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Preface

This research stems from a profound interest in addressing the evolving challenges of global
logistics and supply chain management, particularly in the context of air cargo operations. The
increasing complexity of cross-border e-commerce logistics and the rising demand for efficient,
timely, and cost-effective solutions highlight the critical need for optimization in both strategic
planning and operational execution. This thesis investigates how advanced mathematical
modeling and heuristic algorithms can be applied to streamline logistical processes, thereby
contributing to a more integrated and efficient global supply chain.

The study began with an exploration of the intricate relationship between packing efficiency
and scheduling in air cargo operations. It identified key gaps in existing methodologies, par-
ticularly the lack of frameworks that holistically address the interplay between spatial opti-
mization and temporal constraints. Building on these observations, this research proposes
a two-stage framework that integrates the Air Cargo Palletization Problem and the Build-up
Scheduling Problem. The framework leveragesmathematical and heuristic models to optimize
cargo packing and scheduling, ensuring the seamless alignment of these two critical logistical
processes.

This work would not have been possible without the guidance and support of many individuals.
I am profoundly grateful to my thesis supervisors, Alessandro Bombelli and Stefano Fazi, for
their invaluable feedback, mentorship, and intellectual guidance throughout this journey. Their
expertise and encouragement have been instrumental in shaping this research and bringing
it to fruition. In addition, I would like to show gratitude to Cainiao for providing the operational
data needed for this work.

This thesis is dedicated to my family and friends, whose steadfast support and encouragement
have been my foundation throughout this academic endeavor. Despite the physical distance
from the Netherlands, my family’s unwavering belief in me, along with their emotional and
financial sacrifices, has been an enduring source of strength and motivation. I am especially
grateful to my parents, who stood by me through every challenge, offering their unconditional
love and support. Their sacrifices and faith in my abilities have made this journey possible.

As the logistics industry continues to evolve, I hope this research contributes meaningfully
to the ongoing discourse on optimizing air cargo operations. By addressing the challenges
and opportunities in palletization and scheduling, I aspire to foster the development of more
efficient and sustainable logistics systems. May this work pave the way for a future where
technological innovation seamlessly integrates with operational excellence and upholds the
human values that underpin progress.

Mengning Mao
Rotterdam, December 2024
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Abstract

With the rapid development of cross-border e-commerce logistics, how to efficiently load goods
into Unit Loaders (ULDs) and ensure their on-time delivery has become a key issue in logistics
systems. Based on Cainiao’s actual logistics challenges, this paper proposes a comprehen-
sive loading planning scheme in two phases: the first phase solves how each item can be
efficiently packed into ULDs in 3D space, and the second phase solves when each ULD can
be loaded onmultiple parallel workstations. This design-oriented approach fine-tunes and inte-
grates existing optimization techniques into a cohesive pipeline to tackle these interconnected
problems systematically.

To tackle the 3D Bin Packing Problem (3DBPP), two approaches, Mixed Integer Programming
(MIP) and Extreme Point Heuristic (EPH), are used in this paper. The MIP model maximizes
space utilization through accurate optimization and is suitable for small-scale packing scenar-
ios, while the EPH algorithm performs well in large-scale scenarios and generates high-quality
approximate solutions in a short period. Although its space utilization is slightly lower than that
of MIP, its solution efficiency is well suited to real logistics operations that require fast response
time.

For the Build-up Scheduling Problem (BSP), a parallel machine scheduling model is used to
optimize the assembly sequence and timing of ULDs to ensure that all ULDs can be loaded
within a strict time window. Experimental results show that the model performs well in opti-
mizing workstation load balancing and avoiding delays, which can significantly improve the
scheduling efficiency of the whole system.

The research results in this paper are validated to show that the proposed two-stage framework
has significant application value in improving space utilization, reducing cargo delays, and
optimizing workstation scheduling in real logistics scenarios of Cainiao. Future research can
introduce a feedback loop between the two phases, combine real-time data with dynamic
adjustment strategies, hybrid algorithms, and other methods to further improve the adaptability
and efficiency of the model.

ii



Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline of the structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Problem definition 3
2.1 Air Cargo Palletization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Build-up Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Literature review 6
3.1 Air Cargo Palletization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 One-dimensional Bin Packing Problem (1DBPP) . . . . . . . . . . . . . 6
3.1.2 Two-dimensional Bin Packing Problem (2DBPP) . . . . . . . . . . . . . 7
3.1.3 Three-dimensional Bin Packing Problem (3DBPP) . . . . . . . . . . . . 8

3.2 Build-up Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Mathematical formulation and Algorithm 13
4.1 3DBPP-Mixed Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 3DBPP-Extreme Point Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Sorting the items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Ensuring vertical stability . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Searching for Extreme Points . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Best Fit Decreasing procedures . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Build-up Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Computational experiments 27
5.1 3DBPP-Mixed Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



Contents iv

5.1.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 3DBPP-Extreme Point Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Build-up Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion 45
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Air Cargo Palletization Problem . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2 Build-up Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References 50

A Data set for EPH 54

B Loading results for EPH 60



1
Introduction

1.1. Background
Over the past few decades, air cargo transportation has assumed a pivotal role in global trade.
According to the International Air Transport Association (IATA), while air cargo volumes ac-
count for only about 1% of total global trade, they amount to $6 trillion in value terms or 35%
of total global trade [24]. In particular, air cargo revenues reach 17% of total airline revenues
in 2022, much higher than 12% in 2019 [23]. This data highlights the growing importance
of air cargo as a source of revenue for the airline industry. Meanwhile, Cainiao, one of the
world’s largest cross-border e-commerce logistics companies, has a particularly strong pres-
ence in international logistics, with more than 1.5 billion cross-border parcels in Fiscal Year
2023, serving more than 100,000 merchants and brands, and providing full-link Business to
Business(B2B)/Business to Consumer(B2C) logistics services to help global brands quickly
enter the Chinese retail market [10].

A major challenge in the air cargo sector is how to efficiently load cargo of different shapes
and sizes into different unit loading devices (ULDs) for subsequent loading into the cargo hold
of an aircraft. These ULDs are component assemblies made of containers or net-covered
pallets designed to provide standardized-size units for single pieces of baggage or cargo while
allowing for rapid loading and unloading [30]. The ULDs have specific shapes and sizes to fit
into the lower deck or belly space of an airliner, and in the case of an all-cargo aircraft, the
main deck and lower deck [17]. Due to the limited cargo capacity of passenger aircraft and
the variability in both supply and demand, it is particularly important to have a sound cargo
loading plan. A critical issue in this process is how to best manage cargo allocation to the
ULD and placement within it to minimize transport costs and delivery delay penalties. This
issue, also known as the Air Cargo Palletization Problem (APP), is one of the most important
optimization challenges [48]. Next, building ULDs needs to be carried out at the workstation.
Since workstation resources are limited and cargo release and due dates vary, choosing when
to assemble and load which cargo onto the ULDs is critical to the smooth operation of the air
cargo terminal. Thus the second task is to determine the time to build each ULD and assemble
the workstations, i.e., solving the Build-up Scheduling Problem (BSP) [9].

1.2. Objectives
The motivation for this research stems from the practical challenges that Cainiao has encoun-
tered in the field of airfreight logistics, namely how to find a balance between transport effi-
ciency (minimizing ULD wastage) and customer satisfaction (meeting delivery deadlines for
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1.3. Research questions 2

orders). This involved not only how to allocate goods of various shapes and sizes to the lim-
ited ULD space to maximize space utilization, named Air Cargo Palletization Problem (APP),
but also how to sequence and time the loading of goods to ensure on-time delivery and avoid
the costs of lateness. Another important aspect is determining when and at which assembly
workstation these ULDs are created, which is called the Build-up Scheduling Problem (BSP).
Together, these issues define the core optimization challenges of Cainiao Air Cargo Logistics.
As a result, Cainiao needed a load plan that could respond quickly to different cargo needs
and could process orders efficiently while keeping costs reasonable. We first propose a model
incorporating time constraints for the APP encountered by Cainiao in real-world logistics ap-
plications, aiming at solving the problem of processing a specified batch of goods before the
deadline, introducing a new dimension of time to the traditional 3D Bin Packing Problem. Sec-
ondly, we consider the limited resources of workstations, and the next model is proposed to
determine the loading order and time of ULD on parallel workstations. The development of
these two sequential models will improve the efficiency of loading goods in ULDs while ensur-
ing that customers’ time requirements and cost control objectives can be met.

1.3. Research questions
The above objectives and context are achieved by answering the following main research
question:

How can the process of loading cargo on ULDs be optimized to improve space utilization and
transport efficiency, while ensuring that the air cargo is shipped on time to meet customer de-
mand?

The main research question is jointly answered by the following sub-questions:

• What models or algorithms exist to pack items in the ULD?
• What methods or algorithms exist to consider the time factor in bin packing problems?
• How can a model be designed to pack different shapes and sizes of goods in the ULD?
• How can the model be designed to constrain the ULD to be built within the item’s required
timeframe?

• How to find a balance between improving space utilization in ULDs and ensuring on-time
shipments?

1.4. Outline of the structure
This paper presents a proposal for the above objective. Firstly, the chapter 2 presents the
definition of the problem. In the chapter 3, the existing literature concerning the topic and
identifies multiple knowledge gaps are explored. The section 3.3 wraps up the review with
a conclusion on the current knowledge and gaps therein. The chapter 4 details the models
developed for the Air Cargo Palletization Problem and Build-up Scheduling Problem. Then,
the results and performance of the proposed models are tested through real data cases in the
chapter 5. Finally, chapter 6 provides conclusions and recommendations for future work.



2
Problem definition

This paper focuses on the build-up loading process within load planning, covering decisions
on two problems [9]:

1. How to pack items on ULD?
2. When should ULDs be built?

Figure 2.1: Two-Stage Solution Framework for Air Cargo Build-Up Loading Process

The framework depicted in Figure 2.1 outlines the two-stage approach for solving these prob-
lems, designed to address the complex challenges of air cargo palletization and build-up
scheduling. This work primarily focuses on the development and integration of an effective

3



2.1. Air Cargo Palletization Problem 4

framework rather than the creation of novel algorithms or theoretical breakthroughs. By com-
bining and adapting existing models and methodologies, this framework provides a systematic
solution to the real-world problems faced in air cargo operations.

The first decision corresponds to the Air Cargo Palletization Problem, which is modeled as a
3D Bin Packing Problem with Due Date (3DBPP-DDL). This stage focuses on determining the
optimal way to pack items into ULDs, taking into account both geometric constraints and time-
dependent factors, such as delivery deadlines. To solve this, a Mixed Integer Programming
(MIP) model is used, alongside an Extreme Point Heuristic (EPH) algorithm, to ensure that the
available ULD space is efficiently utilized while minimizing any potential delays.

The second decision corresponds to the Build-up Scheduling Problem, which not only finds
the optimal ULD construction sequence for each workstation but also considers finding the
optimal workstation allocation in the case of multiple workstations. The scheduling objective
is to minimize makespan and ensure that ULDs are packed and handed over on time, adhering
to both processing times and delivery deadlines [38].

These two stages work sequentially to solve the overarching problem of the build-up loading
process. The result is a comprehensive loading plan, which provides: an efficient packing
strategy for items on ULDs (Fig. a), and a detailed schedule indicating when each ULD should
be processed and built (Fig. b).

2.1. Air Cargo Palletization Problem
From the perspective of the Variable-Sized Bin Packing Problem (VS-BPP), optimizing the
allocation of goods to ULDs can reduce the number of ULDs needed, thereby cutting costs.
However, loading must also account for time constraints due to scheduled flight departures,
with the goal of meeting delivery deadlines. Failure to meet these deadlines may result in
shipment or ULD delays to subsequent flights, potentially resulting in penalties for delayed
deliveries to customers.

This paper addresses Air Cargo Palletization Problem as a 3D Bin Packing Problem with dead-
lines. Given ULD dimensions and various sizes and weights of cargo, the goal is to find a
loading layout that maximizes container space utilization, considering practical loading con-
straints. The paper takes into account the limited availability of different ULD types at airports,
as airlines may not supply an unlimited number of all ULD types per aircraft at all times. Ad-
ditionally, each item’s issue time and deadline are considered. Only available cargo after an
order has been placed can be loaded onto ULDs, with each cargo having the same assembly
time and a deadline (DDL) dictating the ideal completion and handover to the airline. Addi-
tionally, the model accounts for potential delays in the loading process, which could result in
missed deadlines. The problem is shown below:

min unused space of ULDs and delay penalties of cargos
s.t. ULD allocation

ULD weight limitations
item positioning within ULD
item availability
item due date

2.2. Build-up Scheduling Problem
The build-up scheduling problem is defined as a Parallel Machine Scheduling Problem (PMSP).
There are numerous types of PMSP, and our work concentrates on the construction of ULDs in
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an airline’s cargo terminal. In this research, we assume that given a finite number of identical
workstations on which ULDs can be placed, they are always available from time zero and can
only build one ULD at a time. These workstations are set up to process all of the required jobs,
which are the ULD outputs from the prior problem. A job becomes available for processing
when it is released, and each job has a processing time. This paper assumes that ULDs should
be built entirely on a single workstation and that building cannot be halted once begun, i.e.,
preemption is not permitted. Furthermore, the construction timeframe must begin on or after
the maximum release date specified in the ULD and end before the item’s minimum deadline.
Within this time frame, a machine allocation can be identified that ensures no workbench builds
more than one ULD at a time and no ULD begins processing before its contents are released.
The final completion time is the important KPI that outlines when the entire build-up process
ends [1]. The problem is shown below:

min overall completion time
s.t. workstation allocation

completion time
order of precedence
no overlap
time windows



3
Literature review

3.1. Air Cargo Palletization Problem
The Air Cargo Palletization Problem is actually an application of the Bin Packing Problem (BPP)
that considers the characteristics of air cargo. The Bin Packing problem has been studied
since the early 1970s [19] and is a fundamental problem in operations research, computational
geometry, and supply chain management, often revolving around optimizing the placement of
objects of various sizes into a finite number of containers or ”bins” to minimize the number of
bins used [48].

3.1.1. One-dimensional Bin Packing Problem (1DBPP)
The bin packing problem can be traced back to the one-dimensional bin packing problem,
where a set of objects of different sizes must be packed into a minimum number of identical
bins [36]. 1DBPP formulas are commonly utilized to model time-sensitive situations (such
as scheduling). Packing difficulties with due dates, for example, are increasingly being re-
searched and have crucial practical implications [20]. Table 3.1 summarises previous literature
on one-dimensional packing problems that take time factors into account.

Table 3.1: Recent literature on 1DBPP addressing time constraints

Publications Type Av
ai
la
bi
lit
y

D
ue

da
te

Objective Allow
delays?

Reinertsen and Vossen (2010) 1DCSP - x min stock lengths + tardiness y
Fazi, Van Woensel, and Fransoo (2012) VSBPP x x min costs + waiting times + tardiness y
Polyakovskiy and M’Hallah (2011) 1DBPP x x min unused space + earliness + tardiness y
Arbib and Marinelli (2014) 1DCSP - x min stock lengths + tardiness y
Gradišar and Glavan (2020) VSBPP - x min unused space + tardiness y
Liu et al. (2021) VSBPP x x min cost n
Arbib and Marinelli (2017) 1DBPP - x min completion time + lateness y

Reinertsen and Vossen presented an integer programming-based heuristic to minimize a com-
bination of trim-loss and total weighted tardiness for solving the one-dimensional cutting stock
problem (1DCSP) when orders must be completed before the due date [44]. In the model,
the durations of a task are represented by items, and the due date is represented by the bin
size available before the order expires. In addition to this, they assume that all due dates
cannot be fully satisfied, which means that violating the due date constraint is allowed and

6
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penalizes such delay violation in the objectives with a constant. Similarly, the delays incurred
are represented by bin size. Another solution uses due dates as an additional constraint. Fazi,
Van Woensel, and Fransoo extended the classical variable-size bin packing problem (VSBPP)
by introducing a new variable that incorporates the time characteristics of bins and items [18].
This variable is random, i.e., the arrival time of an item is uncertain and follows a discrete
probability distribution. Items can be processed at a given time and would be penalized for
tardiness.

Others would add the penalty of early processing into consideration, such as Polyakovskiy
and M’Hallah, who similarly argue that premature cutting would require temporary transfer
and storage [42]. Therefore each item should be cut on the date before it enters the next
stage of production (assembly or additional machining). Arbib and Marinelli developed an
exact integer linear programming formulation with column generation [3]. This model contains
a large number of variables associated with time-indexing, which are adjusted by an ad-hoc
procedure. To solve the material requirements planning for a specific problem: a group of work
orders for a product must be produced from the same batch of material, Gradišar and Glavan
use integer planning to develop an extended bin packing problem formulation based on (i)
variable case sizes, (ii) consideration of time constraints, and (iii) grouping of items/cases [20].
They claim that this approach can be applied to small and medium-sized problems. Liu et al.
introduce novel algorithms for solving the variable size bin packing problem with time windows
(VSBPTW) [32]. Lateness is considered infeasible in this paper, a bin must be loaded before
expiration, and there must be a common time point between time windows of items within the
same bin. Three heuristics are proposed to find the near-optimal solutions in a short time,
namely the classical best-fit heuristic, the iterative local search based on the shortest path
decoder, and the primal heuristic based on column generation.

The time-indexed formulation can be easily extended to different scheduling goals. However,
a typical drawback of this formulation is the rather large number of variables and constraints
[2]. Arbib and Marinelli proposed exact integer linear programming formulations and heuristic
algorithms indexed by time for the one-dimensional bin packing problem with due dates, with
the objective of minimizing a convex combination of the number of bins and the maximum
delay of the items [2]. In their experience, the use of lower and upper bounds plays a crucial
role in reinforcing the constraints, further strengthening the makespan and maximum lateness,
and significantly reducing CPU time.

3.1.2. Two-dimensional Bin Packing Problem (2DBPP)
Later, numerous scholars solved the two-dimensional packing problem with due dates using
integer programming and heuristics. The objective is to assign a set of n rectangular objects
defined by width and height to the smallest number of identical rectangular boxes that are
not overlapping [33]. The two-dimensional packing problems considering time factors of the
previously cited papers are summarised in Table 3.2.

Bennell, Lee, and Potts extended the problem in subsection 3.1.1 to two dimensions. They
used a genetic heuristic to solve the non-oriented, single bin-sized 2DBPP problem with a due
date. The problem alternates periodically between the objectives of minimizing the maximum
lateness and the number of bins used [6]. Marinelli and Pizzuti address the same problem
by using a sequential value correction heuristic that further reduces the number of bins and
the maximum delay time for 2DBPP with due dates[35]. Moreover, Polyakovskiy and M’Hallah
explore the same problem described in Bennell, Lee, and Potts’s work but focus on minimizing
only the maximum delay time of the items [41]. For small instances, they use mixed integer
programming (MIP) to model the problem while for larger instances the two-stage heuristic is
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Table 3.2: Recent literature on 2DBPP addressing time constraints

Publications Type O
rie

nt
at
io
n

Va
ria

bl
e
bi
n
si
ze

Av
ai
la
bi
lit
y

D
ue

da
te

Objective
Bennell, Lee, and Potts (2013) 2DBPP x - - x min lateness
Marinelli and Pizzuti (2018) 2DBPP x - - x min bins + lateness
Polyakovskiy and M’Hallah (2018) 2DBPP x - - x min lateness
Polyakovskiy and M’Hallah (2021) 2DBPP - - x x min earliness + tardiness

used to approximate the solution. Polyakovskiy and M’Hallah’s research uses integrated con-
straint program modeling to address both two-dimensional bin packing and just-in-time batch
scheduling aspects of the problem [43]. They interact either cooperatively or competitively de-
pending on the problem parameters (e.g., due date distribution, setup, and processing time),
aiming not only to optimize space utilization in the bin packing process but also highlighting
the importance of scheduling in operations. Just-in-Time (JIT) recognizes that there are costs
associated with both missing the due date of an item and processing earlier than the due date.

While the methodology and results of 1DBPP and 2DBPP studies can provide some insights,
their direct application to aircraft cargo loading is limited due to the specific practical challenges
and operational needs of air cargo loading. 1D bin packing problems are primarily developed
for cutting reinforcing steel bars, the 2D bin packing problem is mainly used for planar cuts
such as paper and wood, and naturally does not consider vertical stacking constraints. In
comparison, aircraft cargo in real life is a three-dimensional item with various shapes and
sizes. This paper solves the 3D bin packing problem to determine the loading configuration
for each ULD.

3.1.3. Three-dimensional Bin Packing Problem (3DBPP)
Due to the different shapes and sizes of air cargo pallets, the Bin packing problem can usu-
ally be regarded as a three-dimensional, non-identical multiple problem in air cargo loading
[11]. We give an overview of the mentioned papers, their covered features, and objectives
in Table 3.3. The columns display the features under consideration as well as the objective.
Technical constraints such as non-overlapping and placement within a container, which appear
in all articles, are not shown.

Table 3.3: Recent literature on application of 3DBPP in air cargo

Publications Type W
ei
gh

tl
im
its

W
ei
gh

td
is
tri
b.

O
rie

nt
at
io
n

St
ac
ki
ng

St
ab

ilit
y

Av
ai
la
bi
lit
y

D
ue

da
te

Objective
Chen, Lee, and Shen (1995) 3DBPP - x x - - - - min unused ULD volume
Lin, Chang, and Yang (2006) 3DBPP x - x x x - - min cost - load + effort
Chan et al. (2006) 3DBPP x x x - x - - 1. min cost, 2. max load
Paquay, Schyns, and Limbourg (2016) 3DBPP x x x x x - - min unused ULD volume
Hai, Nananukul, et al. (2016) 3DBPP x - - - - x - min unused ULD volume
Paquay, Limbourg, and Schyns (2018) 3DBPP x x x x x - - min unused ULD volume
This work 3DBPP x - x x x x x min unused ULD volume + delay
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In 1995, Chen, Lee, and Shen suggested a zero-one mixed-integer planning model to ad-
dress the issue of loading containers with irregularly sized cartons [12]. Their model took
into account various containers, carton sizes, orientation, and carton overlap within the con-
tainer. Although the mathematical model gained the container’s optimal total unused space,
the enormous constraints and variables rendered the model computationally inappropriate for
real-world applications. Lin, Chang, and Yang proposed a two-step solution divided into a
grouping procedure and a packing procedure [31]: first, they used a K-means method to as-
sign items across boxes according to different characteristics, such as the size of the object,
the unloading order of the object and the capacity of the container. Then a genetic algorithm
with heuristics is used to pack the items into each box according to the constraints. Chan et al.
also proposed a two-stage approach [11]. The first stage applies a linear programming model
to provide a lower bound on the global minimum cost of filling pallets with available products
depending on their weight and volume. The second stage uses a heuristic to load cargo boxes
and create a loading plan for each pallet. The optimal plan is reached when the outcome has
the smallest variation from the lower bound determined in the first step. Crainic, Perboli, and
Tadei proposed a new Extreme Point-based rule for loading items in three-dimensional con-
tainers, allowing better exploitation of bin volumes with a negligible amount of computational
effort [16].

In the context of air cargo, Paquay, Schyns, and Limbourg proposed mixed-integer planning
equations with detailed mathematical definitions, taking into account a wide range of con-
straints in the practical application of air cargo, as well as the specific case where the con-
tainer is a truncated parallelepiped. However, this model is intended to be effective only for
small-scale testing [40]. Paquay, Limbourg, and Schyns then developed a fast and construc-
tive heuristic in two phases [39]: first, a packing algorithm is proposed for the same bin, and
then multiple types of bins are processed in the second step, which has a low computation
time: 12 seconds can be computed for loading 100 items.

In the 3DBPP for air cargo loading, researchers have developed various methods to deal
with the complexity of the loading process, especially considering the various shapes and
sizes of cargo pallets. However, although these methods have made some progress in spatial
optimization, they usually do not directly take into account the time factor. Hai, Nananukul,
et al. considered the time factor from a freight forwarder’s point of view and proposed two
models to perform daily air cargo loading management [22]. The first model is the air cargo
3D packing model, which loads cargo of multiple sizes and release dates into ULDs in order
to minimize idle space in the ULDs. The second model, the air shipment assignment model,
assigns each ULD to a specific airline with the goal of minimizing transportation costs while
satisfying delivery constraints. These two models are solved sequentially and can complete
the decision-making process for the freight forwarder to transport the cargo in a reasonable
amount of time. In our paper, there is a difference in the perspective of solving the problem,
since there is no case of assigning ULDs to different airlines. Although the focus of this paper
is on the former model, there is a difference in the introduction of the concept of time in the
development of the mathematical model, which will take into account the item issue time,
deadline, and packing processing time.

3.2. Build-up Scheduling Problem
The problem of build-up scheduling has many characteristics in common with the Parallel
Machine Scheduling Problem (PMSP). The PMSP involves scheduling a set of tasks on two
or more machines. Not only is it necessary to find the optimal job ordering, but also the optimal
assignment of job machines [38]. Parallel job machines include three categories [8]:
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• Identical machines: all machines process the same job at the same rate.
• Uniform machines: each machine executes all jobs at the same speed.
• Unrelated machine: there is no specific relationship between job and machine process-
ing speed.

The previously literatures are summarised in Table 3.4.

Table 3.4: Recent literature on PMSP

Publications Type Objective

Blazewicz, Dror, and Weglarz (1991) Identical, uniform,
and unrelated PMSP min max completion time/makespan

Kan (1979) Uniform PMSP min cost

Chen and Powell (1999) Identical, non-identical,
and unrelated PMSP

min total weighted completion time and
weighted number of tardy jobs

Chen and Powell (1999) Identical PMSP min total weighted earliness and tardiness
Chung-Yee Lee(2000) Identical PMSP min total weighted completion time
Bank and Werner (2001) Unrelated PMSP min total weighted earliness and tardiness cost
Van Den Akker, Hoogeveen, and Kempen
(2006) Identical PMSP min max lateness

Unlu and Mason (2010) Identical PMSP
min total weighted completion time/makespan
/maximum lateness/total weighted tardiness
and total number of tardy jobs

Li, Sivakumar, and Ganesan (2008) Unrelated PMSP min total weighted earliness
Arık (2020) Unrelated PMSP min total weighted earliness and tardiness cost
This work Unrelated PMSP min total completion time

First, Blazewicz, Dror, and Weglarz first laid out a large number of mathematical formulations
for the PMSP and provided several variants of it, including Non-preemptive scheduling on iden-
tical parallel machines and Parallel uniform processors with unit standard processing times [8].
Kan formulated the latter problem as a special case of the simple traffic network problem and
provided an efficient solution [27]. Chen and Powell proposed a decomposition methodology
applied to the implementation of identical, non-identical, and non-related PMSPs [15]. And
they obtained computational results with the objective of minimizing the total weighted com-
pletion time and the weighted number of tardy jobs. Chen and Powell also proposed an exact
decomposition algorithm based on column generation in the same year, which is used to min-
imize the total weighted advancement and tardiness of the identical parallel machine problem
[14]. And the algorithm is capable of solving problems with up to 60 jobs in a reasonable
amount of CPU time. Furthermore, Van Den Akker, Hoogeveen, and Kempen applied the
column generation technique to the min-max objective function and succeeded in analyzing
the objective of minimizing the maximum lateness of the problem in a reasonable time for a
larger number of jobs and identical parallel machine examples [46].

For the unrelated PMSP, Bank and Werner proposed various constructive and iterative heuris-
tics whose goal is to assign jobs with pre-determined common due dates to machines with dif-
ferent release dates and to schedule the jobs assigned to each machine so that the weighted
sum of the early and late penalties is minimized [5]. Furthermore, Unlu and Mason proposed
four different MIP formulas based on four different types of decision variables involving total
weighted completion time, completion time, maximum delay, total weighted delay, and total
delay for various PMSPs [45]. And the efficiency of the different formulas is tested to get
the promising paradigm of optimization formulas. In simultaneous scheduling problem for air
transport, Li, Sivakumar, and Ganesan formulated the PWSP problem with earliness/tardiness
penalties using MIP to minimize the total earliness of all operations of the assembly to ensure
that orders are completed on time and in time for the flights [29]. In addition to minimizing the
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earliness, Arık also considered the tardiness cost into the objective function to minimize the to-
tal weighted sum of earliness and tardiness costs [4]. He used three different meta-heuristics
to solve the unrelated PMSP and found that the group intelligence-based meta-heuristic can
be the most efficient. Alessandro et al.’s publication delves deeply into the PMSP, emphasiz-
ing several variations of how a group of tasks might be planned on two or more machines [1].
The variant they suggest requires that a task be processed entirely on one machine, and it is
not permitted to get started a task on one machine and then transfer it to another to complete.
In their example, this mathematical model assists students in assigning exam study activities
while taking into account the essential prior conditions to fulfill them as soon as possible. This
case vividly illustrates how PMSP may be used for real-world learning and time management,
as well as insights into the air cargo scheduling challenge. There is also a PMSP variant that
assumes that machines are not always available, since in most real-world situations, machines
need to be maintained at certain periods. Lee and Chen then investigated both cases where
multiple machines can be maintained at the same time and where only one machine can be
maintained at a given time for this possibility [28]. They used a column generation-based algo-
rithm to solve the work and maintenance activities to minimize the total weighted completion
time of the work.

In the preceding literature review, we note that PMSP has been extensively studied, mainly
involving different types of machines (identical, uniform, and unrelated machines) and multiple
scheduling strategies. Similar to some of the studies in the traditional literature, this paper
highlights minimizing the final completion time of unrelated parallel machine scheduling as the
key objective. Unlike these studies, however, we focus specifically on the time efficiency of
ULD construction in air freight applications, where the build-up task is constrained by strict
time windows. These time windows are defined by the maximum release date and minimum
due date of the items within the ULD to ensure that each ULD is built no earlier than the item’s
release date and must be completed before the deadline.

3.3. Discussion
The above sections summarise the literature related to APP and BSP. Firstly, a variety of
approaches to the bin packing problem, spanning from one-dimensional to three-dimensional
contexts, have been encapsulated for APP. It is evident from the literature that the evolution
of the problem has transitioned from simple, one-dimensional scenarios to more complex and
practical applications such as air cargo loading, which require a three-dimensional approach.
The focus on time constraints, in particular, highlights the problem’s practical significance and
leads the development of complicated models that can manage the complexities of real-world
situations.

The reviewed works demonstrate that while advancements have been achieved in integrat-
ing time-related constraints into one- and two-dimensional bin packing problems, there are
still issues to be resolved, especially in adapting these models to the intricate requirements
of air cargo loading. The existing literature on 3DBPP primarily focuses on optimizing spatial
utilization, often sidelining temporal factors that play a significant role in real-world applica-
tions. Future research should strive to bridge this gap by constructing integrated models that
account for the time sensitivity of air cargo, incorporating elements such as cargo availability,
ULD readiness, and synchronization with the flight schedule. There is also the opportunity to
integrate real-time data and predictive analytics, allowing for dynamic adjustments to packing
strategies based on logistical considerations. Furthermore, developing scalable and compu-
tationally feasible models is critical to ensure that solutions are both theoretically sound and
practicable for real-world applications.
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In terms of the BSP, the traditional literature on PMSP has yet to address the completion of
ULDs within a tight time window specific to the air cargo context. This is in contrast to Mokotoff
and Blazewicz, Dror, and Weglarz, who, while discussing in detail different configurations and
scheduling strategies for parallel machines, often fail to adequately take into account the time
constraints in industry-specific applications. Also different from the rest of the literature where
earliness and lateness are allowed but penalized. Since the flight departure time is fixed, a
delay in the build-up will cause the ULDs not to be shipped on time. Therefore, future research
on the build-up scheduling problem in the air cargo context should consider a strict time window
for each job to ensure that the build-up of each ULD can be completed on time.

In conclusion, future research should endeavor to develop comprehensive models for the air
cargo build-up process. First, time sensitivity should be incorporated into the spatial optimiza-
tion problem for air cargo, and second, the strict time window for ULD construction should be
considered in the BSP. Thus, the subtle demands of air cargo logistics should be captured,
enabling solutions that are both spatially and temporally optimum.



4
Mathematical formulation and

Algorithm

4.1. 3DBPP-Mixed Integer Programming
In this section, a MIP model for the 3DBPP in the context of air cargo is introduced, and the
following problem description is given. A set of n rectangular boxes with dimensions li×wi×hi
and weights weighti (i ∈ 1, ..., n) of n rectangular boxes with dimensions Lj × Wj × Hj and
a maximum capacity (also called maximum gross weight) of max_weightj into m available
ULDs while minimizing the unused volume. The model also takes into account the typical
commitment of a cross-border e-commerce company to its customers, i.e., to ensure that the
cargo is loaded and then shipped by air within a specified due date. The packaging must
satisfy different geometric and time-dependent constraints that will be specified later.

4.1.1. Sets
N Set of items to be loaded,
M Set of available ULDs.

4.1.2. Parameters
The following inputs are necessary before solving 3DBPP with due dates.

Items
• Dimensions and Weight of Items: The physical attributes of each cargo item, including
its height, width, depth, and weight.

• Item Release Time and Deadline: The moment an order is placed and the deadline for
the cargo to be packed and ready for handover to the airline.

• Penalty Coefficient for Delayed Deliveries: A numerical value representing the penalty
imposed for cargo delivered past its deadline.

• Maximum Delay Allowed: The maximum time each item can be delayed for loading
ensures that the delays are all manageable.

ULDS
• Dimensions and Available Quantity of ULDs: The size specifications of the Unit Load
Devices (ULDs) and the number available for cargo loading.

13
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• Cost of ULDs: The expense associated with using Unit Load Devices for cargo trans-
portation.

• ULD Packing Processing Time: The amount of time required to pack and prepare a ULD
for shipping.

Based on the above-known data, the parameters of the model are referred to as:

li, wi, hi Length, width, and height of item i, ∀i ∈ N ,
weighti Weight of item i, ∀i ∈ N ,

vi Volume of item i, ∀i ∈ N ,
Ri Release date of item i, ∀i ∈ N ,

DDLi Due date of item i, ∀i ∈ N ,
Lj ,Wj ,Hj Length, width, and height of ULD j, ∀j ∈ M ,

max_weightj Maximum gross weight of ULD j, ∀j ∈ M ,
Vj Volume of ULD j, ∀j ∈ M ,

costj Cost per kg of using the ULD j, ∀j ∈ M ,
P Penalty per unit of time delay,

max_delay Maximum delay allowed per item,
Tp Average processing time per item per ULD loading,
L Maximum length for all ULD types,
W Maximum width for all ULD types,
H Maximum height for all ULD types.

4.1.3. Variables
Here are the various variables used in the model.

Geometric variables

nij =

{
1 if item i is placed in ULD j,

0 otherwise,
∀i ∈ N, j ∈ M,

uj =

{
1 if ULD j is used,
0 otherwise,

∀j ∈ M,

(xi, yi, zi) Location of the front left bottom corner of item i, ∀i ∈ N,

(x′i, y
′
i, z

′
i) Location of the rear right top corner of item i, ∀i ∈ N,

riab =

{
1 if the side b of item i is along the a-axis,
0 otherwise,

∀i ∈ N,

rik =

{
1 if item i is on the right of item k(x′k ≤ xi),

0 otherwise (x′k > xi),
∀i ∈ N,

bik =

{
1 if box i is behind box k(y′k ≤ yi),

0 otherwise (y′k > yi),
∀i ∈ N,
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aik =

{
1 if item i is above item k(z′k ≤ zi),

0 otherwise (z′k > zi),
∀i ∈ N.

Specific variables
As mentioned already, applying the 3DBPP with due date to the real world situations implies
some specific variables.

• Vertical stability

gi =

{
1 if item i is on the ground (zi = 0),

0 otherwise,
∀i ∈ N,

hik =

{
0 if item k has the suitable height to support item i(zi = z′k),

1 otherwise,
∀i, k ∈ N,

oik =

{
0 if the item i and item j overlap on the XY plane,
1 otherwise,

∀i, k ∈ N,

sik =

{
1 if item k supports item i and are in the same ULD,
0 otherwise,

∀i, k ∈ N,

η1ik =

{
0 if xk ≤ xi,

1 otherwise,
∀i, k ∈ N,

η2ik =

{
0 if yk ≤ yi,

1 otherwise,
∀i, k ∈ N,

η3ik =

{
0 if x′i ≤ x′k,

1 otherwise,
∀i, k ∈ N,

η4ik =

{
0 if y′i ≤ y′k,

1 otherwise,
∀i, k ∈ N,

βl
ik =

{
1 if the vertex l is supported by item k,

0 otherwise,
∀i, k ∈ N, l ∈ {1, ..., 4}.

• Time-related
di Delay time of item i, ∀i ∈ N,

sj Earliest start processing time of ULD j, ∀j ∈ M,

endj Earliest end processing time of ULD j, ∀j ∈ M,
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rj The minimum time allowed in ULD j to start loading items,
which is the latest release time of all loaded items, ∀j ∈ M,

min_ddlj The maximum due date of the loaded item in ULD j,

i.e. the earliest due date of all loaded items, ∀j ∈ M.

4.1.4. Objective function
The objective is to maximise ULD utilisation whilst trying to meet delivery dates. That is, to
minimize the delay of cargo relative to its DDL while using the least costly ULDs possible. The
objective function is to minimise the unused volume of the ULDs and delay penalties.

Min
∑
j∈M

uj · Vj −
∑
i∈N

vi + P ·
∑
j∈M

∑
i∈N

di · nij (4.1)

Above objective function reflects a trade-off between achieving ideal packing, which minimizes
waste but may result in some cargo being delayed past its DDL—potentially leading to cus-
tomer churn or compensation for delays—and packaging goods strictly according to the DDL,
which may increase ULD usage costs.

Since vi acts as a starting parameter, the expression
∑

i∈N vi is a constant. Therefore, the
volume of the used containers is minimized:

Min
∑
j∈M

uj · Vj (4.2)

Moreover, before describing the constraints in detail, it is important to first linearise the product
of a continuous variable di with a binary variable nij . A continuous variable zij is introduced
to hold the product: zij = di · nij , ∀i, j. Thus the final objective function is:

Min
∑
j∈M

uj · Vj + P ·
∑
j∈M

∑
i∈N

zij (4.3)

4.1.5. Constraints
Before going into any more detail,the following constraints 4.4-4.6 need to be added to force
zij to take on di · nij values, where nij is a binary variable and di is a continuous variable for
which 0 ≤ di ≤ max_delay hold.

zij ≤ max_delay · nij , ∀i ∈ N, j ∈ M (4.4)

zij ≤ di, ∀i ∈ N, j ∈ M (4.5)

zij ≥ di −max_delay · (1− nij), ∀i ∈ N, j ∈ M (4.6)

Geometric constraints ∑
j∈M

nij = 1, ∀i ∈ N (4.7)

nij ≤ uj , ∀i ∈ N (4.8)
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The constraint 4.7 requires that all items should be allocated in ULDs, and constraint 4.8 marks
the ULD as used, once an item has been placed into it [7][40].

∑
i∈N

weighti · nij ≤ max_weightj · uj , ∀j ∈ M (4.9)

The maximum capacity of each ULD cannot be exceeded. There is a maximum allowable
weight for loaded items for each ULD j [7][11][40], which is ensured by constraint 4.9.

x′i ≤
∑
j∈M

Ljnij , ∀i ∈ N (4.10)

y′i ≤
∑
j∈M

Wjnij , ∀i ∈ N (4.11)

z′i ≤
∑
j∈M

Hjnij , ∀i ∈ N (4.12)

All cargo must be completely within the permitted contour of the assigned ULD [40]. The
constraints 4.10, 4.11, and 4.12 ensure that the all the items do not exceed their ULD size.

x′i − xi = ri11li + ri12wi + ri13hi, ∀i ∈ N (4.13)

y′i − yi = ri21li + ri22wi + ri23hi, ∀i ∈ N (4.14)

z′i − zi = ri31li + ri32wi + ri33hi, ∀i ∈ N (4.15)

∑
a

riab = 1, ∀i ∈ N, b ∈ {1, 2, 3} (4.16)

∑
b

riab = 1, ∀i ∈ N, a ∈ {1, 2, 3} (4.17)

Items must be placed parallel to the ULD, with their edges aligned with the corresponding
edges of the ULD [40]. Thus items can rotate orthogonally [12][7][40], and the variables riab
are introduced to describe the orientation of the item i inside the ULD. Under such definition,
Constraint 4.13, 4.14, and 4.15 are applied to define the position of the rear right top corner
of the item according to its placement direction. Together with constraints 4.16 and 4.17, they
describe that items can be rotated orthogonally in the ULD.

rik + rki + bik + bki + aik + aki ≥ (nij + nkj)− 1, ∀i, k ∈ N, j ∈ M (4.18)

No point within any two pieces of cargo can occupy the same position in space [40]. Therefore
at least one axis is not allowed to overlap, i.e., at least one of these variables on the left-hand
side of constraint 4.18 must be equal to 1. In addition to this, overlap is only constrained if
two items are located in the same ULD, which is indicated by the right-hand side of constraint
4.18.

x′k ≤ xi + (1− rik) · L, ∀i, k ∈ N (4.19)
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xi + 1 ≤ x′k + rik · L, ∀i, k ∈ N (4.20)

y′k ≤ yi + (1− bik) ·W, ∀i, k ∈ N (4.21)

yi + 1 ≤ y′k + bik ·W, ∀i, k ∈ N (4.22)

z′k ≤ zi + (1− aik) ·H, ∀i, k ∈ N (4.23)

Constraints 4.19-4.23 give declarations to variables rij , bij , and aij, which defines the relative
location of two items and links to the restrictions on whether two items are actually placed in
the same ULD with overlap constraint 4.18. Moreover, the parameters L,W and H are used
in these constraints because it is not known in which ULD i and k are located.

Vertical stability constraints
Based on the variables introduced in section 4.1.3, stability constraints could be written as
follows.

4∑
l=1

∑
k∈N

βl
ik ≥ 3(1− gi), ∀i ∈ N (4.24)

Items cannot be stacked without support. There must be other items or the base of the con-
tainer beneath them. Thus the constraint 4.24 determines if the item i is on the ground. If not,
this constraint ensures that at least three vertices are supported by one or more items k.

zi ≤ (1− gi)H, ∀i ∈ N (4.25)

According to the constraint 4.25, if item i is on the ground (gi = 1), then the value of the
z-coordinate of the front left bottom corner of item i must be zero.

z′k − zi ≤ vik, ∀i, k ∈ N (4.26)

zi − z′k ≤ vik, ∀i, k ∈ N (4.27)

vik ≤ z′k − zi + 2H(1−mik), ∀i, k ∈ N (4.28)

vik ≤ zi − z′k + 2Hmik, ∀i, k ∈ N (4.29)

hik ≤ vik, ∀i, k ∈ N (4.30)

vik ≤ hikH, ∀i, k ∈ N (4.31)
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In the constraints 4.26-4.31, two intermediate variables are used to define the variables hij ,
vik and mik. vik is used as a representation of the absolute value of |zk′ − zi|, while mik is a
binary variable with a value of 1 when z′k is greater than or equal to zi, and 0 otherwise.

oik ≤ rik + rki + bik + bik ≤ 2oik, ∀i, k ∈ N (4.32)

(1− sik) ≤ hik + oik ≤ 2(1− sik), ∀i, k ∈ N (4.33)

Next, constraints 4.32 and 4.33 are added to make a full determination of the overlapping
variable oik. If oik equals to 0, item i and k share a part of their orthogonal projection on the
XY plane. The latter indicates that hik + oik = 0 if the bottom surface of item i is supported
by the top surface of item k.

nij − nkj ≤ 1− sik, ∀i, k ∈ N, j ∈ M (4.34)

nkj − nij ≤ 1− sik, ∀i, k ∈ N, j ∈ M (4.35)

βl
ik ≤ sik, ∀i, k ∈ N, l ∈ {1, ..., 4} (4.36)

It is also necessary to fully identify the variable sik. Constraints 4.34 and 4.35 ensure that item
i is supported by item k only if these two items are in the same ULD j. Secondly, one of vertex
of item i can be supported by item k only if item i is supported by k, which is guaranteed by
constraint 4.36.

η1ik + η2ik ≤ 2(1− β1
ik), ∀i, k ∈ N (4.37)

η2ik + η3ik ≤ 2(1− β2
ik), ∀i, k ∈ N (4.38)

η3ik + η4ik ≤ 2(1− β3
ik), ∀i, k ∈ N (4.39)

η1ik + η4ik ≤ 2(1− β4
ik), ∀i, k ∈ N (4.40)

In constraints 4.37-4.40, η1ik and η2ik represent the relative position of the front left vertices
(l = 1) of item i and item k, η2ik and η3ik refer to the relative position of the front right vertices
(l = 2), η3ik and η4ik indicate the rear right vertices (l = 3), and η4ik denote the rear left vertices
(l = 4). The relative positions of the two items at each of the four vertices are used to define
the case where the four corners of the basis of item i are supported by item k.

xk ≤ xi + η1ik · L, ∀i, k ∈ N (4.41)

yk ≤ yi + η2ik ·W, ∀i, k ∈ N (4.42)
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x′i ≤ x′k + η3ik · L, ∀i, k ∈ N (4.43)

y′i ≤ y′k + η4ik ·W, ∀i, k ∈ N (4.44)

The constraints 4.41-4.44 further define four ηs. Constraints 4.41 and 4.43 ensure that η1ik and
η3ik are equal to 0 if xi ≥ xk and x′i ≤ x′k. Likewise, constraints 4.42 and 4.44 define the η2ik
and η4ik on the y-axis.

Time-related constraints
sj ≥ Ri · nij , ∀i ∈ N, j ∈ M (4.45)

Items can only be loaded onto a ULD after the order has been issued. Therefore, the actual
start processing time (sj) of ULD j is equal to or greater than the release date of all items in
it. The constraint 4.45 is written to define the maximum release time for each ULD, limited by
the items loaded in it.

endj ≥ sj + Tp ·
∑
i∈N

nij , ∀i ∈ N, j ∈ M (4.46)

Items also need to be scheduled on the ULD before the deadline. The endj of ULD j is defined
by constraint 4.46: it is equal to the sum of its start time sj and total processing time tp·

∑n
i=1 nij .

di ≥
∑
j∈M

endj · nij −DDLi, ∀i ∈ N (4.47)

Constraint 4.47 defines the delay di for each item. It is 0 if there is no delay, otherwise it is
the difference between the end loading time of the ULD (endj) where item i is located and the
due date of item i.

0 ≤ di ≤ max_delay, ∀i ∈ N (4.48)

Constraint 4.48 sets the delay time di for each item that must be within the maximum threshold
max_delay.

4.2. 3DBPP-Extreme Point Heuristic Algorithm
As the problem’s size grows, so does the complexity of addressing the 3DBPP. To address
this issue, this chapter will propose heuristic algorithms. The problem statement is identical
to that of the previous chapter: pack all things into the least amount of ULDs possible while
avoiding overlapping and ensuring stable placement. The algorithm will use space effectively
while monitoring the loading completion time, attempting to remain ahead of the due date. One
additional assumption is added that there is no limit to the number of workstations at this stage
and that the packing can be done synchronously no matter how many ULDs there are. The
parallel machine scheduling problem is addressed in the next section.

The EPH is able to quickly generate a better feasible solution and avoid the computational
overhead of a large-scale search by preferentially selecting the extreme points (i.e., the pos-
sible placement points of the items) inside the container as the placement points for the next
item. The procedure of the algorithm is outlined below, with each step discussed in detail later.
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1. Initialization:

• Item Sorting: Sort all items to be loaded according to the priority rule.
• Container Sorting: Sort the containers by capacity from largest to smallest,
ensuring that larger containers are prioritized during the algorithm’s execution
to minimize the total number of containers used.

2. Extreme Point Selection: For each item to be placed, traverse the current set of
extreme points. Check whether the item can be placed at each extreme point in
all possible orientations without overlapping with already placed items, and ensure
vertical stability.

3. Item Placement: Each item is loaded onto the best extreme point of the existing
ULD using the best-fit decreasing (BFD) algorithm; if this is not possible, placement
in a new ULD is attempted.

4. Updating the Set of Extreme Points: After an item is placed, update the set of
extreme points in the ULD.

• Add new extreme points
• Delete duplicate extreme points

5. Iteration: Repeat steps 2 to 4 until all items are placed or no suitable extreme points
are available for the remaining items.

6. Result Output: Output the placement of items in all ULDs, as well as the start and
finish times of loading.

4.2.1. Sorting the items
Different variants of the EP-BFD heuristic algorithm can be defined by modifying the order of
the components. Based on the context of this paper’s time-dependent factors, we used the
following ranking principle.

Release Date - Due Date - Height: Items are sorted by the non-increasing value of their release
date (Ri), whereas items with the same date are sorted by the non-increasing value of their
due date (DDLi). If the dates remain the same, the items are sorted by the non-increasing
value of their height, hi.

4.2.2. Ensuring vertical stability
To maintain the vertical stability of stacked items in a 3DBPP, it is important to ensure that
adequate bottom support is provided for each item. A crucial constraint is included: each box
stacked on top of another has nomore than a particular proportion of its base area unsupported
(i.e., overhanging). This virtually guarantees that items will not overturn during handling and
transport. Usually, some studies allow the user to customize the contact area threshold, which
can be adjusted to suit the crating scenario and specific needs [25][47]. To build a stable pallet,
this specific ratio is generally between 70% [21] and 100% [13].

Specifically, suppose a box is put over another box that is smaller in the horizontal plane (XY
plane). In that case, the top box’s overhanging area shall not exceed a certain proportion of
the total base area. This requirement does not apply to boxes placed directly on the ground
or to boxes of equal or greater size in the XY plane, as these circumstances are intrinsically
stable.
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(a) 3D diagram (b) 2D X-Y diagram

Figure 4.1: Example for stable support

Consider a scenario where a smaller box with dimensions 100 cm × 100 cm × 100 cm is
placed underneath a larger box with dimensions 140 cm × 120 cm × 100 cm. As depicted
in the Figure 4.1, the larger box extends beyond the edges of the smaller box, creating an
overhang. The overhanging areas are highlighted with dashed lines and shaded in grey. The
figure also marks the center of gravity of the box above (see red dot). The projection of the
overhang onto theXY plane is calculated to ensure that it does not exceed the set percentage
of the larger box’s base area. By adhering to this constraint, the stacking process ensures that
the top box remains stably supported, preventing potential tipping or imbalance in the packed
configuration.

4.2.3. Searching for Extreme Points
The process of finding the Extreme Points (EPs) is based on the locations of items already
placed in the container. Whenever a new item is placed in a container, certain points of that
item are projected onto orthogonal coordinate axes to generate new potential placement loca-
tions, i.e., new EPs, as shown in Figure 4.2. The generation of new EPs is divided into the
following two cases:

Empty container case
If no items have been placed in the container yet, the first item k will be placed in the lower
above left corner of the container (at position (0, 0, 0)). The generated EPs are in positions:

• (lk, 0, 0) along the X axis,
• (0, wk, 0) along the Y axis,
• (0, 0, hk) along the Z axis,

Existing items in container
The item is placed at (xk, yk, zk) and new EPs will be acquired:

• In the direction of the Y - and Z-axes: A new EP is generated from the projection position
of the corner point (xk + lk, yk, zk) of item k in the Y and Z axes directions.
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• In the direction of theX- and Z-axes: A new EP is generated from the projection position
of the corner point (xk, yk + wk, zk) of item k in the X and Z axes directions.

• In the direction of theX- and Y -axes: A new EP is generated from the projection position
of the corner point (xk, yk, zk + hk) of item k in the X and Y axes directions.

Figure 4.2: EPs defined by an item, represented by triangles [16]

If a newly generated EP overlaps with more than one item during projection, the point whose
corner point is projected onto the item closest to k and the container wall is the final EP position.
This processing guarantees that the created EPs precisely fit the already placed items, thus
maximizing the use of space. After generating new EPs, the model adds these EPs to the EP
list. To ensure the validity of the EP list, all newly generated poles are sorted in z, y, x order,
and duplicates are removed. This step ensures that each EP is unique and can be efficiently
utilized for subsequent item placement.

4.2.4. Best Fit Decreasing procedures
The Best-Fit Decreasing (BFD) algorithm attempts to place each item onto the EP of the ex-
isting bins, where the EP is evaluated by a merit function that maximizes the measurement of
the best bin and the optimal placement position for the item. Specifically, from all feasible EPs
and directions, the algorithm selects the placement that yields the best merit function value. If
an item cannot fit into any of the current bins, a new ULD is created [37].

The merit function utilized in this paper is based on maximizing the utilization of the Residual
Space (RS) of the EPs. RS measures the available free space around an EP, defined as the
distance from the EP to the edge of the bin or the nearest item. This distance may vary along
each axis. Therefore, when an EP is created, its RS on each axis is set to the distance from
its position to the nearest obstruction along that axis. Every time a new item is added to the
packing, the RS of all EPs is updated by the algorithm.

The RS update algorithm checks each EP in the EP list generated in the previous section. If
an EP is within the range of the newly placed item, the algorithm calculates the RS for the
relevant axes. Specifically:
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For the x-axis
If the EP is within the z-range of the new item and on the side in the y-direction, the RSx is
updated to be the minimum between the current RSx and the distance from the new item’s
position to the EP.

For the y-axis
Similarly, if the EP is within the z-range and on the side in the x-direction, the RSy is updated
to the minimum between the current RSy and the distance from the EP to the new item.

For the z-axis
If the EP is below the new item and on its XY -plane, RSz is updated to the minimum between
the currentRSz and the distance from the EP to the new item’s bottom. As shown in Figure 4.3,
the RS of EP2 is then updated due to the new item being placed above it.

(a) Before (b) After

Figure 4.3: Example of RS definition in X and Z directions

These updates ensure that the RS reflects the current state of available space around each
EP, leading to more precise and efficient space utilization. To more precisely determine the
placement position, the merit function in this paper minimizes the difference between the RS
of the EP and the dimensions of the item, defined as:

fb = [(RSx
e − lk) + (RSy

e − wk) + (RSz
e − hk)] ,

where RSx
e , RSy

e , and RSz
e represent the RS on the X, Y, and Z axes, respectively. In this way,

the algorithm selects the EP and direction that minimize the difference between the remaining
space and the item’s dimensions from all feasible EPs and directions, thereby maximizing
space utilization and ensuring the efficiency and effectiveness of the packing process.

4.3. Build-up Scheduling Problem
This section introduces the second challenge in the build-up loading process in the context
of air freight, the Build-up Scheduling Problem. It is often known as the Parallel Machine
Scheduling Problem (PMSP), in which jobs are handled across numerous machines. Each
job has a set processing time, release time, and deadline. The mathematical model described
below describes how jobs are assigned and sequenced on machines so as to minimize the
maximum completion time of all jobs.
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4.3.1. Sets
N Set of jobs that need to be scheduled,
M Set of available machines.

4.3.2. Parameters
The following inputs are necessary before solving the above PMSP.

ULDs
• ULD Release Time and Deadline: The time allowed to begin construction of the ULD
and the deadline for completion of ULD handover to the airline.

• ULD Packing Processing Time: The time required to pack and prepare a ULD for ship-
ping.

Workstation
• Workstation Availability: The number of available workstations

Based on the above known data, the parameters of the model are referred t as:

Pi Processing time of job i, ∀i ∈ N ,
Ri Release date of job i, ∀i ∈ N ,
Di Deadline by which job i must be completed. ∀i ∈ N .

4.3.3. Variables

xij =

{
1 if job i is assigned to machine j,

0 otherwise,
∀i ∈ N, j ∈ M,

yik =

{
1 if job i precedes job k,

0 otherwise,
∀i, k ∈ N,

si start time of job i, ∀i ∈ N,

ci completion time of job i, ∀i ∈ N,

c the latest completion time across all jobs.

4.3.4. Objective function
The quality of the schedule is measured by some objective function of minimizing themaximum
completion time, that is, the makespan of the schedule. Therefore, the primary objective of
this problem is to minimize the makespan, which is the total time required to complete all ULDs.
This ensures that the cargo terminal operates efficiently and that flights can be dispatched as
scheduled. The objective function is represented specifically as:

Min c (4.49)
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4.3.5. Constraints
In addition, job prioritization, non-overlapping constraints, andmachine allocation are essential
to ensure feasible and optimal scheduling.

∑
j∈M

xij = 1, ∀i ∈ N (4.50)

The constraint 4.50 ensures that each job is assigned to exactly one machine.

ci ≥ si + Pi, ∀i ∈ N (4.51)

The completion time of job i is the sum of its start time and its processing time, which is ensured
by constraint 4.51.

si ≥ Ri, ∀i ∈ N (4.52)

According to the constraint 4.52, no job starts before its release time.

ci ≤ Di, ∀i ∈ N (4.53)

si ≤ Di − Pi, ∀i ∈ N (4.54)

Besides, these two constraints 4.53 and 4.54 ensure that the completion time of job i does not
exceed its deadline, while job i starts early enough so that the assignment can be completed
before its deadline.

si + Pi ≤ sk +M · (1− yik) +M · (2− xij − xkj), ∀i, k ∈ N, j ∈ M (4.55)

ci ≤ sk +M · (1− yik) +M · (2− xij − xkj), ∀i, k ∈ N, j ∈ M (4.56)

sk + Pk ≤ si +M · yik +M · (2− xij − xkj), ∀i, k ∈ N, j ∈ M (4.57)

ci ≤ si +M · yik +M · (2− xij − xkj), ∀i, k ∈ N, j ∈ M (4.58)

For any jobs i and k, overlap is not allowed to occur if i ̸= k and both jobs are assigned to
the same machine j. Constraints 4.55-4.58 constrain the sequencing of different jobs on the
same machine to avoid overlap.

c ≥ ci, ∀i ∈ N (4.59)

Lastly, constraint 4.59 defines the latest completion time c as the maximum of all individual
completion times.



5
Computational experiments

5.1. 3DBPP-Mixed Integer Programming
5.1.1. Context
This section utilizes the aforementioned model to conduct tests with a sample dataset. The
objective is to evaluate the effectiveness of the model and derive insights that may assist in
developing heuristic approaches for larger case scenarios. We have obtained a dataset from
Cainiao’s actual freight transportation operations, comprising various quantities of goods and
Unit Load Devices (ULDs) used during booking with their contracted airline, China Southern
Airlines. The test dataset is a subset of the complete data file provided by Cainiao, encom-
passing the packaging needs for 9 items during the last week of May 2024, from Sunday the
26th to Tuesday the 28th. Table 5.1 presents the sampled dataset used for testing, where the
first column lists the delivery order numbers specifying the airfreighted goods. These goods,
packed by the freight forwarder’s clients into cartons, include details on weight (kg), height
(cm), width (cm), and length (cm) as shown in Table 3.2. All items originated from Schiphol
Airport in the Netherlands and were destined for Guangzhou Baiyun Airport in China. The
dataset also specifies the release dates and deadlines for each item. To simplify computa-
tional complexity, the items are assumed to be non-fragile and can be rotated freely in any
direction. We also ensured vertical stability by supporting the base at three points.

Table 5.1: A sample data set for testing model

NO Weight
(kg)

Length
(cm)

Width
(cm)

Height
(cm) Release date Due date

DEPALLET2405240001 151.296 120 100 140 2024/5/27 12:00:00 PM 2024/5/27 18:00:00 PM
DEPALLET2405240002 114.026 120 100 140 2024/5/27 12:00:00 PM 2024/5/27 18:00:00 PM
DEPALLET2405240003 102.343 120 100 140 2024/5/27 12:00:00 PM 2024/5/27 18:00:00 PM
NLPALLET2405240001 134.318 120 100 160 2024/5/26 12:00:00 PM 2024/5/26 18:00:00 PM
NLPALLET2405240002 133.282 120 100 160 2024/5/26 12:00:00 PM 2024/5/26 18:00:00 PM
NLPALLET2405240003 184.822 120 100 160 2024/5/26 12:00:00 PM 2024/5/26 18:00:00 PM
FRPALLET2405270001 139.29 120 100 140 2024/5/27 12:00:00 PM 2024/5/28 18:00:00 PM
FRPALLET2405270002 237.07 120 100 140 2024/5/27 12:00:00 PM 2024/5/28 18:00:00 PM
FRPALLET2405270003 172.68 120 100 140 2024/5/27 12:00:00 PM 2024/5/28 18:00:00 PM

For the containers, specifically, we utilize two common types of ULDs: the AAP and AMA types,
which are compatible with the lower and main decks of China Southern Airlines’ Boeing 777
freighters, respectively. Table 5.2 details their main characteristics, and Figure 5.1 illustrates
these containers, both of which are complete parallelepipeds.

27



5.1. 3DBPP-Mixed Integer Programming 28

Table 5.2: Data of AAP and AMA ULDs

Type Length
(cm)

Width
(cm)

Height
(cm)

Capacity
(kg)

Cost
(euro/kg)

AAP 317.5 223.5 162.6 4626 0.35
AMA 317.5 243.8 243.8 6800 0.35

Figure 5.1: AAP ULD on the two pictures on the left-hand side and AMA ULD on the two pictures on the
right-hand side [34]

Regarding time-related parameters, each item is loaded within a consistent duration of 15
minutes; Additionally, any delay in loading an item is assigned a weighted factor P that adjusts
the solution based on its contribution to the overall objective function, initially set at 0.1. The
maximum allowable delay for loading is 48 hours.

The computational tests were conducted on a computer with a CPU frequency of 3.20 GHz,
16.00GB of RAM, a 64-bit operating system, and equippedwith Gurobi optimizer version 11.0.0
set to default parameters. To generate the results, a software program was written in Python.
This program was responsible for data preparation, invoking the optimization library, and an-
alyzing the outcomes. The outputs included the ULD costs, weighted delay terms, the start
and end times of loading for each ULD, the delay times for each item (if any), and the coordi-
nates. Additionally, three-dimensional layout diagrams were generated to visually represent
the results, allowing for a clearer demonstration of the findings.

5.1.2. Computational results
Based on the data from Table 5.1 and Table 5.2, the timeline shown in Figure 5.2 outlines the
time window allowed for each item and the time it is packed into the ULD, with the correspond-
ing layout depicted in Figure 5.3. Specifically, the items shown on the timeline in Figure 5.2
(NL01, NL02, NL03, DE01, DE02, DE03, FR01, FR02, FR03) correspond to the actual boxes
packed in Figure 5.3, and the AMA in Figure 5.2 refers to the type of ULD used in Figure 5.3.

From the results, it can be seen that the items are arranged to be loaded into the same ULD
and that there are three delayed items (red boxes in Figure 5.3). The delay for each delayed
item (NL01, NL02, NL03) is 20 hours and 15minutes, so the cumulative delay time for the three
items is 60 hours and 45 minutes. The earliest permitted start of the ULD loading is 5/27/2024
at 12:00 and lasted for 2 hours and 15 minutes. The final loading cost was €479.19.

5.1.3. Sensitivity analysis
Given that this is a multi-objective optimization problem, we apply a penalty parameter (P )
as a weighting factor in the objective function to balance ULD space utilization with packing
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Figure 5.2: Timeline of the 9 items and a ULD

Figure 5.3: Optimal layout of the instance of 9 items in two types of ULDs
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delay. The objective is to minimize the total of the unused ULD area and the delay penalty,
with the penalty parameter adjusting the relative significance of each objective. By using the
same dataset, the results of the effect of different penalty parameters on the number of required
ULDs and the number of delayed items are obtained as in Figure 5.4. It is clear that increasing
the penalty value influences the packing design, with the penalty acting as a regulator of the
trade-off between minimizing the number of ULDs and minimizing delays in packing.

Figure 5.4: Impact of penalty parameters on the number of delayed items and ULDs required

As the penalty weight increases, a significant change in the solution is observed. For lower
penalty values (0.1-0.18), the model prefers to minimize the number of ULDs utilized to only
one, yet this comes at the expense of delaying three items. This finding indicates that when the
penalty parameter is less than 0.19, the penalty for delaying packages is insufficient to support
the deployment of extra ULDs. Once the penalty weight reaches 0.19, a clear change occurs:
the model chooses to use additional ULDs (two in total), thus eliminating the delay completely.
When the penalty value hits 0.19 or higher, the cost of delays outweighs the cost of using more
ULDs, leading to a packing configuration that avoids delay altogether. This demonstrates that
the penalty value effectively regulates the trade-off between these two conflicting objectives.

5.1.4. Model validation
In order to assess the quality of the solution, multiple experiments were conducted. The prin-
cipal findings are summarized in Table 5.3. The first column presents the number of items to
be loaded, the second column shows the CPU time (in seconds), the third column details the
number of required/available ULDs, and the final column shows the gap, which is the relative
difference between the objective value of the best feasible solution and the best known lower
bound.

Different number of items & ULDs
Firstly, the number of items or the number of available ULDs was varied. Under a time con-
straint of 7200 seconds, results indicate that computational time increases whether more items
are involved or more ULDs are available. When the number of items loaded was 9, the compu-
tation time was significantly different for different conditions of the number of ULDs available.
For example, when 2 ULDs are available, the computation time is 22 seconds, while when
4 ULDs are available, the computation time increases significantly to 230 seconds. This in-
dicates that as the number of available ULDs increases, the computational complexity rises
accordingly. When the number of items increases to 10, the computation in all cases reaches
the set upper time limit and no better solution can be found within the given time. It is possible
that the increase in the number of items, which involves the use of an extra ULD, leads to a
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Table 5.3: Validation results for MIP

# Items Time(s) # Required/Available ULDs GAP Type of constraints
9 22 1/2 0% 27 quadratic constraints
9 15 1/3 0% 36 quadratic constraints
9 230 1/4 0% 45 quadratic constraints
9 3 1/2 0% 0 quadratic constraint
9 40 1/3 0% 0 quadratic constraint
9 25 1/4 0% 0 quadratic constraint
10 7200 1/2 37.90% 30 quadratic constraints
10 7200 1/2 37.90% 0 quadratic constraints
10 7200 1/4 50% 0 quadratic constraints

larger problem size and a significant increase in the difficulty of solving the model.

Quadratic & linear constraints
The experiment rewrote all the quadratic constraints in the model as linear constraints. Tak-
ing constraint 4.47 as an example, the product of the variables endj and nj leads to multi-
ple quadratic constraints in this model, which affects the computation time. To eliminate the
quadratic terms from its formulation, the auxiliary variable yij is used, and the constraints are
linearized. The following new linear constraints are introduced:

yij ≤ K · nij , ∀i ∈ N, j ∈ M (5.1)

yij ≤ endj , ∀i ∈ N, j ∈ M (5.2)

yij ≥ endj − (1− nij) ·K, ∀i ∈ N, j ∈ M (5.3)

yij ≥ 0, ∀i ∈ N, j ∈ M (5.4)

where K is a constant large enough to ensure the validity of the above constraint. The fi-
nal linearized constraint after replacement is shown in constraint 5.5. Experiments using the
above-replaced constraints show that the computational time of the model tends to be shorter
in the absence of quadratic constraints, which verifies that the linearized constraints can sig-
nificantly reduce the computational complexity. On the other hand, the models with quadratic
constraints have higher GAP values when the time limit is reached. This indicates that the
quadratic constraints increase the complexity of the problem and thus affect the performance
of the model.

di ≥
∑
j∈M

yij −DDLi, ∀i ∈ N (5.5)

The experimental results show that for smaller problems (e.g., 9 items), this mathematical
model of 3DBPP can find the optimal solution in a reasonable amount of time (GAP of 0%),
but when the problem size is slightly increased (e.g., 10 items), the quality of both the solution
time and the solution quality decreases significantly. The solver fails to discover the best
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solution within the time constraint of 2 hours, particularly when there are more abundant ULD
resources, such as 4 available ULDs (GAP up to 50%).

This circumstance demonstrates that existing exact algorithms confront a significant rise in
computing time as the problem size grows, and even when linearization techniques are applied
to minimize computational complexity, it remains difficult to discover an optimal solution in an
acceptable amount of time. This constraint is especially evident when dealing with large-scale
instances in real-world applications, where rapid delivery of high-quality solutions is frequently
necessary. As a result, new algorithmic models that use heuristics to obtain a near-optimal
solution suited to large-scale problems may be explored.

5.2. 3DBPP-Extreme Point Heuristic Algorithm
5.2.1. Context
This section uses the heuristics algorithm described above to test a larger sample dataset. The
item and ULD parameters remain unchanged from those used in the previous MIP model, but
the number of items increases from 9 to 126 in terms of packaging requirements, as detailed
in Appendix A. In addition, because of the added assumption that packing can be done in
parallel no matter how many ULDs there are. If there is an item delay, then the delay is equal
to the difference between the due date of the item and the theoretical earliest completion time
of the ULD.

5.2.2. Computational results
The implementation of EP heuristic algorithm to solve large-scale 3DBPP using Python and
the layout results are shown in Figure 5.5. 126 items are scheduled to be loaded into 18 ULDs
and no items are delayed in loading. Appendix B lists for each ULD the items packed, the
duration of the load, the latest release time of the loaded items, the earliest completion time,
the earliest due date (i.e., the earliest deadline of the packed items), and the cost spent per
ULD.
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(a) AMA1 (b) AMA2 (c) AMA3 (d) AMA4

(e) AMA5 (f) AMA6 (g) AMA7 (h) AMA8

(i) AMA9 (j) AMA10 (k) AMA11 (l) AMA12

(m) AMA13 (n) AMA14 (o) AMA15 (p) AMA16

(q) AAP1 (r) AAP2

Figure 5.5: Solution of the instance of 126 items in two types of ULDs
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5.2.3. Sensitivity analysis
Overhang threshold
The presence of overhang in item loading can be seen from the AMA1 (a-plot) in Figure 5.5.
As stated in subsection 4.2.2, the optimal percentage of overhang allowed needs to be recog-
nized in order for item placement to be stably supported. To determine the optimal allowable
overhang percentage that balances packing efficiency with stability, we conducted a series
of experiments varying the overhang threshold from 10% to 50% in increments of 10%. The
number of Unit Load Devices (ULDs) required at each threshold was recorded, as summarized
in the accompanying Figure 5.6.

Figure 5.6: Results of experiments for overhang threshold

The results show that at the lower threshold of 0% to 10%, the number of required ULDs re-
mained consistent at 19. This indicates that, within this range, the permitted overhang has little
effect on total loading efficiency. However, by increasing the threshold to 20%, the number of
required ULDs decreased to 18, demonstrating a significant improvement in packing efficiency
as more overhang was permitted. Increasing the threshold to 30% resulted in no further de-
creases in the number of ULDs required, suggesting that packing efficiency had plateaued.
These findings suggest that the optimal overhang threshold likely lies between 10% and 20%.
This range increases packing efficiency by lowering the amount of ULDs required while main-
taining acceptable stability. Beyond this point, further increasing the overhang percentage
does not yield additional benefits and may risk compromising the structural stability of the
load.

Item size and ULD types
Volume Utilization is a key measure of the efficiency of the loading algorithm, reflecting the
extent to which the available space inside each ULD is effectively used. Volume utilization
verifies loading effectiveness by calculating the ratio of the total volume of items to the total
usable volume of the ULD. It can provides important insights into the interaction between cargo
dimensions and ULD types. In this study, four distinct item size categories were analyzed,
including two commonly used Cainiao packaging configurations, as well as a smaller size for
compact items and a larger size for oversized goods, as shown in Table 5.4. Besides, Five
ULD types differ in length, width, height, and maximum load capacity, as shown in Table 5.5.
These differences significantly affect the utilization of loading space. By evaluating the impact
of these variations on the efficiency of space utilization, this analysis explores the adaptability
of different ULD types to diverse cargo scenarios.
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Table 5.4: Data of 4 different types of items

Item type Weight (kg) Length (cm) Width (cm) Height (cm)
Compact 110 100 100 100
Standard-Small 140 120 100 140
Standard-Large 150 120 100 160
Oversized 160 140 120 160

Table 5.5: Data of 5 different types of ULD [34]

Type Length (cm) Width (cm) Height (cm) Capacity(kg)
ALP 317.5 153.4 162.6 3176
AAP 317.5 223.5 162.6 4626
AMP 317.5 243.8 162.6 5103
AMA 317.5 243.8 243.8 6800
AGA 605.8 243.8 243.8 11340

The experimental results are shown in Figure 5.7, which demonstrate that small and medium-
sized items collectively exhibit relatively high volume utilization due to their greater flexibility
in arrangement, which minimizes void space during packing. For smaller items, the compact
dimensions allow efficient placement across all ULD types, with larger ULDs such as AMA
and AGA achieving the highest utilization rates. Similarly, medium-sized items maintain good
adaptability but begin to encounter constraints in narrower ULDs like ALP and AAP, where
gaps may emerge due to dimensional mismatches. However, medium-sized items perform
well in wider and taller ULDs, particularly AMA and AGA, which mitigate these constraints and
enable better packing configurations. The combined results for smaller and medium-sized
items illustrate that volume utilization is highly sensitive to both ULD dimensions and the size
category of the cargo, with larger ULDs generally providing more consistent efficiency.

Oversized items introduce further complications in terms of sensitivity to ULD selection. Due
to their substantial dimensions, they occupy a significant proportion of any ULD’s internal
space, which can limit opportunities for efficient arrangement. Interestingly, the results suggest
that smaller ULDs, such as ALP and AAP, sometimes achieve higher volume utilization for
oversized items compared to larger ULDs. This outcome reflects the proportional alignment
between the dimensions of oversized items and the smaller ULDs, which reduces void space
and improves utilization. In contrast, larger ULDs like AGA demonstrate lower utilization rates
for oversized items, as the excess internal space exacerbates underutilization.

Among the five ULD types, AMA demonstrates the most balanced performance across all
item size categories. Its moderate dimensions, which are wider and taller than those of ALP
and AAP but less expansive than AGA, allow for consistent adaptability to varying item sizes.
This versatility is particularly evident in its ability to achieve high utilization for both small and
medium-sized items while maintaining reasonable efficiency for larger items. The sensitivity of
AMA’s utilization rates to item size is relatively low compared to other ULDs, making it the most
practical choice for mixed cargo shipments that require flexibility and efficiency. By contrast,
AGA, while capable of accommodating large quantities of cargo, is more sensitive to item size
variations, with efficiency declining significantly for oversized items.

5.2.4. Model validation
The experiments in this section aim to validate the model and test its performance on different
scenarios or datasets. This section verifies the results and proves their validity through several
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Figure 5.7: Results of volume utilization for item size and ULD types

methods:

Comparison of EPH and MIP
Mixed Integer Programming and Extreme Point heuristic algorithms have been used to solve
the 3DBPP above, and their performance is comparatively analyzed in this section. Despite
the differences in their modeling constraints, the results remain comparable due to their shared
optimization objective.

In particular, the MIP model ensures stacking stability through a three-point support rule, while
the EPH method explicitly incorporates a constraint on the minimum overhang ratio of items.
This requires each item to be supported by a specific proportion of surfaces on either the ULD
floor or other items beneath it. This distinction reflects a variation in how the two algorithms
define solution feasibility during the optimization process. TheMIPmodel’s three-point support
rule is relatively flexible, allowing for broader exploration of the solution space and increasing
the likelihood of identifying layouts with higher space utilization. In contrast, the EPHmethod’s
stricter support constraints limit the solution space, which in turn makes it more challenging
for the algorithm to find optimal solutions under certain conditions.

To ensure a fair comparison between the two algorithms, this study introduces appropriate
relaxations to the constraints of the EPHmodel when evaluating its performance. For instance,
the pre-sorting of item loading order was removed, and the allowable overhang area was
relaxed to 40%. These adjustments were designed to align the EPH solution environment
more closely with the assumptions of the MIP model, thereby reducing the impact of differing
constraint definitions on the comparison results.

Under these adjustments, in the context of a small dataset, if the items are allowed to rotate
arbitrarily, as shown in (a) of Figure 5.8, the MIP model uses only one ULD, and the layout
of the items presents a more compact and balanced distribution, which is able to utilize the
space inside the ULD more efficiently. In contrast, the EPH algorithm makes it difficult to find
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an optimal solution and needs to use two ULDs when loading the same items. The loading
results (b and c) show that most of the space is wasted. Even after relaxing the conditions,
EPH still struggles to achieve a space utilization efficiency comparable to MIP.

(a) AMA1 loading result obtained with MIP

(b) AMA1 loading result obtained with EPH (c) AMA2 loading result obtained with EPH

Figure 5.8: Results of the MIP method (top row) and the EPH method (bottom row) with items that can be freely
rotated

However, the EPH algorithm and the MIP model perform similarly in terms of the number ULD
when items must be placed top-side up. Figure 5.9 illustrates the loading results of these two
methods for the same instance. The EPHmethod uses a larger AMA-type ULD, which is more
compact but results in more wasted space. The MIP method, on the other hand, uses smaller
AAP-type ULDs, making it more space-efficient, but the layout is relatively loose and slightly
unstable. In addition, both methods also perform consistently in dealing with delayed packing
decisions by delaying the packing of three items (boxes filled in red) to be loaded with other
items, thus saving the use of one ULD and improving space utilization. This result also aligns
with the practical situation in air transport where certain goods need to be placed in a specific
orientation.
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(a) AAP1 loading result obtained with MIP (b) AAP2 loading result obtained with MIP

(c) AMA1 loading result obtained with EPH (d) AMA2 loading result obtained with EPH

Figure 5.9: Results of MIP Method (top row) and EPH Method (bottom row) in the context of items that must be
top-side up

Running time analysis
As the size of the dataset increases, the difference in performance between the two methods
becomes apparent. The MIPmodel completely loses its ability to solve efficiently when dealing
with large-scale datasets due to the dramatic increase in computational complexity, and more
powerful computing equipment is required to obtain the results. In contrast, the EPH algorithm
performs outstandingly well and is able to quickly obtain a solution in a shorter period, which is
particularly important for efficient computation in practical applications. In the case of Cainiao,
for example, which carries a large amount of cargo by air every week, fast computation results
are essential to meet the needs of its efficient operations.

To evaluate the proposed EPH algorithm, we employed a large number of problem instances
with standard-small-size item counts ranging from 5 to 5000, and the experimental results
are shown in Table 5.6. The figure illustrating the relationship between the number of items
and the running time (Figure 5.10) shows that the running time tends to grow linearly with the
number of things. This indicates that the algorithm’s complexity is linearly scalable when deal-
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ing with larger-scale problems, which is a desirable performance for the large-scale 3DBPP,
demonstrating that the algorithm can deal with a large number of items without increasing
computation time exponentially.

Table 5.6: Validation results for EPH

# Items Time (s) # ULDs # Lb ULDs Deviation
5 0.4 1 1 0%

15 0.4 2 2 0%
25 1.2 4 3 25%
30 1.3 4 3 25%
50 2.6 7 5 29%

100 4.9 13 9 31%
150 7.7 19 14 26%
200 10.6 25 18 28%
300 15.9 38 27 29%
500 26.0 63 45 29%

1000 53.0 125 89 29%
2500 143.6 313 223 29%
5000 321.5 625 446 29%

Figure 5.10: Result of running time versus number of items

ULD quantity deviation analysis
In the ULD quantity deviation analysis, we utilize the deviation formula (Equation 5.6) to mea-
sure the difference between the actual number of ULDs (Unit Load Devices) used and the the-
oretical lower bound for assessing the effectiveness of the loading algorithm [26]. Specifically,
it indicates the percentage by which the actual number of ULDs used exceeds the theoreti-
cal minimum number of ULDs. A lower percentage of deviation calculated indicates that the
algorithm is approaching the theoretical optimal solution, while a higher deviation indicates a
larger distance between the actual result and the theoretical optimal solution.

Deviation =
b− lb

b
× 100%, (5.6)

where b is the actual number of ULDs used, lb is the lower bound of the theoretically calculated
number of ULDs, and lb is defined by Equation 5.7-5.9, which combines the estimation of the
lower bound based on weight and volume, respectively.
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lb1 =

∑
i∈N weighti

MaxW
, (5.7)

where lb1 represents the minimum number of ULDs required in terms of the total weight of the
item, and MaxW is the maximum weight allowed of all ULDs.

lb2 =

∑
i∈N vi

MaxV
, (5.8)

where lb2 indicates theminimumnumber of ULDs required based on the estimated total volume
of the item, and MaxV is the maximum volume of all ULDs.

lb = max(lb1, lb2) (5.9)

The formula 5.9 implies that the greater of the two values, weight and volume, needs to be
taken as the theoretical lower bound (lb). This is because, while the item’s volume can fit into
a single ULD, it may exceed the ULD’s load capacity, and vice versa.

The Figure 5.11 illustrates the relationship between the number of actual ULDs utilized and
the number of lower bounds obtained using Equation 5.6-Equation 5.9. In practice, a low
deviation is critical for logistics or warehousing scenarios since it indicates that the algorithm
is effectively exploiting ULDs in real-world applications. Table 5.6 displays the values for the
deviations of the two quantities. It is clear that the number of actual ULDs is always more
than the theoretical lower boundary, and the deviation progressively stabilizes as the number
of items grows. When the number of items exceeds 25, the gap is between 25% and 31%. As
the number of items rises, the deviation ultimately stabilizes at around 29%. This is because
the lower limit is predicted based on the weight and volume of the items, without accounting
for many factors. However, the shape, arrangement, and space allocation of the items in the
actual loading process may require more ULDs than the theoretical lower limit. The fact that
its deviation remains generally consistent over large sample sizes demonstrates that it can
produce steady and acceptable results in real-world applications.

Volume utilization validation
To validate the loading efficiency of the model, standard-small-size items with length, width,
and height of 120cm, 100cm, and 140cm were selected to be put into five different types
of ULDs, including ALP, AAP, AMP, AMA, and AGA. Then the space utilization for different
quantities of cargo was tested.

The results of the experiments are shown in Figure 5.12, where the space utilization of each
ULD type gradually stabilizes as the number of loads increases. Among them, the AMA and
AGA types show the most outstanding performance, with the space utilization reaching and
maintaining at about 71%when the number of items increases to 200 and above. This efficient
space utilization is mainly due to their larger width and height as well as higher maximum
loading capacity. The results show that the heuristic algorithm proposed in this study has
good stability when loading common-sized cargoes of these ULD types, and can maintain
an efficient loading effect. However, from the perspective of space utilization, this result also
reveals some room for improvement.

This might be due to the fact that the heuristic approach described in this paper fails to generate
optimal outcomes. The heuristic method will first arrange the items in the default placement
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Figure 5.11: Difference between the actual number of ULDs used and the lower bound

direction, and only if the items cannot fit in the default direction will it consider rotating the
items to make modifications. Although this placement strategy simplifies the implementation
of the algorithm, one major problem is that the items are placed independently of each other.
It means that after the location of the front item is determined, subsequent items’ placement
will no longer allow the front item to be modified, resulting in fewer placement possibilities for
the following items. When irregular gaps make it difficult to accommodate subsequent items,
more ULDs need to be used to load the subsequent items. This directly leads to an increase
in the number of ULDs used and reduces the overall space utilization.

The test results for different ULD types also validate this inference. In contrast, larger-sized
ULDs such as AMA and AGA were able to accommodate more cargo and therefore had rel-
atively less adverse effects on their placement strategies, ultimately achieving higher space
utilization. Whereas for smaller ULDs such as ALP and AAP, their space utilization was rel-
atively low, remaining at around 42% to 43% on average. This result may be related to the
smaller width dimensions of these two types of ULDs, limiting the efficient utilization of their
loading space. This difference suggests that the size and capacity of ULDs play a key role
in loading efficiency, with larger ULDs not only increasing cargo holding capacity but also
mitigating to some extent the space wastage associated with placement strategies.

5.3. Build-up Scheduling Problem
5.3.1. Context
The inputs for the BSP model originate from the previous section, in which we developed a
bin-packing solution using the EPH. The solution specifies the jobs that need to be handled,
i.e., the ULDs to be loaded during the two-day scheduling period. Each job includes specific
requirements such as release time, processing time, and deadline, as shown in Appendix B.In
addition, it is expected that there are three parallel machines (loading stations). The BSP
model then develops an optimum machine scheduling plan based on these inputs, ensuring
that no jobs overlap on the same machine and that all constraints such as job release times
and deadlines are satisfied. The goal is to assign and schedule 18 ULDs to three loading
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Figure 5.12: Results of volume utilization

stations over two days while minimizing the overall completion time for all loading stations.

5.3.2. Computational results
In this section, we analyze the computational results of the Build-up Scheduling Problem (BSP)
model over a two-day scheduling period. The results of the computational experiment are
shown in the Figure 5.13 for two consecutive days, May 27, 2024, and May 28, 2024.

From the results, the total job duration for day 1, 27 May 2024, is 6 hours and the ULDs are
distributed across all three workstations with no overlap or violation of job deadlines. Day 2
had a job interval of 4 hours and 45 minutes, and the ULDs were distributed efficiently among
the loading stations. The final total completion time was 28 May 2024 at 16:45.

It is worth stating that AMA10 was released on 27 May 2024 at 12:00 PM. Its deadline was
set for 28 May 2024 at 18:00. However, in the above result, AMA10 was processed on 27
May 2024, well before its deadline. This decision to process earlier may be attributed to
machine load balancing optimizations. Because of the need to meet deadlines, avoid task
overlap, andminimize overall completion time, themodel distributes ULDs across workstations
in a balanced manner to optimize performance and avoid bottlenecks. It can be seen that
scheduling AMA10 earlier results in a smoother run and reduces conflicts with other ULDs
scheduled to be processed on 28 May, such as AMA11 and AMA12. Then all other ULDs are
processed on the day of their respective deadlines. For example, ULDs like AMA11 through
AMA16 are all released and scheduled for 28 May 2024, and their respective processing times
are all completed by 18:00 on the day of the deadline. This strategy of processing ULDs with
flexible deadlines (such as AMA10) ahead of time while aligning other ULDs with their strict
deadlines helps to achieve the goal of minimizing delays and ensuring that no ULD exceeds
its due date.



5.3. Build-up Scheduling Problem 43

Figure 5.13: Solution of the instance of 18 ULDs in 3 loading stations

5.3.3. Sensitivity analysis
The sensitivity analysis conducted on the number of available workstations for the scheduling
of 18 jobs is shown in Table 5.7, which provides critical insights into the relationship between
resource allocation and operational efficiency.

With only two workstations, the problem becomes infeasible, emphasizing the necessity of
maintaining a minimum resource threshold to meet scheduling constraints such as processing
times, release times, and due dates. As the number of workstations increases, the makespan
steadily decreases, reflecting improved efficiency; however, the rate of improvement dimin-
ishes significantly beyond five workstations. From seven workstations onward, the makespan
stabilizes at 14:00. As the number of workstations increases, the time steadily decreases,
reflecting increased efficiency: when the number of workstations is increased from 6 to 7, the
time improves to 14:00. While the analysis demonstrates that further increases in the number
of workstations (e.g., allocating 8 workstations) do not provide additional benefits. This results
in underutilized resources, which could be better allocated elsewhere or minimized to reduce
costs.
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Table 5.7: Results of experiments for number of work stations

# Work stations Makespan
2 infeasible
3 2024/5/28 16:45:00 PM
4 2024/5/28 16:00:00 PM
5 2024/5/28 16:00:00 PM
6 2024/5/28 15:30:00 PM
7 2024/5/28 14:00:00 PM
8 2024/5/28 14:00:00 PM
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Conclusion

6.1. Discussion
The proposed framework, integrating the Air Cargo Palletization Problem and the Build-up
Scheduling Problem, offers a comprehensive solution to address key logistical challenges in
air cargo operations. By connecting packing and scheduling decisions into a unified pipeline,
the framework provides several managerial insights and demonstrates significant potential for
real-world implementation.

From a managerial perspective, this framework highlights the interplay between strategic plan-
ning and operational execution. In practical air cargo operations, decisions made during the
packing stage (e.g., ULD selection, cargo arrangement) have downstream implications for
scheduling and resource allocation. The sequential nature of the framework ensures that
these dependencies are accounted for, creating a structured decision-making process. The
sequential approach simplifies implementation in real-world settings, particularly in logistics
systems where decision-making is distributed across departments or teams. For example, in
an air cargo hub, the packing and scheduling processes are often managed separately, with
limited real-time communication. The proposed framework introduces a structured methodol-
ogy to integrate these stages without requiring significant changes to existing workflows. By
implementing this design, logistics managers can improve coordination between teams, re-
duce bottlenecks, and enhance overall system efficiency.

A more detailed discussion of each phase is provided in the following sections.

6.1.1. Air Cargo Palletization Problem
In cross-border e-commerce logistics, the diversity of goods and differences in delivery time-
lines create challenges for improving loading efficiency and managing delivery scheduling. In
air cargo management, enhancing loading efficiency directly impacts transportation costs and
operational resource utilization. This study validates the performance of different ULD types
for different cargo scenarios through a series of three-dimensional packing experiments, pro-
viding significant management insights. The findings reveal that larger ULDs (e.g., AMA and
AGA) are more effective for handling shipments that involve small-sized or standard-sized
goods, as their greater dimensions allow for better space utilization and adaptability to diverse
cargo configurations. However, for oversized items, smaller ULDs such as ALP can achieve
surprisingly better utilization due to proportional dimensional alignment. In real-world logistics
operations, shipments often consist of a mix of item sizes rather than uniform cargo, making

45



6.1. Discussion 46

larger ULDs such as AMA a versatile choice for achieving balanced space utilization and op-
erational efficiency. From a practical management perspective, these insights can inform the
strategic selection of ULDs. Air cargo companies can benefit from prioritizing larger ULDs for
mixed-size shipments to maximize loading efficiency while deploying smaller ULDs strategi-
cally for oversized cargo to address specific requirements. A flexible ULD allocation strategy
that reflects the predominance of mixed-size goods in logistics operations can optimize re-
source allocation, reduce costs, and enhance service reliability.

A deeper analysis of the experimental results reveals differences between MIP and EPH al-
gorithms under varying shipment volumes. While MIP can deliver optimal solutions for small
datasets, its computational efficiency drops significantly for large datasets, making it unsuit-
able for large-scale transport scenarios. In contrast, the EPH algorithm excels in terms of
computational efficiency. While heuristic algorithms in the traditional literature (e.g., the study
by Paquay, Schyns, and Limbourg (2016)) have an efficiency advantage in terms of com-
putational time, the validation in this paper also shows the tractability of the EPH algorithm
in large-scale applications. Heuristic algorithms like EPH may not always achieve the opti-
mal solution but demonstrate better time efficiency and computational stability for large-scale
packing problems. This suggests that air cargo companies can select algorithms based on
business needs: MIP’s precise solutions can enhance loading efficiency for small-scale ship-
ments, while EPH’s faster computations make it more suitable for large-scale operations. This
flexibility in algorithm selection supports more targeted decision-making for different scales of
cargo tasks.

Additionally, in cross-border e-commerce logistics, Cainiao’s shipments often involve diverse
sizes and shapes, along with varying delivery deadlines. Traditional 3D bin packing models
have limitations when addressing such requirements, especially since they lack consideration
of delivery timing. While previous research, such as that by Chen, Lee, and Shen (1995),
Paquay, Schyns, and Limbourg (2016), and Paquay, Limbourg, and Schyns (2018), focused
on improving space utilization, it often neglects the crucial aspect of delivery time. In a global
supply chain, delivery timeliness and accuracy directly influence customer satisfaction and
brand reputation. To address this gap, this study incorporates item availability and delivery
deadlines into the 3D bin packing model. This enhancement improves both space utilization
and logistics efficiency, making the model more practical and effective.

The introduction of time constraints highlights the importance of multi-objective optimization
in logistics management. By using a delay penalty parameter, the model can strike a bal-
ance between maximizing ULD space usage and meeting time constraints. This provides a
flexible decision-making tool for logistics managers. For example, during peak cargo periods,
increasing the delay penalty can ensure timely delivery of critical goods, optimizing overall
resource allocation and reducing potential financial losses from delays. In scenarios with high
cargo volumes with less strict timing requirements, reducing the penalty can minimize ULD
use and lower transportation costs. This adjustment based on the delay penalty parameter
offers flexible strategies for cargo scheduling, enabling managers to make decisions that align
with business needs and optimize resource utilization.

6.1.2. Build-up Scheduling Problem
An optimization model based on the Parallel Machine Scheduling Problem is used in this paper
to address the loading scheduling requirements from Cainiao. By scheduling jobs across
multiple parallel workstations, the model successfully optimises the order and timing of ULD
assembly, avoiding delays in the loading process and improving the overall efficiency. The
results show that the BSP model can ensure that all workstations are load-balanced and that
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the assembly process of each ULD fits into its time window, minimizing the waste of resources
during the loading process.

From the managerial perspective, the implementation of the BSP model provides important
insights into the scheduling management of air cargo. First, the flexibility of the BSP model
is reflected in the adaptation of different job priorities. For example, the advanced process-
ing of AMA10 shows that the model can reasonably arrange ULDs with flexible delivery times
while balancing the job loads, making the overall scheduling smoother. This feature helps
managers handle multiple loaded jobs by scheduling advance processing to avoid excessive
concentration of resources during peak periods. Second, in contrast to traditional parallel ma-
chine scheduling models (e.g., Blazewicz, Dror, and Weglarz (1991) and Chen and Powell
(1999)), the model described in this research focuses on the strictness of time constraints,
making it particularly appropriate for air freight scheduling with high timeliness requirements.
This implies that for logistics companies like Cainiao, the model may meet customers’ de-
mands for just-in-time delivery while also increasing the company’s competitiveness through
rapid response and flexible scheduling.

In practical applications, resource allocation should also be tailored to the specific operational
context and constraints. If the primary objective is to complete all tasks before the 18:00
deadline, maintaining a makespan of 16:00—achievable with four or five workstations—would
already suffice, ensuring all jobs are completed on time while avoiding unnecessary resource
expenditure. Over-allocating resources, such as assigning seven or eight workstations, may
lead to inefficiencies and increased costs. Thus, decision-makers should balance operational
efficiency and resource utilization by conducting cost-benefit analyses to optimize resource
allocation. This approach aligns with the BSP model’s capability to minimize wasted capacity
and ensure efficient resource management, particularly in time-sensitive air cargo operations.

Furthermore, the BSP model improves resource efficiency in logistics management by elimi-
nating load imbalances and scheduling conflicts among workstations. The approach optimizes
ULD loading time while allocating workstation resources efficiently, hence decreasing lost ca-
pacity caused by idle or overburdened resources. For actual logistics operations, the effective
use of the BSP model demonstrates that by equitable job allocation and scheduling, logis-
tics organizations can optimize workstation output under restricted resources, thereby making
the whole process more efficient. This is especially useful for businesses aiming to manage
demand and increase throughput while working with limited resources.

6.2. Limitation
Although the model proposed in this study has shown promising results in validation, it still
faces some limitations when dealing with large-scale problems. First, in the Air Cargo Palleti-
zation Problem, the EPH algorithm’s simplified placement strategy leads to a certain loss in
space utilization. Specifically, the EPH algorithm prioritizes a default placement orientation
and only considers rotation adjustments if the default placement fails. This simplification limits
the full utilization of the ULD space, creating irregular gaps and reducing packing efficiency in
large-scale cargo scenarios.

Moreover, while the MIP model can provide precise solutions for small datasets, its compu-
tation time increases significantly as the problem size grows, making it challenging to deliver
timely solutions in logistics scenarios that require quick responses. This limitation restricts the
MIP model’s application in cases requiring high packing efficiency and rapid response. Fu-
ture research could explore hybrid algorithms by combining global optimization and heuristic
approaches. For example, integrating simulated annealing with EPH could optimize place-
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ment strategies across the solution space while keeping computational complexity manage-
able, thereby enhancing the model’s efficiency and solution quality in large-scale logistics
contexts.

In addition to the existing limitations, another significant constraint of the proposed frame-
work lies in its strictly sequential structure, which lacks a feedback mechanism between the
Air Cargo Palletization and Build-up Scheduling stages. This absence of a feedback loop
means that any inefficiencies or infeasible solutions identified during the scheduling stage
cannot retroactively influence the packing decisions. While this design ensures simplicity and
computational efficiency, it limits the framework’s ability to dynamically adapt to changes or in-
consistencies that arise downstream in the logistics process. For instance, packing decisions
that maximize space utilization may inadvertently create bottlenecks or inefficiencies during
build-up scheduling due to resource constraints or job dependencies.

Additionally, in both Air Cargo Palletization and Build-up Scheduling problems, the model cur-
rently assumes all job and cargo information is known before scheduling, without considering
the dynamic changes and uncertainties present in real logistics operations. In practice, the
arrival times and packing requirements of cargo may vary, and the current static scheduling
model struggles to adapt to such fluctuations. This limits its ability to adjust packing sequences
and resource allocation flexibly, potentially affecting overall scheduling efficiency. To address
this, future research could incorporate a rolling horizon approach, enabling the model to up-
date and optimize decisions iteratively as new information becomes available. For example,
in the Air Cargo Palletization stage, a rolling horizon framework could periodically re-evaluate
packing plans based on updated cargo arrival times and urgency levels, ensuring alignment
with real-time constraints. Similarly, in the Build-up Scheduling stage, dynamic reallocation of
jobs across workstations could mitigate resource imbalances and improve overall scheduling
efficiency.

6.3. Conclusion
In response to Cainiao’s logistics challenges, this study proposes a comprehensive loading
plan that addresses the Air Cargo Palletization Problem (APP) and the Build-up Scheduling
Problem (BSP) in two key stages. The first stage determines how each item is optimally
packed into Unit Load Devices (ULDs), while the second stage establishes the precise tim-
ing for packing each ULD. This two-stage model achieves spatial and temporal optimization,
enabling efficient, secure, and timely cargo loading and delivery.

In the first stage, Mixed Integer Programming and Extreme Point Heuristic methods are em-
ployed to solve the 3DBPP, which involves arranging variously shaped and sized items within
limited ULD space while respecting different delivery deadlines. The MIP approach provides
a precise algorithm that incorporates constraints such as weight capacity, stability, item ori-
entation, and release and due dates. Validation demonstrates that the MIP model excels
in small-scale problems, maximizing space utilization and balancing delays and ULD usage
through penalty parameter adjustments. The EPH algorithm, by reducing the possible place-
ment points of items within ULDs, avoids extensive search computations. While slightly lower
in space utilization compared to MIP, EPH performs well in large-scale scenarios due to its
quick solution generation, making it suitable for situations requiring rapid decision-making.
From a management perspective, this phase offers a practical approach to selecting ULD
types based on cargo dimension, adjusting delay penalty parameters and applying algorithms
flexibly, which helps to strike a balance between improving loading efficiency and achieving on-
time delivery, thus reducing operating costs and enhancing the competitiveness of enterprises
in the global supply chain.
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In the second phase, the BSP model addresses the loading scheduling problem, i.e., how to
allocate jobs among multiple parallel workstations in a way that ensures that each ULD can be
loaded within a strict time window. The model effectively optimizes workstation load balancing
and avoids delays, especially when dealing with complex time-span scheduling, reducing the
overall workstation working time and ensuring Cainiao’s efficient operation while meeting the
customer’s need for just-in-time delivery. The BSP’s time-sensitive scheduling also provides
logistics managers with a framework to optimize workstation resource allocation, ensuring
punctual deliveries and smoother operation workflows.

Building on the discussions of the two-stage framework and its applications, this study high-
lights the broader managerial and practical implications of integrating the Air Cargo Palletiza-
tion Problem and the Build-up Scheduling Problem into a cohesive decision-making process.
By addressing these challenges sequentially, the framework not only enhances operational
efficiency but also provides actionable insights into how logistics operations can balance spa-
tial optimization with temporal constraints. It provides valuable insights for managers aiming
to optimize resource usage, reduce costs and improve service quality.

However, several limitationsmust be acknowledged, as they highlight areas for future research
and improvement. A notable limitation of the framework is that its sequential structure lacks a
feedback loop between the two stages. This restricts the framework’s ability to dynamically ad-
just upstream decisions based on downstream inefficiencies. Additionally, the model’s static
nature assumes complete knowledge of job and cargo information prior to scheduling, making
it less effective in handling dynamic changes and uncertainties inherent in practical scenarios.
The models in the framework perform well in validation, but they have certain limitations in han-
dling large-scale logistics problems. The simplified placement strategy in the EPH algorithm
results in some loss of space utilization, and the MIP model’s computational time increases
significantly with problem size.

To address these challenges, future enhancements, such as the introduction of the iterative
feedback loop, could further strengthen its applicability in complex and dynamic logistical set-
tings, making it more suitable for real-world logistics environments where uncertainty and dis-
ruption are prevalent. Future research could explore combining dynamic adjustments and
global optimization strategies to better address uncertainties in logistics operations. For ex-
ample, incorporating a rolling horizon approach could achieve iterative updating of packaging
and scheduling decisions. Additionally, hybrid approaches, such as combining simulated an-
nealing with EPH, could enhance both solution quality and computational efficiency in large-
scale logistics applications by optimizing placement globally while maintaining manageable
complexity.

Overall, the proposed solution demonstrates high practical value for Cainiao’s logistics op-
erations, particularly in addressing the efficiency and flexibility required for cross-border e-
commerce. This study also lays the groundwork for future research. With further optimization,
the methods proposed here hold promise for broader application in larger and more complex
logistics scenarios.
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