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Summary 
Sustainable and resilient agriculture is essential for global food security, 

especially in the Majority World, where agriculture is vital not only for food 

security but also for income security, employing a large portion of the 

population. Given agriculture's dependence on water and its vulnerability to 

weather extremes, which are further exacerbated by climate change, climate 

adaptation has become increasingly important. With climate change primarily 

affecting agriculture through the intensification of the water cycle, agricultural 

water management (AWM) interventions hold significant potential. 

However, AWM interventions can lead to unintended negative externalities, 

resulting in unsustainable outcomes such as groundwater depletion and 

inequitable consequences such as increased income disparity. These 

externalities arise from the feedbacks between human and water systems, where 

changes in water availability influence human decisions and vice versa. To 

unpack these externalities, approaches used in sociohydrology that explicitly 

account for human-water feedback are essential.  

This thesis uses a sociohydroloical approach to develop an agent-based model 

(ABM) to simulate bi-directional human-water feedback and uncover the 

potential externalities associated with AWM interventions. It develops a multi-

method approach to interpret two emergent phenomena typical of agricultural 

water systems, “supply demand feedback” and “success to the successful”, and 

suggest ways to resolve the associated externalities that lead to the phenomena. 

The "supply-demand feedback” phenomenon suggests that increased water 

availability, or the perception of it, leads to a rise in demand potentially reducing 

the expected supply benefits. On the other hand, the "success to the successful” 
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phenomenon indicates that individuals or groups who are already advantaged 

are more likely to capitalize on new opportunities or interventions. 

The thesis begins with a systematic review of how ABMs have been used in 

agricultural systems, highlighting existing limitations such as the absence of 

spatially explicit and integrated hydrological models, an overreliance on the 

assumption of rational human behavior, and a lack of differentiation among 

farmer representations (Chapter 2). These limitations hinder ABMs ability to 

reveal agricultural water externalities, which are often spatially explicit and 

unequally impact different groups of farmers. 

The thesis applies this approach to the Kamadhiya catchment in India, which 

has seen intensive construction of check dams (CDs) aimed at recharging 

groundwater, which is the primary source of irrigation. Through a combination 

of water balance analysis (Chapter 3) and farmer surveys (Chapter 4), the thesis 

illustrates the evolution of supply-demand feedback in the catchment. The 

findings show that as (perceived) groundwater supply increases due to CDs, 

farmers respond by cultivating more water-intensive crops, thus increasing 

groundwater usage. Over time, this increased demand negates the benefits of 

CDs, resulting in no significant improvement in groundwater storage. 

Additionally, the increased reliance on groundwater irrigation heightens 

vulnerability. This is because the underlying low-storage hard rock aquifer 

system cannot sustain the additional demand, especially during low-rainfall 

years when CDs recharge is negligible. Moreover, the benefits of CDs are 

unequally distributed, primarily accruing to farmers situated near the check 

dams, thereby exacerbating spatial inequities within the catchment. 

The thesis further examines how farmers perceive and adopt two other major 

agricultural water interventions in the area—drip irrigation and borewells—
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which are farmer-led initiatives, in contrast to the government-implemented 

CDs (Chapter 5). The research utilizes the RANAS behavioral theory to 

understand the decision-making processes of farmers regarding these practices. 

The results underscore the importance of incorporating sociopsychological 

factors such as risk perception, attitude, ability, and social norms when designing 

programs and policies aimed at increasing adoption and scaling. Incorporating 

these psychological factors significantly enhances the explanatory power of the 

adoption model, suggesting that program and intervention designs should also 

focus on influencing behavior, rather than relying solely on financial incentives 

such as subsidies. 

In the final chapters (Chapter 6 and 7), the thesis synthesizes the developed 

understanding of the case study area and farmer behavior to create an agent-

based model for AWM (ABM-AWM) interventions. The model is then used to 

interpret emergent “supply demand feedback” and “success to the successful” 

phenomena. The ABM-AWM model integrates a spatially distributed 

hydrological model with the decision-making processes of approximately 38,000 

individual farmers. Model simulations demonstrate that increased water supply 

from CDs has led to a rise in the cultivation of more water-intensive cotton, 

which in turn increases groundwater usage and diminishes the expected benefits 

on groundwater storage – thereby offering an interpretation of the supply 

demand feedback phenomenon.  

Furthermore, the ABM-AWM reveals unexpected externalities of CDs on the 

adoption of drip irrigation and borewells, showing an inequitable distribution of 

benefits that influences adoption patterns, particularly for farmers located near 

CDs. The results also indicate that impacts are not evenly distributed among all 

farmers; larger farmers, with more resources and better access to groundwater, 

gain more benefits and exhibit lower vulnerability during dry years compared to 
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small and marginal farmers (Chapter 7) – thereby offering an interpretation of 

success to the successful phenomenon. Overall, Chapters 6 and 7 illustrate how 

the application of ABM-AWM can be valuable for informing future investments. 

The thesis findings emphasize the need for more careful consideration of 

negative externalities when planning and investing in AWM interventions. 

Planning should account for the feedback between the interventions and farmer 

behavior. Specifically, for achieving sustainable outcomes with supply-side 

interventions such as CDs, the thesis advocates to make them part of a more 

holistic approach that includes demand management measures. These include 

providing incentives to reduce water usage (e.g., pricing saved water and/or 

electricity), implementing market mechanisms to prevent a shift to more water-

intensive crops, and, if possible, establishing quotas on irrigation water use. 

Understanding farmer behavior is crucial for enhancing the adoption rate of 

agriculture water interventions. Additionally, the thesis demonstrates the value 

of ABMs as a tool for planning agricultural water interventions and mitigating 

negative externalities. Through such mixed methods as presented in the thesis, 

sociohydrological approaches can help achieve long-term sustainable and 

equitable outcomes. 

 



 

ix 

 

Samenvatting 
Duurzame en veerkrachtige landbouw is essentieel voor de werldwijde 

voedselzekerheid, vooral in de meerderheidswereld, waar de landbouw niet 

alleen van groot belang is voor de voedselzekerheid, maar ook voor de 

inkomenszekerheid en werkvoorziening. Gezien de afhankelijkheid van de 

landbouw van water en de bijbehorende kwetsbaarheid voor extreme 

weersomstandigheden, die nog worden verergerd door de klimaatverandering, 

is klimaatadaptatie steeds belangrijker geworden. Nu de klimaatverandering 

vooral de landbouw treft door de intensivering van de watercyclus, hebben 

agrarische waterinterventies een aanzienlijk potentieel. 

Ongeplande landbouwwaterinterventies kunnen echter tot onbedoelde 

negatieve externe effecten leiden, wat tot niet duurzame uitkmosten leiden zoals 

met name uitputting van het grondwater en onrechtvaardige gevolgen zoals 

grote inkomensverschillen. Deze externe effecten komen voort uit de feedback 

tussen mens- en watersystemen, waarbij veranderingen in de beschikbaarheid 

van water beslissingen beïnvloeden en omgekeerd. Om deze externe factoren te 

belichten zijn  sociohydrologische benaderingen, die expliciet rekening houden 

met de feedback tussen mens en water. 

In dit proefschrift wordt gebruik gemaakt van een sociohydrologische 

benadering om een Agent-Based Model  (ABM) te ontwikkelen om bidirectionele 

mens-waterfeedback te simuleren en de potentiële externe effecten die verband 

houden met interventies te ontdekken. Het betreft een aanpak van meerdere 

methoden om twee opkomende fenomenen te interpreteren die typisch zijn voor 

landbouwwatersystemen: ‘feedback van vraag en aanbod’ en ‘succes voor de 

succesvolle’, en stelt manieren voor om de daarmee samenhangende externe 
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factoren op te lossen die tot deze fenomenen leiden. Het fenomeen ‘feedback 

tussen vraag en aanbod’ suggereert dat een grotere beschikbaarheid van water, 

of de perceptie daarvan, leidt tot een stijging van de vraag, waardoor de 

verwachte aanbodvoordelen mogelijk afnemen. Aan de andere kant geeft het 

fenomeen ‘succes voor de succesvolle’ aan dat individuen of groepen die al 

bevoordeeld zijn, makkellijker kunnen profiteren van nieuwe kansen of 

interventies. 

Dit proefschrift begint met een systematische review van hoe ABM’s zijn 

gebruikt worden in landbouwsystemen, waarbij bestaande beperkingen worden 

benadrukt. Voorbeelden daarvan zijn de afwezigheid van ruimtelijk expliciete en 

geïntegreerde hydrologische modellen, een overdreven vertrouwen op de 

aanname van rationeel menselijk gedrag en een gebrek aan differentiatie tussen 

boerenrepresentaties. (Hoofdstuk 2). Deze beperkingen belemmeren het 

vermogen van ABM's om externe factoren zichtbaar te maken, die vaak 

ruimtelijk expliciet zijn en een ongelijke impact hebben op verschillende 

groepen boeren. 

Het proefschrift past deze aanpak toe op het Kamadhiya-stroomgebied in 

India, waar Check Dams (CD's) zijn gebouwd, gericht op het aanvullen van 

grondwater, de belangrijkste bron van irrigatie. Door een combinatie van 

waterbalansanalyse (Hoofdstuk 3) en boerenenquêtes (Hoofdstuk 4) wordt de 

evolutie van de feedback tussen vraag en aanbod in het stroomgebied 

aangetoond. De resultaten tonen dat naarmate de (vermeende) 

grondwateraanvoer toeneemt als gevolg van CD's, reageren boeren door meer 

waterintensieve gewassen uit te breiden, waardoor het grondwatergebruik 

toeneemt. Na verloop van de tijd doet deze toegenomen vraag de voordelen van 

CD's teniet, met als uitkomst een niet significante verbetering van de 

grondwateropslag. Bovendien vergroot de toegenomen afhankelijkheid van 
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grondwaterirrigatie de algemene kwetsbaarheid. Dit komt omdat het 

onderliggende hardgesteente aquifersysteem, met lage opslagcapaciteit, de 

extra vraag niet kan ondersteunen, vooral tijdens jaren met weinig regenval, in 

het geval dat de aanvulling van de regenval beperkt is en de aanvulling van cd's 

verwaarloosbaar is. Bovendien zijn de voordelen van CD's ongelijk verdeeld en 

komen deze voornamelijk ten goede van boeren die in de buurt van de 

controledammen zijn gevestigd, waardoor de ruimtelijke ongelijkheid binnen 

het stroomgebied wordt verergerd. 

Het proefschrift onderzoekt verder hoe boeren twee andere belangrijke 

landbouwpraktijken in het gebied waarnemen en toepassen – druppelirrigatie 

en boorputten – wat geleide initiatieven zijn, in tegenstelling tot de door de 

overheid geïmplementeerde CD's (Hoofdstuk 5). Het onderzoek maakt gebruik 

van de RANAS-gedragstheorie om de besluitvormingsprocessen van boeren met 

betrekking tot deze praktijken te begrijpen. De resultaten onderstrepen het 

belang van het meenemen van sociaalpsychologische factoren zoals 

risicoperceptie, houding, bekwaamheid en sociale normen bij het ontwerpen van 

programma’s en beleid gericht op het vergroten van de adoptie en 

schaalvergroting. Het incorporeren van deze psychologische factoren vergroot 

de verklarende kracht van het adoptiemodel aanzienlijk, wat suggereert dat 

programma- en interventieontwerpen zich ook moeten richten op het 

beïnvloeden van gedrag, in plaats van uitsluitend te vertrouwen op financiële 

prikkels zoals subsidies. 

In de laatste hoofdstukken (hoofdstukken 6 en 7) wordt het ontwikkelde 

inzicht in het casestudygebied en het gedrag van boeren gecombineerd om een 

Agent-Based Model (ABM-AWM) voor interventies op het gebied van 

landbouwwaterbeheer (ABM-AWM) te creëren. Het model wordt vervolgens 

gebruikt om opkomende ‘aanbod-vraag-feedback’ en ‘succes voor de 
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succesvolle’ fenomenen te interpreteren. De ABM-AWM integreert een 

ruimtelijk verdeeld (distributed) hydrologisch model met de 

besluitvormingsprocessen van ongeveer 38.000 individuele boeren. 

Modelsimulaties tonen aan dat de toegenomen wateraanvoer uit CD's heeft 

geleid tot een toename van de teelt van meer waterintensief katoen, wat tot 

toename leidt van het grondwatergebruik en de verwachte voordelen op het 

gebied van grondwateropslag vermindert.   Daarmee wordt een interpretatie van 

het fenomeen van feedback op de vraag naar aanbod gegeven. 

Bovendien onthult de ABM-AWM onverwachte externe effecten van CD's op 

de adoptie van druppelirrigatie en boorputten, wat een ongelijke verdeling van 

de voordelen laat zien die de adoptiepatronen beïnvloedt, vooral voor boeren 

die in omgeveing  van CD's wonen. De resultaten geven ook aan dat de gevolgen 

niet gelijkmatig over alle boeren zijn verdeeld; grotere boeren, met meer 

hulpbronnen en betere toegang tot grondwater, verkrijgen meer voordelen en 

zijn tijdens droge jaren minder kwetsbaar dan kleine en marginale boeren 

(hoofdstuk 7) – waardoor een interpretatie van succes aan het succesvolle 

fenomeen wordt geboden. Over het geheel, illustreren de hoofdstukken 6 en 7 

hoe de toepassing van ABM's in de context van waterinterventies in de landbouw 

waardevol kunnen zijn voor het informeren van toekomstige investeringen. 

De bevindingen van dit proefschrift benadrukken de noodzaak van een 

zorgvuldige afweging van negatieve externe effecten tijdens het plannen en 

investeren in waterinterventies in de landbouw. Bij planning moet rekening 

worden gehouden met de feedback tussen de interventies en het gedrag van 

boeren. met Voor het verduurzamen doormiddel van interventies aan de 

aanbodzijde, zoals CD's, pleit het proefschrift ervoor om deze onderdeel te 

maken van een meer holistische benadering die maatregelen voor vraagbeheer 

omvat. Deze omvatten het bieden van stimulanten om het waterverbruik te 
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verminderen (bijvoorbeeld het beprijzen van bespaard water en/of 

elektriciteit), het implementeren van marktmechanismen om een verschuiving 

naar meer waterintensieve gewassen te voorkomen, en, indien mogelijk, het 

vaststellen van quota voor het gebruik van irrigatiewater. Het begrijpen van het 

gedrag van boeren is van cruciaal belang voor het vergroten van de 

acceptatiegraad van waterinterventies in de landbouw. Bovendien toont dit 

proefschrift de waarde aan van ABM's als instrument voor het plannen van 

waterinterventies in de landbouw en het verminederen van negatieve externe 

effecten. Via dergelijke gemengde methoden, kunnen sociaalhydrologische 

benaderingen helpen duurzame en rechtvaardige resultaten op de lange termijn 

te bereiken. 
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Preface 
I am excited to write this preface, marking the end of a journey that began 

four years ago. It was back in 2016 when I joined IWMI in Delhi that I got exposed 

to the challenges of water management in agriculture.  Engaging with farmers, 

understanding the on-ground realities, and collaborating with researchers from 

other disciplines piqued my interest in applying my technical expertise in 

hydrology within a more interdisciplinary framework. Around same time, I came 

across the emerging field of sociohydrology, which aims to do the same. With this 

background and motivation, my PhD journey officially began in 2020. 

The chapters in a way reflect this journey and motivation. Chapters 1 and 2 

establish the motivation and provide background on the problem. Chapter 3 

focuses on hydrological methods to address the issue, while Chapters 4 and 5 

incorporate social and behavioral surveys to deepen the understanding. 

Chapters 6 and 7 synthesize these elements, developing a model that integrates 

hydrological, social, and behavioral sciences. Chapter 8 offers a synthesis and 

reflects on the implications of this thesis for agricultural water management. 

This achievement would not have been possible without the unwavering 

support of my supervisory team—Saket, Michael, and Alok. I was fortunate to 

have a perfect blend of mentors who each supported and guided me in their 

unique ways. To my family, I could not have done this without you. Please read 

the introduction, which may finally answer your perennial question about what 

I do, and the acknowledgements, which express what your support means to me. 

Mohammad Faiz Alam 

Delft, June 2024
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1 This chapter is partially based on an article published in Environmental Research 
Letters: 

Alam, M.F., McClain, M., Sikka, A., Pande, S., 2022. Understanding human–water feedback 
of interventions in agricultural systems with agent based models: a review. Environ. Res. 
Lett. 17, 103003. https://doi.org/10.1088/1748-9326/ac91e1 

https://doi.org/10.1088/1748-9326/ac91e1
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1.1 Agricultural Water Management interventions for 
climate change adaptation  

Climate change manifested in increased variability of the water cycle is 

increasing the frequency of extreme events and reducing the predictability of 

water availability (United Nations, 2019). This is a growing global threat to 

agriculture with strong implications for food security and poverty reduction 

(GCA and WRI, 2019; Mendelsohn, 2009). Already extreme weather events of 

floods and drought account for more than 80 % of agricultural losses (in crop 

and livestock production) (FAO, 2015) and have resulted in a loss of over 3.8 

trillion USD over the past three decades due to damage to crop and livestock 

production (FAO, 2023). Climate change has reduced global agricultural total 

factor productivity by an estimated 21 % since 1961 (Ortiz-Bobea et al., 2021). 

Thus, there is an urgent need for adaptation in agriculture without which global 

agriculture yields could be reduced by up to 30 percent by 2050, impacting 500 

million small farms the most (GCA and WRI, 2019).  

With climate change’s impact on water and agriculture's reliance on water, 

adaptation in agriculture is inextricably linked to how water is managed (United 

Nations, 2019). For this reason, improving dryland agriculture crop production 

and making water resources more resilient are two of the five key identified 

adaptation areas globally with net benefits of 2.1 trillion USD (GCA and WRI, 

2019). As a climate change adaptation measure, Agricultural water management 

(AWM) interventions are extensively promoted and implemented globally 

(Sharda et al., 2012; Shah et al., 2021; Evans and Giordano, 2012). AWM 

interventions can be broadly defined as interventions on land that alter the 

water balance or partitioning of rainfall into different components (soil, surface, 

and sub-surface storages, transpiration, evaporation, and losses) (Barron et al., 

2009, Calder et al., 2008). They can be broadly categorized under supply-side 
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and demand-side interventions (Sikka et al., 2018; Barron et al. 2009).  Supply-

side AWM interventions increase water storage by either using in-situ soil and 

water conservation practices (e.g. mulching, field bunding) or ex-situ storage 

interventions (e.g. ponds, aquifer recharge, dams). Demand-side AWM 

interventions reduce water demand either by increasing water application 

efficiency (e.g. micro-irrigation, irrigation scheduling) or by broader measures 

such as changes in cropping and production systems (agroforestry, inter-

cropping) and shifting crop sowing window. 

The benefits of implementing AWM interventions have been widely reported 

and established. This includes enhancing natural resource systems by increasing 

the availability of surface water, groundwater, and soil water leading to 

improved agricultural yields, benefiting farmers through increased income, and 

additionally contributing to raising community awareness regarding water 

usage and environmental conservation (Joshi et al., 2008; Calder et al., 2008; 

Glendenning et al., 2012; Sikka et al., 2018). Collectively, these outcomes play a 

crucial role in climate change adaptation and building farmers' resilience to its 

impacts. 

1.2 Externalities of Agricultural Water Management 
Interventions 

Despite overwhelming documented positive impacts, there is a concern that 

studies highlighting the benefits of AWM interventions may be biased towards 

well-managed and successful projects (Kerr, 2002) and often miss out on 

reporting negative externalities (Barron et al., 2008, 2009; Kerr et al., 2007; 

Glendenning et al., 2012).   Externalities, defined as indirect or accidental 

feedback associated with interventions, of AWM can be both positive and 

negative. Negative externalities often result from ill-planned implementations of 

AWM interventions that do not account for their hydrological impacts (especially 
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across spatial scales) or social feedback. Though the focus of this thesis is on 

negative externalities, it is important to highlight that the benefits of AWM, along 

with multiple positive externalities of AWM, are well documented (Reddy, 2012, 

Sikka et al., 2018). Positive externalities of AWM include those that lead to 

enhanced surface and groundwater storage, reduced flood damage, enhanced 

baseflows during dry seasons, reduced soil erosion, and reduced sedimentation 

of reservoirs (Bouma et al., 2011; Reddy, 2012; Alam and Pavelic, 2020).  

Negative externalities of AWM interventions result from the coevolutionary 

dynamics of human-water systems. Here, we term and classify negative 

externalities of AWM interventions linked to water and human systems as 

negative hydrological externalities and unexpected societal feedback (Figure 

1.1). Negative hydrological externalities are unintended or unexpected changes 

in the spatial and temporal availability and allocation of water flows (Figure 1.1). 

They arise from the interaction of AWM interventions with hydrological flows 

(Calder et al.,2008 Barron et al., 2009; Kumar et al. 2006; Bouma et al., 2011; Van 

Oel et al. 2010). For example, water harvesting or storage interventions could 

lead to reduction in downstream flows and efficient irrigation interventions 

could lead to reduction in recharge from percolation and return flows (Table 

1.1). 

The impact of AWM interventions on hydrology is not unidirectional and is 

further influenced and shaped by the societal response to the interventions and 

hydrological externalities. This response, influenced by socio-economic and 

cultural contexts here termed unexpected societal feedback, is usually non-

linear and highly heterogeneous and is typically not expected at the stage of 

planning (Di Baldassare et al., 2019; Pande and Sivapalan, 2017; Walker et al., 

2015) (Figure 1.1). Examples include increased water use, rather than expected 

decrease, in response to efficient irrigation interventions (Jevons paradox) and 
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increased demand in response to supply-side interventions (supply-demand 

feedback) (Table 1.1). Under the phenomenon of supply-demand feedback, 

demand rises following increased water availability or perception thereof (Di 

Baldassarre et al., 2018; Adla et al., 2023). This can lead to the development of 

more irrigated agriculture, which can offset the benefits of increased supply or 

can further decrease the amount of water available for downstream users 

(Glendenning et al., 2012). This is of particular concern as significant portions of 

agricultural water interventions pertain to the supply side, such as the 

construction of small storages and groundwater recharge interventions (Sikka 

et al., 2022; Joshi et al., 2008). 

 

Figure 1.1: A conceptual diagram illustrating unsustainable and inequitable 

outcomes resulting from the coevolutionary dynamics of unintended negative 

hydrological externalities and unexpected societal feedback of AWM 

interventions. 
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These coevolutionary dynamics of hydrological externalities and unexpected 

societal feedback in society, unequally structured with unequal capacity and 

power, can lead to outcomes for social and biophysical systems that are 

unsustainable and inequitable (Figure 1.1) (Calder et al., 2008; Pande and 

Sivapalan, 2017; Barron et al., 2009; Bouma et al., 2011; Kerr, 2007). Examples 

of unsustainable outcomes include the drying of downstream lakes or reservoirs, 

groundwater overexploitation, reduced environmental flows, and water quality 

deterioration (Table 1). Further, these AWM impacts are often mediated and 

exacerbated by socio-economic inequalities in financial capital and knowledge, 

and gender and power relations (Sharma et al., 2008; Namara et al., 2010; Linton 

and Budds, 2014). Often, the benefits of AWM (and their negative impacts) are 

distributed unequally (Shiferaw et al. 2008; Shah et al., 2021; Linton and Budds, 

2014) with rich or influential farmers having more access to social, financial, and 

biophysical capital capturing more advantages, more subsidies, and more 

benefits (Namara et al., 2010; Kafle et al., 2020) and resource-poor farmers 

disproportionately bearing the negative impacts (Table 1.1). The social-water 

relationship and how this perpetuates or even exacerbates inequality, exclusion, 

and impoverishment in response to development has been central to hydro-

social studies (Linton and Budds, 2014). 
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Table 1.1: Illustrative examples of negative externalities linked with AWM 

interventions 

 Negative 
externalities 

Examples 

W
a

te
r 

h
a

rv
e

st
in

g
, s

to
ra

g
e

 
in

te
rv

e
n

ti
o

n
s 

Hydrological 
externalities 

Reduction in runoff leading to upstream-downstream 
impacts (Calder et al., 2008; Bouma et al., 2011) 

Societal 
unexpected 
feedback 

Supply-demand feedback where more supply may lead to 
more demand (Adla et al., 2023) 

Unsustainable 
outcomes 

Groundwater depletion; Drying of downstream lakes or 
reservoirs (e.g., Aral Sea) and reduction in environmental 
flows (Nepal et al., 2014; Wood and Halsema, 2008). 

Inequitable 
outcomes 

Benefits concentrated to nearby farms in low-lying areas 
and to richer farmers having the financial capacity to 
invest in irrigation infrastructure (Bouma et al., 2011; 
Calder et al., 2008; Shah et al., 2021) 

Ir
ri

g
a

ti
o

n
 e

ff
ic

ie
n

cy
 i

n
te

rv
e

n
ti

o
n

s 

Hydrological 
externalities 

Reduction in return flows and percolation leading to a 
reduction in groundwater recharge (Fabbri et al., 2016; 
Perry and Steduto, 2017) 

Societal 
unexpected 
feedback 

Increased water use, rather than expected reduction in 
the absence of any regulation limiting water use or 
abstraction (Birkenholtz, 2017). 

Unsustainable 
outcomes 

Groundwater Depletion; wetland degradation and 
reduction of environmental flows (Zhang and Shan, 2008; 
Kopittke et al., 2019; Albert et al., 2021) 

Inequitable 
outcomes 

The increased cost of pumping and drilling, well failure, 
and abandonment of wells are disproportionately borne 
by resource-poor farmers (Shiferaw et al. 2008, Reddy, 
2012) 
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Hydrological 
externalities 

Increased evapotranspiration demands from shifting 
toward more profitable and water-intensive crops 
(Shiferaw et al., 2008, Sarkar, 2011) 

Societal 
unexpected 
feedback 

Increased water use; Increased use of fertilizers and 
pesticides (Berka et al., 2001; Zhang and Shan, 2008) 

Unsustainable 
outcomes 

Hasten groundwater depletion (e.g., Northwest India) 
(Mukherji, 2020); water quality deterioration of rivers 
and aquifers (Zhang and Shan, 2008) 

Inequitable 
outcomes 

Male, high-value crop cultivators and wealthier farmers 
benefit the most from investments made in farmer-led 
irrigation projects (Kafle et al., 2020; Namara et al, 2010) 

1.3 Shortcomings in traditional modeling approaches to 
unravel AWM externalities 

With agricultural water demand accounting for 70 % of freshwater 

withdrawals globally, and up to 95 % in developing countries (FAO, 2021), how 

water is managed in agriculture will have important implications for agriculture 

and other linked sectors (Satoh et al., 2017). Investments in AWM interventions 

must lead to sustainable and equitable impacts. Modeling presents one tool to 

understand and predict the impacts of proposed interventions and investments 

by unraveling their potential negative externalities. Given the interaction of 

AWM interventions with hydrology and society, understanding the impacts of 

AWM interventions requires that developed models be able to capture the 

coevolutionary dynamics of negative hydrological externalities and unexpected 

societal feedback to avoid inequitable and unsustainable outcomes (Figure 1.1).  

Conventional modeling approaches used to study the impacts of AWM 

interventions (e.g., hydrological models, hydro-economic, and water resource 

models) have generated a wealth of information and knowledge on future 

availability and use of water, the impacts and benefits of AWM interventions, 
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required agronomic conditions, and socio-economic constraints (Garg et al., 

2012; Andersson et al., 2011; Satoh et al., 2017; Harou et al., 2009; MacEwan et 

al., 2017; Hassaballah et al., 2012).  However, they do not explicitly model the 

feedback between human and water systems, thus missing out on the 

coevolutionary dynamics that limit their prediction power over the long term 

(Srinivasan et al., 2017; Pouladi et al., 2020; Sivapalan et al., 2012). In these 

models, human actions (or societal feedback) are mostly externally prescribed, 

often as scenarios (Srinivasan et al., 2017; Pouladi et al., 2020; Satoh et al., 2017). 

However, they typically treat human and water subsystems as independent of 

each other, disregarding the reality that humans think and respond dynamically 

to changes in environmental and socio-economic conditions (e.g., irrigation and 

cropping decisions, land use) (Srinivasan et al., 2017; Pouladi et al., 2020; Van 

Niekerk et al., 2019).   

For example, hydrological models can assess and predict the hydrological 

impacts of proposed AWM interventions based on various assumptions about 

human processes (e.g., population growth, adoption of interventions, adaptation 

responses) (Garg et al., 2012; Andersson et al., 2011; Satoh et al., 2017). 

Similarly, hydro-economic modeling and water resource systems that 

incorporate human modifications such as dams and canals largely focus on the 

economic value of water, optimization of costs and design, and ignore feedback 

such interventions have on human decision-making, e.g., with regards to the 

perception of scarcity (Srinivasan et al., 2017; Harou et al., 2009; MacEwan et al., 

2017; Hassaballah et al., 2012).   

The interventions could lead to long-term unintended consequences 

exacerbating social inequalities and vulnerabilities without accounting for these 

human-water feedback in their design (Di Baldassarre et al., 2019; Sivapalan et 

al., 2012; Srinivasan et al., 2017; Pouladi et al., 2020; Pande and Sivapalan, 2017). 
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For example, studies have shown that infrastructure systems for mitigating 

floods (e.g., levees) can expose the population to less frequent but more 

catastrophic events (Pande and Sivapalan, 2017; Di Baladassarre et al., 2015).  

Thus, there is a need to expand conventional AWM models to integrate human-

water dynamics, especially for longer-term planning horizons when human-

water feedback becomes increasingly important. 

1.4 Sociohydrology: An approach to unravel AWM 
externalities 

Sociohydrology, an interdisciplinary science of coupled human-water 

systems, was introduced to understand and model the coevolutionary dynamics 

of human-water systems on multiple spatial and temporal scales (Sivapalan et 

al., 2012). In contrast to conventional modeling approaches, sociohydrology 

explicitly allows for changing and adaptive responses by humans and how those 

responses affect the environment, thus capturing unexpected, emergent 

behavior of human-water systems (Sivapalan et al., 2012; Srinivasan et al., 2017; 

Di Baldassarre et al., 2019; Pande and Sivapalan, 2017). Sociohydrology models 

are being increasingly applied to understand and model the coevolutionary 

dynamics of coupled human-water systems (Di Baldassarre et al., 2016; Pande 

and Sivapalan, 2017). The approach has been used for examining human‐flood, 

human‐drought systems (Di Baldassarre et al., 2013; 2017), smallholder 

agricultural human-water systems (Pande and Savenije, 2016), water security 

challenges (Gober and Wheater), and the evolution of ancient societies (Kuil et 

al., 2016; Pande and Ertsen, 2014).  
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1.4.1 Agent-Based Modelling: A promising tool for 
sociohydrology 

The two main methods that have been used to model sociohydrological 

systems are agent-based modeling (ABM) and system dynamics (Di Baldassarre 

et al., 2019, Pande and Sivapalan, 2017). In the system dynamics approach, the 

focus is on the dynamics and evolution of complex overall lumped systems (e.g., 

a city, population), represented through feedback loops, stocks, and flows, over 

time and not the micro-level behavior and interactions (Di Baldassare et al., 

2019; Yu et al., 2017; Martin and Schlüter, 2015). However, modeling lumped 

systems misses out on micro-level (e.g., individual farmers) interactions, 

constraints, heterogeneity, and inequality that give rise to overall system 

behavior. This also means that inequitable impacts within the population that 

are at the core of AWM externalities (Figure 1.1, Table 1.1) cannot be fully 

explored. 

In contrast, Agent-based models (ABMs) can explicitly account for micro-level 

constraints, individual behavior, and their interactions with society and the 

environment (Berger and Troost., 2014; Berger et al., 2006; Berger and Ringler, 

2002; Khan et al., 2017). This allows for a natural representation of the real 

world where social behaviors and dynamics at the macro-level can be attributed 

to both micro-scale and macro-scale factors (Di Baldassare et al., 2019, Khan et 

al., 2017). For this capability, ABMs have been widely used to study the evolution 

of different systems including land use, urban, forests, ecosystems, 

epidemiology, social-ecological, and agricultural systems (Le Page et al., 2017). 

This also makes it a promising tool for sociohydrology to understand and explore 

the evolution of coupled human-water systems, and to unravel and understand 

AWM externalities that may result in unsustainable and inequitable outcomes. 

Thus, ABMs can expand and complement conventional AWM studies to integrate 
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human-water feedback.  Table 1.2 provides some illustrative examples of the 

strengths of ABMs and how they can expand or complement the AWM studies to 

capture externalities generated by AWM interventions. 

Table 1.2:  Illustrative examples of the potential capabilities of ABM to expand 

or complement AWM studies to capture externalities. 

 Externalities ABMs potential to expand or complement 
AWM studies 

In
tr

o
d

u
ct

io
n

 o
f 

d
ri

p
 

ir
ri

ga
ti

o
n

 

 

Farmers increase 
crop irrigated area 
leading to increased 
water use rather than 
conserving water 

While AWM studies can capture (and focus on) 
changes in evapotranspiration requirements, 
return flows, water productivity, and water 
savings (e.g. Nouri et al., 2020), ABMs potential 
lies in its capacity to simulate farmers' behaviors 
and decisions regarding changes in irrigation or 
cropping patterns. This in return influences the 
hydrological fluxes such as increased water use 
in response to increased efficiency measures. 

W
at

er
 h

ar
v

es
ti

n
g

 

 

Increased water 
supply leads to 
increased demand 
(Supply – demand 
feedback); 
Downstream-
upstream impacts 

While AWM studies can capture the increase in 
water availability, and reduction in downstream 
flows in response to water harvesting 
interventions (e.g., Garg et al., 2012), ABMs can 
potentially simulate the long-term feedback loop 
between the perceived increase in water 
availability (water system) to water demand 
(human system) that may lead to long term 
unintended impacts. 

G
ro

u
n

d
w

at
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o

p
m
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t 

p
o
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Long-term 
groundwater 
depletion, 
inequitable 
distribution of 
benefits  

While AWM studies can model the impacts of 
groundwater incentives on groundwater 
abstraction and resulting water tables based on 
exogenous scenarios (Wada et al., 2016), ABMs 
can potentially make these scenarios 
endogenous by simulating individual farmers' 
decisions based on their socio-economic 
characteristics in response to the incentives and 
makes it possible to assess the distribution of 
benefits or impacts within a population. 
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1.5 Objective, Research Questions, and Approach 

With this background, this study is motivated by the overarching research 

goal: 

“To improve understanding and consideration of potential hydrological 

externalities and unexpected societal feedback resulting from the implementation 

of AWM interventions to avoid or mitigate unsustainable and inequitable 

outcomes using modeling approaches incorporating dynamic and coupled 

human-water systems interaction.” 

The overarching research goal is addressed by pursuing four main research 

questions: 

RQ 1: How have agent-based sociohydrology approaches been used to 

unravel the negative hydrological externalities and societal unexpected feedback 

associated with AWM interventions?  

RQ 2: How sustainable and equitable are the impacts of AWM interventions 

implemented to enhance water supply for agriculture? 

RQ 3: How to assess and represent human behavior associated with the 

implementation and uptake of AWM interventions to simulate their externalities 

and impacts? 

RQ 4: How to apply an agent-based sociohydrology approach to model 

human-water feedback from AWM interventions for planning long-term 

sustainable and equitable outcomes? 

Figure 1.2 provides the overall methodological approach of the research and 

the method associated with each research question.   



 

14 

 

 

Figure 1.2: Overall workflow of the research questions and methods 

employed for each research question 

1.5.1 Research Question 1 

Chapter 2 addresses research question 1 by undertaking a systematic scoping 

review of peer-reviewed journal articles focusing on ABM use in agricultural 

systems and more specifically where AWM interventions are involved. The 

RQ 1: Systematic 
Review

•Review of externalities associated with AWM 
interventionsand agent based model use in agricultural 
systems using systematic review of published literature.

RQ 2: Impacts of 
AWM 

interventions 

•Analysis of regional agri-water and farmer survey data 
collected from secondary and primary sources, respectively 
to understand sustainability and equitability of impacts 
resulting from implementation of check dams (CDs).

RQ 3: 
Understanding 

farmer 
behaviour

• Analysis of farmer primary sources (via surveys) and 
applicaiton of behavioural theory to understand the human-
water system dynamics resulting from CDs and role of 
psychological factors in adoption of AWM interventions. 

RQ 4: ABM 
development 

and application

•Assimilation of case study understanding and data in the 
development of sociohydrology agent based model (ABM) 
and its application to unravel human-water feedback and 
planning sustainable and equitable interventions.
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review enhances the understanding of the ABMs use in agricultural systems and 

brings forward the gaps in methods employed that require further research, 

especially to interpret spatially explicit and inequitable outcomes associated 

with negative externalities of AWM interventions. 

1.5.2 Research Question 2  

Chapters 3 and 4 addresses research questions 2 and 3, employing a mixed-

method approach combining quantitative and qualitative data collection and 

analysis.  The research for RQs 2, 3 and 4  takes place in the Kamadhiya 

catchment in the Saurashtra region of Gujarat state in India representing a 

typical case of where AWM interventions have been implemented (Figure 1.3, 

section 1.6).  The region has seen large-scale intensive development of check 

dams (CDs) supported by government programs to enhance groundwater 

storage for irrigation supply and drought mitigation (section 1.6). 

In Chapter 3, a catchment water balance method is used to assess the impact 

of CDs on groundwater storage, food production, and resilience.  This is done by  

estimating and comparing changes, across periods of low and high CD 

development, in potential recharge from CDs, rainfall trends, cropping area 

changes and irrigation demand. This develops a broad understanding of the 

dynamics of agriculture and water storage at the catchment scale.  

In Chapter 4, farmer surveys are used to explore the impact of CDs from a 

farmer's perspective. The survey data is used to assess how farmers perceive the 

benefits of CDs and the equitability of benefits. This complements the 

understanding developed from catchment water balance in chapter 3. 

1.5.3 Research question 3 

Chapters 4 and 5 addresses research questions 3 using the farmer survey data  

to examine the socio-economic and psychological factors in their behaviour 
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towards maintaining CDs and adoption of AWM interventions. Two contrasting 

and dominating agricultural water interventions in the area, drip irrigation and 

borewells, are evaluated. The chapters employs Risks-Attitudes-Norms-

Abilities-Self-regulation (RANAS) behavioral theory (Mosler, 2012)  to develop 

understanding on farmers behaviour. The chapter shows the significance of 

psychological factors in explaining farmers' behaviour and adoption decisions.  

Combined together chapters 3 and 4, and 5 offer a comprehensive 

understanding of the interplay between CDs, perceptions and adoption 

behaviors of farmers, and associated human-water feedback at both catchment 

and farmer scales.  

1.5.4 Research Question 4 

Chapters 6 and 7 addresses research question 4 through the development and 

application of agent-based socio-hydrology model. In chapter 6 and 7, the 

developed understanding (and gaps) on the use of ABMs for agricultural systems 

(chapter 2) is combined with data and insights from case study area (chapter 3, 

4 and 5)to develop an agent-based sociohydrology model. The model integrates 

spatially explicit watershed hydrological processes with constraints, decisions, 

and interactions at the farmer/farm scale.   

In Chapter 6, an agent-based sociohydrology model explicitly designed to 

emulate the phenomenon of supply-demand feedback in response to the 

intensive development of CDs is developed.  In Chapter 7, the developed agent-

based sociohydrology model is applied for assessing the (in)equitability of 

impacts.  

The thesis concludes by synthesizing responses to the aforementioned 

research questions, discussing resulting implications for agriculture water 
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management, exploring other potential applications of the developed agent-

based model, and suggesting avenues for further research (Chapter 8). 

1.6 Case study area 

Kamadhiya catchment is located in the Bhadar basin in southwestern 

Saurashtra region of Gujarat state, India (Figure 1.3).  The region experiences a 

semi-arid climate with an average annual rainfall of 638 mm (1983–2015), 

characterized by significant inter-and intra-year (Pai et al., 2014). Climate 

projections for the area suggest rising temperatures, accompanied by an 

increase in both total rainfall and the number of rainy days. However, this is 

coupled with a rise in the frequency of heavy rainfall events, indicating an 

intensification of the water cycle and greater variability (CSTEP., 2022).  

To manage inter-and intra-year variability of rainfall, the Saurashtra region 

has been the focus of managed aquifer recharge projects, mostly through the 

development of check dams (CDs) (Shah et al., 2009; Patel et al., 2020). The 

project was supported by government and non-government actors under the 

government participatory scheme Sardar Patel Participatory Water 

Conservation Programme (SPPWCP). As part of SPPWCP, the government shared 

almost 60 percent of its funding; 40 percent was to be borne by the direct 

stakeholders and the beneficiary groups including NGOs involved in monitoring 

the quality of check dam construction. In Gujarat state, after the year 2000, more 

than 100,000 managed aquifer recharge (MAR) structures, of which an 

estimated 27,000 are CDs, have been constructed across Saurashtra till 2018 

(NWRWS, 2018; World Bank. 2020).  In the Kamadhiya catchment, the CD count 

reached 575 by 2006, contributing to a density of approximately one CD per 2 

km² (Patel, 2007).   The farmers do not directly use (lift) water from CDs, but 

indirectly with additional recharge from CDs feeding their wells. 
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Figure 1.3: Location of Kamadhiya catchment in the Saurashtra region of the 

state of Gujarat, India 

Several studies have analyzed the impact of intensive CD development in 

Saurashtra and Gujarat but the efficacy of CDs remains unresolved ( Kumar and 

Perry, 2018; Bhanja et al., 2017; Jain, 2012; Shah et al., 2009; Praharsh et al. 

2020).  The challenge to assess groundwater storage impact from CDs arises 

from the fact that any change in groundwater storage is a result of long-term 

dynamics of several supply and demand factors including, climate, the intensity 

of MAR, changing cropping patterns, area, and irrigation practices. Previous 

studies have not fully accounted for these complexities and most specifically 

have ignored the increasing demand arising from increasing cropping area and 
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irrigation (Patel et al., 2020; Bhanja et al., 2017; Kumar and Perry, 2019), which 

this thesis aims to explore.  These studies have largely used the hydrological lens 

to evaluate CD impact but have largely ignored the feedback between human-

water systems.  

Additionally, drip irrigation and borewells are other major agricultural water 

interventions where farmers invest individually. Drip irrigation is a demand 

management intervention to increase the efficiency of irrigation water applied. 

The adoption of drip irrigation is supported by a government capital subsidy 

program called Pradhan Mantri Krishi Sinchai Yojana (PMKSY - Prime Minister 

Farm Irrigation scheme) (Nair and Thomas, 2022; DAC&FW, 2017).  On the other 

hand, farmers drill borewells to hedge against the production risks associated 

with low rainfall years, particularly during the dry seasons after the monsoons 

when the shallow weathered aquifer (15-30 m) in the region dries out 

(Steinhübel et al., 2020). 



      

 

 

2. Application of agent 
based models towards 

understanding human-
water feedback of 

interventions in 
agricultural systems: a 

review2 
 

 

 

 

  

 

2 This chapter is based on the article published in Environmental Research Letters 
(starting section 4 of the paper) 

Alam, M.F., McClain, M., Sikka, A., Pande, S., 2022. Understanding human–water feedback 
of interventions in agricultural systems with agent based models: a review. Environ. Res. 
Lett. 17, 103003. https://doi.org/10.1088/1748-9326/ac91e1 

https://doi.org/10.1088/1748-9326/ac91e1
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2.1 Agent Based Modelling for Agricultural systems 

Explicit modelling of coupled natural-human systems to unravel unintended 

and unexpected dynamics enables planners and managers to enhance positive 

benefits while mitigating/reducing negative externalities of agricultural water 

management (AWM) interventions (Pande and Sivapalan, 2017; Di Baldassarre 

et al., 2019; Khan et al., 2017). Most of the current conventional modeling 

approaches do not explicitly model the feedback between the human and water 

systems, thus missing out on the coevolutionary dynamics that limit their 

prediction power over the long term (Srinivasan et al., 2017; Pouladi et al., 2020; 

Sivapalan et al., 2012).  In these approaches generally, human actions are 

explicitly given as exogenous scenarios thus ignoring endogenous and co-

evolutionary dynamics (Van Niekerk et al., 2019; Lobanova et al., 2017). This 

absence of bi-directional feedback can exacerbate social inequalities, 

vulnerabilities, and ineffectiveness of AWM solutions (Di Baldassarre et al., 

2019; Troost and Berger, 2014). 

Sociohydrology, an interdisciplinary science of coupled human-water 

systems, was introduced to understand and model the coevolutionary dynamics 

of human-water systems on multiple spatial and temporal scales (Sivapalan et 

al., 2012). In sociohydrology, the use of agent-based modeling (ABM) has been 

gaining popularity. ABMs can explicitly account for micro-level constraints, 

individual behavior, and their interactions with society and the environment 

(Berger and Troost., 2014; Berger et al., 2006; Berger and Ringler, 2002; Khan et 

al., 2017). This allows for a natural representation of the real world where social 

behaviors and dynamics at the macro-level can be attributed to both micro-scale 

and macro-scale factors (Di Baldassare et al., 2019, Khan et al., 2017). These 

capabilities are critical to assess spatial, temporal, and often inequitable negative 

externalities of AWM interventions.  
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The applications of ABMs in sociohydrology have already begun and are 

broadening (Michaelis et al., 2020, Tamburino et al., 2020; Ghoreishi et al., 2021). 

For example, Tamburino et al. (2020) developed an ABM to simulate the impact 

of water use behavior on crop yield and economic gain in smallholder farming 

systems and how this is influenced by farmers’ attitudes and behavior. Ghoreishi 

et al. (2021) developed an ABM to study the rebound phenomenon, i.e. increased 

water demand in response to more efficient irrigation, and its controlling factors 

in Bow River Basin in Canada.  

However, with or without explicit mention of sociohydrology, ABMs have a 

long history of application in agricultural systems (Berger et al., 2001, Berger 

and Ringler, 2002). This includes ABMs for modeling the adoption of AWM 

interventions (Schreinemachers et al., 2007, 2009; Berger 2001), modeling the 

impact of farmers' agricultural decisions on hydrological systems (Van Oel et al., 

2010; Becu et al. 2003) and simulating a range of policy, trade, and market 

mechanisms (Aghai et al., 2020; Farhadi et al. 2016; Schlüter and Pahl-Wostl, 

2007). 

While ABMs have the potential ingredients to capture AWM externalities and 

applications are increasing in sociohydrology, there is limited understanding of 

what can be or has been achieved through ABM methodological approaches and 

what are the remaining methodological gaps that further need to be bridged to 

unravel the negative externalities of AWM interventions. With the aim to 

synthesize the learnings, challenges, and gaps in modeling AWM externalities 

through ABMs, we here carry out a systematic review of methodological 

approaches taken in agent based model for agricultural water management 

(ABM-AWM) studies. Since AWM and associated externalities are the focus here, 

the scope of review is limited to ABM application for modeling AWM 

interventions. Similarly, other recent reviews have focused more specifically on 
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ABM applications for agricultural policy evaluation (Kremmydas et al., 2018), for 

Food–Energy–Water Nexus (Magliocca, 2020) and flood risk models (Taberna et 

al., 2020). 

2.2  Review of ABMs application to agricultural water 
systems (ABM-AWM) 

Developed ABMs for agricultural systems model biophysical, economic, and 

social processes by integrating and coupling biophysical sub-models (e.g., 

hydrology, crop growth) and social (e.g., behaviors, decisions, network 

interaction) systems at different spatial and temporal scales (Berger et al., 2001; 

Troost and Berger, 2014; Dziubanski et al., 2020). Methods employed for 

modeling these biophysical, economic, and social processes differ substantially 

(Kremmydas et al., 2018, Le Page et al., 2017) and have a direct bearing on the 

ABMs ability to resolve negative hydrological externalities and unexpected 

societal feedback of AWM interventions (Figure 1.1). For example, whether 

ABM-AWM can model spatially explicit hydrological impacts depends on the 

hydrological models employed and the simulations of realistic societal feedback 

depends on behavioral theories used.  

Since ABMs differ substantially in terms of methods employed, our review 

focuses on assessing ABM-AWM methods for their capability to unravel negative 

hydrological externalities, assess inequitable impacts and capture societal 

unexpected feedback. We broadly focus on three overarching questions (derived 

from Figure 1.1). 1) How does the ABM-AWM resolve negative hydrological 

externalities? 2) How are farmers’ responses, behavior and interactions 

simulated? And 3)  How does the ABM-AWM resolve inequitable impacts by 

accounting for the heterogeneity of society? These were broken down into sub-

questions (Table 2.1) for which information was collected and synthesized from 

the reviewed papers. The sub-questions therefore also serve as criteria to 
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evaluate the extent to which ABMs can unravel negative externalities, thereby 

identifying the remaining gaps that further need to be bridged to 

comprehensively understand the impacts of AWM interventions on sustainable 

and equitable water use.  

Table 2.1: Overview of questions on different components of ABM-AWM 

models for the review. 

Overarching 
Question 

Sub-questions Link to AWM externalities 
and outcomes (conceptual 
framework in Figure 1.1) 

How does 
ABM-AWM 
resolve 
negative 
hydrological 
externalities? 

Can hydrological models used in 
ABM-AWM: 

A.  resolve the spatially explicit 
impact of AWM on water flows? 

B. model surface-groundwater 
interactions? 

Negative hydrological 
externalities (e.g., Spatio-
temporal changes in water 
flows) 

Unsustainable outcomes 
(e.g., groundwater depletion) 

How are 
farmers’ 
responses, 
behavior, and 
interactions 
simulated? 

A. Which individual behavioral 
theories have been used? 

B. How social interactions have 
been simulated? 

Unexpected societal 
feedback (e.g., increases in 
crop area and water use) 

How does 
ABM-AWM 
resolve 
inequitable 
impacts? 

A. Whether individual agents, 
critical to modeling inequitable 
impacts within a population, are 
represented and simulated? 

B. How are individuals' socio-
economic and biophysical 
characteristics defined to 
represent the heterogeneity of the 
population? 

Inequitable outcomes (e.g., 
inequitable profit 
distribution) 

 



 

25 

 

2.2.1 Review design 

For our review, search criteria from Kremmydas et al. (2018) were modified 

to focus specifically on ABM developed for AWM interventions to synthesize the 

learnings, challenges advances, and gaps in unraveling AWM externalities 

through ABMs. Kremmydas et al. (2018) reviewed ABM use for agricultural 

policy evaluation. To capture a wide range of articles and for that, we interpret 

AWM in a broad sense including ABM-AWM studies that not only model AWM 

interventions but also simulate management, market, and trade mechanisms and 

agents’ behavioral aspects that directly impact agricultural water use. We 

reviewed articles published in peer-reviewed journals with their title, abstract 

or keywords including: 

• One or more of “agent-based”, “agent based”, “abm”, “multi-agent” or 

“multi agent”  

• AND any word beginning from “water”, “groundwater”, “gw”  

• AND any word beginning from “farm”, “agricul”, or “crop”.  

This is equivalent to the following SCOPUS search command: 

TITLE-ABS-KEY ( "agent-based"  OR  "agent based"  OR  "abm"  OR  "multi-

agent"  OR  "multi agent" )  AND  TITLE-ABS-KEY ( farm* )  OR  TITLE-ABS-KEY 

( agricul* )  OR  TITLE-ABS-KEY ( crop* )  AND  TITLE-ABS-KEY ( water* )  OR  

TITLE-ABS-KEY ( groundwater )  OR  TITLE-ABS-KEY ( gw* )  AND  ( LIMIT-TO ( 

LANGUAGE ,  "English" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( 

DOCTYPE ,  "ch" )  OR  LIMIT-TO ( DOCTYPE ,  "re" ) ) 

The search produced 206 documents that were further refined based on the 

criteria detailed below: 

Criteria 1: Agricultural systems and ABM 
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Papers were excluded which were not related to ABM or focusing on 

agricultural systems. Examples include papers from chemistry, Pest, diseases, 

marine, urban etc. 

Criteria 2: Focus on AWM interventions  

- Paper is considered to be relevant if the agricultural water management 

is a key component of the model that directly affects the model outcome 

and consequently the paper focuses on the relation of the policy to the 

model outcome. 

- Excluded ABMs where the focus is exclusively on land use or urban or 

ecosystems but not AWM 

- Additionally, review papers were also excluded. 

Additionally, papers not in SCOPUS search but in authors knowledge were 

added. Finally, we reviewed 69 papers. 

2.3 Review results 

2.3.1 Modeling negative hydrological externalities 

Modeling negative hydrological externalities resulting in unsustainable 

outcomes (e.g., groundwater depletion, upstream-downstream conflicts) 

requires integration/coupling of hydrological models in ABMs. These 

hydrological models employed in ABM-AWM are concerned with modeling and 

simulating spatial and temporal patterns of water flows and the impact of AWM 

on the same. To capture and predict the hydrological changes, with spatial 

variability and cutting across surface-groundwater systems (Section 2.1), the 

hydrological models should at least be: 1) semi-distributed to account for the 

spatial heterogeneity of water quantity and quality processes and 2) include 
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groundwater-surface water interactions (Khan et al., 2017; Glendening et al. 

2012). The following section explores the extent to which these criteria are met. 

2.3.1.1 Hydrological models in ABM-AWM 

Whether spatially explicit hydrological changes and interactions can be 

modeled or not depends to a large extent on spatial scales considered and the 

type of hydrological models integrated/developed in ABM-AWM studies.  ABM-

AWM where spatial scale is either individual farm or administrative region 

(Figure 2.1a, 27 %), is not conducive for modeling hydrological flows and 

interactions. In these ABM-AWM, water flows are largely modeled at individual 

plot/farm levels either using one-dimensional soil water balance (Wens et al., 

2020; Tamburino et al. 2020) or empirical models (Zagaria et al., 2021; Van 

Duinen et al. 2016).  ABM-AWM with a focus on individual farms are largely 

concerned with modeling individual farmers’ socio-economic temporal 

dynamics resulting from their response, behavior, and adoption of AWM 

interventions. For example, Wens et al. (2020) modeled individual farmers' 

adaptive behavior, simulated using multiple behavioral theories, to estimate 

future drought risk in a region in Kenya. In the study, hydrology is modeled at an 

individual plot scale using FAO crop model AquacropOS. 

ABM-AWM at an administrative scale in addition to individual farmers’ socio-

economic dynamics can also model spatial dynamics (e.g., crop changes, land-use 

change, adaptation diffusion) emerging from individual farmers’ decisions, 

direct or indirect social environmental interactions (Schreinemachers et al. 

2007; Troost and Berger, 2014; Barnaud et al. 2013; Hampf et al. 2018). 

However, hydrology, if modeled, is still mostly modeled at individual farm scales 

(Schreinemachers et al. 2007; Troost and Berger, 2014).  With hydrological 

impact not the focus in many ABM-AWM at an administrative scale, more than 

50 % of such studies do not employ any hydrological model (Figure 2.1a). For 
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example, Troost and Berger (2014) modeled regional land user and crop 

production dynamics resulting from individual farmers’ decisions at farm-level 

to adapt to climate change in a mountainous area in southwest Germany. Water 

flows were not modeled with the study focusing on analyzing the effect of 

income, crop changes, and agriculture supply.  

 

Figure 2.1: Proportion of ABM-AWM reviewed across a) different spatial 

scales considered in ABM-AWM and proportion of the type of hydrological 

models used under each, b) Inclusion of groundwater in ABM-AWM and 

proportion of the type of hydrological models used under each. 

Hydrological flows and interactions, via surface and groundwater, can be 

explicitly modeled in ABM-AWM where the spatial scale is either 

watershed/basin (Van Oel et al., 2010; Becu et al. 2003; Berger, 2001; 

Schreinemachers et al.,2009; Ng et al., 2011) or irrigation systems (Barreateau 

et al. 2004; Schlüter and Pahl-Wostl, 2007; Ghazali et al., 2018). Overall, 62 % 

and 10 % of ABM-AWM have the watershed and irrigation systems as their 

spatial scale, respectively (Figure 2.1a). In these ABM-AWM negative 

a 
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hydrological externalities can be captured as agents’ actions impact other agents’ 

water flows and availability, simulated as the change in surface water flows 

(Pouladi et al., 2020, Van Oel et al., 2010; Becu et al., 2003), groundwater depth 

(Du et al., 2020; Noël and Cai, 2017; Hu and Beattie, 2019) and water quality 

(Pouladi et al. 2019).  In ABM-AWM modeling irrigation systems, water flows 

and availability are determined by canal flows, rather than watershed hydrology 

(Barreateau et al., 2004; Barreateau and Bousquet, 2000). This is done largely 

using empirical models (Figure 2.1a). 

In ABM-AWM at the watershed scale, both semi-distributed and distributed 

hydrological models have been used (Figure 2.1a). In semi-distributed 

hydrological models, aggregated hydrological response (e.g., runoff, recharge, 

drainage) of sub-units (sub-watershed, HRUs) is modeled at the overall 

basin/watershed outlet (Becu et al., 2012; Dziubanski et al., 2020). Examples of 

semi-distributed models include using SCS curve number method to assess the 

impacts of land cover changes, aggregated at sub-basin unit, resulting from 

decisions made by different agent types (Dziubanski et al., 2020) or linking 

hydrologic-agronomic model SWAT in Salt Creek watershed in Central Illinois, 

USA to simulate farmer behavior regarding best management practices and its 

effect on stream nitrate load (Ng et al. 2011). In semi-distributed models, flow at 

each point/grid is not simulated so they are more useful where the query of 

interest is assessing the impact on hydrology from the aggregated response of 

agents. This may limit their utility to assess the impact on individual agents from 

changes in hydrology, especially when there are significant differences in socio-

economic-biophysical capital of farmers in the aggregated units (sub-watershed, 

HRUs). 

In contrast, in distributed hydrological models, hydrology is modeled at each 

part/grid and can be linked to underlying individual agents. Examples of 
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distributed models are by Becu et al. (2003) and Bithell et al. (2009) both of 

which developed spatially distribute models as part of ABM-AWM and linked 

each point/grid in space with underlying agents. This allows for modeling two-

way feedback between individual actions/decisions and hydrology. The most 

often used distributed models in ABM-AWM come from studies assessing 

groundwater management and sustainability (~ 47 %, Figure 2.1b). In these 

studies, the use of the distributed model, MODFLOW, have been frequent 

(Farhadi et al. 2016; Nouri et al. 2019; Noel and Cai, 2017). For example, Noel 

and Cai (2017) developed an integrated ABM-MODFLOW model where farmers' 

daily irrigation decisions are used as input to MODFLOW which in turn provides 

updated water-table and baseflow information to agents in Republican River 

Basin, USA. In contrast, only a few studies (~ 10 %, Figure 2.1b) modeling surface 

water flows have used spatially distributed models (Becu et al., 2003, Bithell et 

al. 2009; Du et al. 2020). This could be due to relatively more ease in integrating 

stock variables (e.g., groundwater head, lake storage) in comparison to output 

fluxes (i.e., streamflow) in ABMs code (Khan et al., 2017). 

2.3.1.2 Groundwater-surface water interactions in ABM-AWM 

The examples of negative hydrological externalities discussed earlier (section 

2.1) show that they often result from interactions of surface-groundwater (SW-

GW) systems. Examples include the change in potential recharge from surface 

storage structures and changes in return flows (as brought on by efficiency 

improvements practices). Resolving these processes requires that hydrological 

models should be able to capture surface-groundwater interactions. However, 

our review shows that there are large gaps in this part. First, only ~ 30 % of 

reviewed papers had considered groundwater (figure 2.1b). Even in these 

studies, many simulate integrated SW-GW systems in a very simplistic way, such 

as modeling groundwater irrigation but not process-based recharge and storage 
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modeling (Holtz and Pahl Wostl, 2012, Wens et al., 2020; Tambourino et al., 

2020). 

Second, very limited studies use integrated models with SW-GW interactions 

in place (~ 14 % of studies) (Du et al., 2020, Mirzaei and Zibaie, 2020, Van Oel et 

al., 2010). Most studies model surface water (Dziubanski et al., 2020; Nikolic et 

al., 2012) or groundwater (Aghaei et al., 2020; Farhadi et al., 2016; Nouri et al. 

2019; Noël and Cai, 2017) in isolation. One explicit case of distributed integrated 

SW-GW model use in ABM-AWM is by Du et al. (2020) where GSFLOW (an 

integrated SW-GW model) was integrated with an ABM to model water use and 

understand its impact on hydrology in the Heihe River Basin, China, under the 

influence of collective water management policies. This lack of inclusion of 

groundwater and integrated surface-groundwater process means that many of 

the AWM externalities cannot be captured or predicted. 

2.3.2 Modeling society unexpected feedback in ABM-
AWM 

Incorporating agent responses and feedback to the environment to capture 

unexpected society feedback is central and critical in ABM-AWM studies. 

Modeling this requires a suitable and dynamic representation of agent behavior, 

goals, and decision-making processes (Müller-Hansen et al., 2017). Multiple 

studies have reviewed the use of decision-making behavioral theories in ABM 

focusing on natural resources (An, 2012; Müller-Hansen et al., 2017; Schlüter et 

al., 2017). Based on our review, we broadly categorized ABM-AWMs into two 

types: ABM-AWM where agent behavior is modeled in isolation without 

accounting for social interactions, and ABM-AWM where the influence of social 

interactions on individual behavior is incorporated. We review individual 

behavior theories and social interaction theories used separately in the following 

sections.  
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2.3.2.1 Simulating individual farmers' responses and behavior in 
ABM-AWM  

Individual decision-making and behavior in ABM-AWM include taking 

decisions regarding crop production, irrigation, investment in AWM 

interventions, and other agronomy aspects (fertilizers, labor, etc.). These 

decisions differ among agents based on the assumptions made about three key 

determinants of human choices: goals and needs, constraints, and decision rules 

(Müller-Hansen et al., 2017; Schlüter et al., 2017). Based on these three key 

determinants, Schlüter et al. (2017) categorized theories used for modeling 

agent decision making. We use these categories to analyze how frequently they 

appear in ABM-AWM (Figure 2.2a).  

  

Figure 2.2: a) Proportions of different individual decision-making behavioral 

theories used for modeling agents in reviewed papers; b) Proportions of papers 

implementing social interactions. 

Our review shows that the most used theories in ABM-AWM are rational 

choice and bounded rationality (including heuristics) (Figure 2.2a). Rational and 

bounded rationality are both based on expected utility maximization where an 

agent’s decision-making is goal oriented. Agents choose a strategy, under given 
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constraints, with the best-expected outcome or utility (Schlüter et al., 2017; An, 

2012). The rational choice theory assumes that agents make rational choices. 

These rational choices achieve outcomes that maximize their advantage or 

income by optimizing their decision regarding crops, irrigation, and resource use 

under given constraints. An example of rational theory used in ABM-AWM is the 

application of the MP-MAS model where farmers' investment decisions are 

simulated to maximize expected long-term average levels of net farm and non-

farm incomes. (Berger, 2001; Schreinemachers et al. 2007; 2009).  

However, field evidence suggests that farmers are not always rational 

(Dessart et al., 2019; Howley et al., 2015; Bluemling et al., 2010). Examples 

include farmers' unwillingness to covert land to forestry even with expected 

higher economic returns as that does not align with their attitudes (Howley et 

al., 2015) or the economic cost of increased pumping being an insignificant factor 

in choosing efficient irrigation technology (Blueming et al., 2010). This is 

because human decisions are complex, and decisions are made under the 

influence of experiences, rules, psychological factors, and social influences (Du 

et al. 2020; Van Duinen et al., 2016; Dessart et al., 2019).  

Bounded rationality theory, a modification of rational choice theory, aims to 

account for these factors by putting constraints or bounds on the agent’s 

information receiving, understanding, and cognitive capacity (Schlüter et al., 

2017; An, 2012). There are many different approaches to formalize bounded 

rationality with respect to limited information, quality of information, and 

cognitive capacities of decision-makers (Schlüter et al., 2017; Van Duinen et al., 

2016). The most often used approach is heuristics, where agents are assigned 

rules, derived from empirical data or observations, that drive their decision-

making (An, 2012; Schlüter and Pahl-Wostl, 2007; Van Oel et al., 2010). In 

heuristics, decisions emanate from farmers' experience, accumulated 
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knowledge, and preferences (Schlüterand Pahl-Wostl, 2007). Examples of 

heuristics include ‘if/then/else’ rules where agents make cropping decisions 

based on the predefined threshold such as capital, soil pH, and groundwater 

levels (Castilla-Rho et al., 2015) or sensitivity to crop water stress (Noël and Cai., 

2017). Though heuristics can mimic an agent’s behavior and decisions, it fails to 

explain the underlying reasons for the same as this is without a strong 

theoretical basis (An, 2012). While this can suffice for modeling behavior to 

known stimuli/changes/options but has limited utility in case of unexpected and 

unforeseeable scenarios.  

Thus, to drive actual motivations and incentives behind the decisions, there 

is an increasing realization and call for grounding agent decisions in established 

social-science theories (e.g., protection motivation theory, theory of planned 

behavior, learning) rather than rational or simple heuristics (Wens et al. 2020; 

Schlüter et al., 2017; Taberna et al., 2020).  Protection motivation theory (PMT), 

a version of bounded rationality, offers an example (Zagaria et al., 2021; Wens et 

al., 2020; Dziubanski et al., 2020). In PMT, farmers’ adaptation is simulated as 

the integration of farmers' perceived risk and appraisal of their capacity to adapt 

(Zagaria et al., 2021; Wens et al., 2020). Wens et al. (2020) applied PMT to 

explore the adaptation decisions of farmers in Kenya. Their results show that 

bounded rationality can model complex human adaptation decisions more 

realistically over theory based on rational agents. 

In contrast, there is a relatively lower application of other theories in ABM-

AWM, namely the Habitual or Reinforcement Learning Theory, Theory of 

Planned Behavior (TPB), and Prospect Theory (PT) (Figure 2.2a). In Habitual or 

Reinforcement learning, positive and negative experiences (history) are stored 

in the state (knowledge) and reflected in the habit formation of agents (Schlüter 

et al., 2017; Nikolic et al., 2012; Yuan et al., 2021). Castilla-Rho et al. (2015) 
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partially include this in heuristics behavior by including ‘history’ of risk 

accumulating where agents learn to avoid risky investments. Theory of Planned 

Behavior (TPB) focuses on farmer intention, shaped by agent attitudes, 

subjective norms, and perceived control, as the main determinants of 

implementing a certain behavior (Pouladi et al. 2019; Kaufmann et al., 2009, 

Yang et al., 2020). Pouladi et al. (2019) used TPB to assess farmers’ decisions on 

the conservation of water resources in the Zarrineh River Basin, Iran. Prospect 

Theory (PT) takes into account the differences in risk preferences of agents with 

the idea that people are much more sensitive to losses (risk-averse) and 

evaluates possible future outcomes differently based on the subjective 

probabilities rather than objective probabilities (Gonzalez-Ramirez et al., 2018; 

Ng et al., 2009; Ding et al., 2015; Balbi et al., 2013). Ng et al. (2011) applied PT to 

model farmers' crop and best management practice decisions where farmers 

maximize total utility as a function of their perceptions of future conditions and 

risk attitude.  

2.3.2.2 Simulating social interactions in ABM-AWM 

Social interactions among individuals play a critical role in influencing 

individual responses and decisions (Barreute et al., 2004; Schreinemachers et al., 

2007, 2009; Ng et al., 2011). The specific sets of individual behaviors influenced 

by neighbor’s decisions and behavior are also referred to as sideward looking 

theories (Müller-Hansen et al., 2017). Agents can interact, observe, or share 

information with other similar agents (i.e., horizontal interactions) or with 

higher authorities, governments, markets (i.e., vertical interactions), or both. We 

focus on the former as the latter act more like constraints or incentives for 

individual behavior (Aghaie et al., 2020). Of the reviewed papers, only one-third 

incorporate agent social interactions or sideways looking theories (Figure 2.2b).  
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These ABM-AWM have used social interactions to model diffusion and 

adoption of adaptation practices (Berger 2001, Schreinemachers and Berger, 

2011; Schreinemachers et al., 2007, 2009; Ng et al., 2011), mimicking of 

behaviors (such as cooperative or non-cooperative behavior) and decisions 

regarding cropping practices (Farhadi et al., 2016; Nikolic et al., 2012; Castilla-

Rho et al., 2015; Barreteau et al., 2004; Bazzana et al. 2020; Cai and Xiong, 2017; 

Ghazali et al., 2018).  

The model of diffusion is based on a principle that agents mimic and learn 

from other farmers’ decisions. Most ABM-AWM have employed social influence 

as a model of diffusion (Young, 2009), where adoption of practices is modeled as 

threshold functions. In these models, agents adopt practices or interventions 

once a certain threshold of the population has adopted them (Schreinemachers 

et al., 2007; 2009; Schreinemachers and Berger, 2011; Farhadi et al. 2016; Cai 

and Xiong; 2017). Order of adoption between agents is based on agent 

behavioral values such as innovativeness or risk behavior, which can be either 

based on empirical data or randomly allocated to agents.  

Another model of diffusion used is the contagion model, where agents adopt 

interventions when they meet others who have adopted them (Young, 2009; 

Holtz and Pahl Wostl; 2012). In this model, the diffusion of an innovation is 

modeled as a self-reinforcing process that tends toward a final saturation level 

of adopters (Holtz and Pahl Wostl; 2012). For example, Nikolic et al. (2012) 

modeled social interactions where farmers are able to imitate the cropping 

patterns of neighbors resulting in higher yields during the previous season. 

The third type of diffusion mode is the social learning model of diffusion 

where agents also rationally evaluate, rather than adopting it based on whether 

others have, the evidence of proposed benefits of interventions generated by 

prior adopters (Young, 2009). The use of social learning in ABM-AWM is 
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however limited (Ng et al. 2011; Daloglu et al. 2014; Perello-Moragues et al., 

2019). For example, Ng et al. (2011) used social learning where agent adoption 

is influenced by variances of the net return on the adoption of interventions, 

which decreases as more people adopt it.  

Extensive use of the social influence diffusion model, with its roots in the 

study of hybrid seed corn in the USA in the 1940s (Rogers, 2004), has been a 

leading theory of agriculture extension work employed in many international 

rural development programs and research (AgriFutures, 2016). Application of 

the diffusion model in the field often includes identifying lead or progressive 

farmers (more innovative or more risk-taking) who are trained or provided 

support for interventions with the assumption that others will learn and mimic 

their practices (Tsafack et al., 2015; Franzel et al., 2019).  

However, the application of the theory can be a source of inequity as the 

expectation that introduced practices will trickle down from lead farmers 

(mostly more progressive and economically well-off) may not happen 

(AgriFutures, 2016; Monu, 1995). This is so because diffusion models often 

assume homogenous social systems with respect to the introduced technology, 

which is often not the case (Monu, 1995). Empirical field research has shown 

that the decision making on adoption is influenced by a range of factors including 

preferences and socio-economic and ecological constraints (Shilomboleni et al., 

2019), social groups, clans, acceptability (de Roo et al., 2019), attitude, cultural 

norms, and abilities (Daniel et al., 2019; Kaufmann et al., 2009). Thus, there is a 

need to internalize and incorporate the wealth of empirical field research and 

move away from the use of a simplistic threshold-based approach as often done 

in ABM-AWM (Kaufmann et al., 2009). 



 

38 

 

2.3.3 Modeling inequitable outcomes of AWM 
interventions in ABM-AWM 

Modeling inequitable outcomes resulting from heterogeneities in social, 

economic and biophysical capital of farm/farmers requires an accurate and 

appropriate representation of agents in the modeling domain. Representation of 

ABM-AWM deals with how agents (farmers or farms) are defined in terms of 

their socio-economic characteristics and location in space. This requires two 

main considerations: 1) Each farmer located within the study domain should be 

represented to simulate their impact on hydrology and vice versa and 2) farmer 

characterization in the model should capture their relevant socio-economic 

characteristics and associated biophysical endowments. 

2.3.3.1 Representation of farmers in ABM-AWM 

Our reviews show there are two broader methods of representing spatially 

distributed farmers: modeling individual farmers (Schreinemachers et al., 

Berger, 2001; Arnold et al. 2015) and modeling aggregate farmers (Hu and 

Beattie; 2019, Farhadi et al. 2016; Hu et al., 2015). The latter has also been 

termed as areal agents by Wens et al. (2019). There can also be non-spatial 

agents such as institutions and markets (Wens et al., 2019). These are not 

reviewed here explicitly as the focus is on farmers or farms, but they are implicit 

in agents’ behavior where they set rules and constraints. 

In ABM-AWM modeling individual agents, agents are assigned to discrete 

spatial units (e.g., plots, grids) in the model spatial domain where each agent 

interacts and provides feedback to the underlying environment and hydrological 

flows (Schreinemachers et al. 2009, 2007; Berger, 2001, Arnold et al., 2015; Van 

Oel et al., 2010; Noel and Cai, 2017). These ABM-AWM differ depending on 

whether the entire population is modeled (Schreinemachers et al. 2009; Arnold 

et al. 2015) or only a subset of the population is modeled (Ng et al., 2011; Holtz 
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and Pahl Wostl, 2012). For example, Schreinemachers et al. (2007) modeled soil 

fertility and poverty dynamics of all 520 farmers in two village communities in 

Uganda by dividing the spatial domain into grid cells of area 0.5 ha, 

corresponding to the size of the smallest agricultural field cultivated in the study 

area. In contrast, Holtz and Pahl Wostl (2012) divided the farmers based on land 

size and simulated only 100 farmers per land size class in Upper Guadiana, Spain. 

Results were extrapolated from this representative population to assess the 

influence of farmer characteristics on land-use change and associated 

groundwater over-use.  

Modeling a subset of the population, taken as representative of the total 

population, limits model runs when the spatial domain is large, saving 

computational costs. Conclusions on broader dynamics may be drawn from this 

representative population (Ng et al., 2011; Holtz and Pahl Wostl, 2012; Troost 

and Berger, 2014). However, this may restrict the complete representation of all 

possible spatial and social interactions among the agents. The challenge is also 

to build the best representative typologies that can explain the farmer's 

decision/behavior. 

In ABM-AWM modeling aggregated agents, individual agents are aggregated 

and are represented as one super-agent, over a larger region such as a sub-basin, 

watershed, or a city (Hu and Beattie, 2019; Nouri et al. 2019; Nikolic et al. 2011; 

Xiao et al. 2018). It is the aggregated responses and feedback of agents that are 

simulated and integrated with biophysical systems (Hu et al., 2017; Hu and 

Beattie; 2019; Nikolic et al., 2011). For example, Hu and Beattie (2019) modeled 

46 counties with each county aggregated as one farmer, Farhadi et al. (2016), 

and Nikolic et al. (2011) modeled 13 and 28 sub-watershed/basins, each acting 

as one independent agent. Aggregation of agents can facilitate practical model 

development, especially where large basins are modeled. However, aggregated 
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agents limit the model's capability to include local variability and heterogeneity, 

missing out on equity dynamics within a population (Berger and Ringler, 2002). 

This is critical, especially in an unequal society where the adoption and response 

to AWM and the impact of AWM externalities could be quite different within the 

population. 

2.3.3.2 Representing farmer heterogeneity in ABM-AWM 

Agent characterization in ABM-AWM is a way to represent the heterogeneity 

of a population. Representing population heterogeneity is important to model 

inequities in cost and benefits sharing and capacities of the agents to adapt AWM 

practices. Agents are characterized by their socio-economic characteristics, 

biophysical endowments, and behavioral characteristics. Behavioral 

characteristics define agent behavior and decision-making and are discussed in 

the next section.  

Our review shows that most of the studies consider socio-economic 

characteristics of households and farms (family, family composition, household 

composition, age, sex, area) (Table 2.2). This determines the availability of labor, 

consumption, and expenses of agents. Other often used socio-economic 

characteristics, based on the objective of ABM-AWM, are ownership of assets, 

machinery, and capital, access to extension services, credit, markets, and off-

farm income sources. These all determine the economic, social, and knowledge 

endowment of agents. The use of a wide range of characteristics already shows 

the importance and centrality of considering the heterogeneity of agents in ABM-

AWM studies. The data for these socio-economic characteristics are either 

collected from existing microeconomic datasets (obtained from sample surveys, 

censuses, and administrative systems) (Noel and Cai, 2017) or through primary 

surveys (such as household surveys and focus group discussions) (Wens et al., 

2019; Van Oel et al., 2010, Pouladi et al., 2019).  
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Table 2.2: Range of Socio-economic, biophysical endowments and BH that 

have been used in the ABM-AWM to characterize agents. 

Characteristics Type Example studies 

family and farm size, labour, 
household composition  

So
ci

o
-e

co
n

o
m

ic
 

Wens at al., 2020; Becu et al., 2003; Arnold et 
al. 2015; Schreinemachers and Berger 
(2011); Schreinemachers et al. 2007 

Access to extension services, 
market; Social network 

Wens at al., 2020; Arnold et al. 2015; 
Barreteau et al. 2004 

Off-farm income sources 
[livestock etc] 

Wens at al., 2020; Schreinemachers and 
Berger (2011) 

Land and Water rights Arnold et al. 2015; g et al. 2011; Wens at al., 
2020; Ng et al. 2011 

Assets ownership, 
machinery, capital 

Arnold et al. 2015; Troost and Berger (2014); 
Holtz and Pahl Wostl (2012) 

Soil characteristics 

B
io

p
h

y
si

ca
l 

en
d

o
w

m
en

ts
 

Arnold et al. 2015; Ng et al. 2011; 
Schreinemachers et al. 2007 

Precipitation;irrigation water Arnold et al. 2015; Van Oel et al., 2010 

Location of the agents 
farms[upsteam/downstream, 
command area , flood plain] 

Schreinemachers and Berger (2011); Van Oel 
et al., 2010; Schluter and Pahl-Wostl (2007) 

Foresight, and risk aversions 

B
eh

av
io

ra
l 

 

Ng et al. 2011; Dziubanski et al.2020 

Membership in a population 
cluster; Innovation segment 

Schreinemachers and Berger (2011); 
Barreteau et al. 2004 

Knowledge Schreinemachers et al. 2007; Hu and Beattie 
(2019) 

(non)Cooperative behavior  Farhadi et al. 2016 

Sensitivity to crop water 
stress 

Noel and Cai (2017); Hu and Beattie (2019) 
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Biophysical endowments of agents are mostly derived from underlying maps 

of biophysical datasets (e.g., soil, elevation, rain). Biophysical endowments 

characteristics considered (Table 2.2) differ markedly between studies but most 

consider data on soil type, elevation, precipitation, and irrigation sources. In 

addition, relative locations of the agents’ farms (such as upstream or 

downstream of other agents, command area, flood plains, etc.) have been used 

to differentiate agents. These data are mostly acquired through secondary data 

and geographical databases such as cadastral maps, digital elevation models, 

land use maps, soil maps, etc.  

One critical aspect that is of importance while providing biophysical 

endowments to agents is how agent's location in space is determined. Agent 

location in space is of paramount importance as this determines their 

biophysical endowments (e.g., soil quality, water availability), interactions with 

hydrology, neighbors, and social groups. Our review shows that despite the 

importance of location, only a few studies use real location data to distribute 

agents spatially (Schreinemachers et al., 2007; Noel and Cai, 2017; Arnold et al., 

2015; Van Oel et al., 2010). For example, Noel and Cai (2017) use certified 

irrigated acres from the existing database on pumping wells to delineate the 

agents. The results of our review are similar to the conclusion of Kremmydas et 

al. (2018), who found that only 2 of the 32 reviewed papers used observed 

location data. 

2.4 Synthesis 

The review confirms the ability of ABM-AWM to expand the capabilities of 

conventional AWM studies by incorporating human-water feedback (a key 

limitation of conventional AWM studies and models) and capturing the negative 
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externalities possibly generated by AWM interventions and unravelling the 

unintended consequences including unsustainable and inequitable outcomes. 

The review shows that methods employed by ABM-AWM can successfully 

integrate a range of farmer behavior including the adoption of AWM 

interventions (Wens et al., 2020; Ng et al., 2011; Schreinemachers and Berger, 

2011), investing in farming inputs, choice of crops (Becu et al., 2003; Arnold et 

al., 2015; Schreinemachers and Berger, 2011; Schreinemachers et al. 2009) and 

land use (Troost and Berger, 2014) and irrigation (Van Oel et al., 2010; Nikolic 

et al., 2012; Xiao et al., 2018). This modeling of farmers' behaviors and decisions 

makes the scenarios endogenous, thus allowing the modeling of long-term 

coevolutionary dynamics. For example, Ghoreishi et al. (2021), show how ABM 

that includes farmers' behavior can shed light on long-term rebound 

phenomenon where adoption of efficient improving measures leads to increased 

water use. 

Farmer's decisions and resulting co-evolutionary dynamics resulting from 

AWM interventions have been successfully linked to their subsequent impacts 

on natural and social systems (Wens et al., 2020; Schreinemachers et al., 2007, 

2009; Berger 2001; Dziubanski et al., 2020). This includes explicitly modeling 

AWM hydrological externalities including agricultural water use impact on 

groundwater overexploitation (Du et al., 2020), water quality (Daloğlu et al. 

2014), and downstream flows (Pouladi et al. 2019). ABM-AWM do this by linking 

farmers and societal modules (human systems) with coupled spatially 

distributed surface (Du et al., 2020; Becu et al., 2003) and groundwater 

hydrological models (Noel and Cai, 2017; Hu and Beattie, 2019) (water systems). 

For example, Hu and Beattie (2019) successfully modeled the impact of farmers' 

irrigation decisions on groundwater table levels in the High Plains Aquifer in the 

USA and Van Oel et al. (2010) simulated the impact of farmers’ decisions on 
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spatial and temporal distribution of surface water resources in a river basin in 

Brazil. 

Further, the modelling of human-water feedback in ABM-AWM can capture 

inequitable impacts of AWM interventions on human-water systems. It does so 

by capturing and modeling individual farmers based on their heterogeneous 

socioeconomic characteristics (Barreteau et al., 2004; Ng et al., 2011; Ohab-Yazdi 

and Ahmadi, 2018; Yuan et al., 2021). For example, ABM-AWM have modeled 

inequitable adoption of AWM interventions based on land size and financial 

resources (Wens et al., 2020; Holtz and Pahl Wostl, 2012); (in)equity in water 

allocation (Mirzaei and Zibaie, 2020), and inequitable water distribution and 

interaction between upstream and downstream farmers (Becu et al, 2003; Van 

Oel et al., 2010; Barreteau et al. 2004). Yet the review also brings to fore the 

remaining methodological gaps of ABM-AWM in resolving AWM externalities 

and the resulting unsustainable and inequitable outcomes. 

2.4.1 Gaps and future research need in ABM-AWM to 
unravel negative externalities 

Despite all the advances, some methodological gaps remain that need to be 

filled to fully exploit the strengths of ABMs in context of AWM interventions. 

These gaps mainly arise from missing necessary methodological ingredients 

(Table 2.1) in ABM-AWM that limit their capacity to unravel one or more of the 

externalities. In the section below, we identify these gaps under each component 

of ABM-AWM and the research needed to bridge these gaps (Table 2.3). 
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Table 2.3: Identified remaining research gaps and future ABM-AWM research 

needs to bridge these to fully unravel the negative externalities of AWM 

interventions. 

 Gaps and future research 

N
e

g
a

ti
v

e
 h

y
d

ro
lo

g
ic

a
l 

e
x

te
rn

a
li

ti
e

s 

G
a

p
s 

No consideration of hydrological impacts in ~ 25% of studies, thus 
ignoring any negative hydrological externalities of AWMs. 

Lack of inclusion of spatially distributed hydrological models and 
integrated  surface-groundwater systems limiting ABMs capacity to 
model spatially distributed and inequitable impacts of AWM 
interventions 

F
u

tu
re

 r
e

se
a

rc
h

 

Supplement or complement studies where the effects related to AWM 
interventions are simulated (e.g., their adoption, socio-economic 
impacts) but subsequent impacts of the same on hydrology are not 
accounted. This is needed to link the impacts of farmers' decisions (e.g., 
adoption of AWM interventions) on water use.  

Expand the use of spatially distributed and integrated hydrological 
models to capture spatially explicit AWM externalities. This will help 
better resolve hydrological externalities like downstream – upstream 
impacts and interactions of linked surface-groundwater stocks. 

S
o

ci
e

ty
 f

e
e

d
b

a
ck

 

G
a

p
s 

Over-reliance on rational behavior and simple heuristics to model 
individual behavior and decisions. Also, there  is lack or very simplistic 
representation of social interaction based on simple diffusion and 
contagion models 

F
u

tu
re

 r
e

se
a

rc
h

 

Move away from rational and simple heuristics to behavioral theories 
grounded in social science (e.g., Theory of planned behavior, bounded 
rationality, prospect theory) and use rich empirical data collected from 
the field to formalize these theories. This is needed to include the 
impact of a range of socio-economic-cultural-behavioural (e.g., 
farmers' perception of risk, confidence) characteristics on farmers' 
decisions. 

Assimilation of more nuanced and holistic social interaction and 
diffusion models, thus moving away from simple diffusion and 
contagion models. This is needed to account for empirical field 
research studies that show community or neighbors’ influence on 
farmers' decisions is mediated through a range of social-cultural and 
behavioral factors. 
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In
e

q
u

it
a

b
le

 i
m

p
a

ct
s 

G
a

p
s 

Limited ability to account for inequitable impacts of AWM 
interventions among farmers in ABMs where aggregated farmers (e.g., 
watershed, city, basin) are simulated. 

Limited inclusion of farmers' spatial locations with most of ABMs using 
random allocation of farmers in the study area. This ignores the 
criticality of spatial location that determines farmers’ biophysical and 
social capital. 

F
u

tu
re

 r
e

se
a

rc
h

 

Supplement or complement ABMs where aggregated agents are 
modelled with studies that model individual agents, thus accounting 
for the heterogeneity of farmer population. One way is to model a 
subset of agents based on predefined typologies and extrapolate the 
results for the population. This presents a way forward, especially for 
studies where the numbers of farmers to be simulated are very high 
and thus computationally expensive. This is needed to bring out 
inequitable access of a population to, and subsequent impacts of, AWM 
interventions (and associated externalities) (e.g., access to 
groundwater, subsidies, inequitable adoption). 

 Attribute more realistic spatial locations to farmers either using 
collected data or using existing microeconomic databases (e.g., census, 
sample surveys). This is needed to account for differences in 
biophysical capital among farmers that may drive differential adoption 
of, and benefits from, AWM interventions (e.g., location near water 
harvesting structures, more productive lands).  

2.4.1.1 Modeling negative hydrological externalities 

Despite AWM interventions being intricately linked with hydrology (Section 

2), our review shows that a quarter of ABM-AWM simulate dynamics at 

individual farms or administrative regions (Figure 2.1a) where spatial scale is 

not conducive to model hydrological interactions. In these studies, the subject of 

inquiry is not hydrological changes but dynamics such as emergent land use, 

adoption of interventions, and changes in the cropping system. Given that AWMs 

are intricately linked with hydrology, the simulated dynamics can cause 

hydrological externalities leading to unsustainable and inequitable outcomes. 

Thus, there is a need to supplement/complement these studies with hydrological 

models to account for and predict any negative hydrological externalities. 
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Additionally, even in ABM-AWM with the capability to model water flows (i.e., 

the spatial scale of the watershed, and basins), methodological gaps limit their 

capacity to completely resolve the hydrological externalities of AWM 

interventions. This includes a lack of incorporation of spatially distributed 

models, limited inclusion of groundwater systems, and almost non-existent 

integrated surface-groundwater models (Figure 2.1a and 2.1b). Spatially 

distributed hydrological models are required to capture the spatial 

heterogeneity of both biophysical systems and agents in the region and capture 

spatially explicit hydrological externalities of AWMs. The lack of spatially 

distributed models means that the impact of hydrological changes on individual 

farmers and vice versa cannot be modeled. This limits the capability of ABM-

AWM to resolve inequitable impacts. Additionally, the non-inclusion of the 

groundwater system and lack of integrated SW-GW limits ABM-AWM capability 

to capture the holistic hydrological impact of AWM interventions that often leads 

to reallocation/changes within SW-GW systems.  

Our review shows a clear need to enhance the representation of hydrological 

systems in ABM-AAMs if they are to be used to assess the negative hydrological 

externalities of AWM interventions. This requires coupling ABMs with spatially 

distributed and integrated models. This can be done by developing hydrological 

models as part of ABMs or coupling ABM code with existing open-source models 

(e.g., GSFLOW, SPHY). An example of the latter is by Du et al. (2020) where 

GSFLOW, an integrated surface-groundwater model, was tightly coupled with 

ABM at the source code level. 

2.4.1.2 Modeling society feedback 

A realistic representation of individuals’ behavior and interactions forms the 

basis of modeling society's unexpected and emergent dynamics. This requires a 

suitable, accurate, and dynamic representation of agent behavior and decision-
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making processes. Though a range of farmer decision-making behavior has been 

simulated, there remain gaps in terms of incorporating appropriate behavioral 

theories in ABM-AWM. The empirical field research has shown that human 

behavior is shaped by a range of factors such as socio-economic, cultural norms, 

risk attitudes, perceptions, and other psychological characteristics (Daniel et al., 

2019; Pouladi et al. 2019; Kaufmann et al., 2009). However, there is a large gap 

in incorporating the same in ABM-AWM. Our review shows that the use of 

rational choice theory and simple heuristics is still dominant (Figure 2.2a). The 

rational theory assumes agents make rational choices and discount the impact 

of a range of factors such as socio-economic, cultural norms, risk attitudes, and 

other psychological characteristics or both. Similarly, farmer heuristics devised 

based on experience, accumulated knowledge, and preferences lack the 

theoretical background to explain the underlying reasons for the same. 

There is limited but increasing use of theories grounded in social science and 

field research to account for these constraints (e.g., Protection Motivation 

Theory, prospect theory, and Theory of Planned Behavior). There is a greater 

need to formalize these theories in ABM-AWM. A general lack of sufficient and 

good-quality primary data on agent behavior makes derivation, validation, and 

verification of agent behavioral rules difficult (Hu et al., 2017). Multiple studies 

have shown that this can be done with primary data collection through surveys 

or focus group discussions (Kaufmann et al., 2009, Pouladi et al. 2019; Wens et 

al., 2020). Additionally, there is a need to incorporate further behavioral models 

such as risk-, attitude-, norm- , ability-, self-regulation- (RANAS) model originally 

developed for the WaSH sector (Mosler, 2012). RANAS combines multiple 

important behavioral theories (including the theory of planned behavior) to 

explain and change behavior and can be adapted to a range of situations and 
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already provides a standard template of questions to quantify behavioral factors 

and analyze the behavior (Callejas et al, 2021). 

Another gap in ABM-AWM studies is the lack of incorporation of social 

interactions among agents (Figure 2.2b). In limited studies where social 

interaction is in place, social interaction is largely modeled simplistically 

following simple thresholds or contagion-based diffusion model approaches. 

These approaches assume agents adopt interventions or behaviors once certain 

other people have adopted, or they come in touch with someone who has 

(Schreinemachers et al., 2007, 2009; Ng et al., 2011). These are found to ignore 

a range of factors influencing adoption, including preferences and socio-

economic and ecological constraints as has been showcased in multiple 

empirical field research studies (Daniel et al., 2019; Kaufmann et al., 2009). Thus, 

like individual theories, there is a need to expand the ABM-AWM social 

interactions theories in use, employing more holistic adoption and diffusion 

models.  

2.4.1.3 Modeling inequitable outcomes  

There remain gaps in fully exploiting the ABM capabilities to resolve spatially 

explicit and inequitable externalities of AWM interventions. Multiple ABM-AWM 

aggregate agents over an area (e.g., region, basin, watershed) and simulate their 

aggregated response. In large areas, this paves the way for easy implementation 

of the model where the computational cost of modeling each agent could be very 

high. However, such representation may mask both the heterogeneity of 

responses within the population and the inequitable impacts of AWM 

interventions. Thus, while these studies may be beneficial to simulate lumped 

dynamics, there is a need to supplement/complement them with disaggregated 

studies that can account for this heterogeneity of farmer populations. One other 

way to reduce computation cost and time are to model a subset of agents based 
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on predefined typologies and extrapolate the results (Ng et al., 2011; Holtz and 

Pahl Wostl, 2012). However, to completely account for spatial interaction and 

individual farmer dynamics, the best way is to model individual agents.  

Another main gap is that farmer characterization lacks spatial 

location/attribution. This is critical as the spatial location of farmers determines 

their biophysical capital and neighbors. A completely random allocation will not 

reflect reality, especially where good and productive lands (better soil, more 

access to water) might be owned by better-off farmers (Bhattarai et al., 2002, 

Sharma et al., 2008). Thus, there is a need for ABM-AWM to locate agents based 

on some plausible evidence. Accessing the location of each farmer, especially in 

a large area, may not always be feasible given labor and cost constraints along 

with concerns of data privacy. A way forward could be the use of existing 

microeconomic datasets at multiple levels (e.g., census, sample surveys) to locate 

populations and their endowments within a constrained area. One example is 

the study by Noel and Cai (2017), who used the existing census of pumping wells 

with their spatial location to delineate the agents and irrigated area. 

Despite the strength of ABM-AWM to model human-water feedback, one key 

tradeoff involved is the inherent uncertainty in its predictions, relative to 

conventional AWM models. This is because human actions are inherently 

uncertain and human-water feedback are still poorly understood, especially over 

longer time periods (Srinivasan et al., 2017; Di Baldassarre et al., 2016). The 

calibration and validation of ABM-AWM is more complex in comparison to that 

of the convention AWM models (Sivapalan and Blöschl, 2015; Pande and 

Sivapalan, 2017; Troy et al., 2015). Sivapalan and Blöschl (2015) discuss a way 

to deal with the parameter estimation, validation, and uncertainty assessment of 

sociohydrology models in this regard. However, ignoring the human water 

feedback in human dominated systems in favor of more conventional models 
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using a scenario-based approach may lead to imprecise and unrealistic 

predictions (Sivapalan et al., 2012) and as we argue, lead to negative unexpected 

consequences over the long term. Thus, a balanced use of conventional AWM 

models and ABM-AWM is required. For long term strategic investment decisions, 

ABM-AWM are critical to understand the human-water dynamics and scale 

interactions and explore the whole space of possible future trajectories 

(including unintended and irreversible consequences) (Sivapalan and Blöschl, 

2015; Srinivasan et al., 2017; Pande and Sivapalan, 2017).  

2.5 Summary 

AWM interventions have been widely implemented globally with well-

documented benefits and positive externalities. However, ill-planned AWM 

interventions can lead to negative externalities resulting from unintended 

spatio-temporal changes in hydrological flows and unexpected societal 

feedback. These often lead to long-term unsustainable and inequitable impacts. 

To avoid this, interdisciplinary approaches that can model the coevolutionary 

dynamics of coupled natural-human systems are needed. Sociohydrology, 

studying bidirectional feedback in coupled natural-human systems with a focus 

on hydrology, has been proposed and increasingly used in this context. Among 

different methods employed in sociohydrology, the use of agent-based modeling 

(ABM) has been increasing as it provides the unique capability of modeling 

coupled natural-human systems while explicitly accounting for the role of 

individuals and micro-level constraints.   

Our review shows that ABMs have been extensively used in agricultural 

systems to assess the adoption of AWM interventions and to simulate their 

impact on natural and social systems. Many of these studies have explicitly 

modeled unsustainable and inequitable outcomes. However, there are gaps in 
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methods employed that require further research, especially to interpret spatially 

explicit and inequitable outcomes (Table 2.1). The main gaps include: 1) lack of 

spatially distributed and integrated hydrological models, which limits the 

capacity of ABM-AWM to resolve hydrological negative externalities; 2) over-

reliance on rational and simple heuristics for modeling individual behavior and 

3) lack of inclusion of social interactions. Our review highlights the need for 

further research and development of ABM-AWM to fill these limitations and 

gaps. Finally, with ABMs unique capabilities to unravel the dynamic interactions 

of heterogeneous biophysical and social systems, they should be widely used to 

plan, design, and implement AWM interventions to avoid negative hydrological 

externalities and unexpected societal feedback resulting in long-term 

unsustainable and inequitable outcomes. 
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3.1 Introduction 

Reliable and adequate availability of freshwater for irrigation is critical for 

global food security. With climate change and increasing climate variability 

leading to more extremes in water availability, expressed as droughts and floods, 

(United Nations, 2019; IPCC, 2021) irrigation is more important than ever (Smit 

and Skinner, 2002; Ignaciuk and Mason-D'Croz, 2014). Groundwater, being more 

reliable and more widely available than surface water and largely protected from 

evaporation losses, plays a critical role in providing irrigation water, especially 

in semi-arid areas (UN-WWAP, 2022), and supplies 38% of irrigated areas 

globally (Siebert et al., 2010). However, in many parts of the world, 

overdependence on groundwater irrigation has led to unsustainable use and 

depletion of groundwater resources (Doll et al., 2012; Bierkens and Wada, 2019).  

To mitigate groundwater depletion and enhance groundwater security for 

irrigation, one strategy that is increasingly applied is managed aquifer recharge 

(MAR) (Zhang et al., 2020; Alam and Pavelic, 2020; Zheng et al., 2021). MAR 

involves strategically recharging aquifers with excess surface water through 

infrastructure such as check dams or recharge wells (Dillon et al., 2019; Alam 

and Pavelic, 2020). The benefits of MAR in these cases include enhanced 

groundwater storage in dry seasons and drought periods supporting continuous 

irrigation and/or mitigating depletion (Prathapar et al., 2015; Dillon et al., 2019; 

Zhang et al., 2020). MAR is contingent on the availability of harvestable source 

water for augmenting recharge and storage, like flood waters or treated 

wastewater, which may be seasonally or perennially available, respectively. 

India, as the largest user of groundwater globally, is promoting MAR to 

mitigate negative impacts of extensive groundwater use through multiple 

central (CGWB, 2020) and state government programs and policies (Verma and 

Shah, 2019; CWGB, 2020). One notable example is Gujarat where more than 
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90,000 MAR structures (in the form of check dams) have been constructed since 

the year 2000 with the financial support (subsidies) of government and non-

government organizations under the government participatory scheme ‘Sardar 

Patel Sahbhagi Jal Sanchay Yojana (Sardar Patel Participatory Water 

Conservation Program)’ (Shah et al., 2009; NWRWS, 2018; Verma and Shah, 

2019; Patel et al., 2020). An extended drought in 1999 – 2002, during which the 

average rainfall was about 35% less than normal (Pai et al., 2014), greatly 

accelerated the development of check dams, facilitated by government support 

(Patel, 2007; Patel et al., 2019). 

Increased MAR implementation, as a result, has been widely reported as 

having a positive impact on groundwater storage in the region (Shah et al., 2009; 

Jain, 2012; Patel et al., 2020). While a number of studies have analyzed the 

increasing groundwater storage in Gujarat (Shah et al., 2009; Jain, 2012; Bhanja 

et al., 2017; Kumar and Perry, 2018; Patel et al., 2020), they disagree on the 

underlying explanation. Improved groundwater storage has been attributed to a 

number of factors: increased rainfall (Shah et al., 2009; Dinesh and Perry, 2018); 

reduced groundwater abstraction brought about by rationing schemes enabled 

by separating agriculture and non-agriculture electricity feeders (Shah et al., 

2008; Bhanja et al., 2017); inter basin transfer of water (Kumar and Perry, 2018); 

and enhanced recharge from MAR, mostly through check dams (Shah et al., 2009; 

Jain et al., 2012; Patel et al., 2020). The diverging explanations among the studies 

demonstrate the lack of clarity in attributing the increase in groundwater 

storage, including the role of MAR. This is because any change in groundwater 

storage is a result of numerous factors associated with the short- and long-term 

dynamics of supply (e.g. rainfall amount and intensity, performance of MAR) and 

demand factors (e.g., changing cropping patterns, irrigated areas, irrigation 
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practices). Previous studies have not systematically accounted for these 

complexities. 

The main limitations associated with the previous studies include: 1) focusing 

on recharge enhancement while not accounting for increased groundwater 

irrigation demand for agriculture (Bhanja et al., 2017; Kumar and Perry, 2019; 

Patel et al., 2020); 2) neglecting the long-term change in rainfall and inter-annual 

variability in rainfall (Shah et al., 2009; Bhanja et al., 2017); 3) focusing on small 

scale assessments of MAR structures or micro-catchments (Patel et al., 2002; 

Sharda et al., 2006) leading to high uncertainty when attempting to extrapolate 

results to large scale; and 4) focusing on state level impacts (Shah et al., 2009; 

Bhanja et al., 2017) and thus discounting spatial variability and heterogeneity in 

biophysical factors (hydrogeology, soil, water demand) (Kumar and Perry, 2018) 

and the interconnectedness of MAR structures within a hydrologic unit (Mozzi 

et al., 2021). 

With the progressive priority and increased investment being made in MAR 

in Gujarat and other states in India (Verma and Shah, 2019), there is clear and 

urgent need to assess the effectiveness of MAR at an appropriate intermediary 

scale and for relevant contexts. This requires a long-term integrated analysis, 

accounting for the dynamics of both supply and demand on a catchment scale, 

which this study aims to carry out. In this study, we analyze the dynamics of 

groundwater storage in conjunction with changes in rainfall, irrigation demand 

and increase in supply through MAR in Gujarat. With this, we aim to establish the 

contribution of MAR to groundwater storage and agricultural production 

relative to other key factors.   
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3.2 Study area 

The analysis is carried out for Kamadhiya catchment (1,150 km2), located in 

the Saurashtra region (~6,600 km2) of the western state of Gujarat, India (Figure 

3.1a). Kamadhiya catchment is an upstream catchment of the Bhadar basin, one 

of the larger river basins in the region. Kamadhiya catchment drains to Bhadar 

dam (~240 million cubic meters (MCM) (Figure 3.1b), the largest dam supplying 

both irrigation and drinking water in the Bhadar basin (NWRWS, 2010). While 

the catchment scale considered here provides a closed hydrologic unit for 

assessment and accounts for the limitation of the small spatial scales of earlier 

studies focusing on specific MAR structures or micro-watersheds, it still falls 

short of a basin-scale assessment as it represents only 17% of the entire basin 

area. Therefore, attempts to extrapolate these findings to the basin scale would 

require further investigation. 

Saurashtra region has been the focus of development of MAR in India (mostly 

in the form of check dams, hereafter referred to as CD) (Shah et al., 2009; Patel 

et al., 2020). An estimated 27,000 CDs were constructed across Saurashtra 

before 2018 (NWRWS, 2018). Within Bhadar basin, the number of CDs increased 

from 484 (24.0 MCM storage) in 1999 to 4,385 (103.3 MCM storage) by the end 

of 2010 (Figure 3.1c) (Kamboj et al., 2011) with more than 90% of CDs 

constructed after 2000, primarily during 2001-2002, in response to the 

extended 2000 – 2002 drought (Patel, 2007; Patel et al., 2019). 

In the Kamadhiya catchment, the total number of CDs in 2006 was estimated 

to be 576 with total storage capacity of 12.7 MCM (Patel, 2007). With lack of time 

series data for Kamadhiya catchment, we assume the same development curve 

as in Bhadar basin with ~90% of CDs (at the end of 2006) constructed post 2000 

during 2001-2002. Also, we further assume that the rate of development of new 

CDs post 2006 will be approximately matched by the rate of attrition of existing 
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CDs, as they lose functionality from lack of maintenance (e.g., siltation, collapse) 

(Kumar and Perry, 2018; Mozzi et al., 2021). Thus, based on the density of CDs 

in the catchment, we term the period until 2002 as pre-CD, during which CD 

density was relatively low (10% of CDs in 2006 = 58 CDs ~ 1 CD per 20 km2), 

and the period after 2002 as post-CD, during which CD density had increased 

ten-fold (100% of CDs in 2006 = 576 CDs ~ 10 CDs per 20 km2). 

 

Figure 3.1: Location of A) Saurashtra region and Bhadar basin in Gujarat, 

India; B) Kamadhiya catchment, part of Bhadar basin; and C) timeline of number 

of check dams in the Bhadar basin. 



 

59 

 

3.2.1 Climate 

The climate of the Kamadhiya catchment is semi-arid with an average annual 

rainfall of 638 mm yr-1 (1983-2015) (Pai et al., 2014). More than 90% of the 

rainfall is concentrated in the four monsoon months from June to September. 

Rainfall is also associated with high inter-annual variability with a coefficient of 

variation of 46%, estimated for the period 1983-2015 from the India 

Meteorological Department (IMD) gridded rainfall dataset (Pai et al., 2014). 

Average annual mean temperature is 27ᵒC with minimum temperature observed 

in January with a mean of 20.6ᵒC and the maximum temperature observed in 

May with a mean of 30.7ᵒC (Srivastava et al., 2009).  

3.2.2 Agriculture and irrigation 

Agriculture and irrigation data were available only on an administrative level. 

Thus, we report and use data from Rajkot district and absolute values for the 

catchment are derived using the proportion of catchment area which lies within 

the district (86%). The kharif (monsoon) is the main cropping season where 

groundnut and cotton are the main crops occupying 48% and 41% of total sown 

area, respectively (DoA Gujarat, 2021). Other minor crops in the kharif season 

include bajra (pearl millet) and sesame. Rabi (post-monsoon) season has limited 

cropping area, which is reflected by low annual cropping intensity of 113% 

(DoES Gujarat, 2018). Wheat is the main rabi crop (DoA Gujarat, 2021). Of the 

total net cropped and gross cropped area, 39% and 42% is equipped for 

irrigation, respectively (DoES Gujarat, 2018). During the kharif season, cotton 

requires supplemental irrigation whereas groundnut is rainfed. Rabi crops rely 

entirely on irrigation (DoA Gujarat, 2021). Groundwater is the main source of 

irrigation in the district, accounting for 82% of the irrigated area (DoES Gujarat, 

2018). The main source of surface water in the district is from Aji and Bhadar 



 

60 

 

dams (GGRC, 2015). Irrigation and domestic water supply represent about 95% 

and 5% of the overall water demand, respectively (GGRC, 2015).  

3.2.3 Hydrogeology 

The groundwater in the Saurashtra region is found at shallow depths under 

unconfined conditions in aquifers characterized by parent basalt rock of the 

Deccan trap formation with little primary porosity (Mohapatra, 2013; Patel, 

2007). In the region, deccan trap basalt has weathered upper parts to a depth of 

20-30 m, forming good aquifers, which are tapped for irrigation mostly by large 

diameter open dugwells (Figure 3.2a) (Mohapatra, 2013; MoWR, RD & GR, 

2017a).  

 

 

Figure 3.2: A) Open dugwell commonly used for irrigation in the Bhadar 

basin; B) and C) check dam in the area in dry and wet season, respectively 

(images taken from downstream side). 
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The groundwater well yields are seasonally variable and highest after 

monsoonal recharge (Pavelic et al., 2012). The weathered aquifer is underlain by 

consolidated basalt rocks generally forms a poor aquifer with groundwater 

present in fractured and vesicular zones (secondary porosity) in successive 

basalt flows and tapped by deeper borewells of depth > 150 m (Mohapatra, 2013; 

Patel et al., 2020, MoWR, RD & GR, 2017a).  

3.3 Methods and data 

The analysis is carried out for the period from 1983 to 2015 (33 years). This 

period is divided into the pre-CD (1983-2002) and post-CD (2003-2015) period, 

where the post-CD period indicates the period after the 2000-2002 extended 

drought and after 90% of the CDs were constructed. We assess the impact of CDs 

by estimating and comparing changes, from the pre-CD to the post-CD period (Δ 

= post-CD – pre-CD), specifically in groundwater recharge (ΔGWR) and 

groundwater abstraction (ΔGWA). Since both groundwater recharge and 

groundwater abstraction for irrigation depend on rainfall, which is associated 

with high inter-annual variability, we only compare pre-CD and post-CD periods 

in similar rainfall years classified using standard precipitation index (SPI) (WMO 

and GWP, 2016). We define a year in terms of the hydrological year (June to May) 

and classify years as either dry, normal or wet. Years reported in the subsequent 

analysis refer to the hydrological year (e.g., the year 2001 covers June 2001 to 

May 2002). 

We assume that positive difference in groundwater recharge (ΔGWR), 

between pre-CD and post-CD periods for years under the same SPI classification, 

will primarily come from increase in groundwater recharge from new CDs (i.e., 

ΔGWR = ΔGWRCD). Balance of ΔGWRCD (section 3.3.1) and ΔGWA (section 3.3.2) 
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between the pre-CD and post-CD periods is used to estimate the change in 

groundwater storage (ΔGWSE) between the two periods (equation 3.1).   

𝛥𝐺𝑊𝑆𝐸(𝑆𝑃𝐼) = 𝛥𝐺𝑊𝑅𝐶𝐷(𝑆𝑃𝐼)
− 𝛥𝐺𝑊𝐴(𝑆𝑃𝐼)                                                      …..3.1 

ΔGWSE, where E stands for estimated, will be positive if the increase in 

groundwater abstraction (ΔGWA) is less than the increase in recharge (ΔGWRCD) 

and vice-versa. Estimated ΔGWSE is compared with observed groundwater 

storage change (ΔGWSO, section 3.3). Subscript SPI denotes classified years of 

dry (SPI ≤ -0.49), normal (-0.49 < SPI < 0.49) and wet years (SPI ≥ 0.49).  

3.3.1 Change in groundwater abstraction (ΔGWA) 

To estimate change in groundwater abstraction from pre-CD to post-CD, we 

focus our analysis on two main irrigated crops of the region: cotton and wheat. 

Cotton is supplementarily irrigated during the kharif season and wheat is fully 

irrigated during the rabi season. We assume the irrigation water volume derived 

from groundwater is proportional to the fraction of groundwater irrigated area 

in the area. Groundwater irrigated area data was taken from annual agricultural 

statistics as reported by the government (DoES Gujarat, 2018; ICRISAT, 2021) 

and was assumed to be the same for both crops (in the absence of crop-specific 

information). Also, we disregard groundwater abstraction for non-irrigation 

purposes, which is less than 5% in the district (CGWB, 2019). Figure 3.3 gives 

the conceptual flow diagram showing the approach taken to arrive at 

groundwater abstraction (GWA). 
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Figure 3.3: Conceptual flow diagram showing the approach taken to derive 

groundwater abstraction 

To estimate groundwater abstraction for hydrological year i, we first estimate 

the annual net irrigation water applied (Irrigation) for crops. In the case of 

cotton, applied Irrigation volume (mm) is estimated as the difference between 

actual evapotranspiration (AET) of rainfed (AETrainfed) and irrigated (AETirrigated) 

cotton (equation 3.2a). For wheat, grown with 100% cultivated area under 

irrigation, we assume all crop water demand is met through irrigation, and 

Irrigation volume (mm) is equal to AETirrigated (equation 3.2b). We neglect any 

post-monsoon rainfall during the wheat growing season as for the period 1983-

2015, this averaged only ~ 5 mm. AETrainfed and AETirrigated is calculated using FAO 

crop yield response to water (equations 3.4a and 3.4b) (Steduto et al., 2012). 
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𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑐)(𝑖) = 𝐴𝐸𝑇𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑(𝑐)(𝑖) − 𝐴𝐸𝑇𝑟𝑎𝑖𝑛𝑓𝑒𝑑(𝑐)(𝑖) {for cotton}        ….3.2a 

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑐)(𝑖) = 𝐴𝐸𝑇𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑(𝑐)(𝑖) {for wheat}                   ….3.2b 

𝐴𝐸𝑇𝑟𝑎 𝑖𝑛𝑓 𝑒𝑑(𝑐)(𝑖) = 𝐸𝑇𝑐(𝑖) × (1 −
1

𝐾𝑌(𝑐)
(1-

𝑌𝑖𝑒𝑙𝑑𝑟𝑎 𝑖𝑛𝑓 𝑒𝑑(𝑐)(𝑖)

𝑌𝑖𝑒𝑙𝑑𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑐)
)                      .… 3.3a 

𝐴𝐸𝑇𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑(𝑐)(𝑖) = 𝐸𝑇𝑐(𝑖) × (1 −
1

𝐾𝑌
(1-

𝑌𝑖𝑒𝑙𝑑𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑(𝑐)(𝑖)

𝑌𝑖𝑒𝑙𝑑𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑐)
)                      …. 3.3b 

𝐸𝑇𝑐(𝑖) = ∑ 𝐸𝑇𝑜(𝑖) × 𝐾𝑐(𝑠)
4
𝑠=1                                                                                ….. 3.4 

Where, subscript i denotes year and c denotes crop (cotton and wheat). ETc 

(equation 3.4) is the crop potential evapotranspiration demand and is estimated 

using FAO four stage (s) crop coefficient approach (Allen et al., 1998), and ETo is 

reference evaporation estimated using Hargreaves method (Hargreaves and 

Samani, 1985). The Hargreaves method was chosen due to its simplicity, 

reliability and minimal data requirements as it requires only monthly average, 

minimum and maximum temperature along with solar radiation data.  Kc(s) is the 

crop coefficient for stage s; Yieldrainfed(c) and Yieldirrigated(c) is the observed rainfed 

and irrigated crop yield and YieldPotential(c) is the potential (achievable) yield. 

YieldPotential(c) is estimated as the five-year moving average of observed irrigated 

yield. Observed annual yield data, used to estimate rainfed Yieldrainfed(c)) and 

irrigatedYieldirrigated(c)) yield pertains to Rajkot district and were taken from 

annually reported government statistics (DoA, 2021; ICRISAT, 2021). Ky(c) is the 

crop yield response factor representing the effect of a reduction in water use 

(relative to potential demand) on yield losses (Steduto et al., 2012). Values of KY 

for cotton (0.85) and wheat (1.15) were taken from the literature and are based 

on extensive analysis of data on crop yield, water relationships and deficit 

irrigation (Doorenbos and Kassam, 1979; Steduto et al., 2012).  
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Data on overall yield (average of rainfed and irrigated yield) for cotton was 

available for the whole time (1983-2015), whereas segregated data on rainfed 

and irrigated yield were only available starting 1995. Thus, for the time period 

of 1983-1994, segregated rainfed and irrigated cotton yield was derived based 

on the developed relationship between the ratio of overall yield to irrigated yield 

and irrigated area to the overall area (R2 of 0.79, see Figure A.1) in the 1995-

2015 period.  

Derived irrigation volume is multiplied with annual groundwater irrigated 

area of a crop (equation 3.5) to get a volumetric estimate (million cubic meter, 

MCM) of groundwater abstraction (GWAc). Annual groundwater irrigated area 

was taken from annually reported government statistics (DoES Gujarat, 2018; 

ICRISAT, 2021). Crop potential evapotranspiration demand (ETc) is multiplied 

by annual crop area, taken from annually reported government statistics (DoES 

Gujarat, 2018; ICRISAT, 2021), to get a volumetric estimate (MCM) of total crop 

water requirement (CWR) (equation 3.6). 

𝐺𝑊𝐴𝑐(𝑖) = 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑐)(𝑖) × 𝐴𝑛𝑛𝑢𝑎𝑙 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎      .... 3.5 

𝐶𝑊𝑅𝑐(𝑖) = 𝐸𝑇𝑐(𝑖) × 𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 𝑎𝑟𝑒𝑎              ....  3.6 

Values for duration and crop coefficient for each crop stage were taken for 

Indian conditions (ICAR, 2014; Allen et al., 1998; Table A.1). The sowing dates 

for cotton and wheat were taken as 15th June and 15th November, respectively 

(DoA Gujarat, 2020). Thereafter, change in groundwater abstraction (ΔGWAc) 

between the pre- and post-CD periods is estimated for years in the same SPI class 

by determining the mean GWAc of each class for pre-CD and post-CD and taking 

the difference (equation 3.7). 

∆𝐺𝑊𝐴𝑐(𝑠𝑝𝑖) =
1

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝐴(𝑐)(𝑖))

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
−

1

𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝐴(𝑐)(𝑖))

𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
             ….  3.7 
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Where, spi denotes the SPI class (dry, normal and wet) and npre-CD(spi) and 

npostCD(spi) is the number of years in each SPI class in pre-CD and post-CD periods, 

respectively.  

3.3.2 Potential groundwater demand met 

We also estimate how much of crop annual potential groundwater demand 

(GWAPot) could be met through groundwater abstraction (GWAc) (%met = 

𝐺𝑊𝐴

𝐺𝑊𝐴𝑃𝑜𝑡
× 100). For cotton, GWAPot is estimated as the difference between crop 

potential evapotranspiration demand (ETc) and AETrainfed multiplied with cotton 

groundwater irrigated area (equation 3.8). As wheat is completely irrigated, 

wheat GWAPot estimated is equal to the crop potential evapotranspiration 

demand (ETc) multiplied with wheat groundwater irrigated area (equation 3.9).    

𝐺𝑊𝐴𝑝𝑜𝑡(𝑐) = (𝐸𝑇𝑐 − 𝐴𝐸𝑇𝑟𝑎 𝑖𝑛𝑓 𝑒𝑑(𝑐)) × 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 {for 

cotton}                   …. 3.8 

𝐺𝑊𝐴𝑝𝑜𝑡(𝑐) = 𝐸𝑇𝑐 × 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 {for wheat}                .… 3.9 

Thereafter, the change in potential groundwater demand (ΔGWAPot) is 

estimated for each SPI class by obtaining the mean of GWAPot of each SPI category 

for pre-CD and post-CD period and taking the difference (equation 3.10). 

𝐺𝑊𝐴𝑝𝑜𝑡(𝑐)(𝑆𝑃𝐼)⬚
=

1

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝐴𝑝𝑜𝑡(𝑐)(𝑖))

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
−

1

𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝐴𝑝𝑜𝑡(𝑐)(𝑖))

𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
                          .... 3.10 

Where, SPI denotes the SPI classification (dry, normal and wet) and npreCD(spi) 

and npostCD(spi) is the number of years under each SPI classification in pre-CD and 

post-CD, respectively.  
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3.3.3 Change in recharge from check dams (ΔGWRCD) 

Groundwater recharge from CDs (GWRCD) is simulated using an analytical 

dynamic tool (Mozzi et al., 2021). The tool integrates a daily water balance of 

individual CDs with a set of analytical infiltration equations (Bouwer, 1969; 

2002) giving daily dynamics of storage, infiltration, and evaporation. The tool 

was previously applied to four structures in the Bhadar basin and validated at 

sites in Rajasthan where more extensive data were available (Mozzi et al., 2021). 

Application of the tool has shown good performance with validation results 

giving an average R2 of 0.93 between the simulated and measured water levels 

in individual CDs. The tool requires input data on CD geometrical parameters, 

catchment area hydrogeology characteristics, daily inflow to CD and potential 

evaporation. Representative values of CDs in Kamadhiya catchment were 

applied (Table A.2).  

To estimate GWRCD, the tool is used to simulate recharge from a 

representative CD (GWRCD(r)) with a storage capacity (VCD(r)) of 21,486 m3 (Table 

A.2). A simulation is carried out for the pre-CD period 1983-2002 where runoff 

is assumed to be representing the baseline conditions with low CD development. 

Annual recharge values are then averaged for each SPI class. Thereafter, to get 

relative CD recharge for pre-CD and post-CD periods at the catchment scale 

(GWRCD) for each SPI classified year, the ratio of representative CD recharge 

(GWRCD(r)) to its storage capacity (VCD(r)) is multiplied with catchment cumulative 

CD storage capacity (VCD(pre) = 1.3 MCM and VCD(post) = 11.4 MCM)  (equations 

3.11a and 3.11b).  

𝐺𝑊𝑅𝐶𝐷(𝑠𝑝𝑖)(𝑝𝑟𝑒) = (
𝐺𝑊𝑅𝐶𝐷(𝑟)(𝑠𝑝𝑖)

𝑉𝐶𝐷(𝑟)
) × 𝑉𝐶𝐷(𝑝𝑟𝑒)          .... 3.11a 

𝐺𝑊𝑅𝐶𝐷(𝑠𝑝𝑖)(𝑝𝑜𝑠𝑡) = (
𝐺𝑊𝑅𝐶𝐷(𝑟)(𝑠𝑝𝑖)

𝑉𝐶𝐷(𝑟)
) × 𝑉𝐶𝐷(𝑝𝑜𝑠𝑡)       .… 3.11b 
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Thereafter, change in groundwater recharge (ΔGWRCD) is estimated for each 

SPI class from the mean GWRCD of each SPI category for pre-CD and post-CD and 

taking the difference (equation 3.12). 

𝛥𝐺𝑊𝑅𝐶𝐷(𝑆𝑃𝐼) =
1

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝑅𝐶𝐷 (𝑝𝑜𝑠𝑡)(𝑖)

)
𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
−

1

𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝑅𝐶𝐷 (𝑝𝑟𝑒)(𝑖)

)
𝑛𝑝𝑟𝑒𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
                   .… 3.12 

Where, spi denotes the SPI classification (dry, normal and wet) and npreCD(spi) 

and npostCD(spi) is the number of years under each SPI classification in pre-CD and 

post-CD periods, respectively. All GWR figures are calculated on daily time scales 

and thereafter aggregated to annual scale. We assume that all CDs are 

functioning, behave similarly, and do not interact.  

3.3.4 Observed change in groundwater storage (ΔGWSO) 

The observed change in groundwater storage is the annual net balance of 

groundwater recharge and abstraction in the catchment. This is estimated using 

the water table fluctuation method (MoWR, RD & GR, GoI, 2017b; Pavelic et al., 

2012). The water table fluctuation method has been used extensively and found 

suitable for climatic and hydrogeological conditions of unconfined weathered 

hardrock aquifers (Pavelic et al., 2012; Dewandel et al., 2010; Machiwal et al., 

2017). The water table fluctuation method derives groundwater storage change 

(GWSO) from the rise in monsoonal groundwater levels (GWLr) estimated as the 

difference between pre (GWLPrM) and post monsoon (GWLPM) groundwater 

levels (equations 3.13-3.14).  

𝐺𝑊𝑆𝑜(𝑖) = 𝐺𝑊𝐿𝑟(𝑖) × 𝑆𝑦 × 𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎            .… 3.13 

𝐺𝑊𝐿𝑟(𝑖) = 𝐺𝑊𝐿𝑃𝑀(𝑖) − 𝐺𝑊𝐿𝑃𝑟𝑀(𝑖−1)                          ….. 3.14 
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Where 𝐺𝑊𝐿𝑃𝑀(𝑖) is the post monsoon of GWL of hydrological year i (taken in 

November), 𝐺𝑊𝐿𝑃𝑟𝑀(𝑖−1) is the pre monsoon GWL of previous hydrological year 

i (taken in May). Hence, pre monsoon GWL of previous hydrological year is the 

groundwater level/storage at the start of year i. Sy is the specific yield, which is 

taken as 0.02 as the recommended value for the region (MoWR, RD and GR, GoI, 

2017; Patel et al., 2020).  

Annual catchment averaged pre (GWLPrM) and post monsoon (GWLPM) 

groundwater levels are derived using observed data from monitored wells for 

the time period 1983-2015 from the Central Groundwater Board (CGWB, 2015). 

A total of 15 observation wells located within the catchment and up to a 10 km 

distance beyond the catchment boundary were used for the analysis. The data 

were filtered for outliers using interquartile range method with data outside an 

interquartile range of 1.5 removed. Only monitoring wells with observation 

records containing more than 2/3 of the years of pre and post GWL data points 

were used. GWLPM and GWLPrM for each year were then derived from spatially 

interpolating observation wells using inverse distance weighing (Li and Heap, 

2008). Thereafter, GWLr is calculated according to equation 3.15. Finally, the 

change in groundwater storage (ΔGWRO) is estimated for each SPI classified 

category by getting mean of GWSO of each SPI category for pre-CD and post-CD 

and taking the difference (equation 3.15). 

𝛥𝐺𝑊𝑆𝑂(𝑆𝑃𝐼)
=

1

𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)
(∑ 𝐺𝑊𝑆𝑂(𝑖)

)
𝑛𝑝𝑜𝑠𝑡𝐶𝐷(𝑠𝑝𝑖)

𝑖=1
−

1

𝑛𝑝𝑟𝑒𝐶𝐷(𝑖)
(∑ 𝐺𝑊𝑆𝑂(𝑖)

)
𝑛𝑝𝑟𝑒𝐶𝐷(𝑖)

𝑖=1
  ..3.15 

Where, spi denotes the SPI classification (dry, normal and wet) and npreCD(spi) 

and npostCD(spi) is the number of years under each SPI classification in pre-CD and 

post-CD, respectively.  

We compared observed (ΔGWSO, equation 3.15) with estimated (ΔGWSE, 

equation 3.1) change in groundwater storage to validate our results. Storage 
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change derived from the water table fluctuation method incorporates all sources 

and sinks, including diffuse rainfall recharge, recharge from CDs, subsurface 

irrigation returns flows, groundwater evaporation, and any net lateral 

groundwater flow (Pavelic et al., 2012, MoWR, RD & GR, GoI, 2017b). It is 

assumed that net groundwater inflow/outflow is negligible as hardrock areas 

have limited lateral subsurface hydraulic connectivity at the regional scale 

(Bouma et al., 2011; Dewandel et al., 2010; Pavelic et al., 2012).  Table 3.1 

summarizes the datasets used in the analysis.  

Table 3.1: Summary of data used in the analysis 

Parameter Temporal 
period 

Temporal 
resolution 

Source 

Rainfall and 
temperature 

1983-2015 Daily India Meteorological Department 
gridded rainfall data (Pai et al., 2014) 

Groundwater 
levels 

1983-2015 Pre (May) 
and post 
(Nov)  

Central Ground Water Board (CGWB, 
2015) 

Crop area and 
yield 

1983-2015 Annual Government reported statistics (DoA, 
2021; ICRISAT,2021)  

Irrigated area 
and source  

1983-2015 Annual Government reported statistics (DoA, 
2021; ICRISAT, 2021; DoES 
Gujarat,2018) 

CD number and 
storage 

Pre-CD (1983-2002) and Post-
CD (2003-2015) 

Patel (2007); NWRWS (2018) 

3.4 Results 

3.4.1 Rainfall   

Figure 3.4 shows the annual rainfall time series, with individual years 

categorized as either ‘wet’, ‘normal’ or ‘dry’ based on SPI. For the overall period, 

average rainfall is 638.6 mm yr-1. Average post-CD rainfall (809.8 mm yr-1) is 
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~27% higher than the overall average, whilst the pre-CD rainfall (511.9 mm yr-

1) is ~25% lower than the average. Also, there is a high inter-annual variability 

characterized by a high coefficient of variation of ~45% across the whole time 

series. Wet rainfall years are concentrated in the post-CD (8 in post-CD vs 3 in 

pre-CD), whereas dry years are disproportionately occurring in the pre-CD 

period (8 in pre-CD vs 1 in post-CD) (Table 3.2). 

 

Figure 3.4: A) Annual rainfall (mm/year) for the time period 1983-2015; B) 

Cultivated area (ha) of cotton (kharif crop) and wheat (rabi crop); and C) Cotton 

and wheat irrigated area (given as percentage of total cultivated area of crop) 

Note: Years are indicated according to rainfall class (dry, normal and wet). 
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Table 3.2: Average values of key water and crop variables for all years and for 

SPI classified years, split into pre-CD and post-CD period. 

 

 

Parameter 

Overall Dry Normal Wet 
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# of years 20 13 8 1 9 4 3 8 

Rainfall 
(mm/year) 

516.8 825.9 326.2 403.9 570.1 552.6 864.9 1015.3 

Cotton 

Areaa  136.7 306.7 135.5 317.8 140.7 334.6 128.4 291.4 

Irrigated 
(%) 

64.2 85.4 63.1 93.8 67.3 83.6 57.8 85.3 

CWRb 84.6 183.6 85.7 196.2 86.1 199.7 76.6 173.9 

GWApotb 41.5 94.2 51.2 147.6 37.4 100.3 27.9 84.5 

GWAb 26.3 74.9 19.4 29.2 32.1 72.2 27.3 81.9 

%met 79.1 90.2 53.6 30.0 94.9 86.2 100 100 

Wheat 

Area  36.7 77.7 10.7 7.5 42.5 37.0 88.2 106.9 

Irrigated 
(%) 

99.1 99.2 99.1 100.0 99.4 100.0 98.6 98.8 

CWRb 12.8 27.6 4.2 2.7 14.6 13.4 30.0 37.8 

GWAPotb 12.8 27.6 4.2 2.7 14.6 13.4 30.0 37.8 

GWAb 12.8 27.6 4.2 2.7 14.6 13.4 30.0 37.8 

%met  100 100 100 100 100 100 100 100 

a ‘00 ha 

b in Million cubic meters (MCM) 
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3.4.2 Groundwater abstraction (GWA) 

3.4.2.1 Cotton 

Area under cotton cultivation has steeply risen, especially during the post-CD 

(Figure 3.4b). The average post-CD cotton area (30,670 ha) is ~124% higher 

than the pre-CD period (13,670 ha) (Table 3.3). At the same time, average 

irrigated cotton area has increased in post-CD (to an average of 85.4% of 

cropped area) compared to 64.2% in pre-CD (Figure 3.4b and Table 3.2). Results 

show that this increase in area and irrigation from pre- to post-CD is consistent 

for all SPI classified years (Table 3.2).  

Increase in cotton area (Figure 3.4b) translates to more than two-fold 

increase in crop water requirement (CWR) in post-CD for both overall and SPI 

classified years (Table 3.2). With ~85% of crop area irrigated with groundwater, 

this translates into an increase in potential groundwater demand (GWApot) of 

96.4 MCM (increase of 188%), 62.9 MCM (increase of 168%) and 56.6 MCM 

(increase of 203%) in dry, normal, and wet years, respectively (Table 3.2).  

In normal and wet years, with practically all GWApot being met (%met 

between 86.2 and 100%) (Table 3.2), GWA increases by 40.1 MCM (increase of 

125%) and 54.6 MCM (increase of 200%), respectively. However, for dry years 

most of GWApot remains unmet in post-CD (%met ~ 30%) reflecting that 

irrigation in dry years is limited by available groundwater storage. Thus, GWA 

increases by only 9.8 MCM in dry years between the two periods (Table 3.2). 

3.4.2.2 Wheat 

The wheat area in post-CD period (7,770 ha) is 112% higher than in the pre-

CD (3,660 ha) (Table 3.2). In contrast to cotton, there is no or limited change in 

wheat area when compared across similar SPI classified years (Table 3.2), with 

area increasing only in wet years (~21%). However, across SPI years, wheat 
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shows a large increase from dry (700-1,000ha) to wet (8,500-10,300ha) years. 

This shows that large overall increase (~118%) in wheat area in post-CD is 

largely due to higher number of wet years (Table 3.3). Wheat is completely 

irrigated (~99% area under irrigation) in both periods for all years (Figure 3.4c 

and Table 3.3).  

Wheat CWR and GWA, similar to wheat area, show an increase of 115% for 

overall period in post-CD relative to pre-CD (Table 3.3). However, across SPI 

classified years, there is no or limited change in CWR and GWA. Only wet years 

show moderate increase in GWA by 7.8 MCM (~26% increase). Wheat yield does 

not show decrease across SPI years reflecting that 100% of demand is met 

(GWApot = GWA). Summing up cotton and wheat irrigation, overall GWAPot and 

GWA post-CD increases by 67.5 MCM (~124%) and 63.4 MCM (~162%) as 

compared to pre-CD. 

3.4.3 Change in recharge from check dams (ΔGWRCD) 

The average recharge from CDs (GWRCD) increases from 2.4 MCM in pre-CD 

to 34.0 MCM in post-CD (Table 3.3).  Overall, this means a 14-fold increase in 

recharge from CDs (ΔGWRCD). Also, GWRCD increases from dry to wet years with 

ΔGWRCD (post-CD -pre-CD) increasing from dry (10.7 MCM) to normal (21.2 

MCM) to wet years (37.2 MCM) (Table 3.3). Monthly recharge estimates (Table 

A.3) show that, on average, highest recharge takes place in July and August when 

sufficient runoff is available and groundwater tables are deeper. Table 3.3 shows 

that GWRCD is constrained by inflow capture of the CDs, calculated as the 

difference between flow entering and leaving a check dam, which decreases from 

dry to wet years. On average, 67% of inflow is captured by CD with highest 

capture in dry years (94%), followed by normal years (85%) and wet years 

(55%). Besides rainfall, recharge and inflow capture are sensitive to CD 

geometry catchment area (Mozzi et al., 2021), and results reflect the first order 
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average potential recharge from existing CD storage in the catchment (Table 

A.3).  

Table 3.3: Average value of check dam groundwater recharge (GWRCD), 

groundwater level monsoon rise (GWLr), corresponding monsoon groundwater 

storage change (GWSO) and pre (GWLPrM) and post (GWLPM) monsoon 

groundwater levels for all years and for SPI classified years, split into pre-CD and 

post-CD period. 

 Overall Dry Normal Wet 
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GWRCDa 2.4 34.0 1.3 12.0 2.6 23.8 4.7 41.9 

Inflow capture 
(%)b 

67.1 
 

93.7 
 

84.7 
 

55.0 
 

GWLr (m)c 3.1 4.7 0.8 0.7 3.6 2.8 7.4 6.1 

GWSO a 70.4 107.0 17.7 15.2 83.9 64.5 170.8 139.7 

GWLPM (m bgl)d 8.7 6.8 11.2 11.2 7.8 8.5 4.9 5.3 

GWLPrM (m bgl)d 11.8 11.4 12.6 13.5 11.8 12.8 9.4 10.5 

a in MCM.  

b Calculated as the difference between flow entering and leaving a check dam. 

c 𝐺𝑊𝐿𝑟(𝑖) = 𝐺𝑊𝐿𝑃𝑀(𝑖) − 𝐺𝑊𝐿𝑃𝑟𝑀(𝑖−1)         

d bgl = below ground level                        
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3.4.4 Observed change in groundwater storage (ΔGWSO) 

GWLs show no statistically significant long-term declining or rising trend 

over the whole study period (p> 0.05), but high inter annual variability (Figure 

3.5). Averaged over pre-CD and post-CD, post monsoon groundwater level 

(GWLPM) below ground level (bgl) and average annual groundwater storage 

increase (GWSo) are higher (GWLs closer to ground level) during the post-CD 

period (GWLPM = 6.8 m bgl, GWLPrM = 11.4 m bgl and GWSO = 107.0 MCM) than in 

the pre-CD period (GWLPM = 8.7 m bgl, GWLPrM = 11.8 m bgl and GWSO = 70.4 

MCM) (Table 3.3). However, when compared across similar SPI classified years 

to account for the influence of rainfall, GWLs and GWSO are lower in post-CD as 

compared to pre-CD (Table 3.3). For example, GWSo in post-CD decreases by 2.5 

MCM (pre-CD=17.7 MCM and post-CD= 15.2 MCM), 19.4 MCM (pre-CD=83.9 

MCM and post-CD= 64.5 MCM) and 31.1 MCM (pre-CD=170.8 MCM and post-CD= 

139.7 MCM) for dry, normal, and wet years, respectively. This shows that overall 

higher GWLs and GWSO in post-CD is the result of disproportionally higher 

number of wet years in post-CD period (Table 3.3) and not due to the increased 

number of MAR interventions.  

Dynamics of GWLs show that GWLPM are sensitive to the magnitude of 

monsoon seasonal rainfall with average GWLPM highest during wet years (~5 m 

bgl) and much deeper in dry years (~11 m bgl). On the other hand, pre monsoon 

groundwater levels (GWLPrM) are relatively less sensitive to monsoonal rainfall 

with average GWLPrM fluctuating from ~9.4-10.5 m bgl in wet years to ~ 12.6-

13.5 m bgl in dry years (Figure 3.5 and Table 3.3). This reflects the properties of 

low storage aquifer systems where storage is filled during monsoon months (to 

an extent depending on rainfall and storage capacity of the aquifer) and 

irrigation leads to desaturation at the end of hydrological year (Pavelic et al., 

2012). The lower GWLPrM and their low sensitivity to annual rainfall shows that 
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there is limited inter-annual groundwater storage carry-over from the dry 

season to the wet season in the catchment. 

 

Figure 3.5: Catchment-averaged pre- and post-monsoon GWLs (GWLPrM and 

GWLPM). Number of observation wells, n=15. Color denotes SPI classified years. 

Symbols denote pre- (circle) [May] and post- monsoon (square) [November] 

levels. Blue vertical line divides the pre-and post-CD. Hydrological year in June-

May. 

3.5 Discussion 

3.5.1 Dynamics of groundwater balance changes 

Table 3.4 compares changes in observed (ΔGWSo) and estimated (ΔGWSE) 

groundwater storage, increase in recharge (ΔGWRCD), changes in potential 

groundwater demand (ΔGWAPot) and actual groundwater abstraction (ΔGWA) 

for the Kamadhiya catchment between pre- and post-CD periods. The latter two 

are aggregated sums of cotton and wheat (Table 3.3). Results show that both 
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ΔGWAPot and supply via increased recharge (ΔGWRCD) has increased in post-CD 

but the increase in GWApot has outpaced the increase in GWRCD. Additionally, the 

increase is not uniform across the SPI classified years. ΔGWRCD is highest in the 

wet years, whereas ΔGWApot is highest in the dry years and vice-versa. Thus, the 

deficit (demand-supply) is highest for dry years followed by normal and wet 

years, with ΔGWRCD representing only 11% of the increased groundwater 

demand (ΔGWAPot) for dry years. With limited natural recharge in dry years 

combined with low groundwater storage at the start of the year (i.e., GWLPrM of 

previous year) (Figure 3.5, Table 3.3) and low additional CD recharge (ΔGWRCD) 

(Table 3.4), only ~30% of cotton GWApot is met in the post-CD period, whereas 

wheat cultivated area is significantly reduced (~10% of average wheat area in 

post-CD) (Table 3.3). Limited abstraction and recharge also mean that there is 

very limited change in estimated groundwater storage (ΔGWSE = -2.5 MCM) from 

pre-CD to post-CD (Table 3.4). This matches with limited change observed in 

groundwater storage (ΔGWSo = 2.4 MCM). This shows that groundwater storage 

remains low in dry years for both periods (Table 3.3) and is unable to meet 

irrigation demands. The high unmet demand reflects the limited efficacy of CDs 

in semi-arid regions with low storage aquifers for mitigating impact of droughts, 

which supports the findings of earlier studies (Kumar et al., 2008; Kumar and 

Perry, 2018; Boisson et al., 2015; Enfors et al., 2008; Ogilive et al., 2016; 2019). 

For example, Ogilive et al., (2016; 2019), in assessing rainwater storage 

structures in Tunisia, showed that their low storage capacity limits their ability 

to recharge groundwater sufficiently, thus having a limited impact on farmers’ 

drought coping capacity. A similar conclusion was reached by Enfors and Gordon 

(2008) assessing MAR in Tanzania (locally termed Ndiva system). Thus, the 

hypothesis that sufficient runoff is available and remains available for planning 

recharge interventions may not hold in semi-arid areas, especially in dry years 

(Boisson et al., 2014; 2015).  
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Table 3.4: Average values of change in potential groundwater demand 

(ΔGWApot), groundwater abstraction (ΔGWA) [cotton + wheat], CD recharge 

(ΔGWRCD), estimated (ΔGWSE) and observed (ΔGWSO) groundwater storage 

change for SPI classified years between pre-CD and post-CD period. All values 

are in MCM. 

 Dry Normal Wet 

ΔGWApot (MCM) 94.9 61.7 64.4 

ΔGWA (MCM) 8.3 38.9 62.4 

ΔGWRCD (MCM) 10.7 21.2 37.2 

ΔGWSE (MCM)a 2.4 -17.7 -25.2 

ΔGWSO (MCM) -2.5 -19.4 -31.1 

a ΔGWRCD – ΔGWA 

For normal and wet years, the deficit is less pronounced relative to dry years 

(Table 3.4). However, ΔGWRCD can only meet 34% and 58% of increased 

groundwater demand (ΔGWAPot) in normal and wet years, respectively (Table 

3.4). In normal and wet years, in contrast to dry years, groundwater storage is 

recharged by rainfall (Figure 3.5, GWLr in Table 3.3) and meets the irrigation 

demand in excess of increased recharge from CDs (ΔGWRCD). This is reflected in 

the results indicating that most of the potential groundwater demand is met in 

normal and wet years for both major crops (Table 3.3). Thus, higher 

groundwater abstraction translates to decrease in ΔGWSE in post period (Table 

3.4) for both normal (-17.7 MCM) and wet years (-25.2 MCM). This matches well 

with ΔGWSO of -19.3 MCM and -31.1 MCM in normal and wet years, respectively. 

This implies that increase in recharge by CDs can only partly support increased 
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kharif irrigation and positive impact of GWRCD on groundwater storage is 

overshadowed by the increase in demand. 

The findings from this study related to no long-term increase in groundwater 

storage are contrary to findings of other studies (Patel et al., 2020; Shah et al., 

2009; Bhanja et al., 2017) and we find that higher overall average storage in the 

post-CD period is primarily due to an increased number of wet years. The 

divergence between the findings could be attributed to differences in the 

temporal period considered and/or the spatial scale of analysis. For example, 

Shah et al., (2009) only compared two distinct years (2000 and 2008) but did not 

fully account for the variability of rainfall. Similarly, both Asoka et al., (2017) and 

Bjanja et al., (2017) have a different temporal period for analysis with data 

starting from 1996, thus having very limited data for the pre-CD period which 

may accentuate low groundwater levels during the 2000-2002 drought relative 

to post-CD period. Their analysis was also focused at the national scale thus 

discerning regional differences is more difficult. While Patel et al., (2020) do 

account for longer time series (starting from 1975), they only compare wet year 

periods during the pre-CD (1975-1984) and post-CD (2004-2009), and the 

analysis focuses on the larger spatial region (whole of Saurashtra), thus again 

making a direct comparison difficult. It is important to note that none of the 

above studies accounted for changes in water demand, without which dynamics 

of groundwater storage cannot be reliably derived. 

3.5.2 Implication of MAR on kharif and rabi season 
cropping 

Overall, our findings of increased cropping and irrigation water demand of 

mainly kharif cotton and additional recharge from CDs partly support the 

hypothesis of Shah et al., (2009) that kharif production has increased, with 

GWRCD making good rainfall years (i.e., normal, and wet years) better. However, 
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even in normal and wet years, increased recharge can only partially meet 

increased demand (Table 3.4) translating to lower groundwater storage in post-

CD when compared with pre-CD across similar SPI years (Table 3.3 and 3.4). This 

further builds on the argument that CDs can only provide supplemental 

irrigation during good (normal or wet) rainfall years and cannot be expected to 

sustain intensive irrigation in dry years, as also evidenced in other regions (e.g. 

Ogilive et al., 2016; 2019). 

Our results do not show any consistent and significant increase in wheat area 

which was also hypothesized by Shah et al., (2009), except in wet years (Table 

3.3). In this respect, our findings also contrast with findings by Garg et al., (2020) 

carried out in Bundelkhand region of Uttar Pradesh state of India. Their results 

show that the impact of recharge interventions in terms of increasing area and 

production was more tangible during the rabi season. 

The low impact on rabi area and production in our study could be attributed 

to extensive irrigated cotton area in the study catchment (Table 3.2), which 

utilizes much of recharge during the monsoon season thus leaving limited 

storage for rabi cultivation dependent on irrigation. This is supported by the 

observation that post-monsoon GWLs (GWLPM) have been similar or slightly 

lower in post-CD relative to pre-CD (Figure 3.5 and Table 3.3). With no increases 

in groundwater storage at the end of the monsoon, (indicated by GWLPM), there 

is limited increase in wheat area (Table 3.2) as it is highly dependent on GWLPM 

signified by good correlation (R2 of 0.64) of wheat area and GWLPM (Figure 3.6a). 

This also suggests that farmers across the catchment consistently plan their 

wheat crop areas cognizant of the irrigation demand that the post monsoon 

storage can support. The correlation of pre-monsoon levels with cotton area is 

much less pronounced (R2 of 0.01) (Figure 3.6b). This could be attributed to 

kharif cropping dependence on expected monsoon rainfall. The increase in 
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wheat area for wet years (~21% increase in post-CD) couldn’t be explained just 

from dynamics of GWLs, as GWLPM are high and similar in both periods (Table 

3.3).  Thus, further research is needed to ascertain whether the increase in wheat 

area in wet years is a result of CD recharge or other dynamics.  

 

Figure 3.6: Relationship between A) wheat area (Y-axis) and spatially 

averaged post-monsoon groundwater levels (GWLPM) (X-axis); and B) cotton 

area (Y-axis) and spatially averaged pre-monsoon groundwater levels (GWLPrM) 

(X-axis).   
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3.5.3 Inter-annual groundwater storage 

A commonly stated benefit of recharge interventions is that they create 

storage for dry years by recharging in years of good rainfall (Garg et al., 2020; 

Megdal et al., 2014; Singh et al., 2021). This may happen in situations where 

structures have larger storage capacity and are thus able to capture more and 

recharge over longer durations (Ogilive et al., 2016; 2019) or in areas where 

there is low demand due to low cropping and irrigation intensity thus recharged 

water in wet years is in excess to demand and remains available for irrigation in 

dry years (Garg et al., 2020; Singh et al., 2021). 

The study catchment, underlain by hardrock aquifers (low porosity, limited 

thickness) with limited aquifer storage capacity, shows no clear evidence of this. 

As compared to post-monsoon GWLs (GWLPM), pre-monsoon GWLs (GWLPrM, 

representing end of year storage) are much less sensitive to yearly rainfall and 

is in the range of ~10-12 m for all years (section 4.4 and Table 3.3). We 

hypothesize that because of the wheat area’s (post monsoon crop) strong 

dependence on GWLPM (Figure 3.6a) and limited post monsoon storage due to 

high demand by the monsoon cotton crop, limited storage is available by the end 

of hydrological year (Figure 3.5). Very low wheat cultivated area in years with 

GWLPM lower than 10 m bgl (Figure 3.6a) suggests that groundwater storage 

below 10 m bgl offers limited utility to support irrigation due to the low porosity 

and limited thickness of the underlying hardrock aquifers. 

Direct evidence of limited impact of carry-over storage is indicated by the 

severe impact on crop area and production in the drought year of 2012, which 

followed a wet year of 2011 (Figure A.2). During 2011, wheat sown area was 

very high, resulting in limited storage at the end of the season (GWL of 11.8 m 

bgl) (Figure 3.5). Thus, without significant carry-over storage and low rainfall 

(thus low recharge and high demand), the impact of drought was severe in the 
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catchment with cotton and wheat production in 2012 being only 27% and 6% of 

their respective production in 2011.  

3.5.4 Vulnerability versus benefits and tradeoffs of MAR 

Supply-demand dynamics in the catchment points to the case of Jevons 

paradox (Alcott, 2005) where increased water demand from increased 

production outweighs water savings (Scott et al., 2014; Glendenning et al., 2012), 

in this case the increased recharge from CDs. In the absence of any policy or 

quota on irrigation, irrigation expansion, and higher irrigation efficiency can 

aggravate scarcity, and reduce resilience (Scott et al., 2014).  However, more 

research is required to ascertain if the increase in demand (increased crop area 

and irrigation water use) is resulting from perceived increase in supply through 

GWRCD, increase in rainfall years or other market-related factors. A counter 

argument to this is that these small storage aquifers are self-regulating, because 

they cannot be continuously depleted over many years (Taylor et al., 2019). The 

silver lining to this is that the system will likely not collapse, and whenever there 

is a good rainfall, the aquifers will be filled up. In turn, irrigated areas will not 

expand continuously, and likely they will vary more in tune with rainfall but 

exhaust the groundwater storage every year. 

The argument can be made that this increase in demand outpacing supply has 

increased agricultural vulnerability to drought in the catchment. For example, 

the percent of demand met was only ~30% in dry years for the post-CD period, 

whereas this was ~54% in pre-CD period dry years (Table 3.2). This is evident 

in the 2012 drought where reduction in cotton production is much higher 

(relative decrease of 300%) in post-CD compared to 2000 in pre-CD (relative 

decrease of 61%) (Figure A.2). This reiterates that CDs are not effective in a 
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catchment with very low rainfall in dry years, little runoff to capture and low 

storage aquifers meaning limited carry-over storage.  

However, on the other hand, an argument can be made that increased 

production in normal and wet years supported by CDs outweighs the losses in 

dry years. This suggest that rather than looking at productivity in individual 

years, the benefits of CDs or recharge interventions in the area should be 

assessed by combining good years with bad years. Good rainfall years allow 

farmers to make higher profits from increased capture of rainfall and address 

tide-over losses from dry years which remain as bad or worse as the pre-MAR 

situation. More research and analysis are needed to ascertain these aspects. The 

narrative also points towards the need for better understanding the benefits and 

tradeoffs of MAR in these environments. Our results suggests that though CD 

came up in response to a drought, they are not necessarily efficient in drought 

proofing. 

3.5.5 Uncertainties in this analysis and future research 
needs 

The simple method applied in this study, with clearly defined assumptions 

and accounting for major factors, is able to progress the assessment of the impact 

of high-density CD development on climate resilience of agriculture in 

Saurashtra with implications for similar regions elsewhere. There are two major 

sources of uncertainty in the analysis: (a) reliability and inherent errors in the 

data used, and (b) methodological assumptions and simplifications made.  

Agricultural data (crop area, irrigated area, and irrigation source) in Gujarat 

(and in India more broadly) is primarily derived from government reported 

annual agricultural statistics which are collected bottom-up from the village 

scale (and then aggregated to higher administrative levels) through random 
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sample surveys of 20% of the villages during each crop season in a state and is 

then further cross-checked through random sampling (Ministry of Statistics & 

Programme Implementation, 2018; Planning Commission, 2001). Similarly, crop 

yield data are collected through crop cutting experiments in randomly selected 

fields and then cross-checked. However, being a manual survey process errors 

can result from: (1) non-reporting of crops sown (predominant error); (2) 

incorrect area entered for the crop; or (3) non-reporting of the crop actually 

sown in the field (Ministry of Statistics & Programme Implementation, 2018). 

Data for 2015-16 at the national scale in India shows that the error (mismatch of 

information identified in cross-checking) was 9-25% in different seasons for 

crop area, 9% for irrigation data (annual) and 5-10% for yields (cotton and 

groundnut) (Ministry of Statistics & Programme Implementation, 2018). Despite 

these errors, the absence of other annually available and long-term collected 

data makes this the primary source of data used extensively in agricultural and 

water resources research (Sidhu et al., 2022) and contributes to data for many 

global datasets (e.g. Sibert et al., 2010).  

Similarly, data on groundwater levels is collected by the Central Ground 

Water Board (CGWB) four times each year (January, May, August, and 

November) by field personnel covering an extensive national monitoring well 

network (CGWB, 2015). The CGWB data has again been used extensively by 

researchers over many years as this represents the main source of groundwater 

data in India (e.g. Hora et al., 2019; Asoka et al., 2017; Bhanja et al., 2017). 

However, this data has gaps, and outliers, and is often sparse. These issues are 

usually addressed by removing outliers and monitoring wells with missing data 

above a threshold (as was done in this study) (Asoka et al., 2017; Bhanja et al., 

2017). However, Hora et al., (2019) found that this may lead to bias (so-called 

survivor bias) where dried wells (often missing data) may lead to better picture 
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of the aquifer than is actually the case. Other sources of data such as GRACE 

satellite data couldn’t be used due to the small spatial scale of the catchment. 

Daily rainfall is taken from IMD gridded datasets and again has been used 

extensively (Asoka et al., 2017; Kumar Singh et al., 2019). IMD gridded data is 

derived from using records of ~ 7,000 rain gauge stations (Pai et al., 2014). 

Multiple studies evaluating the performance of available rainfall products have 

shown that the IMD data performs satisfactorily over Indian monsoon conditions 

(Pai et al., 2014; Kumar Singh et al., 2019). Thus, while we have used the best 

available data (in some cases the only source) and published data sources (Table 

3.1) which have been used extensively, they come with inherent uncertainties 

which have a bearing on the results.  

This analysis required making certain methodological assumptions and 

simplifications as have been documented in section 3. One limitation is that the 

method applied assumes that changes in annual yields primarily results from 

changes in (ground)water availability, whereas moving average of yields 

captures changes resulting from improvement in inputs (e.g., better seeds, 

fertilizers, better wells and pumps, etc.). However, the other factors (e.g., heat 

waves, cold waves, pest attacks) can still add to yield variability and couldn’t be 

accounted for. Also, we do not consider irrigation efficiency with the assumption 

that irrigation return flows are completely recyclable. Additionally, while we 

have considered potential recharge by check dams, there is a need for further 

research to ascertain plausible upstream-downstream tradeoffs due to the same, 

as effects of flows captured in upstream areas potentially negatively impacts 

downstream communities (Calder et al., 2008; Ribeiro Neto et al., 2022; Nune et 

al., 2014). Similarly, lumped catchment assessment ignores the distribution, 

both spatial and social, of impacts and there is a need to assess how socially 

equitable the benefits have been. For example, there are concerns that CD 
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impacts are concentrated near structures in low lying areas (Shah et al., 2021) 

and that farmers with more financial and social capital benefit the most (Bouma 

et al., 2011; Calder et al., 2008). This requires setting up more comprehensive 

hydrological assessments capturing catchment water balance and more explicit 

inclusion of surface-groundwater dynamics along with socioeconomic field data. 

The latter is also critical to determine the drivers and impacts of increase in 

demand. Further research is also needed to assess how these structures will 

work under the realities of climate change where extreme events are expected 

to increase (Mukherjee et al., 2018).  

3.6 Conclusions 

Managed aquifer recharge (MAR) through various interventions (including 

CDs) is increasingly being promoted and adopted for sustainable groundwater 

use and resilience building to dry periods and droughts. Our study analyzed the 

case of high-density CD development in the Saurashtra region of Gujarat, India. 

Results considering rainfall variability and crop irrigation water demand show 

that counter to assumptions of CDs being a strong measure to alleviate the 

impacts of droughts, their capability is highly restricted in dry years, and 

especially under scenarios of, possibly accompanying, increasing water demand. 

This is because there is limited runoff to capture and recharge and the 

underlying aquifer has low storage capacity that is replenished and depleted 

annually with limited carry-over storage. The study shows that irrigation water 

demand has increased significantly and outstripped the increase in recharge 

from CDs. Thus, with limited runoff in dry years, low groundwater storage, and 

increasing demand, these interventions may not be very effective in securing 

irrigation water supplies and may not necessarily lead to long-term climate 

resilience. For good rainfall years, increased recharge via CDs does increase 

supply but can only partially compensate for the increased demand of the kharif 
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season, indicating that overall reduction of irrigated areas and flexible annual 

adjustment to rainfall in the wet season and adjustment to groundwater storage 

in the dry season are required. These findings suggest that MAR, unless 

complemented by greater emphasis on water demand management and 

groundwater governance, may not suffice as a standalone solution to achieving 

sustainable groundwater and concurrently expanding food production in 

hydrogeological and climatic settings like in Gujarat, India.  Additionally, 

Irrigated agriculture needs to be flexible and adaptable to prevailing climate and 

groundwater storage conditions. There is a need for clear communication and 

realistic assessment and expectation of the potential benefits of recharge 

interventions in regions with limited aquifer storage and highly variable runoff, 

while also ensuring that basic water needs are not sacrificed in the quest for 

increased food production.   
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4.1 Introduction 

Agriculture accounts for 70% of total freshwater withdrawals globally, going 

up-to 90% in developing countries (FAO, 2022). As a result, it is highly 

vulnerable to water shortages resulting from unpredictable and unreliable 

availability of water. This is particularly a concern in arid and semi-arid regions 

that face high variability in the availability of water, which is characterized by 

short rainfall seasons, frequent dry periods, and droughts (Falkenmark et al., 

1989; Ragab and Prudhomme, 2002). The climate change impacts manifested 

through increases in water extremes are already intensifying the existing risks 

(IPCC 2022, United Nations, 2019) posing concerns for water and food security 

in large parts of the world. 

Asian adaptation measure and to bridge the frequent supply-demand gaps in 

semi-arid regions, ex-situ rainwater harvesting systems (RWHs) that collect 

rainwater in surface reservoirs or recharge groundwater (e.g., check dams, farm 

ponds, tanks, percolation tanks), have been one of the key interventions in 

agricultural areas (Garg et al., 2020; Alam and Pavelic, 2020; Sikka et al., 2022). 

The reported benefits from such RWHs include increased water availability, 

increased crop yields, increased groundwater storages, diversification of water 

uses and mitigation of droughts (Singh et al., 2018; Glendenning et al., 2012; 

Bouma et al., 2016; Garg et al., 2020; Patel et al., 2020; Parker et al., 2022). 

In India, with large parts under arid and semi-arid climate, government and 

non-government organizations have also heavily invested in building RWHs 

under different water management programs (Sikka et al., 2022; Joshi et al., 

2008). One such example is of Gujarat, a state in western India (Figure 4.1a) 

where it has invested heavily in RWHs, largely through the construction of check 

dams (small structures with low storage built across smaller streams) (Patel et 

al., 2020; Verma and Shah, 2019). In total, more than 90,000 check dams 
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(hereafter referred as CDs) have been constructed with the financial support 

from government and non-government organizations (NWRWS, 2018).  

Despite multiple studies that have documented positive impacts of CDs on 

groundwater and agriculture in the region (Shah et al., 2009; Jain, 2012; Patel et 

al. 2020), disagreements remain on the extent to which the positive impacts can 

be attributed to CDs (Alam et al., 2022b; Kumar et al., 2008). Additionally, 

concerns have also been raised that these RWHs may not always be effective or 

beneficial in arid and semi-arid regions (Kumar et al., 2008; Glendenning & 

Vervoort, 2011), may lead to inequitable benefits (Deora and Nanore; 2019; 

Alam et al., 2022a) and are not sustained due to the neglect of maintenance and 

lack of clear ownership (Singh, 2018, Sharma, 2007; Venot et al., 2012).   

The concerns about the efficacy of benefits arise because semi-arid areas have 

low rainfall with high interannual variability and thus the runoff available for 

storage or recharge is very limited and often negligible in dry years (Kumar et 

al., 2008; Glendenning & Vervoort, 2011; Enfors et al., 2008; Oglivie et al., 2019; 

Alam et al., 2022b). Further, the benefits of RWHs may not be equitably 

distributed. The farmers nearby the streams where RWHs are built (Shah et al., 

2021; Deora and Nanore; 2019), and rich and influential farmers with the 

capacity to invest in irrigation and agronomy measures benefit more from 

increased availability of water (Bouma et al., 2011; Calder et al., 2008; Alam et 

al., 2022a). The sustainability concerns arise from little or no maintenance of 

such structures once the project is over, representing the build-neglect-rebuild 

syndrome (Sharma, 2007; Venot et al., 2012; Singh, 2018). Additionally, there 

are concerns that increased perception of supply from RWHs may have led to 

more demand in the region, offsetting the benefits of increased supply (Alam et 

al., 2022b).   
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Most of the studies assessing the impacts of CDs in the region (Shah et al., 

2009; Jain, 2012; Patel et al. 2020; Alam et al., 2022b) have been technical in 

nature either at a larger spatial scale (regional or catchment) (Patel et al., 2020; 

Shah et al., 2009; Alam et al., 2022b) or focus on standalone CD structures (Patel 

et al., 2002; Sharda et al., 2006; Mozzi et al., 2021). These studies do not shed 

light on how farmers, the ultimate beneficiaries of CDs, perceive the impacts of 

CDs and benefit from it. For example, Shah (2001) estimated that CDs benefited 

only 15-16 % of households in the villages of the region where CDs were 

constructed. Additionally, these studies do not account for the equitability of 

impacts and the sustainability of the investments.  

Therefore, this study employs farmer's surveys to assess the benefits, equity, 

and sustainability of investments made in CDs to complement the existing 

studies and fill the abovementioned research gaps. The adoption of 

interventions, equated here with farmers’ behavior towards the maintenance of 

RWHs critical for the sustainability of corresponding investments, is influenced 

by range of socio-economic, psychological, perceptual, and cultural factors 

(Daniel et al., 2020; Kaufmann et al., 2009). The RANAS (i.e., R-risk, A-attitude, 

N-norm, A-ability, and S-self-regulation) behaviour model has been used to 

consider such diverse set of factors on the behaviour of adoption (Mosler, 2012). 

The model was originally developed for the WaSH sector, which assumes that 

multiple sociopsychological factors (i.e. risk, attitude, norm, ability, and self-

regulation) impact behavioral outcomes (i.e., behavior, intention, use, and habit). 

The model has been used previously to understand farmer behavior with respect 

to irrigation practices (Hatch et al., 2022), willingness to conserve groundwater 

(Klessens et al., 2022) and household water treatment behavior (Daniel et al., 

2020, 21; Stockler and Mosler, 2015). 
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This study employs the RANAS model and descriptive analysis of a farmers 

survey to answer two research questions: 1) How do farmers perceive the 

benefits of RWHs and equitability of benefits? and 2) what are the contextual and 

socio-psychological factors that influence the sustainability of RWHs through the 

lens of farmers’ behavior towards the maintenance of RWHs? With the 

progressive prioritization and increased investment being made in RWHs in 

India and globally, the research results will contribute to making investments in 

RWHs more effective, equitable, and sustainable. 

4.2 Study area 

The study is carried out in the Kamadhiya catchment (1,150 km2), located in 

the Saurashtra region (~ 6,600 km2) of the southwestern state of Gujarat, India 

(Figure 4.1a and 4.1b). Kamahdiya lies in the Bhadar basin, the main river basin 

of the area, and drains into the Bhadar dam (Figure 4.1b). Administratively, the 

Kamadhiya catchment is predominantly located in the Rajkot district of the 

Saurashtra region. The catchment has a semi-arid climate with an average 

annual rainfall of 638 mm year-1 (1983-2015), with more than 90% of the rainfall 

being concentrated in the four monsoon months of June to September (Pai et al., 

2014). Agriculture is the predominant occupation in the district with the area 

under crop production covering ~ 70 % of the district area. The kharif (monsoon 

season starting from June to October) is the main cropping season with 

groundnut and cotton being the main crops The other growing season is Rabi 

(during the post-monsoon months of November to February) that has limited 

cropping area with chickpea and wheat as the main crops (DoA Gujarat, 2021). 

The Groundwater is the main source of irrigation, accounting for 82% of the 

irrigated area (DoES Gujarat, 2018). It is found at shallow depths in unconfined 

aquifers of the region that are characterized by parent basalt rocks of the Deccan 
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trap formation with little primary porosity (Mohapatra, 2013). It is largely 

accessed from the top 20-30 m of weathered upper parts of basaltic aquifer, by 

wide diameter open dug wells (Mohapatra, 2013; Patel, 2007). Its storage in the 

shallow aquifers is mostly depleted by the end of the hydrological year with little 

carry over storage from year to year (Alam et al., 2022b). 

4.2.1  Check dam development 

The Saurashtra region within Gujarat has been the focus region of intensive 

construction of CDs (Shah et al., 2009; Patel et al., 2020). An estimated 27,000 

CDs were constructed across Saurashtra before 2018 (NWRWS, 2018). This has 

been part of a multi-decade long groundwater recharge movement in the region 

(Shah et al., 2009; Mudrakartha, 2012). Though the movement had been going 

since 1980s, the construction of CDs accelerated following the multi-year 

drought of 1999-2001 (Shah et al., 2009; Alam et al., 2022b). In the Bhadar basin, 

within which Kamdhiya catchment is located, the number of CDs increased from 

484 in 1999 to 4385 by the end of 2010 (Alam et al., 2022b, Kamboj et al., 2011). 

In the Kamadhiya catchment, the total number of CDs till 2006 were estimated 

to be 576 with a total storage capacity of 12.7 MCM (Patel, 2007). This represents 

a CD density of approximately 1 check dam per 2 km2.   

The CDs were implemented with government financial support under the 

participatory scheme ‘Sardar Patel Sahbhagi Jal Sanchay Yojana (Sardar Patel 

Participatory Water Conservation Program)’ and by several non-government 

organizations and local leaders (Shah et al., 2009; NWRWS, 2018; Verma and 

Shah, 2019). Under the government scheme, 60 % subsidies were provided to 

construct the CDs. Any group of farmers or NGOs could apply for the subsidies 

and many individual farmers, who could afford 40% cost, took advantage by 

constructing CDs close to their farms (Mudrakartha, 2012). In the region, 

construction of CDs is primarily done for groundwater recharge (Shah et al., 
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2009; Mudrakartha, 2012), which is the main source of irrigation and accounts 

for 82% of the irrigated area (DoES Gujarat, 2018). Thus, most farmers do not 

directly use (lift) water from CDs. 

 

Figure 4.1: (A) Location of Kamdhiya catchment, Bhadar basin, Saurashtra 

region and Gujarat state in India, (B) Sampled villages for household survey in 

Kamadhiya catchment. In brackets are the number of check dams in each village 

(from the survey). 
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4.3 Methodology 

4.3.1 Survey 

During December 2021, 492 farmers distributed across 24 villages were 

interviewed in the Kamadhiya catchment. The study sample was selected 

through a multistage random sampling procedure. First, 24 villages from a total 

of 88 villages lying within the Kamadhiya catchment were selected (Figure 4.1b, 

Table B.1) using regularly distributed sampling. Thereafter, in each village, 20-

22 farmers were selected for the survey using proportionate random sampling. 

This involves taking random samples from stratified groups in the same 

proportion as their proportion in the total population. Farmers were stratified 

into four groups: marginal (<1 ha), small (1 -2 ha), medium (2- 4 ha), and large 

farmers (>4 ha) based on farmers' land areas in the blocks where the villages are 

located (Table B.2).  

Interviews were conducted, after obtaining consent, with the head of 

households responsible for managing agricultural farms. Each structured 

interview lasted approximately 45-50 minutes and was carried out by a trained 

team of 10 enumerators native to the region. The questionnaire was translated 

into the local language (Gujarati), which was the primary language used for 

collecting data.  

4.3.2 Questionnaire 

The survey questionnaire consisted of two parts, 1) farmers' socio-economic 

characteristics and 2) farmers' perception of CD impacts and sociopsychological 

questions regarding the maintenance of CDs. Farmer socio-economic 

information (e.g., age, wealth, land) was measured on binary, ordinal, and 

interval scales. The questions on CDs consisted of a mix of informative questions, 

farmers' perceptions of CD benefits, and their behavior towards the maintenance 
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of CDs. The detailed questionnaire can be accessed from the link given in the data 

availability statement.  

The farmers’ perception of CDs benefits was elicited through multiple 

questions asking about the benefits of CDs in general, benefits to main crops 

grown in the region, and the intensity of benefits. The questions regarding the 

intensity of benefits were asked for different rainfall years (dry, normal, and 

wet) because of high inter-annual rainfall variability in the region (rainfall in dry 

years ~ 334 mm, normal years ~ 564 mm, wet years ~ 974 mm). Recent research 

has shown that this significantly impacted CDs functioning with recharge in dry 

years being very limited and insufficient to meet the irrigation demand in the 

catchment (Alam et al., 2022b). Mozzi et al. (2021) have reported similar 

dynamics with the number of fillings being lowest in the dry years, followed by 

normal and wet years. However, they did not account for CDs in series so this 

could even be lower, especially in dry years when runoff is limited (Alam et al., 

2022b). 

Information regarding the behavior of farmers towards the maintenance of 

CDs (equated to adoption) consisted of questions on sociopsychological factors 

(Table 4.1) and were elicited based on the RANAS model (Mosler, 2012). RANAS 

sociopsychological factors (i.e., R-risk, A-attitude, N-norm, A-ability, and S-self-

regulation) were measured with 2 to 4 questions on five-point Likert scales.  
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Table 4.1: RANAS sociopsychological factors and questionnaire with 

descriptive statistics 

RANAS factors Question Scale Mean 
(SD) 

 Behavior Do you help maintain the check 
dam? 

0 (never) – 4 
(always) 

0.43 
(0.8) 

R
is

k
a
 

 

 

Perceived 
Vulnerability 

 

How high is the risk of your 
groundwater wells going dry in 
the next 5 years? 

 

0 (no risk) – 4 
(a high risk) 

 

2.11 
(1.12) 

How high is the risk of drought in 
the coming 5 years? 

1.78 
(1.29) 

 

Perceived 
Severity 

 

How severe will be the impact of 
drought on your crop production? 

0 (Not severe) 
– 4 (very 
severe) 

2.97 
(0.99) 

How much GW decline will impact 
your crop production? 

2.82 
(0.98) 

A
tt

it
u

d
e

b
 

 

 

Benefits:  
response 
efficacy 

 

How beneficial you think is check 
dam during dry rainfall year for 
crop production? 

 

 

0 (Not 
beneficial) – 4 
(Very high) 

1.32 
(1.44) 

How beneficial you think is check 
dam during normal rainfall year 
for crop production? 

1.57 
(1.15) 

How beneficial you think is check 
dam during wet rainfall year for 
crop production? 

2.10 
(1.30) 

Effort: 
Instrumental 
belief 

How effortful is it to maintain a 
CD? 

0 (Not 
effortful) – 4 
(Very 
effortful) b 

0.81 
(0.93) 

N
o

rm
c 

 

Descriptive 
norm (Others 
behavior) 

What proportion of people in 
your village thinks maintaining 
check dam is helpful? 

0 (Almost 
nobody (<10 
%) – 4 

1.54 
(1.04) 
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(Almost all of 
them (> 90 %)  

Injunctive 
norm (Others’ 
(dis)approval) 

Most people whose opinion I 
value think maintaining check 
dam is good? 

0(Disapprove) 
– 4 (Approve) 1.86 

(0.97) 

NGOs How important are 
NGOs/government official 
opinions to you? 

0 (Not 
important) – 4 
(Very 
important) 

1.47 
(0.87) 

A
b

il
it

y
d
 

Maintenance 
self-efficacy 

How confident are you in your 
financial capability to maintain 
the check dam alone? 

0 (Not 
confident) – 4 
(Very 
confident) d 

 

0.37 
(0.68) 

Ability: Govt If you want to, how confident you 
are in your capability to get check 
dam maintained by a govt dept? 

0.94 
(0.92) 

S
e

lf
-R

e
g

u
la

ti
o

n
e

 CD attention 
(Action 
control) 

How much attention do you pay to 
the check dam condition? 

0 (Pay no 
attention) – 4 
(Pay much 
attention) 

1.11 
(1.03) 

CD plan* 
(Action 
planning) 

Do you have a plan on how to get 
the check dam maintained? 

0 (no plan) – 
1(moderate) – 
2 (good) e 

0.68 
(0.67) 

a represent a person’s understanding and awareness of the risk 

b measures a person’s positive or negative stance towards a behavior. Answers to 

confidence questions where the response was NA (don’t know) were equated to having no 

confidence (0.) 

c measures the perceived social pressure towards a behavior 

d measures a person’s confidence in her or his ability to practice a behavior. Answers to 

effort questions where response was NA (don’t know) were removed from analysis leaving 

420 responses. 

e measures a person’s attempts to plan and self-monitor behavior. Action planning were 

measured for different options (No plan, know the govt dept, know the personnel number from 

govt, ask gram panchayat, we have a farmers group, will do myself) and then were classified 

into 3 (no plan, moderate (know the govt dept; will ask gram panchayat) and good (have a 

farmers group). 
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4.3.3 Data analysis 

Descriptive analysis is carried out to interpret the socioeconomic profile of 

the farmers in the region and their perception of CD benefits and impacts. This 

is followed by a regression analysis to understand the main determinants of 

farmers' behavior. The regression analysis included a first stage forced-entry 

linear regression considering all potential contextual factors, socio-economic 

and biophysical factors (e.g., distance from CDs, location in the catchment), that 

have a bearing on farmers' behavior (outcome variable) towards CD 

maintenance (measured on Likert scale of 0 (never) – 4 (always)). This is carried 

out to select key (significant) socioeconomic variables that impact the behavior 

as input to the second step of a hierarchical linear regression (Lewis, 2007). 

In the second step, a hierarchical linear regression is carried out. Here, 

selected contextual factors (predictor variables) were used after removing 

factors that were found to be insignificant in the forced entry regression in the 

first step and sociopsychological variables were further added as predictor 

variables. This method has been used by other RANAS studies (Stocker and 

Mosler, 2015; Friedrich et al., 2017; Daniel at al., 2021; 2020a). The regression 

brings out the contribution of contextual factors explicitly, which in behavioral 

theories is often considered to be indirectly influencing behavior through 

sociopsychological factors (Daniel et al., 2020b). 

To carry out the regression, some of the contextual factors were reclassified. 

Farmers based on the land area were classified (on a 1 to 4 scale) into marginal 

(<1 ha), small (1- 2 ha), medium (2 – 4 ha), and large farmers (> 4 ha). Farmers’ 

education was reclassified on a 1-4 scale with 1 (No schooling), 2 (till 8th Grade), 

3 (till 12th Grade), and 4 (Bachelors or Masters). A wealth index (1-4) was created 

based on the assets owned with 1 (all other), 2 (owning Fridge and TV), 3 

(owning TV, fridge, and 2-wheeler), and 4 (owning car or air conditioning). The 
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participation of farmers at the time of CD construction was reclassified to 0 (no 

participation) and 1 (all other forms of participation including labor, and 

financial support). Additionally, based on the elevation of villages, 24 villages 

were reclassified as 1 (upstream), 2 (midstream), and 3 (downstream). 

4.4 Results 

4.4.1 Socio-economic descriptive statistics 

The surveyed farmers were distributed across marginal (17.3%), small 

(31.5%), medium (27.8%), and large farmers (23.4%) (Table 4.2). This matches 

with the overall proportion of these farmers in the region (Table B.2), indicating 

that proportionate sampling was able to capture the diversity of farmers in the 

region. All the respondents were male. This also reflects the social context where 

questions are mostly answered by men unless women are specifically targeted. 

Since the information was collected on farming operations and on the perceived 

impact of CDs on agriculture, activities were primarily being done by men in this 

region and therefore women farmers were not explicitly sought. Farmers in the 

sample were relatively senior with an average age of 49 years and 62% were 

above the age of 40. Education was low among the farmers with 22% having no 

schooling and 61% of the farmers had 8 years or less of schooling.  

The income from crop production contributes more than 75% of total income 

for 37% of the farmers. This shows that other sources exist for generating 

income such as livestock production (reported by 71.7% farmers), followed by 

non-agriculture-related business (20.9 %), non-agriculture wage labor (10.5%), 

salary (8.9%) and agricultural wage labor (8.5%). Most of the farmers that were 

interviewed had pucca (brick and plastered) or semi-pucca houses. In terms of 

wealth, most of the farmers owned a television (83.9%), 2-wheeler (89.2%), and 
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a cooking gas connection (86.2%). However, only a few farmers owned a car 

(7.3%) or an air conditioner (1.8%). 

Table 4.2: Socio-economic characteristics of farmers 

Characteristics Variable  Frequency (%) 

 

Land 

< 1ha 85 (17.3%) 

1-2 Ha 155 (31.5%) 

2-4 Ha 137 (27.8%) 

>4 Ha 115 (23.4%) 

 

HH members 

0 - 2 52 (10.6%) 

2-4 140 (28.4%) 

4-8 240 (48.8%) 

8 60 (12.2%) 

 

Age 

< 25 13 (2.6%) 

25 - 40 122 (24.8%) 

40 - 60 275 (55.9%) 

60- 85 82 (16.6%) 

 

Education 

No schooling 112 (22.8%) 

Till 5th Grade 158 (32.1%) 

Till 8th Grade 144 (29.3%) 

Till 12th Grade 64 (13%) 

Bachelor and above 14 (2.83%) 

 

Income from 
Agriculture (%) 

< 25 % 47 (9.6%) 

25 – 50 % 161 (32.7%) 

50 – 75 % 100 (20.3%) 

75 – 100 % 184 (37.4%) 
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Main sources of 
Income 

Self-Employed in Agriculture 488 (99.2%) 

Agricultural wage labor 42 (8.5%) 

Livestock 353 (71.7%) 

Other non-agriculture related wage 
labor 

52 (10.6%) 

Non-agriculture related business 103 (20.9%) 

Salary 44 (8.9%) 

Pension 3 (0.6%) 

 

House type 

Pucca (Brick and mortar) 322 (65.4%) 

Semi-puccaa  151 (30.6%) 

Kuccha 18 (0.04%) 

 

 

Things owned 

TV 413 (83.9%) 

Car 36 (7.3%) 

2-wheeler 439 (89.2%) 

Fridge 282 (57.3%) 

AC 9 (1.8%) 

Gas connection 424 (86.2%) 

none 17 (3.5%) 

a Thatched roof with brick and mortar. 

4.4.2 Farmer perception of check dams’ benefits and 
impacts 

Overall, there are on an average 12 CDs per village in the catchment (Table 

B.3). The median number of CDs reported in a village ranged from 3 to 40 with 

only 9 villages having less than 10 CDs. However, data shows that there is a large 

variation in the number of CDs reported by farmers within a village (Table B.3). 

This shows that farmers either do not know about all the CDs in their village or 
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their answers do not relate to the village administrative area but to their 

knowledge of nearby areas (which may overlap with other villages).  

Most CDs were reported to be built during the period 2000-2010 (44 %) 

(Table B.4), coinciding with the period following the multi-year drought (1999-

2001) when CD construction accelerated. There has been a decline in the number 

of new CDs being built in recent years, with only 3.5 % of CDs reported being 

from the period 2015-2020. When asked about the participation of farmers in 

the construction of CDs, 91.2 % of farmers reported playing no role in the 

construction of CDs. Only 8.8 % reported contributing towards construction 

mainly through providing labor (5.2 %) followed by a financial contribution (2.8 

%) and material contribution (0.8 %).  

4.4.2.1 Farmers benefiting from CDs 

Overall, 61 % of the farmers reported that they benefitted from CDs. The 

results also show that the proportion of farmers benefiting from CDs decreases 

with distance. Overall 87.3 %, 82.5 %, 70.7 %, and 49.5 % of farmers reported 

benefitting at a distance of < 250 m, 250 - 500 m, 500 - 1000 m, and > 1000 m, 

respectively from the closest CD. Of the sampled farmers, a majority of the 

farmers (~ 61 %) have farms at > 1000 m from CDs and only ~ 20 % reported 

nearest CD at a distance of less than 250 m. The relation of CD benefits with 

distance was found to be significant (chi-square test: χ2 = 55.3, p-value < 0.05). 

There was no significant difference in reported CD benefit with increasing land 

size of farmers in the sample. Also, there was no significant relation (using OLS) 

between proportion of farmers reporting benefits from CDs (Table B.3) and the 

median number of working CDs in a village. 
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4.4.2.2 Type of CD benefits 

The farmers who reported benefitting from CDs, indicated that the main 

benefits were increased groundwater levels (93.3 % of the farmers) and water 

lasting longer in the wells (81.6 % of the farmers) (Figure 4.2a). This was 

followed by 40 % of the farmers (26 % in the rabi season, 13 % in the kharif 

season and 1 % in the summer season) reporting an increase in water availability 

for irrigation. Also, 24 % of the farmers reported increasing crop area (16 % in 

the rabi season, 7 % in the kharif season, and 1 % in the summer season). Only 

16 % of the farmers directly reported protection against drought as a benefit of 

CD (Figure 4.2a).  However, the top three benefits reported by the farmers are 

direclty linked to the increased capacity to mitigate the impacts of droughts. 

About 4 % of the farmers also reported spreading the silt from the CDs on their 

fields. Also, only 4 % of the farmers reported directly using water from the CDs 

which is in line with field evidence that these CDs are primarily for the purposes 

of groundwater recharge.  

In response to the specific question of how CDs benefitted their main crops, 

results showed that increased water for irrigation (29-39 %), helped them 

achieve more yields (13-18%), and increased reliability of irrigation (8-15 %) 

were the most often reported answers (Figure 4.2b). This shows that farmers 

perceive the primary impact of CDs on groundwater which then translates to the 

secondary impacts of an increase in irrigation water availability (and reliability) 

and enhanced yields for crops. Protection against droughts was reported to be a 

direct benefit by only ~ 1-2 % of the farmers but the increase in availability (and 

reliability) of irrigation water can be considered as safegaurds against droughts. 

Further, 44-53 % of the farmers no benefits from CDs when asked about impact 

of CDs for each crop they grow. 
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Figure 4.2: (A) Farmers proportion reported benefitting from CDs, elicited 

response to open questions on main benefits of CDs; (B) Farmer's proportion 

reported benefitting from CDs to main crops 

4.4.2.3 CD benefits in dry, normal, and wet years 

Of the farmers who reported benefits from CDs, Figure 4.3a shows the 

intensity of benefits (measured on Likert scale of 0 (not beneficial) – 4 (very 

high)) reported by them.  The intensity of benefits reported was highest for the 

wet years, with 44% and 30 % of farmers reporting very high or high and 

moderate levels of benefits, respectively. For normal years, the intensity of 

benefits was relatively lower with most farmers reporting low (42.8 %) or 

moderate (33.3 %) levels of benefits and only 20 % of the farmers reported high 

or very high benefits. For dry years, intensity of benefits reported was lowest. 
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Most farmers (32.4%) reported no benefits in followed by 25 % reporting low 

benefits.  

 

Figure 4.3: (A) Distribution (as a proportion of farmers) of the intensity of 

benefits reported for dry, normal, and wet years; (B) Distribution (as a 

proportion of farmers) of the number of months till which water lasts in CDs for 

dry, normal and wet years   

The relatively low benefits in dry years and high benefits in wet years 

correlate well with reported availability of water in the CDs (visible on surface) 

by farmers. Since the farmers do not use the water directly from the CDs, the 

availability of water in CDs indicates the water that is available for recharge. 

Most of the farmers reported that in dry years water lasts only for less than 3 

months (till June to August) with June being the start of the monsoon season. On 
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the other hand, most farmers reported water availability for ~ 8 months (till 

January) for the wet years and for ~ 5 months (till October) for the normal 

rainfall years (Figure 4.3b). This reflects no or limited availability of water for 

recharge in dry years as the rainfall is scarce.  

4.4.3 Maintenance of check dams 

The sustainability of CDs requires regular maintenance to repair damages to 

structures from debris and de-siltation. Without maintenance, its performance 

decreases over time and ultimately, becomes dysfunctional. The results show 

that out of 12 CDs reported per village, only 6.9 CDs were working. This means 

that about 40 % of the CDs were not operational.  Results also showed that 

farmer participation in the maintenance of the structures was quite low. Most 

farmers (72.8 %) reported never doing any activity to maintain the CD whereas 

21 % reported doing it only sometimes. In the next sections, the contextual and 

sociopsychological factors that influence farmers' behavior toward the 

maintenance of CDs are discussed. 

4.4.3.1 Contextual predictors impacting farmer's behavior 
towards CD maintenance 

Table 4.3 shows the results of forced linear regression on contextual (socio-

economic and biophysical factors) predictors of farmers' maintenance behavior.  

The model explains 28 % of the variance. Results show that education, wealth, 

participation in CD construction, proximity to CD, and direct water use from CD 

are the significant factors (p ≤0.05) influencing farmers' behavior toward its 

maintenance. The participation in CD construction is the most influencing factor 

(β = 0.34) followed by direct water use (β = 0.17) and distance from CDs (β = - 

0.16). The negative sign for the latter shows that farmer's behavior towards 

maintenance is negatively correlated with distance from CDs i.e., the larger the 

distance, the lower the participation in maintenance. Farmers land area (β = 
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0.14), proportion of income from farming (β = -0.15) and house type (β = 0.09) 

are significant socioeconomic factors. Farmers with more diversified incomes 

show more inclination toward maintenance as indicated by the negative sign for 

the proportion of income from farming in the regression (Table 4.3).  

Table 4.3: Results of forced entry regression on contextual factors  

  B SE B β 

 R2 = 0.28   

(Intercept)a 0.66 0.32 0.00* 

Farmers land area 0.01 0.00 0.14** 

Farming experience 0.00 0.00 -0.04 

Agriculture income proportion -0.01 0.00 -0.15*** 

CDs direct water use -0.62 0.16 0.17*** 

Distance from CDs 0.00 0.00 -0.16*** 

Education 0.10 0.06 0.09 

Wealth 0.07 0.04 0.07 

Irrigation access -0.10 0.20 -0.02 

Location (Upstream – downstream) 0.07 0.04 0.07 

House type 0.12 0.06 0.09* 

Participation in CD construction 0.98 0.12 0.34*** 

a  The point where the function crosses the y-axis. 

*p ≤0.05, **p ≤ 0.01, ***p ≤ 0.001 

# Variance inflation factor (VIF) was estimated to check for multicollinearity. All values 

were less than threshold of 5. 

4.4.3.2 Sociopsychological predictors impacting farmers' 
behavior towards CD maintenance 

Hierarchical regression was performed after incorporating important 

(significant) contextual factors identified in the forced regression in the first step 
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and RANAS sociopsychological factors in the second step. The addition of 

sociopsychological factors increased the percentage of variance of the outcome 

variable explained by the model to 53 % (Table 4.4). The attitude towards effort 

(instrumental belief) and attention to the state of maintenance of CDs (self-

regulation) are the only two sociopsychological factors that influence farmers' 

behavior towards the maintenance of CDs. Attitude (β = 0.34) and self-regulation 

(β = 0.23) were more influencing than the contextual factors. All other RANAS 

sociopsychological factors (Table 4.2) including farmers' risk perception, social 

norm, attitude towards CD benefits, and ability factors were found to be 

insignificant towards influencing farmers' behavior of maintaining CDs. 

Table 4.4: Results of Hierarchical Regression with Contextual (model 1) and 

Sociopsychological factors (model 2) for farmers behavior towards CD 

maintenance  

  Beta (B) Standard 
error (B) 

Standardized 
beta (β) 

  Model 1 (R2=0.26) 

  

  
(Intercept)a 0.90 0.22 0.00*** 

Farmers land area 0.01 0.00 0.15*** 

Agriculture income proportion 0.00 0.00 -0.15*** 

Direct water use from CDs -0.73 0.16 0.20*** 

Distance from CDs 0.00 0.00 -0.17*** 

House type 0.20 0.06 0.14*** 

Participation in CD construction 0.99 0.12 0.34*** 
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Beta (B) Standard 

error (B) 
Standardized 

beta (β) 

 Model 2 (R2=0.53) 

(Intercept) -0.24 0.22 0.00 

Farmers land area 0.00 0.00 0.08* 

Agriculture income proportion 0.00 0.00 -0.01 

Direct water use from CDs -0.40 0.14 0.11** 

Distance from CDs 0.00 0.00 -0.09* 

House type 0.14 0.05 0.10** 

Participation in CD construction 0.55 0.11 0.19*** 

Perceived risk: GW depletion -0.02 0.03 -0.03 

Perceived risk: Drought 0.04 0.03 0.06 

Perceived severity: Drought 0.05 0.03 0.06 

Perceived severity: GW depletion 0.03 0.03 0.03 

Descriptive norm (Others Behavior) 0.02 0.03 0.03 

Injunctive norm (Others’ 
(dis)approval) 

0.07 0.04 0.08 

NGO’s opinion -0.04 0.03 -0.04 

Ability: Maintenance self-efficacy -0.03 0.05 -0.03 

Ability: Govt 0.04 0.04 0.05 

Attitude effort (Instrumental belief) 0.29 0.04 0.34*** 

Attitude: Benefit dry year -0.01 0.03 -0.02 

Attitude: Benefit normal year -0.04 0.05 -0.06 

Attitude: Benefit wet year -0.04 0.03 -0.07 

CD attention (Action control) 0.18 0.04 0.23*** 

CD plan (Action planning) 0.07 0.05 0.06 

a  The point where the function crosses the y-axis. 

*p ≤0.05, **p ≤ 0.01, ***p ≤ 0.001 

# Variance inflation factor (VIF) was estimated to check for multicollinearity. All values 

were less than threshold of 5. 
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4.5 Discussion 

4.5.1 Check dam benefits 

4.5.1.1 Drought impact mitigation 

The results show that the main perceived benefits of CDs are enhanced water 

availability and reliability that helps farmers to expand their crop and irrigated 

area (Figure 4.2 and 4.3). However, these benefits are mostly accrued in wet 

years and are least in dry years (Figure 4.3a) when irrigation demand is the 

highest. This is due to limited rainfall and runoff in the dry years that limits 

inflows to the CDs (Alam et al., 2022b; Mozzi et al., 2021). Thus, the duration of 

water availability in CDs decreases from 8 months in wet years to only 3 months 

in dry years (Figure 4.3b). It is intuitive that most farmers do not perceive a CD 

as an intervention that directly mitigates the impacts of drought (Figure 4.2a and 

2b). However, ~ 30 % of the farmers do report high or very high benefits even in 

dry years (Figure 4.3a). This shows that the presence of CDs does add, though 

little, to drought adaptation if compared to the villages with no CDs. 

These results corroborate with the findings of water balance study in the 

catchment that showed that recharge from CDs was insignificant in dry years and 

crop demands remained unmet (Alam et al., 2022b). This is because in semi-arid 

regions with shallow basaltic hard rock aquifers having little primary porosity, 

CDs or water storage structures have limited capacity to recharge aquifers 

sufficiently to mitigate the impact of droughts (Kumar et al., 2008; Kumar and 

Perry, 2018; Enfors et al., 2008; Ogilive et al., 2016; 2019; Alam et al., 2022b). 

Similar conclusions have been drawn by for example, Enfors et al., (2008) and 

Ogilive et al. (2016; 2019) who assessed RWHs in Tanzania (locally termed 

Ndiva system) and Tunisia respectively. The authors showed that the low 

storage capacity of small reservoirs, often the case of RWH systems, limited their 
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capacity to augment surface water supplies or recharge groundwater sufficiently 

to provide reliable irrigation supply and did not lead to significant increases in 

farmers’ capacity to cope with droughts. Thus, in the situation of limited 

possibilities to increase water availability especially during dry years, these 

efforts need to be strengthened in tandem with other drought management 

strategies such as crop diversification, agriculture insurance, off-farm income 

and drought tolerant crops and varieties. 

The results show that rather than drought mitigation, the main benefits of CDs 

are accrued in good rainfall years where additional water availability makes 

irrigation more reliable. This helps mitigate the impact of short dry spells and 

leads to increased crop cultivation in the post-monsoon dry season. This is in line 

with the hypothesis and results by Shah et al. (2009) for the study region and by 

Ogilive et al., (2019) in Northeast Brazil. This emphasises that small storage 

RWHs are more suitable to support supplemental irrigation and cannot be 

expected to sustain widespread intensive irrigation (Ogilive et al., 2016; 2019).  

In certain situations, carryover benefits of CDs from good rainfall years to dry 

years may enhance RWHs capacity to mitigate water scarcity in dry years (Garg 

et al., 2020; Singh et al., 2021). This may happen in the case of RWHs with 

relatively larger storage capacity, enabling farmers to capture more and store 

longer (Ogilive et al., 2016; 2019). Additionally, in places where cropping and 

irrigation intensity is limited, recharged water in wet years may remain available 

for irrigation in dry years (Garg et al., 2020; Singh et al., 2021). For example, a 

study by Garg et al. (2020) in semi-arid central India showed that even in dry 

years with negligible runoff, groundwater storage (measured by the number of 

wells going dry) was much higher (low number of wells going dry) in the 

watershed with RWHs compared to control watersheds. Singh et al., (2021) in 

the same region showed that recharge in wet years can sustain for two years. 
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However, as observed by Alam et al. (2022b), in an intensively irrigated area like 

the one studied here where groundwater storage in shallow aquifers is mostly 

depleted by year end, any such carryover impact is less likely. This was also the 

finding of Enfors et al. (2008) who did not find any carryover effect from 

preceding seasons in Tanzania as the irrigation systems were substantially 

overused. 

4.5.1.2 Equity of benefits 

Previous studies focusing on CD benefits largely focused on regional or 

watershed scales relying on assessing the dynamics of groundwater levels and 

rainfall (Patel et al., 2020; Shah et al., 2009). This ignores the equitability of the 

distribution of benefits within the population. The results show that despite the 

high density of CDs in the region, 40 % of the farmers still reported no benefits 

from CDs. This percentage was higher (~ 50 %) when asked about specific 

benefits for the main crops grown. This is similar to the results from Shah (2001) 

who estimated that ~ 80 % of households in the villages where CDs were built 

did not benefit from CDs.  

Also, a decrease in benefits with distance from CDs (section 4.2.1) reflects an 

inequitable distribution of benefits skewed towards farmers nearest to the 

streams where the structures are constructed. This skewed distribution was also 

reflected in a study by Shah et al. (2021) in Maharashtra where farmers' 

responses showed that benefits of lowland stream-course work (e.g., check 

dams) remained concentrated in nearby areas and were not achieved when 

located far away from CDs in upland areas. Deora and Nanore (2019) studying 

RWH systems in Maharashtra, India also showed that recharge structures’ 

benefits on streams are limited to agriculture fields that are downstream and 

close to the streams, leaving a large portion of agriculture area with no benefits.  
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This skewed distribution of benefits is more pronounced in watershed 

development projects. A high proportion of works in watershed projects are 

concentrated on hard adaptation options such as water harvesting structures, 

which are also more costly structures relative to other watershed works (e.g., in-

situ soil moisture conservation, land area treatment) (Shah et al., 2021; Sharma, 

2007; Shah, 2001; Singh, 2018). Thus, a large proportion of project budgets may 

go on to benefit a small proportion of farmers.  Hence, there is need for a more 

holistic and balanced approach, acknowledging biases towards RWHs in projects 

and emphasising adoption of a wider suite of area-based practices focusing on 

in-situ conservation (e.g., forestry, contour bunds, trenches) available for 

implementation. This will encourage more equitable distribution of benefits. 

Additional concerns are that water harvesting and recharge interventions 

may benefit relatively influential and richer farmers who have the financial 

capacity to invest in irrigation infrastructures and other agronomy investments 

(Bouma et al., 2011; Calder et al., 2008; Shah et al., 2021). While our results do 

not find any significant correlation of reported benefits with land size, this does 

not exclude other socio-economic and political characteristics that wield social 

power and may skew benefits. For example, the distribution of land in villages is 

not random and land acquisition and settlement over time leads to marginalized 

communities occupying less favorable lands (low fertility, limited water) 

(Sharma et al., 2008; Shah et al., 2021). Thus, inequitable distribution of lands 

and groundwater rights bundled with land ownership (Sharma, 2007) may mean 

that landless or marginalized communities located away from drainage lines do 

not benefit from these interventions. More research is needed in the region to 

unravel this phenomenon. 
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4.5.2 Sustainability of investments 

With a high proportion of project budgets allocated to hard adaptation 

measures such as CDs, it is critical to ensure their sustainability. This requires 

regular maintenance and desiltation to assure their structural integrity and 

optimum functioning. However, the sustainability of RWH structures after the 

withdrawal of project support has remained a challenge (Sharma, 2007; Singh, 

2018; Deora and Nanore, 2019). Results also show that already 40 % of CDs are 

not working. This seems to arise from the ageing of these structures (40 % of 

CDs are over 20 years old) and lack of maintenance with 72.8 % of farmers 

reported no activity to maintain the CDs. The average life span of CDs (masonry 

ones) is expected to be ~ 20 years (Lee et al., 2022) but is dependent on regular 

maintenance. Dysfunctional CDs and limited construction of new CDs, threaten 

the long-term benefits that could be accrued from these investments. Yet the 

limited involvement of farmers in maintenance and neglect of infrastructure is 

not uncommon (Deora and Nanore, 2019; Agoramoorthy et al., 2009).  

The regression analysis shows that the participation of farmers during the 

construction of CDs is a key determinant of farmers' behavior towards 

maintenance. Public participation as a key indicator of post project success has 

been well established in previous research and plays a key role in watershed 

program guidelines (Sharda et al., 2005; Sharma, 2007; Joshi et al., 2008; Deora 

and Nanore, 2019; Singh, 2018). Thus, low maintenance of structures by farmers 

aligns well with results that also show limited participation of farmers (~ 92 % 

did not participate in any way) during the construction of CDs. While many of 

the CDs are old, the results show that ~ 77 % of sampled farmers were >18 years 

old at the time CDs (ones nearest to them) were built. This is despite the 

participatory nature of government schemes where farmers were expected to 

contribute ~ 40 % of CD costs. Mudrakartha (2012) reflects that this largely 
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happened because local contractors secured the work in the names of local 

farmers (subsidising the farmers contribution) and made profit. This also led to 

the weakening of the participatory nature of the programme where farmers 

viewed these structures as government structures and lost the sense of 

ownership (Mudrakartha, 2012). This heterogeneity in the implementation 

process and dynamics may explain variation in maintenance of CDs. 

The significance of socio-economic factors including wealth (land area, house 

type) may indicate that CD maintenance is effortful and an expensive task that 

may be difficult for individual farmers to carry out. This is also highlighted by the 

fact the farmers with more diversified income have more tendency to maintain 

(Table 4.4). This could be because farmers with more diversified income can 

allocate a higher share of their total income to tasks requiring financial 

commitments such as CD maintenance. Other studies have also shown that a 

more diversified income is linked to higher adoption of new farm technologies 

such as drip irrigation (Nair and Thomas, 2022). To overcome the financial 

barrier, research has highlighted the role that community institutions such as 

farmers' groups can play in ensuring the sustainability of such investments 

(Singh, 2018, Agoramoorthy et al., 2009). While the survey data analysed here 

did not elicit any information on the existence of such groups in the region, none 

of the farmers reported being part of a farmers group in response to the question 

on “plan to maintain check dams.” Other significant contextual (biophysical) 

factors include direct use of water from CDs and distance from CDs which are 

related to the benefits arising from CDs.  

Limited community participation and non-existent farmer groups calls for a 

stronger emphasis and monitoring of post project exit protocols as already 

outlined in guidelines for watershed programs in India (DoLR, 2021; NRAA, 

2011). This includes the formation of watershed committees and creation of 
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watershed development funds for future maintenance, and its convergence with 

other development programs to pool resources for major repairs and 

maintenance (Sharda et al., 2005; Joshi et al., 2008).   

In terms of sociopsychological factors, only instrumental belief towards the 

efforts that it takes to maintain CD and self-regulation (action control) reflecting 

attention paid by farmers towards CD state of repair comes out to be significant 

factors influencing the behaviour of farmers towards its maintenance. In terms 

of effort, the results are counter-intuitive because farmers that perceive CD 

maintenance as more effortful show higher participation in its maintenance. This 

is similar to what Stocker and Mosler (2015) found where the perceived increase 

in the effort was related to a stronger habit of cleaning with soap and water. This 

could be because of the reverse effect, where farmers who regularly contribute 

towards CD maintenance are more aware of how effortful the task of maintaining 

a CD is. Behavioral change techniques such as communication and visualization 

of CD state of repair and a more systematic recording of the maintenance 

behavior (increasing self-regulation) can lead to more farmers contributing to 

its maintenance. The formation of farmers groups can bring down the effort 

(perception associated with it) required for the maintenance of CDs. 

4.5.3 Unintended consequences: Human-water dynamics 

Annual crop area and irrigation data shows that cotton (main kharif irrigated 

crop in the region) area has increased by ~ 124 % in the years following 2002 

(the period also coincides with accelerated construction of CDs) and the 

irrigation coverage has increased from 64.2 % to 85.4 % (DoA, 2021; Alam et al., 

2022b). This translated to higher demand and in the case of limited increase in 

supply, as is the case for dry years, increased supply-demand deficits. This 

potentially led to higher vulnerability to droughts (Alam et al., 2022b). This study 

provides an indirect link between the increase in irrigation demand and 
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increased (perception of) supply. The results show that the primary benefit to 

crops reported by farmers includes increased (perceived) availability of 

irrigation followed by a small set of farmers also reporting an increase in 

cropped area (Figure 4.3a and 3b). In the region where crop production is 

limited by water availability (especially in the post-monsoon season), this 

increased supply (and its reliability) of irrigation water directly links to 

increased intensity of irrigation in both pre and post monsoon seasons (leading 

to increased yields). This to an extent has led to increased cultivation of post 

monsoon crops which are completely dependent on water. Earlier research in 

the region (Shah, 2001) has also shown that additional water availability has led 

to an increased overall irrigated area under more water-intensive cotton crops.  

Studies in other semi-arid regions have also found that farmers have increased 

their cropping intensity and crop diversification in agriculture farms that were 

near such RWH structures (Deora and Nanore, 2019). 

This shows the existence of supply-demand feedbacks where increased 

supply (from RWH or another supply measure) leads to more demand, offsetting 

the benefits from the increased supply (Glendenning et al., 2012; Scott et al., 

2014 Di Baldassarre et al, 2018).  The increase in demand, associated with 

increased irrigation and cropping intensity may lead to greater shocks in dry 

years when water availability remains low and CDs are less effective. However, 

the argument can be made that the additional benefits accrued from increased 

production in normal and wet years supported by CDs outweighs the losses in 

dry years. Additionally, there is a risk that farmers may acquire deep borewells, 

tapping deeper aquifers, to continue supporting increased irrigation (area) of 

good rainfall years. Survey results showed (not given in results) that already 25 

% of farmers own deep borewells in addition to dug wells. Thus, to ensure the 

long-term sustainability of the systems, there is a need to supplement supply 
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interventions with greater emphasis on water demand management 

interventions (e.g., more efficient irrigation, less water-intensive crops, 

improved water management practices) and groundwater governance. This is 

often lacking in such programs (Singh, 2018) and is reflected in our survey 

where only ~ 10 % of farmers reported using drip irrigation for irrigation. 

Overall, this reflects two-way feedback that is endemic to human-water 

systems where both human and water systems feedback to each other and co-

evolve. For example, Ribeiro Neto et al. (2022) showed how small man-made 

reservoirs in Northeast Brazil, made by the local population as a coping 

mechanism to drought, induce and modify drought events. These unintended 

consequences are necessarily not always negative. For example, Enfors et al. 

(2008) found that while RWHs in Tanzania did not directly change the coping 

capacity to drought but it incentivized nearby farmers to have better farmland 

management practices with more investment in nutrient management and soil 

conservation. 

There is an inherent need to model these two-way human-water system 

feedbacks to understand and predict the impacts of RWH systems, without 

which investments can exacerbate and reinforce current inequalities and lead to 

long-term natural resource degradation. More recent interdisciplinary 

approaches such as sociohydrology can help to understand and disentangle the 

dynamics and help better plan these RWHs (Sivapalan et al., 2012; Pande and 

Sivapalan, 2017).  

4.5.4 Recommendations 

The findings of the study call for a more nuanced and site-specific approach 

towards the implementation of RWHs for effective, equitable, and sustainable 

implementation outcomes. First, there is a need for clear communication and 
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realistic assessment and expectation of the potential benefits of RWHs. This is 

especially so for semi-arid regions with intensively irrigated areas and hard rock 

aquifers having little primary porosity, where drought mitigation potential of 

CDs remains limited.  Second, the implementation of CDs should be 

complemented by greater emphasis on other drought management strategies 

(e.g., demand management, insurance, off-farm income). The special focus 

should be on water demand management for more effective use of 

stored/recharged water and to avoid unintended consequences of supply-

demand feedbacks. Third, equitability concerns regarding the distribution of the 

benefits (spatially and among socio-economic groups) should be evaluated. For 

a more equitable distribution of benefits, a holistic suit of interventions should 

be implemented with equal emphasis on a wider suite of area-based practices 

focusing on in-situ conservation (e.g., forestry, contour bunds, trenches). Finally, 

to ensure the sustainability of projects through the maintenance of such 

structures, the participation of farmers (beyond consultations) should be 

encouraged to build a sense of ownership, and post-project exit protocols 

(forming water user groups, maintenance funds) should be strictly adhered to. 

Behavioral change techniques (communication, visualisation of the state of CDs) 

can assist in raising the awareness of farmers and make them more responsible 

towards maintenance.  

4.6 Conclusion 

RWHs through various interventions (including CDs) are increasingly being 

promoted and adopted as an adaptation measure to build resilience to cope with 

dry spells and droughts, especially in arid and semi-arid regions of the world. 

This study analysed the perception of the farmers' about the benefits of CDs, the 

equitability of such benefits, and the sustainability of CDs in the semi-arid 

Saurashtra region of Gujarat, India, where CDs have been extensively 
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implemented for more than 30 years. The results of the study showed that the 

key perceived benefit of CDs is increased water availability for irrigation that is 

realised through increased groundwater levels and longer availability of water 

in wells. This helps farmers to achieve more yield and increase area under crops. 

However the benefits are mostly accrued in wet years, followed by normal years 

and least in dry years. CDs are therefore not perceived as a drought mitigating 

interventions. This is due to low runoff in dry years limiting the water inflow to 

the CDs and underlying hard rock aquifers having limited inter-annual carry 

over capacity. Also, the benefits of CDs are inequitably distributed and are 

concentrated to farmers who are near to the streams where CDs are built. Overall 

~ 40-50 % of farmers reported accruing no benefits from CDs despite the high 

density of CDs. The results also reported that ~ 40 % of total CDs  are not 

functional and most of the farmers (72.8 %) do not participate in any 

maintenance activity. The regression analysis showed that both contextual (e.g., 

participation during CD construction, farmers’ land area) and sociopsychological 

factors (e.g., attitude towards CDs, attention they pay to the CDs condition) 

significantly influenced the behaviour of farmers. The perception of an increase 

in water supply from CDs, as seen in good rainfall years, may lead to increased 

irrigation and cropping intensity which increase the risk of greater shocks in dry 

years (when increase in water availability is limited). This could be worsened by 

the lack of maintenance of CDs and over the long-term may lead to unsustainable 

solution of overexploitation of deeper aquifers with more farmers drilling deep 

groundwater wells. The study therefore calls for a more holistic implementation 

of drought mitigating measures with balanced implementation of supply 

enhancing and demand management interventions.
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Alam, M.F., McClain, M., Sikka, A., Pande, S., 2024. Subsidies alone are not enough 
to increase adoption of agricultural water management interventions. Front. 
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5.1 Introduction 

Agriculture with a strong dependence on weather is highly vulnerable to 

climate change (FAO, 2021; Sikka et al., 2022). With changing climate 

intensifying hydroclimatic extremes of floods and drought, adaptation in 

agriculture is extremely important (United Nations, 2019; IPCC 2022). Without 

adaptation, agricultural yields could decrease by 30% by 2050, impacting 

livelihoods and food security, especially in less developed countries where 

smallholder farmers have limited capacity to adapt (GCA and WRI, 2019). Given 

the centrality of water in climate change adaptation efforts, climate smart 

agriculture water management is critical to building water resilience and 

adapting to climate change (Sikka et al., 2022). The efficacy and benefits of a 

range of climate smart agriculture water interventions for adaptation have been 

widely reported and established (Evans and Giordano, 2012; Alam et al., 2021; 

Sikka et al., 2022). 

The successful scaling of these interventions is needed to achieve 

transformational and visible impacts in building climate change adaptation 

(Sikka et al., 2022; Aggarval et al., 2018). However, the widespread adoption of 

agricultural water management interventions and technologies has been slow 

and limited (Shiferaw et al., 2009; Palanisami et al., 2015; Alam et al., 2021). 

Multiple studies over time and in different contexts have evaluated the factors 

influencing the uptake of different adaptation strategies and technologies in 

agriculture (Balasubramanya et al.,2023; Pathak et al., 2019; Palanisami et al., 

2011; Reddy, 2016). Several factors including socio-economic (e.g., land size, 

experience), biophysical (e.g., soil), technology (e.g., cost, availability), and 

institutional (e.g., capacity building, subsidies) have been identified (Pathak et 

al., 2019; Nair and Thomas, 2022; Balasubramanya et al., 2023).  
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However, psychological factors have been often overlooked in many studies 

(Nair and Thomas, 2022; Balasubramanya et al., 2023; Namara et al., 2007). This 

is a gap as several studies have shown that psychological factors significantly 

influence the adoption of interventions (Alam et al., 2022a; Daniel et al., 2020; 

Hatch et al., 2022). For instance, farmers' perceived behavioral control, belief 

about cost and benefits, and risk perception have been shown to significantly 

influence their adoption decisions (Arunrat et al., 2017; Yazdanpanah et al., 

2014; Alam et al., 2022a,b). Thus, neglecting psychological factors can lead to a 

lack of understanding of why some farmers adopt interventions while others do 

not, despite similar socio-economic and environmental conditions. 

Several behavioral theories, grounded in social science, exist to evaluate the 

influence of psychological factors on farmers' adoption behaviors (Schlüter et al., 

2017; An, 2012; Alam et al., 2022b). The risk, Attitude, Norms, Abilities, and Self-

regulation (RANAS) model (Mosler, 2012) is one among them. The RANAS model 

assumes that multiple socio-psychological factors (i.e., risk, attitude, norm, 

ability, and self-regulation) impact behavioral outcomes (i.e., behavior, 

intention, use, and habit). Although initially developed for the WASH sector, the 

RANAS model is being increasingly used to understand farmer irrigation 

behavior or adoption of water management interventions (Alam et al., 2022a; 

Hatch et al., 2022; Klessens et al., 2022; Daniel et al., 2020; Stockler and Mosler, 

2015). RANAS's strength is that it combines important socio-psychological 

factors from other important behavioral theories, can be adapted for a range of 

behaviors, and provides a systematic approach with a standardized 

questionnaire (Callejas Moncaleano et al., 2021). 

This study, using the RANAS behavioral model, examines the factors that 

influence the adoption of agricultural water interventions in a semi-arid region 

(Saurashtra) in India. Specifically, adoption of two dominant and contrasting 
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agricultural water interventions in the region: drip irrigation and borewells are 

analyzed. Drip irrigation, increasing efficiency of on farm water application, is a 

demand management strategy and is extensively promoted by the government 

with enabling policies and subsidies (Sikka et al., 2022; Nair and Thomas, 2022).  

While micro irrigation generally consists of both drip and sprinkler irrigation, in 

the studied region, drip irrigation is the dominant form, and therefore, we have 

used the terms "drip" and "micro irrigation" interchangeably in the paper.  On 

the other hand, drilling borewells to tap deeper aquifers is a supply-augmenting 

intervention that farmers adopt in response to the drying of wells or depletion 

of aquifers (Patil et al., 2019; Kattumuri et al., 2017). Access to groundwater has 

played a crucial role in expanding irrigation and production globally, especially 

in South Asia (Mukherji, 2020) and now increasingly in Africa (Cobbing and 

Hiller, 2019). However, over time, this has led to the depletion of aquifers 

(Mukherji, 2020). 

This paper evaluates the factors that govern the adoption of drip irrigation 

and borewells in the Saurashtra region. The findings of this study provide 

insights into the key factors that need to be addressed to promote the adoption 

of water interventions among farmers. It informs the development of effective 

policies and programs to improve water management in the region and 

elsewhere. 

5.2 Study area 

The study area is the Kamadhiya catchment located in the Saurashtra region 

of Gujarat state in India (Figure 5.1a). The region is characterized by a semi-arid 

climate, low rainfall (average of 638 mm year−1 (1983–2015)) with high 

evaporation and high-water demand. There is large intra- and inter-year rainfall 

variability that impacts the agriculture in the region, which covers ~70 % of the 
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catchment area (Alam et al., 2022c). More than 90% of the rainfall is 

concentrated in the four monsoon months of June to September (Pai et al., 2014). 

The main crops grown in the region are cotton and groundnut during the Kharif 

season (the monsoon season, starting in June and ending in October) and 

chickpea and wheat during the Rabi season (the post-monsoon season, starting 

in November and ending in February/March). The lack of water during the post-

monsoon season limits crop intensity (Alam et al., 2022c). 

Groundwater is the main source of irrigation in the region, covering ~82 % of 

the irrigated area. Aquifers of the region are represented by parent basalt rocks 

of the deccan trap with low primary porosity and hydraulic conductivity 

(Mohapatra, 2013; Kulkarni et al., 2000). The storage of these aquifers is 

primarily limited to water-bearing zones mostly confined to upper shallow (15 

– 30 m) weathered and fractured zones of hard rock (Mohapatra, 2013; Kulkarni 

et al., 2000). Groundwater from the top 15–30 m of weathered upper parts is 

tapped by open large diameter (4-8 m) dug wells usually 15-30 m deep 

(Mohapatra, 2013, Kulkarni et al., 2000). The groundwater availability in upper 

weathered zone remains limited in the post-monsoon season and is mostly 

depleted by the end of the year because of the limited extent and storage of 

aquifers (Alam et al., 2022c; Foster, 2012) thus limiting cultivated area in post 

monsoon seasons (Alam et al., 2022c).  Groundwater availability in deeper 

aquifers is limited and dependent on nature and the degree of vertical and 

horizontal joints and fractures (Kulkarni et al., 2000; Foster, 2012). The deeper 

aquifer is tapped by deep (~ 100 – 300 m) borewells.  
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Figure 5.1: (A) Location of Kamdhiya catchment, Bhadar basin, Saurashtra 

region and Gujarat state in India, (B) Sampled villages for household survey in 

Kamadhiya catchment. In light blue color are the villages that lie downstream of 

dams (shown in dark blue) or near to the main stem of the river (stream order > 

= 4). 
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5.2.1 Agricultural water management interventions in the 
region 

The vulnerability of the agriculture sector is high in India with large part of 

the country under arid and semi-arid climate and half of the cropped area being 

rainfed (Sikka et al., 2022; Alam et al., 2021). Saurashtra region with low and 

highly variable rainfall faces frequent droughts and associated production losses 

(Alam et al., 2022c). Governmental and non-governmental organizations have 

been promoting a range of interventions in the area to mitigate the impact of 

short and unpredictable monsoons. The key interventions in the region include 

supply augmentation through check dams, which are community water 

harvesting structures largely built on common land through state resources 

(Alam et al., 2022a) and increasing the efficiency of water use through drip 

irrigation (Namara et al., 2007; GGRC, 2023). The impact of check dams and 

farmers' perception on check dams has been evaluated earlier (Alam et al., 

2022a, c). On other hand, field visits have shown that farmers increasingly are 

drilling deeper borewells to supplement water from shallow dugwells. 

5.2.1.1 Drip irrigation 

Drip irrigation involves applying water and nutrients directly to the crop root 

zone. Multiple studies have evaluated the benefits of drip irrigation, which 

includes water savings, yield enhancement, labor savings, efficient fertilizer use, 

and reduced weed and pest infestation among others (Palanisami et al., 2011; 

Namara et al., 2007; Singh, 2013; Reddy 2016). In India, the government has been 

running capital subsidy programs for more than a decade to increase the 

adoption of micro-irrigation (including drip), starting with the national mission 

on micro-irrigation and currently continuing with Pradhan Mantri Krishi Sinchai 

Yojana (PMKSY - Prime minister Farm Irrigation scheme) (Nair and Thomas, 

2022; DAC&FW, 2017). Additionally, non-governmental organizations have also 
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invested (funds, knowledge transfer, training) to increase the uptake of micro-

irrigation (Panda, 2003).  In the region, Gujarat state government has set up a 

special purpose vehicle, Gujarat Green Revolution Company (GGRC) limited in 

2004–05, to expand the area under micro irrigation in the state (GGRC, 2023). A 

subsidy of 50 % is provided (limited to ~ $ 750/per hectare) with an additional 

subsidy of 25 % for tribal and scheduled caste farmers (GGRC, 2023).  

However, despite being subsidized and with widely reported benefits, 

multiple studies over time have shown that the adoption of micro-irrigation has 

remained low (Palanisami et al., 2011; Namara et al., 2007; Nair and Thomas, 

2022). The micro-irrigation has been adopted in less than 15 % of the potential 

area in India (Suresh and Samuel, 2020). The question then becomes why? 

5.2.1.2 Borewells 

Borewells are narrow, deep wells drilled into the ground using a tube 

(Steinhübel et al., 2020) to tap deeper aquifers (~ 100 – 300 m), in contrast to 

large diameter shallow (~ 15-30 m) dug wells. Although dugwells remain the 

primary source of irrigation, farmers in the study region have increasingly been 

using borewells to supplement their shallow dugwells. Unlike drip irrigation, 

borewell drilling in the region is not supported by government subsidies but is 

being taken up by farmers as a supply augmentation strategy (Mudrakartha, 

2012; Kulkarni et al., 2000). 

Farmers drill borewells to hedge against production risks associated with low 

rainfall years, particularly during the dry seasons after the monsoon when the 

shallow weathered aquifer (15-30 m) in the region dries out (Steinhübel et al., 

2020). The drilling of borewells or digging deeper wells as an adaptation 

strategy in response to droughts or declining groundwater levels has been 

observed in other parts of the country as well (Jain et al., 2015; Singh et al., 2018; 
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van Steenbergen, 2006; Steinhübel et al., 2020; Mudrakartha., 2007). However, 

the hard rock aquifers of the region are characterized by low primary porosity 

and a heterogeneous and low-density fracture network thus leading to high 

borewell drilling failure rates (Robert et al., 2018; Foster, 2012). Even if 

borewells are successfully drilled, their yields are low and can only supplement 

the water supply from dug wells.  

5.3 Methodology 

5.3.1 Household survey 

The primary data were collected through a household surveys in December 

2021. A total of 492 farmers were interviewed across 24 villages (20-22 farmers 

in each village) in the Kamadhiya catchment (Figure 5.1b). More information on 

survey sampling and procedures can be found in Alam et al. (2022a). The farmers 

were stratified into four groups: marginal (<1 ha), small (1 -2 ha), medium (2-4 

ha) and large farmers (>4 ha) based on farmers' land area in the administrative 

blocks where villages are located. The structured interviews, translated into the 

local language (Gujarati), lasted approximately 45-50 minutes and were carried 

out by a trained team of 10 enumerators native to the region.  

5.3.2 Questionnaire 

The structured survey questionnaire consisted of two parts, 1) farmers' 

socio-economic factors and 2) farmers' perception of drip irrigation and 

borewells and RANAS related questions regarding the adoption of the irrigation 

technologies. Farmer socio-economic data included information on farmer's age, 

gender, number of household members, farming experience, area of land owned, 

main income sources, livestock, house type, and ownership of material assets 

(e.g., TV, scooter, car). In addition, data on farmers' cropping practices were also 

collected. 
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The questions on drip irrigation and borewells consisted of a mix of 

informative questions (e.g., cost, subsidy, benefits) and farmers' perceptions 

about the benefits of each. Questions on RANAS sociopsychological factors (i.e., 

R-risk, A-attitude, N-norm, A-ability, and S-self-regulation) towards the adoption 

of drip and bore wells were measured with two to four questions on a five-point 

Likert scale (Table C.1). Risk factors represent a person’s understanding and 

awareness of the health risk; Attitude factors represent a person’s positive or 

negative stance towards a behavior; Norm factors represent the perceived social 

pressure towards a behavior; Ability factors represent a person’s confidence in 

her or his ability to practice a behavior and self-regulation factors represent a 

person’s attempts to plan and self-monitor behavior and to manage conflicting 

goals and distracting cues (Mosler, 2012).  

5.3.3 Data analysis 

A descriptive analysis is carried out to understand farmers' socioeconomic 

profile in the region and their perception of the benefits and impacts of drip 

irrigation and borewells. This is followed by a binary logistic regression analysis 

to understand the main determinants of farmers' behavior toward the adoption 

of drip irrigation and borewells. Separate logistic regression is carried out for 

both drip and borewells considering their contrasting roles and assuming that 

adoption of one technology does not necessarily influence adoption of the other. 

This is supported by field observations indicating farmers consider them as 

individual technologies catering to separate goals.  

Binary logistic regression is a statistical method that estimates the probability 

of one of two possible outcomes, based on a set of predictor variables and is 

appropriate when the dependent variable has only two outcomes (e.g., such as 

yes/no or adopters/non-adopters) (Tranmer and Elliot, 2008; Harris, 2021). To 

account for variations in village size, sampling weights (farmers interviewed in 
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each village divided by the village population) were derived and used in the 

analysis. The effects (coefficients) estimated by a logistic regression are 

interpreted as changes in the log-odds of the outcome variable for one-unit 

change in the predictor variables, with other variables held constant. A positive 

and significant coefficient indicates an increased likelihood of the outcome, while 

a negative and significant coefficient indicates a decreased likelihood. The 

magnitude of the coefficient indicates the strength of the association (Tranmer 

and Elliot, 2008; Harris, 2021). Binary logistic regression has been used widely 

across fields and in a range of studies to evaluate the adoption of water 

management technologies (Patil et al., 2019; Raut et al., 2021; Yifru et al., 2022; 

Singh, 2013; Namara et al., 2007). 

5.3.4 Definition and Selection of variables 

The dependent variable was whether a farmer has adopted drip irrigation (or 

borewells) or not. A value of 1 was assigned to all the farmers who use drip 

irrigation and 0 to those who use other irrigation methods. The use of sprinkler 

irrigation was negligible in the area. For borewells, a value of 1 was assigned to 

all the farmers who have installed a borewell in addition to dugwell(s) and 0 to 

those who only have dugwells. The farmers that only had borewells as their 

primary source of irrigation were excluded from the logistic regression of 

borewell adoption. 

The selection of explanatory variables, in addition to RANAS psychological 

variables, was done based on previous studies that have shown that the adoption 

of practices is influenced by a range of socio-economic factors including farmers' 

economic, social, and demographic factors (Yifru et al., 2022; Nair and Thomas, 

2022; Namara et al., 2007). This included farmer owned land, age, farming 

experience, education, income from agriculture and wealth (defined by 

ownership of assets). Additionally, based on field visit observations, number of 
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livestock, distance from check dam and proximity to river or dams (Shown in 

Figure 5.1B) were identified as important factors and were added. The location 

of the administrative block in which farmers are located was added to account 

for other unobserved factors. A multi-collinearity analysis was carried out 

among the socioeconomic variables and any variables with a high degree of 

correlations (threshold of 0.6) were removed. Final socioeconomic and 

biophysical variables retained for the binary logistic regression are presented in 

Table 5.1. 

Table 5.1: Description and summary statistics (mean and percentage) of the 

variables used in the binary logistics model. T-test and chi-square tests are done 

to assess if the differences between adopters and non-adopters are significant. 

Superscript s represents a significant difference (p < 0.05) of mean or proportion 

between adopters and non-adopters. 

Variable Description 
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Drip 
Irrigation 

Borewell 

Dependent variable 

Drip/borew
ell adoption 

Have adopted drip 
irrigation/borewell (count) 

79 399 122 286 

Psychological variables (RANAS) (mean) 

Risk 
(Perceived 
vulnerabilit
y) * 

Farmers' perception of risk (drought, 
groundwater)? 

1.78s 2.03s 1.79 2.04 

Risk 
(Perceived 
severity) * 

Impact of drought and groundwater 
decline on crop production? 

2.92 2.83 2.82 2.88 

Attitude 
(Reliability, 
benefits) * 

How beneficial and reliable drip 
irrigation/borewell is for crop 
production? 

2.94s 2.28s 2.24s 1.75s 
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Attitude 
(Time) 

How time-consuming is it to get a drip 
irrigation/borewell set up? 

2.19 1.65 2.74 s 1.27 s 

Ability (drip 
irrigation) * 

How confident are you in your 
financial and knowledge to own, 
operate and maintain the drip?  

2.18s 1.47s - - 

Financial 
ability 
(borewell) 

How confident are/were you in your 
financial capability to afford the 
drilling of a BW? 

- - 1.28 1.07 

Technical 
ability 
(borewell) 

How confident are/were you in your 
capacity/knowledge to install a BW? 

- - 1.75 1.49 

Societal 
norm* 

What proportion of people in your 
village have drip/borewell and 
people whose opinion you value think 
having drip /borewell is good?  

2.03s 1.56 s 1.99 s 2.18 s 

Norm 
(NGOs) 

How important are 
NGOs/government official opinions 
to you?  

1.64 1.47 1.58 1.48 

Drip Self-
regulation 

How much do you pay attention to 
how much water you use for 
irrigation?  

3.43 2.97  -  - 

BW Self-
regulation 
(Action 
planning) 

 

Do you have the plan to acquire the 
required personnel and material it 
takes to drill a borewell? 

 -  - 1.89 1.05 

Do you have a plan if your borewell 
does not yield water or stop giving 
water? 

 - -   1.30  1.15 

Socio-economic 

Landa (Total 
area 
cultivated) 

Marginal (%) 6.3s 17.8s 8.3 15.6 

Small (%) 24.1 33.1 28.9 31.6 

Medium (%) 26.6 28.8 29.8 28.7 

Large (%) 43.0s 20.3s 33.1 24.1 

Experience Years of farming experience 29.8 26.7  27.9 26.88 
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Educationa 
(Years) 

No education (%) 17.7 23.8 24.8 22.3 

Primary (%) 36.7 31.3 29.8 33.3 

Secondary (%) 44.3 41.6 40.5 41.8 

Higher (%) 1.3 3.3 5.0 2.5 

HH 
members 

Number of Household members 
(mean) 

5.2 5.5 5.04 5.65 

Income 
from 
Agriculture 

Percent of income coming from 
Agriculture (mean) 

68.2s 60.5s 65.1 62.62 

Livestock 
numbers 

Number of livestock owned by the 
farmer (mean) 

 2.17s 2.82s  3.38 2.45 

Biophysical 

CD distance 
Distance (m) from nearest check dam 
in meters (mean) 

1317.
5 

1314.
4 

1449.
1 

1311.
6 

Blocka 

Gondal (%) 26.6 21.3 28.9 19.5 

Babra (%) 5.1s 14.0s 13.2 9.2 

Jasdan (%) 51.9 48.1 43.8 51.4 

Kotda (%) 5.1 9.0 9.1 8.5 

Rajkot (%) 7.6 3.5 4.1 5.0 

Chotila (%) 3.8 4.0 0.8s 6.4s 

*Taking average of individual RANAS questions (Table C.1) before PCA. 

a Dummy variable. 

b Wealth derived as score from ownership of assets. Wealth = 1*gas connection + 2*fridge 
+ 2*tv + 2*two-wheeler + 3*ac + 4*car + 1*kuccha house + 2*semi-pucca + 3*pucca 

To address multicollinearity caused by RANAS questions measuring common 

latent variables, principal component analysis (PCA) for factors with three or 

more questions (Table C.1) was used (Daniel et al., 2020). Detailed results of the 

PCA and redefined psychological factors for all questions under each RANAS 

factor are presented in Tables A4.1 and A4.2. For instance, the three questions 

on perceived ability (financial, knowledge, operate) (Table C.1) to adopt drip 

irrigation were renamed as “ability” since they all loaded on the first principal 

component (Table C.2, Table 5.1). Likewise, the five questions related to risk 

(Table C.1) were renamed as perceived vulnerability and severity, which loaded 
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on the first two principal components, separating risk and impact factors (Table 

C.2, Table 5.1). Table 5.1 lists the final RANAS factors retained for the binary 

logistic regression. 

5.4 Results and discussion 

5.4.1 Descriptive statistics 

The average landholding in the catchment was reported to be 2.9 hectares 

(median = 2.0 hectares). Small farmers (1-2 ha) represented the highest share of 

sample farmers (31.7 %) followed by medium (2- 4 ha) (27.8%) and large (> 4 

ha) (23.4 %) and marginal (< 1 ha) (17.5 %) farmers. More than 60 % of farmers 

were above the age of 40 and had 8 years or less of schooling. Agricultural 

income from crop production (99.2 % of farmers) and livestock rearing (71.7 %) 

were the main sources of income. Further description of socioeconomic statistics 

can be found in Table 4.2 (chapter 4). 

Table 5.2 gives a summary of agriculture and irrigation characteristics in the 

region. Cotton and groundnut are the main Kharif crops (~ 98 % area) covering 

44 % and 54 % of the Kharif cultivated area, respectively. Rabi cultivated area is 

limited (~ 46 % of Kharif cultivated area), with chickpea (49 %), cumin (24 %), 

and wheat (15 %) being the main crops. Cultivation is negligible in the area from 

March to May. Overall ~ 97 % of the farmers reported having access to irrigation, 

with groundwater (~ 96 %) being the main source of irrigation. 
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Table 5.2: Agriculture and Irrigation characteristics for the main crops  

 Kharif (Jun – 
Oct) 

Rabi (Nov – Feb) 

C
o

tt
o

n
 

G
ro
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n
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n
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h
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k
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W
h

e
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Season area Area (%) 44.1 53.9 49.2 24.3 14.9 

 

Irrigation 
(%) 

Always 84 80.0 93.5 100 100 

Never 2 1.4 0.00 0 0 

Only in a dry year 11 13.7 3.7 0 0 

In dry spell 3 4.8 2.8 0 0 

Irrigation 
source 
sufficiency 
in dry year 
(%) 

Not 24.5 23.5 19.9 22.5 19.2 

a little 40.1 40.1 41.7 42.3 51.9 

Sufficient 29.9 29.9 31.0 27.0 24.0 

Quite 5.1 5.9 5.6 5.4 4.8 

Very 0.3 0.98 1.9 2.7 0.0 

 

Irrigation 
method (%) 

Flood 8.0 6.7 6.40 7.21 7.4 

Furrow 16.7 46.9 13.8 11.7 14.7 

Drip 10.4 2.7 0.5 0.9 0.0 

Sprinkler 0.3 3.0 1.5 0.0 0.0 

Bed 64.4 40.6 77.8 80.2 77.9 

 

Irrigation 
schedule 
(%) 

no plan 6.7 7.3 10.2 9.0 6.7 

Crop calendar 0 0 0.0 0.0 0.0 

Moisture probe 3.8 4.4 8.8 4.5 4.8 

Examine soil visual 5.4 5.6 5.6 5.4 2.9 

Irrigate when need 82.5 81.9 68.1 74.8 78.8 

Irrigate every day 1.6 0.7 7.4 6.3 6.7 
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For the Kharif crops, ~ 80 % of farmers indicated that they irrigate always 

(every year) whereas ~ 10 % indicated that irrigation is needed only in dry 

years. On the other hand, almost all farmers indicated that they irrigate their 

crop always (every year) in the post-monsoon Rabi season reflecting the lack of 

rainfall. About two-thirds of the farmers indicated that their irrigation source is 

not sufficient (not sufficient or only a little sufficient) in dry years, which shows 

limited groundwater storage in the region. Regarding the irrigation schedule, 

most farmers indicated they irrigated when they felt the need.  

5.4.2 Adoption of drip irrigation and borewells 

5.4.2.1 Drip irrigation 

Overall adoption of drip irrigation is low in the catchment with only 16.5 % 

of the farmers using drip irrigation systems. The use of drip irrigation is mainly 

for the cotton crop (10.4 %) followed by small areas under groundnut cultivation 

(2.7 %) (Table 5.2). This is despite the subsidy program by the government with 

farmers reporting an average of ~ 50 % subsidy for drip irrigation systems. Also, 

both cotton and groundnut, dominating the cropping area are cash crops and are 

suitable for drip irrigation. Studies have shown that adopting drip irrigation has 

technical and economic benefits, including water savings and increased physical 

and economic water productivity for both crops (Namara et al., 2017; Singh, 

2013).  For Rabi crops, the use of drip irrigation remains negligible. Micro 

irrigation remains less suitable for cereals and pulses (Namara et al., 2017; Singh 

2013), which could explain negligible use in the Rabi season.  The main irrigation 

method reported was conventional flood irrigation for all crops except 

groundnut where both furrow and flood irrigation are used (Table 5.2).   

The statistical tests (t-test and chi-square) (Table 5.1) showed that adopters 

were significantly (p < 0.05) wealthier and earned a higher percentage of their 
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income from agriculture. Similarly, adopters' have higher landholdings, with 

significantly more large farmers being adopters and significantly fewer marginal 

farmers being non-adopters. With respect to the psychological factors, adopters 

show significantly higher ability, positive belief about the utility of the drip 

irrigation technology, and societal norms towards drip irrigation systems. 

5.4.2.2  Borewells 

In the catchment, 57.3 %, 12.8 %, and 24.6 % of farmers reported owning only 

a dugwell, a borewell and a borewell in addition to a dug well, respectively. The 

latter group of farmers who own a borewell in addition to a dugwell (24.6 % of 

farmers) are referred to as adopters and those who own only a dugwell are 

referred to as non-adopters.   

The average depth of borewells was reported to be ~ 115 meters (ranging 

from 45 to 300 meters) against the average depth of ~ 20 m for dugwells. This 

shows that borewells are accessing deeper groundwater. The average age of 

borewells is ~12 years against ~25 years for dugwells, which shows that the 

drilling of borewells has started more recently. The drilling of borewells is 

capital intensive. The average cost of drilling a borewell and associated pump (~ 

6 HP) was reported to be ~ 120000 INR (~ 1450 USD). The drilling of borewells 

was also associated with high failure rates. The farmers who owned a borewell 

reported drilling on average 2.3 bore wells (range 1-12) to get a successful bore. 

This was also reflected in farmers' reported reason for not owing a borewell, 

with 42 % saying that it is too expensive and 35 % saying it is too difficult to drill 

one. Additionally, 10 % of farmers reported trying for one but not having success. 

The main benefits of borewells as reported by farmers, both adopters and 

non-adopters, was the protection against drought (86 %), followed by an 

increase in the Rabi (post-monsoon) cropping area (53.3 %). This corroborates 
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observations from the field studies that demonstrate that borewells are 

primarily adoption measures against low water availability in the dry or post-

monsoon season (Birkenholtz, 2009). This is also reflected in the crop data 

reported by the farmers. On average, borewell owners reported cultivating 53.7 

% of their Kharif area in the Rabi season as opposed to 40.9 % by non-adopters.   

The statistical tests (t-test and chi-square) showed that adopters were 

significantly wealthier (p < 0.05). However, no significant difference in 

landholdings between the adopters and non-adopters was found. Also, the 

adopters have a higher perceived ability and more positive belief toward 

borewells than non-adopters. 

5.4.3 Factors influencing the adoption 

Table 5.3 and 5.4 presents the results of binary logistic regression for drip 

irrigation and borewells, respectively, with two regression models implemented 

for each technology. Model 1 included both socio-economic and psychological 

factors, while Model 2 considered only socio-economic factors. The results 

revealed that incorporating psychological factors improved the model's 

explanatory power by almost threefold for adopting both drip and borewells. 

For drip irrigation (Table 5.3), Model 1 yielded a pseudo-R2 of 0.31, with an 

overall accuracy of 88.4% and an area under the ROC Curve (AUC) of 87.1%, 

indicating satisfactory model performance. In contrast, Model 2 (only socio-

economic factors) produced a lower pseudo-R2 of 0.12, with corresponding 

reductions in overall accuracy (84.2%) and AUC (75.9%). Similarly, for 

borewells (Table 5.4), Model 1 generated a pseudo-R2 of 0.21, with an overall 

accuracy of 76.9% and an AUC of 78.9%. Model 2 had a lower pseudo-R2 of 0.07, 

with corresponding reductions in overall accuracy (69.6%) and AUC (69.7%). 
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These findings underscore the significance of psychological factors in 

explaining farmers' adoption decisions, as they influence their attitudes, beliefs, 

perceptions, and motivations towards new technologies or practices. While 

previous studies on adoption have often overlooked the role of psychological 

factors (Nair and Thomas, 2022; Namara et al., 2007), our results demonstrate 

that considering these factors can facilitate a better understanding of farmers' 

adoption decisions. This can help extension workers, researchers, and 

policymakers develop effective strategies to promote the adoption of new 

technologies among farmers. In the following section, we have discussed results 

from the model 1 which combines both socio-economic and psychological 

factors. 

Table 5.3: Results of binary logistic regression of farmer's decision to adopt 

drip irrigation. Model 1 includes both socio-economic and psychological factors, 

while Model 2 consideres only socio-economic factors. 

 Model 1 Model 2 

 Estimate Odds 
 ratioa 

Estimate Odds 
ratio 

(Intercept) -5.26*** 0.01 -4.47*** 0.01 

Experience 0.04** 1.04 0.01 1.01 

Higher education# -2.49** 0.08 -1.42 0.24 

Primary education# 0.28 1.32 0.29 1.34 

Secondary education# -0.51 0.60 -0.26 0.77 

Income from farming  0.01 1.01 0.01 1.01 

Household members -0.08 0.92 -0.09 0.91 

Livestock count -0.08 0.92 -0.07 0.93 

Distance from Check dam 0 1.00 0 1.00 

Proximity to dam and river # -1.64*** 0.19 -1.48*** 0.23 
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Wealth 0.15** 1.16 0.24*** 1.27 

Small farmer# 0.55 1.73 0.88 2.41 

Medium farmer# 0.19 1.21 1.01 2.75 

Large farmer# 1.07 2.92 1.52** 4.57 

Babra block# -0.96 0.38 -1.21* 0.30 

Jasdan block# -0.22 0.80 -0.25 0.78 

Kotda block# -1.75** 0.17 -1.29* 0.28 

Rajkot block# 1.29* 3.63 1.4** 4.06 

Chotila block# -1 0.37 -0.73 0.48 

Gondal block# 
 

- - - 

Ability 0.81*** 2.25 - - 

Perceived risk: Vulnerability  -0.75*** 0.47 - - 

Perceived risk: Severity -0.48* 0.62 - - 

Attitude (benefits, reliability) 0.73*** 2.08 - - 

Attitude (time) 0.33 1.39 - - 

Society norm 0.29 1.34 - - 

NGO norm 0.19 1.21 - - 

Self-regulation application) 0.29 1.34 - - 

Psedu-R2 0.307 0.116 

Accuracy 88.4% 84.3 % 

AUC 87.1 75.9 

a odds ration  = exp(estimate) 

***, **, * Significant at < = 1%, 5%, and 10% probability level, respectively 

* All VIF < 10 

# dummy variable 
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Table 5.4: Results of binary logistic regression of farmer's decision to adopt 

drip irrigation. Model 1 includes both socio-economic and psychological factors, 

while Model 2 considered only socio-economic factors. 

 Model 1 Model 2 

 Estimate Odds 
ratio 

Estimate Odds 
ratio 

(Intercept) -3.09*** 0.05 -2.6** 0.07 

Experience 0.01 1.01 0.01 1.01 

Higher education# 1.2 3.32 0.59 1.80 

Primary education# -0.73* 0.48 -0.71* 0.49 

Secondary education# -0.49 0.61 -0.56 0.57 

Income from farming  -0.01 0.99 0 1.00 

Household members -0.09 0.91 -0.12** 0.89 

Livestock count 0.09** 1.09 0.1** 1.11 

Distance from Check dam 0** 1.00 0 1.00 

Proximity to dam and river # 1.23** 3.42 0.93** 2.53 

Wealth 0.02 1.02 0.09 1.09 

Small farmer# 1.24** 3.46 0.83* 2.29 

Medium farmer# 1.06* 2.89 0.97* 2.64 

Large farmer# 1.54*** 4.66 1.21** 3.35 

Babra block# 0.12 1.13 0.81 2.25 

Jasdan block# -0.33 0.72 -0.01 0.99 

Kotda block# 0.41 1.51 0.4 1.49 

Rajkot block# -1.33** 0.26 -0.84 0.43 

Chotila block# -1.48 0.23 -1.86* 0.16 

Gondal block#  

 

- - 

Ability (Financial)  -0.08 0.92 - - 
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Ability (Technical) -0.06 0.94 - - 

Perceived risk: Vulnerability  0.02 1.02 - - 

Perceived risk: Severity 0.04 1.04 - - 

Attitude (benefits, reliability) 0.77*** 2.16 - - 

Attitude (time) 0.01 1.01 - - 

Society norm 0.45** 1.57 - - 

NGO norm 0.05 1.05 - - 

BW Self-regulation (1) 0.46*** 1.58 - - 

BW Self-regulation (2) 0.33** 1.39 - - 

Psedu-R2 0.214 0.075 

Accuracy 76.9 % 69.6 % 

AUC 78.6 69.7 

***, **, * Significant at < = 1%, 5%, and 10% probability level, respectively 

* All VIF < 10 

# dummy variable 

5.4.3.1 Land size and wealth 

Earlier studies have widely reported that larger or wealthier farmers are 

more likely to adopt both drip irrigation and bore well technologies, as both 

require significant capital investments (Nair and Thomas 2022; Namara et al., 

2007; Singh et al., 2018; Patil et al., 2019). This is reflected in results which show 

that small, medium, and large farmers are 246 % ([odds ratio - 1]*100), 189 % 

(at 10% significance level) and 366 % more likely to adopt borewells as 

compared to marginal farmers, respectively. The influence of land size is not 

visible for drip irrigation. However, wealth (an indicator of capital) shows 

significant positive but small (~ 16 %) positive influence on drip irrigation 

adoption.  Additionally, the ownership of more livestock significantly increases 
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the adoption of borewells by 9 % and could be explained by the need to fulfill the 

water needs of livestock. 

5.4.3.2 Proximity to water (River, dam and check dams) 

The impact of proximity to water sources, such as the main river and dam, on 

the adoption of drip and borewell irrigation is significant, but in opposite 

directions. In contrast to a 242% increase in the adoption of borewells, the 

likelihood of adopting drip irrigation decreases by approximately 81% in 

villages with proximity to rivers or dams. This could be due to the increased 

recharge in downstream villages near rivers and dams, which increases the 

success rate of borewell drilling and the availability of groundwater, prompting 

more farmers to adopt borewell irrigation. However, this also suggests that the 

increased availability of water (absence of water scarcity) may make farmers 

less inclined to adopt drip irrigation. This observation reflects the presence of 

supply-demand feedback, where increased water supply leads to an increase in 

demand (Scott et al., 2014; Di Baldassarre et al., 2018) and less adoption of 

demand management measures. The impact of check dams' proximity on 

adoption is negligible, indicating their limited and short-lived storage (Alam et 

al., 2022a). 

5.4.3.3 Perceived ability 

A strong perception of one’s ability to practice (operate, maintain, and 

financially afford) drip irrigation translates to a 125 % greater likelihood of its 

adoption. With lack of technical knowledge and support after adoption along 

with high cost of maintenance (e.g., replacement of parts) being major 

constraints for adoption (Nair and Thomas, 2022), it is natural that those who 

have more confidence in their ability to do so adopt more. Low adoption in the 

region is also due to farmers' perceived financial inability to afford drip 
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irrigation systems, as reflected in the low score (mean score = 1.28) on the 

perceived financial ability data. In comparison, farmers reported higher capacity 

to install (mean score = 1.65) and operate and maintain (mean score = 1.89) the 

systems. 

Farmers reported the average cost of drip installation to be ~ 65000 INR (~ 

790 USD) /hectare and after an average subsidy of 50 %, this would translate to 

a farmer share of ~ 32500 INR (~ 395USD) /hectare. This upfront investment in 

combination with a lack of belief in benefits may be limiting farmers' adoption of 

drip irrigation systems. However, it could also be due to institutional and 

operational issues in the subsidy programs (e.g., delay in subsidy disbursement, 

the requirement to pay full cost upfront, and cumbersome paperwork) that have 

been highlighted by several studies (Nair and Thomas, 2022; Chandran and 

Surendran, 2016; Misquitta and Birkenholtz, 2021; Malik et al., 2018). While the 

Gujarat state special purpose vehicle, Gujarat Green Revolution Company 

(GGRC), to increase adoption has been highlighted as a relatively successful 

model with good institutional mechanism (Pullabhotla et al., 2012), the case of 

institutional issues needs to be further investigated. 

Other than financial ability, limited capacity to operate and maintain drip 

irrigation has been highlighted as a key barrier to adoption (Cremades et al., 

2015; Nair and Thomas, 2022; Palanisami et al., 2011). Thus, farmers who have 

higher perception of their capability to operate and maintain also adopt more 

(Table 5.3). For drip irrigation, the lack of capacity has been related with a lack 

of extension services and post-adoption support with frequent issues of clogging 

of filters and drippers in drip irrigation systems (Nair and Thomas, 2022; 

Palanisami et al., 2011). Field visits have shown that issues associated with 

clogging along with challenges for storing drip systems due to damage caused by 
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rodents that gnaw the drip irrigation tubings creating holes were reiterated by 

farmers and hinders adoption.  

In contrast to drip irrigation, perceived ability (financial and knowledge to 

install) did not significantly influence the adoption of borewells. This could be as 

with high uncertainty of successful borewell drilling, higher perceived financial 

and capacity/knowledge to install a borewell does not necessarily lead to higher 

adoption. This is similar to findings from Ethiopia where a reduction in 

ambiguities related to well drilling was found to be one of the main factors 

influencing the adoption of groundwater irrigation (Balasubramanya et al., 

2023).   

5.4.3.4 Attitude towards technology 

Results show that for drip irrigation and borewells, positive belief about the 

reliability and benefits of the technology translates to a 108 % and 116 % 

increase in the likelihood of adoption, respectively. This corroborates the 

observation from earlier studies that have also shown the importance of positive 

belief in increasing the adoption of micro-irrigation in India (Hatch et al., 2022), 

China (Wang et al., 2021) and Iran (Nejadrezaei et al., 2018). Nair and Thomas 

(2022), based on their review of micro-irrigation adoption in India, also 

observed that awareness regarding the benefits of drip irrigation is central to 

increasing adoption. Similarly, Reddy (2016), evaluating the Andhra Pradesh 

Micro Irrigation Project program, also found that awareness activities (television 

and radio programs, live demonstrations) played a key role in the success of the 

program. Interestingly, higher education negatively influences the adoption of 

drip irrigation (Table 5.3) showing that more years of education does not 

necessarily lead to more awareness about drip irrigation benefits and higher 

adoption. 



 

150 

 

5.4.3.5 Perceived risk and impact 

The results show that for drip irrigation, interestingly, an increase in 

perceived vulnerability and associated impact severity translates to a 53 % and 

38 % decrease (at 10 % significance level) in the likelihood of drip irrigation 

adoption, respectively. Whereas for borewells, the impact of perception of risk 

and vulnerability on adoption is not significant.  Theoretically, both drip 

irrigation and borewells may act as risk-reducing strategies under conditions of 

water scarcity by using water more efficiently and augmenting the supply of 

water from deeper aquifers, respectively. Thus, intuition may suggest that an 

increase in perceived vulnerability and associated impacts should be associated 

with an increase in adoption of both. This has been observed in other studies 

where farmers choose to adopt the new technology/practices (e.g., crop 

insurance, efficient irrigation) to hedge/reduce the risk (Saqib et al., 2016; 

Koundouri et al., 2006).  

The contrasting impact of perceived risk and vulnerability on the adoption of 

drip irrigation and borewell technologies reveals the differing nature of these 

technologies as perceived by farmers. Field observations indicate that farmers 

do not see drip irrigation as a solution for water scarcity as in times of water 

scarcity (as in dry years), drip irrigation is considered redundant (without any 

irrigation water). Thus, while the perceived threat of water scarcity is higher, 

adoption of drip irrigation remains low due to farmers' perception of the 

technology's benefits and costs. This suggests a lack of awareness about the 

benefits of drip irrigation as a risk-reducing strategy, as well as a perceived 

imbalance between the cost of adoption and the benefits it provides. 

Additionally, frequent climate threats, such as drought in the region, can lead to 

losses in crop yields and revenue, reducing farmers' financial capacity to invest 

in risk-reducing strategies (Alam et al., 2022c). 
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Additionally, the common pool nature of groundwater where the same 

aquifer is accessed by multiple users creates challenges for adoption of demand 

management strategies such as drip irrigation (Gardner et al., 1990; Asprilla-

Echeverria, 2021). This is because saving water in one’s well using drip irrigation 

does not necessarily translate to actual savings for the farmer if other farmers 

continue to abstract without drip irrigation.  

5.4.3.6 Societal norm 

The societal norms, perceived social pressure towards a behavior, have a 

positive influence on farmers' adoption behavior by affecting their perception of 

confidence, the benefits of adoption, norm conformity, learning, and perceived 

risk reduction (Daxini et al., 2019; Hatch et al., 2020; Qiu et al., 2021; Streletskaya 

et al., 2020). The results suggest that an increase in societal norms leads to a 57% 

increase in the likelihood of adopting borewell irrigation but has no significant 

impact on drip irrigation adoption. The positive impact of societal norms on 

borewell adoption may be due to farmers' perception of the success of borewells 

in nearby farms. However, the study was not able to determine why the same 

impact does not hold for drip irrigation adoption.  

In addition, the study found that the opinions of government and NGOs do not 

significantly influence the adoption of drip or borewell irrigation. This may be 

because most farmers rely on neighboring farmers (71.8%), agro-dealers and 

private companies (56.9%), and lead farmers (39.1%) for information, while less 

than a quarter of farmers reported government or NGOs as their source of 

information. This finding highlights the importance of considering these 

channels while designing awareness and extension activities for promoting 

technology adoption. 
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5.4.3.7 Other factors 

Action planning significantly increases borewell adoption by farmers. Access 

to information on external factors such as drilling contractors, engineers, and 

technicians is a key determinant of adoption. However, the observed association 

may be explained by reverse causality, as borewell owners are more 

knowledgeable about the necessary resources for drilling. (Daniel et al., 2020). 

For drip irrigation, farming experience shows a slightly positive (4% increase for 

each unit increase in farming experience) impact on adoption. Household size 

and income from farming did not have any influence on the adoption of both drip 

irrigation and borewell irrigation. 

5.4.4 Recommendations 

Our findings show that although subsidies (50-70%) are available for drip 

irrigation systems, adoption rates remain low (approximately 16% adoption 

rate). In contrast, the adoption rate for borewells, which require more capital 

investment and have no subsidies, is higher (approximately 24.5%). This 

suggests that farmers prioritize augmenting their water supply and view 

borewells as a more effective means of mitigating water scarcity or intensifying 

cultivation. This trend is consistent with observations from Patil et al. (2019) in 

another water-stressed area of Southern India, where the uptake of water-saving 

technologies was low, and farmers chose water-intensive crops and unregulated 

pumping, which exacerbates water stress. 

The results indicate that the availability of water (proximity to dam and river) 

and higher perception of risk negatively affect the adoption of drip irrigation. 

This reflects that farmers may not necessarily perceive drip technology as a risk-

reducing strategy, thereby hindering adoption. Furthermore, limited financial 

and technical capacity is another obstacle to adoption. Thus, a multi-pronged 

approach is necessary to build farmers' capacity to adopt drip irrigation 
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(including alternative financial mechanisms and capacity building) and to raise 

awareness of its benefits.  

Although subsidies have a positive impact on adoption (Cremades et al., 2015; 

Heumesser et al., 2012), our results indicate that in the region, subsidies alone 

are not enough to promote the adoption of drip irrigation. Alternative financial 

mechanisms may be required, such as increasing subsidies or providing low-

interest or interest-free loans to cover the unsubsidized cost (Nair and Thomas, 

2022; Palanisami et al., 2011). An example of this is the Aga Khan Rural Support 

Programme (AKSRP) in the region which provided added subsidies and interest-

free loans (with delayed repayment) to cover the unsubsidized cost (Panda, 

2003). Similarly, other studies have shown the positive impact of easy access and 

low-interest loans on adoption (Abate et al., 2016; Balasubramanya et al., 2023). 

For example, Abate et al. (2016) showed the positive impact of microfinance 

institutions and member-owned financial cooperatives on the adoption of 

agricultural technologies by alleviating credit constraints. Alternative financial 

mechanisms should be accompanied by supporting farmers to easily access the 

subsidy schemes by making the process faster and more flexible in terms of 

meeting farmers' requirements (Singh, 2013; Malik et al., 2018).  

Additionally, capacity building efforts should prioritize building farmers' 

confidence in operating and maintaining drip irrigation systems. Research has 

shown that capacity building for farmers is an effective strategy for technology 

adoption across various countries and technologies (Cremades et al. 2015; Nair 

and Thomas, 2022; Zakaria et al., 2020; Arslan et al., 2014). This can be achieved 

through various means such as training programs, community-based 

approaches like farmer field schools, access to replacement parts, and post-

adoption extension services. The government's operational guidelines for the 

micro-irrigation subsidy scheme also emphasize the need for capacity building, 
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including organizing training programs and exposure visits (DAC&FW, 2017). In 

the study region, farmers have expressed concerns about dripper clogging and 

rodent damage to drip systems, which underscores the need for targeted 

training on these issues. Capacity building can also involve creating a network of 

local professionals who can provide on-site training and technical assistance to 

farmers. 

In addition to the aforementioned capacity building efforts, it is essential to 

provide farmers with information on the benefits of drip irrigation, including 

increased crop yield and reduced water usage, to reinforce and strengthen 

positive attitudes and societal norms towards drip irrigation. This is crucial as 

farmers with higher risk perception are less likely to adopt drip irrigation due to 

lack of trust in the technology's ability to mitigate risk. Studies have shown that 

increasing awareness through training, demo farms, and social learning can 

positively influence adoption rates (Genius et al., 2014; Hunecke et al., 2017; 

Nejadrezaei et al., 2018; Wang et al., 2021). Ways to achieve this could include 

increasing access to information through local government institutions, 

education campaigns, workshops, and field visits. Government guidelines also 

recommend awareness raising through print and electronic media and publicity 

campaigns at block/ district/state level (DAC&FW, 2017). 

To enhance the influence of extension services such as capacity building and 

awareness raising, it is important to have a presence and build trust in social, 

formal, or informal networks (targeting and influencing social norm) such as 

cooperative organizations and farmers' user groups, rather than focusing solely 

on individuals (Genius et al., 2014; Hunecke et al., 2017). While the government's 

official guidelines for promoting micro-irrigation recommend both capacity 

building and awareness raising (DAC&FW, 2017), low capacity and awareness in 

the region indicates a need to intensify efforts. 
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However, the increasing adoption of borewells in the region is a cause for 

concern. While access to borewells may lead to higher availability of water, it 

comes with social costs. Borewell drilling is capital-intensive and risky in the 

region, with no guarantee of success. This means that smaller and marginal 

farmers may not be able to tap the resource, thus exacerbating socioeconomic 

disparities in the region, as discussed in studies by Patil et al. (2019) and 

Birkenholtz (2009). The financial risks associated with borewells mean that 

farmers may fall into severe indebtedness with no access to low-interest loans 

or other safety nets, as observed by Reddy (2012). Our data also show that 

farmers drill an average of 2.3 borewells (range 1-12) to get a successful 

borewell. To mitigate the risks and uncertainties associated with borewells, it is 

essential to provide farmers with information on the underlying hydrogeology, 

as the hydrogeology in the region is complex.  

Additionally, over-extraction of groundwater through borewells can lead to 

severe depletion and degradation of deeper aquifers. It is not clear whether 

shallow and deeper aquifers are connected and if connected, tapping deeper 

aquifers may have a negative influence on shallow water sources. Also, over-

extraction of groundwater through borewells can lead to a decline in water 

levels, making it more difficult and expensive to extract water in the future. 

Moreover, this strategy may become maladaptive in the long run, as noted in the 

study by Jain et al. (2015). Also, depletion of groundwater can increase energy 

consumption for pumping leading to a vicious cycle of increased energy demand, 

higher costs, and further depletion of groundwater resources. Further research 

is required to understand the hydrogeology of deeper aquifers in the region. 

Finally, the common pool nature of groundwater may hinder adoption at the 

individual level of demand management interventions (Gardner et al., 1990; 

Asprilla-Echeverria, 2021). Given that farmers tap into a shared resource, 
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cooperation at the village level and incentivization may be required to realize the 

benefits of drip adoption at the individual level. This is necessary to avoid the 

free rider problem. Also, while including psychological factors in the analysis 

enhances understanding, RANAS theory may not account for all psychological 

factors that hinder adoption, such as perceived fairness and technology 

acceptance (Contzen et al., 2023). Future studies could consider adding more 

factors to RANAS theory or testing alternative psychological theories to gain a 

deeper understanding of adoption barriers. 

5.5 Conclusion  

Increasing the adoption of agricultural water interventions by farmers is 

critical to adapting to water scarcity and ensuring the food and economic 

security of millions of farmers. However, despite the availability of a range of 

interventions and successful pilots, adoption remains low. This study assessed 

socioeconomic, biophysical and psychological factors influencing the adoption of 

two contrasting adaptation strategies, drip irrigation (demand management) 

and borewells (supply augmentation), in a semi-arid catchment in India. While 

drip irrigation is being promoted with government subsidies, borewells are 

being taken up by farmers using their own resources. The results show that 

psychological factors play a significant role in the adoption of both technologies, 

and incorporating these factors improved model explanatory power by almost 

threefold. The findings show that despite subsidies, drip irrigation adoption lags 

behind borewells, suggesting farmers' preference for supply augmentation 

measures. Farmers' perceived ability and positive beliefs about the benefits of 

drip systems are significant factors in adoption. Based on the results, the study 

suggests that a multi-pronged approach is necessary to increase the adoption of 

drip irrigation, including augmenting subsidies with efforts on extension 

services, post-adoption services, training, and awareness campaigns to build 
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farmers' capacity and raise awareness. On the other hand, the increasing 

adoption of borewells is concerning, with implications for increasing 

socioeconomic inequality, indebtedness, and threatening deeper aquifers. 

Overall, it is critical to devise strategies that look beyond the socioeconomic 

factors to increase fair access to water resources while safeguarding against the 

overexploitation of groundwater. 
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6.1 Introduction 

The vulnerability of agricultural sector, heavily dependent on climate, to 

climatic variability and extreme weather events (Holleman et al., 2020; FAO, 

2015) and escalating rate of climate change, impacting agriculture through 

shifting rainfall patterns and rising temperatures, is detrimental to global food 

security (Holleman et al., 2020; FAO, 2015; IPCC, 2022). Against this backdrop, 

adapting to climate change becomes imperative, with agricultural water 

management (AWM) interventions assuming a pivotal role (Sikka et al., 2022; 

GCA and WRI, 2019). Many successful AWM interventions are well-documented 

and demonstrated to have a positive impact (Sikka et al., 2022; GCA and WRI, 

2019).  

However, there is a risk that poor implementation of the interventions may 

lead to unintended consequences leading to inequitable and unsustainable 

outcomes (Alam et al., 2022a; Adla et al., 2023). Examples include an increase in 

water use as farmers adopt more efficient irrigation methods to intensify 

production (Alam et al., 2022a; Birkenholtz, 2017). Of particular concern is the 

phenomenon of supply-demand feedback where demand rises following 

increased water availability or perception thereof (Adla et al., 2023; Di 

Baldassarre et al., 2018; Shah et al., 2021). This is because a significant portion 

of AWM interventions pertain to the supply side, such as the construction of 

small storages and groundwater recharge interventions (Sikka et al., 2022).  

Triggering an increase in demand may potentially nullify the supply benefits, 

through additional storage and recharge, and increase vulnerability (Shah et al., 

2021; Alam et al., 2022b). Additionally, the distribution of benefits (or losses 

from unintended consequences) may not be equitable (Alam et al., 2022a) with 

benefits of water harvesting, and groundwater recharge concentrated in nearby 

farms in low-lying areas (Shah et al., 2021) and among the influential, wealthier 
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farmers who have the financial capacity to invest in irrigation infrastructure 

(Alam et al., 2022a; Calder et al., 2008). 

These unintended consequences arise from bidirectional feedback and 

dynamics between human and water systems (Adla et al., 2023; Sivapalan et al., 

2012). These are often not the focus of hydrological models used to simulate and 

assess the impacts of agricultural water interventions (Alam et al., 2022a; Adla 

et al., 2023; Sivapalan et al., 2012). Often elements of human systems (e.g., crops, 

adoption of interventions) are prescribed as boundary conditions. To 

incorporate human-water feedback, sociohydrology which emphasizes the 

consideration of bidirectional feedback between human and water systems to 

interpret unintended consequences (Sivapalan et al., 2012) is increasingly being 

used in the agricultural water sector to unpack unintended consequences such 

as the phenomenon of supply-demand feedback (Alam et al., 2022a; Adla et al., 

2023).  

Within sociohydrology studies, Agent-Based Models (ABMs) stand out for 

their unique ability to consider human-water feedback while addressing the 

heterogeneity of farmers that is crucial for capturing inequitable outcomes 

(Alam et al., 2022a). Despite its versatility, application of ABMs for AWM have 

shown several limitations (Alam et al., 2022a), including the absence of spatially 

explicit hydrological models, the use of aggregated agents instead of individual 

farmers (Farhadi et al., 2016; Hu  & Beattie, 2019), and notably, the absence of 

grounded behavioral rules, with most models assuming simplistic rational 

behavior (Schreinemachers  et al., 2011) or heuristics rules derived from 

empirical data (Castilla-Rho et al., 2015).  

This highlights the need for further advancements in the integration of human 

and hydrological dynamics to critically understand the human-water feedback 

related to agricultural water interventions. This paper therefore develops and 
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applies an open-source modular agent-based model for AWM interventions 

(ABM-AWM) in order to unpack the emergent phenomenon of supply-demand 

feedback. It does so by integrating a spatially explicitly hydrological model with 

human behavior rules based on RANAS (Risks-Attitudes-Norms-Abilities-Self‐

regulation) behavioral theory (Mosler, 2012) and observed data.  

6.2 Case study catchment 

The ABM-AWM is applied to a case study area of Kamadhiya catchment (~ 

1100 Km2) in the western state of Gujarat in India (Figure 6.1). This area has a 

semi–arid climate, characterized by low average annual rainfall of 438 mm per 

year (1983–2015) with more than 90% of the annual rainfall occurring during 

the monsoon months, spanning from June to September (Pai et al., 2014). 

Agriculture dominates the catchment but is highly vulnerable due to high 

variation in rainfall both within and between years (Alam et al., 2022b). The 

Kamadhiya catchment has seen intensive construction of check dams (CDs) 

supported by a broader movement to increase groundwater recharge and gained 

momentum in response to a severe drought from 1999 to 2001 (Alam et al., 

2022b; Shah et al., 2009). In the catchment, the CD count reached 575 by 2006, 

contributing to a density of approximately one CD per 2 km² (Patel, 2007).  

The farmers do not directly use (lift) water from CDs, but indirectly with 

additional recharge from CDs feeding their wells (Alam et al., 2022b; Mohapatra, 

2013). These wells are drilled into the area's hard rock aquifers, mainly 

comprising of deccan trap basalt, with low porosity and hydraulic conductivity, 

and are confined to water-bearing zones in the upper 15-30 m of weathered and 

fractured rock (Kulkarni et al., 2000; Alam et al., 2022c). Farmers access this 

shallow groundwater through large-diameter open dugwells (Alam et al., 2022b; 

Mohapatra, 2013). In addition to publicly funded CDs, drip irrigation and 
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borewells are other major agricultural water interventions where farmers invest 

individually (Chapter 5). Drip irrigation is a demand management intervention 

to increase the efficiency of irrigation water applied supported by a government 

capital subsidy program (Nair and Thomas, 2022). On the other hand, farmers 

drill borewells, not subsidized, to hedge against the production risks associated 

with low rainfall years, particularly during the dry seasons after the monsoons 

when the shallow weathered aquifer (15-30 m) in the region dries out 

(Steinhübel et al., 2020). 

 

Figure 6.1: Location of the case study area showing Saurashtra region in 

Western India and Kamadhiya catchment in the Saurashtra region 
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The development of CDs at the catchment scale has shown signs that it has 

correspondingly fueled greater irrigation demand from groundwater (Alam et 

al., 2022b, c), indicative of the phenomenon of supply-demand feedback, which 

the ABM-AWM model aims to unpack. In addition, ABM-AWM assesses any 

impact, unintended, on the adoption of drip and borewell by the farmers. 

6.3 Method 

The ABM-AWM is developed in Python 3.7 (Python Software Foundation, 2018) in 

a modular structure, allowing to switch on modules and processes and add new 

modules making the code more scalable while integrating the hydrological, crop, 

and farmer behavioral models. Further expanding the previous model (Pande 

and Savenije, 2016), the ABM-AWM model's modular structure allows for 

adapting model codes and altering model resolution and farmer characteristics. 

The core modules, which are exhaustive to unravel emergent dynamics such as 

the phenomenon of supply-demand feedback, are hydrological, crop growth, and 

farmer behavior dynamics. 

6.3.1 Hydrological module 

The hydrological module is adapted from the open-source Spatial Processes 

in Hydrology (SPHY) model (Terink et al., 2015) and simulates spatially 

distributed daily water flows. It is a three-layered leaky bucket model, including 

two soil layers (rootzone and subzone) and a groundwater layer. Figure 6.2 gives 

the conceptual workflow of the hydrological module. The spatially distributed 

hydrological module operates at 1 km² resolution with 1319 such grid grids 

within the study area. Please refer to SPHY model (Terink et al., 2015) and 

Appendix D.1 for more information on the hydrological model. 
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Figure 6.2: Conceptual workflow of the hydrological module  

To simulate runoff capture and recharge from storage structures, each grid 

cell is assigned the surface storage created from built storage structures (e.g. 

ponds and check dams). Based on the total storage in each grid cell and if the 

storage space is available, part of the runoff is captured by storage structures 

and is lost from the storage through recharge and evaporation. No direct lift from 

check dams takes place Recharge and runoff capture from check dams were 

simulated using recharge empirical equations (Bouwer, 2002), that were refined 

for the study region (Mozzi et al., 2021). In total 575 CDs distributed in 453 grid 

cells (~ 34 % of total grid cells) with combined storage of 12.9 MCM were 

incorporated in the model. Table 6.1 summarizes the climate and biophysical 

data employed in the model.  
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Table 6.1: Summary of data and parameters used and its sources in the 

hydrological module 

Data/parameters Unit Average  Source 

Rainfall mm 478  SWRD, 2021 

Temperature OC 27ᵒC IMD (Pai et al.,2014) 

Slope % 0.56 SRTM (Jarvis et al., 2008) 

Runoff recession 
coefficient (Kx) 

- 0.05 Calibrated. 

Baseflow recession 
coefficient (αgw) 

- 0.53 Calibrated. 

Baseflow threshold 
(BFthresh) 

mm 300.00 Calibrated. 

Topsoil depth (D1) mm 650.00  

 

 

Calibrated. Initial values based from 
the pedo-transfer function (Saxton et 
al., 2006) 

Bottom soil depth (D2) mm 400.00 

Soil Field capacity (FC) m3 m-3 0.30 

Soil Wilting Point (WP) m3 m-3 0.18 

Soil Saturation capacity 
(SAT) 

m3 m-3 0.41 

Soil hydraulic conductivity 
(Ksat) 

m day-1 0.08 

Rootdrain velocity (vlat) mm 
day-1 

0.88 Derived based on soil parameters 
(Terink et al., 2015) 

Root lateral flow travel 
time (TTlag) 

d 0.49 

Root wilting point (RWP) fractio
n 

0.70 Calibrated. 

Capillary rise (Cap) mm 
day-1 

0.05 Calibrated. 

Aquifer Depth (DGW) m 20.00 Calibrated. Alam et al., (2022b) 

Aquifer specific yield (Sy) % 0.35 Calibrated. Initial values from GEC 

(MoWR, RD & GR, 2017) 

Aquifer conductivity (Kgw) m day-1 0.10 GEC (MoWR, RD & GR, 2017) and CGWB 
(Mohapatra, 2013) 

Check dam number (& 
location)  

# 453 Secondary data and social surveys 
(Alam et al., 2022b; Patel, 2007) 

Check dam location, 
number, and storage 

MCM 12.90 

Check dam width m 15.00 
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6.3.2 Crop module 

The crop module calculates crop water requirements, irrigation needs, and 

yields. It employs the FAO four-stage crop coefficient approach to estimate crop 

potential evapotranspiration (ETc) (Allen et al., 1998), with reference 

evapotranspiration (ETo) determined via the Hargreaves method (Hargreaves 

and Samani, 1985). The model simulates the primary crops cultivated in this 

region including cotton and groundnut during the kharif season (the monsoon 

season, from June to October) and chickpea and wheat during the rabi season 

(the post-monsoon season, from November to February/March) (Alam et al., 

2022c). The kharif crops were modeled separately, whereas the rabi crops were 

simulated as one crop, i.e. wheat, for which long-term time series data are 

available. 

Crop water needs (ETc) are first met by root soil water uptake from the 

rootzone soil layer. Soil water uptake reduces as a function of available moisture 

in the rootzone soil layer following a linear equation as used in SPHY (Terink et 

al., 2015) based on the Feddes equation (Feddes et al., 1978). The difference 

between ETc and root-soil water uptake is considered as the net irrigation water 

requirement (NIR), and gross irrigation requirements (GIR) are estimated based 

on irrigation efficiency (NIR/ irrigation efficiency). Irrigation efficiency is taken 

as 0.6 unless a farmer has adopted drip irrigation, in which case the irrigation 

efficiency is set to 0.9 (Rogers et al., 1997; Howell, 2003). For rainfed farmers, 

crop water needs are met solely through root water uptake, while irrigated 

farmers can also access groundwater. 

To meet irrigation needs, which is groundwater-dependent, farmers access 

shallow groundwater through large-diameter open dugwells. The percentage of 

farmers having access to irrigation is set equal to the proportion of cotton area 

irrigated (Alam et al., 2022c; DoA, 2021), and this increases over the years 
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(Figure D.1). Groundwater storage availability for each day, simulated by the 

hydrological module, is distributed equally among all the irrigated farmers in a 

grid cell. Farmers can abstract groundwater but are limited by available 

groundwater storage and pumping and well capacities, to meet the gross 

irrigation requirement. The daily abstraction is limited by the maximum possible 

abstraction (GWD(max) = 525 m3 day-1) constrained by the pump and well 

capacities (Table D.1) . Also, farmers can access deeper groundwater, if they have 

invested in borewells, and again daily abstraction is limited by maximum 

possible abstraction (GWB(max) = 80 m3 day-1, Table D.1). A part of the applied 

irrigation water recharges groundwater based on a return flow coefficient. 

From the groundwater storage, the model first meets the irrigation needs of 

cotton and then groundnut in the kharif season. This is because groundnut is a 

rainfed crop (DoA, 2021). However, survey data (Alam et al., 2022c) showed that 

farmers irrigate groundnut crops when needed and this was also observed 

during field visits (November and December 2021). This is simulated by 

applying partial irrigation to groundnut by applying a deficit irrigation 

coefficient (GNIrr) which ranges from 0 (no irrigation is applied) to 1 (full 

irrigation is applied).   

At the end of the season, crop water needs met (AET) from root soil moisture 

uptake and irrigation, as a fraction of potential crop water needs, i.e. ETc, is 

calculated and is used with crop stage-specific crop yield reduction factor (Ky) 

(Steduto et al., 2012) and potential yield (Yp) to estimate each farmer’s yield 

(equation 6.1).  For estimating crop evapotranspiration and yields, crop-specific 

data on sowing day, growing period, crop coefficients (Kc), and crop yield 

reduction factor (Ky) are given in Table D.2. This is multiplied by crop price and 

then the cost of cultivation (Table D.3) is subtracted from it to estimate profit 

that is accumulated as capital over time.  
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𝑌

𝑌𝑝
= ∏ ∑ [1 −  𝐾𝑌 (1 −

𝐴𝐸𝑇

𝐸𝑇𝑐
)]

𝐼𝑠𝑗

𝑖∈𝑠𝑗

𝐽
𝑗=1                              ….Equation 6.1 

Where, 𝐾𝑌 is crop yield reduction factor, AETi, ETci are AET and ETc for day i 

in a growth stage sj with isj number of days, and there are (s1,..,sj,..sJ) growth 

stages with J = 4 stages. Yp is the potential yield and Y is the actual yield.  

The net cultivated area in each grid cell was based on the land use land cover 

(LULC) map from 2015, which gives the percentage of agricultural land in each 

grid cell22. The net cultivated area (NCA) from the LULC map (summed over the 

Kamadhiya catchment) was compared with NCA for each year from reported 

administrative data15,23,24 and a correction factor (Actual NCA/LULC NCA) 

was applied uniformly across the grid. The distribution of net cultivated area 

between crops in the model is based on farmer decisions. 

6.3.3 Farmers module 

The farmers module models the daily, seasonal, and annual behavior of the 

farmers. The farmer behavior is based on the combination RANAS behavior 

model (Mosler, 2012) and data-driven rules to integrate human decisions. The 

RANAS (i.e., R-risk, A-attitude, N-norm, A-ability, and S-self-regulation) 

behavioral model assumes that multiple sociopsychological factors (i.e., risk, 

attitude, norm, ability, and self-regulation) impact behavioral outcomes (i.e., 

behavior, intention, use, and habit). The RANAS behavior rules were derived 

from household surveys (Chapter 5) and data-driven rules based on the analysis 

of crop and hydrological data in the catchment (Alam et al., 2022b).  The farmer 

decision-making module captures their responses and feedback amongst them 

and the environment.  

Each farmer is characterized by her socio-economic characteristics (land 

area, financial resources, access to irrigation) and assigned a location (i.e. a grid 
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cell). The farmer co-occupies the space with other farmers in the specific grid 

cell and bi-directionally interacts with the biophysical resources (as modeled by 

the hydrological module) through decisions on crop choices and methods of 

irrigation. The farmers also interact with each other through norms, from the 

RANAS model.  Farmer locations within the watershed determine their access to 

amenities such as check dams. Additionally, farmers are characterized by their 

access to drip irrigation and borewells, which are simulated based on behavioral 

rules. 

In the model, farmers are differentiated based on socio-economic 

characteristics and biophysical endowments. They are stratified by land size into 

four categories: marginal (<1 ha), small (1-2 ha), medium (2-4 ha), and large (>4 

ha) (Alam et al., 2022c). The proportions of these groups in the region and the 

average area per type (total area/number of holdings) are derived from the 

agricultural census data (Table 6.2).  Subsequently, the number of each type of 

farmer in each grid cell is derived based on the total cultivated area in each cell 

(see crop module), the proportion of each farmer group, and the average area of 

each group (Table 6.2). Overall, this results in a simulation of 38,447 farmers in 

the watershed.  

Table 6.2: Distribution, number and area of each category of farmers in the 

blocks covering Kamadhiya catchment 

  %age of 
farmers a 

Total holdings 
a 

Total area (ha) 
a 

Average area 
(ha) 

Marginal 7.8% 40173 27350 0.68 

Small 28.6% 68673 99690 1.45 

Medium 35.1% 45162 121395 2.69 

Large 28.5% 15320 95491 6.23 

a Agricultural census 2015-16 (DoAC&FW., 2019) 
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While farmers make numerous decisions, the model focuses on a subset of 

these. These include: 1) allocating crop areas between kharif crops like cotton 

and groundnut; 2) deciding on the cultivated area for post-monsoon crops, and 

3) making investments in drip irrigation and borewells. 

6.3.3.1 Decision rules for the distribution of Kharif crop areas 

All farmers are assumed to cultivate two kharif crops: groundnut and cotton. 

This is based on a household survey (Alam et al., 2022c), which indicates that the 

majority of farmers cultivate both the crops. Catchment-level analysis (Alam et 

al., 2022b), comparing the periods before (1983-2002; pre-CD) and after (2003-

2015; post-CD) the implementation of CDs, showed a 124% increase in cotton 

cultivation in the watershed in the post-CD period. Additionally, the area under 

irrigation rose from 64% to 85% in the post-CD period. This increase has been 

attributed to the phenomenon of supply-demand feedback, where the perceived 

increase in water availability led to a rise in crop water demand, primarily 

through expanded cotton cultivation (Alam et al., 2022b). The survey confirmed 

that the primary benefits perceived by farmers from CDs include increased 

availability and reliability of water for irrigation (Alam et al., 2022c). The 

comparison of farmers' cotton area fraction (cotton area/total kharif area) from 

the survey (Alam et al., 2022c) shows that the farmers who are near CDs (<=250 

m) devote 4.5% (cotton area/total kharif area = 0.55) more cotton area than the 

farmers who are away from CDs (cotton area/total kharif area = 0.50). Thus, the 

enhanced supply and reliability of irrigation water directly correlate with an 

increased area under the more water-intensive crop, cotton.  
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Figure 6.3: A) Fitted line showing cotton area per unit net cultivated area 

before and after 2002 (i.e. pre-CD and post-CD periods respectively); B) 

Relationship between wheat area per unit net cultivated area (post monsoon 

area) and spatially averaged post-monsoon groundwater levels 

This was further analyzed by estimating the rate of change of the cotton area 

as a proportion of the net cultivated area over the modeling period (Figure 6.3a). 

The analysis of time series (1990 - 2015) of cotton area (as a proportion of the 

net cultivated area) identified a significant breakpoint in 2002 (matching pre and 

A 

B 
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post-CD period), estimated using the R ‘strucchange’ package (Zeileis et al., 2002) 

which uses Bayesian Information Criterion (BIC) to identify breakpoints. The 

slope representing the rate of change in cotton area as a proportion of the net 

cultivated area before and after the breakpoint (2002) were estimated. The slope 

increased in the post-CD period (0.0175 year-1) when compared with pre-CD 

period (0.0132 year-1) (Figure 6.3a).  

This finding was integrated into the model as a rule (Equation 6.2). For 

farmers without CDs and irrigation, the slope (cotton area as a proportion of the 

net cultivated area) of the equation was kept same as in the pre-CD period. In 

contrast, the farmers with access to CDs and irrigation were modeled to have an 

increased slope, representing higher cotton area as a proportion of their net 

cultivated area over the post-CD period (Equation 6.2). This equation resulted in 

higher cotton area, by 4-6% over the period 2002-2015, cultivated by farmers in 

the grid cells with CDs as compared to those without CDs. A similar increase of 

3.3% was observed in the household survey conducted (Alam et al., 2022c). The 

area dedicated to groundnut is calculated as the total area minus the area used 

for cotton. 

𝐴𝑟𝑒𝑎𝑐𝑜𝑡𝑡𝑜𝑛 = (−26.151 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑦𝑒𝑎𝑟) ∗ 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟        Equation 6.2 

where slope (cotton area/net cultivated area) before 2002 (pre-CD period) = 

0.0132/year; slope after 2002, i.e. post-CD period (for farmers with irrigation 

and in grid cells with check dams) = 0.0175/year; and for farmers in grid cells 

without check dams = 0.0132 /year. 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟 is farmer-owned cultivated 

land. 
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6.3.3.2 Decision rules for the cultivated area of post-monsoon 
crops 

The availability of groundwater in dugwells remains limited during the post-

monsoon season, often depleted by the year-end due to the limited extent and 

storage capacity of the aquifers (Mohapatra, 2013; Kulkarni et al., 2000; Alam et 

al., 2022c). This scarcity constrains the cultivated area in the post-monsoon 

(Alam et al., 2022b). The catchment water balance analysis demonstrated that 

the area cultivated with post-monsoon crops is highly dependent on the 

groundwater levels after the monsoon (Figure 6.3b). This finding indicates that 

farmers across the catchment consistently plan their wheat crop areas by taking 

into account the irrigation demand that can be supported by the post-monsoon 

groundwater storage.  

A relationship (R2 ~ 0.87) was developed between the ratio of the rabi (post-

monsoon) area to the net cultivated area and the post-monsoon groundwater 

level (Figure 6.3b). This correlation was incorporated into the model for each 

farmer (Equation 6.3). According to the model, farmers assess groundwater 

levels at the onset of the post-monsoon crop sowing period to determine their 

cultivated area. Only the farmers that have irrigation facilities can cultivate crops 

in the post-monsoon season.  

𝐴𝑟𝑒𝑎𝑤ℎ𝑒𝑎𝑡 = (0.2765 + −0.0212 ∗ 𝐺𝑊𝐿𝑝𝑜𝑠𝑡−𝑚𝑜𝑛𝑠𝑜𝑜𝑛) ∗ 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟  

Equation 6.3 

Where, 𝐺𝑊𝐿𝑝𝑜𝑠𝑡−𝑚𝑜𝑛𝑠𝑜𝑜𝑛 is the groundwater level below the surface at the 

sowing date of wheat and 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟 is the farmer-owned cultivated land. 

6.3.3.3 Decision rules of investments in drip and borewell 

Data on socio-economic and psychological variables were obtained through 

household surveys of 492 farmers across 24 villages in the catchment in 
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December 2021 (Alam et al., 2022c). RANAS psychological factors (R-risk, A-

attitude, N-norm, A-ability, and S-self-regulation) were measured using 2–4 

questions on five-point Likert scales. The survey analysis showed that the 

psychological factors play a significant role in the adoption of both the 

technologies (Chapter 5). The authors showed that the inclusion of psychological 

factors in addition to the socio-economic factors improved the explanation 

power of the adoption behavior by threefold. 

The binary logistic regression used to interpret the adoption behavior 

(Chapter 5) is used to generate farmer decision rules of the adoption of drip 

irrigation and borewells. First, based on the earlier results (Chapter 5), a binary 

logistic regression was carried out for both drip irrigation and borewell adoption 

using a subset of variables found to be significant and for which data are 

available for the farmers (Table D.4 and D.5). Using the regression coefficient 

estimates (α) of the variables, farmer decision-making of the adoption of drip 

irrigation and borewells was formalized using equations 6.4 and 6.5. The 

probability of adoption was estimated using equation 6.6. Similar approaches, 

i.e. using regression equations to define rules, have been employed by others 

(Pouladi et al., 2019; Kaufmann et al., 2009). The probability thresholds 

(Probdrip/BW), above which farmers were classified as adopters, were set 

based on the analysis of the accuracy, sensitivity, and specificity of the regression 

models. This was set at 0.35 and 0.25 for drip and borewell adoption at which 

the accuracies of the model predictions were 85.9 % and 65.9 %, respectively 

(Table D.4 and D.5).  

𝑉𝑑𝑟𝑖𝑝[𝑡] = 𝑐𝑑𝑟𝑖𝑝 +  𝛼𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑎𝑏𝑖𝑙𝑖𝑡𝑦[𝑡] + 𝛼𝑟𝑖𝑠𝑘 ∗ 𝑟𝑖𝑠𝑘(𝑝𝑒𝑟𝑐𝑖𝑒𝑣𝑒𝑑)[𝑡] + 𝛼𝑖𝑚𝑝𝑎𝑐𝑡 ∗

𝑟𝑖𝑠𝑘(𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)[𝑡] + 𝛼𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ∗ 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒[𝑡] + 𝛼𝑛𝑜𝑟𝑚 ∗ 𝑛𝑜𝑟𝑚[𝑡]                                        

Equation 6.4 
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𝑉𝐵𝑊[𝑡] = 𝑐𝐵𝑊 + + 𝛼𝑆𝑅 ∗ 𝑠𝑒𝑙𝑓_𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑡] + 𝛼𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ∗ 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒[𝑡] + 𝛼𝑛𝑜𝑟𝑚 ∗

𝑛𝑜𝑟𝑚[𝑡] + 𝛼𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘[𝑡] +  𝛼𝑤𝑎𝑡𝑒𝑟 ∗ 𝑤𝑎𝑡𝑒𝑟_𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦[𝑡] + 𝛼𝑎𝑟𝑒𝑎 ∗ 𝑎𝑟𝑒𝑎[𝑡]                    

 Equation 6.5 

Probdrip/BW[t] = 
𝑒

𝑉[𝑡]𝑑𝑟𝑖𝑝/𝐵𝑊

(1+ 𝑒
𝑉[𝑡]𝑑𝑟𝑖𝑝/𝐵𝑊)

                                                                           Equation 6.6 

Where c is the regression intercept and α is the regression coefficient, or 

parameter, of a socio-economic or psychological variable that is significant at p 

< 0.05 significance level (Table D.4 and D.5).  

The variables in regression equations 6.4 and 6.5 were linked to model 

variables that were either constant for the simulation period (e.g., farmer area, 

proximity to water, livestock ownership) or dynamically simulated in the model 

(Figure 6.4). The latter included all RANAS factors (risk (perceived and severity), 

norm, ability, impact self-regulation). The constant variables included proximity 

to water (𝑤𝑎𝑡𝑒𝑟_𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦) based on the village nearness to the dams and the 

main river stem (Alam et al., 2022c)  livestock ownership (𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘) based on 

the household survey which showed 70% farmers owning livestock and farmer 

area (𝑎𝑟𝑒𝑎) based on the farmers' type and their average area (constant in the 

model).  

Dynamically simulated RANAS variables were linked with model variables 

(Figure 6.4). This linking involved estimating RANAS variables in equations 6.4 

and 6.5 based on the simulated model variables for each year. Risk(perceived) 

was linked to drought occurrence, risk(severity) was linked to impact of drought 

on crop yields, ability and self-regulation was linked to farmers’ accumulated 

capital, attitude was linked to incremental yield benefits achieved by 

neighboring adopters along with training and norm was linked to the percent of 

adopters in the grid cell where the farmer is located. All RANAS variables were 

then updated annually for each farmer based on the simulated values of the 
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linked modeled variables. The responses to RANAS related questions were on a 

likert scale ranging from 0 to 4 and the regression coefficients in equation in 6.4 

and 6.5 were derived based on this scaling. Therefore, the modeled variables that 

the RANAS variables link up with were also scaled between 0 to 4. This was done 

using min-max scaling ((variable – min)/(max-min)) and multiplying it by 4. The 

scaled modeled variable was then assigned to the corresponding RANAS 

variable. 

 

Figure 6.4: Linking of RANAS and socio-economic variable with the model 

variables and inputs 

For example, Household survey (Alam et al., 2022c) measured perceived risk 

with the question “How high is the risk of drought in the coming 5 years?” and 

the risk severity with the question “How severe will be the impact of drought on 

your crop production?” on a scale of 0 to 4. Thus, the RANAS variable risk 

(perceived) was estimated based on a modeled variable occurrence of a drought 

year (annual rainfall < 400 mm) and RANAS variable risk (severity) was based 

on the modeled effect of drought on crop yields. For both risks, the model uses 

the principle of drought memory which considers the accumulative nature of 



 

177 

 

farmers' experience and accounts for memory decreasing over time in non-

drought (non-disaster) years (Wens et al., 2019; Di Baldassarre  et al., 2019). For 

every drought year, a farmer's risk (perceived) memory was updated (starting 

with 0, each drought year adds 1 to it) and risk (severity) memory by adding a 

decrease in yield relative to potential yield (starting with 0, each drought year 

adds a decrease in yield to the farmers' memory) (Equation 6.7 and 6.8). Both 

drought and impact memory reduce over time with memory decay of 20% each 

year. This is based on the household survey (Alam et al., 2022c), which showed 

that on average farmers report 1.25 drought years (23% reported 0 drought 

years and 40% reported 1 drought year) in the last 10 years as compared to the 

observed three drought years (the year 2012, 2014, and 2018). Applying decay 

rate of 20% (per year) for the population (over 10 years) gives drought memory 

value at the end of the simulation period (year 2021) of 1.2 (shown in Table D.6). 

This is close to the average reported value of 1.25 drought years. At the end of a 

simulation year, risk and impact values were scaled from 0 to 4 and given as 

input to equation 4. 

risk(p)(f,t) = drought(f,t) + risk(p)(f,t-1)-d*risk(p)(f,t-1)                          ….Equation 6.6 

risk(s)(f,t) = drought(f,t)*(Yield(p)t- Yield(f)t)/Yield(p)t)+ risk(s)(f,t-1) -

d*risk(s)(f,t-1)                         …. Equation 6.7 

Where risk(p) and risk(s) is the risk (perceived) and risk (severity) for a 

farmer f in year t; drought(f,t) is the occurrence of drought (1 if rainfall < 400 mm 

else 0) at the farmer’s location; Yield(p)t is the potential yield of crops and  

Yield(f)t is the actual yield of the farmer in year t and d is the memory decay rate. 

Potential and farmer yields are derived by taking the corresponding averages of 

all the crops farmer grows. 
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Similarly, the ability was linked to farmers’ accumulated capital in the model 

as this was measured in the household survey (Alam et al., 2022c) with the 

answer to the question “How confident are you in your financial capability to 

afford the drip system/borewell?”. Attitude in the survey was measured with the 

answer to the question “How beneficial drip/borewell is for crop production?” 

and in the model it was assumed to be influenced by incremental yield benefits 

achieved by neighboring farmers (living within the same grid) who have adopted 

drip irrigation or borewell (Equation 6.8). For drip irrigation, the effect of the 

drip subsidy scheme after 2005 is also added through the training and 

awareness component with an assumption that 5% of the farmers randomly 

received the training at the start of each year. This is based on the survey data 

(Alam et al., 2022c) which showed that, though in total 21% of the farmers have 

received information from the government or NGOs, they give less importance 

to their opinion. With training an important factor in shaping attitudes (Gautam 

et al., 2017; Nankano et al., 2018), after 2005 it was assumed that the attitudes 

were influenced in equal proportions by yield benefits achieved by neighboring 

farmers and training. 

𝑌𝑖𝑒𝑙𝑑_𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑓,𝑡 = [
 𝑌𝑖𝑒𝑙𝑑(𝑎)𝑓(𝑔),𝑡

𝑌𝑖𝑒𝑙𝑑(𝑝)𝑡
−  

 𝑌𝑖𝑒𝑙𝑑(𝑛𝑎)𝑓(𝑔),𝑡

𝑌𝑖𝑒𝑙𝑑(𝑝)𝑡
] ∗ 100                 …. Equation 6.8 

where 𝑌𝑖𝑒𝑙𝑑(𝑎)𝑓(𝑔),𝑡 and 𝑌𝑖𝑒𝑙𝑑(𝑛𝑎)𝑓(𝑔),𝑡 is the yield of adopters and non-

adopters, respectively living in the same grid (g) as the farmer (f) in year t and 

𝑌𝑖𝑒𝑙𝑑(𝑝)𝑡 is the potential yield of crops. 

Norm was measured with the answer to the question “What proportion of 

people in your village have a drip?”. This was directly linked in the model to the 

percent of adopters in the grid cell where the farmer is located. This was 

estimated at the end of each year for each grid cell by dividing number of 

adopters by the total number of farmers living in the grid cell. Self-regulation 
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was measured in the household survey19 with the answer to the question “Do 

you have a plan to acquire the required personnel and material it takes to drill a 

BW?”, and there was no direct model variable associated with it. We assume that 

action planning reflects intention to adopt which is related to farmers capital 

(Wens et al., 2020; Nguyen and Drakou, 2021) and thus self-regulation was 

linked to the farmers accumulated capital.  

The farmer survey indicated that ~60 % of farmers encountered borewell 

failures before a successful borewell and on average, farmers drilled ~ 2.1 failed 

borewells before they succeeded with a working borewell. This information was 

integrated using a random function, where only one-third of farmers adopting 

borewell (based on equation 6.5) achieve a functional well, while the remaining 

two-thirds experienced non-functional borewell despite the utilization of capital. 

This is similar to earlier results in hard rock areas, which showed high failure 

rates of borewells (Anantha, 2013). 

The costs of drip irrigation (INR 60000/hectare) and borewells were 

determined based on the household survey analysis (Chapter 5). For drip 

irrigation, the cost was set to 50% of the reported cost starting in 2005 when the 

government subsidy scheme came into effect that subsidized half of the cost 

(Nair and Thomas, 2022). Before 2005, the cost of drip was higher due to limited 

penetration. For example, drip cost (without subsidy) in 2005 was reported at 

INR 20000-55000/hectare (Narayanamoorthy,2009) , which after accounting 

for inflation rate of ~7% per annum results in the present cost of INR 70000 – 

190000/hectare (1.2 – 3.2 times the current cost). This higher cost is accounted 

for by assuming that a drip system costs 1.5 times the current cost in years before 

2005. Similarly, borewell adoption has been a recent phenomenon in the 

catchment with the farmer survey (Chapter 5) showing that only 8% of total 

borewells were drilled before 2000. This reflects the lack of access to cheaper 
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technology before 2000 and was accounted in the model by setting its cost before 

2000 at two times the current cost. 

6.3.4 Overall workflow 

In brief, the farmers, based on behavioral rules make decisions on crop 

choices and cultivation areas at the season's start. Thereafter, daily crop ETc, and 

irrigation needs for these crops are calculated for each grid cell and mapped to 

the farmers based on their locations. Groundwater storage per grid cell from the 

hydrological module is also allocated to the farmers. The farmers decide on 

providing irrigation based on prescribed rules, access to irrigation, and available 

groundwater storage. After that, each farmer's crop actual ET (AET), which is the 

sum of root soil water uptake and applied irrigation, is aggregated at the grid 

level. This reduces soil moisture and groundwater storage. This is repeated daily, 

with the seasonal aggregates of crop ETC and AET used for yield calculation 

using the FAO yield response function. Farmers’ capital and profits are updated 

based on crop prices and production costs, with annual decisions on investments 

(e.g., investing in drip irrigation, and borewells) influenced by capital and 

behavioral rules.  The feedback generated by the agriculture water interventions 

are integrated across these modules, affecting water supply (hydrological 

module), demand (crop module), and farmers behavior (farmers module). 

Figure 6.5 gives the overall conceptual workflow of the ABM-AWM mode. 
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Figure 6.5: Conceptual workflow of the ABM-AWM model. Dotted lines show 

the feedback between the modules. 

6.3.5 Model calibration and uncertainty analysis 

The model was calibrated using PEST, which is a model-independent 

parameter estimator (Doherty et al., 2010). PEST estimates the optimal values of 

model parameters by minimizing the sum of squares of the differences between 

calculated and observed model results with an optimization algorithm based on 

Gauss-Marguardt-Levenberg search algorithm (Doherty et al., 2010). The model 

was calibrated for monthly runoff (available for monsoon months from June to 
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October) measured at the catchment outlet and watershed average groundwater 

levels available for pre- monsoon (month of May) and post-monsoon (month of 

November) months (Alam et al., 2022b). The model was calibrated for the period 

1991-2008 and validated for the period 2009-2015.  

The model was calibrated for two versions: HBon and HBoff. In both the 

versions, CDs were incorporated and differed only in the presence of human 

behavior rules. HBon integrated all human behavior rules into the model, while 

HBoff excluded them. This was done in order to assess whether the integration of 

human-water feedback improves the explanatory capabilities of the ABM-AWM 

in terms of runoff and groundwater storage, both of which are influenced by 

human behavior. A manually calibrated HBon served as the baseline model for 

both the versions. The HBoff model configuration involved deactivating the 

investment behavior module (drip and borewell), maintaining the rate of change 

of cotton (slope in equation 6.2) at the pre-CD period value for all farmers, and 

substituting groundwater-dependent wheat area with a fixed input (as it would 

be in the absence of check dams). The wheat area input for HBoff model was 

derived from a manually calibrated HBon model run without CDs (representing a 

counterfactual scenario with no additional recharge), with only the wheat area 

rule active (equation 6.3). This provided the wheat area as a fixed input in the 

absence of CDs, since it represents the behavior of farmers, unrelated to CDs, of 

deciding on wheat area based on post-monsoon groundwater levels. 

6.3.6 Uncertainty analysis 

For the uncertainty analysis, the confidence intervals (5-95%) of the most 

sensitive model parameters (Table 6.1) were estimated based on the 

computation of the Jacobian matrix in the PEST search algorithm (Dohery et 

al.,2010). Additionally, the confidence intervals of regression estimates (in 

equations 6.2, 6.3, 6.4, 6.5) were derived from the corresponding regression 
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models. Thereafter, based on the calibrated parameters and its confidence 

intervals (Table D.7), 500 parameter sets were sampled using Latin Hypercube 

Sampling (LHS) (Mishra, 2009). LHS combines Simple Random Sampling (SRS) 

as in Monte Carlo analysis and stratified sampling techniques, yielding 

statistically significant results with considerably fewer realizations beneficial for 

computationally demanding models. This was used to compute the 5% and 95% 

interquantile ranges of the model outputs of simulations where the NSE of runoff 

and groundwater was > 0.5.  

6.4 Results 

6.4.1 Model performance 

Figures 6.6a and 6.6b show the performance of the calibrated HBon model in 

simulating runoff and groundwater levels. The model exhibited satisfactory 

performance during the calibration period (1991-2008), achieving a Nash-

Sutcliffe Efficiency (NSE) of 0.59 for runoff with a Percent Bias (PBIAS) of 2.76%, 

and an NSE of 0.65 for groundwater levels. The model performed similarly 

during the validation period (2009-15), with NSE of 0.56 for runoff and 0.61 for 

groundwater levels. The observed and simulated runoff shows that most of the 

runoff is generated in a few peaks with no characteristic flow recession at 

monthly scale and low flows for most of the other times. The model 

underestimates high runoff peaks except in 2010 and overestimates a few 

smaller ones. For the groundwater levels (meter below ground level, mbgl), the 

model simulates the observed pre- (May month) and post-monsoon (November 

month) patterns satisfactorily with a small bias towards deeper pre-monsoon 

(May groundwater levels) in the later years. 
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Figure 6.6: Simulated (HBon) and observed runoff (A) and groundwater levels 

(B). 

A comparison between the calibrated version of the model with embedded 

human behavior (HBon) and the version without (HBOff) revealed better 

performance of the former in terms of higher NSE values for runoff (HBon = 0.59 

vs HBoff = 0.54) and groundwater levels (HBon = 0.65 vs HBoff = 0.55) (Table 6.3). 

The better performance reflects the importance of farmers evolving agriculture 

practices in explaining the variations in hydrological fluxes, which the HBon 

B
) 

A
) 
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model accounts for. The HBon model accounts for the farmers feedback in terms 

of cultivated area and investment (in drip irrigation and borewells), which 

influence soil moisture and groundwater storage, specifically through crop 

water needs, irrigation application and its corresponding efficiencies. The 

calibrated parameter values for the two versions were the sensitive soil storage 

parameters (field capacity, saturated capacity, and capillary rise, see Table A1).  

Considering the better performance of the HBon model in representing 

groundwater storage, we henceforth utilize the calibrated parameters from the 

HBon model to simulate both the scenarios with human behavior on (HBon) and 

off (HBoff). 

Table 6.3: Calibrated model statistics and parameters with human behavior 

on (HBon) and off (HBoff). 

  Units Model HBon Model HBoff 

 NSE (runoff) - 0.59 0.54 

 PBIAS (runoff) % 2.76 -1.19 

 NSE (groundwater) - 0.65 0.55 

 Parameter Units Value HBon 
(Calibrated) 

Value HBoff 

(Calibrated) 

Aquifer Aquifer Depth m 22.47 23.07 

Aquifer specific yield % 0.012 0.011 

Baseflow threshold mm 300.00 300.00 

 Runoff recession coefficient - 0.04 0.06 

 Return flow fraction - 0.10 0.15 

Top 
soil 
layer 

Soil Field capacity m3 m-

3 
0.24 0.29 

Wilting point m3 m-

3 
0.16 0.22 

Saturation capacity m3 m-

3 
0.37 0.42 
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Hydraulic conductivity m 
day-1 

0.16 0.16 

Bottom 
soil 
layer 

Soil Field capacity m3 m-

3 
0.27 0.28 

Wilting point m3 m-

3 
0.17 0.18 

Saturation capacity m3 m-

3 
0.29 0.30 

Hydraulic conductivity m 
day-1 

0.08 0.10 

 Root wilting point fraction - 0.87 0.86 

 Groundnut irrigation 
fraction (GNirr) 

- 0.70 0.59 

 Capillary rise (Cap) mm 
day-
1 

0.016 0.05 

 

Figure 6.7a presents a comparison of the simulated wheat area, simulated 

based on a human behavior rule (see methods),  with the observed area. The 

performance was good, with an overall R2 of 0.71 (Figure 6.7a). Although the 

model simulated the observed patterns reasonably well, there was an 

overestimation for most years, especially in the period 2000-2010. Concerning 

crop yields, the model demonstrated satisfactory performance with R2 values of 

0.36, 0.46, and 0.52 for cotton, groundnut, and wheat yields, respectively (Figure 

D.2). In general, there was less inter-year variation in simulated yields, especially 

for groundnut yields which could be attributed to the model's consideration of 

higher irrigation for groundnut (70% groundnut area being irrigated in the 

calibrated model), while that may not be the case in the field (Table 6.3). Also, 

the model only accounts for the effect of water stress on yields (whether water 

demands are met), while achieving actual yields are more nuanced, involving 

other factors such as pest and extreme weather events. Cotton is especially 

impacted by pests, which may explain the lowest R2 for cotton yields.  

The overall model simulated annual ET at catchment scale was also compared 

with the remote sensing-based estimates of ET from MODIS (Qiaozhen et al., 
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2014) (Figure 6.7b) . The comparison of model-simulated ET for the years MODIS 

ET was available (2000-2013) shows a good correlation (R2  = 0.79), though 

small underestimation for most years were observed, indicating that the model 

can capture the crop water dynamics well at the catchment scale. 

 

 

 

Figure 6.7: (A) Simulated and observed post-monsoon wheat area (ha); (B) 

Comparison of modelled ET with remote sensing-based MODIS ET, averaged 

over the catchment. 

6.4.2  Increase in supply (recharge) from check dams 

Figure 6.8 shows the increase in supply through recharge by CDs in the grid 

cells where CDs are located (453 grid cells out of 1319). On average, each year 

B
) 

A
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CDs capture 18.5 million cubic meters (MCM) of runoff, resulting in a recharge 

of 16.8 MCM, with the remainder evaporated. Recharge is dependent on rainfall, 

with higher rainfall generally leading to increased recharge (28–34 MCM in 

2005-08 and 2011), while low rainfall years result in negligible recharge (<4 

MCM in 2004, 2012, and 2014). The low recharge during years with low rainfall, 

when additional water is most needed, suggests that the CDs may not be able 

augment the supply to mitigate drought impacts. This is especially so because 

groundwater is depleted annually and there is no transfer over the years or 

recharge from good years to bad. In grid cells with no CD storage, there is no 

increase in supply. 

  

Figure 6.8: Runoff capture (MCM) and recharge (MCM) by check dams in the 

catchment in comparison with rainfall. 
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6.4.3 Increase in cotton and wheat area in response to 
increase in recharge 

Figure 6.9 shows the increases in the areas of cotton (6.9a and 6.9b) and 

wheat (6.9c and 6.9d) in the catchment after the introduction of check dams in 

2002 (post-CD period). The comparison is made for the whole catchment area 

(6.9a and 6.9c) and for farmers living in grid cells with CDs (6.9c and 6.9d) 

between models with human behavior (HBon) and without human behavior 

(HBoff). The figures show the average crop area (cotton or wheat) per grid cell. In 

the HBoff model, the farmers do not respond to the increase in supply due to CDs 

since the behavior rules are switched off.  

The comparison between HBon and HBoff models shows that human behavior 

as described leads to an increase in the area of both cotton and wheat in the 

catchment over the post-CD period. On average, at the end of the simulation (in 

the year 2015), the cotton area (36.5 ha/grid cell) is higher by 4.3% (Figure 

6.9a), and the wheat area (13.3 ha /grid cell) is higher by 15.5% (Figure 6.9c) in 

the HBon model when compared to the HBoff model. The difference is greater in 

good rainfall years when higher rainfalls mean more recharge by CDs and fewer 

irrigation needs for the monsoon cotton crop. Since only one-third of grids have 

CDs, the impact of CDs between the HBon and HBoff models becomes more 

discernable when comparing the cotton areas farmed only in the grid cells with 

CDs. The average area per grid cell of cotton (41.3 ha/grid cell) is 11.9% higher 

in the HBon model as compared to the HBoff  model (36.9 ha/grid cell) (Figure 

6.9b). Similarly, the average area per grid cell of wheat (16.2 ha/grid cell) in the 

HBon model is higher by 36.1 % as compared to the average wheat area per grid 

cell (11.9 ha/grid cell) in the HBoff model (Figure 6.9d).  
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6.4.4 Impact of increased crop area on groundwater 
levels 

The expansion of cotton and wheat cultivated area (Figure 6.9) results in an 

increased demand for groundwater irrigation and reflected in the deeper 

groundwater levels. When assessing groundwater levels across the entire 

catchment, the difference is subtle but discernible. In the post-CD period, the 

HBon model shows slightly deeper groundwater levels over the years on average 

(by 0.18 m) and in the pre-monsoon seasons (by 0.32 m) (after the end of the 

cropping season) than HBoff model due to increased irrigation abstractions to 

support the expanded areas of cotton and wheat (Figure 6.10a). However, the 

differences become more pronounced when comparing grid cells with CDs in 

both the HBOn and HBOff models (Figure 6.10b). In the grid cells with CDs, where 

the expansion of crop areas occur, groundwater levels over the year are on 

average 0.62 m deeper (Figure 6.10b). The difference is much higher at the end 

of a cropping season in the pre-monsoon (May) month with groundwater levels 

on average deeper by 1.03 m in the HBon model when compared to the HBoff 

model. This indicates that the additional recharge due to CDs may have raised 

the groundwater levels by average 1.03 meters at the end of the (hydrological) 

year. However farmer, in response to increased water supply through CDs, 

utilize this surplus for expanding irrigation.  

Over the years, on average 54% of additional recharge is used for expanding 

irrigation for cotton and wheat (Figure 6.11). The percentage is higher (80-

100%) for low rainfall years (e.g., 2008, 2009, 2012) when the recharge was 

limited and demand was higher and is towards the lower end (10-20 %) when 

the rainfall was higher (e.g., 2005, 2011). 
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Figure 6.10: A) Overall catchment groundwater level and B) Groundwater 

level in grids with check dams in the HBon and HBoff models 

A 
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Figure 6.11: Additional GW use in model HBon (compared to HBoff with no 

human behavior) relative to check dam recharge 

6.4.5 Unintended impact on income and adoption  

Figure 6.12 shows the effect of increase in crop areas on farmer profits 

resulting from enhanced crop production over time. Following the introduction 

of CDs, farmers profit shows a marginal increase (Figure 6.12a), in line with the 

expansion of crop area (Figure 6.9). There is a general increase in profit over the 

years which is due to higher yields over time. The comparison between farmers 

living in grid cells with CDs and those in grid cells without CDs shows that the 

average profit in the post-CD period (2002 - 2015) for CD farmers amounts to 

INR 30,627 (369 USD) year-1 [29,267 – 31,740 INR/year], representing an 8.2 % 

increase compared to non-CD farmers (INR 28,307 year-1). In contrast, their pre-

CD period profit was INR 13,943 (USD 168) year-1 [12,621 – 15,057 INR/year], 

which was only 2.9% higher compared to the non-CD farmers (INR 13,547 year-

1).  
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Figure 6.12:  Average profit (INR) from crop production for farmers with and 

without a CD 

Farmers reinvest a portion of their profits in agricultural water interventions, 

as assessed through the adoption of drip irrigation and borewells and simulated 

based on the RANAS behavioral model. Figure 6.13a illustrates the adoption rate 

(% of area under drip irrigation) of drip irrigation over the years. The simulated 

adoption of drip irrigation slightly over-estimates the observed adoption but 

overall shows a satisfactory performance with adoption increasing in the post-

CD period and tapering towards the end, reflecting the characteristic S-shaped 

adoption curve. By the year 2015, the simulated adoption percentage in the 

catchment reached 17.5%. While the rate of adoption is more gradual in 

simulated adoption, the observed adoption exhibits exponential growth starting 

2007 compared to the simulated gradual increase. Nevertheless, by the end of 

2022, with observed adoption reaching 16.5% in the region (Chapter 5), it can 

be inferred that the observed growth deviates from pure exponential growth to 

the S-shape adoption curve and aligns with the S-shape of the simulated 

adoption curve. 
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The impact of increased profit on adoption is evident when comparing the 

farmers living in grid cells with and without CDs (Figure 6.13b). Farmers with 

CDs, experiencing increased crop area and profit, show on average a much higher 

adoption rate (20.8% [15.4 – 26.4%] in 2015) than farmers without CDs (15.4% 

[10.7 – 21.0 %] in 2015). Though the increase in profit is small (Figure 6.12a), 

the relatively higher difference in the adoption rate implies that even smaller 

increases in profit followed by a marginal higher rate of adoption in farmers with 

CDs can lead to favorable social norm and attitudes, leading to much larger 

impact on adoption over the years. The higher adoption is also reflected in the 

farmer survey conducted in the region (Chapter 5). It shows higher rate of 

adoption amongst the farmers with CD (23.5%) (defined as those having nearest 

CD < 500 m) when compared to the farmers without CD (20.7%) and the 

difference is significant (p< 0.05; chi squared test).  

In contrast to the adoption of drip irrigation, the model underestimates the 

observed borewell adoption (percent of farmers) patterns (Figure 6.13c). 

Simulated borewell adoption is much lower (3.3% in 2015) than observed 

borewell adoption, with the adoption rate increasing at a slower pace than 

observed. However, similar to the case with drip irrigation, the farmers in grid 

cells with CDs show higher adoption rates (3.9% [2.9 – 4 %]) than the farmers 

without CDs (2.9% [2.4 – 3.1 %]) (Figure 6.13d). The adoption of both drip 

irrigation and borewells contributes to higher cotton yields  among the adopters, 

as depicted in Figure D.3, further enhancing farmers' benefits.  

The underestimation of borewell adoption can be attributed to various 

factors. Firstly, borewells have a higher cost of adoption, especially in the 

absence of subsidies, and high failure rates. Also, the model imposes financial 

constraints by restricting access to debt, which farmers often resort to fund 

borewell drilling (Taylor, 2013). Additionally, there could be other unaccounted 
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factors, such as farmers' networks, power dynamics, and variations in farm soil 

types, which may play a role in influencing the adoption patterns and are not 

included. This omission is partly evident in the lower predictive power of the 

logistics model for borewell adoption (65.9% accuracy) compared to drip 

adoption (85.9% accuracy). Thus, the findings underscore the necessity to 

broaden the model's scope by incorporating additional social, behavioral, and 

biophysical factors that impact farmers' adoption decisions. However, the 

simulations highlight that, assuming other unknow factors as constant, the 

positive impact of additional recharge and associated crop changes on income 

significantly influences the adoption rates. 

6.5 Discussion 

The results show that in response to the (perceived) increase in supply 

brought by recharge from CDs, farmers increase their crop areas, mostly 

irrigated by groundwater, leading to increased groundwater abstractions. The 

crop area increments are relatively small (4-10 %) for the whole catchment, 

which is in line with earlier results (Alam et al., 2022b, c) showing that the impact 

of CDs have been limited in the area. Nonetheless, this translates to higher 

groundwater use, subsequently leading to deeper groundwater levels.   

Typically, recharge efforts are marked by conflicting assertions. These 

commonly strive to boost groundwater storage while concurrently asserting 

improvements in crop production due to increased availability of irrigation 

water (Alam et al., 2022b; Patel et al., 2020; Shah et al., 2009). The former may 

not happen if the latter is the case and vice-versa. However, neglecting the 

unfolding of the phenomenon of supply-demand feedback poses a deterrent to 

achieving either of the objectives. For example, if the objective of introducing 

recharge measures such as CDs was to augment groundwater storage, then the 
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unfolding of the phenomenon of supply-demand feedback suggests that this 

approach may not yield the desired results. This is because farmers adapt their 

behavior based on perceived increase in water availability and increase their 

irrigation water use. This is reflected in the reduced groundwater storage with 

groundwater levels 1.03 m deeper in the pre-monsoon season when compared 

with the counterfactual of when the farmers do not change their behavior. This 

nullifies the increase in the groundwater levels expected from additional 

recharge from the CDs. This was also the finding from a catchment scale water 

balance study (Alam et l., 2022b) that showed that the implementation of CDs 

did not lead to any long-term increase in groundwater storage. Similar results 

have been reported elsewhere (Adla et al., 2023; Di Baldassarre et al., 2019; 

Kallis, 2010), which show that as the availability increases, demand increases 

leading to increasing water use.  

On the other hand, if the goal is to enhance irrigation supply, the system 

seems to operate as designed, with increased recharge primarily dedicated to 

irrigation and leading to increasing area under cultivation, enhancing farmer’s 

income. Nonetheless, this may not be sustainable. First, in the case study region 

and similar semi-arid regions with high inter-annual variation in rainfall, the 

augmented supply is constrained and negligible in dry years, when it is most 

needed, showing that CDs may not be effective drought mitigation measures. 

Also, the expansion of water-intensive crops may heighten vulnerability. This is 

because the increased irrigation water needs of water-intensive crops (that are 

often riskier crops to grow) may not be supported in drought years, leading to 

increased vulnerability (Alam et al., 2022b). Over time, under a lack of demand 

management and regulation measures, this would warrant even more drastic 

supply measures. This in turn would again accentuate demand to exhaust the 

new quantum of supply (i.e. another cycle of supply demand feedback). The 
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region shows evidence of it with farmers investing in deeper borewells and 

government investments in scheme such as “Sauni” (WRD, 2024), that aims to 

transfer flood water from >1000 km through an underground pipeline to fill 115 

reservoirs in the Saurashtra region. While increased supply measures may be 

required, focusing alone on supply and neglecting demand side management 

measures will lead to a self-reinforcing supply-demand cycles (Di Baldassarre et 

al., 2018in the region, and consequently to increased vulnerability. Thus, there 

should be equal focus on demand side management to avoid such self-

reinforcing supply-demand cycle and sustain supply side measures. 

Yet another consequence of the supply driven interventions with lack of 

demand side management is on farmers’ investments. The introduction of CDs 

resulted in increased profits for the farmers living near the CDs, which led to 

higher adoption of drip irrigation and borewells among them. The increased 

profit leading to higher investment in both demand and supply measures reflects 

the unraveling of unintended consequences of the human-water feedback. The 

increase in supply led to more adoption of efficient irrigation via drip irrigation 

practices because of higher income realized and therefore improved ability to 

adopt efficient irrigation practices. However, this led to more efficient 

exhaustion of potential water savings from CDs, and even larger areas being 

cropped than would have happened under less efficient irrigation practices. This 

pattern is synonymous to the emergent patterns of Jevon’s paradox, where 

adoption of efficient irrigation practices have led to further agricultural 

intensification (Birkenholtz, 2017; Ghoreishi et al., 2021a,b).  

Further, this also leads to higher investments in borewells. While simulated 

results underestimate the actual adoption, the increase is concerning because it 

is leading to the unintended consequence of deep groundwater overexploitation. 

This means that the investments to augment shallow groundwater storage 
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resulting in higher profits are increasing investments in deeper borewells that 

tap non-renewable groundwater. This may deplete deeper groundwater sources, 

which contrasts with the original investment made in CDs to augment 

groundwater storage. 

These findings underscore the need to critically understand human-water 

feedbacks, informed by empirically grounded behavioral rules, that lead to 

unintended consequences. This knowledge is essential for planning long-term 

sustainable and equitable water resource investments. 
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7.1 Introduction 

Agricultural water interventions are critical for adapting to the impacts of 

climate change and building the resilience of farmers. This necessity is 

particularly pronounced for approximately 500 million small and marginal 

farmers who are most vulnerable to climate change (GCA and WRI, 2019; Lowder 

et al., 2016). In Asia and Africa, smallholder farmers predominate, yet their 

capacity to adapt to climate change is constrained by low and fragmented land 

holdings, lack of capital, and inadequate access to financing, irrigation, and 

inputs, among other factors (Sikka et al., 2022; Tesfaye et al., 2021; Giordano et 

al., 2012). 

To build farmers' resilience and capacity, governments and donors invest 

significantly in agricultural water interventions, exemplified by large-scale 

watershed management programs in India (Sharad et al., 2012), climate-smart 

villages (Alam and Sikka, 2019; CRIDA, 2019), and promotion/upscaling of 

agricultural water management (AWM) solutions (Giordano et al., 2012). 

However, implementing the interventions without proper planning can yield 

unintended consequences and externalities, leading to unsustainable and 

inequitable outcomes (Alam et al., 2022a). These externalities include supply-

demand feedback, where increased supply interventions lead to increased 

demand and nullify or reduce the expected benefits (Alam et al., 2022a; Adla et 

al., 2023). For instance, the introduction of check dams (CDs) has resulted in 

increased groundwater demand, reducing anticipated benefits such as increased 

groundwater storage in the Kamadhiya catchment in India (Chapter 6). 

Moreover, the resulting impacts from unintended consequences like supply-

demand feedback may not be equitable, both socially and geographically. The 

advantages of water harvesting, and recharge, are often concentrated in farms 

situated in low-lying areas (Alam et al., 2022a; Shah et al., 2021). In the 
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Kamadhiya catchment in India, farmer surveys showed that showed that benefits 

of CDs were limited to nearby farmers (Alam et al., 2022c) and further modeling 

results indicate that increased storage led to increased income and subsequent 

higher adoption of the interventions of the farmers near to CDs. (Chapter 6). The 

results underscored the unequal geographical distribution of benefits, 

particularly around check dams. 

Furthermore, existing inequalities in socio-economic status and power 

dynamics also determine the distribution of benefits from agricultural water 

interventions. These impacts are often exacerbated by disparities in financial 

capital, knowledge accessibility, and gender and power relations (Sharma et al., 

2008; Namara et al., 2010; Linton and Budds, 2014). Often, affluent or influential 

farmers, endowed with greater access to social, financial, and biophysical 

resources, reap more substantial advantages, subsidies, and benefits from the 

interventions (Namara et al., 2010; Kafle et al., 2020). This represents the 

symptoms of the success to the successful archetype (Biella et al., 2024), where 

individuals or groups who are already advantaged are more likely to benefit 

from new opportunities or interventions. For instance, studies have shown that 

women farmers frequently encounter barriers in accessing support services, 

exacerbating existing disparities between male and female farmers (Namara et 

al., 2010). Similarly, research in Ethiopia highlights how high-value crop 

cultivators and wealthier farmers derive the greatest benefits from investments 

in farmer-led irrigation projects (Kafle et al., 2020). In this paper, the ABM-AWM 

model (Chapter 6) is used to explore how externalities and resulting impacts 

from the introduction of CDs in the case study area of Kamadhiya vary based on 

farmers' land size. Land size often serves as an indicator of wealth and social 

power in the region (Deininger et al.,2009; Chakravorty et al., 2019). 
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7.2 Methodology 

The paper applies the ABM-AWM developed (see chapter 6) to simulate the 

impact of CDs and the resulting effects on farmers' capital, income, and adoption, 

differentiated by their land size. The model categorizes farmers into four types 

based on their land size (Table 7.1), which is derived from agricultural census 

data (DoAC&FW., 2019). In the region, marginal (< 1 ha) and small farmers (1- 2 

ha) dominate, having 23.8 % and 40.6 % of total land holdings, respectively. 

However, in terms of area, they hold only 7.8 % and 28.6 % of total land with 

medium (2 – 4 ha) and large farmers (> 4 ha) holding 35.1 % and 28.5 % of total 

land, respectively. 

The ABM-AWM model combines a spatially distributed hydrological model 

with farmers' decision-making based on RANAS (Risks, Attitudes, Norms, 

Abilities, and Self-regulation) behavioral theory and observed data (see Chapter 

6). Overall, the model simulates the decisions of 38,447 farmers in the 

Kamadhiya catchment regarding their cropping decisions and investment 

strategies. In the model, farmers’ decisions regarding the allocation of cultivated 

area to cotton and groundnut in the Kharif season, cultivated area for post-

monsoon wheat crops, and investments in drip irrigation and borewells are 

simulated. Farmers' capital and income are estimated based on crop area, crop 

yields, prices, and cost of cultivation. 

7.2.1 Access to groundwater 

In the catchment, farmers irrigate their crops primarily through dugwells, 

which are recharged by rainfall and CDs (Alam et al., 2022b). The ownership of 

wells results in differential access to groundwater (Prabhakar and Olivia, 2009; 

Nagaraj and Chandrakanth, 1997). The survey results (Table 7.1) showed that 

large farmers own on average 2.1 wells followed by medium (1.6), small (1.3) 
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and marginal farmers (0.9). This also reflects the land size holding of farmers; 

larger area requiring a greater number of wells or higher capacity pumps. To 

account for water access based on the ownership of wells, the model 

proportionately distributes groundwater in a grid based on average number of 

wells owned by a farmer type (marginal, small, medium and large; see Equation 

7.1). 

𝐺𝑊𝐴𝑓,𝑖(𝑔) = (
𝑊𝑒𝑙𝑙𝑓

𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑙𝑙𝑠𝑔
) ∗ 𝐺𝑊𝐴𝑖,𝑔                   …. Equation 7.1 

Where 𝐺𝑊𝐴𝑓,𝑖(𝑔) is the groundwater available to a farmer type (f) living in a 

grid cell (g) on day i and 𝐺𝑊𝐴𝑖,𝑔 is the total groundwater availability in grid cell 

g on day i; 𝑇𝑜𝑡𝑎𝑙_𝑤𝑒𝑙𝑙𝑠𝑔 is the total number of wells in the grid cell g and Wellf is 

the average number of wells a farmer type, f, has (Table 7.1). 

Table 7.1: Characteristics of marginal, small, medium and large farmers in the area 
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Marginal 23.7% 7.8% 5952 38.70% 0.9 68.9 0.0156 

Small 40.6% 28.6% 22447 38.70% 1.3 54.8 0.0167 

 
Medium 26.7% 35.1% 27018 38.70% 1.6 62.98 0.0175 

Large 9.0% 28.5% 20827 39.00% 2.1 63.05 0.0189 

a Agricultural census 2015-16 (DoAC&FW, 2019) 

b (2302*s1 + 8681*(1.3/0.9)s1+ 10457*(1.6/0.9)+8116*2.33(2.1/0.9)/ (29556) = 
(0.0175-0.0132)/0.0132 
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7.2.2 Allocation of cultivated area to cotton 

In the catchment, cotton area has increased significantly after the 

introduction of CDs (after 2002; post-CD) (Alam et al., 2022b) and farmers’ 

perception of increased availability of water has played a key role (Alam et al., 

2022c). This is due to cotton providing a higher average return of 50,000 INR per 

hectare compared to groundnut's 41,000 INR per hectare since 2002, based on 

prevailing domestic prices. In the developed ABM-AWM model (Chapter 6), this 

was accounted for by using Equation 7.2, which gives farmers annual cotton area 

with slope (cotton area/net cultivated area) accounting for increase in cotton 

area proportion over the years. Based on the time series of analysis of cotton 

area, all farmers were given the same slope (0.0132 year-1) before the 

introduction of CDs (till 2001). After 2002 (post-CD), the farmers in grid cells 

with a CD were given a higher slope (0.0175 year-1) whereas the farmers in a grid 

cell without CD continue to have the same slope (0.0132 year-1). The higher slope 

in grid cells with CDs reflects higher (perceived) availability of the water from 

introduction of CDs.  

However, Equation 7.2 assumes that all farmers have equal access to water 

and perceive water availability uniformly, without considering the differences in 

well ownership (Table 7.1). To address this, Equation 7.3 modifies the model by 

incorporating the differences in well ownership and assuming that the increase 

in cotton area (slope) is directly influenced by these disparities in water access. 

In Equation 7.3, the slope for each type of farmer varies according to the number 

of wells they own (Table 7.1), while ensuring that average slope weighted by the 

proportion of different farmer types is equal to 0.0175 year-1. 

𝐴𝑟𝑒𝑎𝑐𝑜𝑡𝑡𝑜𝑛(𝑓) = (−26.151 + 𝑠𝑙𝑜𝑝𝑒 (𝑡) ∗ 𝑦𝑒𝑎𝑟) ∗ 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟                 …. Equation 7.2 

𝐴𝑟𝑒𝑎𝑐𝑜𝑡𝑡𝑜𝑛𝑓(𝑡) = (−26.151 + 𝑠𝑙𝑜𝑝𝑒(𝑓, 𝑡) ∗ 𝑦𝑒𝑎𝑟) ∗ 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟              …. Equation 7.3 
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In Equation 7.2, slope before 2002 (pre-CD period) = 0.0132 year-1; slope after 

2002, i.e. post-CD period (for farmers with irrigation and in grid cells with check 

dams) = 0.0175 year-1. In equation 7.3, slope(f,t) before 2002 (pre-CD period) is 

same 0.0132 year-1 and after 2002, varies for different type of farmers (Table 

7.1). 𝐴𝑟𝑒𝑎𝑓𝑎𝑟𝑚𝑒𝑟 is farmer-owned cultivated land. 

The model is run in two versions: HBon and HBoff. Both versions incorporate 

CDs, but they differ in the inclusion of human behavioral rules. HBon integrates 

all human behavior rules into the model, while HBoff excludes them. This 

approach allows for the assessment of how the integration of human-water 

feedback and behavior impacts the resulting benefits. 

7.3 Results 

7.3.1 Difference in capital and profit among farmer types 

Figures 7.1a and 7.1b show the changes in accumulated capital and annual 

income for the model HBoff (without behavior) over the simulation period for 

marginal, small, medium, and large farmers. The results indicate that even 

without behavioral rules that account for the impact of differential water access, 

the size of the farmers' land significantly influences their accumulated capital 

and annual income. Capital increases over the years for all farmers, with the 

highest rate observed for large farmers (41,000 INR/year) and the lowest for 

marginal farmers (4,200 INR/year). By the end of the simulation period, the 

accumulated capital varies by almost an order of magnitude between large and 

small/marginal farmers. 

This disparity in accumulated capital stems from differences in the farmers' 

annual income (Figure 7.1b) over the years. The average annual income of large 

farmers (269,000 INR/year) is 3.9 times higher than that of small farmers 

(68,000 INR/year) and 8.5 times higher than that of marginal farmers (31,600 
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INR/year). However, income for all farmers depends on rainfall, with lower 

incomes in years of low rainfall (Figure 7.1c). This dependence on rainfall 

reflects the limited storage capacity of underlying aquifers, which cannot sustain 

crops without adequate rainfall. The impact of rainfall is consistent across all 

farmers, as they rely on the same aquifer. Though large farmers have more 

access to water, they also have larger areas to irrigate. 

 

 

 

A
) 

B
) 

C 

F
ig

u
re

 7
.1

: 
a)

 C
ap

it
al

 a
n

d
 b

) 
in

co
m

e 
o

f 
d

if
fe

re
n

t 
ty

p
e

s 
o

f 
fa

rm
er

s 
an

d
 c

) 
re

la
ti

o
n

 
b

et
w

ee
n

 a
ve

ra
ge

 in
co

m
e 

(a
ll

 f
ar

m
er

s)
 a

n
d

 r
ai

n
fa

ll
 



 

209 

 

7.3.2 Impact of CD and farmers behavior 

7.3.2.1 Cotton area 

Figure 7.2 shows the impact of perceived increases in water availability, and 

differential access to it, on farmers' cotton cultivation areas. The implementation 

of CDs results in a notable rise in cotton areas for all farmers (HBon compared to 

HBoff). However, with a greater number of wells providing more water access, 

the increase in cotton area is most significant for large farmers (15.4%) and least 

for marginal farmers (6.6%). Similarly, the wheat area expands for all farmers 

due to more recharge due to increased post-monsoon groundwater levels 

(Figure E.1). However, unlike cotton, there is no disparity among farmers in 

wheat areas, as this expansion depends on groundwater levels that are common 

to all farmers within a given grid cell. 

 

Figure 7.2: Increase in cotton area in HBon model compared to HBoff model 

7.3.2.2 Differential adoption of drip and borewell 

The differences in capital and income between farmers (Figure 7.1) are also 

reflected in the varying adoption rates of drip irrigation and borewells among 

them (Figures 7.3a and 7.3c). Figure 7.3a shows that drip irrigation adoption at 
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the end of the simulation period (year 2015) is highest among large farmers 

(approximately 50%), followed by medium-sized farms (approximately 9%), 

while adoption is negligible (less than 1%) for small and marginal farmers. 

Similarly, the adoption of borewells (Figure 7.3c) is low overall but follows a 

similar trend: the highest adoption is among large farms (4.2%), followed by 

medium (4.0%), small (3.4%), and marginal farmers (2.2%). However, there are 

less clear differences for borewell adoption with uncertainty bounds 

overlapping across the farmer types. 

The impact of increased cotton area due to CDs, which leads to higher income 

given cotton’s higher returns, on difference in adoption rates (between farmers 

in grids with CD and without CD) is shown in Figures 7.3b and 7.3d. These figures 

compare farmers living in grid cells with CDs, with those living in grids cells 

without CDs (WoCD). Only the former benefit from CDs. The results show that 

adoption rates are higher for both drip irrigation and borewells among all types 

of farmers in grid cells with CDs compared to those in grid cells without CDs. For 

drip irrigation, the difference is highest among large farmers (approximately 

16%), followed by medium, small, and marginal farmers. Similarly, for borewells 

the differences are small but still largest for large farmers (approximately 

0.96%), followed by medium, small, and marginal farmers. The largest difference 

between large farmers with and without CDs aligns with the largest increase in 

area (Figure 7.2), which leads to the highest increase in income. 
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The adoption of drip irrigation and borewells further increases farmers' 

income, with adopters experiencing higher and more stable yields. Figure 7.4 

shows the impact of adoption on cotton yields by comparing the yields of non-

adopters to i) adopters for both drip irrigation and borewells, ii) only borewells, 

and iii) only drip irrigation respectively. Yields for adopters are higher, 

particularly in dry years (year 1999-2002, 2012) when efficient water use, and 

greater water access are more valuable. The yield differences are most 

significant for cotton, which is fully irrigated and where drip irrigation is 

commonly used. For borewells, since the water yields are limited, cotton is 

prioritized, which might explain why wheat yields do not improve as 

significantly (Figure E.2). With farmers adjusting wheat area based on 

groundwater levels, impact of dry years is reflected in wheat areas cultivated by 

the farmers rather than the yields.  

 

Figure 7.4: Comparing Cotton yield of adopters i) Both Borewell and Drip; 

only borewell and only drip with non-adopters  
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7.3.3 Impact on Income 

The increase in cotton cultivation area due to change in farmers behaviour in 

response to increase (perceived) supply of water (represented by HBon – HBoff) 

(section 2.2), which offers higher returns compared to groundnut, has led to 

higher incomes for all farmers in grid cells with check dams (Figure 7.5a, Table 

7.2). This increase is modest (0.6–1.6%) and is particularly affected by low or 

negative growth during drought years. This contrasts the continuous positive 

growth in cotton area (Figure 7.2) and highlights the impact of drought on 

income (section 3.1, Figure 7.1c). For instance, the maximum increase in income 

is significant (5 – 6.1%) but only occurs in years with favourable rainfall, when 

both the amount and distribution of rainfall are sufficient to recharge 

groundwater and check dams. 

However, the average increase in income is highest among large farmers 

(1.6% compared to 0.6% for marginal farmers). This disparity reflects the effect 

of larger landholdings and leads to inherent differences in capital and income. 

Large farmers also have greater access to water due to higher ownership of 

wells, a larger relative increase in cotton area, higher adoption of drip irrigation 

and borewells, and higher yields associated with these interventions.  

The decrease in income during low rainfall years indicates that cotton-

intensive cropping is less resilient to drought, as cotton requires more irrigation 

(ETdemand ~500 mm/year, average irrigation water requirement ~ 300 

mm/year) compared to groundnut (ETdemand ~300 mm/year, average irrigation 

water requirement ~ 50 mm/year). The increased irrigation demand for cotton 

cannot be met during drought years, resulting in low yields (Figure E.3a). This 

higher irrigation requirement also negatively impacts groundnut yields, as 

groundwater availability reduces due to increased irrigation need of cotton, in 

grid cells with higher cotton area (Figure E.3b). Consequently, there is an overall 
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reduction in income from both cotton and groundnut, demonstrating the 

increased vulnerability of a water-intensive cropping system in drought years. 

This vulnerability is higher for marginal farmers, as shown by the variation in 

income and the associated risks (Table 7.2). Marginal farmers face the highest 

downside risk, measuring downside standard deviation from the acceptable 

change (Hanemann et al., 2016) taken as 0 %, of 2.3 % reflecting losses during 

drought years, compared to large farmers who have the lowest downside risk at 

1.8%. Conversely, large farmers experience the highest upside benefits, 

measuring upside deviation from the acceptable change taken as 0 %, with gains 

of 2.7% compared to 2.1% for marginal farmers. This indicates that large 

farmers generally gain the most during good rainfall years and lose the least 

during low rainfall years and vice versa for marginal farmers. This results from 

higher access to water for larger farmers due to a higher number of wells and a 

higher adoption of drip irrigation, which means they can use water more 

efficiently that is critical for higher yields in dry years (Figure 7.5b). 

Table 7.2: Income difference (HBon – Hboff) and associated statistics. 

Type of 
farmer 

% increase Maximum Min Downward 
riska 

Upside 
risk/benefita 

Marginal 0.6 5.0 -8.4 2.3 2.1 

Small 0.9 5.3 -7.6 2.1 2.2 

Medium 1.2 5.7 -7.0 1.9 2.4 

Large 1.6 6.1 -6.5 1.8 2.7 

a Same as standard deviation with difference is that mean is replaced by minimum 

acceptable risk which in this case is taken as 0 %. Risk = √
∑(𝑥(𝑖)−𝑟)2 

𝑁
 where x(i) is the 

change in year I, r is the minimum acceptable change (taken as 0 %). Downside risk 
considers only those changes (x) that are below r and upside risk considers the opposite. 
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Figure 7.5: For marginal, small, medium and large farmers a) Change in 

income (%) and b) Change in water use (mm/ha) after introduction of behavior 

(HBon – Hboff) 

7.3.4 Unexpected externality: Increase in water use per 
hectare 

Figure 7.5b shows the resulting unexpected externalities arising from the 

introduction of CDs, leading to an increase in income and subsequent adoption 
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of drip irrigation. Figure 7.5b shows the change in water use (mm) per hectare 

among different farmer types. It indicates that, despite the highest percentage 

increase in areas cultivated by large farmers (Figure 7.2), their water use 

increase (mm/ha) sees the smallest increment. This paradox can be attributed 

to the adoption of drip irrigation, which enhances irrigation efficiency, resulting 

in overall water savings for large-scale farmers. These savings get partially spent 

on increasing post-monsoon cultivated areas which relies on groundwater 

storage at the end of monsoon season (chapter 6). However, groundwater, being 

a common pool resource with the same aquifer accessed by multiple users 

(Gardner et al., 1990; Asprilla-Echeverria, 2021), means that the benefits of 

water savings, which remain in the aquifer, may not be limited to individual 

farmers who adopts drip but extend to all farmers within a grid cell tapping the 

aquifer. This aspect may negatively influence farmers adoption of drip irrigation 

if other farmers continue to use groundwater without drip irrigation.  

7.4 Discussion 

The results show that large farmers, often richer and socially dominant, gain 

the most from the additional groundwater supply given that they have the 

largest number of wells that enables them to use higher share of groundwater 

(Table 7.2). At the same time, higher adoption of drip and borewell by them also 

makes them least vulnerable to drought years. This demonstrates the success to 

the successful dynamics where large farmers, due to their more favourable initial 

conditions, also gain the most. These results align with earlier results that have 

shown that intensive water harvesting, recharge, and soil moisture agriculture 

water interventions that shift common pool water resources to individual farms 

(and groundwater) benefit relatively influential and richer farmers. This is 

because they have the financial capacity to invest in irrigation infrastructure and 

other agronomy investments to reap private benefits of improved conditions of 
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common pool resources (Bouma et al., 2011; Calder et al., 2008; Sarkar, 2011; 

Shah et al., 2021).  

This is in addition to the geographical inequities involved with drainage-

related works (i.e. weirs, dams, stream deepening), concentrating the 

distribution of benefits to nearby farms in low-lying areas (Shah et al., 2021; 

Alam et al., 2022c; chapter 6). Although not directly assessed in this context, 

access to lands near irrigation water infrastructures is often associated with 

wealthier and more influential farmers. Over time, due to land consolidation, 

poorer households lose their rights to productive land with reliable water 

availability, exacerbating absolute poverty (Namara et al., 2010; Sharma et al., 

2008; Shah et al., 2021).  This may further accentuate the inequitable 

distribution of benefits. For example, Sharma et al. (2008) in a case study of an 

irrigation project in the state of Andhra Pradesh, India, showed that the tail 

region of a command area, with less water, was dominated by lower castes with 

less social power. The better-off farmers and certain communities benefitted 

disproportionally more from the irrigation project.  

Additionally, results show that negative impacts are felt more by the poor 

with marginal farmers being most vulnerable to drought years. This is also in 

line with earlier results (Kerr, 2002; Batchelor et al., 2003; Reddy, 2012). For 

example, impacts of groundwater exploitation leading to increased cost of 

pumping and drilling, well failure, and abandonment of wells (Shiferaw et al. 

2008; Reddy, 2012; Narayanamoorthy, 2015) are disproportionately borne by 

the resource-poor farmers as they are unable to invest capital to change 

technology or deepen the wells (Sarkar, 2011) and often become hostage to 

indebtedness and poverty (Batchelor et al., 2003). This could over time also lead 

to increased difference in income/capital and further differences in adoption of 
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interventions, making smaller and marginal farmers more prone to climate 

change impacts.  

The above results call for a more targeted approach and a holistic set of 

investments to ensure that small and marginal farmers, who are the most 

vulnerable, receive equal or greater benefits. While access to groundwater 

cannot be controlled due to existing rights, it is essential to explore ways to 

support these farmers. For example, since adoption of drip irrigation is lower 

among small and marginal farmers, providing more financial incentives could 

help them maximize its benefits (Sidenburg et al., 2012). Similarly, implementing 

area-based approaches for soil moisture management, improved seeds, and 

strategic location of water structures could further support these farmers. 

The findings also underscore the capacity of developed ABM-AWM to reveal 

unforeseen externalities. They demonstrate that increased income incentivizes 

larger farmers to adopt agricultural water interventions (e.g., drip irrigation) 

more readily, leading to decreased water usage. The saved water remains in the 

aquifers and may benefit the broader community (e.g., increasing post monsoon 

cultivation area) though disproportionately. For example, larger farmers with 

more wells and higher capacity pumps may end up accessing more of the saved 

water to expand cultivated area further. However, adoption of drip may be 

hindered due to the common-pool resource (CPR) nature of groundwater as 

individual adoptee farmers may not solely reap the benefits of saved water. This 

shows that collective benefits in CPR resources emerge when all stakeholders 

collectively participate (Herzog and Ingold, 2019).  

7.5 Conclusion 

Agricultural water interventions are increasingly promoted for climate 

change adaptation. However, unplanned implementation can lead to negative 
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consequences, including inequitable distribution of benefits and impacts. This 

chapter uses an agent-based model to demonstrate how unequal resource 

distribution among farmers, based on land size, can result in "success to the 

successful" dynamics, where larger (wealthier) farmers benefit the most from 

AWM interventions (such as CDs). The results show that large farmers gain the 

most and face the least vulnerability compared to small and marginal farmers 

following the introduction of CDs. The chapter highlights the need for a more 

targeted approach and a comprehensive set of investments to ensure that small 

and marginal farmers, who are the most vulnerable, receive equal or greater 

benefits.  
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The thesis objective and research questions are reflected upon in this chapter. 

The thesis had the overall objective “To improve understanding and consideration 

of potential hydrological externalities and unexpected societal feedback resulting 

from the implementation of Agricultural Water Management (AWM) interventions 

to avoid or mitigate unsustainable and inequitable outcomes using modeling 

approaches incorporating dynamic and coupled human-water systems 

interaction”. This was addressed by pursuing four main research questions. The 

findings for the individual research questions posed are summarized first. 

8.1 Research questions 

8.1.1 Research question 1 

The first research question was: 'How have agent-based sociohydrology 

approaches been used to uncover the negative hydrological externalities and 

societal feedback associated with AWM interventions?' 

This question was addressed through a systematic review of published 

literature (Chapter 2). By systematically reviewing the application of Agent-

Based Models (ABMs) in agricultural systems, thesis analyzed how ABMs have 

been utilized to reveal the negative hydrological externalities and societal 

feedback linked with AWM interventions, while also identifying existing 

knowledge gaps. 

The findings indicate that ABMs have been extensively employed to simulate 

agricultural systems and AWM interventions (e.g., drip irrigation, dams) along 

with their resulting externalities. This includes modeling negative hydrological 

externalities such as groundwater overexploitation, water quality degradation, 

and alterations in downstream flows, as well as societal feedback such as 

inequitable adoption of AWM interventions, inequity in water allocation, and 

inequitable water distribution, along with interactions between upstream and 
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downstream farmers. ABMs have achieved this by effectively integrating 

hydrological models with a range of farmers' behaviors (e.g., adoption of 

interventions, irrigation practices, crop choices, investment decisions), enabling 

the modeling of human-water feedback loops and their resultant impacts on 

both natural and human systems.  

However, the review reveals that despite the extensive development of ABMs, 

gaps and opportunities for improvement exist in fully unraveling AWM 

externalities and their resulting unsustainable and inequitable outcomes. Firstly, 

there is a need to enhance the integration of spatially distributed and integrated 

(surface-groundwater) hydrological models, with most ABMs using lumped or 

individual surface or groundwater models. These are essential for capturing the 

spatially explicit impacts of AWM interventions. Secondly, there is a need to 

incorporate socially grounded behavioral theories, replacing the current 

overreliance on rational decision-making and simple heuristics, in order to 

explicitly account for the social, economic, and cultural experiences of farmers in 

their decision-making processes. Lastly, there is a need to better represent 

individual farmers, rather than aggregating them as a single unit, to account for 

the heterogeneity among them. This recognizes that farmers have unequal 

access to resources and power dynamics that results in the inequitable 

distribution of benefits and losses. 

This review and the identified gaps serve as the foundation for the 

development of the ABM presented in Chapter 6. It uses a spatially distributed 

model that integrates groundwater dynamics with farmers' behavior, 

incorporating both the RANAS behavioural theory and data-driven rules to 

model individual farmers. 
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8.1.2 Research question 2 

The second research question was “How sustainable and equitable are the 

impacts of AWM interventions implemented to enhance water supply for 

agriculture?”. For this research question and the remainder of the thesis, the case 

of Kamadhiya catchment in the western state of Gujarat in India, where intensive 

construction of check dams (CDs) have taken place was studied. The 

sustainability and equitability of impacts resulting from the introduction of CDs 

was assessed by using a mixed method approach combining catchment water 

balance (Chapter 3) and farmers surveys (Chapter 4). The catchment water 

balance shows that after the introduction of the CDs (> year 2002), the irrigation 

water needs almost doubled, primarily due to an increase in the areas of more 

water intensive crops such as cotton, indicative of supply-demand feedback. This 

increase in demand has outpaced the increase in groundwater recharge from the 

CDs. As a result, there is no discernible positive impact on groundwater storage, 

given additional recharge from CDs is comparatively less (only ~11 % of 

increased demand in dry years, 35 % in normal and 60% in wet years). Also, the 

increase in irrigation demands has made the area, underlain by a hard rock 

aquifer with no inter-annual carry over storage, more vulnerable to drought, 

given limited rainfall recharge and negligible additional recharge from CDs.  

The farmers surveys (Chapter 4) complemented and corroborated the 

catchment water balance results showing that the main perceived benefit of CDs 

by farmers was an increase in water supply and reliability that helps them 

expand crop and irrigation intensity. As were the findings of the catchment water 

balance (Chapter 3), surveys also show that CD benefits were mostly in good 

rainfall years with farmers reporting limited benefits of CDs in dry years when 

average water in CDs lasts only 3 months as compared to 5 and 9 months in 

normal and wet rainfall years, respectively. Additionally, farmer surveys show 
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that benefits of CDs are not distributed equally among farmers. Despite high 

desnity of CDs, ~ 40%–50% of the sampled farmers reported no benefits from 

CDs and the benefits decreased with distance from CDs. This reflects a spatially 

inequitable distribution of benefits skewed towards the farmers nearest to the 

CDs. Given the skewed distribution of AWM towards supply interventions on 

drainage lines in development projects, this warrants consideration. Further, 

surveys show that the structural sustainability of CDs is also a challenge with 

already ~40% of CDs reportedly not working and 72.8% of farmers reportedly 

doing no maintenance activity. Dysfunctional CDs threaten the long-term 

benefits that could be/have been accrued. 

Combined, Chapters 3 and 4 demonstrated that the supply-demand feedback 

exacerbates the challenge of groundwater sustainability and equitability of 

benefits remains a concern. The findings emphasize that without concurrent 

emphasis on broader groundwater resource management and demand 

reduction strategies, singular focus on increasing supply through interventions 

such as building storages, CDs and Managed Aquifer Recharge (MAR) will remain 

inadequate for both sustainable development of groundwater storage and 

irrigation expansion.  

8.1.3 Research question 3 

The third research question was “How to assess and represent human behavior 

associated with the implementation and uptake of AWM interventions needed to 

simulate their externalities and impacts?”. This is addressed by conducting a 

descriptive analysis and applying RANAS behavioural theory that also inspired 

the farmer surveys (Chapter 4 and 5). The RANAS model assumes that multiple 

sociopsychological factors (i.e., risk, attitude, norm, ability, and self-regulation) 

impact behavioral outcomes (i.e., behavior, intention, use, and habit). Using the 
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RANAS model, thesis assessed farmers behaviour towards maintenance of check 

dams, adoption of drip irrigation and drilling of borewells.   

For CDs, the analysis of the survey data shows that both contextual (such as 

participation during construction, distance from CDs, land size) and 

sociopsychological (such as attention to CD condition, perceived maintenance 

effort) factors significantly affect the maintenance behaviour. The participation 

of farmers during CD construction comes out as the key determinant (positive) 

of farmers’ behavior towards maintenance along with distance from the CDs 

(reflecting farmers benefits from the CDs) and how much attention they pay to 

CD conditions regularly. Also, significance of socio-economic factors including 

wealth (land area, house type) indicate that CD maintenance is effortful and an 

expensive task that may be difficult for individual farmers to carry out. Based on 

the results, multiple activities were recommended including formation of 

community/farmer groups (which can also reduce the financial burden on 

individual farmers), adhering to a truly participatory program (e.g., enforcing 

provision for token contribution from the beneficiaries which is supposed to be 

used later for minor upkeep and maintenance) and placing stronger emphasis on 

project exit protocols for maintaining sustainability of CDs. This should be 

combined with behavioural change techniques, such as communication and 

visualization of CD state of repair and a more systematic recording of the 

maintenance behaviour. This can lead to more farmers contributing to its 

maintenance. 

For the drip adoption, the results show that despite subsidies being available 

for drip irrigation systems, the adoption rate remains low (~16%). The results 

show that farmers’ sociopsychological factors play a critical role in explaining 

farmers' adoption decisions, for both drip and borewell. It increased the 

employed regression model’s power to explain observed adoption behaviour by 
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three times as compared to a model that only considered socio-economic and 

biophysical factors.  Key sociopsychological factors include farmer’s perceived 

ability (financial and technical knowledge), perceived risk and beliefs about the 

agriculture water interventions. For example, higher availability of water and 

higher drought risk, counterintuitively, negatively impact drip adoption, 

whereas high perception of one’s ability to practice (operate, maintain, and 

financially afford), positive belief about the reliability and benefits of the 

technology and positive societal norms increase drip adoption. Based on this, 

thesis recommend broader strategies, such as increasing financial support (e.g., 

interest-free loans), strengthening the subsidy delivery program, capacity 

building efforts, increased extension support visits. Along with it we also 

recommend post-adoption support for increasing ability, awareness and 

exposure to build positive attitudes and building trust in social, formal, or 

informal networks.  

The understanding of sociopsychological factors that contributes to farmers’ 

adoption behaviour opens the way to plan behavioural change interventions and 

also assist in interpreting farmers’ adoption patterns for inclusion in 

diffusion/adoption models. 

8.1.4 Research question 4 

The fourth research question was “How to apply an agent-based 

sociohydrology approach to model human-water feedback from AWM 

interventions for planning long-term sustainable and equitable outcomes?”. The 

thesis applied the learnings from RQ1, RQ2, and RQ3 to develop an agent-based 

model for agricultural water management (ABM-AWM) interventions 

integrating a spatially explicit hydrological model (including a module on CD 

recharge) with an agent decision-making module in Chapter 6. The decision-

making module incorporates the developed understanding on farmers’ behavior 
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(Chapter 4 and 5) and data driven rules based on observed catchment scale data 

(Chapter 3). The decisions of 38,447 individual farmers (the number determined 

based on population census data) were simulated.   

In Chapter 6, the model simulations show the unfolding of the phenomenon 

of supply-demand feedback in the catchment, aligning with the observations in 

the area (Chapter 3 and 4). The results reveal that the perceived increase in 

water supply from CDs has led nearby farmers to increase their cotton and wheat 

cultivation areas. This resulted in increased water demand, which reduces 

expected benefits of increased groundwater storage from CD recharge. Also, 

increase in recharge and associated increase in water availability is limited to 

farmers nearby CDs (model grids with CD), reflecting the inequitable 

geographical distribution of benefits (Chapter 4).  While farmers near CDs 

experience an increase in water availability leading to increased production, the 

results show this may not be sustainable given high inter-annual variation in 

rainfall compounded by the fact the area is underlain by low storage hard rock 

aquifers and CD recharge is negligible in dry years, echoing findings from 

Chapter 3. The chapter shows that there should be equal focus on demand side 

management to avoid such a self-reinforcing supply-demand cycle and sustain 

supply side measures. Additionally, simulations reveal unintended 

consequences on farmers' investments. The introduction of CDs resulted in 

higher income for farmers living nearby, which led to increased adoption of drip 

irrigation systems and borewells among them. 

In Chapter 7, the ABM-AWM model is used to explore how externalities and 

resulting impacts from the introduction of CDs vary based on farmers' land size. 

Land size often serves as an indicator of wealth and social power in the region. 

The results show the evolution of the success for successful archetype, where 

most benefits are accrued to already successful large farmers who have more 
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access to groundwater given larger area and wells to start with. The relative 

increase in income along with relative decrease in vulnerability are highest for 

large farmers. This adds another level of inequity in terms of socio-economic in 

addition to the geographic one (Chapter 6).  

Overall, Chapters 6 and 7 show how the application of the ABMs within the 

context of agricultural water management can be valuable for informing future 

investments. They further demonstrate its capability to integrate hydrological 

and social sciences for unravelling unexpected feedback, which are valuable for 

informing future investments in agricultural water interventions, not only in the 

Kamadhiya catchment but also in other similar study areas. 

8.2 Insights for Agricultural Water Management 

Overall, the findings of thesis provide some critical insights for AWM. 

8.2.1 Mitigating externalities of AWM 

The thesis commenced with the proposition that the ill unplanned 

implementation of AWM interventions can lead to unintended negative 

externalities, with implications for long term sustainability and equity of 

outcomes for farmers. Subsequent chapters illustrated this through the case 

study of a catchment where intensive implementation of check dams (CDs) has 

taken place. The thesis integrated water balance assessments (Chapter 3), 

farmers' surveys (Chapters 4 and 5), and agent-based modeling (Chapters 6 and 

7) to unravel the evolution of supply-demand feedback in the study area 

resulting from the implementation of CDs. The thesis further explored its 

implications for groundwater sustainability and equity of benefits and 

unintended consequence of AWM adoption. 
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These findings highlight the necessity of considering AWM externalities 

during implementation, as they can significantly impact the long-term equity and 

sustainability of outcomes, potentially surpassing or negating beneficial effects. 

For supply side AWM interventions, which constitute a major portion of AWM 

interventions and are capital intensive, avoiding externalities such as supply-

demand feedback is crucial to prevent unsustainable and inequitable outcomes. 

To address supply-demand feedback, the thesis emphasizes the importance of 

incorporating demand side management, regulations and quotas to prevent self-

reinforcing supply-demand cycles. Additionally, there is the need to clearly 

identify end goals—such as enhancing groundwater storage, expanding 

irrigation, or reallocating water for other uses—to facilitate clearer and more 

objective assessments. While the thesis focuses primarily on supply-demand 

feedback, it also acknowledges that other interventions may lead to different 

dynamics, underscoring the need to consider human-water feedback in planning 

and investment. 

8.2.2 Increasing adoption of AWM interventions 

Governments and non-governmental organizations have invested and 

continue to invest significant resources in researching and implementing 

various AWM adaptation interventions. Over the past decades, the effectiveness 

and benefits of many of these AWM interventions have been widely reported and 

established. However, despite the clear efficacy and advantages of these 

interventions, their adoption by farmers has remained slow and limited. 

Previous research has examined the impact of various socio-economic factors on 

adoption. This thesis expanded these studies by emphasizing the importance of 

considering farmers' sociopsychological factors, which have often been 

overlooked, in addition to socio-economic factors, when assessing barriers to 

adoption.  
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This thesis, through the application of the RANAS behavioral theory, 

demonstrates how including sociopsychological factors can provide deeper 

insights into farmers' adoption behavior. Beyond socio-economic factors such as 

land size and available subsidies, farmers' attitudes toward interventions, 

prevailing social norms, their self-perceived ability, and their perception of risk, 

all significantly influence their adoption behaviors. Recognizing and identifying 

these sociopsychological factors can enhance the integration of interventions 

and outreach activities aimed at influencing farmers' behaviors. This approach 

includes behavioral change interventions through training, information 

dissemination, awareness campaigns, and capacity-building initiatives. These 

campaigns can target various aspects of farmers' decision-making processes, 

such as presenting facts and scenarios to address farmers' risk perception, using 

communication strategies, exposure visits, and model farms to positively 

influence their attitudes, demonstrating the ease of use of interventions and 

facilitating the subsidy application process to improve their perceived ability, 

and creating rewards, building role models, and fostering a positive public 

narrative to shape social norms. Incorporating these strategies can pave the way 

for increased adoption of AWM interventions and contribute to building a 

knowledge base for integrating human behaviour into Agent-Based Models 

(ABMs). 

8.2.3 Role of ABMs for planning AWM 

The thesis shows that AWM interventions and human/farmer actions are 

closely linked and actions in one influence the other, which could lead to 

unintended and negative externalities. To capture this dynamic relationship and 

resulting feedback, approaches used in sociohydrology that explicitly account for 

human-water feedback are essential. The thesis highlights the practicality of 

utilizing Agent-Based Models (ABMs) to implement sociohydrology for AWM 
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interventions. It illustrates how ABMs can effectively integrate and simulate both 

natural and human systems, while specifically accounting the roles of 

individuals. This aspect is crucial for assessing the spatiotemporal and 

inequitable effects of AWM interventions. 

While conventional hydrological modelling, empirical studies and surveys 

provide valuable insights on the impacts and benefits of AWM interventions on 

hydrology/water, social and economic systems, ABMs offer the tool to integrate 

this knowledge to bring out interconnectedness and co-evolution of these 

systems and enable the simulation of future coupled trajectories.  

The thesis, through development of ABM-AWM, underscores the utility of 

ABMs in agriculture to facilitate planning and the mitigation of externalities. The 

ABMs can serve as both a planning and educational tool to bring out the 

interdependence of human-water systems and their potential external 

ramifications. They can play a pivotal role in bridging the gap between social and 

hydrological sciences. This is essential, particularly in light of future investments 

in irrigation expansion and other AWM interventions needed to address climate 

change risks and increasing inter-sectoral competition for limited natural 

resources.  

8.3 Potential applications of developed model and future 
research 

The developed ABM-AWM is characterized by its scalability, editability and 

utilization of open-source code. This presents a future opportunity to extend its 

use beyond its current application, providing a platform for evaluating 

agricultural water management strategies not only in the study area context but 

also in diverse geographical, environmental and policy settings. 
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Looking forward, one of the key research priorities for agriculture is to adapt 

to climate change.  The developed ABM-AWM can be used for understanding the 

human-water feedback that is and will result from implications of climate change 

on water cycle and agricultural systems and subsequently on farmers behaviour. 

By simulating different climate scenarios, the model can be used to assess the 

effectiveness of adaptation measures such as changes in irrigation practices or 

crop selection, while also highlighting the risk of maladaptation resulting from 

unsustainable and inequitable outcomes over the long term. 

Furthermore, the model can also be used for the assessment of different 

policy interventions aimed at addressing water-related challenges. For instance, 

change in financial policies, such as subsidies or changes in crop prices, or 

awareness and capacity building programs can be simulated to gauge their 

effectiveness in incentivizing change in farmer behaviour towards improved 

practices such as water-efficient irrigation and resulting impact on water 

systems. 

However, for further model applications for diverse interventions and 

scenarios, it will be important to further develop the understanding of farmers’ 

behaviour through surveys and theoretical frameworks (such as RANAS 

behavioural theory) to improve the model's predictive capabilities. The model 

offers opportunities for cross-comparison across different basins and regions. 

By synthesizing data from various geographic areas, researchers can identify 

common trends, best practices, and potential pitfalls in agricultural water 

management strategies, fostering knowledge exchange and collaboration on a 

global scale. 

In summary, the developed ABM-AWM represents a valuable tool for 

policymakers, researchers, and stakeholders alike, providing a dynamic 
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framework for understanding and addressing the complexities of agricultural 

water management in a rapidly changing world.  
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A.1: Derived irrigated yield and rainfed yield 

Overall yield, average of rainfed and irrigated yield, for cotton was available 

for the whole time (1983-2015) whereas segregated rainfed and irrigated yield 

was only available starting 1995. Thus, for the time period of 1983-1994, rainfed 

and irrigated cotton yield was derived based on developed relationship between 

ration of overall yield to irrigated yield and irrigated area to the overall area 

(Eqn.  A1).  

𝑌𝑖𝑒𝑙𝑑𝑖𝑟𝑟

𝑌𝑖𝑒𝑙𝑑𝑜𝑣𝑒𝑟𝑎𝑙𝑙
=  𝛼 ×

𝐴𝑟𝑒𝑎𝐼𝑟𝑟

𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑎𝑙𝑙
 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑(%) +  𝛽   ---------------- Eqn. A1 

Figure A1 shows the developed relationship. Overall R2 is good (0.79) with 

𝛼 = −0.986 and 𝛽 = 1.955. 

This relationship was applied to time period 1983-1994 with overall yield, 

irrigated and overall area known for the period. With irrigated and overall yield 

known, rainfed yield was derived using Eqn. A2 where overall yield is the 

weighted average of rainfed and irrigated area. 

𝑌𝑖𝑒𝑙𝑑𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑌𝑖𝑒𝑙𝑑𝑖𝑟𝑟∗𝐴𝑟𝑒𝑎𝑖𝑟𝑟+ 𝑌𝑖𝑒𝑙𝑑𝑟𝑎𝑖𝑛𝑓𝑒𝑑∗𝐴𝑟𝑒𝑎𝑟𝑎𝑖𝑛𝑓𝑒𝑑

𝐴𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑎𝑙𝑙
---------------- Eqn. A2 
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Figure A.1: Relationship between ration of irrigated yield to overall yield and 

ratio of irrigated area to overall area 

Table A.2: Parameters used for check dam simulation 

Parameter Value Source Comment 

Widtha 15 m  

Mozzi et al., 
(2021), 
field visits 

width of 15 m and height of 1.5 m 
giving average check dam storage of 
21,486 m3 which is similar to 
average check dam storage in 
Kamadhiya catchment (12.7 MCM / 
576 structures = 22,049 m3) 

Heighta 1.5 m 

Catchment 
area 

2 km2 - the average check dam catchment 
area is set as 2 km2 (i.e. 1150/576) 

 

Thickness of 
the weathered 
upper zone 

30 m  

 

 

MoWR, RD 
& GR 
(2017b); 
Mohapatra, 
B. (2013) 

Basaltic aquifers with upper 
weather zone. 

Hydraulic 
conductivity of 
the upper 
aquifer 

0.1 m day-1 

Transmissivity 
of aquifer 

100 m2 day-1 

Inflow  (m3/day)  

State 
(SWDC)  
gauge 
station at 
Kamadhiya 

To get the daily volumetric inflow to 
CDs, catchment daily outflow at 
catchment outlet is converted to 
water height by normalizing 
according to the total catchment 
area and multiplying with CD 
catchment area. 

Evaporation daily mean, 
minimum and 
maximum 

Hargreaves 
and 
Samani, 
1985 

To simulate losses from water 
spread is check dam, is calculated 
using the Hargreaves equation 
(Hargreaves and Samani, 1985) 
with daily mean, minimum and 
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temperature 
as inputs 

maximum temperature as inputs 
taken from the IMD (Pai et al., 
2014). 

Table A.3: Average annual and monthly check dam recharge (GWCD), filling 

ratio and flow captured (%) for overall, pre and post development period in 

different SPI classified years. 

Parameter Rainfall 

Classification 

Annual June July Aug Sep Oct 

 

 

GWCD (MCM) 

 

Overall 24.2 1.9 6.7 6.3 4.1 3.1 

Dry 13.3 2.2 5.3 3.2 1.7 0.8 

Normal 26.4 1.5 5.5 7.2 5.5 4.6 

Wet 46.5 2.4 14.2 11.7 6.5 4.8 

 

Flow(%)capture  

Overall 83.9 83.5 78.2 92.1 79.5 89.2 

Dry 93.7 82.6* 100.0 100. 100.0 100.0 

Normal 84.7 87.3 83.4 91.6 77.4 99.7 

Wet 55.0 73.1 18.8 77.7 51.5 61. 

*In 2002, being a dry year, runoff was very high 161.9 MCM due to very wet June month.  
Most of it overflowed with results showing 8% is captured whereas in all other years 
100% is captured. However, recharge is not high i.e. 14.8 MCM vs 11.8 MCM in other 
years. This shows that high intensity rainfall producing runoff is not able to be captured, 
with much of the runoff exiting the catchment as outflow. 
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Figure A.2: Annual production (Metric ton) of Cotton (top) and wheat 

(bottom). Note: Years are indicated according to rainfall class (dry, normal and 

wet). Blue vertical line shows drop in production in the year 2012. 
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Table B.1. Villages selected for survey through regularly distributed sampling 

in state of Gujarat with their census code 

DISTRICT VILLAGE NAME DISTRICT type 

Gondal Bandhiya Rajkot D/s 

Jasdan Barvala Rajkot U/S 

Gondal Dadva 
Hamirpara* 

Rajkot M/s 

Gondal Dadva 
Hamirpara* 

Rajkot M/s 

Jasdan Dodiyala Rajkot D/s 

Jasdan Gadhadiya (Jas) Rajkot U/S 

Jasdan Jangvad Rajkot M/s 

Jasdan Jasdan Rajkot M/s 

Jasdan Jivapar Rajkot D/s 

Kotda Sangani Juna Rajpipla Rajkot M/s 

Babra Kalorana Amreli U/S 

Jasdan Kanesara Rajkot U/S 

Gondal Karmal Kotda Rajkot D/s 

Babra Karnuki Amreli M/s 

Jasdan Lalavadar Rajkot U/S 

Jasdan Lilapur Rajkot U/S 

Jasdan Panchavada Rajkot D/s 

Kotda Sangani Pipaliya Karmal Rajkot D/s 

Jasdan Pratappur Rajkot D/s 

Jasdan Ramaliya Rajkot U/S 

Rajkot Sardhar Rajkot U/S 

Gondal Shrinathgadh Rajkot D/s 

Chotila Vadali Surendra-nagar U/S 

Jasdan Virnagar Rajkot M/s 

* We replace Jasdan town with Vavda village. 24 villages selected [dadva hamirpara 
being large occurs twice so may be two hamlets can be selected from this] 
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Table B.2. Overall proportion marginal, small, semi-miedum and large 

farmers in the region 

 Proportion (%) Numbers 
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Gondal 22.8 44.3 25.3 7.5 5 9 5 2 

Jasdan 25.5 37.8 27.3 9.3 5 8 5 2 

Kotda Sangani 21.5 46.0 24.6 7.9 4 9 5 2 

Rajkot 27.0 42.0 24.0 7.0 5 8 5 1 

Babra 22.0 34.8 31.6 11.5 4 7 6 2 

Chotila 21.6 35.7 29.2 13.5 4 7 6 3 

* Marginal < 1 ha; Small 1-2 ha; Semi medium 2-4 ha and Large >4 ha 
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Table B.3. Descriptive statistics of the number of farmers surveyed for each 

village with reported median, min and max of total and working CDs in the village 

with number of farmers (and of village population) benefitting from CDs. 

 
 

Total CDs Working CDS 
Farmers 
benefitting  

  

T
o

ta
l 

fa
rm

e
rs

 
M

e
d

ia
n

  

M
in

-
M

a
x

 

M
e

d
ia

n
  

M
in

-
M

a
x

 

N
u

m
b

e
r 

 %
  

Bandhiya 21 5 2-12 2 1-10 5 23.8 

Barvala 20 10 7-15 4 2-14 14 70.0 

Dadva Hamirpara 40 12 3-70 6 2-25 31 77.5 

Dodiyala 20 9 5-15 7 0-15 12 60.0 

Gadhadiya (Jas) 20 8 5-25 4 0-10 9 45.0 

Jangvad 20 7 2-40 5 0-40 9 45.0 

Jivapar 21 40 5-50 20 1-50 11 52.4 

Juna Rajpipla 20 14 8-30 10 3-20 19 95.0 

Kalorana 22 6 1-25 4 0-20 7 31.8 

Kanesara 20 10 1-30 5 1-30 11 55.0 

Karmal Kotda 25 4 1-7 3 0-4 9 36.0 

Karnuki 21 10 2-30 3 2-30 18 85.7 

Lalavadar 20 10 7-20 7 3-15 20 100.0 

Lilapur 20 15 2-21 5 0-15 11 55.0 

Panchavada 20 10 1-25 10 1-25 8 40.0 

Pipaliya Karmal 20 8 6-20 4 3-18 16 80.0 

Pratappur 20 34 15-36 29 12-36 17 85.0 

Ramaliya 20 10 7-15 5 2-12 17 85.0 

Sardhar 20 10 7-15 8 2-12 18 90.0 

Shrinathgadh 22 10 5-28 3 0-10 12 54.5 

Vadali 20 3 3-4 2 1-3 18 90.0 

Vavda 21 3 1-3 0 0-0 0 0.0 

Virnagar 19 20 5-70 12 0-70 7 36.8 
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Table B.4. Frequency of check dams constructed during different years 

Time period Freq  % of total 

1955-1990 93 18.9 

1990-1995 32 6.5 

1995-2000 78 15.9 

2000-2005 123 25.0 

2005-2010 94 19.1 

2010-2015 55 11.2 

2015-2020 17 3.5 
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Table C.1: RANAS questions for Drip and Borewell. 

Category Drip Irrigation Borewell 

Questions 

R
is

k
 

R1 How many drought/dry years have been there in last 10 years? 

R2 How high is the risk of groundwater wells going dry in next 5 years? 

R3 How high is the risk of drought in coming 5 years? 

R4 How severe will be the impact of drought on your crop production? 

R5 How much GW decline will impact your crop production?  

A
tt

it
u

d
e 

AT1 How beneficial drip irrigation is 
for crop production? 

How beneficial borewell is for 
crop production? 

AT2 How time consuming is to get a 
drip irrigation set up? 

How time consuming is to 
install a borewell? 

AT3 How reliable is applying 
irrigation with drip irrigation? 

How reliable is irrigation 
water supply from borewell? 

A
b

il
it

y
 

AB1 How confident are you in your 
financial capability to afford the 
drip irrigation system? [w/o 
subsidy] 

How confident are/were you 
in your financial capability to 
afford the drilling of a BW?    

AB2 How confident are you in your 
capacity/knowledge to install the 
drip irrigation system?] 

How confident are/were you 
in your capacity/knowledge to 
install a BW?  

AB2 How confident you are in your 
capability to operate and 
maintain the drip irrigation 
system? 

 

N
o

rm
 N1 What proportion of people in 

your village have a drip irrigation 
system? 

What proportion of people in 
your village have a borewell? 
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N2 Most people whose opinion I 
value think having drip irrigation 
is good?  

Most people whose opinion I 
value think having borewell is 
good? 

N3 How important are 
NGOs/government official 
opinions to you? 

How important are 
NGOs/government official 
opinions to you? 

Se
lf

-r
eg

u
la

ti
o

n
 

SR1 How much do you pay attention 
to how much water you use for 
irrigation? 

Do you have a plan to acquire 
the required personnel and 
material it takes to drill a BW? 

 

SR2 - Do you have a plan if your BW 
doesn't yield water or stop 
giving water? 

 

 

Table C.2: PCA results for Drip and borewell 

Category Question 
(Table 

C.1) 

PC1 
loading 

PC2 
loading 

Renaming 

Drip 

 

 

Risk 

R1 0.785  Load on first two factors: 70 % 
data explained. Impact load 
highly on 2nd facto and risk/past 
on factor 1. They were renamed 
“risk” and “impact”. 

R2 0.791  

R3 0.847   

R4  0.846 

R5  0.827 

 

 

Ability 

AB1 0.769  70 % data is explained by first 
factor with all questions loading 
highly on this. Thus ability 
question renamed to “Ability”. 

AB2 0.879  

AB2 0.849  
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Norm 

N1 0.830  Load on two factors explaining 85 
% of the data. Proportion of 
people and their opinion on First 
and NGO norm on second. 
Renamed as “Society norm” and 
“NGO norm” 

 

N2 0.739  

N3  0.976 

 

Attitude 

AT1 0.880      Load on two factors explaining 85 
% of the data. Benefit and 
reliability on First and time on 
second. Renamed as “rel_ben” 
and “time” 

 

AT2 0.882        

AT3  0.995 

Borewell 

 

 

Risk 

R1 0.785  Load on first two factors: 70 % 
data explained. Impact load 
highly on 2nd facto and risk/past 
on factor 1. They were renamed 
“risk” and “impact”. 

R2 0.791  

R3 0.847   

R4  0.846 

R5  0.827 

 

 

Norm 

N1 0.858  Load on two factors explaining 85 
% of the data. Proportion of 
people and their opinion on First 
and NGO norm on second. 
Renamed as “Society norm” and 
“NGO norm” 

N2 0.808  

N3  0.976 

 

 

Attitude 

AT1 0.880      Load on tow factor explaining 85 
% of the data. Benefit and 
reliability on First and time on 
second. Renamed as “rel_nen” 
and “time” 

AT2 0.882        

AT3  0.995 
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D.1 Hydrological module 

The spatially distributed hydrological module operates at 1 km² resolution 

with 1319 such grid grids within the study area. In the model, runoff is generated 

through saturation excess overland flow (Hewlettian runoff)1 from the first soil 

layer, which also contributes to lateral flow estimated based on slope, soil field 

and saturation capacities, and soil hydraulic conductivities. Water percolates, 

based on soil field capacity and saturation capacity, from the top rootzone layer 

to the bottom subzone soil layer, and from the subzone to the groundwater layer, 

the latter considered as recharge. Soil moisture is depleted from topsoil (root 

zone) via root soil moisture uptake by the crops. Groundwater storage is 

characterized by the depth of the aquifer and specific yield. Groundwater storage 

above a storage threshold (BFthresh) is added to the baseflow2. The total runoff for 

each grid cell is the sum of saturation excess flow, lateral flow, and baseflow 

which is routed using a flow direction network. Refer to SPHY model2 for more 

information on the hydrological model and equations. 

The catchment is delineated using the Shuttle Radar Topography Mission 

(SRTM) digital elevation model data3, which is also used for generating slope and 

flow direction maps. The model integrates gridded daily rainfall derived from 

rainfall gauge stations in the watershed4 and gridded temperature (mean, 

minimum, and maximum)5. Runoff routing employs a recession coefficient (Kx) 

as a calibration parameter, with values ranging between 0 and 1 where values 

approaching 1 correspond to a slow responding catchment2. Soil data, including 

texture and organic content, were taken from global soil data, Soil Grids, 

provided by the International Soil Reference and Information Centre6. Based on 

the soil properties, soil water characteristics such as field capacity (FC), 

saturation capacity (SAT), wilting point (WP), and saturated hydraulic 

conductivity (ksat) were estimated using the pedo-transfer function7. Soil water 
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characteristics were adjusted during calibration by multiplying them with a 

scaling parameter ranging between 0.7 to 1.3. 

The area's aquifers, mainly comprising Deccan Trap basalt, have low porosity 

and hydraulic conductivity8, and are confined to water-bearing zones in the 

upper 15-30 m of weathered and fractured rock9,10. The water availability in 

deeper aquifers is limited and relies on natural joints and fractures. Aquifer 

characteristics such as depth (Dgw), specific yield (SY), and hydraulic conductivity 

(Kgw) were calibrated with initial values sourced from the national 

hydrogeological dataset11.  

Recharge and runoff capture from check dams were simulated using the 

recharge empirical equations12, refined for the region13. This approach presumes 

an underlying impermeable layer (bedrock in the area) beneath the aquifers. CD 

data, including number and storage per village, were derived from secondary 

data and social surveys8,14,15. In total 575 CDs distributed in 453 grid cells (~ 34 

% of total grid cells) with combined storage of 12.9 MCM were incorporated in 

the model. Each check dam was modeled with a 15 m width8, and the riverbed’s 

slope, determined from SRTM DEM data, informed the water height and spread 

area calculations13. Refer to check storge model13 for more information on the 

check dam model and equations. 
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Figure D.1: Time series of cotton irrigated area (%) 

Table D.1: Maximum groundwater abstraction rates 

Data Unit Value Source 

Maximum dugwell 
groundwater 
abstraction 
(GWD(max)) 

m3 day-1 525 For a 25 m well (depth) and 4 m 

wide well, storage is around 350 

m3. Maximum abstraction is taken 

as 1.5 times the storage giving  

525 m3 day-1 

Maximum borewell 
groundwater 
abstraction 
(GWB(max)) 

m3 day-1 80 Based on deep tubewell 

abstraction rate of 10m3/hr and 

average power supply of 8 hr/day, 

maximum abstraction is set to 8 

hour 80 m3. 

 

 

 

 

 



 

286 

 

Table D.2: Crop coefficients and duration of crops 

Crop stage 

Kca,b Duration (days) a,b Ky 
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u
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h
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Initial 0.4 0.5 0.4 30 25 20 1.2 1.2 1.1 

Development  0.7 0.8 0.8 50 35 25 1.2 1.2 1.1 

Mid-season 1.05 1.1 1.2 60 35 45 1.2 1.2 1.1 

Late season 0.65 0.55 0.75 55 25 30 1.2 1.2 1.1 

a Allen et al., (1998).  

b Kar et al., (2014). 

 

Table D.3: Crop cultivation cost, price and sowing dates 

 Crop cultivation 
cost (per ton)28 

Price (per ton)27 Sowing date 

Cotton 23160 41000 15th June 

Groundnut 20390 40300 15th June 

Wheat 7440 15250 15th November 

# For the season 2015   
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Table D.4: Results of binary logistic regression of farmer's decision to adopt 

drip irrigation  

Regression coefficient Estimate Significance a Min Max 

(Intercept) -3.046 *** -3.149 -2.943 

Farming experience 0.034 * 0.032 0.036 

Higher education -1.235 
 

-1.370 -1.100 

Primary Education 0.486 
 

0.415 0.556 

Secondary Education 0.066 
 

-0.014 0.145 

Proximity to water -0.285 
 

-0.333 -0.237 

Ability 0.865 *** 0.838 0.893 

Risk (perceived) -0.621 *** -0.644 -0.598 

Risk (severity) -0.420 * -0.446 -0.394 

Attitude 0.562 * 0.528 0.596 

Norm 0.462 ** 0.443 0.481 

a *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 

# Threshold: 0.35: Accuracy: 85.9; Sensitivity: 58.9 and Specificity: 91.4 

# Threshold: 0.40: Accuracy: 85.9; Sensitivity: 52.0 and Specificity: 93.4 
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Table D.5: Results of binary logistic regression of farmer's decision to adopt 

borewells. 

Regression coefficient Estimate Significance a Min Max 

(Intercept) -2.30 *** -2.34 -2.261 

Self_regulation 0.386 *** 0.372 0.401 
Attitude 0.455 ** 0.435 0.476 
Norm 0.449 ** 

0.431 0.469 
Farmer area 0.011 . 0.01 0.013 
Livestock ownership 0.076 * 

0.072 0.081 
Proximity to water 0.748 * 

0.711 0.785 

a *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 

# Threshold: 0.25: Accuracy: 65.9; Sensitivity: 72.9 and Specifity: 57.6 

# Threshold: 0.21: Accuracy: 65.9; Sensitivity: 80.3 and Specifity: 50 
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Table D.6: Estimation of residual drought memory for the period stating 2011 

based decay rate of 20 % per year 

Year Drought 
occurrence 

Drought value Risk memorya 

2011 No 0 0 

2012 Yes 1 1 

2013 No 0 0.8 

2014 Yes 1 1.6 

2015 No 0 1.4 

2016 No 0 1.2 

2017 No 0 1 

2018 D 1 1.8 

2019 No 0 1.6 

2020 No 0 1.4 

2021   1.2 

a 𝑟𝑖𝑠𝑘(𝑝)𝑓,𝑡 =  𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑓,𝑡 + 𝑟𝑖𝑠𝑘(𝑝)𝑓,𝑡−1 − 𝑑 ∗ 𝑟𝑖𝑠𝑘(𝑝)𝑓,𝑡−1 

##assuming decay rate of 20 % per year 
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Table D.7: Parameter set for latin hypercube sampling 

Parameter Mean Min Max 

Capillary rise (Cap) [mm day-1] 0.10 0 0.31 

Top soil: Field capacity [m3 m-3]a 0.79 0.49 0.90 

Top soil: Saturation capacity [m3 m-3]a 0.88 0.70 0.91 

Bottom soil: Field capacity [m3 m-3]a 0.87 0.76 0.99 

Bottom soil: Saturation capacity [m3 m-3]a 0.70 0.57 0.82 

(Intercept)drip -3.046 -3.149 -2.943 

Risk (perceived)drip -0.621 -0.644 -0.598 

Risk (severity) drip -0.42 -0.446 -0.394 

Ability drip 0.865 0.838 0.893 

Attitude drip 0.562 0.528 0.596 

Norm drip 0.462 0.443 0.481 

Adoption_prob_thresholddrip 0.375 0.35 0.4 

(Intercept)BW -2.30 -2.34 -2.261 

Self_regulationbw 0.386 0.372 0.401 

Attitude BW 0.455 0.435 0.476 

Norm BW 0.449 0.431 0.469 

Proximity to waterBW 0.748 0.711 0.785 

Farmer areaBW 0.011 0.01 0.013 

Livestock ownershipBW 0.077 0.072 0.081 

Adoption_prob_thresholdBW 0.32 0.3 0.35 

Cotton slope 0.017 0.016 0.018 

    

a Soil water characteristics were adjusted during calibration by multiplying them with a 
scaling parameter 
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Figure D.2: Cotton, groundnut and wheat observed and calibrated yields 
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Figure D.3: Comparison of cotton yield of farmers with and without drip 
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Figure E.1: Increase in wheat area in HBon model compared to HBoff model 

 

 

Figure E.2: Wheat yield of adopters and non-adopters 
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Figure E.3: a) Cotton and b) groundnut yield of in grids with CD in the model 

HBon and HBoff 

a 

b 
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