
Automatic Ordering of
Code Changes for Review

Version of June 26, 2018

Enrico Fregnan

Automatic Ordering of
Code Changes for Review

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Enrico Fregnan
born in Gavardo, Italy

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2018 Enrico Fregnan. All rights reserved

Automatic Ordering of
Code Changes for Review

Author: Enrico Fregnan
Student id: 4623932
Email: eafregnan@gmail.com

Abstract

Code review has been proved to be an extremely important practice to ensure soft-
ware quality. In recent years, the trend has moved towards modern code review, a
lightweight and less strict paradigm. Despite its many advantages, this approach still
has room for further improvement, especially in the area of cognitive support for re-
viewers.

Previous research stated how ordering code changes based on their relations may
constitute an effective way to support reviewers. Based on this premise, this work
focuses on studying how this ordering theory may be applied in practice. As result, a
tool that automatically orders the modifications in a commit has been created.

Moreover, the tool has been tested and an initial investigation of the perceived
usefulness of its relations has been conducted. Finally, it has been investigated if the
ordering produced by the tool is identified as useful by the developers and which fac-
tors may influence this choice.

Thesis Committee:

Chair: Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Dr. A. Bacchelli, Department of Informatics,

University of Zurich
External supervisor: M.Eng. T. Baum, Fachgebiet Software Engineering,

Leibniz Universität Hannover
Committee Member: Dr. A. Bozzon, Faculty EEMCS, TU Delft
Committee Member: Dr. G. Gousios, Faculty EEMCS, TU Delft

eafregnan@gmail.com

Preface

My Master’s studies have been an amazing and enriching experience. During these two
years, I had the chance to grow not only as a student, but also as a person. As a conclusion
of this incredible journey, I am happy to present my Thesis project, conducted in fulfillment
of the Master of Science in Computer Engineering.

I would like to thank my supervisor Alberto Bacchelli for his guidance during this
project. Having the possibility to work in his group sparked my interest in doing research.
Therefore, I am thrilled to have received the opportunity to join his amazing team. Fur-
thermore, I want to thank my external supervisor Tobias Baum for his constant help. His
deep knowledge of the subject and his precious feedback helped me greatly in conducting
this research work. I want to thank Dr. Andy Zaidman, Dr. Alessandro Bozzon and Dr.
Georgios Gousios for having accepted to be part of my thesis committee.

A huge thanks to my family and friends. To my parents for having given me the op-
portunity to conduct my studies abroad and their presence. To my sister Irene and all my
friends for their incredible support during these years. Among them, a special thanks goes
to Alessandra, Davide, Anna, Alessio and Lidia, who have always been there for me despite
the many kilometers between us.

A special mention goes to Lorenzo for his feedback during the whole project and his
patience in reading the drafts of this work. Finally, I would like to thank all the people who
participated in the interviews and the online survey. Their help has been fundamental for
the completion of this work.

Enrico Fregnan
Delft, the Netherlands

June 26, 2018

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Description . 1
1.2 Thesis Statement . 2
1.3 Research Method . 2
1.4 Thesis Outline . 4

2 Background and Related Work 5
2.1 Code Review . 5
2.2 Modern code review . 6
2.3 A theory to order code changes . 7
2.4 Other cognitive support approaches . 9

3 An ordering tool 11
3.1 CodeChangeOrderer structure and implementation choices 11
3.2 Tool functionality . 14
3.3 Internal test set . 20

4 CodeChangeOrderer in practice 25
4.1 First example . 25
4.2 Second example . 29
4.3 Further options example . 33
4.4 Discussion . 35

5 Testing the tool 37
5.1 External validation . 37

v

CONTENTS

5.2 Interviews results . 41
5.3 Tool usefulness evaluation . 43
5.4 Survey results . 45
5.5 Threats to validity . 47

6 Conclusions and Future Work 49
6.1 Contributions . 49
6.2 Conclusions . 49
6.3 Discussion and lessons learned . 50
6.4 Future work . 50

Bibliography 53

A Relations Table 59

B Survey files 61

vi

List of Figures

2.1 Change part example . 7

3.1 Steps followed by CodeChangeOrderer . 14
3.2 Example of change parts tree . 16
3.3 Graphical Interface . 19

4.1 CXF Commit: SystemPropertyAction.java . 26
4.2 CXF Commit: MediaTypeHeaderProvider.java 26
4.3 CXF Commit: URITemplate.java . 27
4.4 CXF Commit: ProviderCache.java . 27
4.5 Felix Commit: ExtensionManager.java; first five change parts 30
4.6 Felix Commit: ExtensionManager.java; remaining three change parts 30
4.7 Felix Commit: Util.java . 31
4.8 Lucene Commit: CHANGES.txt . 33
4.9 Lucene Commit: ResponseBuilder.java . 33
4.10 Lucene Commit: ResponseBuilderTest.java 34

5.1 Methodology followed to test the tool and verify its usefulness 37
5.2 Center options frequency . 42
5.3 Survey results: questions 1, 2, 3 and 6 . 45
5.4 Survey results: questions 4 and 7 . 46
5.5 Survey results: questions 5 and 8 . 46

vii

Chapter 1

Introduction

The main focus of this work is to improve the support to the developers during code review.
To this aim, we implemented and tested a tool that relies on an ordering theory among code
changes. Moreover, we conducted an initial assessment of its usefulness.

This chapter introduces the problem investigated, the research method followed (thesis
statement, research questions and research steps) and the thesis outline.

1.1 Problem Description

Code review has been proven fundamental to assess the quality of code [1] [8]. In recent
years, the trend has moved from the traditional code Inspection [19] [20], a strict and rigidly
regulated procedure, towards modern code review. These new techniques present less strict
paradigms, which can be easily integrated with the needs of a specific development team,
and currently possess a vast popularity [40] [7]. However, the actual approaches still allow
further improvements, especially in terms of cognitive support for the reviewers.

As assessed by LaToza et al., understanding the rationale behind a code change is a ma-
jor problem for code review [33]. During a survey conducted among a group of developers,
66% of the interviewees reported it as a serious issue, while 56% of them reported issues
in understanding code that somebody else wrote. Moreover, a better comprehension of the
elements under review may increase the effectiveness of the review process [5] [16]. These
findings have also been supported by Bacchelli and Bird [3], based on their interviews with
Microsoft developers, and by Tao et al. [46], who conducted an online survey involving 180
software engineers in the same company.

To increase the cognitive support for the developers during code review, Baum et al.
proposed to present the code changes to be reviewed in a meaningful way, based on the
relations among different code entities [8]. In fact, actual tools such as GitHub present the
list of changes ordered alphabetically at file-level, and by line number inside the same file.
However, this order is often considered sub-optimal by software professionals, especially
when dealing with large code changes [5]. The importance of ordering code changes as a
mechanism to improve review has also been mentioned in the research conducted by Dun-
smore et al. [17]: the interviewed developers identified code ordering as a means to improve

1

1. INTRODUCTION

code inspection. Following a theory-generating methodology [44], Baum et al. derived a set
of principles and a formal theory to order code changes combing data from multiple sources
(e.g., log data from tool-based review sessions and interviews with developers) [8].

The aim of our work is to implement this ordering theory in a tool and produce an initial
assessment of the usefulness that this approach may have in practice.

1.2 Thesis Statement

In this work, we aim to investigate the following hypothesis:

A tool that automatically orders code changes in a commit, based on one or
more relations that they share with each other, leads to results useful to the
developers to perform code review.

To validate this claim, we developed a tool that automatically orders code changes based
on the relations between them. We investigated the developers’ perception of the usefulness
of the relations implemented and tested the correctness of the order produced by the tool.
Moreover, we evaluated the usefulness of this order compared to other possible orders of
code changes to perform code review of a selected commit.

1.3 Research Method

In this section, the methodology of our investigation is described. We present the research
questions and the steps followed.

1.3.1 Research Questions

The main goal of this work is to develop a tool to automatically order code changes in a
commit, according to the formal theory proposed by Baum et al. [8], and perform an initial
assessment of its usefulness. To investigate our thesis, we developed 3 research questions.

First of all, we need to evaluate how this ordering theory may be implemented in prac-
tice. Therefore, our first research question is:

RQ1 Is it possible to implement the ordering formal theory in a tool?

This first exploratory question aims to investigate if the ordering theory may be effec-
tively integrated in a tool. To answer it, we need to identify the ideal instruments to analyse
code changes and extract relations among them.

Once the tool has been built, we need to evaluate the correctness of the order produced.
For this reason, we formulate our second research question as:

RQ2 How can the tool correctness be evaluated and with which results?

2

1.3. Research Method

With this question the goal is to check the operations of the tool to verify their correct
implementation, control the constructs covered and, possibly, identify further relations that
need to be included. To answer it, two test sets have been manually created: the former has
been produced by the tool developer, while the latter has been created by external develop-
ers. Each of these sets is formed by commits manually ordered according to the ordering
theory, using one or more relations supported by the tool.

Finally, we aim to understand the impact that the ordering produced by our tool can
have in performing code review tasks. For this reason, the final research question is:

RQ3 How useful is the tool ordering to perform code review?

To answer this question, we developed an online survey where a group of developers
was asked to select the most useful ordering of code changes to review a given commit.
Our aim is to investigate if the order created by the tool is chosen as preferable over other
orders. Moreover, factors that may influence this choice are also investigated: e.g., size of
the commit or the relation used.

1.3.2 Research Steps

To answer our research questions, we followed these research steps:

1. Implement a tool to automatically order the changes in a commit: To implement
the tool referred in RQ1, we decided to work using Java. The choice of this program-
ming language was motivated by two main factors: the possibility to easily integrate
code already developed by Baum et al. [8] in the context of their research and the
availability of libraries and tools to extract and analyse code changes. In particular,
we used JGit1 to extract the modifications from a given commit and JavaParser and
Java Symbol Solver2 to solve the dependencies among different code portions.

2. Create a test set: To answer RQ2, a set of Java-based Open-Source projects has been
selected. For the internally produced test set, 10 different projects were used. From
each of them, 10 different commits were manually ordered using each of the relations
supported by the tool and compared against the tool output. The externally produced
test set was created by a group of interviewed Java developers. Each of them was
asked to produce three different orders using a project on which they worked or an
Open-Source project given as backup option, if they could not choose a project of
their own.

At the same time, we investigated which of the relations implemented in the tool were
perceived as useful by the developers and which, on the contrary, were not considered
to lead to orders significant for review.

1JGit library: https://www.eclipse.org/jgit
2JavaParser: http://javaparser.org; Recently JavaParser directly includes Java Symbol Solver.

3

1. INTRODUCTION

3. Evaluate the tool usefulness: Finally, an investigation of the tool usefulness has
been conducted through an online survey (RQ3). Every participant was asked to
answer eight questions: in each of them four different orders were presented and
the respondent had to select the one that he or she would have used to review the
given commit. Among them only one was the optimal order produced by the tool.
Furthermore, commits of different sizes and different relations (or combinations of
them) were used.

1.4 Thesis Outline

This thesis work is organized as follows: Chapter 2 contains a presentation of the Code Re-
view and Cognitive Support approaches developed in the software engineering community,
together with a brief explanation of the formal theory developed by Baum et al. [8]. Chapter
3 contains a presentation of the tool and the choices made during its development. Further-
more, it shows how the internally produced test set has been created. Chapter 4 presents
two examples of how the tool works in practice. Chapter 5 includes the explanation of the
survey conducted to create the external test set and to evaluate the usefulness of the tool.
Finally, Chapter 6 reports the contributions of our work, together with a discussion of the
results and ideas for future work.

4

Chapter 2

Background and Related Work

Code review is a well-explored domain in software engineering. This chapter discusses
previous methodologies developed to perform it, together with a brief explanation of the
formal ordering theory on which the tool is based.

The chapter is divided into four sections: “Code Review”, “Modern code review”, “A
theory to order code changes” and “Other cognitive support approaches”. In the first sec-
tion, the classical methods to perform code review are presented. In the second one, the
new paradigm of modern code review is explained, together with the reasons behind its in-
troduction. Section 3 contains a description of the main terminology and the theory used in
this work. Finally, section 4 presents an overview of other techniques developed to increase
the cognitive support to developers during code review.

2.1 Code Review

Code review is a fundamental and well-assessed method to ensure software quality [7]. It
has been formalised by Baum et al. [6] as “a software quality assurance activity” with the
following properties:

• The main checking is done by one or several humans;

• At least one of these humans is not the code’s author;

• The checking is performed mainly by viewing and reading source code;

• It is performed after implementation or as interruption of implementation.

Finally, the people who perform this task are defined as reviewers.
Three major types of code review processes emerge from the literature [28] [42]: Code

Inspection [19] [20], Technical Review [22] [47] and Structured Walkthrough [49].
Code Inspection has been formalized by Fagan [19] [20]. This highly structured ap-

proach is conducted in meetings and based on line-by-line reviews. Its usefulness has been
well-assessed through the years. In particular, this approach revealed itself useful to find
bugs and defects in the code [43]. Furthermore, it also has benefits on software quality,

5

2. BACKGROUND AND RELATED WORK

predictability and information on development operations [28]. In Fagan’s Inspection, a
moderator is in charge of the creation of a team (recommended team size of four people)
and of checking that the object of the review meets a number of entrance criteria [15]. Then,
the process can be organised in six phases: planning, overview, preparation, inspection, re-
work and follow-up. In the first step a meeting is planned, then in the second phase an in-
troductory meeting takes place: roles (author, reader or tester) are assigned and documents
produced and distributed. In the preparation phase, the reviewer is prepared to perform the
task that takes place in the subsequent inspection phase. Finally, in the last two steps of the
process the errors are corrected (rework) and a check on the quality of the corrections is
done, together with an assessment on the need of further inspection (follow-up phase).

Technical Review also presents among its benefits the detection and correction of errors,
together with a reduction in maintenance costs [28]. Technical review is conducted by a
group of reviewers not part of the producing unit of the work under analysis and their task
is to address potential technical issues in the project [47]. Reports of these reviews serve to
guarantee that the code under analysis respects the specifications for which it was designed.
Some of the documents generated after a review are meant to report its outcomes to the
management, others contain lists of the issues found and that need to be resolved. Like
Fagan’s Inspection, this approach is based on meetings too.

Structured Walkthrough’s purpose is to analyse the work under different perspectives.
Its benefits are error detection and standards establishment [49]. A walkthrough is a peer
group review of a product (in this case, a software) based on formal or semi-formal meet-
ings, preceded and followed by preparations and revision activities. Walkthroughs analyse
the product with the main goal to validate its general approach; this may lead to focus less
on finding specific errors [47].

Fagan’s Inspection has been the object of further investigation to identify possible al-
ternatives. Many different possibilities have been developed, such as Two-Person Reviews
[11], N-Fold Inspection [35], Phased Inspections [30] and Verification-Based Inspection
[18]. However, all these solutions require face-to-face review meetings.

These meetings are costly, but they do not increase significantly the defect detection
effectiveness [26]. An initial attempt to remove them has been done by Parnas and Weiss
[36]: their approach, called Active Design Review, tries to minimize the impact of meet-
ings in the review process. Nonetheless, meetings still constitute an important part in their
method.

2.2 Modern code review

In recent years, the trend in this field has moved from classical code review techniques
towards the application of modern code review (also known as “change-based review” [5],
“differential code review” [9] or “patch review” [6]). This new approach to code review is
characterized by less strict practices that allow modifications in the process to fit the needs
of a specific development team [39]. In fact, its main characteristics are being informal and
tool-based [3].

Peer review is often used in Open-Source projects development. In fact, it represents the

6

2.3. A theory to order code changes

Figure 2.1: A change part as shown in GitHub

way in which OSS (Open Source Software) developers can set rules about what constitutes a
good contribution valid for the whole community [40]. The process starts when a developer
submits a patch (e.g., a commit). Then, the reviewers read through the modifications and
comment them. Based on this feedback, the person who introduced the changes can improve
the code. Once it reaches the community standard, the modifications are committed to the
main code base of the project [2] [40]. Two main review styles can be applied: Review-
Then-Commit (RTC) or Commit-Then-Review (CTR). The former is the style expressed in
the steps mentioned above. The latter allows trusted developers to commit changes before
they are reviewed.

Furthermore, a vast amount of tools exists to support change-based code review (both
general-cases and specialized tools) [5]. Companies sometimes develop their own internal
tools: e.g., Microsoft uses CodeFlow, a tool which operates in a fashion similar to RTC [40].
Other examples can be found in the Open-Source tool Gerrit1 or Facebook’s Phabricator
[21].

Rigby and Bird analyzed different code review processes on a set of projects (both
Open-Source and private) to identify possible common features [40]. They confirmed that
the general trend is evolving towards a lightweight and flexible process. This shows a
marked contrast with classical software inspection: a procedure with strict steps and rigid
roles of the people involved. Furthermore, their study revealed that review tends to happen
early in the development process, quickly and frequently and that the whole process has
changed from being a bug hunt to a group problem solving activity. Moreover, it also
involves knowledge transfer and team awareness [3]. Finally, the use of code review tools,
compared to other means such as emails, provides advantages in terms of traceability. The
success of modern code review techniques can be derived from their wide adoption.

2.3 A theory to order code changes

In this work, we relied on definitions extracted from previous work on ordering code changes
for review [8]. For this reason, they are briefly explained in the following section.

1Gerrit: https://www.gerritcodereview.com

7

2. BACKGROUND AND RELATED WORK

Table 2.1: ORDERING PRINCIPLES

Principle Description
Principle 1 Group related change parts as closely as possible.
Principle 2 Provide information before it is needed.
Principle 3 In case of conflicts between principles 1 and 2, prefer principle 1 (group-

ing).
Principle 4 Closely related change parts from chunks treated as elementary for further

grouping and ordering.
Principle 5 The closest distance between two change parts is “visible on the screen at

the same time”.
Principle 6 To satisfy the other principles, use rules that the reviewer can understand.

Support this by making the grouping explicit to the reviewer.

• Change part: a change part is a portion of code that has been changed in the new
version of the file committed compared to the old version. A change part can be
constituted by the addition, removal or modification of the code in the file. Fig 2.1
shows an example of an added change part as displayed by GitHub. In this case, the
change part is the portion of code contained in the green area. It has a beginning line
number (56) and an ending line number (59).

• Relation: a relation exists between two or more change parts that share a link or a
property with each other. Recalling the definition given by Baum et al.: “A relation
consists of a type (e.g. call flow, inheritance, similarity) and an ID that allows to
distinguish several relations of the same type (e.g. the name of the called method)”
[8].

• Match set: a group of change parts connected by a relation.

• Tour: an ordering among the change parts.

• Review efficiency: the number of defects retrieved for every hour spent reviewing
[8].

• Review effectiveness: the ratio between the defects found over all the defects in the
code change [8] [10].

Furthermore, Baum et al. formalized a set of principles that leads an order to have a
higher review effectiveness and efficiency compared to other orders. These principles are
reported in Table 2.1.

Based on these principles, a formal theory to order code changes has been created for
code review. Its main goal is to define a partial order (≥T⊆ Tour× Tour) among tours
such as the first one is better then the second in terms of review utility. Two important
propositions must hold:

8

2.4. Other cognitive support approaches

∀t1, t2 : t1 ≥T t2⇒ (reviewE f f iciency(t1)≥ reviewE f f iciency(t2)∧
reviewE f f ectiveness(t1)≥ reviewE f f ectiveness(t2))

(2.1)

∃t1, t2 : t1 ≥T t2∧¬(t2 ≥T t1)⇒ reviewE f f iciency(t1)> reviewE f f iciency(t2) (2.2)

Proposition 2.1 states that if a tour is better than another in the partial order, it can not
be worse in terms of review efficiency and effectiveness. Furthermore, proposition 2.2 adds
strength to this concept stating that if there is a tour that is better than another in the order
(≥T), it is also better in terms of review efficiency.
≥T has a parametric definition based on a set P of grouping patterns and the part graph

g. A grouping pattern captures the ordering preferences of a reviewer. It is formed by a
matching rule (relation) to identify a subset of related change parts and a rating function
(rate) to evaluate the permutation of the matched change parts. The definition of ≥T is also
based on the ’match set’ (MS) helper construct. It is formed by all the occurrences of a
grouping pattern in a tour. The definition of ≥T is given by the following relation:

t1 ≥T t2⇔mS(t1,g)≥T mS(t2,g)

⇔mS(t1,g)⊃ mS(t2,g)∨
(mS(t1,g) = mS(t2,g)∧
∀m ∈ mS(t1,g) : rate(m, t1)≥ rate(m, t2))

(2.3)

Proposition 2.3 states that a tour is better than another when it has more matches or
the same matches with higher ratings (its MS is better). mS is a recursive function, mS :
Tour×PartGraph→MS, defined as:

mS(t,g) :=
⋃
p∈P

(
pM(p, t,g)∪

⋃
m∈pM(p,t,g)

mS(shrink(t,g,m.v))
)

(2.4)

In definition 2.4, pM stands for patternMatches: the matches found for a pattern in a
tour. shrink is a function that takes as parameters a tour, its graph and a list of change parts
belonging to a match set and replaces all these change parts with a composite part, creating
a new tour.

2.4 Other cognitive support approaches

Apart from the ordering theory discussed in the previous section, other techniques to im-
prove the cognitive support for the developers have been proposed by the software engi-
neering research community during the years.

A first approach to the problem relies on clustering related code changes. This approach
divides in groups the code changes in a commit, based on the relations that they share with
each other. To this aim, Barnett et al. proposed CLUSTERCHANGES [4], a tool that clus-
ters similar code regions based on the def-use relation: any use of a software entity (types,

9

2. BACKGROUND AND RELATED WORK

fields methods and local variables) is mapped to its correct definition. A different approach
is the one implemented in EpiceaUntangler [14], a tool that exploits machine learning tech-
niques to identify if two modifications belong to the same cluster. The set of features used
in this approach includes the analysis of code structure, its content, the distance between
two changes and the variables accessed. A similar work has been conducted by Kreutzer
et al.: they introduced C3 (Clustering of Code Changes), a fully automated approach to
cluster similar code changes [31].

Clustering of similar code regions has been done also with semantic analysis. Maletic
and Marcus [34] proposed a method to cluster software entities based on LSI (Latent Se-
mantic Indexing): a machine learning model developed to analyze relations among words
and documents [13]. Their approach was further refined by Kuhn et al., who developed a
tool called Hapax to cluster software entities based on their semantic similarity [32]. Hapax
works at different levels: systems, classes and methods.

A different way to increase the cognitive support for the reviewers is to untangle code
changes. In fact, a change may involve many different portions of code and bundle unrelated
modifications together: this type of change is often referred to as “chunky change” or “code
bomb” [45]. It constitutes an obstacle in the code review process [29]. For this reason,
different approaches have been proposed to solve this issue.

A technique to untangle code changes in a commit has been investigated by Kirinuki
et al. [29]. It relies on change patterns to suggest to the developers code changes that may
be tangled, so they can consider to divide them in different commits. A similar work has
been conducted by Herzig and Zeller [24]. They proposed a heuristic-based algorithm to
untangle code changes. For every pair of change operations, the algorithm decides if they
belong to the same partition (are related) or to different ones (are not related). To take this
decision, it relies on a set of metrics that capture the dependencies among them: e.g., file
distance or change coupling [51]. The solution presented by Tao and Kim also relies on a
heuristic to group similar code changes [45]. In particular, two code changes are identified
as related if they are formatting-only changes, they have static dependencies (computed
using program-slicing) or they have similar patterns. Herzig et al. developed a heuristic-
based untangling algorithm that creates partition sets of modifications related to each other
from a bigger change set [25]. It is fully automatic and based on static code analysis.

A different approach to the problem has been presented by Kawrykow and Robillard,
who focused on identifying non-essential changes (e.g., trivial types updates and local vari-
ables renames) in a commit [27]. To this aim, they developed a tool called DIFFCAT. It
works comparing the two versions of the AST (Abstract Syntax Tree) related to a change:
the one from the file before the modification and the one after the modification. From their
comparison, DIFFCAT is able to detect non-essential changes.

Finally, Zhang et al. presented CRITICS, an approach to inspect changes for review
based on the data and flow context [50]. This tool gives to the user the possibility to vi-
sualize changes with a similar context. Its aim is to help developers to identify missing or
inconsistent updates.

10

Chapter 3

An ordering tool

The main goal of this work is the development of a tool, called CodeChangeOrderer,
to automatically order the modifications contained in a commit. During its construction,
different challenges had to be faced: e.g., how to create groups of related change parts or
the selection of the relations supported by the tool. Furthermore, the options made available
to the user had to be analysed to understand if they could lead to interesting results.

3.1 CodeChangeOrderer structure and implementation choices

The tool, written in Java, works using a local clone of the GitHub project repository under
analysis and the unique code associated to the selected commit. The Java library JGit is
used to analyse the commit and extract the code diff and the related modifications.

To match the different change parts, CodeChangeOrderer needs to analyse the entities
contained in the code. To perform this task, it relies on a parser and a symbol solver.
This choice required to restrict the scope of our tool to a particular programming language,
therefore our tool works only on Java files. This choice was motivated by the popularity of
Java as a programming language and the vast availability of Open-Source projects based on
this language, against which the tool output can be tested. To analyse the code and resolve
the relations among the different elements, we relied on a language parser. In particular,
we selected JavaParser and Java Symbol Solver. The reasons behind this choice were:
the open-source license under which JavaParser is released, its simple architecture and the
active community that works on it. We argue that this last criterion is important because
it may allow the tool to be further expanded in the future with new relations. To solve the
dependencies in the code, Java Symbol Solver requires either the path of all the project
repositories or the JAR files associated to them. The current tool implementation relies on
the second option. This choice was motivated by the significant time overhead necessary to
compute all the project directories and resolve the dependencies in them compared to the
solution that relies on the JAR files. Furthermore, the use of the JAR files allows the tool
to solve dependencies with files belonging to external libraries: these can not be resolved
using the project local directories since external files are not contained in them.

We decided to limit the scope of our analysis and the order produced to change parts

11

3. AN ORDERING TOOL

level, without extending it to the single lines of code changed. In fact, we argue that such
a fine granularity order is counter-productive to help the developers during code review:
reordering lines of code inside the same change part only makes the code difficult to under-
stand. Consequently, it may decrease the cognitive support for the reviewers.

3.1.1 Relations

To select the relations to implement in the tool, the set proposed by Baum et al. has been
analysed [8]. In their research, the authors reported a group of relations emerged from
their interviews with the developers. The idea of these relations is to specify the concept of
relatedness, which was identified as fundamental principle on which the change parts must
be ordered. The results of their investigation have been reported in a table (presented in the
Appendix as Table A.1), indicating the relation name, if it is directed and a brief description.

Analysing these relations, the aim was to step from the general formulation with which
they are presented to a more specific definition. In fact, only restricting their scope in terms
of code constructs (and specifically Java constructs), it was possible to implement them in
the tool. From the list presented in Table A.1, the “Similarity” relation was excluded from
our investigation due to its excessively broad spectrum: in fact, the concept of similarity was
not explicitly defined by the developers and, therefore, open to multiple interpretations. For
the same reason, we also excluded the Common Identifier relation. The Logical dependency
relation may constitute a significant contribution to help the code review process. However,
since it matches code changes that are likely to be modified together, it needs data from
the Software Configuration Management (SCM) or from a tool that tracks the developers’
activities in the IDE. Therefore, it was outside the scope of this research, since our tool has
been designed to be independent from developing environments or other code review tools.
The same reasoning also applies to the last relation reported in the table, the Development
flow relation, which aims to follow the development flow of the programmer.

Starting from these general relations, a new set of relations has been created to be im-
plemented in the tool. The main idea behind it was to split some of the general relations
(e.g. Data flow or Call flow) indicated in the research conducted by Baum et al. [8] to cover
the different constructs available in Java. The resulting set of relations is shown in Table
3.1.

Table 3.1: TYPES OF RELATIONS AMONG CHANGE PARTS

Name Description
Same file Change parts belonging to the same file are considered as related.
Same format Change parts belonging to files having the same format are considered

as related.
Inheritance Change parts of a class are considered related to the ones belonging to

its parent class.
New object A change part that instantiates a new object is considered as related to

the change parts belonging to the class of the created object.
Method call A change part that calls a method is considered as related to the change

parts belonging to the method’s definition.

12

3.1. CodeChangeOrderer structure and implementation choices

Declare-use A change that contains a local variable use is considered as related to
the change part containing this variable declaration.

Field access A change part that accesses a class field is considered as related to the
change part containing the field declaration.

Parameter-use A change part containing a parameter use is considered as related to the
one containing the parameter declaration.

The relations File Order and File Type from Table A.1 have been reported as Same file
and Same format without any modification. In fact, these two relations constitute a special
case in our set of relations since they do not rely on the analysis of Java code. Therefore,
JavaParser and Java Symbol Solver functions are not applied to produce them. For this
reason, they can be applied to all kinds of files in a commit.
The Class Hierarchy relation has also been implemented in the tool (called Inheritance
relation), relying on JavaParser to solve the parent-child connection among the classes con-
taining the change parts. However, it is important to underline a difference in our definition
compared to the one proposed by Baum et al. [8]. On the one hand, their definition states
that two modified classes are linked only if a method overrides a method defined in the
parent class. On the other hand, our definition states that two classes (a parent and a child
class) are linked by the inheritance relation if both of them have been modified in the con-
sidered commit: in other words, if both of them contain at least a change part. Therefore,
our relation has a more general scope that the one presented in Table A.1.
The Data flow and Call flow relations have been divided in two relations that reflect Java
language constructs: method call and new object. The definition of the Method call relation
reflects the one indicated by Baum et al. for the Call flow relation. The New object relation
reflects instead the instruction to create new objects, available in Java and that we identified
as worthy to be included due to its fundamental importance in the language. In fact, we
argue that an instruction that allows the interaction between different objects should be
regarded as important in an object-oriented paradigm.
The general Declare-use relation, as defined in Table A.1, has also been covered in the tool.
However, it has been divided in three relations, Declare-use, Parameter-use and Field ac-
cess. The first covers the case of variable declaration and use, but not the cases in which
the variable is a method’s parameter or a class field, which are instead covered by the
Parameter-use and Field access relations, respectively. The reasons behind this choice were
two: the way in which JavaParser treats these entities and giving more freedom to the user.
Regarding the former reason, JavaParser resolves a parameter, a local variable and a field
declaration (in the meaning used in our relation) as different objects. This encouraged us to
consider the creation of three separate relations. The latter reason, offering more choices to
the user, was the main reason behind our implementation decision. In fact, we argue that
leaving more freedom to the user in selecting different relations constitutes a significant
advantage to increase the cognitive support offered by the tool. He or she can choose to
use the relations separately or to combine them. Selecting all three of these relations at the
same time leads back to the original Declare-use definition from Table A.1.
The tool works with one relation at a time or with multiple relations together. It constructs
the related match sets for all the relations selected and produces an ordering that respects

13

3. AN ORDERING TOOL

Figure 3.1: Steps followed by CodeChangeOrderer

all the constraints. In case of conflict between two or more relations (or match sets of the
same relation), the tool produces a tour with the principle of grouping as close as possible
related change parts (Principle 1 in Table 2.1). However, it may not be possible to order
them immediately next to each other, as it happens in a scenario without conflicts.

3.2 Tool functionality

In this section, CodeChangeOrderer operating principles are explained. First, the steps
followed in the basic tool functioning are shown. Then, further options implemented in
it are explained. Moreover, the graphical user interface developed for the tool is briefly
presented. Finally, CodeChangeOrderer limits are reported together with the motivations
behind them.

3.2.1 Steps of the tool’s algorithm

The first time the user launches the tool, CodeChangeOrderer asks for the project path and
the identifier of the commit to review. It saves this information to show immediately the
last project and commit used when the user opens the tool a second time. Once the GUI is
displayed, the user can decide to change the commit or the project under analysis: in this
case, the list of change parts shown is updated accordingly.
To produce an optimal ordering of a set of change parts, CodeChangeOrderer operates ac-
cording to the following steps (an overview of them is presented in Figure 3.1):

1. Using the JGit library, the diff of the commit under analysis is extracted and the
change parts contained in it are shown. These are displayed ordered in the default

14

3.2. Tool functionality

fashion of GitHub: the different files are ordered based on the alphabetical order,
while inside the same file change parts are ordered based on the line number.

2. The user can select the relation (or group of relations) that he or she wants to apply
to produce the order. Once he or she is satisfied with the relations choice, he/she can
confirm the selection. The list of the relations currently supported by CodeChange-
Orderer has been presented in section 3.1.1. Albeit all relations may be selected, the
tool does not allow the user to choose the same relation more than once: even if this
option was enabled, it would not lead to an order different than the one produced
using the relation only once.

3. Based on the relation(s) selected, the links between software entities are extracted
using JavaParser and Java Symbol Solver. To avoid an unnecessary time overhead,
only the code elements needed to create the match sets for the chosen relation(s) are
extracted. This saves time avoiding an overuse of the symbol solver. It is important to
notice that, if the user selects only the Same file relation or the Same format relation,
this step is skipped since no Java instructions need to be analyzed to group together
change parts based on these criteria.

4. The match sets are created: the tool analyses the elements extracted in the previous
step to identify change parts that are related to each other and it clusters them together
in the same group. If more than one relation has been selected, the match sets for all
the relations are constructed. Therefore, the same change part will appear in more
than one match set.

5. Based on the match sets created, a tour is computed. To do so, all the change parts
contained in the commit are ordered to respect the relation constraints. When no
further constraints apply, the order of the different change parts is determined by the
line number with which they begin.

6. Finally, the ordered modifications are shown to the user, who can now use the pro-
duced order to perform code review of the selected commit. Then, he or she is free to
select a different set of relations to produce a new order to keep reviewing the same
commit, change it or close the tool.

These steps give an overall description of the procedure followed by CodeChangeOrderer.
However, the algorithm used to extract and order the change parts has been described only
superficially. For this reason, the last four steps (from 3 to 6) are now explained in more
detail.
The algorithm starts from step 3, where the Java files contained in the commit are analysed
and their properties (e.g., methods declared, methods called, variables declared etc.) are
saved in data structures: each of them corresponds to a class. Only code elements contained
in the portion of code modified in the commit are considered.
To create the match sets (step 4), each change part is associated to the above-mentioned
data structure related to its Java file. The creation of these links allows the tool to compute
the relations among different classes and, after that, trace back the correct change parts to

15

3. AN ORDERING TOOL

Figure 3.2: Example of the construction of the change parts tree by the algorithm based on
three match sets {A1, A2, A3}, {B1, B2} and {A1, A2}.

create a match set. If a change part belongs to a file of a format different from Java, no link
is created. In this case, this change part is grouped alone in a match set. When the Same file
or Same format relations are chosen, CodeChangeOrderer does not need to link each change
part to its correspondent data structure since the information contained in the change parts
are enough to construct the match sets.
In step 5, the algorithm1 relies on a tree structure: a data structure formed by nodes and
edges without any cycle. A node without children is called leaf, while a node without
parent is called root. Finally, a node that possesses both a parent and descendants is an
intermediate node. The algorithm starts by creating a tree having only the root node and
all the change parts as leaves. Then, it iterates over the match sets: for each of them, the
algorithm finds the related change parts and adds in the tree an intermediate node having
these change parts as leaves. To do so, the algorithm starts from the root and iterates over
all the children of each node. Figure 3.2 shows this procedure considering an example with
five change parts belonging to two files A and B. The Same file and Declare-use relation,
assuming A1 and A2 as related, are used. Therefore, the tree is constructed using the match
set {A1, A2, A3}, {B1, B2} and {A1, A2}.
Each intermediate node possesses a flag that indicates if its children can be reordered or
not. This flag is set when the node is constructed, depending on the position of the leaves
belonging to the match set under analysis. A node is non-reorderable when the children
in the middle are linked to both the ones at top and at bottom: e.g, considering the two

1The algorithm used in this step is based on the one implemented in CoRT:
https://github.com/tobiasbaum/reviewtool

16

3.2. Tool functionality

match sets {A, B} and {B, C}, the algorithm creates a non-reorderable node having these
three change parts as leaves. In fact, after the first match set has been considered, the tree
has an intermediate node, with leaves A and B, and a leaf C connected directly to the root.
This intermediate node is reorderable since both leaves A and B can be moved to comply
with further match sets, if necessary. Considering the second match set {B, C} leads to the
creation of a non-reorderable node: its leaves can not be moved anymore to not violate the
match sets constraints.
CodeChangeOrderer keeps track of the match sets that have been satisfied and the ones that
have not yet been satisfied at the end of this step. Then, the tool checks if it is possible to
satisfy them by folding a group of change parts. Once this step is completed, the algorithm
resolves the requests to position a certain change part before or after others in the same
match set (used in the positioning and center options). To complete this operation, the
algorithm iterates over the positioning requests and for each of them it finds the subtree
containing the change parts belonging to the related match set. Then, it moves the target
change part(s) in the selected position, creates a new subtree and substitutes it with the one
found before.
Now CodeChangeOrderer returns the resulting tour, converting the tree constructed before
in an ordered list. It traverses the whole tree from the root to the leaves. Once they are
reached, they are added in a sublist. Then, the algorithm moves backwards, considering
the sublist belonging to all the children of a node and merging them in a bigger list. If the
node is reorderable, the position of a sublist in this ordered list is determined by the line
number of its first element: the criterion of positioning first the change part with lowest
line number is used to solve situations when no other constraints apply. On the contrary,
if the node is non-reorderable, its sublists are merged respecting the order in the tree. This
procedure is applied iteratively until the root is reached again. Finally, each change part in
the ordered list produced by the algorithm is matched with the related modification. The
resulting ordered list of modifications is shown to the user.

3.2.2 Further options

Alongside the basic operating cycle of the tool, three options have been implemented to
allow the user to have more control on the produced order: the positioning, the “Add un-
modified code” and the center options.

Positioning option: this option allows the user to select the position of a specific change
part (or group of change parts) in a relation. This option exploits the concept of direction of
a relation, allowing the user to decide in which way direct it. Therefore, it has been imple-
mented only for directed relations: all relations presented in table 3.1, excluding Same file
and Same format. Considering as example the Method call relation, the user can choose to
position the change part containing the method call before or after the change parts belong-
ing to the method declaration. Moreover, it is also possible to not specify a preference for
this option. If that is the case, the tool decides which change part(s) to display first based
on the line number.

Add unmodified code option: this option allows the user to include files not in the commit

17

3. AN ORDERING TOOL

under review to the set of modifications to order. This option is available only for the New
object, Method call and Inheritance relations, since the other relations either work at a
level of granularity too fine (e.g., Declare-use) or do not involve files outside the commit
(e.g., Same file). If this option is selected, JavaParser and Java Symbol Solver are used to
analyse the content of the change parts (as in the normal procedure of the tool explained in
Section 3.2). However, in constructing the match set, the tool will consider also references
to classes not included in the commit. Subsequently, it will search for these unmodified
related files in the cloned local directories of the project. If the files are found, they are
added to the set of change parts to order: a file added in this way is treated as a single change
part. Furthermore, line number zero is associated to it: in this way, if no other positioning
options are specified, priority will be given to this file and they will be positioned as close
as possible to the beginning of the ordering, depending on the constraints enforced by the
relations. Attention has been given to the problem of identifying the correct class if the
project contains classes with the same name.
If this option is selected for the Method call relation, then an extra step is done to identify
the related unmodified method. To this aim, JavaParser is applied to find the right method
declaration in the retrieved class. As result, the tool does not show the whole class, but only
the implementation of the related method.
The searching operation among the project directories may introduce a significant time
overhead. This constitutes a drawback of this option. Moreover, the tool is unable to retrieve
files belonging to external libraries since they are not included in the project repositories.
We argue that this option may give a deeper understanding of the review context to a de-
veloper. As motivating example, consider the case in which a class presents a modification
in a method inherited from its parent class, but that is not included in the commit. Having
the possibility to immediately show to the user also the parent class code can save him/her
the time necessary to manually retrieve it from the project codebase. A further limit of this
option is that the number of new files added may become easily very large. In this case,
the gain of this procedure is undermined, since the order produced may become excessively
complex.

Center option: when the same change part is linked to more than one other change part by
a relation, the tool offers three different options to decide its position. This option can not
be applied to undirected relations (e.g., Same file and Same format).

• Center in the middle: with this option the change part connected to all the others is
positioned in the middle of all the related change parts. In this way, it is positioned
as close as possible to all the related change parts in the order. However, while being
the option that satisfies the principle of grouping related change parts close to each
other (Principle 1 in Table 2.1), we argue that it can be sub-optimal to give knowledge
support to the reviewer. For this reason, the other two options were implemented.

• Center first: this option positions a change part (or more than one) before the ones
to which it is related. Albeit it is less adherent to the “position related change parts
close together” principle (refer to Table 2.1), we argue that this may lead to a gain in
terms of clarity and usefulness for the review.

18

3.2. Tool functionality

Figure 3.3: The Graphical User Interface developed for the tool. A commit taken from the
Felix project was used.

• Center second: in this option, the related change part is positioned after one of the
change parts to which it is related, but before all the other connected change parts.
The rationale behind this choice is to give to the user an example of method or variable
use before showing the declaration and the other uses.

An example of how this option is applied in practice is presented in Section 4.

3.2.3 Graphical Interface

Since the aim of the tool is to produce an order that may be used by the developers, impor-
tance has been given to the construction of a suitable Graphical Interface.
As shown in Figure 3.3, it is composed of three main parts. On the left, trough a scroll
box, the modifications presented in the commit are shown. Each modification is formed
by a text box stating the file name and the starting and ending line number and by the
related code. The order with which they are presented is the same used by GitHub: files in
alphabetical order and code changes in the same file ordered by line number. The portion
of code modified is highlighted in gray.
In the central part, the different relations that the user can select to produce an order are
shown. Underneath them, three buttons are present: “Continue”, “Confirm” and “Reset”.
The first option allows the user to confirm the choice of a relation and select more relations
to use for the order: once the button is clicked, the list of relations shown to the user is
updated removing the already selected relation, since no relation can be used more than
once. Furthermore, the tool starts to compute an ordering using the relation selected: if more
relations are chosen, the order is updated to include them. The second option allows the

19

3. AN ORDERING TOOL

user to confirm his/her choice of relations, so the tool can start to compute the appropriate
ordering of change parts. Finally, the “Reset” button allows the user to reset the list of
relations to display again all the relations available in the tool. Below these buttons, the list
of relations selected to produce the order is shown.
On the right side, the change parts ordered according to the user’s choices are displayed.
These are presented in the same way as the unordered modifications, but their order is
rearranged to comply with the constraints imposed by the relation(s) chosen by the user.
The “options” bar in the top-left corner allows the user to enable or disable the “Add unmod-
ified files” option, change the commit or the project under analysis and show a summary of
the order of the change parts and the match sets constructed. These two last options were
meant as aid to verify the correct functioning of the tool. Furthermore, they may give to the
user a better insight in understanding the change parts that are connected to each other. If
the user decides to change the project under analysis, he or she is also asked to insert the
identifier of the commit, belonging to the new project, that he/she wants to review.

3.2.4 Tool limitations

Due to our implementation choices, the tool has the limits presented in this section.

• Usage of JAR files: the use of JAR files to solve the dependencies among different
classes and external libraries may introduce imprecisions. In fact, to obtain complete
precision in solving the links between software entities, the release date of the JAR
files needs to be close to the one of the commit under analysis. Increasing the dif-
ference between them may introduce imprecisions in the creation of the match sets,
consequently making the order produced by the tool sub-optimal. In fact, if a depen-
dency among two different change parts is not solved correctly, the tool is not able
to identify them as related. Therefore, they are located in two different match sets
instead of the same one, consequently leading to an order that does not reflect the
dependency between them.

• Removed change parts: the tool does not analyse the code inside removed change
parts. Therefore, relations existing among removed portions of code can not be
solved. The reason behind this decision is that analyzing both removed and added
change parts may highlight dependencies that have been removed. We argue that this
may lead to an ordering not useful for review. Furthermore, in case of a modified
change part, both the old and the new code are present together in the diff. This may
lead to solve a relation that has been changed in the new version of the file.

3.3 Internal test set

To verify the correct implementation of the relations in the tool, a test set was created. To
construct it, a group of 10 different projects has been selected and, subsequently, 10 commits
from each project. To guarantee the meaningfulness of our approach, these projects have
been chosen based on the following criteria:

20

3.3. Internal test set

Table 3.3: SELECTED PROJECTS

Project # of commits2 # of classes3

Spring-Framework 16,597 6830
Lucene-solr 30,098 7629
Titan 4,434 904
Camel 32,390 18458
Wicket 20,252 3255
Hbase 15,341 3627
Felix 14,658 4561
CXF 14,048 7163
Aries 5,429 2386
org.ops4j.pax.web 2,964 732

• Open-Source: the selected projects must be publicly available on GitHub. This limi-
tation has been imposed for two reasons: the verifiability of the study and the imple-
mentation of the tool. The former because other researchers must be able to reproduce
easily the same conditions that we used in our work, being able to clone the project
repository and identify the considered commits through their unique identifier. The
latter reason has its rationale in the fact that the tool needs to work on a local clone
of the project repository to extract the code diff. Furthermore, also the “Add un-
modified code” option needs access to the project directories to search for the related
files. Moreover, projects developed in a company may have strict disclosure rules
and, therefore, their source code could not be available.

• Java-based: currently the tool only supports the complete analysis of Java code. For
this reason, selecting projects based on other programming languages would make it
impossible to check the correctness of the majority of our relations: only the Same
file and Same format relations can be applied to all kind of files since they do not rely
on a parser.

The projects selected are shown in Table 3.3. To increase the variability of the test set,
projects of different sizes have been selected. Furthermore, not all projects are still in de-
velopment. The aim is to cover as many situations as possible. For this reason, we argue
that these differences, together with the different policies and coding rules of the projects,
may lead to better coverage of code instructions and constructs available in Java.
Moreover, to select the commits from each project the following criteria were applied:

• JAR files availability: to solve the dependencies among different code entities the tool
relies on JavaParser and Java Symbol Solver, which requires the access to the JAR

2Retrieved on May 27 2018.
3Retrieved on June 11 2018.

21

3. AN ORDERING TOOL

Table 3.4: SPRING-FRAMEWORK TEST SET
Commit5 Files Change Parts Orders Same file
e1fa65a 2 4 Manually computed {AJVA2, AJVA52}, {HJVA2, HJVA54}

Tool {AJVA2, AJVA52}, {HJVA2, HJVA54}
b474916 2 5 Manually computed {J2T2, J2T176}, {J2TT2, J2TT171, J2TT181}

Tool {J2T2, J2T176}, {J2TT2, J2TT171, J2TT181}
4f28c28 2 5 Manually Computed {RT2, RT304, RT307}, {DUTH2, DUTH36},

Tool {RT2, RT304, RT307}, {DUTH2, DUTH36}
fdde9de 1 1 Manually Computed {AABPP675}

Tool {AABPP675}
30f6e44 2 3 Manually Computed {RTT1340, RTT1648}, {RT1471}

Tool {RTT1340, RTT1648}, {RT1471}
10caaef 1 2 Manually Computed {SP188, SP191}

Tool {SP188, SP191}
c7f60d1 4 41 Manually Computed {AJF2, AJF28, AJF46, AJF81} (...) 6

Tool {AJF2, AJF28, AJF46, AJF81} (...)
4dc9645 2 15 Manually Computed {AHLR2, AHLR27, AHLR121, AHLR125, (...)

Tool {AHLR2, AHLR27, AHLR121, AHLR125, (...)
196f3f8 2 8 Manually Computed {HWHA2, HWHA185, HWHA194, HWHA207}, (...)

Tool {HWHA2, HWHA185, HWHA194, HWHA207}, (...)
0c28928 6 38 Manually Computed {AREM2, AREM76, AREM79, AREM85, (...)

Tool {AREM2, AREM76, AREM79, AREM85, (...)

files of the project. Therefore, only commits involving modules for which the JAR
files are publicly available can be selected4.

• Limit on the number of commits from the same author: to increase the variability of
the cases covered in our test set, we limited the number of commits authored by the
same person to a maximum of four. In fact, we argue that the same person is more
prone to use the same coding style. One of our main goals is to identify constructs
that have not been covered by the tool implementation.

To test the ordering and the match sets created by the tool, a manual order was first computed
based on the definition of the applied relation. In a second step, this order was compared
with the one automatically produced by the tool. To have a better insight in the tool pro-
cedures and test also their correctness, during the ordering the match sets produced by the
tool have also been indicated. In this way, it is possible to check that the tool has correctly
identified the relations among different change parts. This procedure also helped us to iden-
tify new relations that have not been covered by the tool before, but that may have been
worth investigating. In fact, manually analyzing code to construct the test cases allowed us
to retrieve new links between change parts. An example may be found in the Field access
relation. This relation was excluded by our tool at first, but added in a later time due to its
frequent use in the projects under analysis.
This testing procedure has been applied to each relation implemented in the tool and for
the unmodified code option, which is supported only by the New object, Method call and
Inheritance relations.

4The JAR files were retrieved online using the following website: www.mvnrepository.com

22

3.3. Internal test set

Table 3.4 shows the test set produced by applying the Same file relation for the 10 commits
selected from the Spring-framework7 project. In the last columns, for each commit the order
produced manually and the one produced by the tool are shown. The brackets are used to
delimit the different match sets constructed by the tool. For readability, each file has been
indicated using only the initial letters of the words forming its name. Consequently, each
change part has been reported using this abbreviation together with the number of the first
line of the modification in the new version of the file. Moreover, if no extension is specified
for the file, we imply it to be a Java file. Otherwise, its extension is specified after the file
name. A similar approach has been applied to all the other relations supported by the tool
and to the remaining projects. For readability, only this example has been reported here.
However, the complete test set is available online8.

3.3.1 Threats to validity

While the creation of a test set allowed us to verify the correctness of the relations and the
ordering of the tool, this approach presents some limits.
First of all, the test cases were produced through a manual inspection of the code to identify
the relations among the different change parts. This procedure may have introduced some
bias in the produced output, especially in the case of large commits, fine granularity rela-
tions (e.g., Declare-use) or the “Add unmodified code” option. Particularly in this last case,
the vast amount of links between software entities that needs to be considered may have in-
troduced small imprecisions in the two orderings (both the manually and the automatically
generated one).
JavaParser may introduce some imprecisions in the resolution of the relations among change
parts. This may lead to the production of a sub-optimal order. To be able to solve correctly
all the Java constructs (e.g., method calls) the tool requires an updated version of all the JAR
files of the source directories and libraries used: modifications in the project repository done
after the commit date may undermine the tool capability to correctly solve the dependencies.
Therefore, a constantly updated version of the JAR files is necessary for the tool to operate
correctly. Violating this condition may cause differences between the manually computed
order and the one produced by the tool in our test set.

5Only the first 7 digits of the commit identifier are reported for clarity reasons
6For clarity, not all the change parts have been reported in the table
7Spring-framework: https://github.com/spring-projects/spring-framework
8https://github.com/EFregnan/Automatic-ordering-of-code-changes related-material

23

Chapter 4

CodeChangeOrderer in practice

In this chapter, three examples of the orders produced by the tool are presented. Their aim
is to clarify the concepts introduced in chapter 3. Three commits are considered for the
following analysis: the first is a commit1 from the CXF2 project, the second3 belongs to the
Felix project4, while the last one5 is extracted from the Lucene-solr project6. All three of
these commits are included in the internally produced test set for the tool.
The Same file relation and the Method call relation are applied to the first commit, together
with their combination. The Same file and the Declare-use relations, and their combination,
are applied to the second commit. Finally, the New object relation is used in the last commit
to present the positioning and “Add unmodified code” options. For clarity reasons, only
a subset of the relations available in the tool can be shown in this chapter. However, the
orders generated applying the remaining relations to these commits may be found in the
related material (internally produced test set).

In the next sections, the following formalism is used: each change part is identified by the
file name and the initial line of the modification. This is the first line on which the modi-
fication begins in the new version of the file. For brevity, each file is indicated using only
the initial letters of the words forming its name: e.g., SystemPropertyAction is shortened to
SPA. Therefore, the change part belonging to this file (shown in Figure 4.1) is reported as
SPA81.

4.1 First example

The CXF commit under analysis modifies four different Java files: SystemPropertyAc-
tion.java, MediaTypeHeaderProvider.java, URITemplate.java and ProviderCache.java

1Commit ID: 9130f84fafca18620888aecfe1d0d8a0cbce1fc2
2CXF Project: https://github.com/apache/cxf
3Commit ID: cb4b81cd08d9a5ecb62dd410a6fb8c163b0009de
4Felix Project: https://github.com/apache/felix
5Commit ID: 1f3d971a757edd694adbc492f2de08263921eb01
6Lucene-solr project: https://github.com/apache/lucene-solr

25

4. CODECHANGEORDERER IN PRACTICE

Figure 4.1: CXF Commit: SystemPropertyAction.java

Figure 4.2: CXF Commit: MediaTypeHeaderProvider.java

The first class, shown in Figure 4.1, contains only one change part: SPA81. The second
class, MediaTypeHeaderProvider (Figure 4.2), contains two change parts: MTHP38 and
MTHP52. The third class URITemplate (Figure 4.3) contains two change parts: URIT36
and URIT50. Finally, the last class ProviderCache has two change parts too: PC33 and
PC41.

26

4.1. First example

Figure 4.3: CXF Commit: URITemplate.java

Figure 4.4: CXF Commit: ProviderCache.java

4.1.1 Same file

First, the Same file relation is applied to the change parts in the commit. The rationale
behind this relation is to position change parts belonging to the same file close to each
other. Therefore, the two change parts belonging to MediaTypeHeaderProvider are grouped
together. The same applies for the two change parts belonging to the URITemplate and
ProviderCache, respectively. SystemPropertyAction contains only one change part, so it is
grouped alone.
The following match sets are constructed:

{MTHP38, MTHP52}, {URIT36, URIT50}, {PC33, PC41} and {SPA81}.

If no relation applies or all the constraints are already satisfied, the tool orders the change
parts based on the line number.

Therefore, the order produced by the tool is the following:

27

4. CODECHANGEORDERER IN PRACTICE

PC33, PC41, URIT36, URIT50, MTHP38, MTHP52, SPA81

4.1.2 Method call

Change parts may also be ordered according to the method call flow, where a change part
containing a call of a method is positioned close to the change part(s) belonging to the
related method declaration. The tool analyses the code contained in the change parts using
JavaParser and Java Symbol Solver and creates the match sets. If a change part has no
relation to the others, so it does not contain any method call to methods modified in the
commit, it is grouped alone in a match set.
In the considered commit, the change parts MTHP52, URIT50 and PC41 all contain a call
to the method getInteger defined in the change part SPA81 (Figure 4.1). Therefore, the tool
produces the following match sets:

{MTHP52, SPA81}, {URIT50, SPA81}, {PC41, SPA81}, {MTHP38}, {URIT36} and
{PC33}.
Change part SPA81 is positioned in multiple match sets since it is linked to different change
parts. However, it will be shown only once in the final order.

The order produced by the tool is the following:

PC33, URIT36, MTHP38, PC41, SPA81, URIT50, MTHP52

Since multiple change parts are related to the same one (MHTP52, URIT50, PC41 are
related to SPA81), the centering option may be applied. The order shown above uses the
“center in the middle” option. Therefore, change part SPA81 is positioned between all the
change parts to which it is related.
Applying the “center first” option, change part SPA81 must be positioned before all the
change parts to which is related. Therefore, the order produced by the tool is the following:

PC33, URIT36, MTHP38, SPA81, PC41, URIT50, MTHP52

Finally, recurring to the “center second” option, change part SPA81 must be ordered after a
related change part, but before the others. Therefore, one use of the method is shown before
the method declaration.
The order produced by the tool is the following:

PC33, URIT36, MTHP38, PC41, SPA81, URIT50, MTHP52

4.1.3 Same file and Method call

The tool allows the user to select more than one relation. In this example, the relations
applied before are combined to produce an order that takes in account both their constraints.
In fact, the tool output must respect to the maximum extent possible the match sets created
by the two relations.
In this case, the tool creates two groups of match sets, the one reflecting the same file
relation and the one reflecting the method call relation. These are:

28

4.2. Second example

• Same file: {MTHP38, MTHP52}, {URIT36, URIT50}, {PC33, PC41} and {SPA81}

• Method call: {MTHP52, SPA81}, {URIT50, SPA81}, {PC41, SPA81},
{MTHP38}, {URIT36} and {PC33}

Based on these constraints, the order produced by the tool is the following:

PC33, PC41, SPA81, URIT50, URIT36, MTHP52, MTHP38

Where change part SPA81, containing the method declaration, is positioned close to the
change parts (PC41, URIT50 and MTHP52) containing the method use. However, these
change parts must also be close to the ones belonging to the same file.

4.2 Second example

The Felix commit under analysis contains two Java files: ExtensionManager.java and
Util.java. The first class contains eight change parts: EM39, EM211, EM218, EM226,
EM228 (Figure 4.5), EM238, EM246 and EM248 (Figure 4.6). The second class, Util.java
(Figure 4.7), contains four change parts: U26, U32, U40 and U134.

4.2.1 Same file

The Same file relation is applied to the change parts in the commit: change parts belonging
to the same file must be grouped in the same match set and positioned next to each other in
the order produced by the tool.
The following match sets are constructed:

{EM39, EM211, EM218, EM226, EM228, EM238, EM246 and EM248} and {U26, U32,
U40 and U134}.

The order produced by the tool is the following:

U26, U32, U40, U134, EM39, EM211, EM218,
EM226, EM228, EM238, EM246, EM248

4.2.2 Declare-use relation

Applying the Declare-use relation, each variable use is positioned close to the related vari-
able declaration. However, only variable uses and declarations contained in portions of
code modified in the commit are considered. Furthermore, only added portions of code are
analyzed to extract links among the change parts.
According to these limitations, the tool constructs the following match sets:

{EM211, EM218}, {EM211, EM226}, {EM211, EM238}, {EM211, EM246}, {EM39},
{EM228}, {EM248}, {U26}, {U32}, {U40} and {U134}.

29

4. CODECHANGEORDERER IN PRACTICE

Figure 4.5: Felix Commit: ExtensionManager.java; first five change parts

Figure 4.6: Felix Commit: ExtensionManager.java; remaining three change parts

30

4.2. Second example

Figure 4.7: Felix Commit: Util.java

In fact, all the change parts EM218, EM226, EM238 and EM246 contain a use of the
variable configProps, which is declared inside the change part EM211. Change parts with
no relation to the others are grouped alone in a match set.
The “center option” may also be applied to the change parts EM218, EM226, EM238,
EM246 and EM211. Selecting the “center in the middle” option, EM211, the change
part containing the variable definition, is positioned between EM218, EM226, EM238 and
EM246. Therefore, the order produced by the tool is the following:

U26, U32, U40, U134, EM39, EM218,
EM226, EM211, EM238, EM246, EM228, EM248

A different order may be obtained using the “center first” option: it moves the change part
PPU242 to be first than PPU250 and PPU261 in the order. Therefore, the tool output is:

31

4. CODECHANGEORDERER IN PRACTICE

U26, U32, U40, U134, EM39, EM211, EM218,
EM226, EM238, EM246, EM228, EM248

Finally, applying the “center second” option, change part EM211 is positioned after the first
variable use (the one in EM218), but before the others. The order produced applying this
option is:

U26, U32, U40, U134, EM39, EM218, EM211,
EM226, EM238, EM246, EM228, EM248

4.2.3 Same file and Declare-use relation

Finally, the Same file and Declare-use relations are applied together to determine a tour
based on the commit. To perform this task, the tool computes the match sets for both the
Same file and Declare-use. They are the following:

• Same file: {EM39, EM211, EM218, EM226, EM228, EM238, EM246 and EM248}
and {U26, U32, U40 and U134}.

• Declare-use: {EM211, EM218}, {EM211, EM226}, {EM211, EM238}, {EM211,
EM246}, {EM39}, {EM228}, {EM248}, {U26}, {U32}, {U40} and {U134}.

Now, the change parts are disposed in groups according to the constraints imposed by the
Same file relation. Then, they are internally ordered obeying to the Declare-use relation.
Differently from the previous example, in this case the Same file relation does not prevent
the application of the center option, since the related change parts belong all to the same file:
EM211-EM218, EM211-EM226, EM211-EM238 and EM211-EM246. Finally, the order
produced, applying the “center first” option, is the following:

U26, U32, U40, U134, EM39, EM211, EM218,
EM226, EM238, EM246, EM228, EM248

While the use of the “center in the middle” leads to the following order:

U26, U32, U40, U134, EM39, EM218,
EM226, EM211, EM238, EM246, EM228, EM248

Finally, using the “center second” option produces as outcome:

U26, U32, U40, U134, EM39, EM218, EM211,
EM226, EM238, EM246, EM228, EM248

32

4.3. Further options example

Figure 4.8: Lucene Commit: CHANGES.txt

Figure 4.9: Lucene Commit: ResponseBuilder.java

4.3 Further options example

In the previous examples, it was possible to apply only the “center option”, among the three
advanced options implemented in the tool. Therefore, in this commit extracted from the
Lucene-solr project the “positioning” and “Add unmodified code” options are shown, using
the New object relation.
The considered commit contains three files: CHANGES.txt (Figure 4.8), Response-
Builder.java (Figure 4.9) and ResponseBuilderTest.java (Figure 4.10). The first contains
only a change part beginning at line 277 (C.txt277), while the second has a change part
beginning at line 142 (RB142). Finally, the whole class ResponseBuilderTest.java has been
added in this commit and, therefore, is treated as a unique change part (RBT1).

4.3.1 Positioning option

Applying the New object relation, the change parts RBT1 and RB142 are grouped in the
same match set, since the former instantiates the class of the latter. CHANGES.txt is not a
Java file, so its content is not analysed and it is grouped alone in a match set. The match
sets created are the following: {RBT1, RB142} and {C.txt277}.

33

4. CODECHANGEORDERER IN PRACTICE

Figure 4.10: Lucene Commit: ResponseBuilderTest.java; the new object declarations are
highlighted in red boxes.

Using the Positioning option, the user can decide if the change part containing the new
object instantiation must be shown before of after the change part(s) belonging to the related
object. Using the former possibility, the order produced by the tool is:

RBT1, RB142, C.txt277

Deciding for the latter option leads to the following order:

RB142, RBT1, C.txt277

4.3.2 Add unmodified files option

Change part RBT1 contains the instantiation of an object belonging to the SolrQueryRe-
sponse class, not modified in the commit but present in the project repository. Applying
the New object relation and the “Add unmodified code” option, this class is identified in the
project directory and its code is added as change part (SQR0) to the list of modifications to
order. Therefore, the new match set created by the tool is: {RBT1, RB142, SQR0}. At this
point, it is possible to apply the positioning option to decide if change part RBT1 must be
positioned before or after the related change parts (RB142, SQR0) in the order.
Deciding to position the change part that contains the new object statements before, the
order produced by the tool is:

RBT1, SQR0, RB142, C.txt277

34

4.4. Discussion

On the contrary, choosing to position it after the related change parts leads to the following
order:

SQR0, RB142, RBT1, C.txt277

4.4 Discussion

In the examples considered, a subset of the relations in the tool has been selected to show
how the tool works in practice. Although it was impossible to cover all the possible scenar-
ios, these examples are meant to showcase the procedure followed by the tool. For readabil-
ity, the size of the commits considered (in terms of amount of modified files, change parts
and line of code) had to be kept small. However, the same approach applies to commits of
bigger size and complexity.
Moreover, in our example relations working at different granularity levels have been applied
together: Same file and Method call or Same file and Declare-use relations. However, it is
possible to apply together also relations working at the same granularity level: e.g., Declare-
use and Parameter-use. The procedure followed by the tool is the same: the match sets
for both relations are constructed and an order is produced respecting their constraints.
Furthermore, the tool does not present a limit on the number of relations that can be applied
at the same time.
If the commit contains files of formats different than Java (e.g., XML files), their change
parts are shown in the tool order, both in the unordered and ordered one. However, their
content can not be analyzed by the tool. Thus, each change part belonging to these files is
grouped alone in a separate match set, when relations that require code analysis are applied.
In the tour created, they will be positioned based on the number of the first line in each
modification block.

35

Chapter 5

Testing the tool

In this section, the procedure followed to validate the tool output and its results is presented.
Furthermore, an initial investigation of the impact of the order produced on code review is
conducted and its results are explained.
The procedure followed is explained in Figure 5.1. First, a set of interviews has been con-
ducted with a group of Java developers. Then, an online survey has been released to assess
the usefulness of the tool orders and which factors may influence it.

5.1 External validation

To verify the correct functioning of our tool, an external validation is needed. In fact, the
internal test procedure (explained in Section 3.3) may be biased due to the fact that the test
set has been constructed by the same person who developed the tool. For this reason, in this
procedure a new test set is constructed by a group of external developers.

Figure 5.1: Methodology followed to test the tool and verify its usefulness

37

5. TESTING THE TOOL

The group of developers involved in this process has been chosen among the personal con-
tacts of the author with the only selection criterion of having programming experience in
Java. This knowledge is fundamental for them to create an ordering of the change parts
based on a real understanding of the code. However, it needs to be underlined that the fact
that the author knows the interviewed people personally may have introduced a bias in the
process.
Each developer involved was asked to participate in an interview, during which he or she
had to answer a questionnaire and produce a first order for the tool test set. Furthermore,
he or she was asked to produce two more orders at a later time. To ensure the correctness
of the procedure, all the interviews have been recorded. Conducting face-to-face interviews
had the advantage to allow us to record any comments and remarks. Furthermore, the inter-
viewees were allowed to ask questions if any information contained in the given documents
was unclear. This allowed us to reduce potential errors in the test set due to an incomplete
understanding of the ordering theory and tool implementation by the developers.
During the interviews, three documents were handed to the developers (presented in Ap-
pendix B). The first one contains an explanation of the tasks that they are asked to complete
(questionnaire and test cases), together with a brief description of the tool and its limits.
The second file presents a description of the relations implemented by the tool. Finally, the
third one shows an example of an ordering produced by the tool.

5.1.1 Questionnaire

In this procedure, the developers are first asked to answer some general questions to un-
derstand their experience in software development and, specifically, in performing code
review. These questions have been asked during the afore-mentioned interviews. The set of
questions asked is the following:

1. How often do you currently do programming?

• About once a day or more often

• About once a week

• About once a month

• About once a year

• Not at all

2. On which kinds of projects have you worked?

• Company proprietary projects

• Open source projects

• University projects

• Others

38

5.1. External validation

3. Which category does the project that you selected for this survey belong to?

• Company proprietary projects

• Open source projects

• University projects

• Others

4. Which is/was your predominant role in the selected project?

• Developer

• Reviewer

• User

• No role

5. How many years of experience do you have with Java?

• 1 year or less

• 2 years

• 3-5 years

• 6-10 years

• 11 years or more

6. How often do you perform code review tasks? Choose an answer from the fol-
lowing options:

• About once a day or more often

• About once a week

• About once a month

• About once a year

• Not at all

7. Order the set of relations offered by the tool (please refer to the Relations file)
in terms of importance assigning a number from 1 (most important) to 8 (least
important).

The wording of the questions has been inspired by previous surveys [8] [48] to ensure
their clarity. With the first six questions, the aim is to verify the background of the person
interviewed. The last one instead starts an investigation to assess the perceived usefulness
of the relations implemented in the tool based on the description given to the developers

39

5. TESTING THE TOOL

(Appendix B).

5.1.2 External test set

The developers are asked to select three different commits from a project of their choice.
They are encouraged to select a project on which they feel confident working: possibly,
a project to which they collaborated in the past. However, it must respect the following
constraints:

• Publicly available: the source directories of the project must be available on GitHub.

• Java-based: the tool can not extract relations among change parts not containing Java
code. Therefore, to allow meaningful test cases to be constructed, the project must
contain mainly Java files.

• JAR files available: the JAR files of the selected projects must be publicly available (at
least the ones belonging to the modules used in the selected commits). The developers
are also allowed to give us the JAR files of the project, in case they can not be retrieved
online.

To prepare for the possibility in which developers can not or do not want to use a project of
their own, a backup project is given. The selected project is Apache/Karaf 1, which respects
the constraints indicated above: it is Java-based and its directories and JAR files are publicly
available (the project is Open-Source).
For each of the three commits, the developers must construct an ordering based on the
description of the relations provided. They are asked to select only one relation for the first
and second commit and a combination of relations for the third one. However, to limit the
complexity, the developers can select at most four relations. Furthermore, the developers are
asked to explain the reason behind the choice of a particular relation (or groups of relations),
if any.
We ask the developers to produce the first ordering during the interview to take notes about
any comments, remarks or difficulties encountered. However, we argue that the ordering
produced during the interview may use a commit or a relation simpler to apply: in fact, the
person interviewed might not have enough time to analyze a complex commit or apply a
relation that requires to find many links between software entities. To address this problem,
we ask the developers to produce the other two orderings later, in a situation in which they
can work comfortably. We provide them with the survey files so that they may check again
the tasks, the relation descriptions and the example if needed.
Furthermore, the developers are asked to select one of the three possibilities for the Center
positioning option, when it is applicable. They are also asked to state the reason behind
their choice. The goal is to understand which of the three options is perceived as the most
useful and if there is a reason behind it. The three options are presented in the Example file
in a randomized order to reduce potential bias due to the choice of the option presented first.

1Apache/Karaf: https://github.com/apache/karaf

40

5.2. Interviews results

Table 5.1: RELATIONS IMPORTANCE RESULTS
Rank Relation Mean Variance Histogram
1 Method call 2.33 1.55
2 Declare-use 3.16 3.80
3 New Object 3.27 2.31
4 Inheritance 4 2.88
5 Parameter-use 4 3.11
6 Field access 4.38 2.12
7 Same file 5.11 5.76
8 Same format 5.47 5.24

In this procedure, our aims are two: verifying the correct functioning of the tool and assess-
ing if the relations implemented are understandable and useful to the developers. However,
in this step we decided to put more emphasis on the first objective. Therefore, the develop-
ers are allowed to ask questions during the interview. All their comments and questions are
recorded to be object of further analysis.
Differently from the internally produced test set, orders produced using the “Add unmodified
code” option have been excluded from our analysis. This choice has been done to limit the
complexity of the analysis that developers are asked to conduct, since it may have caused
major imprecisions in the produced test case.

5.2 Interviews results

At the end of this step, three different results were obtained: the creation of a manually
produced test set, an investigation of the developers’ perception of the tool relations and an
assessment of the center option usefulness.
A group of 18 developers was interviewed. The majority of them preferred to use commits
from the default project (Apache/Karaf). Only two developers used projects of their choice.
The test set created contains 29 commits (among which 23 using only one relation and 6
with multiple relations): 25 from the default project and 4 from personal projects. The
complete test set is available online2.
Moreover, the investigation of the usefulness of the relations revealed that the Method
call relation was considered the most important, followed by Declare-use, New object,
Parameter-use and Inheritance relation. On the contrary, the Same file and Same format
were perceived as the least important relations to create an ordering. However, we noticed
that a common trend among the developers was to consider the Same file relation as granted
when applying a different relation to create the test order during the interview. This led
us to the conclusion that, although this relation has not been perceived as useful alone, it
is considered as an important prerequisite that needs to be respected in producing orders
applying the other relations.

2https://github.com/EFregnan/Automatic-ordering-of-code-changes related-material

41

5. TESTING THE TOOL

Figure 5.2: Frequency of the developers’ choices for the center option

Table 5.1 ranks the relations implemented in the tool from the most to the least important
based on the mean of the scores that the developers assigned. The possible values ranged
from 1 (most important relation) to 8 (least important relation), therefore a lower values
mean corresponds to a higher perceived importance of the relation. It is important to notice
the high variance of the Same file and Same format relations. These relations have been
alternatively considered as very important or not at all by the developers. On the contrary,
the Method call relation presents a low variance, thus supporting our claim of its generally
recognized usefulness.
Most of the developers did not express a reason behind the choice of a particular relation
to create the test order. However, some of the few respondents stated that their choice was
dictated by having identified that relation as the most important. Others stated that their
decision was influenced by the constraint of having to create an order during the limited
time of an interview. Therefore, they opted for relations that do not require a deep analysis
of the code such as the Same file relation. Finally, some based their choice on the code in
the commit, selecting a relation meaningful to produce a test case for the tool.
Moreover, some of the respondents expressed their remarks on new relations for the tool.
One of them recognized as important to highlight the relation between the use of variables
contained in an if statement and their related declaration. Another developer suggested to
restrict the Inheritance relation only to change parts containing methods override. This idea
is similar to the formulation of the Class Hierarchy relation proposed in the work conducted
by Baum et al. [8] and reported in Table A.1.
The investigation of the center option revealed how the majority of developers preferred
using the “Center first” or the “Center in the middle” option, while none of them recurred
to the “Center second” option. This choice may have been caused by the major perceived
usefulness of the first two center options compared to the last one. Unfortunately, none
of them reported the reason behind this choice. Therefore, our analysis is based on the
comments done by the developers during the interviews. Figure 5.2 shows the percentage
on which the three options have been chosen in the production of the test cases.

42

5.3. Tool usefulness evaluation

Table 5.2: COMMITS AND RELATIONS USED IN THE SURVEY
Group Commit id4 Date Files Change parts Relation
Small 8217be3 13 Dec 2017 2 4 Method call

Declare-use
Medium 76edcb8 7 Feb 2018 8 11 Method call

Inheritance
Method-call + Same file

Big 24fb477 24 Oct 2017 3 17 Method call
Parameter-use
Method call + Same file

5.3 Tool usefulness evaluation

In this step, the aim was to evaluate the perception that developers have of the order pro-
duced by the tool. Do they think it can improve their understanding of the code to review
or are other orders identified as better options?
To accomplish this goal, a survey was designed and handed to a group of developers, asking
them to identify which order among the ones presented was perceived as the most useful
for code review. We involved in this survey all the developers who participated during the
interviews in the previous phase. However, to enlarge the size of our sample, the survey
was also released online. A different version of the survey was designed for this purpose,
containing an initial page of preliminary questions (the same asked in the interviews). Of
course, the questions regarding the project used to create the tests were removed since they
were not applicable anymore.
Three commits of different sizes3 have been selected from the example project
(Apache/Karaf) used in the first part of our survey. In fact, we argue that the usefulness
of an order may depend also on the number of change parts in the commit. We defined a
commit as Small if it contains less than 10 change parts, Medium if it contains from 10 to 15
change parts and Big if it has more than 15 change parts. Furthermore, to avoid to make the
survey unnecessary complex, a limit of maximum of 20 change parts was selected. Bigger
commits may lead to a higher chance that the developers drop the survey or select a random
answer.
Table 5.2 shows information about the commits used in the survey. Furthermore, for each
commit the relations applied to construct the order are indicated. For each commit three
different orders produced by the tool are included in the survey (one for each question) based
on two relations and their combination with the Same file relation: in fact, we argue that the
effectiveness of an order on the knowledge support may be increased keeping change parts
from the same file together.
In each question of the survey, the respondent was asked to choose the most useful order
to review the commit among the four different orderings presented. Between them, one

3measured in terms of number of change parts.
4For clarity only the first seven digits are reported.

43

5. TESTING THE TOOL

Table 5.3: ORDERS USED IN THE SURVEY
Question Commit Relations Orders
1 Small Method call Tool, Alph, WO, WFO
2 Small Declare-use Tool, Alph, WO, WFO
3 Medium Method call Tool, Alph, WO, WFO
4 Medium Inheritance Tool (CM), Tool (CF), Alph, WO
5 Medium Method call + File Tool, Alph, WFO-1, WFO-2
6 Big Method call Tool, Alph, WO, WFO
7 Big Parameter-use Tool (CM), Tool (CF), Alph, WO
8 Big Method call + File Tool, Alph, WFO-1, WFO-2

is obtained using the tool and the relations shown in Table 5.2. The Method call relation
was identified as the most important in the previous step of our survey, therefore it was
used in all the three commits. The Declare-use, Inheritance and Parameter-use relations
have also been identified as important by the developers interviewed, so they were applied
when meaningful. Moreover, our hypothesis is that keeping the file boundaries intact while
applying a relation may lead to better results than an order that ignores them. For this reason,
the combination of the Same file and Method call relations was also included. However, in
the first commit, applying these two relations together leads to the same order produced by
GitHub. Therefore, this option was not included in the survey.
The order produced by the tool was compared against three other orders. The first order,
Alph, groups together change parts from the same file and order them based on the line
number, while files are shown in alphabetical order (e.g, the order shown in GitHub). The
second one is the worst order according to the formal theory presented by Baum et al. [8].
A worst order minimizes the constraints imposed by the theory’s principles. Since the most
important principle states to group related change parts together, a worst order (WO) con-
tradicts this claim, positioning related change parts as distant as possible. Furthermore,
two kinds of worst order exist: a general worst order that does not respect the file bound-
aries and a worst order that keeps in account the Same file relation (WFO). Both these two
possibilities were used.
The survey contains a total of eight questions. Table 5.3 shows the different options given
for each question, together with the commit and relation used. The options are presented
in the survey in random order to reduce potential bias. Each change part is shown as com-
posed of the name of the class on top and the modified portion of code (including a line
of context before and after the modification, if applicable). This choice has been done to
reduce potential bias introduced by a better graphical presentation of the changes.
According to our hypothesis, the review efficiency of the Worst Order is worse or equal
than the one of the tool order and the alphabetical (Alph) order. Furthermore, the review
efficiency of WO is worse than the one of WFO. Our aim is to compare the order produced
by the tool with orders having the highest review efficiency possible to avoid a potential
bias in the respondent choice: his/her answer may be driven towards the tool order if this
is compared with obviously worse other options. For this reason, when possible, the WO

44

5.4. Survey results

Figure 5.3: Survey results: questions 1, 2, 3 and 6 with Tool order, Alph, WFO and WO

option is replaced with the order produced by the tool using a different option for the center.
Based on the results of the first part of our survey only the “Center in the middle” (CM) and
“Center first” (CF) options were used, since the “Center second” option was not considered
useful by most of the people interviewed. Furthermore, in questions 5 and 8 the order was
created using the combination of Method call and Same file relation. We argue that including
among the choices the Worst Order without file constraints would have been meaningless:
WO would give a significant support for review compared to the other options, biasing the
respondents towards immediately discarding it. Therefore, instead of WO as fourth option
a second version of the WFO (Worst Order with file constraints) has been included. This
is produced in a similar fashion of the first WFO, violating principle 1 (Table 2.1), but
rearranging the change parts in a different order.

5.4 Survey results

30 developers took part in the online survey on the usefulness of the tool. All the people in-
volved completed the questionnaire, except for one developer who abandoned it at question
6. Some developers indicated more than one order answering some of the questions.
In the two questions involving the small commit (question 1 and 2) there is no clear indica-
tion of a preference among the orders. In question 1, the order produced by the tool using
the Method call relation, the Alph order and the WFO achieved a similar number of votes.
A similar situation happened in question 2, where both the alphabetical order and WFO

45

5. TESTING THE TOOL

Figure 5.4: Survey results: questions 4
and 7 with Tool order, Alph,
WFO and Tool order (CF)

Figure 5.5: Survey results: questions 5
and 8 with Tool order, Alph
and two WFO

obtained similar votes. We argue that these results are explained by the fact that having to
review a small commit (in this case, the selected commit contained only 2 files and 4 change
parts), the developers did not find a clear advantage in the order produced by the tool. In
fact, the small size of the commit makes easy to understand relations among change parts
even without grouping them using the tool ordering theory.
Questions 3, 4 and 5 involved a commit of medium size (8 files and 11 change parts).
In question 3, the order produced by the tool applying the Method call relation has been
identified as the most useful one. A similar assessment of the usefulness of the tool order
is shown also in the results of question 4. In fact, in this case the last option represents
the order created by the tool using the “Center first” option. Moreover, the option with
the highest amount of votes is the tool order with the “Center in the middle”. This shows
the usefulness of the order produced by the tool and it gives an indication of the reviewers
preference towards the “Center in the middle” instead of the “Center first” option. However,
question 5 shows an opposite trend: in fact, the alphabetical order has been identified as
more useful then the combination of the Same file relation and Method call. This may
be caused by the excessive similarity between the Alph order and the tool order with the
Method call and Same file relations.
Finally, questions 6, 7 and 8 involved orders created using a big commit (3 files and 17
change parts). In question 6, the order produced by the tool using the Method call relation
has been identified as the most useful, followed by the alphabetical order. In question 7 both
the order produced using the “Center first” and “Center in the middle” option were used.
Combining the votes of these two orders, the tool order was identified as better than the
alphabetical one. Finally, the respondents in question 8 showed a slight preference towards
the order produced by the tool (Method call and Same file relation).
For the “medium” and “big” commits, all the results (with the only exception of question
5) show that ordering code changes using our tool is perceived useful by the developers.
Although the limited number of respondents does not allow us to produce statistically sig-
nificant conclusions, we argue that the trend highlighted is a good indication of the positive
outcome of the tool application in real case scenarios.

46

5.5. Threats to validity

Moreover, we investigated possible variations in the results dividing the respondents in
groups based on their answers to the introductory questions: clusters were created based on
their experience with Java and with code review. The aim was to investigate if inexperienced
reviewers preferred different orders or relations compared to developers used to perform
code review tasks. However, no significant trend was highlighted by this investigation.

5.5 Threats to validity

In this section, the limits of our approach are presented. First of all, the developers who
took part in the first survey are personal contacts of the author. This may have introduced a
bias in our results. To allow a verification of the procedure adopted in the interviews, they
have been recorded and are available online5.
The majority of the developers asked to create the test set decided to work with the backup
project instead of using one of their choice. This limited the variability of the test set,
reducing the amount of cases that it can cover. Moreover, a bias may be present in the
orders that the developers created, due to potential mistakes in the analysis of the code of
the selected commits or wrong understanding of the relations. We tried to mitigate this
latter risk asking the interviewed developers to produce the first order during the interview,
allowing them to ask questions when in doubt.
Another threat to the validity of this study is the number of people interviewed. We argue
that the sample measured may be considered too small to obtain statistically significant
results.
In each question of the online survey 4 different orders are presented. Although this number
of options allowed us to reduce the risk that the tool order was selected randomly, it may
require more effort to evaluate the difference between the orders. This risk needs to be taken
in account especially for the questions involving the “big” commit.

5https://github.com/EFregnan/Automatic-ordering-of-code-changes related-material

47

Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. After that, the results are
presented and conclusions are drawn. Finally, ideas for future work are discussed.

6.1 Contributions

A tool to automatically order change parts in a commit, based on a practical implementation
of the ordering theory proposed by Baum et al. [8], constitutes the main contribution of this
work. Furthermore, a test set has been internally produced to verify the correctness of the
tool functioning for each relation and the “Add unmodified option”. To mitigate the potential
bias presents in our first test set, a second test set has been created by a group of interviewed
developers. These two sets of ordered change parts are available online and may be used for
further research on the ordering theory. In this process, a study on the perceived usefulness
of the relations has been conducted.
Moreover, an assessment of the usefulness of the order produced by the tool to perform code
review, together with an investigation of the relations implemented, has been produced.

6.2 Conclusions

To answer the first research question (RQ1), a way to implement an ordering theory for
code changes in a tool was investigated. This required us to take some decisions about
the programming language and the relations to cover, together with the options to give
to the user. We decided to restrict our tool implementation to the analysis of Java code.
Moreover, based on the outcomes of a previous investigation on an ordering theory for code
changes [8], we developed eight relations to be used to produce the order. A tour can be
constructed applying only one of these relations or a combination of them. Furthermore,
we implemented different options to allow the user to change the order produced by the tool
based on his/her preferences. Two of these options, “Positioning option” and “Centering
option” works modifying the relations direction, while the “Add unmodified code” option
inserts in the final order files not included in the commit but related to the change parts
under analysis.

49

6. CONCLUSIONS AND FUTURE WORK

Our second research question (RQ2) aimed to investigate how the tool orders could be
verified. To answer it, two test sets have been produced: one by the tool developer and the
other by a group of external developers. To produce this second test set, a group of 18 Java
developers has been interviewed and each of them was asked to produce 3 different test
cases. We compared the orders contained in the test sets to the ones automatically produced
by CodeChangeOrderer to assure that they were the same. Only in a minority of cases we
noticed some discrepancy between the two orders caused by the use of JAR files having
a release date too old compared to the one of the commit under analysis: this led to the
impossibility to solve all the relations between change parts.
Furthermore, we asked the respondents to evaluate the usefulness of the relations imple-
mented in the tool. The Method call relation has been identified as the most useful, while
Same file and Same format were not considered important to create an order.
Finally, the third research question (RQ3) aimed to assess the usefulness of the ordering
to perform code review. To answer this question, an online survey was developed. The
respondents were asked to choose the order of change parts that they would have used to
perform code review of the given commit. The results of this investigation confirmed our
claim that the tour produced by the tool is recognized useful to support developers during
code review.

6.3 Discussion and lessons learned

During our investigation, different issues had to be faced on both implementing a theory to
order code changes in a tool and evaluating its usefulness. This work combined engineering
and research aspects: on the one hand, the need of constructing a usable and optimized tool,
able to perform well in a real life scenario, on the other hand, the analysis of the ordering
theory, how to implement it (e.g., which relations implement or how meaningful they are)
and how to perform an initial study of its usefulness.
The results of the online form revealed that the order produced by the tool is considered
as useful in most of the cases. To avoid potential bias in the decision, all the orders were
presented in the same way without any explicit indication of the kind of relation used and
the elements matched. However, principle 6, based on the findings of Baum et al. [8] (Table
3.1) states: “To satisfy the other principles, use rules that the reviewer can understand.
Support this by making the grouping explicit to the reviewer”. Based on this, we argue
that the order produced by the tool can reveal itself even more useful in a practical scenario
compared to our survey, since the user has control on the relation(s) applied (which is,
therefore, explicit to him). Moreover, the tool allows him or her to have access to the list
of match sets constructed to have a clear understanding of the links among different change
parts.

6.4 Future work

An initial assessment of the usefulness of the order produced by the tool in performing code
review has been conducted by means of the questions and survey presented in Section 5.

50

6.4. Future work

However, to perform a complete test, the tool should be deployed in a practical scenario. For
this reason, the aim of future work might be to ask developers to use this tool during their
working routine. CodeChangeOrderer might be used together with the code review tool in
use at a company, but we argue that the best option would be to integrate our tool with it.
Of course, this puts some constraints on a future investigation since not all companies may
be willing to give access to their tool code to external researchers.
If the ordering tool reveals itself useful, we can extend it with support for different program-
ming languages. Furthermore, more relations may be investigated and included in the tool.
Logical dependencies constitute a very promising group of relations to be applied to order
change parts. Logical coupling relations, as proposed by Gall et al. [23] and Robbes et al.
[41], consider entities that are frequently changed together in a program. For this reason,
they may constitute an ideal new feature to help developers during code review: files that
are changed together are likely to have a logical connection, which may not be possible to
find with the relations currently implemented in the tool. Tools to extract these relations
have already been proposed by the researchers: e.g., ROSE [51] or Evolution Radar [12].
Moreover, a new possible approach to the problem of grouping related code changes may be
given by applying evolutionary coupling relations (as proposed by Zou et al. [52]). Informa-
tion on which entities have been accessed together during the development phase may form
a sound basis on which grouping together portions of code: these are likely to implement
the same functionality. However, this requires having access to the data collected from the
developer’s IDE, e.g., integrating our tool in it.
Relations based on Semantic coupling [37] [38], based on the LSI analysis of the code ele-
ments, may also be object of further explorations. They could be a practical implementation
of the Similarity relation (Table A.1) that was excluded in the current implementation of the
tool due to its not well-defined nature.
Another promising research direction is to combine the ordering theory implemented in the
tool with visualization techniques. In fact, we argue that a more immediate way to show
related change parts may significantly increase the benefits of this approach. This claim
is also supported by Principle 6, stated by Baum et al. [6], which argues the importance
of making the grouping explicit to the reviewer (a complete formulation can be found in
Table 2.1). This claim is also supported by D’Ambros et al., who stated the importance of
visualization techniques as means to “break down the complexity of information” [12].

51

Bibliography

[1] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software inspections:
an effective verification process. IEEE Software, 6(3):31–36, May 1989. ISSN 0740-
7459. doi: 10.1109/52.28121.

[2] Jai Asundi and Rajiv Jayant. Patch review processes in open source software develop-
ment communities: A comparative case study. In System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on, pages 166c–166c, Jan 2007.

[3] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of mod-
ern code review. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013. IEEE Press.

[4] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. Helping devel-
opers help themselves: Automatic decomposition of code review changesets. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,
pages 134–144, May 2015. doi: 10.1109/ICSE.2015.35.

[5] Tobias Baum and Kurt Schneider. On the need for a new generation of code review
tools. In Product-Focused Software Process Improvement, pages 301–308, Cham,
2016. Springer International Publishing.

[6] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. A faceted classification
scheme for change-based industrial code review processes. IEEE International Con-
ference on Software Quality, Reliability and Security (QRS), 2016.

[7] Tobias Baum, Hendrik Leßmann, and Kurt Schneider. The choice of code review
process: A survey on the state of the practice. In Product-Focused Software Process
Improvement, pages 111–127, Cham, 2017. Springer International Publishing.

[8] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. On the optimal order of reading
source code changes for review. IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2017.

53

BIBLIOGRAPHY

[9] Mario Bernhart and Thomas Grechenig. On the understanding of programs with con-
tinuous code reviews. In 2013 21st International Conference on Program Compre-
hension (ICPC), pages 192–198, May 2013.

[10] Stefan Biffl. Analysis of the impact of reading technique and inspector capability
on individual inspection performance. In Proceedings Seventh Asia-Pacific Software
Engeering Conference. APSEC 2000, pages 136–145, 2000.

[11] David B. Bisant and James R. Lyle. A two-person inspection method to improve pro-
gramming productivity. IEEE Trans. Softw. Eng., 15(10):1294–1304, October 1989.

[12] Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change infor-
mation with the evolution radar. IEEE Transactions on Software Engineering, 35(5):
720–735, Sept 2009. ISSN 0098-5589. doi: 10.1109/TSE.2009.17.

[13] Scott Deerwester, Susan T. Dumais, George Furnas, Thomas Landauer, and Richard
Harshman. Indexing by latent semantic analysis. 41:391–407, 09 1990.

[14] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. Untangling fine-grained code changes. CoRR, abs/1502.06757, 2015.

[15] E. P. Doolan. Experience with fagan’s inspection method. Softw. Pract. Exper., 22(2):
173–182, February 1992. ISSN 0038-0644.

[16] Alastair Dunsmore, Marc Roper, and Murray Wood. The role of comprehension in
software inspection. Journal of Systems and Software, 52(2):121 – 129, 2000.

[17] Alastair Dunsmore, Marc Roper, and Murray Wood. Systematic object-oriented in-
spection - an empirical study. In Proceedings of the 23rd International Conference on
Software Engineering, ICSE ’01, pages 135–144, Washington, DC, USA, 2001. IEEE
Computer Society. ISBN 0-7695-1050-7.

[18] Michael Dyer. Verification based inspection. In Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences, volume ii, pages 418–427 vol.2,
Jan 1992.

[19] Michael E. Fagan. Design and code inspections to reduce errors in program de-
velopment. IBM Systems Journal, 15(3):182–211, 1976. ISSN 0018-8670. doi:
10.1147/sj.153.0182.

[20] Michael E. Fagan. Advances in software inspections. IEEE Transactions on Software
Engineering, 12:744–751, Jul 1986.

[21] Dror G. Feitelson, Eitan. Frachtenberg, and Kent L. Beck. Development and deploy-
ment at facebook. IEEE Internet Computing, 17(4):8–17, July 2013.

[22] Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs, Inspections,
and Technical Reviews: Evaluating Programs, Projects, and Products. Dorset House
Publishing Co., Inc., New York, NY, USA, 3rd edition, 2000.

54

Bibliography

[23] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for detect-
ing logical couplings. In Proceedings of the 6th International Workshop on Principles
of Software Evolution, IWPSE ’03, pages 13–, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1903-2.

[24] Kim Herzig and Andreas Zeller. The impact of tangled code changes. In Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR ’13, pages
121–130, Piscataway, NJ, USA, 2013. IEEE Press.

[25] Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code changes on
defect prediction models. Empirical Software Engineering, 21(2):303–336, Apr 2016.

[26] Philip M. Johnson and Danu Tjahjono. Does every inspection really need a meeting?
Empirical Software Engineering, 3(1):9–35, Mar 1998.

[27] David Kawrykow and Martin P. Robillard. Non-essential changes in version histories.
In Proceedings of the 33rd International Conference on Software Engineering, ICSE
’11, pages 351–360, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0445-0.

[28] Lesley Pek Wee Kim, Chris Sauer, and Ross Jeffery. A Framework for Software De-
velopment Technical Reviews, pages 294–299. Springer US, Boston, MA, 1995.

[29] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. Hey! are you
committing tangled changes? In Proceedings of the 22Nd International Conference
on Program Comprehension, ICPC 2014, pages 262–265, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2879-1.

[30] John C. Knight and E. Ann Myers. An improved inspection technique. Commun.
ACM, 36(11):51–61, November 1993.

[31] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M. Eskofier, and Michael
Philippsen. Automatic clustering of code changes. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories, MSR ’16, pages 61–72, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4186-8.

[32] Alex Kuhn, Stéphane Ducasse, and Tudor Girba. Enriching reverse engineering with
semantic clustering. In 12th Working Conference on Reverse Engineering (WCRE’05),
pages 10 pp.–, Nov 2005.

[33] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
A study of developer work habits. In Proceedings of the 28th International Confer-
ence on Software Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006.
ACM. ISBN 1-59593-375-1.

[34] Jonathan I. Maletic and Andrian Marcus. Using latent semantic analysis to identify
similarities in source code to support program understanding. In Proceedings 12th
IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000,
pages 46–53, 2000.

55

BIBLIOGRAPHY

[35] Johnny Martin and Wei-Tek Tsai. N-fold inspection: A requirements analysis tech-
nique. Commun. ACM, 33(2):225–232, February 1990.

[36] David L. Parnas and David M. Weiss. Active design reviews: Principles and practices.
Journal of Systems and Software, 7(4):259 – 265, 1987.

[37] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for object-
oriented systems. In 2006 22nd IEEE International Conference on Software Mainte-
nance, pages 469–478, Sept 2006.

[38] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using
information retrieval based coupling measures for impact analysis. Empirical Software
Engineering, 14(1):5–32, Feb 2009.

[39] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and Daniel
German. Contemporary peer review in action: Lessons from open source develop-
ment. IEEE Software, 29(6):56–61, Nov 2012.

[40] Peter C. Rigby and Christian Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 202–212, New York, NY, USA, 2013. ACM.

[41] Romain Robbes, Damien Pollet, and Michele Lanza. Logical coupling based on fine-
grained change information. In 2008 15th Working Conference on Reverse Engineer-
ing, pages 42–46, Oct 2008.

[42] Chris Sauer, D. Ross Jeffery, Lesley Land, and Philip Yetton. The effectiveness of soft-
ware development technical reviews: a behaviorally motivated program of research.
IEEE Transactions on Software Engineering, 26(1):1–14, Jan 2000.

[43] Forrest Shull and Carolyn Seaman. Inspecting the history of inspections: An example
of evidence-based technology diffusion. IEEE Software, 25(1):88–90, Jan 2008.

[44] Dag I. K. Sjøberg, Tore Dybå, Bente C. D. Anda, and Jo E. Hannay. Building Theories
in Software Engineering, pages 312–336. Springer London, London, 2008.

[45] Yida Tao and Sunghun Kim. Partitioning composite code changes to facilitate code re-
view. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 180–190, May 2015.

[46] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How do
software engineers understand code changes?: An exploratory study in industry. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 51:1–51:11, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1614-9.

[47] Gerald M. Weinberg and Daniel P. Freedman. Reviews, walkthroughs, and inspec-
tions. IEEE Transactions on Software Engineering, SE-10(1):68–72, Jan 1984.

56

Bibliography

[48] Aiko Yamashita and Leon Moonen. Do developers care about code smells? an ex-
ploratory survey. In 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 242–251, Oct 2013.

[49] Edward Yourdon. Structured Walkthroughs: 4th Edition. Yourdon Press, Upper Saddle
River, NJ, USA, 1989.

[50] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. Interactive code
review for systematic changes. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ICSE ’15, pages 111–122, Piscataway, NJ, USA,
2015. IEEE Press. ISBN 978-1-4799-1934-5.

[51] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 563–572, Washington, DC,
USA, 2004. IEEE Computer Society.

[52] Lijie Zou, Michael W. Godfrey, and Ahmed E. Hassan. Detecting interaction coupling
from task interaction histories. In 15th IEEE International Conference on Program
Comprehension (ICPC ’07), pages 135–144, June 2007.

57

Appendix A

Relations Table

Table A.1: TYPES OF RELATIONS AMONG CHANGE PARTS [8]

Type Directed Description
Data flow Yes A common example was a

configuration file that was
put before the code for load-
ing the configuration. In this
case data flow and call flow
do not coincide, whereas
they are often hard to distin-
guish in other cases.

Call flow Yes Going from a place that
calls a method to the called
method (top-down)or the
other way around (bottom-
up).

Class Hierarchy Yes A method overrides an oper-
ation in a superclass

Declare-Use Yes Something, e.g., an attribute,
is declared in one change
part and used in another.

File order Yes Change parts in the same file
are related just by being in
that file. Inside the file, they
can be ordered by line num-
ber.

File Type No One of the participants
talked about separating the
XML file from the Java files
in one of our examples.

59

A. RELATIONS TABLE

Similarity No Some change parts are very
similar to each other. If they
are close together, the sim-
ilarities and differences are
easier to compare. The ex-
act meaning of similarity has
yet to be determined.

Common Identifier No One of the participants
named a common identifier
as a reason for putting
change parts together. In
this case this could be seen
as a special case of data ow,
but it could also be a special
form of similarity.

Logical dependency Yes A logical dependency exists
when some part of the code
has to change when another
changes. Some of the partic-
ipants talked about putting
change parts together be-
cause one was the reason for
the other.

Development flow Yes Some participants stated that
they would like to fol- low
the development ow of the
author. An optimal devel-
opment ow is probably very
similar to a ow based on log-
ical dependencies.

60

Appendix B

Survey files

In this appendix, the three documents handled to the developers are presented. The first
one is the main document, containing a brief questionnaire and an explanation of the task.
The second explains the relations implemented by the tool, while the last contains a brief
example of the order produced by the tool.

61

Thank you for finding the time to participate in this survey.

I am Enrico Fregnan, a MSc. thesis student at Delft University of Technology, currently working on
code changes ordering for review under the supervision of Prof. Alberto Bacchelli (ZEST,
University of Zurich) and M. Eng. Tobias Baum (Leibniz Universität Hannover). Being well aware
of the difficulties of performing code review, we are building a tool to automatically order changes
in a commit in the attempt to make code review easier. Our aim is to help developers to save time
and effort in performing this task. Your aid will be of great importance to allow us to further
improve our research.
We kindly request your help to evaluate our tool's performance.

1) First of all, please answer to the following general questions:

1. How often do you currently do programming?
◦ About once a day or more often
◦ About once a week
◦ About once a month
◦ About once a year
◦ Not at all

2. On which kind of projects have you worked?
▪ Company proprietary projects
▪ Open-Source projects
▪ University projects
▪ Others

3. Which category does the project that you selected for this survey belong to?
• Company proprietary projects
• Open-Source projects
• University projects
• Others

4. Which is/was your predominant role in the selected project?
▪ Developer
▪ Reviewer
▪ User
▪ No role

5. How many years of experience do you have with Java?
◦ 1 year or less
◦ 2 years
◦ 3 – 5 years
◦ 6 – 10 years
◦ 11 years or more

6. How often do you perform code review tasks? Choose an answer from the following
options:

◦ About once a day or more often
◦ About once a week
◦ About once a month
◦ About once a year
◦ Not at all

7. Order the set of relations offered by the tool (please refer to the “Relations” file) in terms of
importance assigning a number from 1 (most important) to 8 (least important).

The data collected will be aggregated and treated anonymously.

2) In the second step, please select three commits from a project on which you feel comfortable
working and provide us an order of the change parts in it that you consider right based on our
description in the file "Relations”. (A change part is a portion of code that has been modified. It
can consist of either a single line or multiple lines). Please indicate the project name, a link to its
repository and the code of the commits selected. If you prefer, you can instead use the following
open-source project: Apache/Karaf (available here: https://github.com/apache/karaf).

To order a situation in which a single change part is linked to multiple others (e.g., a variable
declared in a change part and then used in multiple others) you have three different options among
which you can choose:

– “Center in the middle”: the change part linked to all the others is positioned in the middle of
the change parts to which is linked.

– “Center first”: the change part linked to the others is positioned before the ones to which is
linked.

– “Center second”: the change part linked to all the others is positioned second, just after one
of those to which it is linked but before the others.

Refer to the “Example” file for a concrete example.

We ask you to provide:

• 3 orderings (one for each commit): for the first two you must select only one relation
among the list of relations given, while for the third one you must select at least two
different relations (up to a maximum of 4).

• The relations chosen for each commit and the reason behind your choice.

• The selected option among “center in the middle”, “center first” and “center second” (if it
was necessary in the chosen commits).

Constraints that need to be respected:

1) The project that you select must meet the following requirements:

• Publicly available on GitHub
• JAR files available: select a project of which the JAR files are available (or of which you

can give us the JAR files).
• In case you want to use our default project (Apache/Karaf), please consider commits created

no later than the end of March.

2) Keep in mind the following limitations when creating an order

• Please indicate every change part by the name of the class to which it belongs, followed by
the line number of the modification in the new file (you can find a concrete example in the
“Example” file).

• For change parts containing only deleted portions of code, please use as line number of the
change part the line number of the first line after the end of the removed code block.

• When no other order applies, it is determined by the line number with which the change part
begins.

• Deleted code portions are not considered for code analysis (e.g., a deleted variable
declaration will not be linked to its use or a deleted class will not be linked to its parent).

• The tool currently supports only analysis of Java code: if the commit that you choose
contains a file of different format, change parts belonging to it can still be ordered using the
same file and same format relations. Furthermore, the order based on the line number still
applies.

Let us know if you any remarks and if you want to be informed about the outcome of this research.

Thank you again for your time.

Thank you for finding the time to participate in this survey. Here, you will find an explanation of
the tool's features and the relations that are currently implemented.

Please keep in mind that right now the tool can only order change parts written in Java code.
Therefore, it will not be possible to apply any relation that requires the analysis of the code to
different programming languages. You are not obliged to select commits that contains only Java
code, but keep this limitation in mind when you are going to produce your order.

The relations that the tool supports are:

• Same file: change parts belonging to the same file are positioned together.

• Same format: change parts belonging to files having the same format are positioned close
together (e.g., all change parts belonging to Java files will be in the same group)

• New Object: a change part which instantiates a new object will be positioned close to all the
change parts belonging to the object that has been created.

• Method Call: a change part which calls a method will be positioned together with the
change parts belonging to the method declaration. The relation holds either if the change
parts are in different classes or if the change parts are contained in the same class.

• Inheritance relation: a child class is positioned close to its parent.

• Declare-Use: change parts containing variable declarations are positioned close to the ones
containing the use of that variable. Please notice that this relation does not cover the case of
parameter declaration and use (refer to parameter-use).

• Parameter-Use: change parts containing the declaration of a parameter are positioned close
to the ones containing its use.

• Field access: a change part which uses the field of another class (or the same class) is
positioned together with the field declaration.
This relation covers cases of direct access to a field and the use of the “this” construct.

Multiple relations can be applied to determine an order. Note that not all the relations have the same
granularity and therefore they can be applied together to determine an inner order inside a
previously defined group. Please refer to the “Example” file attached for a practical case.

Example

Here you can find an example of possible ordering:

Consider the default project Apache/Karaf and the commit with code:

cde8c4954e04e2de7c52252c15eaace11deadd29

which contains three files:

AssemblyDeployCallback.java

It contains the following change parts (here indicated by the initial letters of the class name and the
line number on which the change part begins):

ADC157, ADC166, ADC169, ADC176, ADC179, ADC186, ADC207

Builder.java

This file contains only one change part: B1071

ConfigInstaller.java

It contains the following change parts:

CI22, CI64, CI68, CI75, CI86

Example ordering

For this example's sake, the two relations Same File and Declare-Use will be used.

Applying only the “Same file” relation we obtain:

CI22, CI64, CI68, CI75, CI86, ADC157, ADC166, ADC169, ADC176, ADC179, ADC186,
ADC207, B1077

Applying only the “Declare-use” relation we obtain:

CI22, CI68, CI64, CI75, CI86, ADC166, ADC169, ADC157, ADC176, ADC179, ADC186,
ADC207, B1077

In fact, in the class ConfigInstaller the variable homedirectory (line 64) is used in the change parts
68, 75 and 86. For this reason, the tool positions change part at line 64 (containing the definition of
homedirectory) as close as possible to all the change parts in which this variable is used. The same
applies also for the class AssemblyDeployCallback, where the variable configFile (line 157) is
used in the change parts at line 166, 169, 176, 179.

Please notice that in case of multiple change parts connected to the same one (e.g., multiple variable
uses connected to the same variable declaration), you can use three different options to order them:

1. “center in the middle”: as reported in the example above
2. “center first”: the change parts connected to all the others are put before them.

CI22, CI64, CI68, CI75, CI86, ADC157, ADC166, ADC169, ADC176, ADC179, ADC186,
ADC207, B1077

3. “center second”: the change parts connected to all the others are put in second position.

CI22, CI68, CI64, CI75, CI86, ADC166, ADC157, ADC169, ADC176, ADC179, ADC186,
ADC207, B1077

To produce your order you are free to use the one that you prefer (please report which one you
used)

Applying both relations at the same time, we obtain (using the “center in the middle” option):

CI22, CI68, CI64, CI75, CI86, ADC166, ADC169, ADC157, ADC176, ADC179, ADC186,
ADC207, B1077

In this case, the order is the same as the one produced by the declare-use relation only because
change parts from the same file were already ordered close to each other due to their line number.

	Preface
	Contents
	List of Figures
	Introduction
	Problem Description
	Thesis Statement
	Research Method
	Thesis Outline

	Background and Related Work
	Code Review
	Modern code review
	A theory to order code changes
	Other cognitive support approaches

	An ordering tool
	CodeChangeOrderer structure and implementation choices
	Tool functionality
	Internal test set

	CodeChangeOrderer in practice
	First example
	Second example
	Further options example
	Discussion

	Testing the tool
	External validation
	Interviews results
	Tool usefulness evaluation
	Survey results
	Threats to validity

	Conclusions and Future Work
	Contributions
	Conclusions
	Discussion and lessons learned
	Future work

	Bibliography
	Relations Table
	Survey files

