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A B S T R A C T

As Public Transport (PT) becomes more dynamic and demand-responsive, it increasingly depends on predictions
of transport demand. But how accurate need such predictions be for effective PT operation? We address this
question through an experimental case study of PT trips in Metropolitan Copenhagen, Denmark, which we
conduct independently of any specific prediction models. First, we simulate errors in demand prediction through
unbiased noise distributions that vary considerably in shape. Using the noisy predictions, we then simulate and
optimize demand-responsive PT fleets via a linear programming formulation and measure their performance. Our
results suggest that the optimized performance is mainly affected by the skew of the noise distribution and the
presence of infrequently large prediction errors. In particular, the optimized performance can improve under non-
Gaussian vs. Gaussian noise. We also find that dynamic routing could reduce trip time by at least 23% vs. static
routing. This reduction is estimated at 809,000 €/year in terms of Value of Travel Time Savings for the case study.
1. Introduction

Public Transport (PT) has traditionally used static itineraries that
remain unchanged for months (Ceder, 2016). However, as autonomous
mobility advances and the vision of Smart Cities takes shape, the day
approaches when PT becomes dynamic, so that some itineraries are
adapted to real-time transport demand (i.e., are demand-responsive)
(B€osch et al., 2018; Hora�z�dovský et al., 2018). Meanwhile also, predic-
tive models of transport demand are increasingly used for both long-term
and short-term traffic management (Hashemi and Abdelghany, 2015).
Future Public Transport should thus naturally employ predictive models
for timely adaptation of service per expected transport demand.

The effective operation of demand-responsive PT thus requires that
transport demand be accurately estimated ahead of time. For example,
more accurate demand predictions can yield better utilization of PT re-
sources, e.g., so that fewer vehicles are used while travel times are also
cut shorter. Conversely, errors in predicted demand might lead to sub-
optimal routing, thus resulting in the waste of energy, longer waiting
times and profit loss.

The main goal of this work is to study the impact of demand pre-
diction accuracy on subsequent performance of demand-responsive PT.
ail.com (I. Peled), yujiang@dtu.d
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To this end, we conduct a hypothetical case study of a demand-
responsive PT “pilot” experiment in Metropolitan Copenhagen,
Denmark. We do so by first simulating prediction errors through various
stochastic perturbations of travel demand, as observed through real-
world PT trips. Using the noisy predictions, we then simulate and opti-
mize demand-responsive fleets via a linear programming formulation, for
various bus capacities and portions of dynamically routed buses. Finally,
we analyze the results and draw conclusions on the impact of prediction
accuracy on optimization quality.

Our case study is thus a form of Sensitivity Analysis, as we review in
the next Section. However, contrary to most other Sensitivity Analysis
studies on demand-responsive PT optimization, we account for both sides
of demand prediction and dynamic routing and do so separately. Also in
contrast to previous works, we consider predictive noise independently
of any specific demand estimation models, to study the impact of pre-
diction errors once any such model has already been fitted. We use
different types of independent noise, both Gaussian and non-Gaussian,
with a wide variety of statistical parameter settings. This allows us to
investigate various correlation structures in the origin-destination pairs,
e.g., as associated with non-recurrent traffic disruptions.

The motivation for this work is thus to offer several novelties over
k (Y. Jiang).
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previous research into emergent, dynamically routed PT services. On the
methodological side, we take a high-level view of the impact of predic-
tive accuracy on such PT, rather than use specific prediction models as in
other works. This allows us to study such impacts without binding to any
particular family of models and its specific properties as in other works.
For example, models that rely on lagged information (autoregressive
models, Recurrent Neural Networks, etc.) generally share some similar-
ities in the effect of such parameters on predictive accuracy, and so our
goal is to study the error distributions themselves, rather than particular
parameters, learning methods, hyper-parameter tuning, etc. In turn, this
also facilitates an examination of the relationship between optimal ser-
vice quality and deviations from Gaussian predictive noise, as commonly
assumed. On the practical side, this methodology allows us to explicitly
quantify gains and losses in optimizing such services under a wide variety
of possible noise distributions, without committing to a particular source
of noise. That is, while predictive noise can arise from multiple sources –
e.g., modeling choices, non-recurrent traffic disruptions and changes in
mode preferences – we quantify its practical impact on the optimized
service regardless of its sources.

The remainder of this work is organized as follows. Section 2 reviews
gaps in current studies on demand-responsive PT optimization and un-
certainty analysis. Section 3 details our experiments with simulated noise
distributions and prediction-based optimization. Section 4 then provides
the experimental results and their analysis. Finally, Section 5 recaps the
work by discussing the goal, methodology and main results, and Section
6 concludes with a list of key findings and future steps.

2. Literature review

2.1. Public transport optimization

Works on PT planning and design rely traditionally on point estimates
of future travel demand, obtained through manual data collection (e.g.,
via transport surveys). These estimates are thus realizations from a latent
(i.e., unknown) transport demand distribution, and so are subject to
uncertainty and errors. While such errors are widely acknowledged, their
subsequent effects on PT performance are less quantified and discussed.

Modern works on PT optimization take advantage of advancements in
big data and machine learning for demand estimation (Krishnakumari
et al., 2020; Toole et al., 2015) and real-time fleet management (Hadji-
dimitriou et al., 2020).1 As these advancements gain traction in the PT
optimization field (Iliopoulou and Kepaptsoglou, 2019; Wang and
Qing-dao-er ji, 2019), it becomes increasingly important to study the
effects of demand prediction accuracy on optimization quality. Further,
these effects should also be evaluated in the context of future PT, which
will employ dynamically routed vehicles for better
demand-responsiveness (B€osch et al., 2018).

Motivated by these needs, we experiment with a case study of a PT
fleet, whose itineraries are dynamically changed per predicted travel
demand, in hourly intervals. We optimize service times under constraints
of passenger preferences and service quality via Mixed-Integer Linear
Programming (MILP), as investigated in many PT optimization studies
(An and Lo, 2015; Luathep et al., 2011; Szeto and Jiang, 2014; Tong
et al., 2015; Wang and Lo, 2010).

The fleet in this work thus resembles Mobility-on-Demand services
and similarly relies on predicted transport demand, albeit with less
flexible routes and stop locations. However, whereas many such services
operate on the basis of pre-booked rides (Alonso-Mora et al., 2017;
Hyland and Mahmassani, 2018), we do not assume any particular source
of demand observations. Accordingly, PT demands in this case study are
observed only upon their realization, i.e., only when passengers board or
alight.
1 Ref. (Iliopoulou and Kepaptsoglou, 2019) for a comprehensive review of big
data applications in PT.
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Contrary to previous works on PT optimization under demand un-
certainty (Ukkusuri et al., 2007), we study a wide range of possible
distribution properties (e.g., skew and kurtosis). Some works further
attempt to mitigate errors via robust optimization techniques (An and Lo,
2015) and chance constraints (Wang et al., 2015). As error mitigation is
not the focus of our case study, we consider this and other extensions for
future work (Section 6).

2.2. Sensitivity analysis for demand-responsive public transport

By quantifying the impact of changes in demand prediction accuracy
on subsequent PT performance, our case study is a form of Sensitivity
Analysis (SA) (Saltelli et al., 2004). Nevertheless, this work differs in
several respects from other SA studies in the field of demand-responsive
PT optimization, as follows.

First, most SA studies on demand-responsive PT either treat demand
as given or change it per predefined levels. For example, Huang et al.
(2020) conduct an SA study for operating a demand-responsive transit
service under deterministic changes in total demand, while Winter et al.
(2018) do so for an automated demand-responsive transport system.
Manasra and Toledo (2019) incorporate demand predictions within an
optimization formulation and measure its sensitivity to predefined
changes in demand. They note that for practical usefulness, the robust-
ness of their formulation needs to be further studied under non-recurrent
disruptions and demand surges.

Second, SA studies on demand-responsive transit often do not
explicitly deal with stochastic noise in demand estimation. For example,
Nickkar et al. (2020) measure the effects of varying demand on perfor-
mance of autonomous fleets, but do not deal with errors in demand
estimation. Similarly, Lee (2006) optimizes a transit network under
various pre-defined scenarios, without checking possible deviations from
optimality due to demand estimation errors. Ibeas et al. (2014) optimize
bus capacity and headway per elastic demand, as collected from histor-
ical records, and without simulating stochastic noise.

Contrary to the above, we conduct SA under stochastic errors in de-
mand estimation for demand-responsive PT. Moreover, the above works
focus on developing applicable formulations for PT optimization, which
motivates their choice of conducting SA under predefined levels of
changes. Conversely, we do not aim to propose a directly applicable PT
optimization method, but rather use the simulated PT system to study
predictive noise effects from a more general perspective, as we next
explain.

2.3. Uncertainty in modeling and the normality assumption

Predictive noise follows from the existence of uncertainty in modeling
(Beaudrie et al., 2016) and yields residuals, i.e., differences between
modeled predictions and actually observed values.2 Consequently, when
fitting predictive models, a normality assumption is commonly
employed, whereby residuals are expected to be identically and Normally
distributed (Seber and Lee, 2012). In some modeling contexts, however,
residuals can be non-Gaussian (Mak, 2000). It may also be impractical to
fit a model with Gaussian residuals, depending on data size and quality
(Jackson and White, 2018).

The probability density of residuals can thus vary considerably in
standard deviation (dispersion around the mean), skew (asymmetry
around the mean) and kurtosis (weight of tails). Multiple methods have
been devised for detecting deviations from normality, including plots,
comparison of moments, and statistical tests (Thode, 2002). However,
there are far fewer works on the impact of such deviations (Ivkovi�c et al.,
2020), most of which concentrate on errors in model parameter
estimates.
2 Definitions of residuals differ by context and specificity (Gourieroux et al.,
1987); we use a general definition that befits the context in this work.



Fig. 1. The 6 most active PT stations in Metropolitan Copenhagen, Denmark.

3 We have also experimented with a finer grained range of σ and obtained
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Nelson and Granger (1979) discovered that for economic time series,
Autoregressive Moving Average (ARMA) models often yield residuals
with markedly non-Gaussian skew and kurtosis. Davies et al. (1980)
expanded on this and concluded that the use of non-Gaussian residuals
actually allows for a larger selection of models that better represent time
series. In the context of chemical analysis, Wolters and Kateman (1989)
used Monte Carlo simulations to quantify errors in Least Squares pa-
rameters under small deviations from normality.

More recently, He and Raghunathan (2009) use simulated data to
examine sequential regression imputation methods under shifted and
scaled non-Gaussian distributions: Uniform, Lognormal and t-distribu-
tion. They find that mean performance remains quite robust, despite
noticeable instability in regression coefficients. To predict debt and
bankruptcy of Serbian companies, Ivkovi�c et al. (2020) simulate Expo-
nential and Weibull distributed residuals, study the resulting errors in LR
parameter estimates, and devise transformations to reduce these errors.
Pernot et al. (2020) study non-Gaussian errors in Quantum Machine
Learning models and find that mean measures of prediction error depend
significantly on the shape of the error distribution. They also note the
need for more research into the impact of error distributions on model
reliability in general.

Similarly to the above studies, this work uses simulated perturbations
of real data to study the impact of prediction errors under different noise
distributions. However, none of the previous studies apply directly to the
transport domain, and most of them deal with deviations from normality
in linear modeling. In contrast, we neither presume any particular
modeling form nor try to mitigate uncertainty, but rather examine its
effect on demand-responsive PT. Per common modeling practices, we
assume only that the predictive model has low bias and is evaluated
through mean error measures, as detailed in the following Sections.

3. Experiments

3.1. Data

The data for the case study consists of PT trips from 1-Jan-2017 to 21-
Dec-2018 in Metropolitan Copenhagen, Denmark. These trips are con-
ducted with electronic travel cards (“Rejsekort”) and so account for
approximately 1/3 of all bus and train trips. As dynamically routed Public
Transport (PT) is still emerging, we consider a hypothetical “pilot”
experiment, where dynamically routed buses serve the 6 most active PT
3

stations, depicted in Fig. 1. For these 62� 6¼ 30 Origin-Destination (OD)
pairs, the data contains 2.15 million trips, based on which we simulate
various closed PT systems with urban-scale travel distances.

We aggregate the data by counting hourly trip starts for each OD pair.
Then, we draw at random N ¼ 100 h from 2018-Dec-1 00:00, …, 2018-
Dec-21 23:00. The Ground Truth observations are thus the hourly trip
counts for each OD pair in these N hours. Based on the Ground Truth
observations, we next simulate noisy predictions of PT demand.
3.2. Generation of noisy demand predictions

Similarly to the bulk of existing literature on non-Gaussian residuals
(Section 2), we assume that the noise is generated from continuous dis-
tributions. As such, negative PT demand values are possible and could
indicate preference to use other transport modes (e.g., bike, car, walking,
etc.) over PT. Further, we use independent noise distributions, to deal
with the challenging case of unpredictable changes in correlation struc-
ture. For instance, given two OD's that are typically positively correlated,
a non-recurrent disruption (e.g., a road block) might cause a surge in the
usage of one of them along with a steep decline in the other. The noise
distributions we experiment with are all homoscedastic with standard
deviation (SD) σ, for σ ¼ 0.5, 1.0, 2.0, 3.0,3 as follows.

1. Gaussian, i.e., Normal: N �
0; σ2

�
.

2. Uniform: U�0; ffiffiffiffiffiffi
12

p
σ
�
.

3. Exponential (E) with scale σ.
4. Negated Exponential, namely, � E.
5. Weibull (W) with scale 1 and shape that corresponds to SD σ; reduces

to E for σ ¼ 1.
6. Negated Weibull, namely, � W.

We shift back each distribution by its expected value to obtain zero
mean, as illustrated in Fig. 2. Table 1 compares the noise distributions
with Nð0;1Þ, the standard Gaussian, in terms of their 3rd and 4th stan-
dardized moments, namely, skew and kurtosis. This Table shows that our
experiments cover a range of distribution properties: platykurtic, lep-
topkurtic and mesokurtic – i.e., having kurtosis below, above, or equal to
consistent results, which we thus omit for brevity.



Fig. 2. Probability Density Functions (PDFs) of the noise distributions with zero mean. Note the different horizontal scale and support of each distribution. Vertical
scales differ too and are omitted, because the density value is inconsequential in this work.

Table 1
Skew and kurtosis of noise distributions, marked in comparison to Nð0;1Þ as: below, above, equal.

σ Property N U E � E W � W
0.5 Skew 0.00 1.30 0.75 -0.75 1.46 -1.46

Kurtosis 0.19 1.80 1.50 1.50 2.35 2.35
1.0 Skew 0.00 10.39 6.00 -6.00 6.00 -6.00

Kurtosis 3.00 28.80 24.00 24.00 24.00 24.00
2.0 Skew 0.00 83.14 48.00 -48.00 47.75 -47.75

Kurtosis 48.00 460.80 384.00 384.00 624.50 624.50
3.0 Skew 0.00 280.59 162.00 -162.00 183.31 -183.31

Kurtosis 243.00 2,332.80 1,944.00 1,944.00 4,975.26 4,975.26
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Nð0;1Þ – as well as positive, negative and zero skew. The distributions
also vary in PDF support, which is either finite (U), semi-infinite (E, � E,
W, � W) or infinite (N ).

For each OD pair (o, d), shifted noise distribution D and standard
deviation σ, we independently draw N samples, δD;σ

1od;…; δD;σ
Nod � D. Then

for all i ¼ 1…N, we let giod denote the corresponding Ground Truth
observation, and generate noisy predictions as follows:

ρD;σ
iod :¼ giod þ σg � δD;σ

iod ; (1)

where σg is the sample SD of all ground truth observations. The stochastic
noise is thus measured in units of the SD of the observations themselves.
Furthermore, every ρD;σ

iod is unbiased, as all noise distributions have zero
mean.

3.3. Fleet optimization

Having generated noisy predictions of PT demand, we now simulate
the demand-responsive PT services with varying no. of buses, bus ca-
pacity, and percentage of dynamically routed buses. For capacity, our
reference value is 110/3 � 33, as the average bus capacity in Metro-
politan Copenhagen is approx. 110, and Rejsekort accounts for approx.
1/3 of all PT trips. We vary capacity around this value as γ ¼ 10, 20, 30,
40; the results later show that this provides sufficient insight into the
effect of capacity variability. For percentage of dynamically routed buses,
we use α ¼ 0%, 10%, …, 40%. In particular, α ¼ 0% corresponds to a
completely statically routed fleet, whose performance is thus indepen-
dent of predictions and noise. Table 4 later shows that the mean and
standard deviation of trip time per passenger remain stable as α increases
from 30% to 40%, hence we do not increase α further. For this case study
then, conversion to dynamic routing beyond α ¼ 40% does not yield
significantly better routes.

Finally, we solve a mixed-integer linear programming (MILP)
formulation to obtain optimal routes and fleet size. This formulation
4

receives as input a directed graph, where nodes correspond to PT sta-
tions, and an arc between two nodes exists if a bus can travel between the
two stations. Each edge is weighted by the corresponding in-vehicle
travel time. The input also includes a set of bi-directional routes R,
where for every combination of 2 or more nodes, R contains the shortest
acyclic path connecting these nodes. Given a total of π buses, the
objective is to minimize both the number of buses actually deployed and
passengers’ total trip time (i.e., waiting time and in-vehicle travel time)
in a given time horizon, by assigning routes to π � π of the buses. In
particular, we constrain π to fulfill two separate requirements: 1) π buses
can satisfy the predicted demand in the given time horizon, 2) π buses
can satisfy demand even in the 100 historically worst-case scenarios –

i.e., the 100 busiest hours, by number of trips, before 1-Dec-2018 – if they
are routed to serve all stops. In this manner, the optimized fleet is likely
to be feasible for the actual, ground truth demand in the given time
horizon.

We assume that passengers choose the shortest route from origin to
destination, and waiting times and in-vehicle travel times are pre-
specified. The optimizer first truncates any negative predictions to zero,
as negative demand implies no passengers. Note that the noise PDFs
themselves are not truncated, but rather the predictions derived from
them.

Formulation 1 Fleet Optimization

Minimize

Cπ þ P
ðo;dÞ2Q;r2R;

ðs;tÞ2E

cð1Þst x
od
rst þ

X
ðo;dÞ2Q;r2R;

s2Vr ;k¼1::π

cð2Þrk b
od
rks (2)

subject toP
k¼1::π;

bodrks þ
X

t:ðs;tÞ2E
xodrst �

X
t:ðt;sÞ2E

xodrts � aodrs ¼ 0 8ðo; dÞ 2 Q; r 2 R; s 2 Vr

(3)



Table 2
Notation for formulation 1.

Sets V nodes
E arcs
Q OD pairs
R routes
Vr nodes in route r

Indices s, t nodes
(o, d) OD pair
r route
r base route that serves all nodes
k no. buses allocated to a route

Parameters α portion of buses that can be dynamically routed
γ capacity of each bus

cð1Þst
in-vehicle travel time from s to t

cð2Þrk
average waiting time for route r, when r is allocated k
buses

M large number
C operational cost of each bus
π maximum fleet size

Decision
Variables

π fleet size

xodrst flow of passengers traveling from s to t in route r, as part
of a trip from o to d

bodrks flow of passengers who board route r at s, as part of a trip
from o to d, when r is allocated k buses

aodrs flow of passengers who alight from route r at s, as part of a
trip from o to d

yrk binary indicator of allocation of k buses to route r

Table 3
No. dynamically (D) and statically routed (S) buses.

γ

α ¼ 0% α ¼ 10% α ¼ 20% α ¼ 30% α ¼ 40%

D S D S D S D S D S

10 0 38 4 34 8 30 12 26 16 22
20 0 19 2 17 4 15 6 13 8 11
30 0 13 2 11 3 10 4 9 6 7
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X
r2R;
k¼1::π

bodrks�
X
r2R

aodrs ¼

8>><
>>:
ρD;σ
iod s¼o�
ρD;σ
iod s¼d

0 s 62fo;dg
8ðo;dÞ2Q; s2Vr (4)

X
s2Vr ;ðo;dÞ2Q

bodrks �Myrk � 0 8r 2 R; k ¼ 1::π (5)

X
ðo;dÞ2Q

xodrst � γkyrk � 0 8r 2 R; ðs; tÞ 2 E (6)

X
k¼1::π

yrk � 1 8r 2 R (7)

X
r2R;k¼1::π

kyrk � π � 0 (8)

X
k¼1::π

kyrk � ð1� αÞπ � 0 8k ¼ 1::π (9)

π � π (10)

bodjrπsþ
X

t:ðs;tÞ2E
xodjrst�

X
t:ðt;sÞ2E

xodjrts�aodjrs¼
8<
:
ρjod s¼ o�ρjod

s¼ d
0 s 62fo;dg

8ðo;dÞ2Q; s

2Vr ; j¼1…100

(11)

X
ðo;dÞ2Q

xodjrst � γπ � 0 8ðs; tÞ 2 E; j ¼ 1…100 (12)

yrk2f0;1g; xodrst;bodrks;aodrs ;π�0; π is integral 8r2R; s;t2Vr ; ðo;dÞ2Q; k¼1::π

(13)

For any hour i ¼ 1…N, Formulation 1 defines the linear program per
the notation in Table 2. The objective and constraints are similar to those
commonly used for fleet optimization, as follows. In objective (2), the
first term is the operational cost of deploying a fleet of π buses. We use a
large cost coefficient C per bus, to obtain the smallest fleet that still
satisfies the demands. The second term is the total passengers' in-vehicle
travel time, and the third term is total passengers’ waiting time.
Constraint (3) imposes flow conservation, such that the flow into any
node of any route (from any previous node in the route) either proceeds
into the next node in the route or flows out of the route through aodrs . This
ensures that the itinerary of each passenger is complete from their origin
to their destination. Constraint (4) sets the flow per boarding and
alighting at a stop s. This ensures that the total flow for OD pair (o, d) into
node o across all routes sums to the demand, and the total flow for OD
pair (o, d) out of node d across all routes sum to the same demand.
Constraint (5) ensures that when a passenger boards any route, the route
and the corresponding no. of buses are selected, i.e., yrk¼ 1. For example,
if the flow bodrks is non-zero, then yrk must be equal to one, indicating that
exactly k buses are allocated to route r. Constraint (6) defines the capacity
along all segments of all routes. Constraint (7) ensures that only one yrk is
set to 1 for each route, such that the number of buses allocated to each
route is deterministic. Constraint (8) then guarantees that the total
number of buses allocated to all routes does not exceed the deployed fleet
size π, while constraint (9) dictates that at least (1� α)π buses serve route
5

r, which is route that serves all stops. Constraint (10) imposes the
maximum fleet size. Constraints (11) and (12) ensure that the fleet of π
buses, when routed to serve all stops, can satisfy the demand in each of
the 100 busiest hours before 1-Dec-2018 (denoted by subscript j). Finally,
constraint (13) defines the possible set of values for each decision vari-
able. We use M ¼ 1 00 000, C ¼ 1 00 000 and π¼40 in this case study.

4. Results

The optimized fleet sizes π ¼ 38, 19, 13, 10 are consistent across all
generated noisy demands for γ ¼ 10, 20, 30, 40, respectively. Table 3
further specifies the no. dynamically and statically routed buses for each
γ and α. This percentage is seen to correspond to the PDFs in Fig. 2; e.g.,
as σ increases,�W yields the fewest negative predictions as its PDF shifts
towards the positives.

We evaluate prediction quality through two commonly used, unitless
measures of mean error: Mean Absolute Percentage Error (MAPE) and
Rooted Mean Squared Normalized Error (RMSNE). These measures are
defined as follows:

MAPEðD; σÞ : ¼ 1
N

XN

i¼1

1
jQj

X
ðo;dÞ2Q

jρD;σ
iod � giod j

g

¼ σg
gjQjN

XN

i¼1

X
ðo;dÞ2Q

jδD;σ
iod j ; (14)
40 0 10 1 9 2 8 3 7 4 6



RMSNEðD; σÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

1
jQj

X
ðo;dÞ2Q

�
ρD;σ
iod � giod

g

�2
vuut ¼ σg

g
ffiffiffiffiffiffiffiffiffiffijQjNp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

X
ðo;dÞ2Q

�
δD;σ
iod

�2s
; (15)
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where g is the mean of all ground truth observations. Each right-hand
side follows from (1) and shows the dependency on sampled noise
(where the fractional coefficient is noise-independent).

Fig. 3 illustrates the MAPE and RMSNE after the optimizer truncates
negative predictions. As expected, both MAPE and RMSNE increase as σ
increases. When ranking D from best to worst, we obtain �W � W � �
E � E � N � U for MAPE vs. �W � �E � N � U � E � W for RMSNE.
Let us next analyze how closely the optimization performance follows
any of these rankings.

We evaluate optimization performance through several measures, all
of which are based on the objective value (i.e., total trip time). For
generalizability, our results are mostly given in relative terms. However,
to give a basic sense of scale for this case study, we begin with an absolute
measure of trip time (min) per passenger. For this, let

TiðD; σ; α; γÞ :¼ FiðD; σ; γ; αÞ
Pi

; (16)

where for all i ¼ 1…N, Pi is total no. passengers observed in the i'th hour,
and FiðD; σ; γ; αÞ is their total trip time using the optimized fleet.

Table 4 summarizes TiðD; σ; α; γÞ through its mean and SD over all i;D;

σ. The mean and SD are both seen to decrease as γ decreases and/or α
increases. Hence as expected, trip times improve if more buses with lower
capacity are used and/or more of the buses are dynamically routed. We
also note that the mean and SD do not vary much when further separating
by D and σ, for any fixed α, γ. This is a possible consequence of using the
same marginal noise distribution for all OD pairs, so that their predicted
demands shift similarly, thereby balancing each other out during fleet
optimization.

We now proceed to measure how much time per passenger is theo-
retically lost when optimizing with noisy vs. perfect predictions, as:
Table 4
Mean (�SD) of TiðD; σ; α; γÞ, in minutes. Lower is better.

α γ ¼ 10 γ ¼ 20 γ ¼ 30 γ ¼ 40

0% 15:0 ð � 6:6Þ 16:8 ð � 7:1Þ 18:4 ð � 7:6Þ 19:9 ð � 8:1Þ
10% 13:2 ð � 5:9Þ 15:5 ð � 6:7Þ 16:8 ð � 7:2Þ 19:4 ð � 8:0Þ
20% 11:8 ð � 5:5Þ 14:2 ð � 6:3Þ 15:9 ð � 7:1Þ 18:1 ð � 7:8Þ
30% 11:2 ð � 5:4Þ 13:5 ð � 6:3Þ 15:5 ð � 7:1Þ 17:3 ð � 7:8Þ
40% 11:1 ð � 5:4Þ 13:4 ð � 6:2Þ 15:4 ð � 7:0Þ 17:2 ð � 7:8Þ

Fig. 3. MAPE and RMSNE after the optimizer tru
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TlossðD; σ; γ; αÞ :¼ 1
N

XN

i¼1

FiðD; σ; γ; αÞ � FiðD; 0; γ; αÞ
Pi

: (17)
Fig. 4 illustrates TlossðD; σ; γ; αÞ using a grid of plots, where rows are
ordered by percentage of dynamic buses (α) and columns are ordered by
bus capacity (γ). We see that TlossðD; σ; γ; αÞ increases when either σ or γ
increases, as expected.We also see that for any fixed σ > 0, a partial order
on D emerges as γ and α increase, so that �W and �E are significantly
better than all other D, and � W < � E < N . These properties hold
similarly for RMSNE but not MAPE, as seen earlier in Fig. 3. By properties
of RMSNE, this suggests that as more dynamically routed buses are
involved, the quality of routing becomesmore sensitive to the presence of
even a few large prediction errors – i.e., consistent predictive accuracy is
indeed essential.

Interestingly, Fig. 4 also shows that TlossðD; σ; γ; αÞ generally increases
when α increases, i.e., when more dynamic buses are used for the same
fleet size. This holds also when normalizing Tloss by the theoretical trip
time with perfect predictions, namely:

T rel
lossðD; σ; γ; αÞ :¼ 1

N

XN

i¼1

FiðD; σ; γ; αÞ � FiðD; 0; γ; αÞ
FiðD; 0; γ; αÞ ; (18)

as detailed in Table 7. Still, Tloss and Trel
loss are purely theoretical

measurements, because observations cannot realistically be used before
they manifest, and the predictive mean rarely captures them perfectly.

Next, we measure the time saved per passenger when using dynamic
buses (α > 0) vs. a completely statically routed fleet (α ¼ 0), namely:

TgainðD; σ; γ; αÞ :¼ 1
N

XN

i¼1

FiðD; σ; γ; 0%Þ � FiðD; σ; γ; αÞ
Pi

; (19)

as illustrated in Fig. 5. We see that Tgain generally improves as ca-
pacity and noise SD decrease and the percent of dynamic buses increases.
The only exception is TgainðD; σ; 20; 10%Þ: > TgainðD; σ;30;20%Þ, for any
D and σ. This is explained by Table 3: for α ¼ 10%, both γ ¼ 20, 30 have
the same no. dynamic buses, yet there are more statically routed buses for
γ ¼ 20 than for γ ¼ 30.

We also see in Fig. 5 that as γ and α increase for any σ, a partial order
on D again emerges, with the same properties detected above for Tloss
and RMSNE. This further supports our conclusion, that the consistency of
predictive accuracy becomes more essential as the fleet becomes
increasingly dynamic. The best is TgainðD; σ; 10; 40%Þ ¼ 4min, for
σ � 0.5 and anyD. The lowest is TgainðD;3:0;40;10%Þ ¼ 0:1min, forD 2
fN ;U;Eg.

We further convert Tgain to an economic measure per the Danish
ncates negative predictions. Lower is better.



Fig. 4. Average minutes lost with noisy vs. perfect predictions (f GT in plot titles). Lower is better. Numeric results are in Table 6.

Fig. 5. Average minutes gained with dynamic vs. completely static routing (f 0 in plot titles). Higher is better. Numeric results are in Table 8.

Table 5
Minimum yearly economic gains (€). Higher is better.

α γ ¼ 10 γ ¼ 20 γ ¼ 30 γ ¼ 40

10% 429,000 274,000 293,000 17,000
20% 677,000 515,000 392,000 238,000
30% 783,000 615,000 469,000 354,000
40% 809,000 623,000 488,000 382,000

Fig. 6. Minimum Trel
gainðD; σ; γ; αÞ over all D ; σ. Higher is better.
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Value of Travel Time Savings (VTTS), which has recently been estimated
at ν ¼ 13.43€/h (Rich and Vandet, 2019). For each α and γ, we thus take
the smallest TgainðD; σ; γ; αÞ over all D ; σ and multiply it by both ν (in
€/min) and average no. trips per year in the studied OD pairs. Table 5
provides the results, rounded to 1000€/year, where the best yearly gains
are at least 809,000€ (for α ¼ 40%, γ ¼ 10).
7

Lastly, we measure the average relative gain when using a dynamic
vs. completely static fleet, as:
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T rel
gainðD; σ; γ; αÞ :¼ 1

N

XN

i¼1

FiðD; σ; γ; 0%Þ � FiðD; σ; γ; αÞ
FiðD; σ; γ; 0%Þ : (20)
This is detailed in Table 9, where in particular, the best values of Trel
gain

are close to 27.5%while the worst are close to 5%. As a concise reference
for choosing operational parameters, Fig. 6 summarizes Trel

gain in terms of
its minimum over all noise distributions. For instance, if operational
parameters are chosen conservatively, so that each bus is large (γ ¼ 40)
and only α ¼ 20% of buses are dynamic, then at least 5% relative gain is
achieved. However, if the fleet consists of vehicles with low capacity
(γ ¼ 10), many of which are dynamic (α ¼ 40%), then at least 23%
relative gain is achieved.

5. Discussion

The main goal of this work is to quantify the effects of demand pre-
diction accuracy on the performance of demand-responsive Public
Transport (PT). For this, we have used hourly observations of PT trips as a
proxy for transport demand, and conducted simulation experiments in
two steps. First, we have simulated the output of demand prediction
models by perturbing the observations per various distributions, which
cover a wide range of statistic properties. Based on these noisy pre-
dictions, we have then used a mixed-integer linear program (MILP) with
commonly used objective and constraints, to simulate and optimize PT
fleets with varying no. statically and dynamically routed buses.

We have obtained that the differences in noise distributions do not
account for much variability in trip time per passenger. However, the
noise distributions differ noticeably in two other measures of time per
passenger: 1) time theoretically lost with noisy vs. perfect predictions, 2)
time gained with dynamic vs. completely static routing. The worst loss
per passenger is 1.3 min, while the best time gain per passenger is 4 min,
which is more than 27% in relative terms. In economic terms of Value of
Time Savings (VTTS), the best gains in this case study are at least
809,000€/year.

Also in terms of time gains and losses, we have obtained that the noise
distributions rank more similarly to Rooted Squared Mean Normalized
Error (RMSNE) than Mean Absolute Percentage Error (MAPE) of pre-
dictions. As seen in (14) and (15), RMSNE is dominated by exceptionally
large prediction errors due to squaring, unlike MAPE. It thus appears that
exceptionally large prediction errors, even if few, can strongly influence
the performance of dynamic PT optimization.

Finally, we have seen that when the common normality assumption is
violated, optimization performance can not only worsen but also
improve. E.g., compared to the average gains and losses of the Gaussian
distribution (N ), the Uniform (U) and Weibull (W) are mostly worse,
whereas the Negated Weibull (� W) and Negated Exponetial (� E) are
mostly better. In conjunction with Table 1, we find that this corresponds
well to skew (rather than kurtosis), as U andW have positive skew, while
�W and �E have negative skew.
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6. Conclusion

In conclusion, the key findings of this work are as follows.

1. As a PT fleet becomes increasingly dynamic, the consistency of pre-
dictive accuracy becomes more essential for an effective service, i.e.,
to decrease temporal and economical losses and increase corre-
sponding gains.

2. However, these gains still generally increase when using more
dynamically routed buses (i.e., higher α) with less capacity (i.e., lower
γ), regardless of noise distribution.

3. The minimum relative gain is 5% when conservatively choosing
α ¼ 20% and γ ¼ 40 vs. 23% when more liberally choosing α ¼ 10%
and γ ¼ 10. Fig. 6 gives a fuller reference for choosing these opera-
tional parameters.

4. Violations of the common normality assumption can in fact result in
more reliable predictions, e.g., as in the case of error distributions
with a negative skew. This encourages further research to identify
conditions where predictive errors can actually improve predictive
quality.

For future work, we plan to enhance the current study in several re-
spects, as follows. We plan to also study cases where the noise distribu-
tion incorporates correlations between the OD's, by constructing their
joint distribution (Peled et al., 2019). We also plan to extend to the more
general case of a full-scale PT fleet that serves more stations, and study
how the predictive errors can be mitigated via robust optimization with
chance constraints (Wang et al., 2015). We can also incorporate travelers'
route choice behaviour by extending to a bi-modal optimization formu-
lation (Jiang, 2021; Jiang and Ceder, 2021). We further plan to incor-
porate truncated noise distributions (Greene, 2006), to account for the
inherently limited observability of PT usage (Gammelli et al., 2020), as
well as investigate conditions where predictive errors improve predictive
quality. Given more computational resources, we also plan to measure
the effects of higher percentages of dynamically routed buses on trip time
minimization. We can also consider a stochastic optimization formula-
tion with recourse actions, to explicitly account for consequences of de-
cisions made before the true travel demand is realized.
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Appendix. numeric results
Table 6
TlossðD; σ; γ; αÞ in min, lower is better.

γ ¼ 10 γ ¼ 20 γ ¼ 30 γ ¼ 40
α
 σ
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W

10%
 0.5
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
1.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

2.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.2
 0.1
 0.2
 0.1
 0.3
 0.3
 0.3
 0.1
 0.2
 0.1

3.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.0
 0.1
 0.1
 0.2
 0.1
 0.1
 0.1
 0.3
 0.4
 0.5
 0.3
 0.3
 0.1
 0.5
 0.5
 0.5
 0.3
 0.3
 0.2
20%
 0.5
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.0
 0.0
 0.1
 0.0
 0.1
 0.1
 0.0
 0.0
 0.0
 0.0
 0.0
(continued on next column)
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Table 6 (continued )
γ ¼ 10
 γ ¼ 20
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γ ¼ 30
 γ ¼ 40
α
 σ
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W

1.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.1
 0.2
 0.1
 0.1
 0.1
 0.2
 0.1
 0.2
 0.1
 0.1
 0.1
 0.2
 0.1
 0.2
 0.1

2.0
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.4
 0.4
 0.2
 0.4
 0.2
 0.4
 0.5
 0.5
 0.3
 0.4
 0.3

3.0
 0.4
 0.4
 0.4
 0.3
 0.3
 0.3
 0.4
 0.4
 0.5
 0.3
 0.3
 0.2
 0.6
 0.7
 0.9
 0.3
 0.6
 0.3
 0.8
 0.9
 0.9
 0.6
 0.7
 0.3
30%
 0.5
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.1
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.0
 0.0
 0.0
 0.0
 0.0

1.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.1
 0.2
 0.1
 0.1
 0.2
 0.2
 0.1
 0.2
 0.1

2.0
 0.3
 0.2
 0.3
 0.1
 0.3
 0.1
 0.3
 0.3
 0.3
 0.2
 0.3
 0.1
 0.2
 0.4
 0.5
 0.2
 0.5
 0.2
 0.5
 0.6
 0.7
 0.3
 0.6
 0.3

3.0
 0.5
 0.5
 0.7
 0.2
 0.6
 0.1
 0.5
 0.6
 0.8
 0.3
 0.7
 0.2
 0.6
 0.8
 1.0
 0.4
 0.9
 0.3
 0.9
 1.2
 1.2
 0.7
 1.1
 0.4
40%
 0.5
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

1.0
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.2
 0.2
 0.1
 0.2
 0.1
 0.2
 0.3
 0.3
 0.2
 0.3
 0.2
 0.2
 0.3
 0.3
 0.2
 0.3
 0.2

2.0
 0.3
 0.2
 0.3
 0.1
 0.3
 0.1
 0.4
 0.4
 0.5
 0.2
 0.5
 0.2
 0.4
 0.6
 0.7
 0.4
 0.7
 0.3
 0.6
 0.7
 0.9
 0.4
 0.7
 0.5

3.0
 0.5
 0.5
 0.7
 0.2
 0.6
 0.1
 0.7
 0.7
 0.9
 0.5
 0.8
 0.4
 0.9
 1.0
 1.1
 0.5
 1.0
 0.5
 1.1
 1.3
 1.2
 0.9
 1.2
 0.6
Table 7
Trel
lossðD; σ; γ; αÞ in %, lower is better.

γ ¼ 10 γ ¼ 20 γ ¼ 30 γ ¼ 40
α
 σ
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W

10%
 0.5
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.2
 0.1
 0.2
 0.2
 0.2
 0.1
 0.2
 0.2
 0.1
 0.2
 0.1
1.0
 0.1
 0.2
 0.2
 0.3
 0.2
 0.1
 0.3
 0.3
 0.2
 0.2
 0.2
 0.3
 0.4
 0.5
 0.5
 0.7
 0.5
 0.4
 0.3
 0.3
 0.4
 0.3
 0.4
 0.2

2.0
 0.3
 0.3
 0.2
 0.3
 0.3
 0.3
 0.5
 0.7
 0.4
 0.5
 0.4
 0.5
 0.7
 1.4
 1.2
 0.9
 1.1
 0.7
 1.4
 1.5
 1.6
 0.5
 1.3
 0.5

3.0
 0.7
 0.6
 0.8
 0.5
 0.7
 0.2
 0.8
 0.7
 1.1
 0.9
 0.7
 0.5
 1.8
 1.9
 2.6
 1.6
 2.1
 0.6
 2.5
 2.8
 2.4
 2.0
 1.8
 1.1
20%
 0.5
 0.3
 0.3
 0.3
 0.3
 0.3
 0.4
 0.3
 0.3
 0.2
 0.3
 0.3
 0.2
 0.2
 0.1
 0.1
 0.2
 0.1
 0.2
 0.3
 0.2
 0.2
 0.2
 0.2
 0.2

1.0
 1.0
 1.1
 1.1
 0.9
 1.1
 0.8
 0.6
 0.9
 1.1
 0.5
 1.1
 0.5
 0.3
 0.7
 1.0
 0.4
 1.0
 0.4
 0.5
 0.8
 0.8
 0.4
 0.8
 0.4

2.0
 2.0
 2.1
 2.0
 1.8
 1.8
 1.8
 1.4
 1.9
 1.7
 1.2
 1.5
 1.2
 1.5
 2.6
 2.3
 1.4
 2.3
 1.4
 2.3
 3.0
 2.9
 1.4
 2.4
 1.5

3.0
 3.3
 3.7
 3.7
 2.6
 2.2
 2.4
 3.0
 2.7
 3.4
 1.9
 2.2
 1.6
 3.6
 4.6
 5.5
 2.0
 3.8
 1.7
 4.6
 5.0
 5.1
 3.4
 4.0
 1.8
30%
 0.5
 0.2
 0.1
 0.2
 0.1
 0.1
 0.1
 0.2
 0.3
 0.3
 0.2
 0.3
 0.3
 0.3
 0.2
 0.2
 0.1
 0.2
 0.1
 0.2
 0.2
 0.2
 0.1
 0.2
 0.1

1.0
 0.4
 0.5
 0.6
 0.4
 0.6
 0.2
 0.6
 0.8
 0.7
 0.6
 0.7
 0.4
 0.5
 0.8
 0.8
 0.5
 0.8
 0.5
 0.6
 1.0
 0.8
 0.5
 0.8
 0.5

2.0
 2.3
 2.3
 2.5
 1.0
 2.4
 0.7
 1.9
 2.5
 2.5
 1.3
 2.2
 1.0
 1.5
 2.8
 3.0
 1.3
 2.9
 1.4
 3.0
 3.7
 3.9
 1.6
 3.3
 1.6

3.0
 4.2
 4.8
 5.5
 1.8
 4.9
 1.1
 3.8
 4.3
 5.5
 2.2
 4.8
 1.9
 4.1
 5.0
 6.5
 2.4
 5.4
 2.0
 5.9
 7.1
 7.1
 4.1
 6.2
 2.7
40%
 0.5
 0.2
 0.2
 0.3
 0.2
 0.3
 0.2
 0.5
 0.5
 0.6
 0.3
 0.6
 0.4
 0.5
 0.7
 0.7
 0.5
 0.6
 0.6
 0.6
 0.6
 0.6
 0.4
 0.6
 0.4

1.0
 0.6
 0.7
 0.9
 0.5
 0.9
 0.4
 1.1
 1.1
 1.4
 0.9
 1.4
 0.8
 1.3
 1.5
 1.8
 1.1
 1.8
 1.1
 1.2
 1.6
 1.7
 1.1
 1.7
 1.1

2.0
 2.5
 2.2
 3.2
 0.9
 3.2
 0.7
 2.6
 3.2
 3.4
 1.7
 3.4
 1.4
 2.6
 3.8
 4.3
 2.0
 4.5
 2.0
 3.6
 4.4
 5.4
 2.3
 4.3
 2.3

3.0
 4.8
 4.3
 6.0
 2.1
 5.8
 1.0
 4.9
 5.4
 6.5
 3.6
 6.0
 2.8
 5.6
 6.0
 7.2
 3.5
 6.7
 2.9
 7.1
 7.5
 7.1
 5.0
 6.8
 3.4
Table 8
TgainðD; σ; γ; αÞ in min, higher is better.

γ ¼ 10 γ ¼ 20 γ ¼ 30 γ ¼ 40
α
 σ
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W
 N
 U
 E
 � E
 W
 � W

10%
 0.0
 1.9
 1.9
 1.9
 1.9
 1.9
 1.9
 1.3
 1.3
 1.3
 1.3
 1.3
 1.3
 1.7
 1.7
 1.7
 1.7
 1.7
 1.7
 0.6
 0.6
 0.6
 0.6
 0.6
 0.6
0.5
 1.9
 1.9
 1.9
 1.9
 1.9
 1.9
 1.3
 1.3
 1.3
 1.3
 1.3
 1.3
 1.6
 1.6
 1.7
 1.6
 1.6
 1.6
 0.5
 0.5
 0.5
 0.6
 0.6
 0.6

1.0
 1.9
 1.9
 1.9
 1.9
 1.9
 1.9
 1.3
 1.3
 1.3
 1.3
 1.3
 1.3
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5

2.0
 1.9
 1.9
 1.9
 1.9
 1.9
 1.8
 1.2
 1.2
 1.3
 1.2
 1.3
 1.2
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 0.3
 0.3
 0.3
 0.5
 0.3
 0.5

3.0
 1.8
 1.8
 1.8
 1.8
 1.8
 1.9
 1.2
 1.2
 1.1
 1.2
 1.2
 1.2
 1.4
 1.3
 1.2
 1.4
 1.3
 1.6
 0.1
 0.1
 0.1
 0.2
 0.2
 0.4
20%
 0.0
 3.3
 3.3
 3.3
 3.3
 3.3
 3.3
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.5
 2.5
 2.5
 2.5
 2.5
 2.5
 1.9
 1.9
 1.9
 1.9
 1.9
 1.9

0.5
 3.2
 3.2
 3.2
 3.2
 3.2
 3.2
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.5
 2.5
 2.5
 2.5
 2.5
 2.5
 1.8
 1.8
 1.8
 1.8
 1.8
 1.8

1.0
 3.2
 3.1
 3.1
 3.2
 3.1
 3.2
 2.6
 2.5
 2.5
 2.6
 2.5
 2.6
 2.5
 2.4
 2.3
 2.4
 2.3
 2.4
 1.8
 1.7
 1.7
 1.8
 1.7
 1.8

2.0
 3.0
 3.0
 3.1
 3.1
 3.1
 3.1
 2.4
 2.4
 2.4
 2.5
 2.5
 2.5
 2.3
 2.1
 2.1
 2.3
 2.1
 2.3
 1.5
 1.4
 1.4
 1.6
 1.5
 1.6
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