45◦ with 1◦ spacing

Going forward only the targets detected after the thresholding operation are considered. The thresholding
level used in this thesis for the simulation is -15 dB unless mentioned otherwise, this is the chosen value as
most of the runs use SNR of 15 dB and higher except for in Section 5.2.3 when appropriate value is chosen
based on SNR. A detection window (DTW) of −3◦ to +3◦ is defined around the ground truth of the target for
each Monte Carlo run, this is the value chosen based on the state of the art comparison [5]. If the estimated
value from the output of the algorithm falls in the DTW then the target is said to be detected and the closest
of all such declarations is considered as the detected target. If multiple detections are found in a given DTW
then only the closest detection to the ground truth is treated as actual target and the rest of them will be
added to the list of false alarms (along with other false alarms that might be found outside DTW). If no targets
are detected in the DTW then the target is considered as not detected and the resolution capability of the
algorithm for such a scenario is 0 as the algorithm fails to detect the target. The simulation parameters used
for the Monte Carlo runs and the algorithm parameters used are given in Table 5.3. A single Monte Carlo run
or trial consists of multiple experiments where each experiment has different realisation of noise and phases
of the targets simulated. Hence all the performance parameters are calculated for each run or trial which
consists of Nmc experiments in each run. The description of these parameters are given below

1. Root Mean Square Error (RMSE): The root mean square error determines the error in the DOA estima-
tion of the target. It is obtained by taking the square root of the mean of the square of error between
the ground truth of the target and the detected target by the algorithm. Mathematically it is given as
depicted below. Here x is the ground truth of the target and x̂ is the estimated position of the target
found within the DTW defined for each run. The equation below is given for a Monte Carlo run with
Nmc experiments in each trial where the number of times the target is detected in the DTW for a given
Monte Carlo run is given by Nd . If the target is not detected in the DTW then the RMSE is not calculated
for that experiment.

RMSE =
√

1
Nd

∑Nd
i=1 (xi − x̂i )2

2. Probability of Resolution (PR): The probability of resolution is defined as the ratio of number of times
the target is detected in the DTW defined to the total experiments in a Monte Carlo run. It is given as

PR = Number of times all the targets are detected in DTW
Total number of experiments in a Monte Carlo run

PR is thus a number between 0 and 1, it is 1 if all the targets are detected in all the experiments in the
trial and 0 if none of the targets are detected even in one single experiment. For example, if we run 500
experiments in a Monte Carlo trial and 400 times all the targets are detected, then PR for this example
would be 400/500, which is 0.8. Higher the PR, better is the algorithm performance.
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3. Average number of False alarms (Avg FA): The average false alarm is defined as the average number
of detections found in the entire FOV minus the number of detected targets. Along with the PFA this
gives an idea on the average number of undesired targets that are detected. This can be mathematically
expressed as

FAAvg = 1
Nmc

∑Nmc
i=1 (Di −K )

In the above equation D is the total detections found in the FOV for each experiment and K is the actual
number of targets detected within the DTW. If there is more than one target that is detected in the DTW,
then one of them is considered as an actual target and the other as a false alarm. The equation is given
for a Monte Carlo trial with Nmc experiments. Average FA can be any number greater than 0. Lower
this number, better is the algorithm performance. If we see a lot of false targets being detected then the
Average FA will increase significantly and that is not desirable.

4. Probability of False alarm (PFA): The probability of false alarm is defined as the ratio of the number of
times more than the actual number of targets are detected in the total FOV to the total experiments in
a Monte Carlo run. It is given as

PFA = Number of times more than actual targets are detected in an experiment
Total number of experiments in a Monte Carlo run

PFA is thus a number between 0 and 1, it is 1 if always more targets are detected than the actual number
of targets in the experiment and 0 if the number of detections always match the actual number of tar-
gets present. For example, if we have two targets in the imaging scene where we run 500 experiments
in a Monte Carlo trial and 400 times two targets are detected and the remaining 100 times more than
two targets are detected in the FOV, then PFA for this example would be 100/500, which is 0.2. Lower
the PFA, better is the algorithm performance.

5.2. DOA simulations
In this section, the results obtained by MATLAB simulations are presented. Monte Carlo runs are executed
for different target positions, baseline and SNR values. The performance evaluation parameters discussed in
the previous section for each scenario are presented. We use two targets in all the simulations and the phase
of each target RCS is chosen to be random in each experiment as given in the signal model in Chapter 2 Eq
2.10. The SNR value mentioned is the SNR that is achieved after the Range-Doppler processing is performed.

5.2.1. Spatial diversity gain with distributed radar setup
This section explains the gain obtained by having distributed sensors to perform the DOA estimation over a
single sensor. A simple simulation is performed to understand how the phase difference between the targets
effect the resolution capability of closely placed targets. This will also help us understand the results in further
sections. For this simulation a single sensor is considered which constitutes of 3 Transmitter and 4 Receivers
placed at the center i.e., instead of two sensors separated by a baseline, we replace it with single sensor at
the center of this system. Two point targets are considered, phase of one target is kept constant at zero and
the phase of the second target is varied from zero to 2π radians. Hence the phase difference between the two
targets is equal to the phase of the second target. To measure the resolution capability we record the proba-
bility of resolution for this simulation. The SNR used is greater than 30 dB and hence it can be considered as a
noiseless case, this is done to ensure that the resolution capability is not effected due to the presence of noise.
The two targets are separated by a difference of 2◦ in the broadside. Fig 5.1 shows the resolution capability of
the FOCUSS algorithm (note that it is the existent FOCUSS algorithm and not the new one introduced in this
thesis) with single sensor for 2 closely placed targets whose phase is varying. It is shown that when the phase
difference between the 2 targets that are closely placed is almost the same (closer to 0 or 2π) the sensor is
unable to resolve them as two separate targets, this is because the received signal from the 2 targets are highly
correlated as the RCS seen is similar for 2 targets in this region of 0.23π radians. Note that this is mainly seen
in targets that are very closely spaced as we are within the beam width of the AF for a given sensor (For this
case the Half Power Beam Width (HPBW) is ∼ 8.5◦).

In this case we have considered the sensor present at the center. When the sensors are distributed like in
the distributed system that we consider in the thesis, there is an additional phase term that gets added to the
target phase which is due to the path length difference that is present between the target and the 2 sensors.
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Based on how this phase gets added to the original phase of the target we will see a phase difference between
the targets in each sensor which is a combination of these 2 phases. In such scenarios we can gain from the
spatial diversity by combining the data from the 2 sensors as we do in the Block FOCUSS algorithm. Consider
a scenario where the combined phase difference of path length travelled and the target RCS adds up in a way
that the phase difference between the 2 targets as seen by sensor 1 is closer to zero and the phase difference
between the 2 targets seen by sensor 2 is not closer to 0 or 2π. In this case the sensor 1 will not be able to
resolve the 2 targets, where as the sensor 2 will successfully resolve the 2 targets, thus the combined result of
both the sensors will help us resolve the 2 targets. This effect is validated with experimental results as well
(Section 5.5 Fig 5.18). A second simulation is performed to visualise this, where 2 sensors M1 and M2 are
considered. The resolution capability of having just M1 or M2 is shown in Fig 5.2 represented by dotted lines.
In this we make sure that M1 and M2 sensors both see the two targets at different phase difference. M1 is able
to resolve the 2 targets when M2 fails and vice versa, the combined resolution capability is the best of both
and hence always resolves the 2 targets. This is the spatial diversity gain that is achieved by combination of
data from multiple sensors using block sparse method.
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Figure 5.1: PR for single sensor with phase difference between the 2 closely placed targets
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5.2.2. Comparison of algorithms
The simulation results are provided for the algorithms Block FOCUSS and Coherent FOCUSS that are dis-
cussed in Chapter 3 and Chapter 4. Also the performance of the BOMP algorithm is presented for comparison
with the proposed algorithms. BOMP is chosen as the comparison algorithm as it is also a CS algorithm that
combines the data in a block sparse manner and is the current state of art chosen in the thesis, which fuses
the data from multiple sensors.

In these simulations, the targets are placed at a range of 20m in the y co-ordinates from the system and
the x co-ordinates are changed according to the desired DOA separation needed as per system defined in
Fig 5.13. The DOA separation in these simulations is varied from zero degree to 14◦ in steps of 1◦, for zero
degree separation we expect to see a single target and verify the same. The range of the target is chosen
such that the target is closer to the center of the range bin as we do not have infinite range resolution for
the chosen bandwidth, if it is not placed appropriately then we see some undesirable results in the coherent
processing of the results which is discussed in Section 5.3. By placing it appropriately in range the problem
from compensating the path length difference is reduced. In these simulations the complete radar processing
chain is simulated and it is not a generation of snapshot directly. Some of the main steps involved in these
simulations are the chirp generation, reflection to the target, dechirped signal from the target reflection, range
and Doppler processing for each virtual channel, extraction of the snapshot and then the DOA estimation is
performed using these extracted snapshots. In this simulations setup if the target is non-isotropic or the
phase of the signal observed by different sensors are not the same then there will be errors when performing
coherent processing, which is discussed in Section 5.3. The simulation results from Monte Carlo runs for
different SNR values (30 dB, 20 dB and 15 dB) are provided for a distributed system with baseline (BL) values of
16λ and 128λ. Note that a fully coherent system is considered for simulation, hence 2 mono-static responses
and 2 bi-static responses are used for DOA estimation in these runs.

Also for the given system and sub-system used for simulation, we can theoretically find the expected
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Figure 5.3: Results from Monte Carlo simulations for a baseline separation of 16λ and 128λ for SNR of 30 dB for a target at 20m
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resolution capability based on the aperture of the sensors. The azimuth resolution is inversely proportional
to the aperture of the sensors used. For an array with 3 Transmitter and 4 Receivers separated by a distance of
λ/2 in the virtual array has main lobe width of ∼ 8.5◦ in the AF. This is the resolution that can be obtained by
the beam forming method, but the algorithms used here have super high resolution capability as discussed
in previous chapters, thus we should see a resolution that is less than this value. For coherent processing as
the aperture is equivalent to the baseline used, we should be able to achieve a very high theoretical resolution
of ∼ 0.9◦ for the baseline of 128λ, but this is limited by the dictionary spacing that can be used as the AF has
very high side lobes for a large baseline separation of sensors and hence a finer dictionary will lead to errors
as discussed in Section 4.3. Thus we can expect a resolution capability closer to 1◦ for coherent processing as
the dictionary spacing used for the simulations is 1◦ as given in Table 5.3.

From the Fig 5.3, Fig 5.4 and Fig 5.5 it can be observed that Coherent FOCUSS performs the best of the
3 algorithms for both the baselines. Block FOCUSS performs better than BOMP in incoherent combining of
the data for all the cases. A SNR of 30 dB is an idealistic case and can be considered close to noiseless case,
thus the performance of the algorithms are discussed first without the dominant effect of noise. It is shown
in Fig 5.3 the performance of the algorithms Coherent FOCUSS and Block FOCUSS for this case is also very
idealistic with PR close to 1 for all the DOA separations and PFA is close to zero. But the BOMP algorithm fails
to resolve the targets that are separated by less than 6◦ for this SNR value. In Fig 5.4 and Fig 5.5, for Coherent
FOCUSS algorithm the probability of resolution is greater than 80 percent for SNR of 20 dB and 15 dB for all
DOA separations with PFA also being below 30 percent, which is desirable. The PR achieved by Block FOCUSS
algorithm is better than BOMP algorithm for all the cases. Block FOCUSS provides a resolution capability of
5◦ with PR greater than 80 percent for DOA separations of 5◦ and above with a PFA below an acceptable value
for most cases. It is seen that as the SNR value reduces the PFA increase, which is not desirable. The effect
of SNR on the variation of parameters is studied in detail in Section 5.2.3. Also for the BOMP algorithm the
information is a prioiri made available that there are a maximum of 3 targets in the imaging scene to ensure
the algorithm stops at the right stage as it is a greedy algorithm and it suffers from more errors if this is not
specified. This upper bounds the number of FA’s to 3 for BOMP algorithm. By specifying the right threshold
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Figure 5.4: Results from Monte Carlo simulations for a baseline separation of 16λ and SNR values of 20 dB and 15 dB for a target at 20m
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Figure 5.5: Results from Monte Carlo simulations for a baseline separation of 128λ and SNR values of 20 dB and 15 dB for a target at 20m

to stop the algorithm this a-prioiri information can be removed, but there was no enough time to sort this
out in the scope of the thesis. Thus we see that the average FA does not increase as in the case of Block
FOCUSS for lower SNR values. If the a priori information is not given to the BOMP algorithm then the BOMP
will also suffer from high false alarms for lower SNR values. The performance of Block FOCUSS is seen to be
better as compared to BOMP, this is in accordance with the literature and theory that is studied in Section
3.3. Even though both BOMP and Block FOCUSS perform incoherent combining of the data thus having the
same theoretical resolution capability, Block FOCUSS outperforms BOMP. BOMP is a greedy algorithm and is
seen to converge faster and might lead to errors, FOCUSS is not a greedy algorithm and tries to find the most
optimal solution.

5.2.3. Evaluation for different SNR
To study the performance of the proposed algorithms for variations in SNR a simulation study is performed.
In this scenario the baseline used is 128 λ and 2 targets with varying phase difference are simulated as dis-
cussed in Section 5.2. The SNR is varied from 1 dB to 30 dB for target DOA separations of 2◦. A Monte Carlo
run is performed with 500 experiments for each SNR value for different realisations of noise and varying target
phase. The performance parameters RMSE, PR, PFA and average FA are plotted against varying SNR values
for Block FOCUSS, BOMP and Coherent FOCUSS for the different DOA separations considered.

From Fig 5.6, it is noted that the RMSE of Coherent FOCUSS reduces as SNR increases and also the PFA and
Average FA reduces significantly with increase in SNR for Coherent FOCUSS. As the targets considered here
are on grid with a dictionary of 1◦ spacing, if SNR is sufficiently large the RMSE will go to zero. But when the
targets are off-grid there will be some error due to quantization of the target to the closest grid. In this case the
maximum error will be half of the dictionary spacing used for a uniformly distributed targets in the dictionary
bin for large SNR values. The RMSE of Block FOCUSS however slightly increases with increase in SNR, this is
because of the increase in PR. If we see the PR for Block FOCUSS it is above 50% after SNR of 22 dB and this is
when there is an increase in the RMSE curve as well. For lower PR as the 2 targets are not resolved we do not
have enough measurements to get a true estimate of the RMSE, higher the number of measurements closer
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Figure 5.6: Results from Monte Carlo simulations for a baseline separation of 128λ and varying SNR for a target at 20m

is the RMSE to the true value (ideally Nmc should be closer to infinity but this is practically not feasible). Also
as the two targets are starting to resolve, they bias the estimation of the other target and thus an observed
increase in RMSE. Note that BOMP algorithm fails to resolve the two targets at 2◦ separations, thus the RMSE
plot depicts the RMSE observed for a single target from the expected ground truth. Also would like to remind
the reader again that BOMP has been provided with a-priori information that maximum number of targets are
3 and thus the average number of FA is less even though PFA is high. For Block FOCUSS the PFA and average
number of false alarms is significantly reduced for SNR values greater than 10 dB. But Coherent FOCUSS
suffers from higher false alarms for lower SNR values. The number of false alarms is reduced for SNR values
above 15 dB for coherent processing where as it is reduced above 10 dB for Block FOCUSS, this indicates that
coherent processing suffers from more false alarms at lower SNR values. This is in accordance with the AF
study performed in Section 4.3, where it is shown that for a baseline separation of 128λ the side lobe levels
are very high and thus for lower SNR values it can easily lead to false alarms as one of the side lobes can get
detected as a possible target.

5.3. Coherent processing of non-isotropic targets
In Chapter 4, the conditions and methods to perform coherent processing are discussed. To recall: the targets
and the system should be completely coherent in order to perform coherent processing. Ensuring system
coherency has been discussed in literature [20] and is something that can be verified as well, but ensuring
the targets are perceived in an isotropic manner by the entire distributed system is difficult. Even if the target
is isotropic, there will be a phase difference that occurs due to the path length difference and it is hard to
compensate as we cannot estimate the range of the target precisely as discussed in Section 4.1.3. Hence it will
be interesting to see what happens when the phase due to path length difference is wrongly compensated or
the target itself is non-isotropic.

In this section, through simulation the errors observed in processing a non-isotropic target coherently are
presented. For this a single target is considered at bore sight (to ensure it has the same path length) which
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Figure 5.7: Coherent processing on a non-isotropic target at 0 degree for a baseline of 128 λ
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Figure 5.8: Coherent processing on a non-isotropic target for a baseline of 128 λ
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Figure 5.9: Coherent processing on a non-isotropic target for a baseline of 64 λ

is observed by 2 sensors separated by a baseline of 128λ. A high SNR value greater than 30 dB is considered
in order to eliminate the effect of noise on the result. The phase of the single target as seen by sensor M1
is fixed at a certain value and the phase observed by sensor M2 for the same target is varied such that the
phase difference between responses seen at M1 and M2 is varied from 0 to 2π radians. The consequence of
doing the coherent processing on a target that is non-isotropic is an increase in the number of false alarms,
i.e., more unwanted targets are observed in the result from running the Coherent FOCUSS algorithm and



52 5. Performance analysis of DOA estimation

it becomes very difficult to detect the true target as the false alarms are very close to the true target, this is
depicted in Fig 5.7 for one of the scenarios where the dashed lines represents the ground truth. When we look
at the number of targets detected, by varying the phase difference between the targets from 0 to 2π it is seen
from Fig 5.8 that up to a certain phase difference between the targets the Coherent FOCUSS performs well.

The number of expected targets is 1 as we have a single target in the scene, but as the phase difference of
this single target as seen by the 2 sensors increases the number of targets detected also increases, which leads
to false alarms. The phase difference up to which the coherent processing performs as expected is coupled to
the virtual aperture size of the system configuration, and it changes for different configurations. Fig 5.8 only
shows this for a baseline of 128λ but this can vary for different baseline. Fig 5.9 shows the variation of number
of targets detected for a baseline of 64λ in comparison with 128λ baseline.

5.4. Solution to the problem of off-grid targets
The compressive sensing algorithms that are used in this thesis are grid based algorithms, which means a pre
defined grid is used and a search for the target is made on these grid points. The grid based algorithms are
known to suffer from off-grid problems, that is when a target is not located exactly on the defined grid then
there will be an error in the estimation of the DOA of target [13]. In this section the problem of off-grid target
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Figure 5.10: Off-grid target present at 3.5◦ for a dictionary with 1◦ spacing
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Figure 5.11: Off-grid target present at 3.5◦ for a dictionary with refined spacing around targets
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is explained and a solution is proposed to overcome this problem. When a target is not present on the grid,
we see two kinds of errors, one where the target gets detected on the nearest grid point to the target and thus
shows up as an error in the estimation of DOA. The second type of error can occur where the energy is spread
out into two adjacent grid points and thus we see more than one target. The scenario where we see 2 targets
instead of one single target is depicted in Fig 5.10, where a dictionary spacing of 1◦ is used and the adjacent
grids are at 3◦ and 4◦ for a target which is present at 3.5◦, one single target shows up on 2 adjacent grid points
in this case and leads to false detections.

One of the solution that can be implemented to solve this off-grid problem is to follow a 2 step process in
the estimation of the DOA of targets as explained in [50]. In the first step we have a coarse dictionary spacing
in order to satisfy the coherency condition of the sensing matrix as discussed in Appendix A. Once the targets
are detected, the algorithm is called again to re-estimate the DOA of the targets by defining a finer grid only
around the region where the target is detected. In the example Fig 5.10 there are 3 targets being detected, one
at −3◦ and the other two at 3◦ and 4◦. Thus, we refine the dictionary around −3◦, +3◦ and +4◦ to be finer, say
in steps of 0.1◦ as compared to previously defined 1◦ spacing. After estimating the DOA of the target with this
new dictionary, the results obtained are depicted in Fig 5.11. Once we are sure that a target is present in that
region, by refining the grid and looking at the region where the target is detected gives in a zoom in effect of
looking at the target positions. If there are 2 targets present within the dictionary spacing considered then it
is a different problem which depends on the resolution capability of the system and the algorithm and this is
not discussed here.

The drawback of this method is the added computational effort (hence reducing the efficiency), thus
it might not be the best method to solve this problem. The off-grid compresseive sensing techniques like
Atomic norm might be worthwhile to explore and to consider in the future works [13].

5.5. Experimental evaluation
An experiment was conducted in the anechoic chamber of TU Delft to validate the Block FOCUSS algorithm
proposed in this thesis. The system coherency could not be achieved in the time frame of the thesis and thus
only Block FOCUSS could be validated. Block FOCUSS as discussed in previous chapters is an incoherent
method of fusing the data from multiple sensors. A radar module based upon the NXP TEF810X car radar
transceiver is used to transmit and receive the reflected signal back from the target [51]. Two trihedral reflec-
tors mounted on a bar were used as the targets. The experimental setup and the results are explained in detail
in the remaining of this section.

5.5.1. Experiment setup
• Radar setup

A radar module based upon the NXP TEF810X car radar transceiver is placed at one end of the room.
The TEF810X is a fully integrated single-chip RFCMOS 77 GHz automotive FMCW radar transceiver
[51]. This device is intended for usage in short, medium and long range radar applications covering the
full automotive radar frequency band from 76 GHz to 81 GHz. The TEF810X radar transceiver is a low

Table 5.4: Radar configuration used for experimental evaluation

Parameter Value

Center frequency 78.8 GHz
Decimation Rate 1

Bandwidth 1.01 GHz
Acquisition time 23.8µs

Dwell Time 1µs
Reset time 5µs

Number of samples per chirp 512
Sampling frequency 40 MHz

Number of chirps 128
Number of Rx 4
Number of Tx 3

FrameRate 400
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Figure 5.12: Hardware setup in the anechoic chamber. Top: NXP Dolphin radar. Bottom: Two trihedral reflectors used as targets

power radar transceiver which integrates 3 transmitters, 4 receivers, Analog-to-digital converters and
low phase noise Voltage Controlled Oscillator (VCO). More details about this radar unit can be found
online on the NXP website [51]. The radar is mounted on a motor controlled column at one end of the
room. The software controlled motor column is equipped for precise movement of the radar in the x
and y direction in steps of 1 millimetre. Thus the radar unit could be precisely positioned at the desired
location in the x-direction, this is done in order to capture the data from different positions, to mimic
the distributed radar setup. As the targets are stationary this mimics an incoherent distributed setup
with a baseline that is controlled by the precise positioning of the radar using the motor control pro-
vided in the lab. The maximum baseline achievable using this setup is used for the experiments which
is 0.396 m. Once the target positions were fixed, the radar sensor is moved to the extreme ends of this
baseline and a measurement is recorded for each end. Thus recreating a scenario with 2 incoherent
sensors separated by a baseline of 0.396m(∼ 104λ). Hence, scenarios with distributed radar with base-
line up to 104λ can be mimicked. An image of the column mounted with the NXP radar is shown in
Fig 5.12. The configurations used on this sensor to perform the experiment is given in Table 5.4. Going
forward the radar sensor placed at left side is referred to as the left sensor or M1 and when it is placed
at the right side is referred as the right sensor or M2, but it is the same sensor that is being moved.

• Target setup

Two trihedral reflectors were used as targets for this experiment. The image of these reflectors mounted
on a stick is shown in Fig 5.12. The trihedral reflector used has an edge length of 8.5 cm. The RCS of the
trihedral reflector is calculated using the below equation

RCS = 4πa4

3λ2

RCSdB = 10log10 (RCS)

a is the edge length of the trihedral reflector. Substituting the values in the above equation, the RCS of
the trihedral reflector used is obtained as 11.8 dB. The targets are placed at the other end of the room
such that the distance between the center of the distributed sensor and the target is 4.5 m. The targets
are moved along the x co-ordinates with the same y co-ordinates based on the desired DOA separation.
This is depicted in the Fig 5.13 with M1 and M2 showing the 2 sensor positions separated by a baseline,
Ry is the range of the target in the y-axis which is 4.5 m in this setup. The two targets are placed such
that the Ry for both the targets is same. Using basic geometry the position of the target in the x-axis
can be calculated for the desired angle θ. To achieve a certain DOA separation between the targets, θ1

and θ2 are chosen appropriately and the corresponding Rx1 and Rx2 are calculated for the given Ry .
The baseline separation between the left and right sensor used here is 0.396 m (∼ 104λ) for the first
part of the experiment, later the baseline is varied to study the effects of varying baseline. For the given
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Figure 5.13: Depiction of target setup in the anechoic chamber

Table 5.5: Parameters used for B-FOCUSS algorithm for experimental evaluation

Parameter Value

Regularization parameter (λ) Closer to Noise variance (∼ 10−3)
Detection threshold -15 dB

Dictionary used for sensing matrix −40◦ to +40◦ with 0.5◦ spacing

baseline and the wavelength the target is in the near field region of the distributed system as discussed
in Section 2.1.1.

5.5.2. Processing of the data
The data captured from the sensor is saved in the form of a radar data cube. Range processing is performed
by taking FFT along the fast time samples and Doppler processing is performed by taking FFT along the
slow time dimension as explained in Section 2.3.1. It is verified that the highest energy is present at the
range bin that matches the distance of where the target is placed, and Doppler bin matches the zero velocity.
The snapshot consisting of the spatial samples are extracted from the Range Doppler bin with the highest
energy, this is the bin where the targets are present. This is done for both the sensors, left and right sensor.
Once we have the spatial samples we can process the 24 samples (12 samples for each sensor consisting of
3 transmitters and 4 receivers) in order to estimate the direction of arrival (DOA) of the two targets using
compressive sensing algorithm discussed in section 3.2.2. In this experiment we use Block FOCUSS in order
to estimate the DOA of two targets as the distributed system used is not synchronized, additionally the targets
are present in the near field and can have different RCS as seen from the left and the right sensor positions.
Hence the coherency is lost and coherent processing cannot be performed. Thus, Block FOCUSS is used
which does not require the coherency in system or targets to perform DOA estimation of targets in the imaging
scene. BOMP algorithm is also applied in order to compare the performance of the two algorithms. The
parameters used for the Block FOCUSS algorithm is given in Table 5.5. The SNR value observed after Range-
Doppler processing for the experiments is in the range of 15 dBm to 20 dBm for both the sensor positions.



56 5. Performance analysis of DOA estimation

5.5.3. Analysis of results
• DOA estimation of Single target
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Figure 5.14: DOA estimation of single target placed at the center of the distributed system

At first a single target is placed at a distance of 4.5 m from the center of the two sub-systems. This is
done in order to mark the zero degree and to estimate the error in DOA for a single target. Fig 5.14
shows the estimated target DOA by using Block FOCUSS. It is seen that the target is estimated with an
error of 0.5◦. This is because the target is not precisely at zero degree and the estimated DOA is mapped
to one of the nearest grid points. As the defined dictionary spacing is 0.5◦, the target is mapped to the
nearest grid point from where it is present which is 0.5◦ in this case.

This position is marked as zero degree in the setup and the targets are placed along the same x axis
where this target is placed as shown in Fig 5.12. Experiments are performed for two targets separated
by a certain distance in the x axis such that the DOA of the targets from the center of the distributed
system is varied in steps of 1◦, from 2◦ up to 11◦ by moving the targets along the x axis as explained
using Fig 5.13.
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• DOA estimation of two targets
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Figure 5.15: RMSE and PR of 2 targets after DOA estimation using Block FOCUSS and BOMP algorithms

As the targets are stationary and the SNR observed is good after range processing of the data (SNR
of 16 dB), we make use of different chirps in the radar data cube to perform statistical analysis of the
data for different realization of noise. Range processing is performed on the samples in each chirp and
the DOA estimation is performed on snapshot extracted from each chirp. The root mean square error
(RMSE), probability of resolution(PR) and probability of false alarm (PFA) is then calculated on these
different realizations for the DOA estimation of targets. The definitions of these parameters is explained
in detail in Section 5.1.1.

Fig 5.15 shows the RMSE and the PR of the targets for varying DOA separations. The difference in DOA
of the targets is plotted in the x axis, which is varied from 2◦ to 11◦ by moving the target along the x
axis, keeping the y axis distance fixed. It is seen from the plot that a DOA separation of 3◦ and above
is always resolved by Block FOCUSS algorithm. The DOA separation of 2◦ is resolved 60 percent of the
time by Block FOCUSS where as BOMP fails to resolve this. The RMSE plot shows that the error in DOA
estimation is below 1◦ for all the cases except when the targets are separated by 5◦. Note that an error
of 0.5◦ can occur as we use grid based estimation and the grid spacing is 0.5◦, which means the target
estimate is quantized to one of the nearest grid points. Also the RMSE of the DOA estimation for Block
FOCUSS is lower than the BOMP algorithm.

• DOA estimation of two targets away from broadside

To further investigate the performance of the algorithm, the targets are placed away from the broad-
side by ∼ 10◦ to both left extreme from the broadside and to the right extreme from the broadside. This
is done to verify if the performance of the DOA estimation is similar to that of the targets placed at
broadside for different DOA separations as 10◦ is not very far away from broad side. A Figure depicting
this setup is shown in Fig 5.16 whereas Fig 5.13 shows the setup where the targets are placed in broad-
side. Fig 5.17 shows the comparison of the DOA estimation for these 3 positioning of the targets, Left
side placement from broadside is marked as ‘Left’ in the plot, right side placement from broadside is
marked as ‘Right’ and the broadside placement is marked as ‘Broadside’. From the PR plot in Fig 5.17
it is seen that the targets separated by 3◦ and higher are always resolved. Targets separated by 2◦ are
resolved when away from broadside for this experiment. False alarm rate is slightly higher for DOA
separation of 3◦ when the target is placed at the left extreme of broadside, this is dependent mainly
on how the phase of the targets is received by the 2 sub-systems and it is nothing to do with the target
placement, as it is not seen for other DOA separations.

By looking at the RMSE plots it is observed that the RMSE of this particular experiment is slightly higher
when compared to that of the one shown in Fig 5.15, this is because the SNR of this experiment is also
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Figure 5.16: Depiction of target placed away from broadside in the anechoic chamber
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Figure 5.17: DOA estimation of targets in broadside and away from broadside

lower. The SNR for this experiment is 13 dB, it could be because of target not being in the center of
the range bin. An important observation here is that when targets are placed to the left extreme of the
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broadside direction, the performance is better when compared to the broadside placement or to the
placement on the right extreme of the broadside direction. A possible explanation that can be given
for this is the way the hardware setup is used. The hardware used does not have enough absorbers
to reduce the effect of the possible radiations from the connecting wires to the chip, which acts as
interference and effects the beam pattern generated from the antennas. Another point to notice from
the RMSE plot in Fig 5.17 is that for the DOA separation of 5◦ between the targets the RMSE is higher
when compared to other separations in all three positioning of the target. Hence, it can be inferred that
the beam pattern for this particular DOA separation suffers more from interference than the rest.

• Comparison of single sensor vs distributed setup

In the setup, as we are incoherently combining the data from the two sub-systems separated by a base-
line of 0.396 m, we do not increase the aperture of the system, but we gain from the spatial diversity as
we now have more data points for the same imaging scene. This comparison can be done by processing
the data captured from the 2 sub-systems individually and comparing the results with the combined
processing for 2 targets separated by certain DOA separation and placed in the broadside region of the
sensors. Fig 5.18 shows the probability of resolution and probability of false alarm of the data pro-
cessed by left sensor and right sensor as standalone systems using FOCUSS algorithm along with the
combined DOA estimate performed using Block FOCUSS.

From Fig 5.18 it can be seen that combining the data from the 2 systems will help to reduce the false
alarm ratio. It is seen that the combined DOA estimation has lower false alarms as compared to the two
sub-systems estimating the DOA’s individually. It can also be seen from the probability of resolution
plot that the resolution we obtain by a combined estimate is a combination of the 2 systems. For exam-
ple, DOA separation of 3◦ is always resolved by the left sensor, where as the right sensor fails to resolve
it. But the combined DOA estimation using Block FOCUSS resolves the two targets, this is the spatial
diversity gain that is achieved.
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Figure 5.18: Comparison of PR and FA for single sensor vs distributed system
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5.5.4. Effect of varying baseline

In this experimental setup as discussed in previous section we process the data incoherently, which means
the resolution that we obtain is still limited by the aperture of the sub-system and we only benefit from the
spatial diversity gain by doing a combined estimate of data from 2 sensor positions. In this type of combining
the positioning of the 2 sub-systems plays a role in the spatial diversity that can be achieved. This means the
way in which targets phase is perceived by the 2 sensors will effect the resolution capability of the sensors.
There are 2 factors here that can influence how the phase of the targets are perceived by the sub-systems, one
being the RCS of the target itself. Second one is the exact distance of the target from the sensor. As we are
operating in the mm wave frequency range, even a small displacement in range of the target can change the
phase of the targets as perceived by the sensors drastically. Thus eventually the phase of the targets seen by
the sensors is dependent on both the RCS of the target and the path length travelled by the reflected wave. If
the phase difference between the 2 targets is closer to zero, then the sensor might not be able to resolve the
2 closely spaced targets as the signals received by the 2 targets are strongly correlated, whereas if the target
phases differ by a factor of pi then the resolution probability will increase. Thus by increasing the number of
sensors used to estimate the DOA the resolution capability of the system is increased as it provides a diversity
in the received phase and thus in resolution.

An experiment is conducted by placing 2 targets at a fixed DOA separation in the broadside and at 4.5 m
from the center of the distributed system. The baseline (BL) separation between the 2 sub-systems is varied
and the same target is observed with different baseline separations. The processed data is studied to see
the effect of probability of resolution of the 2 targets with varying baseline separation. Fig 5.19 shows the
plot of probability of resolution for baseline separations varying from 30 mm to 100 mm. This experiment is
performed for targets with DOA separation of 2◦, 3◦ and 4◦.

Fig 5.19 indicates that the targets separated by 2◦ in azimuth is resolved by baseline separation of 40 mm
and 100 mm. Targets separated by 3◦ have reduced probability of resolution for baseline separation of 60 mm
and 80 mm. Targets separated by 4◦ are well resolved by all baseline separations except at 50 mm baseline
separation which has lower probability of resolution. This plot clearly indicates that the baseline separation
plays a role in how the targets are perceived by the 2 sub-systems. This is also explained in detail with some
simple simulations in Section 5.2.1.
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Figure 5.19: PR for varying baseline separation between the 2 sensors
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5.6. Conclusions
Monte Carlo runs are executed by simulating the target scene and the radar signal in MATLAB for two tar-
gets, present at the range of 20 m from the radar sensors. Performance parameters like RMSE, probability of
resolution, probability of false alarm and average false alarm are studied for different SNR and baseline sce-
narios. It was successfully demonstrated from simulation that the Coherent FOCUSS has the best resolution
capability (1◦) compared to Block FOCUSS and BOMP. This is in line with the theory as the aperture used for
coherent processing is equivalent to the baseline (128λ) of the distributed system which is much larger than
the effective aperture of each sub-system. Coherent FOCUSS however suffers from large false alarms if the
SNR is lower than 15 dB. Processing a non-isotropic target in a coherent manner leads to large false detections
which is shown through simple simulations.

Block FOCUSS has a resolution capability of 5◦ with PR greater than 80 percent and PFA less than 15
percent, for a sub-system with effective aperture of 6λ and SNR of 20 dB. It is shown that the performance
of the proposed Block FOCUSS algorithm is thus better than the existing BOMP algorithm, which provides a
DOA resolution of 9◦ for the same configuration. Block FOCUSS and BOMP algorithms also suffer from higher
false alarms for lower SNR values (less than 15 dB) and hence might not be effective for lower SNR scenarios.
The algorithms used in this thesis are grid based algorithms and thus suffer from errors in DOA estimation
for targets not present on the grid. A possible solution existing in literature is discussed, which can be used
to overcome the error caused by the off-grid target. It is done by having a two level estimation process, once
with coarse dictionary grid and then with the finer grid of dictionary. This approach can be applied to real life
scenarios when the targets are not on the grid by refining the grid further to estimate the true DOA.

Experiments are conducted in the anechoic chamber in TU Delft by placing two trihedral reflectors as
targets and using the NXP Dolphin MIMO radar with 3 transmitters and 4 receivers (effective aperture of 6λ)
as the radar sub-system. The radar sensor was moved to two different positions to mimic the distributed
system setup with a baseline of 0.396 m. The sensor placed in two positions are thus not synchronized, and
moreover the targets used are not coherent. Hence, we use algorithms which perform incoherent combining
of the two mono-static responses. The DOA estimation is performed for targets separated from 2◦ to 11◦ in
azimuth by using Block FOCUSS and BOMP. The two algorithms are compared and it is seen that Block FO-
CUSS has better probability of resolution and RMSE when compared to BOMP algorithm. The Block FOCUSS
algorithm can resolve targets separated by 3◦ or higher in the azimuth, whereas BOMP can resolve only from
5◦. Further comparison is done for probability of resolution and probability of false alarm for single sub-
system versus distributed system. It is seen that combined DOA estimate from distributed system performs
better as it benefits from the spatial diversity gain. An experiment is also performed for varying baseline sep-
aration between the two sub-systems. It is observed that the baseline separation between the sensors affects
the spatial diversity gain and thus the resolution. It is to be noted that for the same effective aperture, the
Block FOCUSS achieves a better angular resolution in experiments compared to simulations. This is because
the simulation results are obtained after Monte Carlo runs with targets having varying phases, whereas the
experimental results do not cover this varying phase scenario.





6
Conclusions and future work

This chapter concludes the work done in this thesis by summarizing the novelties and results in Section 6.1.
Section 6.2 provides some recommendations to further investigate the problem.

6.1. Results and novelties
In the last decade the interest in safety of drivers, passengers, pedestrians and other road users has increased
significantly with the growth in automotive industry and economy of the nations. Radars play an impor-
tant role in the safety of autonomous driving as they can be used for detection of pedestrians, cyclists, other
automobiles and other road objects. While radars are able to perform high resolution estimation of range
and velocity of the objects, the systems are currently limited by the angular resolution. A primary reason is
that, the aperture of a single sensor cannot be increased as it is cost ineffective and large sensors are high
undesirable by the car manufacturers. This work introduces three novel algorithms to improve the angular
resolution of the radar system, while maintaining a small physical aperture per sensor through sensor fusion.
The proposed algorithms work on single snapshot data obtained after Range-Doppler processing, allowing
easy integration and compliance. The radar scene can be assumed to be sparse as there will be only few tar-
gets with the same range and velocity. Hence, in this work sparse signal processing techniques are utilized to
solve the DOA estimation problem using a single snapshot.

For a distributed radar system, the target in the imaging scene cannot always be assumed to be in the
far field, as its virtual aperture is much larger than that of a single sensor. Therefore, more complex near
field assumption is considered when estimating the DOA of targets, by defining the corresponding DOA of
the target to each sensor in the distributed system. Additionally, if the system is fully coherent then the bi-
static responses from the sensors can be utilized along with the mono-static responses to improve the DOA
estimation, when compared to using only the mono-static responses. The target can be perceived as isotropic
or non-isotropic based on the distance of the target to the radar, the radar aperture and the dimensions of
the target. Through theoretical modelling, it is shown that coherent processing is feasible only when the
target is isotropic, and hence incoherent processing of the sensor data also needs to be considered. Thus,
in this thesis three methods of combining the data from multiple sensors are proposed namely, incoherent
processing, coherent processing and a combination of both coherent and incoherent processing. Feasibility
of the algorithms are validated through Monte Carlo simulations of a testbench developed in MATLAB that
models the hardware and the target scenario.

The incoherent processing can be performed irrespective of whether the system is fully coherent or the
target is isotropic. The effective aperture of the incoherent processing is proportional to the aperture of the
largest sub-system and is independent of the baseline, but it can still benefit from the spatial diversity gain.
Block sparse algorithms can be used to perform combined DOA estimation of the targets, since the virtual
array response from both the sensors have the same support basis. The current state of art block sparse algo-
rithms like BOMP (extension of OMP) suffer from low resolution capability and low noise tolerance. A novel
Block FOCUSS algorithm is proposed to address these drawbacks, which is an extension of an alternative al-
gorithm called FOCUSS. The FOCUSS algorithm was extended for data fusion from multiple sensors since, it
converges to the true DOA of the targets by selecting the columns of sensing matrix that best represents the
true DOA, unlike the greedy algorithms like OMP. It is to be noted that OMP is computationally efficient when
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compared to FOCUSS algorithm, but the aim of this work is to improve the resolution capability. For a system
with two sensors with an effective aperture of 6λ (theoretical resolution of ∼ 8.5◦), the Block FOCUSS algo-
rithm consistently outperforms the BOMP algorithm achieving 2◦ angular resolution for SNR greater than
30 dB (3x BOMP resolution) and 5◦ angular resolution for SNR between 15 dB to 30 dB (2x BOMP resolution).
Block FOCUSS has PR of more than 80 percent for DOA separations of 5◦ or more, with PFA less than 15 per-
cent, when the effective aperture of each sensor is 6λ for SNR of 20 dB. Whereas, BOMP has a PR of more than
80 percent only for DOA separation of 9◦ or more for the same configuration.

An experimental evaluation was performed using NXP radar (consisting of 3 transmitter and 4 receivers
in each sensor, forming an effective aperture of 6λ) and trihedral reflectors as targets, inside an anechoic
chamber. As the two distributed sensors are not synchronized, only the mono-static responses are used to
perform incoherent processing. Hence, only the performance of the Block FOCUSS and BOMP algorithms are
evaluated using this experimental setup. The Block FOCUSS achieves an angular resolution of 3◦ or more in
azimuth for the targets in near field (4.5 m for a baseline of 0.396 m) using single snapshot from each sensor.
Whereas in the same scenario, BOMP could only achieve an angular resolution of 5◦ or more. It is to be noted
that for the same effective aperture, the Block FOCUSS achieves a better angular resolution in experiments
compared to simulations. This is because the simulation results are obtained after Monte Carlo runs with
targets having varying phases, whereas the experimental results do not cover this varying phase scenario.

The coherent processing can be performed when the system is fully coherent and the targets are isotropic.
When the target is in the near field, the path length difference between the target and the sensors leads to
phase difference between the snapshots from the sensors. Presence of this phase difference can impede
coherent processing even though the target is isotropic. In this thesis, a novel algorithm called Coherent
FOCUSS is introduced, which compensates the phase difference observed due to the path length difference.
This method has an effective aperture equivalent to the baseline of the distributed system, thus it provides
higher angular resolution compared to the incoherent processing. For a baseline of 128λ(theoretical reso-
lution of ∼ 0.9◦) and a sub-system aperture of 6λ, Coherent FOCUSS achieves an angular resolution of 1◦
for SNR values greater than 15 dB, which is two times better than the Block FOCUSS. For lower SNR values
(below 15 dB), both Block FOCUSS and Coherent FOCUSS suffer from ghost targets that appear in the DOA
estimation of targets. Coherent FOCUSS suffers more in lower SNR (below 15 dB) cases compared to Block
FOCUSS.

In coherent processing, the finite range resolution of the radar sensor limits the accurate estimation of
the path length difference. This practical constraint leads to high false alarms in coherent processing. More-
over, coherent processing also suffers from high side lobe levels that increase with the increase in baseline.
To overcome these limitations a novel Fusion FOCUSS algorithm is proposed, which combines the bi-static
responses coherently along with the incoherent mono-static responses of the system. By appropriately de-
signing the sensor elements in each sensor, the bi-static responses together can have twice the aperture of
the individual mono-static responses. Thus, this method improves the angular resolution by a factor of two,
when compared to incoherent processing of both mono-static and bi-static responses.

With the simulation and experimental results the performance of Block FOCUSS is validated. With the
simulation results the Coherent FOCUSS is validated and a Fusion FOCUSS method is proposed to overcome
some of the drawbacks of Coherent FOCUSS. Hence, demonstrating the robustness of the algorithms in prac-
tical scenarios.

6.2. Recommendations for future work
Based on the work done in this thesis, several recommendations are provided here to investigate and further
improve the solution.

• Stationary objects are considered in this thesis, the work can be extended to consider moving targets.
When the targets are in motion, the main difference to be considered is the phase change that occurs
due to the migration of the target. This phase change can be perceived differently by different sensors.
This can have a major impact on the coherent processing of the data. [52] shows a study of the effect
of target displacement on the DOA estimation. It is non negligible and thus needs to be addressed
to complete the problem for application in practical scenarios. [53] also provides a way to correct for
errors in the estimation based on the target positions in oceans, this idea can be expanded in automo-
tive radar as well. Another aspect of moving targets, is that the individual radar sensors perceive the
target with different radial velocity. Moreover, similar to range quantization there will be errors due to
Doppler quantization. Hence, the coherency corrections for range have to be extended with corrections
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for Doppler. This will further complicate the coherent processing of the data.

• In this thesis the AF and the resolution achieved is studied for a uniformly distributed array in each
sensor. Instead, sensors made up of sparsely distributed elements can be utilized which will provide
higher virtual aperture for each sensor, thus providing higher resolution as shown in the study per-
formed by [15]. Also, having sparse arrays can improve the coherency of the sensing matrix (discussed
in Appendix A). An optimization problem can be formed to estimate the best configuration of array in
the sub-system by considering the baseline and other system parameters. Current state of art mostly
discusses about finding the optimized sparse single sensor, instead we can look for optimized sparse
sensor configurations for the distributed setup by considering multiple sub-systems in a single opti-
mization problem. Optimal design of the distributed system can enhance the resolution capability and
the performance of the algorithm further.

• Grid based algorithms suffer from errors in estimation of DOA when the target is not present on the
grid. But the granularity with which a grid can be defined is limited by the properties of sensing ma-
trix [13] and by implementation constraints. In this thesis one of the ways to overcome this problem
is presented by having a refined grid spacing around the estimated target position, but this is not the
most efficient way to estimate the DOA. Hence, grid-less algorithms suggested in [13] like atomic norm
minimization can be explored for data fusion to overcome the off-grid problems by extending the algo-
rithms for block sparsity.

• The regularization parameter (λ) chosen in all the variants of the FOCUSS algorithms can be further
optimized in each iteration of the algorithm to achieve better convergence [42]. Currently only single
value of the optimization parameter is used in the algorithms for all the apertures, which is selected as
the minimum of the noise variances from all apertures.

• The performance of the Fusion FOCUSS algorithm for varying array configurations can be studied, in
order to determine the best array configuration that can be used without increasing the side lobe levels
than the defined threshold. The evaluation of the performance of Fusion FOCUSS for varying SNR,
baseline and varying phase of the target can be studied.
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A
Coherency of sensing matrix

To ensure that the unique solution can be found by solving the under determined set of equations to obtain
the sparse solution, it is necessary that the sensing matrix A satisfies the uniqueness conditions. One of the
ways to find this uniqueness condition is by checking if the sensing matrix satisfies the restrictive isometric
property (RIP). But this is computationally very ineffective to implement [13]. In this thesis we thus use the
mutual coherence [13] or what we call as the coherence index of the sensing matrix (µ(A)). The coherence
index quantifies the correlation between the atoms (or columns) of A. The coherence index (µ(A)) of A is given
by the largest absolute correlation between any two columns of A (normalized sensing matrix). It is given as

µ(A) = max
i 6= j

∣∣〈ai , a j
〉∣∣

‖ai‖2

∥∥a j
∥∥

2

(A.1)

where 〈 ., .〉 denotes the inner product of 2 vectors.
Intuitively, if the 2 columns of the matrix A are highly correlated then it will be difficult to distinguish their

contribution to the measurements y, thus making it hard to attain the unique solution. If the two columns are
completely coherent then it will be impossible to attain the sparse solution as it is impossible to distinguish
their contributions to y. Therefore, to ensure a successful recovery of the sparse signal the value ofµ(A) should
be small.

If the signal to be reconstructed is K - sparse, i.e., in automotive radar if we have K targets that needs to
be recovered, then the necessary condition for a successful recovery is

K < 1

2

(
1+ 1

µ

)
(A.2)

For a normalized matrix A the coherence index can also be calculated as the maximum absolute off-
diagonal element of AH A [41]. The visualization of the values of coherence index for matrix A is explained in
detail in [41]. An important point that we would like to bring the attention from [41] is that, the coherence in-
dex has been derived for several independent worst case scenarios in order to provide an easily interpretable
bound for uniqueness. In some of the practical applications the value of the coherence index can be typi-
cally relaxed further. [41] provides some real world examples with statistical distribution of the data to prove
this point. If the coherence index is not small enough, as the cardinality of the sparse signal increases the
misdetection probability also increases.

Fig A.1 depicts the coherence index of the sensing matrix for incoherent and coherent processing for a
distributed sensor with baseline of 128λ and for a target present in the near field region. The sensing matrix
consists of a dictionary that looks at targets from −45◦ to +45◦ by dividing this filed of view equally into
multiple points, which make up the dictionary of A. The x axis in the figure plots the dictionary size and the y
axis plots the coherence index for the dictionary size. As the dictionary size increases, the number of atoms (or
columns) in the sensing matrix increases thus reducing the angular spacing between the 2 adjacent columns.
This increases the correlation between the columns and thus makes it hard to find the sparse solution as
discussed above. For example when the dictionary size is 3 there are only 3 columns each spaced out equally
in the FOV, thus the correlations between these columns is almost zero. Note that lower coherence index is
desirable as it increases the probability of attaining the right sparse solution and reduces the misdetection
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Figure A.1: Coherence index of A for baseline 128λ
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Figure A.2: Coherence index of A for baseline 128λ and 32λ

probability. Also from the figure it is shown that the coherence index of the incoherent processing increases
smoothly with the increase in dictionary size, whereas for the coherent processing we see more variations.
In coherent processing we are looking at a large aperture with very few antenna elements, thus making the
large aperture a sparse array. This sparsity leads to the variation of the coherence index as well, based on the
dictionary points that we chose. If we look at the AF for coherent processing as shown in Fig 4.8 it is seen that
it has multiple side lobes that are placed very close to the main lobe. If the dictionary of the matrix A is made
to coincide with the nulls of the side lobes, then the correlation between the columns can be reduced, as the
ambiguities in DOA estimation reduces as well. These are represented by the dips in the coherence index for
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Figure A.3: AF for baseline 128λ and 32λ

coherent processing plot in the Fig A.1.
Looking at the coherence index, it is shown that picking the right dictionary is important to guarantee

the recovery of a sparse signal. It can be seen that having an extremely fine grid increases the coherence
index and is not desirable, even though it helps to avoid off-grid problems. Thus defining the dictionary
grid that has sufficiently less coherency and still having as fine a grid as possible can be challenging. To
understand the variation of coherence index for varying baseline we can look at the Fig A.2. From the plots
it is shown that the coherence index for incoherent processing does not vary with varying baseline, this is
because the sensing matrix for each sub-aperture is defined separately. As long as the array design for the sub-
system remains same the coherence index also will remain the same for all the sub-apertures. However, for
coherent processing we see that the variations in coherence index with dictionary size reduces with reduction
in baseline, this is because as the baseline reduces the sparsity in the virtual aperture of the distributed system
reduces (as the number of elements remain the same and they are now spaced more closely). As the baseline
reduces further, the coherence index variations move closer to that of incoherent processing. The variation in
coherence index for coherent processing can be linked to the AF of the same. Fig A.3 depicts the AF response
of the coherent processing for baseline of 128λ and 32λ. From the plots it is seen that the number of side lobes
next to the main lobe reduces as the baseline decreases, thus reducing the ambiguities in the measurements.
A similar pattern is observed in the Fig A.2 where the variations in coherence index with dictionary spacing is
reduced for a 32λ baseline when compared to 128λ baseline.

Hence, it is important to understand that choosing the right array design and the right dictionary spac-
ing needs to be considered to achieve a lower coherence index value. Lower value for coherence index is
important as it helps us in achieving the true sparse solution. Thus, exploring sparse array designs for the
sub-systems used in the distributed system can be an important step towards achieving lower coherence
index of the sensing matrix A.





B
Ambiguity function

To evaluate the impact of the array geometry on the algorithms we can make use of Ambiguity function. AF
is motivated by the matched-filter (MF) response defined as the similarity between the signal model a(θ)
evaluated at an assumed target position θT and the hypothesis θ. For a steering matrix A defined as in Eq
2.13, which consists of the steering vectors as the columns of the matrix, the AF is defined as given below

AF (θi ,θT ) = |MF [i ]| = ∣∣a (θi )H a (θT )
∣∣ (B.1)

For incoherent processing (Block FOCUSS) the AF is calculated as the aggregated matched-filter response
from all the virtual apertures L (2 mono-static and 2 bi-static for a coherent system with 2 sensors). An effec-
tive ambiguity function is found by calculating the aggregated matched-filter norm across all the apertures
defined by the below equation

AFi ncoh (θi ,θT ) = MF [i ] =
(

L∑
l=1

(
AF l (θi ,θT )

)2
)1/2

(B.2)

In the Eq B.2, AF l is calculated for each virtual aperture as given in Eq B.1. The ambiguities that exist
between the hypothesis θT and θi in the Block FOCUSS atom selection is produced by a high value of Eq B.2,
and the peak values are the side lobes. For the case when the targets are on grid, the main lobe is centered at
the true hypothesis ( θi = θT ). Note that for the symmetric array designs that are discussed in this thesis has a
symmetry in AF around the main lobe. The AF obtained by incoherent processing for a system with 2 sensors
is depicted in Fig 3.2. In this figure the true position of the target is considered as zero degree, which is where
the main lobe is centered at. The side lobe levels indicate the ambiguity in the measurement of the DOA of a
target, higher value for side lobes indicate a higher ambiguity and therefore making it difficult to measure the
true DOA.

For coherent processing, the matrix Ac is obtained by stacking the sensing matrix from all the virtual
apertures as shown in Eq 4.2. As all the steering vectors are now combined in a single matrix Ac , we can
write the AF for coherent processing as shown in Eq B.3, where ac (θ) represents the columns of Ac , which
constitutes the steering vectors from all the virtual apertures.

AFcoh (θi ,θT ) = |MF [i ]| = ∣∣ac (θi )H ac (θT )
∣∣ (B.3)

In coherent processing of a distributed system it should be noted that the sparsity in the total virtual
aperture formed increases with increasing baseline. The effect of this on the AF is discussed in detail for
coherent processing in Section 4.3. Fig 4.8 depicts the AF response from coherent processing for a distributed
system with a baseline of 64λ. From this figure it is shown that the main lobe width for this response is much
narrower than that of the incoherent processing, this means a better resolution can be achieved using such
a large virtual array. However, it is also seen that the side lobe levels are very close to the main lobe, thus
creating lot of ambiguities. Due to this, the target might be detected to be in one of the side lobe levels in
scenarios with noise, leading to errors in the DOA estimation.
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