
TAM 2.0
BEP Report
D. Böhm
G.K.G. de Gans
D.T. Franken
M.B. Musters
B.T. van Kooten

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

TAM 2.0
BEP Report

by

D. Böhm
G.K.G. de Gans
D.T. Franken
M.B. Musters

B.T. van Kooten

in partial fulfillment of the requirements for the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Thursday, July 2, 2020 at 11:00 AM.

Project duration: April 20, 2020 – July 2, 2020
Client: Stefan Hugtenburg, MSc Distributed Systems Group
Coach: Dr. Lydia Chen Associate Professor
Bachelor Project Coordinators: Thomas Overklift, MSc Teaching Team

Ir. Otto Visser Distributed Systems Group
Dr. Huijuan Wang Department of Intelligent Systems

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
For our Bachelor End Project, we worked on improving the Teaching Assistant Management (TAM)
platform. Our main aim in improving this platform was to alleviate the tasks that have to be performed
by the TA coordinator, who previously had to perform heaps of manual labor. In the past 10 weeks we
have extended the original TAM with many features which either automate work, or make it such that
the work can be done more easily.

Special thanks go to our coach Lydia Chen. Her tips and tricks have ensured that we focused on
the appropriate things, and could create the best product possible.

We would also like to thank Stefan Hugtenburg, our client. During our weekly meetings we received
invaluable feedback from him. Mostly as a client, but also as a second coach.

During the project, we worked together with the LabraCORE team to integrate the LabraCORE product.
We like to thank them for extending LabraCORE with the features that were required for us to make
TAM function. We also want to thank the team who worked on TAM previously, as they have given us
a great baseline to start our project with.

D. Böhm
G.K.G. de Gans

D.T. Franken
M.B. Musters

B.T. van Kooten
Delft, June 2020

i

Summary
Most courses in the Computer Science Bachelor at the Delft University of Technology make use of
lab sessions. During these lab sessions students can ask questions about course material and get
feedback on their assignment. Moreover, their knowledge about assignments can be orally tested.
In order to properly help the students, teaching assistants, or TAs, are selected to assist the lecturer
during the lab sessions. With the number of students in the Bachelor quickly growing, the process of
manually recruiting students to become a TA and assigning the TAs to lab sessions is becoming very
time consuming and almost impossible.

During a Bachelor End Project in 2018 four students (van Deursen et al., 2018) created the Teach-
ing Assistant Management (TAM) platform. This project aimed to ease the process of recruiting and
scheduling TAs. All parties involved in the process of appointing TAs can use TAM to provide their
input. Lecturers can register their courses on TAM and students are able to indicate their interest and
availability to help with different courses.
However, the first version of TAM missed a number of important features. For example, student avail-
ability data had to be extracted manually and teachers still had to email their TA selection to the coor-
dinator.

This project aims to continue and improve TAM with these missing features. In order to achieve this
goal TAM 2.0 has been developed.

TAM 2.0 consists of three components: a MySQL database, a back end written using Spring and Java
containing the business logic, and a front end website created using Vue to provide an interface to
its users. TAM 2.0 also integrated LabraCORE. LabraCORE provides user and course information to
several platforms and stores it conveniently in one central place.

During the development of TAM 2.0, a few problems have been encountered. The biggest problem was
that more time needed to be spent on integrating with LabraCORE than anticipated. All in all, only two
minor features were not implemented. One of them turned out to be redundant. All important features
that will improve the workflow of TA management have successfully been implemented.

ii

Contents

Preface i

Summary ii

1 Introduction 1

2 Research 2
2.1 Problem definition . 2
2.2 Problem analysis . 2
2.3 Proposed solution . 8

3 Design 10
3.1 Database . 10

3.1.1 LabraCORE. 10
3.1.2 Changed tables . 10

4 Process 12
4.1 Internal organization . 12

4.1.1 MoSCoW . 12
4.1.2 Communication methods. 12
4.1.3 Sprints. 13
4.1.4 Version control . 13
4.1.5 Meetings . 13

4.2 Timeline . 13

5 Final product 15
5.1 System architecture . 15
5.2 Features . 17
5.3 Database . 24
5.4 User tests . 26
5.5 SIG . 28
5.6 User manual . 28

6 Ethical implications 30
6.1 Personal data . 30
6.2 LabraCORE. 30
6.3 GDPR . 30

7 Conclusion 32

8 Discussion 33
8.1 Reflection . 33
8.2 Future work . 34

A Info sheet 35

B Original project description 37

C TAM 1.0 38
C.1 Student view . 39
C.2 Course manager view . 41
C.3 Verifier view . 43

Bibliography 44

iii

1
Introduction

In order to select Teaching Assistants (TAs) for courses, the Bachelor and Masters of Computer Sci-
ence and Engineering currently use the Teaching Assistant Management platform (TAM). This platform
lets students indicate whether or not they are interested in TAing a specific course. This ensures all
student preferences are kept in a single place.

Since the TAs are an invaluable asset to the quality of courses, a lot of time is spend finding the correct
students for the job. However, this currently takes up an enormous amount of manual labor for the TA
coordinator. Most of this work comes in the form of looking through multiple spreadsheets, keeping
track of everything from student preferences to whether or not a student has completed their TA train-
ing. After evaluating the current workflow with the TA coordinator, the most important bottlenecks were
found in the current workflow. The aim of this project was to extend the current version of TAM with
features that would either automate or alleviate the work required for these bottlenecks.

This report gives an overview of all the additions that were made to TAM during our Bachelor End
Project. Chapter 2 provides an analysis of the current system and workflow. In this analysis the main
bottlenecks in the system are identified. In chapter 3 the conceptual changes that are made to the
existing system are discussed. Chapter 4 discusses our team process during the Bachelor End Project.
The final result of the product is discussed in chapter 5. This includes all the information about the
system architecture, the newly implemented features, as well as feedback received from user testing
and the Software Improvement Group (SIG). Chapter 6 discusses the ethical implications that come
with using our project in a live environment. In chapter 7 a conclusion is provided on the entire project.
Finally, in chapter 8, we touch upon the possibilities of extending TAM, as well as reflecting upon the
past 10 weeks working on this project.

1

2
Research

The original description of this project (see appendix B) provided us with an idea of what the project was
about and what was expected of us. However, more information was required before we could start
working on it, so we had to research the problem, the current approach taken to address the problem,
and the wishes of our client. This chapter outlines the results of our research phase by providing a
definition of the problem, a thorough analysis of the problem, and the requirements we have derived
from it.

2.1. Problem definition
Teaching assistants (TAs) are recruited with the use of TAM, a teaching assistant management tool.
The TA coordinator enters courses that need teaching assistants into TAM. Students then use TAM to
indicate that they want to become a teaching assistant for a specific course. Once the deadline for
expressing interest has passed, the TA coordinator provides teachers with lists of students interested
in TAing for their courses. Subsequently, teachers make a selection from the TA candidates, and make
their selection known to the TA coordinator. The TA coordinator then gets the final say on which stu-
dents are recruited as teaching assistants, and handles contracts, TA training, and more.

Now the problem is that the majority of the tasks above take place outside of TAM. Of the tasks men-
tioned above, only adding courses and indicating TA preferences are performed using TAM. The other
tasks all have to be done manually with the use of database queries, spreadsheets and emails. As a
result, the TA coordinator’s tasks are laborious and time consuming.

A second problem becomes evident from this as well, namely that not all actors involved in the recruit-
ment process currently use TAM. If teachers could directly use the TA platform, this would eliminate
some of the work carried out by the TA coordinator, and give teachers more control over the process.

Lastly, TAM is currently being used in isolation from other tools employed by Delft University of Tech-
nology’s Computer Science and Engineering program, such as CPM and Queue. As a result of not
sharing any data, information such as user details and course information need to be replicated. This
can already be seen in the outline of the recruitment process above, where the TA coordinator has to
enter course information for every course that requires teaching assistants. This problem also goes
the other way, since teaching assistants need to be manually added to the other tools as well.

2.2. Problem analysis
In this section, we analyze the entire process in its current state (i.e. using TAM 1.0). For reference,
we have documented the functionality and high-level architecture of TAM 1.0 in appendix C. There are
three explicit types of users in TAM 1.0, namely students, course managers, and verifiers. Users with
a verifier role were intended to verify changes in TA training or English test status of students, but this
ended up being a task carried out by the TA coordinator.

2

2.2. Problem analysis 3

Selection procedure
Two months prior to the start of the semester the TA coordinator adds all courses of that semester
which need TAs to TAM. Subsequently, the coordinator will send a message to all students to inform
them that they can sign up for these courses by registering their course preferences in TAM. A deadline
is set, before which students can sign up for courses and indicate their interest by choosing from three
options: interested, not interested, or interested and TAd this course before (see figure C.3).

When the student deadline has passed, a list of interested students is sent to the teachers of each
of the courses which includes the name, student number, email address, and indicated interest of each
student. The teachers can then select students from this list as TAs. Another deadline is set for the
teachers to make their selection. If a student has previously shown to be unsuited for the job, this will
be indicated in the list by the TA coordinator. This, however, is a rare occurrence. Before the teachers’
deadline, teachers send the list of selected TAs back to the coordinator.

Contracts
From all the emails the coordinator receives from the teachers, he/she creates contracts for all of the
TAs. The contracts differ based on the pay scale (which is based on acquired ECTS) and the number
of hours a TA is available. All of this information is collected in one spreadsheet with the following
columns: name, course, job code, name online approver, email, registered by, max hours, pay scale,
start date, end date, batch and remarks. The spreadsheet with this information will then be sent to
FlexDelft.

Training and socials
Every student must complete a TA training in order to become a TA. Currently all students that already
followed such a training are in a single spreadsheet managed by the coordinator. There are two types
of TA training: a ‘general’ TA training as well as a project-specific training. Every new TA that has not yet
followed the required training should be notified by the coordinator and asked to submit their availability
using a survey. This list is then sent to the trainers allowing them to make a training schedule. After
fulfilling the training, students are added to the spreadsheet that is used to keep track of all students
who followed the training.

TAs also need to sign a code of conduct in which they declare that they will handle the extra infor-
mation they might gather by being a TA honorably. The students that have signed this code of conduct
are currently registered in a spreadsheet that is managed by the coordinator. The coordinator needs
to manually look for and inform students that still need to sign the code of conduct.

When a student is a TA for the first time, they will receive a TA polo. Students have to enter their
desired polo gender and size into TAM on their profile page. The coordinator then gathers this informa-
tion in a spreadsheet and makes sure there are enough TA shirts in the required sizes and genders.

At the end of each quarter there is a TA drinks event. The coordinator manually gathers the names of
all students who TAd during the quarter and sends an invite to all of them. At this social event, badges
are handed out by the coordinator to students for each of the courses they TAd for. The coordinator
manually keeps track of which students have received their badges using a spreadsheet. This is not
done very strictly, and badges are therefore handed out according to a trust-based system.

Scheduling
The scheduling is currently performed by the coordinator. Students can fill out their availability in TAM,
which the coordinator will then export as a SQL dump. This SQL dump displays each individual day
and time slot that a student is available. Based on this information, the coordinator manually assigns
all TAs to specific labs, and shares the schedule with the students.

Special cases
There are a couple of special cases in which the procedure differs slightly from the described proce-
dure. These will be addressed here.

2.2. Problem analysis 4

The first case are shared labs, which are labs that are shared by multiple courses. For these labs
it is preferable to have TAs that can assist with more than one course. In selecting TAs for those
courses with shared labs, the coordinator informs the teachers about which students can help with
multiple courses. The teachers can then choose specific students as their TAs to make sure a larger
number of TAs can help with as many courses as possible during these labs. Currently the lists of
interested TAs of these courses are manually compared.

Second of all, if students work more hours than specified in their contracts, their contracts must be
updated to allow them to request payment for the extra hours. In this scenario, students need to inform
the coordinator. Subsequently, the coordinator will inform FlexDelft to make sure the additional hours
are approved.

Finally, when a teaching assistant does not assist during a lab session, but, for instance, helps checking
exams instead, the student needs to be paid from a different financial envelope. The student needs to
email their name, pay scale and hours to the coordinator, who will subsequently approve their request
and make sure that he TA gets paid correctly.

2.2. Problem analysis 5

Process Diagram
Three figures can be found below which illustrate the TA process as seen from three different view-
points: that of a student, of a teacher, and that of the TA coordinator. Figure 2.1 describes the standard
process students follow, starting from the point of indicating interest in becoming a TA, to the end of the
quarter. Figure 2.2 describes the standard process teachers follow to recruit TAs for their course. Fig-
ure 2.3 describes the standard process the TA coordinator follows to manage TAs for all courses. This
diagram only shows the main process and not the special cases, since those are not always applicable
or necessary.

Figure 2.1: The process of a student becoming a teaching assistant.

Figure 2.2: The process of a teacher selecting teaching assistants for their course.

2.2. Problem analysis 6

Figure 2.3: The management process of the TA coordinator.

Identified issues
Now that we have seen the entire process of TA recruitment and management, we consider vari-
ous problematic aspects of the process as areas upon which TAM could improve. Finally we discuss
whether it would be preferable to use TAM 1.0 as a starting point, or to start over from scratch.

2.2. Problem analysis 7

Preferences manually extracted
By manually executing SQL queries and running a Python script, the TA coordinator extracts the course
preferences (i.e. which student would like to be a TA for which course) from the TAM platform. This
approach is unintuitive and requires a lot of manual labor.

Preferences manually distributed
Then, the teachers of each course have to manually be emailed a list of students interested in being a
TA for that course. This should not necessarily be automated, but it could be. Alternatively, the lists of
interested TAs are not emailed to the teachers, but can instead be made available to them on TAM.

No UI lab timetable support
The back end has support for timetables (with TA availabilities) for course labs, but the user interface
has no support for it. The problem is hence that this feature cannot actually be used in practice.

Third preference option unnecessary
For every course that TAs can apply for, there are three options: “Yes” (I am interested in being a TA for
this course), “No”, and “Yes, and I’ve been TA for this course before”. The last option may be redundant
if the system could detect this from previous data.

Contract information
Once the teachers have made a selection of TAs from the list of interested students, they are emailed
back to the coordinator so that the necessary work contracts can be made for the TAs. For every
contract, the pay scale and working hours must be determined. Additionally, it must be determined
whether selected students have yet to follow a TA training. Currently, this information is gathered
manually in a spreadsheet, but this could be automated if teachers select TAs using the TAM platform.

Contracts
To create contracts for FlexDelft, the following information must be determined for each contract: name,
course description, job code, name of online approver, email, signed in by, max hours, pay scale, start
date, end date, flex batch, and remarks. Now, this information is manually gathered in a spreadsheet,
but ideally this would be automatically available in TAM.
The contracts are emailed manually to FlexDelft. For now this is preferred since money is involved and
contracts can be manually checked for errors, but in the future it may be possible to automate this as
well.

TA drink invites
At the end of each quarter, a TA drink is organized for TAs that were a TA during that quarter. To invite
the right TAs, a record must be kept of which TAs worked during that quarter. Now, this record is kept
manually in a spreadsheet, but preferably TAM could invite the right TAs automatically.

TA training
To organize a TA training, it must be known how many students need training and when they are
available. In the current system, a Google Forms survey is used to obtain the availability of each
student. It is possible to track which students have passed their training in TAM, but in practice this
requires too much time and a spreadsheet is used instead.

Badges
During the TA drinks, TAs are given badges for the courses they TAd. However, TAs should not be
able to receive a badge more than once, which is why a record is kept of who received what badges.
In addition, a record must be kept of the badge inventory. Now, this is done manually in a spreadsheet,
but being able to do this in TAM is preferred.

Help with examining or extra labs
If a TA helped with examining or helped during an extra lab session, the TA has to write an email
concerning their extra work. Now, this information has to be collected from all these emails so that

2.3. Proposed solution 8

the extra work can be paid and administered all at once. Ideally this process could be improved by
including it as part of TAM, instead of doing everything by email.

Detecting TAs for shared labs
A number of courses have shared labs. An attempt is made to schedule students for these labs who
are a TA for more than one of the courses sharing the lab. By doing this, less TAs are needed overall.
Lecturers currently need to be asked to compare their TA lists to find such TAs. An improvement over
the current version of TAM would be if it could detect such TAs automatically.

Code of conduct
Every TA has to sign a code of conduct. TAM should be able to store a record that keeps track of which
students have signed the code of conduct in TAM.

Labrador/LabraCORE integration
For now, it is not possible to use information from other TU Delft platforms. It would be very helpful
if, for example, TAM could instantly make TAs available in Queue, and feedback from Queue could
be sent to TAM. Labrador/LabraCORE integration could make this possible. The Labrador project is a
recent undertaking which allows participating platforms to share data which is stored in a centralized
database accessible by an API. To ease communication between systems, a definitive model has been
(currently: is being) designed of the university and all parts that belong to it, e.g. courses, assignments,
and users.

Improving TAM
The final issue we had to consider was whether it would be more beneficial to take TAM 1.0 as a
starting point or to start from scratch. One point of consideration was that the existing platform already
contained a lot of functionality that would have had to be implemented again if an entirely new version
of TAM were to be created, but on the other hand it was also known that TAM 1.0 would require a lot
of rewriting and redesigning to accommodate the integration with LabraCORE. By doing some more
research into the tools used by TAM 1.0 we learned that the system is quite modular and was something
that could be worked on in parallel. In addition to this, we believed it would be too much of a waste
to start entirely anew, since we anticipated that we would end up having less time to implement new
features. Hence, we decided to use TAM 1.0 as our starting point.

2.3. Proposed solution
After having questioned our client and having decided to continue from TAM 1.0, we have derived
the following initial set of requirements, which we have discussed and refined with our client. The
requirements are assigned to one of four priority classes using the MoSCoW method: must have,
should have, could have, and won’t have. The priorities of the requirements are based on the wishes
of our client.

Functional requirements
Must Have:

• RM01 Teachers can view a list of interested TAs for each of their courses.

• RM02 Teachers can select from those lists the TAs that they want for each course.

• RM03 TA coordinators can export a spreadsheet with all the TAs that have been selected, the
corresponding courses, their pay scales, amount of hours, etc. to be sent to FlexDelft.

• RM04 TA coordinators can get an overview of TAs that have not yet finished their TA training.

• RM05 TA coordinators can import a list of TAs that finished their TA training.

• RM06 TA coordinators can get an overview of all TAs that have not yet signed the Code of Con-
duct.

2.3. Proposed solution 9

• RM07 TA coordinators can import a list of TAs that newly signed the Code of Conduct.

• RM08 TAs can send a request to teachers for payment for overtime or extra work.

• RM09 Teachers can view and accept or reject requests fromRM08 and forward accepted requests
to TA coordinators to view.

Should have:

• RS10 Automatically send notifications to teachers when they can start selecting TAs.

• RS11 Teachers and TA coordinators should be able to get an overview of the availability of TAs.

• RS12 TA coordinators can view which students TAd during the last quarter and for what courses,
in order to arrange TA drinks and badges.

• RS13 TA coordinators can see which TA has received what badge.

• RS14 TA coordinators can see a list of new TAs for TA shirt management.

• RS15 TA coordinators can attach notes to a TA that teachers can also see.

• RS16 TAs are able to change their ECTS total, which determines their pay scale. TA coordinators
should be notified to accept or reject a change in pay scale for a TA.

Could have:

• RC17 Import TA feedback from Queue into TAM (LabraCORE).

• RC18 Export TAs from TAM into Queue (LabraCORE).

• RC19 Detecting overlap in TA course lists for shared labs.

Won’t have:

• RW20 Scheduling the TA training for the TAs.

Non-functional requirements
• The expected number of users is 1000 per year.

• Peak usage is expected for 2 weeks a year (up to 500 users), but increased latency is acceptable.

• The project should have clear documentation for installation, usage, and development purposes.

• It should be documented what requirements exist in order for TAM to be updated for use for
multiple study programs.

• The back end should use Java version 11.

Requirements update
During the first few weeks of the project we have had multiple meetings with our original client and a
new client from the LabraCOREdevelopment team. From thesemeetings we concluded that integration
with LabraCORE is much more important than originally thought. Therefore we have decided to add
two more must haves. The first must have is the integration of LabraCORE. This change requires us
to make changes to our database and rewrite existing parts of the code. To streamline future database
changes and migrations we added a second must have: add Liquibase to the project setup.

3
Design

In general our design is still the same as the design of the previous version of TAM, since we built further
upon the existing version. This is mainly because we believe that improving the current version of TAM
allows us to satisfy the client more, by implementing features that save a lot of time. The design of the
back end and front end have therefore not been changed drastically, i.e. we kept using Java Spring for
the back end and Vue and Bootstrap for the front end. For a more detailed overview see 5.1. We did
need to change the design of the database because of the requirement of having TAM interacting with
LabraCORE, which is why this chapter will further elaborate on the design changes in the database.

3.1. Database
Because of the requirement to have TAM connected to the LabraCORE API, a number of database
changes have to be made. Parts of the original database system are no longer required, and other
parts are moved to LabraCORE. Figure 3.1 gives an overview of the schema we designed prior to the
software development phase. Later in the project this schema has changed, the final version can be
found in 5.17. In this section we will discuss why we have made certain changes.

3.1.1. LabraCORE
LabraCORE is an initiative to centralize all common data needed for systems that are used by the
Computer Science department (and later for the entire faculty and other faculties). The rationale behind
this is that a lot of these systems use the same data, e.g. information about students or courses. By
centralizing this in one database, the systems are able to share data more easily and they can be
maintained more conveniently.

3.1.2. Changed tables
A number of features are not presently being used, and are also not desired to be in TAM in the future.
Therefore we have decided to remove the tables associated with these features from our database.
Furthermore, a lot of information that is being used by TAM is also relevant to other systems used within
the department of Computer Science (e.g. Queue, CPM). To be able to share this information, data
previously stored by the TAM database has been moved to LabraCORE and is obtained through its
API.

CoursePreference
This table was used to allow verifiers to give every student a rank stating how much they want this
student to be a TA for their course. This information was then used to create ’the best’ TA assignment
using an algorithm. This way of assignment has not been used and is no longer desired, and therefore
this table is no longer necessary.

Schedule
The Schedule table was used to store the schedules of course and lab assignments of TAs. Just like
with the CoursePreference table, this function was used for automated scheduling of TAs. TAM is
currently not used for the scheduling task, so it no longer needs to be included.

10

3.1. Database 11

Lab / LabSession / LabAssignment
The information about labs and lab assignments is used by multiple systems as well. This caused the
tables Lab and LabSession to be moved to LabraCORE. The LabAssignment table was also used for
the scheduling feature of TAM, which is no longer desired to have in TAM.

User / Profile / Prerequisites
The most relevant user information (netid, name, email), will be taken from LabraCORE. This infor-
mation is used by many systems, so it would be redundant to store this separately for every system
available. There is however some TAM specific information that needs to be saved, e.g. completion of
TA training, polo preferences, et cetera. Some of this information was saved in the Prerequisites table,
but this has been merged into one table called Profile.

CourseEdition / CourseAssignment
All systems rely on information about the courses (course_code, teacher, quarter), and TAM is no ex-
ception. Since TAM fills in parts of this information, namely who is a TA for what course (CourseAssign-
ment table), it is important that other systems can also access this information. LabraCORE also pro-
vides information about who manages a course.

Figure 3.1: The initial database schema design of TAM 2.0

4
Process

This chapter describes the process of the project. First, a summary of how various parts of the product
and report were organized and handled by our group is given. After that, an in-depth timeline is provided
which details how this report and the end product came to be.

4.1. Internal organization
In the sections below, we will detail which solutions we came up with and why we used certain tools for
various technical aspects of the project.

4.1.1. MoSCoW
Almost immediately after the start of the project it was decided to set up and make use of a list of
requirements in a MoSCoW format (Must have, Should have, Could have, Won’t have). The initial
requirements were decided upon after the first meeting with the client, and remained largely the same
during the rest of the project, the biggest change being the addition of LabraCORE integration as a
must have requirement.

4.1.2. Communication methods
Messaging
After a first round of emails were sent around using TU Delft student mail addresses, our group shared
contact details and came together in a WhatsApp group which we have used throughout the project for
planning and general messaging. WhatsApp was chosen because almost everyone has it installed on
their smartphone nowadays.

Later, a Discord server was set up which was used for more detailed messages about program-
ming issues and advice. This server also included a channel which we shared with three Labra-
CORE/LabraDoor developers for intercommunication. Discord is easy to set up and use, and per-
missions for e.g. the shared LabraCORE channel are easily managed.

For questions and other short discussions with the client outside of meetings, A private channel was
made in the BEP Mattermost server.

Meetings
For meetings with the client and/or the coach, the Jitsi meet instance hosted by the TU Delft1 was used.
Typically during each meeting, the next meeting was scheduled and calendar invites were sent out to
each participant.

For internal meetings, we started out also using Jitsi, but switched over to Discord because we did
not value the video features of Jitsi as much during team meetings, and the voice quality and noise
filtering of Discord were much better in our opinion.
1TU Delft Jitsi meet instance at https://jitsi.ewi.tudelft.nl/

12

https://jitsi.ewi.tudelft.nl/

4.2. Timeline 13

4.1.3. Sprints
In the first week, we made a time plan in which we concluded that we would be able to finish the project
optimally by making use of two-week sprints. During these sprints, people either worked on one large
feature, or two smaller features, with each feature being worked on by one or two people, depending
on the size. Each feature mapped to roughly one requirement from our MoSCoW list.

4.1.4. Version control
To save all of our code and keep track of changes, we made use of Git. Specifically, the TU Delft
hosted GitLab instance2. Not only is Git a useful version control tool but the existing TAM 1.0 code-
base is hosted on this same GitLab instance, so it was easy to create a fork and work from there.

For each feature, a separate branch was created from the ’dev’ branch and worked on until completion.
A merge request would then be created which was to be reviewed by preferably each team member.
All merge requests relating to new features had a minimum of 2 approvals needed, while smaller minor
fixes required only one approval.

4.1.5. Meetings
Regular meetings
Because meeting in-person was not an option during the ongoing measures against the COVID-19
pandemic, we had at least one online meeting every week, usually more, where we all came together
in a conference call.
Each week, we had one team-only meeting. Every two weeks, we had a meeting with our coach, and
also about every two weeks we had a meeting with our client. There were also two extra meetings with
(part of) the LabraCORE team.

Midterm meetings
At the start of the project, as suggested by our coach, we scheduled two midterm meetings. One at
the half-way point of the project, and one at the three-quarters point. These meetings would include
our full group, our coach from TU Delft, as well as our client.

During these meetings we would give a short presentation on the progress we have made thus far,
how we envisioned the rest of the project, and included a live demo of newly completed features. Af-
terwards we would receive feedback from both our client and our coach. After both left, the team would
stay in the conference call a little longer to reflect on the presentation and discuss what steps to take
next.

4.2. Timeline
The Start
Our group came together very last-minute at just two days before the start of Q4. Our group consists
of five people who had, up until then, not found a group yet. Unfortunately, the company that proposed
the project we chose initially informed us that the project had been canceled, and we had to switch to
an internal TU Delft project.

On Wednesday of the first week, we had our first live meeting with the client to discuss what the project
exactly comprised, and on Friday that week, we had the first meeting with our coach. Thus, it was not
until the start of the second week that we were fully set up and ready to start working on the source
code.

The Middle
We were well on track implementing some of the new features that our client requested but not all
we needed to do was in our planning at that time. There was one thing the client was not sure about
because he did not write the original project description himself. One part of the project we had not
paid much attention to, looming in the background: LabraCORE.
2TU Delft GitLab instance at https://gitlab.ewi.tudelft.nl/

https://gitlab.ewi.tudelft.nl/

4.2. Timeline 14

When we initially inquired the Labrador team about their platform, they had given us access to several
repositories on the GitLab instance. LabraCORE, LabraDoor, and Librador, all with little to no docu-
mentation. Because it still was not clear what we were to do with it, we scheduled a meeting with both
our client and the Labrador team during which everything became clear. Unfortunately, this meeting
didn’t take place until week 3.

LabraCORE integration was going to be a lot more work than planned and a part of our team went
to work immediately. The rest of the team continued working on other features.

The End
The subteam working on integrating LabraCORE had to rework all existing features and the features
we had made until that point to work with data from LabraCORE. Not only did it take some time to
get used to the way that LabraCORE handles data, but quite some needed features did not exist in
LabraCORE at all. For each newly requested LabraCORE endpoint it obviously took some time from
request to code to review to merge to deploy until we were able to use it.

The last few weeks everyone has mostly been updating our new features to work with the new Labra-
CORE back end, and we put the report on the back-burner for a while. And so, by the time of writing
this timeline, all features have been merged, and we are done coding.

5
Final product

This chapter gives an overview of the final product that is delivered. First, the system architecture is
addressed. This section centers around figure 5.1 which gives an overview of how the components
of TAM 2.0 and LabraCORE work together. Next, the implemented features are described in detail
with screenshots of what they look like to the user. Following that, the final model of the database is
explained and compared to the initial design. After that, the results of the user tests that have been
conducted are discussed. Next, the feedback from the Software Improvement Group (SIG) is discussed
and what part of the feedback has been processed. In the last section of this chapter the choice to not
have a User Manual is explained.

5.1. System architecture
This section addresses the system architecture of TAM 2.0. The structure of the front end and back
end remain largely unchanged since the first version of TAM. Please refer to chapter 5 of the report by
van Deursen et al. for a detailed description [1]. New in TAM 2.0 is support for LabraCORE. In figure
5.1 it is visualized how the front end, back end, and LabraCORE work together.

Back end
Sincemost of the architecture is inherited fromTAM1.0 wewill only discuss the front and back end struc-
ture of our project. Our back end consists of a system using Spring Controllers, Services, and Repos-
itories. These are created for all the different types data used in TAM, e.g. Users and Courses. The
repositories are used to retrieve and send data to our data sources, which are both our own database
and LabraCORE. The services are used to handle the in and outgoing data, as well as checking if the
data exists. Finally, the controllers are used to create end points which can be accessed by our front
end.

Front end
The front end is built using a JavaScript framework called Vue. Vue allows us to serve the entirety of
TAM as a single-page application, which is composed of numerous components. Each page, such as
the profile page available to students, is encapsulated in its own component. This structure makes it
very easy to develop different components in parallel, without interfering and causing merge conflicts.
It also allows us to manage permissions for every page, since access requirements can be set up per
component.

LabraCORE
Now that TAM has to be able to share data with other systems, parts of the data it needs should be
stored by LabraCORE. To this end, TAM uses a library called LabraDoor. LabraDoor configures and
manages authentication, allowing users to sign in using Single-Sign On (SSO). In addition, LabraDoor
enables TAM to use LabraCORE’s API through an API client, which simplifies the tasks of retrieving
and storing data in LabraCORE.

15

5.1. System architecture 16

Figure 5.1: Detailed structure of the front- and back end. This figure was taken from the TAM 1.0 report by van Deursen et al.
[1] and adapted to resemble the current situation.

5.2. Features 17

5.2. Features
In this section we describe and illustrate the new features that we have added.

Teachers: View and select interested students
The first new feature addresses requirements RM01: “Teachers can view a list of interested TAs for
each of their courses” and RM02: “Teachers can select from those lists the TAs that they want for each
course.”. The course page has been updated to include a new section which allows teachers to display
a list of students who are interested in TAing for their course. Teachers can navigate between the
course information page and the interested students overview by clicking on the respective tab. The
new tab provides teachers with three methods of selecting TAs. They can opt to pick TAs one by one,
select all interested students at once, or they can provide input containing student numbers to select
only a subset of all interested students. The updated course page and interested students page can
be seen in figure 5.2 and figure 5.3 respectively.

Figure 5.2: The updated course information page. Note that labs have been removed from this page, and that there are now
two tabs to choose from.

TA Coordinator: Accept TAs
This feature is an extension to the feature that allows teachers to select TAs. Another tab has been
added to the course information page which is only available to the TA coordinator (figure 5.4). Initially,
teachers could directly add students to their course as TAs, but this meant that the TA coordinator
lost control and insight into the selection process. Hence, students selected by teachers now first
must be accepted as TAs by the coordinator. This page has similar input methods to the teacher’s TA
selection tab, allowing the coordinator to approve one, multiple, or all TAs at once. Once TAs have
been accepted by the coordinator, they will be registered as TAs in LabraCORE’s database, meaning
that other platforms can retrieve the newly added TAs.

Prerequisites manager
This feature can be directly linked to requirements RM04 and RM06. Currently the coordinator has a
separate spreadsheet of all TAs that successfully finished the required TA training and another spread-
sheet in which there is a notion of which TAs signed the Code of Conduct. This information however
is needed for other functions within TAM as well. Therefore a dedicated manager to keep track of
these prerequisites for TAs is needed. In TAM 1.0 there is an overview for the coordinator of all TAs
and some information, e.g. TA training, English test and pay scale (See Appendix C figure C.9). The
reason this function was not used for the TA training however is partly because the coordinator did not
notice its existence. In addition to that, updating the status is not convenient. The status either had
to be updated manually per student, or with an import in which every column had to be filled out. The
coordinator found it therefore more convenient to keep track of a separate spreadsheet.

5.2. Features 18

Figure 5.3: The new interested students page, which allows teachers to view and select students as TAs for their courses.

In Tam 2.0 we have extended upon the current overview. The Code of Conduct column is now added,
which keeps track on which TAs signed the Code of Conduct. Since the status for the TA training was
already implemented, this requirement is also met. In figure 5.5 it can be seen what the overview looks
like now. Part of the reason this feature was not really used yet was the inconvenient way of updating
it. This is something that will be addressed with the next feature.

Partial batch import
The following section will describe the partial batch import feature, which can be linked to requirements
RM05 and RM07. The feature of importing a batch of students into the prerequisites manager was
already present. Uploading a CSV file with the correct header and all information about the TAs in the
file, resulted in an addition of the new TAs to the table and an updated version of the TAs that were
already present. If, however, a column was not filled out in the CSV file, TAM would also update those
empty columns. This resulted in loss of data, since the fields that were not filled out in the file would
be reset to a 𝑁𝑈𝐿𝐿 or 0 value.

In the newly implemented feature this is not the case anymore. If a field was left empty in the CSV
file, TAM will not update its value and keep the old value. Even when the header is not complete, e.g.
there is only a 𝑛𝑒𝑡𝑖𝑑 and 𝑡𝑎_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 column in the uploaded file, TAM will be able to process the data,
without manipulating data that should not be manipulated. The 𝑛𝑒𝑡𝑖𝑑 column will always be necessary,
since this is used as an identifier for the users.

Contract exporter
With this feature, a Coordinator can easily export the details of all students that have been accepted
as a TA for all courses in a given period. This corresponds to requirement RM03.

5.2. Features 19

Figure 5.4: The TA coordinator can use this screen to have the final say on who becomes a TA.

To export contracts, the Coordinator first selects the quarter from which to export TAs. Upon select-
ing the quarter, the start and end date of the contract are automatically filled in according to the week
numbers in the TU Delft Academic Calendar1, but can of course be manually adjusted.

Per course type (Bachelor or Master course), a job code can be filled in and then accepted TAs to
be exported can be selected. Because the accepting procedure may not always be instantaneous, it
is possible to select a subset of TAs for export. There are select-all checkboxes for each course, and
for entire course types.

A screen capture of what it may look like is included as figure 5.7.

Availability overview
This section will describe the availability overview feature, which can be linked to requirement RS11.
The feature for students to fill out their availability was already present in TAM, but a convenient way
for the coordinator to get a clear overview of these availabilities was absent. This resulted in the co-
ordinator having to extract the availabilities by manually executing SQL queries and running a python
script on the output.

With the newly implemented Availability Overview feature this is not necessary anymore. To get an
overview of which students are available for a weekly lab (and thus might be suitable to be TA for this
lab) the coordinator selects the course and quarter of the lab and the weekday and timeslot the lab
will take place. The result is a list with students who are interested in the course and are at least once
1TU Delft Academic calendar: https://www.tudelft.nl/en/student/education/academic-calendar/

https://www.tudelft.nl/en/student/education/academic-calendar/

5.2. Features 20

Figure 5.5: The coordinator is now able to verify and set all student prerequisites using this page.

Figure 5.6: An example of a partially filled out file that can be processed by TAM 2.0.

Figure 5.7: The Contract Exporter. (see chapter 5.2)

available during the weekly timeslot. For every student his/her name is shown, his/her student number,
how many times they are available for the selected weekly timeslot and lastly a list of dates they are

5.2. Features 21

Figure 5.8: The result of the request to show students that are interested in OOP and are available on Mondays between 8:45
and 10:45 during the first quarter.

Figure 5.9: The view in which the TA coordinator sets the deadlines. For each semester the coordinator can set an email template
and a deadline.

not available. If the student is available every week for the selected timeslot the last column shows
”Always available”. The list is sorted so that students with the highest availability are on top.

To see a specific student’s availability, the (part of a) name or student number can be entered in the
search bar and only that student will be displayed. A screen capture of what it may look like is included
as figure 5.8.

Automatic emails and Templates
This feature is linked to requirement RS10. With this feature the TA coordinator can schedule emails
that will be send to teachers who have not filled in their TA preference yet. This way the TA coordinator
does not have to check for every course individually if the tasks of the teacher have been performed
already. What the email scheduler looks like can be seen in figure 5.9.
In order to personalize the emails to the needs of a specific course, TAM now also has an email template
editor. Here the user can create HTML emails. Besides standard HTML attributes, there are also
multiple TAM specific keywords that can be inserted in the template. These keywords will then be
converted to the name of the course, the name of the teacher, or the number of interested students.

5.2. Features 22

Figure 5.10: The view used to edit email templates. Instructions about the variables are included at the bottom of the page.

Figure 5.11: The resulting email using the created email template. The name, course name, and student interest are correctly
filled in.

An example of the template editor in action can be found at figure 5.10. Using this template ensures
the email clearly conveys the necessary information needed to take action. An example of an email
send by the system can be found in figure 5.11.

Extra work and Overtime
A new feature has been made that allows students (TAs) to be able to request payment for any extra
work they have performed outside of their regular TA contract. This corresponds to requirements RM08
and RM09. In the navigation bar, a new button titled ’Extra Work’ can be found. This page is accessible
to Students, Teachers, and Coordinators. For each of these groups, a different view is exposed.

For students, there is a form with which it is possible to submit extra work to the relevant teacher,
and to view any past submissions they’ve made and their status (see figure 5.12).
For Teachers, there is a list of incoming requests from students, and it is possible to either accept or
reject each request (See figure 5.13). On denial, an optional reasoning can be entered, which is visible
to the student.

5.2. Features 23

Figure 5.12: A form for students to submit extra hours.

Figure 5.13: A teacher’s overview of submitted extra work

5.3. Database 24

Figure 5.14: A coordinator’s overview of accepted extra work

For coordinators, there is a compact list of all extra work submissions that have been accepted by
teachers (see figure 5.14). This way the coordinator can write up a contract for each student and then
remove the request from their list once it has been processed.

Inventory manager
One of the last features we added is the inventory manager. This page allows the TA coordinator to
keep track of the stock of the various TA polos and badges. On the pages seen in figures 5.15 and
5.16, the TA coordinator can see and update the stock of each polo and badge.
In addition, the coordinator can use this page to hand out badges and polos, as well as to see who has
received what items.

5.3. Database
Several changes have been made to the database in comparison with the database design in 3.1.
This was due to new features that needed their own table, developments made within LabraCORE and
having a better understanding of the purpose of the data that is in the database. In this section we
will highlight those changes and elaborate on our choices to change the structure of the database. An
overview of the schema can be found in 5.17. For simplicity we only included the tables and columns
of the LabraCORE database that are relevant for TAM.

LabraCORE
During the timespan of this project, LabraCORE was still under development. This resulted in some
changes on the LabraCORE side, which caused for example an edition to have a start and end date
instead of a year and quarter. Besides this, working on LabraCORE integration with TAM caused us to
get a better understanding of how exactly data is stored in LabraCORE, e.g. CourseEdition is actually
called Edition, which is linked to a separate table Course.
A major difference is also the primary key of the User/Person table, namely a bigint instead of the string
of a netid. This had major consequences for the TAM database, since we needed to switch our person
identifier from the netid to the LabraCORE id. This is the reason all tables related to a user now make
use of the bigint user_id and not the string netid.
Another difference in the initial design and the final design is the absence of theManages andCourseAssign-
ment tables. In LabraCORE a course edition has an object named roles. This object includes the user
id’s of all teachers, TAs, students and other course related roles and this object is what is used in TAM
to retrieve and update course related roles.
The final difference we want to address is the absence of the Feedback table in the final design. This
table will in the future still be in LabraCORE, but is not included in this overview. The feature that is
related to this table has not been implemented in TAM during this period in consultation with the client,
and therefore TAM currently does not use this table.

5.3. Database 25

Figure 5.15: Here the stock of each polo can be managed.

Figure 5.16: The coordinator can add and remove badges on this page, in addition to managing the badge inventory.

5.4. User tests 26

Timestamps
In the initial design all rows in almost all tables had a last_modified and created field with the corre-
sponding timestamps. We found that these timestamps were not used and were redundant for the TAM
database, with the only exception being the timestamp in the GDPR table. For both simplicity as well
as efficiency reasons all other timestamps were removed from the database.

Roles
As can be seen in 5.17 the table User_Role is not included in the final design. This is due to a change
in the way roles are saved and used in TAM. In the former version of TAM every person would have
a role in the TAM database, but, with the arrival of the LabraCORE database and its mention of roles,
this was no longer necessary. Student roles could be retrieved through the roles object in Edition, just
like the Teacher roles. The only TAM related roles that are not included in LabraCORE are the TA
Coordinator, Verifier and TAM Admin. Only the users that need one of those three roles will be saved
in the TAM database. With the Admin role having access to all pages and endpoints, the Coordinator
role only to those pages relevant for the coordinator and verifier, and the Verifier role just to the pages
relevant for a verifier. By saving just these roles a massive decrease in data could be achieved.

Additions
Several tables are added in comparison with the initial design, due to the addition of features to TAM.
Most of these tables are self explanatory, e.g. ExtraWork and EmailTemplate, and will not be discussed
further. However, there are some tables we want to elaborate on. First of all, the addition of the Polo
table. With the introduction of the inventory feature, polo specifications needed to be used in more
than one table. To make sure that a clear overview remains of what polos are present in the database,
we chose to move this to a separate table and make foreign key constraints for tables that uses this
data. Lastly, the addition of the CourseEdition table. In the current version of TAM it is possible for
teachers to give a short description about TA’ing this course, e.g. ”This is a semester course”. These
remarks are solely used in TAM and will therefore not be stored in LabraCORE, which is why a new
table needed to be added.

GDPR
Accepting the General Data Protection Regulation (GDPR) is necessary for every user to be allowed to
use TAM. In the previous version of TAM this was stored in the User table with a boolean and timestamp.
We found this slightly inconvenient, since this boolean must never be false. Not having accepted the
GDPR should immediately result in no access to TAM to make sure all regulations are obeyed. For this
reason we made a separate table for all users that accepted the GDPR, storing their user id and the
timestamp of the moment they accepted it. Without a mention in this table, a user will not get access
to TAM.

Timeslots
The timeslot and availability tables have received an overhaul, starting with a change in the naming of
the Slot / Timeslot / DateSlot tables. In the initial version of TAM the Slot table would store timeslots
that are available during a random day, e.g. 8:45:00 - 10:45:00. The Timeslot table would then store
dates with timeslots that, which were used among other things to allow users to submit availability.
We found the naming of these tables slightly awkward, which is why we changed the name of Slot to
Timeslot, since it stores timeslots, and the name of Timeslot to DateSlot, since it stores a date with a
timeslot. Furthermore, we have greatly reduced the amount of data redundancy, resulting in the data
being simpler to use, requiring less storage and allowing the availability page to use less bandwidth to
load available timeslots and store availability.

5.4. User tests
TA with platform experience
One of the users we got to test our platform was a TA who used TAM previously to give their course
preferences. Before accessing the website, the user was given a list of tasks to perform. Instructions
on where to perform these tasks were omitted intentionally.

5.4. User tests 27

Figure 5.17: Final database design schema of TAM 2.0

• Indicate your preference for one or multiple courses.

• Request extra hours for preparing a lab course.

• Indicate the timeslots you are available to TA.

The user indicated afterwards that filling in both their preferences and availability were easy to do,
since these are already present in the live version of TAM. Therefore the user has already filled in
these preferences before. For requesting extra work, the user took slightly longer to find the correct
page to perform the task. However, after getting to the correct page, the user indicated that the interface
was incredibly clear and intuitive to fill in.

Students without platform experience
Two other users we have tested did not have any experience with TAM or signing up to be a TA in any
way. We wanted to test our version of TAM with these users as well, since it can give us an impression
of how user-friendly TAM really is. The users were only told they have received an email from the TA
coordinator with TAM being mentioned as the platform to indicate TA preferences. The tasks they had
to perform were:

5.5. SIG 28

• Indicate your preference for one or multiple courses.

• Indicate your polo preference.

• Update your pay scale.

• Indicate the timeslots you are available to TA.

• Request extra hours for preparing a lab course.

The users had no difficulty navigating through TAM and they managed to fulfill all tasks without further
help. There were two minor things they found somewhat confusing: the polo preference button on the
dashboard and the copy and save button when updating the availability. The first was indeed not yet
updated. The button used to redirect to the polo page, but this became the Profile page. The latter
was intended since it provides an extra use case. However, it is arguable whether or not this extra use
case is necessary, since it might cause confusion.

5.5. SIG
During the last stages of the project, two opportunities were given to let the code be checked by the
Software Improvement Group2 (SIG) to get feedback on how to improve the code. SIG does not actually
execute the code but reviews the code in aspects like maintainability, module coupling and component
balance. In figure 5.18 an overview is given on the different scores we received in the tested categories.

Figure 5.18: Overview of scores received from SIG.

Overall our feedback was very positive. There were only two categories which we did not score well on:
Duplication and Unit size. We analyzed the files marked by SIG and came to the following conclusions.
Unit size only marked files containing test code and data files. Since these files are inherently long,
and do not benefit from being split up, we decided that we would not change these files. With regards
to duplication we found again that most of this originated in test files. However, we did decide that it
was beneficial to minimize duplicated code.

5.6. User manual
When designing new features, we have always aimed to make the most intuitive system possible.
Besides this, we have provided a detailed explanation of how to use specific parts of our system on
2https://www.softwareimprovementgroup.com/.

https://www.softwareimprovementgroup.com/

5.6. User manual 29

their respective web pages. An example of this can be found in figure 5.19. We believe that the
combination of these two things means that it is not necessary to write a user guide, as this should not
be needed in order to use TAM.

Figure 5.19: This page clearly states all the information needed to use the system at the top of the page.

6
Ethical implications

During the development of TAM 2.0 we have made a number of decisions that have ethical implica-
tions with regard to storing data. In this chapter we will discuss these implications, and how we have
reduced their effect. Firstly, we will talk about personal data stored in TAM, secondly, we will discuss
the integration with LabraCORE. Finally, we will discuss the changes we made to our GDPR policy.

6.1. Personal data
In order for TAM to be used to its full potential, a student has to provide the system with some personal
information. This information ranges from polo information to the pay scale the student is in. A student
also has to provide their availability of certain time slots. In order to comply with the General Data
Protection Regulation (GDPR), TAM only starts collecting this data from our users when they approve
us to do so. The system will only collect the minimal amount of data needed for the proper functioning
of our platform. This still means that there is certain types of data that is only needed for certain roles
within our system. To limit the amount of data a particular user can view, we have designed our system
around specific roles. For example, a teacher is able to see basic information (name, email, student
number) of students that are interested in teaching their courses. However, this teacher is not able to
see more detailed information, like the pay scale of these students. To ensure this division in access
levels, our system checks for the required level of authentication on every request made. While well
intended users of our system will not encounter situations where they request data not intended for
them, these strict authentication requirements ensure that users with bad intentions will be denied
access.

6.2. LabraCORE
In order to create a more robust structure between different TU Delft systems, the TU Delft has created
LabraCORE. LabraCORE is a central point to store all information about students and courses. Since
TAM is now also integrated with LabraCORE, this means that some of the data used will come from
LabraCORE, and some data will also be shared with LabraCORE. To reduce the ethical implications of
this integration, TAM has taken a fewmeasures. Firstly, none of the data stored in TAM can be accessed
outside of its own system. This greatly limits the risk of our data falling in the wrong hands. Secondly,
only essential data is shared with LabraCORE. Information like a specific student being assigned as a
TA is required for different TU Delft systems, and is therefore necessary to share. But whether or not
a student is interested in being a TA for a course is not relevant out side of TAM. Therefore we will not
share it.

6.3. GDPR
When evaluating the way the previous version of TAM regulate the GDPR, we found that some data
was stored before the user gave permission. When logging in for the first time, when the user is asked
to accept the GDPR, on the back end a database entry is already created. While it is possible to delete
the data, the user has to manually do this. This means that there will undoubtedly be entries in the

30

6.3. GDPR 31

database that have not accepted the GDPR. This practice obviously violates the rules of the GDPR,
since data is stored of users without permission. Besides this, the data was also stored in a very
inconvenient way. The User table used to contain a GDPR boolean and timestamp. However, since
TAM should not be storing data when the GDPR is not accepted, the boolean must never be false.
Because of this reason, we have created a separate GDPR table. This table stores the user id and a
timestamp representing the moment when the GDPR is accepted. Users are not able to access TAM
when this table does not mention them. The addition of this table ensure that TAM does not contain
any data of users that have not given consent.

7
Conclusion

With the previous version of TAM, managing TAs already got way more convenient for the TA coor-
dinator. After analyzing the current process of the coordinator, teachers and students, and analyzing
the current version of TAM we came to the conclusion that there still was a lot to improve to ease the
lives of all stakeholders. By implementing new features, tasks that could previously take hours are now
finished by simply clicking a button. Not only does this save a tremendous amount of time for espe-
cially the coordinator, it also improves the correctness of data, since it is no longer stored in separate
spreadsheets on the coordinator’s machine. All data is now centralized in the TAM database.

Although the integration of LabraCORE in TAM did not come easily, it now makes sure that TAM is
more maintainable and that TAM can more easily interact with other system within the Computer Sci-
ence department. This integration also required a complete redesign of the database. The new design
results in a database that is easier to understand and that stores less duplicate and redundant data.

Having a system that needs to access personal information of its users, TAM needs to obey to the
GDPR. We have taken all measures possible to make sure we only collect the data necessary for TAM
to function. Furthermore, data is only accessible by users that actually need that data. The integra-
tion with LabraCORE added extra data sharing, but we minimized the amount of data that is sent to
LabraCORE and LabraCORE does not have access to the TAM database to prevent data leaks. The
improved GDPR handling makes sure that users are aware of their rights and the fact that TAM will be
storing their personal information.

In the process of improving TAM, we as a team learned a lot about software development and team-
work. Doing this project in a period of quarantine caused us to completely rediscover our work methods,
but by keeping in contact through all kinds of platforms we were able to still collaborate in this project.
Staying in contact with both our coach and client weekly, made sure that we stayed on track and kept
on meeting our clients desires and requirements. We are proud to say that the COVID-19 crisis did not
prevent us from finalizing this bachelor end project and solving all of the major problems we identified
during our problem analysis. There are still ways to improve TAM in the future, but with this new version
of TAM the biggest burden has been lifted of the shoulders of the client.

32

8
Discussion

Now that our Bachelor End Project is nearing completion, we can look back on how the project pro-
gressed, the decisions we have had to make, and what difficulties we have encountered along the way.
As such, we will start this chapter with a reflection of our project, which will be followed by potential
future work where we suggest a couple of features and changes that may improve the usability and
usefulness of the TAM platform.

8.1. Reflection
Communication and meetings
Throughout the project we have made extensive use of programs such as Discord to discuss features,
have meetings and assist each other. We held meetings regularly within our group (once or twice
a week), and scheduled meetings with our coach and client about every one or two weeks. Dead-
lines have been communicated clearly, and responses were given in a timely fashion. Since all group
members, our coach and client were kept in the loop, it was easy to measure our progress.

LabraCORE
The importance of LabraCORE became known to us a few weeks into the project. As a result we up-
dated our set of requirements, and to accommodate for this our planning had to be adjusted as well.
LabraCORE was deployed, and we started using an online instance to rely on in our development
environment. We managed to keep up with our original planning for a couple of weeks, until we unfor-
tunately faced an issue with LabraCORE while we were busy rewriting all old and new code depending
on data that now had to be taken from the LabraCORE database. The issue we were facing was a bug
in LabraCORE that prevented us from authenticating, which in turn prevented us from properly testing
our changes. This, combined with a lack of documentation at the time on the LabraCORE side, stalled
our progress on migrating to LabraCORE, since we deemed it too risky to use the system based on
our assumptions. Once the authentication issue had been resolved, we switched to running a local
version of LabraCORE to have a more stable environment to work with. In hindsight, we should have
used a local version from the very beginning to make it easier for us to transition to LabraCORE and
test changes. We managed to finish the majority of the migration, with the exception of data that was
missing from LabraCORE’s model.

In particular, TAM uses the notion of quarters to present and keep track of all kinds of data (e.g. course
preferences, availability). The LabraCORE model did not include any data allowing us for instance
to determine to what quarter a course belongs. Initially, after proposing to add a year and quarter to
LabraCORE’s representation of course editions - which was met with a positive response - an issue
was made requesting this information to be added. Then we received a response, which questioned
the use of quarters, which is a good point to consider when keeping different study programs in mind.
After some more discussion, it was decided that a start and end date would be added to LabraCORE’s
course editions. Two weeks later, we could finally use this bit of information, but due to the discussion

33

8.2. Future work 34

and uncertainty over what kind of data we could expect, we could only work on TAM based on assump-
tions in the meantime. As a side effect of this change being introduced extremely late in the project,
we have chosen to let the coordinator decide the dates during which courses should be displayed for
the first and second semesters, which we are not particularly fond of.

8.2. Future work
In this section we discuss potential improvements and extensions that could be made to TAM in the
future.

Email accepted students
In the future, it should be possible to use the current email system to notify students when they are
accepted as a TA. This email could also provide the student with information regarding the TA training
if they still have to complete the training.

Display current email deadlines
Currently it is impossible to see when TAM will send the reminder email to teachers who have not filled
in their TA preferences. It would be helpful to the coordinator if he/she has an overview of the scheduled
deadlines, so they can always check whether they are scheduled correctly.

Schedule deadlines years ahead
Currently only the upcoming semester can have deadlines set for the reminder email to teachers. When
the template used by the TA coordinator has been perfected over multiple iterations, it is useful if he/she
can schedule this email for the coming years so they do not have to worry about it anymore for a
substantial amount of time.

Scale TAM for use by multiple study programs
There are two approaches that can be taken to allow TAM to be used by multiple study programs
and faculties. The first approach is to simply create and run different instances of TAM. The other
approach is to make TAM aware of the fact that there are multiple study programs. This requires fields
and filters to be added, such that only information relevant to a specific program is loaded and stored.
However, two obstacles exist which must be addressed either way. The first one being LabraCORE.
Since TAM is now dependent on LabraCORE for a large part of the information it uses, it is required
that LabraCORE’s model is compatible with that of different study programs, and that data of other
programs is stored in the LabraCORE database. The other obstacle is TAM’s usage of quarters. Since
the majority of courses in the Computer Science and Engineering program span a quarter, the original
version of TAM relied heavily upon this information. Quite late during our project we discussed this with
members of the LabraCORE team, but no alternative to quarters was available yet. A potential solution
would be to base everything on start and end dates, or on duration of a course expressed either in days
or partition of the year (e.g. quarter, semester, octal).

A
Info sheet

The info sheet can be found on the next page.

35

General information
Project title: Teaching Assistant Management platform (TAM) 2.0
Client organization: Educational Innovation Projects (EIP), TU Delft
Date of the final presentation: July 2, 2020

Description
The main challenges of this project were integrating LabraCORE, an initiative to centralize data shared
by TU Delft systems being worked on by the EIP group, into TAM, while maintaining and extending its
functionality by simultaneously adding new features to the system to improve its usability.
During our research phase, we analyzed the TA recruitment process and the first version of TAM, and
learned that some parts of the existing system were not in use but that it was a good base to continue
work on.
We organized our project into sprints of two weeks and held weekly meetings with our group members.
In addition, we planned progress meetings with our client and coach about every two weeks during
which we discussed the status of the project and demonstrated new features.
With our project we have integrated LabraCORE into TAM, and extended its functionality to allow much
more to be done through TAM, reducing the amount of manual work to be performed by the TA coor-
dinator. As the LabraCORE integration took more time than initially planned, we had to let go of two
minor features.
In our report we propose a couple of areas where TAM could be improved, and we suggest additional
features. Finally, TAM 2.0 is intended to be used at the start of quarter 1 of academic year 2020.

Members of the project team

Name Interests Contributions

Dennis Böhm AI, Machine learning,
Cybersecurity

Back-end development, database
design, LabraCORE integration

Dylan Franken Algorithm design, Computer
graphics, Cybersecurity,
Programming

Front-end and back-end
development, database design,
project configuration

Govert de Gans Front-end development,
Embedded programming

Front-end and back-end additions

Bram van Kooten Full stack web development Front-end and back-end
development

Bas Musters Front-end development,
Embedded systems, Robotics

Front-end development

All team members contributed to writing the different iterations of our reports and preparing presenta-
tions and demos for both the midterm meetings, which gauged progress of the project, and the final
presentation session.

Key persons
Client: Stefan Hugtenburg, MSc CSE Teaching Team, TU Delft

Coach: Dr. Lydia Chen Distributed Systems, TU Delft

Contact: Dennis Böhm denni.bohm@gmail.com

The final report for this project can be found at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

B
Original project description

Implement a new version of TAM as part of the
Labrador Project
We need a new or improved version of TAM, our TA Management system; one with an improved data
model that can connect to our Labracore infrastructure and thus becomes an integral part of Labrador
(as Queue and CPM 2.0). It needs to be as flexible as it is now, but we should also learn from the flaws.

There are many challenges in this project:

• scalability (100s of TAs for many courses (and several programmes!))

• flexibility

– a structure with programmes, courses, TAs, Teachers, Admins, Timetables, ...
– selection of TAs, keeping track of a TAs history, their training status, ...
– functionality for TAs to indicate their preferences and availability

• portability; integration with Labracore to export/import TAs to/from existing services like CPM,
Queue and Gitlab.

Since this project will be used by (developers of) the TU it is important that the project has proper doc-
umentation and that design choices are clearly documented. This way the project can still be extended
and maintained after you’ve graduated.

The group will need to figure out what is required for TAM 2.0 and determine what can be achieved as
an MVP in 10 weeks. Your project will be used in Q1 of academic year 2020/2021 if all goes well and
the code will probably be released under a AGPL 3 license.

37

C
TAM 1.0

This appendix documents the features that were originally present in TAM 1.0 by providing screenshots
and descriptions of the pages available to various types of users. In addition, we provide a high-level
overview of the architecture in figure C.1.

Figure C.1: A high-level overview of TAM 1.0. Note that the single-page application is instead served by Spring in the production
environment.

38

C.1. Student view 39

C.1. Student view

Figure C.2: This is the dashboard page for students. It briefly explains what a student can do, and links to the other pages.

Figure C.3: The course preferences page allows students to indicate that they are interested in being a TA for a course, and
whether they have any experience TAing for that course. If a course manager has attached a note with additional information to
a course, students will be able to read them here.

C.1. Student view 40

Figure C.4: Students can indicate their availability by selecting timeslots during which they can TA from a fixed list of four
timeslots. In addition, students can enter the maximum number of hours they want to work per week, and the maximum number
of courses they would like to TA at a time.

C.2. Course manager view 41

Figure C.5: On this page, students can enter what polo they want to have, and whether they have completed the prerequisite
TA training and English test.

C.2. Course manager view

Figure C.6: This is the dashboard for course managers. They are presented with a list of courses they manage. Managers can
add a new course, or edit ones they manage.

C.2. Course manager view 42

Figure C.7: This screen is used to create new courses, but also to edit existing courses. The additional info text is displayed to
students on the page in figure C.3.

Figure C.8: Course managers could add lab sessions to their course here.

C.3. Verifier view 43

C.3. Verifier view

Figure C.9: This page lists students along with the completion statuses of their TA trainings and English tests. Cells with a yellow
background have been set to ”completed” by the student, but still need to be verified. Verifiers should also set the pay scale of
each student here.

Figure C.10: The course rank page allows verifiers to assign a value to a student for each course they are interested in. The
values were to be used by a scheduler, with 0 meaning that a student should not TA for a course, 1 that a student could TA for
a course, and 2 meaning that a student is a preferable TA candidate.

Bibliography
[1] Max van Deursen, Max Pigmans, Geert Habben Jansen, and Ruben Keulemans.

Teaching assistant management platform: Automating the recruitment and schedul-
ing of teaching assistants, Jul 2018. URL http://resolver.tudelft.nl/uuid:
c8939ef4-40d8-49a9-9a2b-47a9d7ef7e24.

44

http://resolver.tudelft.nl/uuid:c8939ef4-40d8-49a9-9a2b-47a9d7ef7e24
http://resolver.tudelft.nl/uuid:c8939ef4-40d8-49a9-9a2b-47a9d7ef7e24

	Preface
	Summary
	Introduction
	Research
	Problem definition
	Problem analysis
	Proposed solution

	Design
	Database
	LabraCORE
	Changed tables

	Process
	Internal organization
	MoSCoW
	Communication methods
	Sprints
	Version control
	Meetings

	Timeline

	Final product
	System architecture
	Features
	Database
	User tests
	SIG
	User manual

	Ethical implications
	Personal data
	LabraCORE
	GDPR

	Conclusion
	Discussion
	Reflection
	Future work

	Info sheet
	Original project description
	TAM 1.0
	Student view
	Course manager view
	Verifier view

	Bibliography

