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Abstract
This study proposes a novel Artificial Neural Network (ANN) based method to derive the 
Value-of-Travel-Time (VTT) distribution. The strength of this method is that it is possible 
to uncover the VTT distribution (and its moments) without making assumptions about the 
shape of the distribution or the error terms, while being able to incorporate covariates and 
taking the panel nature of stated choice data into account. To assess how well the proposed 
ANN-based method works in terms of being able to recover the VTT distribution, we first 
conduct a series of Monte Carlo experiments. After having demonstrated that the method 
works on Monte Carlo data, we apply the method to data from the 2009 Norwegian VTT 
study. Finally, we extensively cross-validate our method by comparing it with a series of 
state-of-the-art discrete choice models and nonparametric methods. Based on the promis-
ing results we have obtained, we believe that there is a place for ANN-based methods in 
future VTT studies.

Keywords Artificial neural network · Value of travel time · Random valuation · 
Nonparametric methods · Discrete choice modelling

Introduction

The Value-of-Travel Time (VTT) plays a decisive role in the Cost–Benefit Analyses 
(CBAs) of transport policies and infrastructure projects as well as in travel demand mod-
elling. The VTT expresses travel time changes in monetary values (Small 2012). Due to 
its importance for transport policies and appraisal, the VTT is one of the most researched 
notions in transport economics (Abrantes and Wardman 2011). Most Western societies 
conduct studies to determine the VTT on a regular basis. The focus of such VTT studies is 
typically not to obtain a single (mean) VTT for all trips, but rather to obtain tables of VTTs 
which show how the VTT depends on trip characteristics, such as travel purpose and mode.

Despite decades of experience with data collection and VTT inference, the best way to 
obtain the VTT is still under debate. Early studies predominantly used Revealed Prefer-
ence (RP) data in combination with Multinomial Logit (MNL) models (Wardman et  al. 
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2016). However, despite the well-known advantages of RP data over Stated Choice (SC) 
data (Train 2003), nowadays RP data are seldom used in VTT studies. The main reason is 
that while the travellers’ choices are observable, their actual trade-offs across alternatives 
are not—which hampers estimation of the VTT using RP data. More recent VTT studies 
therefore favour using SC data in combination with discrete choice models that account for 
(some of the) potential artefacts of the SC experiment (notably size and sign effects) (Fos-
gerau et al. 2007; Ramjerdi et al. 2010; Börjesson and Eliasson 2014; Kouwenhoven et al. 
2014; Hess et al. 2017). In one of the most common kind of VTT SC experiment travellers 
are presented a binary within-mode choice task where the alternatives are made up out of 
travel cost and travel time only. Recent VTT studies report particularly good results with 
so-called Random Valuation models when analysing data from this type of SC experiments 
(Fosgerau and Bierlaire 2009; Börjesson and Eliasson 2014; Ojeda-Cabral et al. 2018).

Besides discrete choice models, nowadays nonparametric methods are increasingly 
pioneered in VTT studies (Fosgerau 2006, 2007). These methods are methodologically 
appealing as they do not make assumptions regarding the shape of the VTT distribution 
and the structure of the error terms. However, despite their methodological elegance they 
are typically not used to derive VTTs for appraisal. Rather, they are used as a first, com-
plementary, step to learn about the shape of the distribution of the VTT, after which para-
metric discrete choice models are estimated to derive VTTs for appraisal. Börjesson and 
Eliasson (2014) argue that nonparametric methods are not suitable to compute VTTs for 
appraisal for three reasons. First, they (often) cannot incorporate covariates. Second, they 
(often) cannot account for panel effects. Third, they (often) do not recover the VTT distri-
bution over its entire domain. That is, the distribution right of the highest VTT bid is not 
recovered, which hinders computation of the mean VTT.

Very recently, Artificial Neural Networks (ANNs) are gaining ground in the travel 
behaviour research arena (e.g. Mohammadian and Miller 2002; Cantarella and de Luca 
2005; Karlaftis and Vlahogianni 2011; Omrani et al. 2013; Pereira et al. 2015; Alwosheel 
et al. 2018; Wong et al. 2017; Golshani et al. 2018; Lee et al. 2018; Sifringer et al. 2020; 
Van Cranenburgh and Alwosheel 2019; Wang et al. 2020). ANNs are mathematical mod-
els which are loosely inspired by the structure and functional aspects of biological neu-
ral systems. A fundamental difference between discrete choice models and ANNs is the 
modelling paradigm to which they belong. Discrete choice models are theory-driven, while 
ANNs are data-driven. Theory-driven models work from the principle that the true Data 
Generating Process (DGP) is a (stochastic) function, which can be uncovered (Erdem et al. 
2005). To do so, the analyst imposes structure on the model. In the context of discrete 
choice models this is done by prescribing the utility function, the decision rule, the error 
term structure, etc. Then, the analyst estimates the model’s parameters, usually compares 
competing models, and interprets the results in light of the theory. An advantage of such 
a theory-driven method is that its theoretical framework provides solid ground to interpret 
the model and its outcomes. A drawback is however that it heavily relies on potentially 
erroneous assumptions regarding choice behaviour, i.e. the assumptions may not accu-
rately describe the true underlying DGP—leading to erroneous inferences. Data-driven 
methods work from the principle that the true underlying process is complex and inher-
ently unknown. In a data-driven modelling paradigm the aim is not to uncover the DGP, 
but rather to learn a function that accurately approximates the underlying DGP. The typi-
cal outcome in a data-driven modelling paradigm is a network which has good prediction 
performance (Karlaftis and Vlahogianni 2011). A drawback of many data-driven methods 
is that—without further intervention—they provide limited (behavioural) insights on the 
underlying DGP, such as the relative importance of attributes, Willingness-to-Pay, or VTT. 
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This holds especially true for ANNs, which are widely considered black boxes (Castelvec-
chi 2016), amongst other things, because it is impossible to interpret or diagnose ANNs 
by looking at the weights of the network. In fact, the weights will tell the analyst nothing 
about the importance of attributes, or whether the ANN has learned intuitively correct rela-
tionships, as opposed to spurious ones (see Alwosheel et al. 2019 for recent work in choice 
modelling to open-up ANN’s black boxes). Yet, these behavioural insights are typically 
most valuable to travel behaviour researchers and for transport policy-making.

In the field of travel behaviour research there is a general sense that ANNs (and other 
data-driven models), could complement existing (predominantly) theory-driven research 
efforts (Chen et al. 2016). In light of that spirit, this paper1 develops an ANN-based method 
to investigate the VTT distribution. This method blends theory-driven and data-driven 
modelling paradigms. Specifically, we develop a novel pattern recognition ANN which is 
able to estimate travellers’ individual underlying VTTs based on the behavioural notion of 
indifference. Our method capitalises on the strong prediction performance of ANNs (see 
Paliwal and Kumar 2009 for a comprehensive review of articles that involve a comparative 
study of ANNs and statistical techniques). The strength of this method is that it is possible 
to uncover the VTT distribution (and its moments) without making assumptions on the 
underlying behaviour. For instance, it does not prescribe the utility function, the shape of 
the VTT distribution, or the structure of the error terms. Moreover, the method can incor-
porate covariates, account for panel effects and does yield a distribution right of the maxi-
mum VTT bid. Thereby, it overcomes important limitations associated with some other 
nonparametric methods. Finally, the method does not require extensive software coding on 
the side of the analyst as the method is built on a standard MultiLayer Perceptron (MLP) 
architecture. Hence, the method can be applied using off-the-shelf (open-source) software.

The remainder of this paper is organised as follows. Section  "Methodology" develops 
the ANN-based method for uncovering the VTT distribution. Section "Results" conducts a 
series of Monte Carlo analyses to assess how well the method works. Section "Application 
to real VTT data" applies the method to an empirical VTT data set from a recent VTT study. 
Section  "Cross-validation" cross-validates the method by comparing its results with those 
obtained using a series of state-of-the-art discrete choice models and nonparametric methods. 
Finally, Section "Conclusions and discussion" draws conclusions and provides a discussion.

Methodology

Preliminary

Data format

Throughout this paper we suppose that we deal with data from a classic binary SC experi-
ment, consisting of T + 1 choice observations per individual, in which within-mode trade-
offs between travel cost (TC) and travel time (TT) are embedded. In this format there is 

1 An earlier version of this paper has been published in the conference proceedings of the 2019 Interna-
tional Work-Conference on Artificial Neural Networks (IWANN) (Van Cranenburgh and Kouwenhoven 
2019b). This paper extends this work by presenting (1) a behaviour framework, (2) Monte Carlo analyses, 
(3) extended empirical results, and (4) a more extensive cross-validation.
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always a fast and expensive alternative and a slow and cheap alternative.2 This data format 
is in line with standard VTT practice in many Western European countries, including the 
UK (Batley et al. 2017), The Netherlands (HCG 1998; Kouwenhoven et al. 2014), Den-
mark (Fosgerau et al. 2007), Norway (Ramjerdi et al. 2010) and Sweden (Börjesson and 
Eliasson 2014). The straightforward format of this type of data makes it fit the proposed 
methodology well.

In this format, each choice task has what is commonly referred to as a Boundary VTT 
(BVTT). The BVTT is the implicit price of time. The BVTT is given by Eq.  1 where 
alternative 1 denotes the slow and cheap alternative and alternative 2 denotes the fast and 
expensive alternative. The BVTT can be perceived as a valuation threshold as a respondent 
choosing the fast and expensive alternative reveals a VTT which is (most likely) above the 
BVTT, while a respondent choosing the slow and cheap alternative reveals a VTT which is 
(most likely) below the BVTT.

Covariates in VTT studies

It is important to incorporate covariates in models that aim to infer the VTT. Börjesson 
and Eliasson (2014) provide four reasons for this. Firstly, accounting for covariates in VTT 
models allows better extrapolating the VTT to new situations. Secondly, accounting for 
covariates in VTT models allows better understanding what trip characteristics influence 
the VTT. Thirdly, accounting for covariates in VTT models allows the analyst to remove 
the influence of undesirable factors, such as income or urbanisation level from the VTT 
used for appraisal. Fourthly, accounting for covariates in VTT models allows capturing 
so-called size and sign effect stemming from the experimental design (De Borger and Fos-
gerau 2008). Size effects are due to the behavioural notion that the VTT is dependent on 
the size of the difference in travel time and travel cost across alternatives in the choice task 
(Daly et al. 2014). Sign effects are due to the behavioural notion that losses (e.g. higher 
travel cost and longer travel time) loom larger than equivalently sized gains (e.g. lower 
travel cost and shorter travel time) (Ramjerdi and Lindqvist Dillén 2007; De Borger and 
Fosgerau 2008).

Trade-offs between travel cost and travel time can be classified into four different types,3 
which can be visualised into four different quadrants, see Fig. 1 where the origin corre-
sponds with the reference situation. The top-left quadrant consists of ‘Willingness to Pay’ 
(WTP) type choices. Here, the reference trip is compared to a faster but more expensive 
alternative. The top-right quadrant consists of ‘Equivalent Loss’ (EL) type choices. Here, 
a more expensive alternative is compared to a slower alternative (relative to the reference). 
In the lower-left quadrant are ‘Equivalent Gain’ (EG) type choices. Here, a cheaper alterna-
tive is compared to a faster alternative (relative to the reference). Finally, the lower-right 

(1)BVTT = −
ΔTC

ΔTT
=

−
(
TC2 − TC1

)
(
TT2 − TT1

)

3 Note that trade-offs between travel cost and travel time can also be posed such that they are in more than 
one quadrant.

2 Some surveys include a choice with a dominant alternative, i.e. a choice between a fast and cheap alterna-
tive and a slow and expensive alternative. These observed choices are used to identify respondents which 
need to be removed from further analysis.
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quadrant consists of ‘Willingness to Accept’ (WTA) type choices. Here, the reference alter-
native is compared to a cheaper but slower alternative.

In our method we make a distinction between generic covariates and what we call 
experimental covariates. Generic covariates are not dependent on the composition of a 
choice task in the SC experiment, and typically relate to characteristics of the decision 
maker or his/her current travel behaviour, such as income, gender, age, and current travel 
time. Experimental covariates are dependent on the composition of the choice task in the 
SC experiment. Typical examples are size and sign effects.

Conceptual framework

Figure 2 shows the conceptual framework of this paper. We assume that each decision-
maker, when confronted with a binary choice task which embeds a BVTT, comes to his 
or her choice by comparing the BVTT with his or her own VTT. Personal characteris-
tics as well as current trip characteristics are explanatory variables for the individuals’ 
VTTs. The comparison of the BVTT and the individual’s VTT results in a utility dif-
ference, based on which the choice is made. We assume choice behaviour is stochastic. 
But, we are agnostic about the source of the stochasticity. That is, the stochasticity can 
be on the side of the decision maker due to e.g. a trembling hand, boredom, loss of 

Fig. 1  Sign effects

TT

TC

WTP

WTA

EL

EG

Fig. 2  Conceptual framework
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attention, or other physiological processes—congruent to models in the mathematical 
psychology (see Luce 2014); or, it can be due to unobserved factors on the side of the 
analyst—congruent with economist’s view on decision making (McFadden 1974). In 
our interpretations in the remaining part of this paper we however go with the former.

Thus, in our framework for each individual there exists a function that relates the 
BVTT to the probability P that he or she chooses the fast and expensive alternative. 
Henceforth, we call this function the choice probability generating function, denoted fn. 
Figure 3 conceptually illustrates this function. It shows that in case the BVTT is smaller 
than the VTT for decision maker n, the fast and expensive alternative is (most likely) 
chosen, while in case the BVTT is larger than the decision maker’s VTT, the slow and 
cheap alternative is (most likely) chosen. In the special case in which the BVTT equals 
the decision maker’s VTT, the utility difference between the two alternatives equals 
zero and Pn equals 0.5. We call the BVTT which makes the decision maker indifferent 
between the two alternative the ‘indifference point’.

Uncovering individual VTTs using an ANN

The ANN-based method is based on three observations. The first observation is that 
ANNs are universal approximators. That is, ANNs can, under mild assumptions, approx-
imate a wide variety of continuous functions on compact subsets (Cybenko 1989). This 
ability stems from the versatile structure of ANNs, which allow them to capture non-lin-
earity and interactions between variables (without explicitly being programmed where 
to find these). The second observation is that we can use an ANN to learn to approxi-
mate each decision maker’s choice probability generating function fn. To do this, we can 
use all available information we have on each decision maker, including the responses 
to probed BVTTs and covariates, such as income and age. The third observation is that 
given fn we can determine the VTT for each individual by making use of the notion of 
indifference (see Sect. 2.2). Specifically, under the assumption that the ANN is capable 
to approximate fn (for each decision maker), the indifference points reveal the decision 
makers’ true underlying VTTs.

To do so, we take the following 6 steps:

Fig. 3  Choice probability generating function fn
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1. Training and data preparation

The aim of this step is to train an ANN to (probabilistically) predict, for decision maker 
n the choice in a hold-out choice task T + 1, based on the tuple consisting of the BVTTs 
( BVTTn ) and responses ( Yn ) in choice tasks 1 to T, the probed BVTT in choice task T + 1 
( bvttn

T+1
 ), the experimental covariates in choice task T + 1 ( sn

T+1
 ), and the sets of generic 

and experimental covariates, denoted Dn and Sn, respectively. That is, we train the ANN 
to learn the relationships g, see Eq. 2, where Pn

T+1
 denotes the probability of observing a 

choice for the fast and expensive alternative in choice task T + 1 for decision maker n.

Figure 4 shows the proposed architecture of the ANN.4 At the input layer, the independ-
ent variables enter the network. At the top, there are the generic covariates (green). Typical 
generic covariates encountered in VTT studies are mode, purpose, age, income, distance, etc. 
Below the generic covariates are the variables associated with choice tasks 1 to T (red). These 
include the BVTTs, the choices y and experimental covariates s (sizes and signs). Below the 
variables for choice tasks 1 to T is an extra set of input nodes for choice task R (blue). Choice 
task R is a replication of one choice task, randomly picked from the set choice tasks 1 to T. 
These input nodes come in handy later when the ANN is used for simulation (they make 
it possible to use all T + 1 observations instead of only T observations in the simulation). 
Finally, at the bottom are the variables associated with hold-out choice task T + 1 (yellow). 
These are essentially the ‘knobs’ of the model that can be used for simulation. The output 
of the network is the probability for choosing the fast and expensive alternative in choice 
task T + 1. The input layer and the output layer are connected via so-called hidden layers by 
arrows, which contain the weights w that need to be learned (see Bishop 1995 for an exten-
sive overview of ANNs and their characteristics). At each node, the inputs are summed and 
an activation function is applied. For the output node (purple) this operation is exemplified in 
Fig. 4. The value V is computed in a linear-additive fashion, based on the outputs of the nodes 
in the previous layer and a set of associated weights. Here, V has the same function as the dif-
ference in utility in a conventional (binary) discrete choice model, and also enters a sigmoid 
function (aka logit function, in choice modeller’s parlance) to yield the choice probability. 
One or multiple hidden layer can be used. In our analyses in Sections "Results" and "Applica-
tion to real VTT data" we find two layers to work optimal. However, the optimal number of 
hidden layers and the number of nodes depend on the complexity of the DGP that needs to be 
learned from the data, and thus may vary across applications.

To train (‘estimate’ in statistics parlance) the network in Fig. 4, we need to prepare the 
data. To do so, for each decision maker in the data we randomly draw T explanatory choice 
tasks from the T + 1 choice tasks that are available in the data for each decision maker. 
These T choice tasks are used as independent variables to predict the remaining choice. To 

Pn
T+1

= g
(
BVTTn

, Yn
, bvttn

T+1
, sn

T+1
,Dn

, Sn
)

(2)

where BVTTn =
{
bvttn

1
, bvttn

2
, ..., bvttn

T

}

Yn =
{
yn
1
, yn

2
, ..., yn

T

}

Sn =
{
sn
1
, sn

2
,… , sn

T

}

4 Note that while the graph representation of ANNs looks in some ways similar to that of a cross-nested 
logit model, ANNs and cross-nested logit models are disparate, conceptually as well as mathematically.
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avoid that the network undesirably learns a particular structure in the data, rather than the 
explanatory power of the variables it is crucial that the order in the set of T explanatory 
choice tasks is randomised.5 Furthermore, for each decision maker we create K observa-
tions, by using different randomisations of the order in the set of explanatory choice tasks. 
The idea behind this is that the weights associated with the choice tasks attain (roughly) 

s1

bvvt1

y1

bvvt2

y2

s2

Hidden layersInput layer

Choice task 
t = 1

Choice task 
t = 2

PT+1

Choice task
t = T+1

bvvtT+1

sT+1

Output layer

bvvtT

yT

sT

Choice task 
t = T

Mode

Purp

Income

Generic 
covariates

bvvtR

yR

sR

Choice task 
R

Generic covariate

Explanatory choice task

Explanatory choice task R

Hold-out choice task

Legend

Hidden node

Output node

a1

a2

a3

a4

w1

w2

w3

w4

w5

∑ PT+1

5

Fig. 4  ANN architecture

5 Unless the order of the choice tasks is randomised during the data collection. Note that by doing so the 
network becomes blind to potential learning effects on the side of the respondent when conducting the sur-
vey. We come back to this point in the discussion.
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similar sizes. By doing so, we create a network that produces stable predictions, which is 
insensitive to the order in which the explanatory choice tasks are presented to the network. 
Note that while such ‘oversampling’ of data would be considered a sin in theory-driven 
research (as it will lead to underestimated standard errors), in machine learning oversam-
pling is occasionally done (Chawla et al. 2002). In each manifestation of the K randomisa-
tions, choice task R (see Fig. 4) is a randomly selected replication of one of the T explana-
tory choice tasks. By selecting a random choice task, we make sure that no single choice 
task weights more heavily in the training and ensure that the weights of the network are 
generic across all choice tasks.

Training the network involves maximising its prediction performance. For this task, 
we minimise the cross-entropy (Shannon and Weaver 1949), since we are dealing with a 
classification problem. Note that minimising cross-entropy is equivalent to maximising the 
likelihood of the data. To train the network backward propagation is used (Rumelhart et al. 
1986). There are a number of reasons why backward propagation is preferred over e.g. 
Maximum Likelihood Estimation (MLE) based techniques for training ANNs. The most 
important reasons are that backward propagation is better equipped to deal with the (1) 
indeterminacy and (2) non-convexity of ANNs than MLE based techniques. Furthermore, 
to evaluate the performance of the network, in machine learning always a hold-out sam-
ple is used. The reason is that ANNs can be sensitive to overfitting when it is trained on 
in-sample data only. More details on training neural networks can be found in many text-
books, including Bishop (1995).

2. Simulate

After having trained the ANN (i.e. learned g) we use the ANN to simulate choice prob-
abilities for each decision-maker in the data. Specifically, we simulate Pn

T+1
 while letting 

bvttn
T+1

 run from 0 to a maximum BVTT value, set by the analyst using a finite step size. 
For simulation, we can use all T + 1 choice observations of a decision maker as explanatory 
choice tasks. This is possible because we created the extra choice task R in the network 
(see step 1). Thus, this ‘trick’ allows using all available information on a decision maker’s 
preference for predicting his or her response to a given probed BVTT in the simulation in 
an elegant way.

Finally, it is important to note that in the simulation the analyst can also manipulate the 
experimental covariates s in choice task T + 1 (yellow input node at the bottom-left of Fig. 4). 
The analyst can use this to assess the effects of e.g. sizes and signs on the VTT. The latter is 
particularly useful when the analyst would like to investigate the gap between WTA and WTP 
or desires to obtain a reference free VTT (which requires having quadrant specific VTTs). In 
contrast, the analyst should not manipulate the generic covariates (green input nodes at the 
top-left of Fig. 4), e.g. to simulate the effect of a change in income levels. The reason for this 
is that the generic covariates (e.g. income, gender, etc.) and choices in the explanatory choice 
tasks are intrinsically correlated. As such, changing a generic covariate (say income level) 
only partially captures its effect on the VTT as the choices in the explanatory choice tasks do 
not change when changing a generic covariate, while they actually ‘should’.

3. Recovery of the VTT of individual decision makers

The next step is to infer from these simulated probabilities the VTT for each decision 
maker. The core idea in this method is that g approximates fn for all n, and thus can be 
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used to infer the VTT for each individual based on the notion of indifference. To infer 
a VTT of a decision maker we need to find the BVTT that makes the decision maker 
indifferent between the fast and expensive and the slow and cheap alternatives. Figure 5 
illustrates this idea conceptually. The x-axis shows the BVTT in the T + 1th choice task, 
and the y-axis shows the probability that decision-maker n chooses the fast and expen-
sive alternative in this choice task. The true choice probability generating function for 
this decision-maker fn is depicted by the black line. Note that fn does not necessarily 
have the conventional logit S-shape: for illustrational purposes, here it is asymmet-
ric and it does not asymptotically go to P = 1 and P = 0 for very low and high BVTTs, 
respectively. The black star indicates the true indifference point, which hence reveals 
the true VTT for this decision maker. The ANN’s approximation g is depicted in blue. 
The blue star indicates the indifference point according to the ANN, which is conceived 
as a proxy for the VTT. The true and recovered VTT do not complete coincide. The 
(horizontal) difference between the true and the recovered VTT can be understood as 
the estimation error.

Practically, we have several options to determine the BVTT which yields P = 0.5, 
based on the simulated data points. A simple and effective approach to do this is by 
determining the last simulated point above P = 0.5 and the first simulated point below 
P = 0.5, and then make a linear interpolation between those two points and to solve for 
the BVTT which makes the individual indifferent.

4. Repeat steps 2 and 3

We repeat steps 2 and 3 numerous times (e.g. 20 times). In each repetition we shuffle the 
order of the explanatory choice tasks. This step is not strictly obligatory, but it helps to 
improve the stability of the outcomes. In particular, it takes out the effect of the order in 
which the explanatory choice tasks are presented to the network. Hence, for each decision 
maker his/her VTT is computed numerous times. After that, we compute each decision 
maker’s VTT by taking the mean across all repetitions.

Fig. 5  Simulated choice probabilities
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5. Construct the VTT distribution

Having an estimate of the VTT for each decision maker, we can construct an empirical 
distribution of the VTT. Also, from the constructed empirical distribution we can readily 
compute the mean and standard deviation of the VTT.

6. VTT for use in applied appraisal

For appraisal typically not a single mean VTT is needed, but rather one or more tables that 
show the mean VTT for specific trip categories; usually combinations of modes and pur-
poses. We can create such tables from the VTTs derived under step (5). In case the sample 
is representative for the target population, we can suffice with splitting the sample into 
categories and compute the mean VTT for each category. However, in most real life situa-
tions the sample is skewed as compared to the target population. Therefore, the in-sample 
mean VTTs usually cannot immediately be used to produce tables for appraisal. To correct 
for the skew, the analyst needs to reweight the sample and compute weighted mean VTTs 
(for each category). The most straightforward approach to account for an unrepresentative 
sample is by means of computing the VTT for each combination of the covariates, say of 
income and distance, and reweight the contribution of each combination to the overall VTT 
according to its under or overrepresentation (as compared to the ideal population shares). 
This matrix-based approach is taken in several VTT studies (e.g. the UK 2003 VTT study 
and the Norwegian 2009 study) and especially works well with a limited number of covari-
ates. In case of many covariates to account for, this approach can be unwieldy. An alterna-
tive approach which works better in case of many covariates is based on sample enumera-
tion (Batley et al. 2017). This approach applies weights at the level of the respondent in 
the data and is used in e.g. the latest Dutch and UK VTT studies. Both approaches can be 
used in combination with the ANN-based method. However, given that our method directly 
provides VTTs at the individual level, the sample enumeration based approach is the most 
natural choice to account for an unrepresentative sample.

Consistency with random utility maximisation

Examining Random Utility Maximisation (RUM) consistency of the proposed method is 
important considering the use of the VTT derived by this method in utilitarian economic 
appraisal methods, such as the Cost–Benefit Analysis. The RUM modelling paradigm is 
an extremely general approach to modelling behaviour; in the core it postulates that indi-
vidual behaviour at each moment is consistent with utility maximisation. RUM consist-
ency has extensively been studied in the choice modelling literature since the inception 
of RUM models in the 1970s (Daly and Zachery 1978; McFadden 1981; Fosgerau et al. 
2013). Central to RUM consistency tests are the notions of transitivity and regularity (Hess 
et al. 2018). A RUM consistent model satisfies both transitivity and regularity. Transitiv-
ity means that if alternative A is preferred to alternative B and alternative B is preferred to 
alternative C, then alternative A must be preferred to C. Regularity entails that the prob-
ability of choosing any given alternative from a set should not increase if the offered set is 
expanded to include additional alternatives.

The proposed method is not RUM consistent by design, but it can be RUM consistent. 
In Appendix A we show that a necessary condition for our method to be RUM consistent 
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is that the VTT is uniquely determined. That means that the indifference point must be 
crossed once and only once. Given the flexible, data-driven nature of the ANN we cannot 
enforce this to happen in our model (nor would we want that). When the ANN is trained on 
RUM consistent data, the learned behaviour (and thus the model) will turn out to be RUM 
consistent, and vice versa. In light of this, we believe it is good practice when using this 
method to test (for each respondent) whether P = 0.5 is crossed once and only once. Using 
the ANN in this way can shed light on the extent to which people behave consistent with 
RUM. In case unique VTTs are found for all respondents, the learned behaviour is consist-
ent with RUM, and hence the derived VTT can be used in utilitarian economic appraisal 
methods. However, in case for a number of the respondents (or for some input space) the 
VTT is not uniquely determined, it is not entirely clear how to use the derived VTTs. Is 
the ANN as a whole then not consistent with RUM? Or, should only the VTTs derived for 
those respondents be discarded? These questions are beyond the scope of this paper, but 
justify further research.

ANN development

In Sect. 2.3 we presented the ANN without going into much detail on its architecture or on 
underlying design choices. In this subsection we discuss these in more detail. However, it 
should be noted here that in contrast to theory-driven research, in data-driven research meth-
odological design choices are not guided by theory. Rather, in lack of a (behavioural) theory 
providing guidance, design choices in data-driven methods typically involve trial-and-error 
and building forth on previous works that have been tested on standardised data sets.

To develop an ANN capable of learning function fn (for all n) we have tested numer-
ous different architectures, including fully and semi-connected networks, different num-
bers of hidden layers, the presence or absence of bias nodes, and we have tried several dif-
ferent activation functions. The two-hidden layer architecture presented in Fig. 4 with ten 
nodes at each hidden layer is found to work particularly well for our data.6,7 The proposed 
architecture is a so-called Feed-forward Multilayer Perceptron (MLP). This is one of the 
most widely used ANNs architectures and is available in virtually all off-the-shelf machine 
learning software packages. For the transfer functions in the network we find good results 
using a tan-sigmoid function at the nodes of the hidden layers, and a sigmoid at the nodes 
of the output layer. Using a sigmoid function at the output layer ensures that the predicted 
choice probabilities across the two alternatives add up to 1. Hence, one way to look at the 
ANN is to see it as a juiced-up logistic regression model, where the juicing-up comes from 
the flexibility provided by the hidden layers.

The fact that off-the-shelf software can be used is a nice feature of this method, as it 
makes the method accessible for a wide research community. Admittedly, from a meth-
odological perspective our network consumes more weights than is strictly needed, in the 
sense that in the input layer there are T + 1 weights for the bvtt, y and s, while just one set 
of weights to be used across all the T + 1 choice tasks would suffice and hence would yield 
a more parsimonious network. However, while it is possible to create an architecture with 
shared weights across inputs variables, this would substantially hinder other researchers 

6 The network consumes 491 weights in total.
7 Note that while no bias nodes are depicted in Fig. 4, the network contains 2 × 10 bias nodes connected to 
the hidden layers as they are found to improve the classification performance.
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from using this method as most off-the-shelf software does not allow weight sharing, 
meaning that the analyst needs to write customised codes.

Monte Carlo experiments

This section aims to assess how well the developed ANN-based method is able to recover 
the underlying true VTT distributions. To do so, we create a series of synthetic data sets, 
having different DGPs and try to recover the shape of the distribution as well as its mean 
and its standard deviation using the ANN-based method.

Data generating process

For the Monte Carlo experiments we use the experimental design of the empirical data set 
that we aim to analyse in the next section, namely the Norwegian 2009 VTT data set, see 
Ramjerdi et al. (2010) for details on the experimental design. By doing so, we are able to 
assess how well we can retrieve the underlying VTT distribution with the proposed method 
in the context of the VTT trade-off points that are embedded in this data set. After clean-
ing, this data set consists of 5832 valid respondents. For each respondent, 9 binary choices 
are observed. Based on the experience with the Danish VTT, in the Norwegian 2009 VTT 
study special care was taken to avoid a large share of non-traders at the high end side. Fur-
thermore, while the currency in the SC experiment was Norwegian Kronor, for reasons of 
communication we converted all costs into euros (using the exchange rate at the time the 
experiment was conducted).

So, rather than using the actual observed choices, in this section we replace them with 
synthetically generated choices. To create synthetic choices, we assume that decision mak-
ers make their choices using the Random Valuation (RV) model (Cameron and James 
1987) (Eq. 3).8,9 The RV model postulates that decision makers choose the faster but more 
expensive alternative if the decision maker’s VTT is higher than the probed BVTT. If the 
decision maker’s VTT is lower than the BVTT, the cheaper but slower alternative is cho-
sen. Like conventional linear-additive Random Utility Maximisation (RUM) models, the 
RV model consists of an additive error term to accommodate for randomness � . In the RV 
model, μ represents the scale factor, which is estimated jointly with the VTT. Note that RV 
models are consistent with RUM; they can also be casted as a RUM model with a specific 
form of heteroscedasticity in the error term, see e.g. Börjesson and Eliasson (2014).

The synthetic data sets are created such that the VTT varies across decision makers accord-
ing to a specific distribution. Specifically, we have created three data sets in which the VTT 
takes a normal, a lognormal and a bimodal normal distribution. The normal and lognormal 
distributions are chosen for two reasons. Firstly, they are frequently used in VTT and, more 
generally, in choice modelling studies. Secondly, they differ from one another in terms 

(3)
U1n = � ⋅ BVTT + �1n where �in ∼ iid ExtremeValue type I

U2n = � ⋅ VTTn + �2n

8 Note that we also tested data with linear-additive RUM DGPs. These gave similar results.
9 See Ojeda-Cabral and Chorus (2016) and Ojeda-Cabral et  al. (2016) for the theoretical relationship 
between RUM and RV models.



 Transportation

1 3

of skewness. Therefore, analysing these two distributions can shed light on the extent to 
which the ANN-based method can accurately capture skew. The bimodal normal distribu-
tion is specifically chosen because of its challenging shape. This type of distribution would 
be quite difficult to recover using conventional parametric methods. As such, this distribu-
tion may give insights on how capable the ANN-based method is to recover challengingly 
shaped VTT distributions.

In line with empirical findings in many recent VTT studies, we created the data such 
that the VTT of the synthetic decision makers is not a single fixed value, but rather a func-
tion of experimental covariates. Specifically, the VTT of the synthetic decision makers is a 
function of the quadrant in which the choice task is presented (i.e. WTP, EL, EG, or WTA 
domain). Table 1 shows the parametrisations. To compute the VTT for the different quad-
rants, we drew a value for the VTT for the WTP quadrant from the associated distribution, 
and calculated the EL, EG and WTA VTTs by shifting the draw five or ten euros up. By 
incorporating experimental covariates in the synthetic data sets, we are able to investigate 
whether the proposed method is able to capture the effect of such covariates (in casu: sign 
effects) in real data (if present). Furthermore, we use three different scale parameters μ. 
Thereby, we can test whether method responds well to differences in scale.

Training results

The ANN is implemented in MATLAB2017.10 To train the network, we find good results 
using a scaled conjugate gradient algorithm. The training sequence takes about 2  min 
using a desktop PC (using 4 CPUs). For training, the data were split as follows: 70% of 

Table 1  Parametrisation of the DGP in synthetic data sets

Data set no 1 2 3
VTT distr Normal Lognormal Bimodal normal

WTP VoT
WTP

n
∼ N(20, 6) VoT

WTP

n
∼ LN(2.6, 0.5) Mixture of 2 normals

VoT1 ∼ N(12, 3.33)

EL / EG VoT
WTP

n
+ 5 VoT

WTP

n
+ 5 VoT

WTP

n
+ 5

WTA VoT
WTP

n
+ 10 VoT

WTP

n
+ 10 VoT

WTP

n
+ 10

μ − 0.30 − 0.40 − 0.50
ρ2 0.75 0.75 0.84
Hit rate 0.93 0.93 0.95

VoT2 ∼ N(28, 3.33)

Table 2  Training performance on 
validation data

Data set no 1 2 3

VTT distr Normal Lognormal Bimodal normal
Cross-entropy 0.17 0.17 0.13
ρ2 0.76 0.75 0.81
Hit rate 0.93 0.94 0.95

10 Code is available upon request from the first author.
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the data are used for training, 15% for validation and 15% for testing. The observations 
were randomly allocated to these subsets. Furthermore, we use K = 20 randomisations (see 
Sect. 2.3).

Table 2 shows performance indicators for the three data sets. To ease comparison we 
report besides cross-entropy, also the ρ2 and hit rate (all based on the performance on the 
hold-out sample). Table 2 shows that the ANN-based method is able to learn the under-
lying DGP well in all three data sets. Ideally, the obtained ρ2′s should approach, but not 
exceed, those of the true models (Table 1). As can be seen, this is the case. For data set 2 
the ANN marginally exceeds the true ρ2. But, it exceeds it not to the extent that it is worri-
some (e.g. suggests overfitting).

Results

Recovery of VTT distributions

Table 3 shows the results of the Monte Carlo analysis. Specifically, it reports the true and 
the recovered means and standard deviations of the VTT for the WTP and WTA quadrants. 
Note that for the sake of exposition, in this section we focus only on the WTP and WTA 
results. The results for EL and EG are fully in accordance with those of WTP and WTA. 
Table 3 convincingly shows that ANN-based method is able to accurately recover the mean 
VTTs for all distributions. In our view, this is quite an achievement, considering that no 
information on the shape of the VTT distribution has been given to the network. Also the 
standard deviations are rather well recovered, although the results seem to suggest that they 
are somewhat underestimated. One possible explanation for this underestimation of the 
standard deviation is that the ANN has during training only seen few choice patterns of 
VTTs from the tail of the distribution. Therefore, the ANN may not have been able to ade-
quately learn to predict the responses of those extreme VTTs. In essence, this issue relates 
to training on unbalanced data sets. This is a frequently encounter issue in data-driven clas-
sifiers (Chawla et al. 2002; Prieto et al. 2016). What is different in this context however 
is that the extent to which the data are unbalanced is inherently unknown, since the VTT 
is not observed in the data. Therefore, unbalances in the data cannot be accounted for up-
front in a direct way. Further research may explore whether techniques used in machine 
learning to balance data sets improve recovery of the standard deviations.

To see to what extent the ANN-based method is able to recover the shapes of the dis-
tributions, Figs. 6, 7 and 8 show histograms and kernel density plots for respectively, the 

Table 3  Monte Carlo results (based on full data)

Data set no
VTT distr

1 2 3

Normal Lognormal Bimodal normal

Mean SD Mean SD Mean SD

DGP ANN DGP ANN DGP ANN DGP ANN DGP ANN DGP ANN

WTP 19.98 20.32 5.00 4.34 15.28 15.31 8.06 6.57 20.06 21.13 8.66 7.81
WTA 29.98 30.04 5.00 4.28 25.28 24.22 8.06 6.20 30.06 29.35 8.66 8.11
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normal, lognormal and bimodal normal distribution. The histograms show the VTT distri-
butions for WTP (blue) and WTA (orange). The kernel density plots show the densities of 
the empirical as well as of the true VTTs (for both quadrants).

A number of observations can be made. Firstly, the histograms reveal that the shapes 
are well recovered. In line with the true DGPs, Fig. 6 (normal distribution) shows a nice 
symmetric distribution, while Fig.  7 (lognormal distribution) shows a clearly positively 
skewed distribution. This shows that the method is sensitive for differences in skew. In 
fact, Fig. 8 shows that even the challenging shape of the bimodal normal distribution has 
been recovered. Secondly, the sign effect has accurately been picked up in all three distri-
butions. In line with the true DGP, the WTP and WTA distributions are roughly identical, 
with the WTA distribution shifted €10/h to the right. Thirdly, the density plots reveal that 
the shapes of the true VTT distributions and the recovered distributions are close to one 
another. This is especially true for the normal and lognormal distributions. All in all, the 

Fig. 6  Normal distribution: Histograms and kernel plots for DGP and ANN VTT

Fig. 7  Lognormal distribution: Histograms and kernel plots for DGP and ANN VTT
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results convincingly show that the method is able to accurately recover the shape of the 
VTT distributions.

Recovery of  fn

The previous subsection has demonstrated that the shape and moments of a VTT distribution 
can be estimated using the proposed method. This suggests, but does not prove, that the ANN 

Fig. 8  Bi-modal normal distribution: Histograms and kernel plots for DGP and ANN VTT

Fig. 9  Approximations of fn (for four respondents)
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has indeed been able to approximate individual level choice models fn. To assess this, we plot 
the true individual choice probabilties fn and the choice probabilities learned by the ANN in 
one plot for several individuals and see their similarities and differences. To do so, instead of 
randomly picking individuals, we select four individuals with true VTT of 5, 10, 15 and 20 
euro per hour. Figure 9 shows the four choice probability plots (taken from data set no. 2). We 
see that although fn and g do not coincide, the ANN does seem to approximate the individual 
choice models. Although these are just four snapshots, they support the notion that the BVTT 
at the indifference point can be used to obtain individual level estimates of the VTT.

Fig. 10  Normal distribution: true vs recovered VTTs

Fig. 11  Lognormal distribution: true vs recovered VTTs
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Recovery of individual level VTTs

To assess the accurateness at which individual level VTTs are recoverd, we scatter the true 
and recovered VTTs. While prediction accuracy at the individual level is not a common 
yardstick for a method developed to determine VTTs, it is still interesting to investigate 
this, at least from a methodological perspective. In addition, in other domains of applica-
tion to which this method may spread prediction accuracy at the individual level may be 
highly relevant (e.g. in the context of online marketing or personalised travel advice). Fig-
ures 10, 11 and 12 show scatter plots of the true VTT (x-axis) versus the recovered VTT 
(y-axis) for the normal, lognormal and bimodal normal distributions (both for WTP and 
WTA quadrants). In case the VTTs would be perfectly recovered all points would lie on 
the y = x line (depicted in the plots by the dashed black line). Hence, the spread around the 
y = x line provides insights on the prediction accuracy at the individual level.

The scatter plots for all three distributions provide a consistent view. Firstly, they show 
that the true VTT and the recovered VTT are strongly positively correlated. Secondly, they 
show that individual level VTT predictions are subject to some variance, but that variance 
is rather homogeously spread around the y = x axis. The observation that VTT predic-
tions is subject to some variance is fully in line with expectations. After all, the generated 
choices in the data are subject to random noise (see Eq. 3). Therefore, it is entirely pos-
sible that a decision maker with a low (high) VTT chooses the fast and expensive (slow 
and cheap) alternative a few times—with the intuitive result that the ANN overestimates 
(underestimates) that decision maker’s VTT. The more important observation here is that 
the variance is homogeneously spread around the y = x axis. This suggests the method does 
not systematically over- or underestimates VTTs at the individual level.

Fig. 12  Bimodal normal distribution: true vs recovered VTTs
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Application to real VTT data

Data and training

As mentioned before, in this study we use the Norwegian 2009 VTT data set (Ramjerdi 
et al. 2010).11 The choice experiments are carried out by a self-administered internet-based 
questionnaire. Respondents of 18 years or older were recruited from an internet panel. In 
total, 47,000 persons were contacted, of which 9,280 completed the survey. The data were 
collected between June 11th and July 2nd 2009. In this study we used the data collected 
concerning non-business trips using car and public transport modes.

To train the network on these empirical data, we took the same approach as with the 
synthetic data: 70% of the data were used for training, 15% for validation and 15% for test-
ing. The observations were randomly allocated to these subsets. We use K = 20 randomisa-
tions (see Sect. 2.3). The trained ANN acquires a cross-entropy of 0.36 (which boils down 
to a ρ2 of 0.49 based on hold-out data). Table 4 shows the confusion plot. The cells on the 

Table 4  Confusion plot (based on validation and test data)

Target 1  
(fast and expensive)

Target 2  
(slow and cheap)

Σ

Output class 1  
(fast and expensive)

26.7% 6.9% 79.4%  
(positive predictive value)

Output class 2  
(slow and cheap)

8.3% 58.1% 87.5%  
(negative predictive value)

Σ 76.3%  
(sensitivity)

89.4%  
(specificity)

84.8%  
(overall accuracy)

Fig. 13  WTP and WTA VTT distribution (left), reference free VTT distribution (right)

11 We choose to analyse this data set for a number of reasons: it contains a relatively large number of 
respondents, it has nine choice tasks per respondents, and the BVTTs are spread across a large range.
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diagonal show the percentage of the choices that are correctly predicted. The off-diagonal 
cells show the percentage of choices that are mispredicted. The confusion plot shows that 
overall about 85% of the choices are correctly predicted (based on highest probability).

Results

To obtain the VTT distribution, we use the network to simulate choice probabilities and 
search for the BVTTs that yield P = 0.5. We do this 20 times12 for each respondent (i.e., 
steps 2 to 4, see Sect. 2.3). Figure 13 shows the resulting distribution of the VTT for WTP 
and WTA (left) as well as a reference free VTT (right). Inspired by the work of De Borger 
and Fosgerau (2008), the reference free VTT is computed by taking the geometric aver-
ages across the WTP and WTA VTT at the level of the individual VTTs.13 The mean and 
the standard deviations of these distributions can be found in Table 5. Note that for eight 
respondents, it has not been possible to obtain a VTT estimate. For these respondents, the 
ANN predicts choice probabilities below 0.5, even for BVTTs close to zero, suggesting a 
zero or even a negative VTT. In the remainder of our analyses these eight respondents are 
given a VTT of zero. For another 14 respondents, the simulated choice probability crossed 
the P = 0.5 point more than once. For these respondents (predominantly non-traders), we 
rather pragmatically used the first instance at which the P = 0.5 point is crossed to compute 
the VTT. However, further research is needed to explore how to deal with these respond-
ents when output of the method is used in utilitarian appraisal methods.

Based on Fig. 13 and Table 5 we can make a number of important observations. Firstly, 
Fig.  13 shows that the shape of the VTT distribution is positively skewed. The lognor-
mal-like shape is behaviourally intuitive and has occasionally been found in previous VTT 
studies. However, when fitting the lognormal distribution onto these data, we find that it 
does not fit the data well: in particular, it cannot accommodate for the spike at around 
VTT = €2/h and the drop at VTT = €16/h. Close inspection of the bins around VTT = €2/h 
reveal that they are predominantly populated with those respondents that always choose the 
slow and cheap alternative (for clarity, non-traders are depicted in red in the right-hand side 
plot). The bimodal shape of this distribution essentially emphasises the need for flexible 
methods to uncover the distribution of the VTT. Secondly, in line with behavioural intui-
tion and the findings of previous VTT studies we see that the mean WTA VTT is higher 

Table 5  Mean and standard 
deviation of VTT

WTP WTA Ref. free

Mean VTT [€/h] 10.12 13.71 11.75
Std deviation VTT 12.47 15.26 13.68
Max VTT [€/h] 140.1 118.8 123.3

12 We find that after 20 times the results are stable.
13 Note that De Borger and Fosgerau (2008) derive that the geometric average yields a reference free VTT 
in the context of their behavioural framework. Our data-driven method lacks such a behavioural framework. 
Therefore, it is not fully clear what is the best way to obtain a reference free VTT. Nonetheless, for the pur-
pose of this paper using the geometric average as an approximation of the reference free VTT is sufficient. 
In any case, the main results of this study will not change by using a different approach to obtain a reference 
free VTT (e.g. taking the arithmetic mean across the WTP and WTA VTT).
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than the mean WTP VTT. The difference between the two domains is, on average, €3.6/h. 
Thirdly, it can be seen that the tail of the WTA VTT is fatter than the tail of the WTP dis-
tribution. This is also reflected by the larger standard deviations for the WTA VTT.

Fourthly, the right-hand side tail is fully recovered, in the sense that for all respond-
ents, including non-traders, a VTT has been recovered. To understand how the tail of the 
distribution is recovered by the ANN one has to keep in mind that the ANN merely learns 
associations between variables, just like a regression model. Thus, there is no behavioural 
model underlying the ANN that postulates strict relations between the explanatory vari-
ables and the dependent variable. Rather, it uses the information of all other respondents to 
make VTT estimates for the non-traders as well. However, it goes without saying that the 
tail of the distribution can only be recovered if the data allow for it. This is a prerequisite 
that goes for all methods. But, for this method it is particularly important since, due to the 
black box nature of ANNs, the analyst cannot easily judge whether the tail has been identi-
fied, or not, by e.g. looking at the ANN’s weights. When using this method, the analyst 
needs to bear in mind that ANNs generally perform poor in extrapolation, i.e. making pre-
dictions outside the domain where they have been trained.

VTT for appraisal

Given the methodological scope of this paper, we have no intention to derive new VTT 
values to be used for appraisal. However, to see the method works out when used in the 
context of appraisal, this subsection derives mean VTTs and compares them to mean VTTs 
that are obtained by replicating the approach taken in the official Norwegian VTT study. A 
direct comparison with the official VTTs is not possible as this would require a full-fledged 
analysis, involving reweighting the sample to correct for skew in income, age and distance 
and accounting for size effects (which we have not considered in this study). As this goes 
beyond the scope of this paper, here we compare the unweighted VTTs instead. Note that 
reweighting or accounting for size effects is unlikely to substantially affect the main differ-
ences that we find in this comparison.

To obtain mean VTTs for the ANN-based method for specific categories (e.g. mode-
distance combinations), we split the sample into the categories and immediately compute 
the mean VTT for each category. To obtain mean VTTs from replicating the Norwegian 
approach we have re-estimated the model using the exact same sample and explanatory 

Table 6  Comparison of unweighted VTT estimates

a Standard errors in brackets below

ANN-based method a Norwegian VTT approach

Short distance Long distance Short distance Long distance

Car 9.01
(0.22)

19.36
(0.50)

8.36
(0.06)

22.64
(0.28)

Public transport 6.61
(0.29)

N/A 4.80
(0.08)

N/A

Bus N/A 12.19
(0.42)

N/A 13.72
(0.33)

Train N/A 15.04
(0.56)

N/A 16.88
(0.33)
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variables that we have used for the ANN-based method and using the exact same RV speci-
fication. Furthermore, rather than estimating separate choice models on segments of the 
data belonging (to each category), as was done in the official Norwegian VTT study, for a 
meaningful comparison with the ANN method we have estimated a single model in which 
the modes and distance categories enter the model as covariates. Finally, the Norwegian 
VTT study tested lognormal and semi-nonparametric distributions (as proposed in Fos-
gerau and Bierlaire 2007), depending on the mode and purpose. We also tested both sorts 
of distributions and found that on the full data set the semi-nonparametric method hardly 
added explanatory power over the lognormal distribution (which is much simpler in use). 
This result is in line with results reported by Börjesson et  al. (2012), whom also tested 
both sorts of distributions. Therefore, henceforth we only discuss the results from the RV 
model with the lognormal distribution. Estimation results for this model can be found in 
Table 8 (column “RV model 3”). After estimation, we have computed mean VTT estimates 
by simulating the distributions for each respondent in the data—like is done in the Norwe-
gian VTT study (Ramjerdi et al. 2010).

Table  6 presents the results. Two important inferences can be made. First, the VTTs 
obtained using the ANN-based method are consistent with the VTTs obtained from repli-
cation of the approach taken in the Norwegian VTT study. That is, the lowest VTT is con-
sistently found to be for public transport trips, and the highest VTT is consistently found 
to be for long-distance car trips. Second, Table 6 shows that the ANN-based method sys-
tematically predicts higher VTTs for short distance trips and lower VTTs for long-distance 
trips, as compared to the Norwegian VTT approach. These differences are in theory large 
enough to shift outcomes in CBA policy practice.

Cross‑validation

This section aims to cross-validate the ANN-based method in terms of four aspects: the 
shape and mean of the recovered VTT distribution (Sect.  5.1), the impact of covariates 
on the VTT (Sect.  5.2), the individual level VTTs (Sect.  5.3) and the goodness-of-fit 
(Sect. 5.4). In this section it should be kept in mind that there is no ground truth. Rather, all 
methods should be seen in light of their own pros and cons.

Shape and mean of the VTT distribution

To cross-validate the shape and mean of the recovered VTT distribution by the ANN-based 
method, we compare with state-of-the-art (parametric) choice models as well as with three 
(semi) nonparametric methods that have been used in recent VTT studies. The parametric 
models that we use in this cross-validation study are RV models, with two types of distri-
butions, namely the lognormal and the log-uniform distributions. The lognormal distribu-
tion has been used in the most recent Swedish VTT study; the log-uniform has been used 
in the most recent UK VTT study. The estimation results of these models can be found in 
Table 8. Note that we also have estimated conventional RUM models, but the RV mod-
els are found to outperform their random utility counterparts. Therefore, we report only 
on the RV models. Regarding the nonparametric methods, the first nonparametric method 
that we consider is called local-logit. This method is developed by Fan et al. (1995), pio-
neered in the VTT research literature by Fosgerau (2007) and further extended by (Koster 
and Koster 2015). The local-logit method essentially involves estimation of logit models 
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at ‘each’ value of the BVTT using a kernel with some shape and bandwidth. In our appli-
cation we use a triangular shaped kernel with a bandwidth of 10 euro. The second non-
parametric method is developed by Rouwendal et al. (2010). Henceforth, we refer this this 
method as ‘The Rouwendal method’. This method assumes that everybody has a unique 
VTT and makes consistent choices accordingly. But, at each choice there is a fixed prob-
ability that the decision maker makes a mistake and hence chooses the alternative that is 
inconsistent with his/her VTT. More details on this method are given in Appendix B. The 
third nonparametric method is put forward by Fosgerau and Bierlaire (2007). This is actu-
ally a semi-nonparametric method which approximates the VTT distribution using series 
approximations. We apply the method—which we henceforth refer to as ‘SNP’—to the 
RV model that we also used in the parametric case. Estimation results of this model can be 
found in Table 8.

The left-hand side plot in Fig.  14 shows the Cumulative Density Function (CDF) of 
the VTT recovered using the ANN-based method (blue) and the parametric RV models. 
The right-hand side plot in Fig. 14 shows, besides the CDF of the ANN VTT (blue), the 
CDFs created using the local-logit (orange), the Rouwendal method (green) and the SNP 
method (turquoise). A number of findings emerge from Fig. 14. A first general observa-
tion is that all methods roughly recover the same shape of the VTT distribution, except 
for the local-logit. But, there are non-trivial differences between the shapes too. Looking 
at the parametric methods, we see that between VTT = €3/h and VTT = €10/h, the VTT 

Fig. 14  Cross-validation of shape

Table 7  Mean, median and standard deviations of recovered VTT distributions

a Censored at VTT = €200/h
b Unreliable due to a large unrecovered tail of the distribution

ANN RV lognormal RV
log-uniform

Rouwendal 
method

Local-logit SNPa

Mean 11.75 12.13 9.34 12.51 12.16b 12.34
Median 8.09 6.30 5.01 7.44 7.33 7.40
Std deviation 13.68 17.57 11.41 15.22 15.24b 15.64
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distribution recovered by the ANN is shifted by about 2 euros to the left. Furthermore, we 
see that in the tail the CDFs of the ANN and of the lognormal neatly coincide (but they do 
not before). The tail of the log-uniform seems to be substantially underestimated, at least 
as compared to the CDFs recovered using the other methods. Looking at the nonparametric 
methods, we see that the CDF of the Rouwendal method coincides with that of the ANN 
well, except between €2/h and €8/h. The CDF of the SNP method coincides well with that 
of the ANN for VTTs of 85/h and higher. The local-logit CDF deviates most from the other 
CDFs, in particular below VTT = €30/h. Possibly, this is caused by its inability to account 
for the panel nature of the data and its inability to disentangle unobserved heterogeneity 
from irreducible noise in the data. After all, the local-logit method only considers choices 
from several respondents around the same BVTT, without considering the other choices 
made by these (or other) respondents.

Table 7 summarises key statistics of the recovered VTT distributions for the methods 
that we have used. The overview shows that the mean recovered by the ANN-based method 
is within a €1 distance from those of all other methods, except the RV log-uniform. From 
the viewpoint of cost–benefit analysis,—with the exception of the VTT derived using the 
log-uniform distribution—for this data set it seems unlikely these relatively small differ-
ences in the recovered means would critically affect assessment results. The median VTT 
recovered by the ANN is higher than those of the parametric methods. This is presumably 
due to the limited flexibility of the latter methods to account for the substantial number 
of respondents having a very low VTT (13% of the respondents always choose the slow 
and cheap alternative), while still covering the VTT distribution over a large range. Alto-
gether, it can be concluded that the shape, mean and median recovered by the ANN seem 
plausible.

The impact of covariates on the VTT

Next, we cross-validate the ANN-based method by looking at the predicted impacts 
of covariates on the VTT. Doing so could shed light on the relationships the ANN has 
learned. To do this, similar to Koster and Koster (2015), we regress socio-demographic 
variables and travel characteristics on the individual level VTTs recovered by the ANN-
based method (dependent variable). Table 8 shows the regression results alongside with 
the estimation results of five RV models with the same covariates. RV model 1 does not 
accommodate for unobserved heterogeneity of the VTT (i.e. no distribution of the VTT), 
while RV models 2–4 assume the VTT is respectively normal, lognormal, and log-uniform 
distributed. RV models 5 is an RV model with a semi nonparametric distribution as pro-
posed by Fosgerau and Bierlaire (2007). The parameters of RV models 1 and 2 allow for 
direct comparison with those of the ANN regression since they have a one-to-one relation 
with the location of the (mean) VTT. In contrast, the parameters of RV models 3 to 5 can 
not immediately be compared with those of the ANN regression, as the effect on the mean 
of these parameters is both a function of the location and the scale for the distribution. 
However, we can use the estimated parameters of these models to compute the (expected) 
VTTs for each individual, conditional on the covariates in the data, which in turn can be 
scattered against the regressed ANN VTTs. This is done in Fig. 15 for RV models 2 to 
4. Importantly, the regressed ANN-based VTTs are used in these plots; not the VTTs as 
directly obtained from the ANN-based method.

First, we look at Table 8. A number of observations can be made. Firstly, looking at 
the ANN regression results, we see that all parameters have the expected signs and that 
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most parameters are significant. For instance, male, long-distance trips and high levels of 
income all correlate positively with the VTT. Secondly, comparing the regression results 
with those of the RV models 1 and 2, we see that all signs are consistent across mod-
els. Thirdly, one-to-one comparison of the ANN regression parameters and RV parameters 
of models 1 and 2 reveals that also the relative strength of the effects are largely consist-
ent across these models. Fourth, the RV models show that, all else being equal, the gap 
between the WTP and the WTA is about €3.95 per hour. This gap is close to what is found 
in the ANN regression and also close to what we found in Sect. 4.2. This also implies that 
the relatively small WTP-WTA gap compared to other studies, is intrinsic to this data set 
and not artefact of the ANN method.

Aside from comparing the covariates across models, it is also intersting to briefly dis-
cuss the model fits of the RV models. The BIC value shows that RV model 2 achieves 
the best statistical performance, taking the number of parameters into account. However, 
this model predicts negative VTTs for a substantial share of travellers—which seems 
behaviourally unrealistic. When we discard RV model 2, RV model 5 performs best in the 

Fig. 15  Scatter plot of regressed VTTs: RV normal vs. ANN
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statistcal sense. But, looking at the rho squares across the RV models, we can also con-
clude that the imposed shape does not have a major impact on the model fit.

Now we turn to the scatter plots in Fig.  15. All scatter plots show a strong positive 
correlation between the VTTs as computed by applying the RV models (x-axis) and the 
regressed VTT of the ANN-based method (y-axis). The fact that many points scatter 
around y = x, indicates that the strength of the effects of the covariates is roughly captured 
equally strong in the ANN as in the RV models. All-in all, it can be concluded that the 
ANN-based method is able to capture the effects of covariates.

Individual level VTTs

Also within the discrete choice modelling literature methods have been devised to obtain 
individual level parameters (Allenby and Rossi 1998; Revelt and Train 1999; Train 2003). 
These methods allow estimation of individual VTTs—just like the ANN-based method 
does. Therefore, as a third cross-validation of the ANN-based method we apply one such a 
method. Specifically, we apply a method called Conditioning Of Individual Tastes [COIT] 
(Revelt and Train 1999). There are a number of implementations of this method, which dif-
fer from one another in subtle ways. In this study, we take the most simple approach, which 
considers the distribution of the population when determining the individual-level param-
eters as a given, and computes the expected locations of the VTT for each decision maker 
given this population distribution. The COIT method cannot only be applied to discrete 
choice models, but also to the Rouwendal method. While applying COIT to the Rouwendal 
method has—to the best of the authors’ knowledge—never been done before, doing so pro-
vides yet another cross-validation for the individual level VTTs.

Figure  16 shows two scatter plots. The left-hand side plot shows the VTT recovered 
using COIT (x-axis) for RV model 3 versus the VTT recovered using the ANN-based 
method (y-axis); the right-hand side plot shows the VTT recovered using Rouwendal 
(x-axis) versus the VTT recovered using the ANN-based method (y-axis). The two plots 
show that the VTT points nicely scatter around the y = x line. This visual observation is 
supported by pearson-correlation coefficients that are close to one (respectively 0.88 and 

Fig. 16  Scatter plot of individual VTT: COIT vs ANN
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0.93). This result confirms that the ANN has been able to accurately recover the individual 
level VTTs.

Goodness‑of‑fit

Finally, we compare the goodness-of-fit. Direct comparison of the goodness-of-fit across 
the ANN-based method and discrete choice models (Table 8) is not possible. The reason 
is that the ANN-based method predicts the choice probability in the hold-out choice task, 
conditional on T observed choices. In contrast, a typical choice model predicts uncondi-
tional choice probabilities. That is, the predicted choice probabilities are independent of 
other choices made by a decision maker. Therefore, statistical tests for goodness-of-fit do 
not immediately apply in a meaningful way.

However, we can compare the model fit of the ANN-based method with those of the 
COIT method. To do so, we computed the conditional VTTs based on 8 choice tasks and 
predict the 9th hold-out choice. This is done nine times, such that each of the nine choice 
tasks is predicted once, based on the other eight choices. This approach is taken for both 
the ANN-based method and the COIT method, except that we use four hold-out folds for 
the ANN based method. That is, we train the ANN based on three-fourth of the data (i.e. 
three folds), and predict for each decision maker in the hold out fold, the hold-out choice 
based on the remaining eight choices (nine times such that each of the nine choice tasks is 
predicted once, based on the other eight choices). By using hold-out folds for this analysis, 
we ensure that the results we present are not inflated due to potential overfitting of the 
ANN.

Table 9 shows goodness-of-fit statistics. It shows that the ANN-based method outper-
forms the other methods by a considerable margin in terms of log-likelihood. This result 
tells us that the ANN-based method has learned the underlying DGP better than the other 
two methods. In terms of hit rate, the ANN-based method performs on par with the RV 
model. The Rouwendal method achieves the best hit rate.

Conclusions and discussion

This study proposes a novel ANN-based method to study the VTT distribution. This 
method brings together and blends theory-driven and data-driven modelling paradigms. 
Specifically, in this method an ANN is used to approximate disaggregate choice behav-
iour. By doing so, the predictions of the ANN can be interpreted in light of a theory-based 
behavioural framework. Key advantages of this method are: (1) that it is highly flexible, 

Table 9  Goodness-of-fit

ANN COIT RV Lognormal COIT Rouwendal

Observations 4 × 1458 × 9 = 52, 488 5832 × 9 = 52, 488 5832 × 9 = 52, 488

Null-LL − 36,382 − 36,382 − 36,382
Final LL − 19,108.6 − 21,690.2 − 20,338.4
ρ2 0.48 0.40 0.44
Hit rate 0.84 0.84 0.92
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in the sense that it does not impose strong assumptions regarding the specification of the 
utility function, the VTT distribution, or the structure of the error terms, (2) that it can 
incorporate covariates, (3) that it makes use of the panel structure of the data, and (4) that 
it does yield a distribution right of the maximum probed BVTT. By doing so, it overcomes 
limitations associated with nonparametric methods that are put forward in the VTT litera-
ture (Börjesson and Eliasson 2014). Furthermore, in relation to other studies using ANNs 
to mode choice behaviour (c.f. Golshani et al. 2018; Sifringer et al. 2020), our approach 
is new in that it explicitly accounts for the panel structure often encountered in SC data. 
In this study we have extensively tested and cross-validated the proposed method. Based 
on the encouraging results of this study, we believe that there is a place for ANN-based 
methods in future VTT studies. In particular, we believe our method could complement 
theory-driven approaches for VTT inference, in particular by shedding light on the shape 
of the VTT distribution. Aside from our findings regarding the ANN-based method, our 
extensive cross-validation demonstrates the added value of using a range of parametric and 
nonparametric methods to investigate the VTT distribution. It helps drawing more robust 
conclusions, e.g. regarding the shape of the distribution.

The proposed method also has a number of drawbacks. Firstly, despite that the pro-
posed method blends a data-driven method with theory-driven behavioural notions, it does 
not have an as strong theoretical base as a fully theory-driven method has. More specifi-
cally, in this study we have shown that the method can be RUM consistent, and thus has 
the potential to be used in economic appraisal methods grounded in utility theory, such 
as the CBA. A necessary condition for RUM consistency in our method is that the VTT 
has been uniquely determined. However, in our empirical analysis on data from the Nor-
wegian VTT study this condition was not met for 14 respondents (out of 5832)—mostly 
non-traders. The practical consequences of this for recovering distribution of the VTT are 
perhaps minor. But, it raises deeper theoretical questions relating to its use in economic 
appraisal methods. For instance, does finding a handful of violations of RUM consistency 
in an empirical application theoretically invalidate the method as a whole for use in eco-
nomic appraisal? And, what are sufficient conditions for RUM consistency for data-driven 
methods in general? Can we develop ex-post tests for establishing those? In absence of 
answers to these questions, at the very minimum this method can be used as a complemen-
tary method to learn about the shape of the distribution of the VTT, after which parametric 
RUM consistent discrete choice models are estimated to derive VTTs for RUM consistent 
appraisal. Relatedly, the issue brought to light by the non-traders in our empirical analysis 
also revives the longstanding question in choice behaviour modelling on how to deal with 
non-traders (Lancsar and Louviere 2006; Hess et  al. 2010). Dealing with non-traders is 
especially relevant in light of the growing use of highly flexible methods in the choice 
modelling field. Whereas in traditional discrete choice models (e.g. a standard mixed logit 
model) non-traders are ‘brushed away’ as they are forced to fit a predefined mixing distri-
bution, in more flexible models, like the one proposed in this paper, non-traders surface. 
This means that analysts will increasingly be confronted with issues caused by non-trading 
behaviour in their models, and will increasingly have to make decisions on how to treat 
them. Secondly, ANNs are black boxes; e.g. they cannot be diagnosed by looking at their 
weights. Therefore, it is difficult to understand how the ANN makes its predictions. One 
promising approach to gain a deeper understanding on the ANN in this method—which is 
explored by Van Cranenburgh and Kouwenhoven (2019a)—is by replacing the ANN with 
a conventional logistic regression model. Such a logistic regression model can be seen as 
a simplified, but more tractable proxy of the ANN. Therefore, this approach could provide 
a deeper understanding on how the ANN works in this context and shed light on how the 
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VTT distribution is recovered. Thirdly, as ANNs are not uniquely identifiable (Ran and 
Hu 2017) there is some instability of the results. Every time the network is trained (from a 
set of random starting weights) it will find a ‘different’ solution. Although in our case the 
predictions of the network turn out to be quite stable, it inherently leads to some instability 
of the outcomes. A possible way to deal with this is by training the network multiple times, 
and averaging out the variances.

The method proposed in this study provides ample scope for further research. A first 
direction for further research involves acquiring a better understanding regarding the data 
requirements for this method to work well. For instance, how many respondents are at least 
needed for this method? A commonly used rule-of-thumb in the machine learning field 
is that the number of observations needs to be at least ten times more than the number 
of estimable weights. However, a recent study on this topic in the context of choice data 
suggests a more conservative factor of 50 times more observations than weights (Alwo-
sheel et al. 2018). Likewise, what is the ‘minimum’ number of choice tasks per respondent 
that is needed? In our study we found good results with nine choice tasks per respond-
ents. But, will the method also work with just five choice tasks per respondent, or will it 
work even better with fifteen choice tasks? A second, related, direction for further research 
concerns the experimental design of the SC experiment. Current SC experiments are opti-
mised for estimation of discrete choice models (Rose and Bliemer 2009). However, data 
from these experiments may actually be suboptimal for this ANN-based method. A ques-
tion that remains to be answered therefore is how to design experiments optimised for this 
method? A third direction for further research concerns the generalisation of the method 
to work with choice tasks having three or more attributes. While it is clear that it becomes 
more difficult to recover a VTT from a choice task consisting of three or more alternatives 
using this method, there are—as far as we can see tell—no fundamental reasons why the 
method would be confined to data from two-attribute experiments only. A fourth interest-
ing direction is investigating whether it is possible to also capture and incorporate learning 
and ordering effects. Some empirical studies suggest that respondents are subject to learn-
ing effects and ordering anomalies (Day and Pinto Prades 2010). A fifth research direc-
tion concerns non-traders. As for many VTT methods, non-trading behaviour could be a 
concern to this method. While in the data that we analysed only very few respondents (2%) 
always chose the fast and expensive alternative, it seems plausible that when non-traders 
are abundant this could jeopardise the method to work well. Further research may delve 
into best ways to deal with non-traders in the context of this method. A sixth direction for 
further research is application of this method to other VTT data sets, as well as applying 
the method to other areas of application, such as inference of the distribution of the value 
of reliability.
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Appendix A: RUM consistency

Central to RUM consistency tests are the notions of transitivity and regularity (Hess et al. 
2018). A RUM consistent model satisfies both. Below we show that the method is not 
RUM consistent by design, but can be RUM consistent. And, we show that a necessary 
condition in for our method to be RUM consistent is that the VTT is uniquely determined.

Transitivity

Transitivity means that if alternative A is (weakly) preferred to alternative B and alterna-
tive B is (weakly) preferred to alternative C, then alternative A must be (weakly) preferred 
to C. In the context of our method, where we work with binary choice tasks and BVTTs, 
testing for transitivity works out as follows:

Suppose there are three alternatives {A, B, C} consisting of Travel Time (TT) and 
Travel Cost (TC). For simplicity of communication, we order the alternatives {A, B, C} 
such that  TTA > TTB > TTC, (and hence  TCA < TCB < TCC). Transitivity pertains that if A 
≫ B ∧ B ≫ C, then A ≫ C should hold.14

A ≫ B ∧ B ≫ C implies that  BVTTAB > VTT and  BVTTBC > VTT. Or, in words: in the 
choice set {A,B} alternative A is chosen (i.e. the slow and cheap alternative). Therefore, 
 BVTTAB must have been larger than the individual’s VTT. Likewise, in the choice set 
{B,C} alternative B is chosen. Therefore, the  BVTTBC must have been larger than the indi-
vidual’s VTT.

A >  > C holds true if and only if  BVTTAC > VTT. Therefore, we thus must proof 
 BVTTAC > VTT. To do so, let’s express  BVTTAC in terms of differences between in TC and 
TT between A and B and B and C:

This can be rewritten as:

(A.1)

TTB = TTA + ΔTTAB , TCB = TCA + ΔTCAB

TTC = TTB + ΔTTBC , TCC = TCB + ΔTCBC

BVTTAC = −

(
TCC − TCA

)
(
TTC − TTA

) = −

(
ΔTCAB + ΔTCBC

)
(
ΔTTAB + ΔTTBC

)

14 A ≫ B is short for alternative A is (weakly) preferred to alternative B.

http://creativecommons.org/licenses/by/4.0/
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Since BVTTAB > VTT and BVTTAC > VTT  we have

and hence, BVTTAC > VTT .
For our method to unambiguously satisfy this final statement, the VTT has to be 

uniquely defined. Otherwise, we cannot execute the substitution to obtain equation  A.3. 
This means that a necessary condition is that the indifference point P = 0.5 is crossed 
once and only once for each individual. This is however not something that is (or, can be) 
imposed by the method. Therefore, we conclude that the method is not RUM consistent by 
design, but it can be RUM consistent.

Regularity

This notion entails that the probability of choosing any given alternative from a set should 
not increase if the offered set is expanded to include additional alternatives (Marschak, 
1960). The regularity condition is, for instance, violated by models capturing context 
dependencies, such as Random Regret Minimisation models. Regularity as a test for RUM 
consistency is however not applicable for our method. Our method only operates in a 
binary setting. In particular, the BVTT does not exist in choice tasks with more than two 
alternatives.

Appendix B: Rouwendal method for binary choice data

Rouwendal et al. (2010) develop a nonparametric method to estimate the VTT and the Val-
ues-of-Statistical-Life (VOSL) from stated choice data consisting of three attributes: cost, 
time and safety. This method relies on two assumptions regarding choice behaviour. First, 
the VTT and VOSL are—for each decision maker—constant across all his or her choices. 
Second, for every choice there is some fixed probability the choice is consistent with the 
decision maker’s underlying VTT. Note that this fixed probability approach deviates from 
standard RUM models, in the sense that the probability of making an inconsistent choice 
is independent from the differences in utility across the available alternatives. In contrast, 
in RUM models, larger (smaller) differences in utility translate into larger (smaller) differ-
ences in choice probabilities across alternatives.

For this study we adapt the Rouwendal method. Specifically, we made a minor modifica-
tion such that it works with two-attribute VTT data. Furthermore, note that in this study we 
aim to recover the most probable distribution of the VTT, while Rouwendal et al. (2010) 
focus on computing the lower and upper bound of the cumulative distributions.

(A.2)

BVTTAC = −

ΔTTAB
ΔTCAB

ΔTTAB
+ ΔTTBC

ΔTCBC

ΔTTBC

ΔTTAB + ΔTTBC

=
ΔTTAB ⋅ BVTTAB + ΔTTBC ⋅ BVTTBC

ΔTTAB + ΔTTBC

(A.3)BVTTAC >
ΔTTABVTT + ΔTTBCVTT

ΔTTAB + ΔTTBC
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Method

Suppose we have data from a classic binary VTT SC experiment, which consists of K 
choice observations per decision maker. In this format there is always a fast and expensive 
alternative and a slow and cheap alternative, and in each choice task there is an implicit 
price of time, referred to as the Boundary VTT (BVTT).

In case a decision maker n makes choices that are fully consistent with his own under-
lying VTT, then we can immediately derive a lower and upper bound for his VTT. His 
VTT will be higher than the highest BVTT for which the fast and expensive alternative 
is chosen and will be lower than the lowest BVTT for which the slow and cheap alter-
native is chosen.15,16 However, real life decisions are subject to noise. Therefore, it is 
assumed that a decision maker has a probability q that he makes choices that are consist-
ent with his VTT (and hence, a probability 1-q that he makes choices that are inconsistent 
with his VTT). The probability of observing a series of K choices for decision maker n 
Yn =

{
yn
1
, yn

2
,… , yn

K

}
 conditional on his VTT being v is:

where �n is the number of choices that are consistent given v. The unconditional probability 
for decision maker n to make choice series Yn can be computed by summing (or integrat-
ing) over all possible values of v:

where f(v) is the probability density function of the VTT. This function can be recovered, 
jointly with q, by maximising the likelihood of the observed series of choices of all deci-
sion makers. In our study, we divided the range of possible values of v (from €0 to €111.11) 
into 220 bins: 100 bins with a width of €0.22 (i.e. 2 NOK), 80 bins of €0.56 (5 NOK) and 
40 bins of €1,11 (10 NOK).
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