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Incorporating Temporary Coherent Scatterers in
Multi-temporal InSAR Using Adaptive Temporal

Subsets
Fengming Hu, Jicang Wu, Ling Chang and Ramon F. Hanssen, Senior Member, IEEE

Abstract—Multi-temporal interferometric synthetic aperture
radar (MT-InSAR) is used for many applications in earth
observation. Most MT-InSAR methods select scatterers with high
coherence throughout the entire time series. However, as time
series lengthen, inevitable changes in surface scattering lead
to decorrelation, which systematically decreases the number of
coherent scatterers. Here we propose a novel method to detect
and process temporary coherent scatterers (TCS) by subsequently
analyzing the amplitude and the interferometric phase. Two
hypothesis tests are developed for amplitude analysis in order to
identify the moments of appearing and/or disappearing coherent
scatterers. Based on the amplitude analysis, the parameters of
interest are then estimated using the interferometric phase. An
optimized adaptive temporal subset approach is proposed to im-
prove the precision of the estimated parameters. If the scatterers
are not evenly distributed over the area, a secondary (support)
network is designed to improve the spatial point distribution.
The main advantage of this method is the reliable extraction of
a subset of time series without using any contextual information.
Experimental results show that the TCSs significantly increase
the number of observations for displacement monitoring, and
improve the change detection capability in urban construction
areas.

Index Terms—Temporary coherent scatterer, multi-temporal
InSAR, change detection, Rayleigh distribution

I. INTRODUCTION

D IFFERENTIAL Interferometric Synthetic Aperture
Radar (DInSAR) is able to monitor the displacements

of geo-objects with millimeter-level accuracy. However, this
accuracy is significantly reduced due to atmospheric delays
and decorrelation noise [1], [2]. To overcome this limitation,
multi-temporal InSAR (MT-InSAR) has become the standard
approach to detect subtle deformations. There are three types
of methods for MT-InSAR. First, the Small BAseline Subset
(SBAS) method is used in geodetic applications over wide
scales [3], [4], [5]. This method requires groups of contiguous
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scatterers to be coherent [6] over limited temporal and spatial
baseline ranges. Effectively, the process of multi-looking is
applied to improve the correlation at the expense of a loss of
resolution [7].

The second type of methods is based on point (persistent)
scatterers (PS) and/or distributed scatterers (DS). PS-InSAR
[8], [9] focuses on point, or single scatterers with high
coherence during the whole acquired time. The PS can be
selected either by the normalized amplitude dispersion (NAD)
[9] or by the Signal-to-Clutter Ratio (SCR) [10]. This method
overcomes the limitation of decorrelation due to spatial and
temporal baselines and works well especially in urban areas, as
lots of PS targets, related to man-made objects, can be found
there [11], [12], [13]. However, it has limited applicability in
rural areas. Compared to PS, DS decorrelate temporally and
typically span several pixels where the amplitude is small but
statistically homogeneous , which is common in rural areas.
The phase of DS is obtained by using all combinations of
interferograms [14], [15] to avoid temporal decorrelation.

Hybrid methods form the third type of MT-InSAR ap-
proaches. Here, high coherence scatterers are selected based
on other criteria, such as coherence[16], phase analysis [17],
[18], maximum likelihood estimation[19], or eigenvalues of
the coherence matrix[20], which include not only PS but also
high quality DS.

In most methods, selected points are expected to maintain
high coherence over the entire time series. However, for longer
time series SAR data, pixels may exhibit PS behavior only
during parts of the time series, here referred to as temporary
coherent scatterers (TCS) [21], [22], [23]. In [21], an abrupt
change is detected using a Bayesian step detector considering a
gaussian approximation for the amplitude. In [22], an analysis
of phase and amplitude is performed to detect TCS, and a
TCS start and stop time is estimated from the amplitude data,
using a genetic algorithm. In [23], [24], TCS are selected
by assuming amplitude stability over consecutive SAR image
pairs and evaluated using a multi-master interferogram stack.
Detecting a significant change in the time series of a single
pixel is the main problem in selecting TCS. Compared to
the interferometric phase, the amplitude is considered to be
strongly related to the property of ground targets [25], [26].
Detecting a temporal change in the amplitude time series
of a single pixel was performed using ANOVA (analysis of
variance) by [27]. However, the hypothesis test of ANOVA
assumes a Gaussian distribution [28], while the amplitude
distribution may not be Gaussian. In fact, DS are often
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assumed to follow a Rayleigh distribution [25] while PS follow
the Rice distribution [29].

The stability of the amplitude can be expressed by the
normalized amplitude dispersion (NAD), where a low NAD,
typically less than 0.25, is associated with a stable, strong
scatterer. Selecting only points with a low NAD over the entire
time series results in a spatially sparse data set with high
quality, while increasing the NAD results in a more spatially
dense dataset, albeit with variable quality. Therefore, different
strategies are required depending on the quality of the selected
points and the desired point density. For this reason, [30], [31]
applied two consecutive networks (primary and secondary)
with NAD thresholds of 0.25 and 0.45, respectively, to firstly
detect potential high-quality points, followed by a densifica-
tion to include more points. Similarly, [32] showed that the
percentage of (phase) coherent points decreases rapidly with
increasing NAD, and points with NAD > 1 should be treated
as pure noise. However, for TCS, it is expected that the NADs
of the entire time span can be much larger than one. More
importantly, should TCS with a large NAD be erroneously
selected as PS candidates, parts of the interferometric phases
will be invalid, which will bias the estimated parameters.

Here, we present an optimal way for jointly modelling of
TCS and PS using both amplitude and interferometric phase
time series. First, we briefly introduce the statistical charac-
teristics of the amplitude time series of a single pixel and
establish a change detection algorithm using two hypothesis
tests based on the Rayleigh distribution. TCS are selected
only for coherent subsets of the time series and step-times
are identified automatically. Then the process of MT-InSAR
combining TCS and PS is reviewed including arc solution,
network construction, parameter estimation and precision as-
sessment. Additionally, an adaptive temporal subset approach
based on the length of the time series and a secondary network
is adapted to the interferometric process. Finally, we apply our
method to real SAR data. Both single pixel change detection
and interferometric processing are compared with conventional
methods.

This paper is organized as follows. We introduce the am-
plitude process in selecting TCS, Section II, followed by
the interferometric phase processing, Section III. Two real
data results are presented in Section IV, followed by the
conclusions in Section V.

II. AMPLITUDE ANALYSIS

A. Statistical Characteristics of Amplitude

The observation of every single pixel in a SAR image is
the summation of all elementary scatterers within a resolution
cell, which is defined as a complex Gaussian random variable
with variance σ2 [1], [33]. The complex number Z is usually
expressed as

Z = A · e−jψ, (1)

where A and ψ represent the amplitude and phase, with a joint
probability density function (PDF) defined as

f(Z) =
1

2πσ2
exp

(
−Re(Z)2 + Im(Z)2

2σ2

)
. (2)

TABLE I: Taxonomy of classes of scatterers based on coher-
ence, including their acronyms, amplitude PDF’s and expected
normalized amplitude dispersion (NAD)

Cont.Coh Temp.Coh Incoh.
Distr.Scat CCDS TCDS IDS

Rice (low SNR) Rice (low SNR)
& Rayleigh

Rayleigh,

NAD low NAD high NAD medium
Point.Scat CCPS TCPS unlikely

Rice (high SNR),
[29]

Rice (high SNR)
& Rayleigh

NAD lowest NAD highest
CCS TCS

Considering the property of the scatterers, it ranges from
point scatterers to distributed scatterers [1]. A scatterer is
considered to be ’coherent’ to some degree, if the physical
scattering mechanism does not change significantly over a
given time interval. Based on the coherence, we distinguish
three classes, (i) incoherent scatterers, where the coherence
drops significantly within the repeat-interval of the satellite,
(ii) continuously (persistently) coherent scatterers, i.e., coher-
ent over the entire time interval, and (iii) temporary coherent
scatterers (TCS), where coherence is only occurring over a
subset of the entire time series see TABLE I. According to
this taxonomy, the associated amplitude time series can be
divided into five classes, as shown in TABLE I. The PDF of
the amplitude holds information of the class of scatterers we
are dealing with.

For incoherent distributed scatterers (IDS), we assume that
the amplitude A follows a Rayleigh distribution [25], which is
a special case of the Rice distribution [34]. This follows from
the joint PDF in (2), see [1], with a PDF defined as

f(A|σ) =
A

σ2
e−

A2

2σ2 , A ≥ 0, (3)

where σ2 is the variance of the signal, here estimated per point
over time. Its cumulative distribution function (CDF) is given
as

F (A|σ) = 1− e−
A2

2σ2 , A ≥ 0. (4)

If Ai, with i ∈ [1,m] are m independent observations from
a Rayleigh distribution, the unbiased estimator of σ2 is [35],
[36]

σ̂2 =
1

2m

m∑
i=1

A2
i . (5)

The amplitude of continuously coherent point scatterers
(CCPS) follows a Rice distribution [29] with a high signal
to noise ratio (SNR) while that of continuously coherent
distributed scatterers (CCDS) follows a Rice distribution with
low SNR. In the following discussion, there is no need to
distinguish point or distributed scatterers. For this reason,
we will refer to continuously coherent scatterers (CCS) and
temporary coherent scatterers (TCS) from now on, see TA-
BLE I. However, as the treatment of continuously coherent
scatterers is stated in conventional PS-InSAR processing, this
is not further considered here. We assume that TCS are
characterized by a change from Rice to Rayleigh, or vice
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versa. The basic rationale underlying our assumption is that
a coherent DS will show less variability in its amplitude
(over time) than an incoherent DS. This follows from the
assumption that an incoherent DS can only be incoherent if it
experiences changes over time. This difference in amplitude
behavior for both categories of DS should therefore result
in different distributions. The Rice distribution is a generic
distribution, with two extremes. On one hand, if the amplitude
is relatively high and stable, this is expressed in a high non-
centrality parameter, which means that the Rice distribution
will be more Gaussian-like. That is, it will be less likely that
(during the time series) amplitudes can occur which are either
much higher, or much lower than the mean. On the other
hand, if the amplitude is varying more (as a consequence of
temporal decorrelation), which means that there is a higher
likelihood for both higher as well as lower amplitudes, the
Rice distribution is more Rayleigh-like. This follows from the
fact that the Rayleigh distribution has a longer tail for higher
amplitudes, while the amplitudes lower than the mean are less
unlikely.

B. TCS Candidates

Considering the NADs of different scatterers, CCS have the
smallest values, IDS medium, while the TCS have the greatest
values. Therefore, It is more likely to mis-classify an IDS as
being a TCS. Moreover, the number of IDS is much larger
than that of other scatterers. Therefore, removing most IDS
from the TCS candidates will reduce the mis-classifications
and improve the efficiency.

We perform a hypothesis test (here referred to as Rayleigh
Test) to test whether m observations stem from the same
Rayleigh distribution[35].

First, we estimate the variance σ2 using (5). Then, we
reorder the observations (amplitudes), which have the range
(0,∞), in increasing order and bin them into B bins
(0, x1), (x1, x2), · · · , (xB−1,∞) with varying bin-widths, but
constant probability. [36] recommends B to be at least 5. We
compute the upper boundary, xi of the ith bin using (4) under
the condition that the expected number of observations in each
bin is equal, i.e., m/B. Adapting (4) to

P (0 ≤ x < xi) = 1− e−
x2i
2σ2 =

i

B
, i = 1, . . . , B − 1, (6)

we invert this to obtain the upper boundary xi:

xi =

√
2σ2ln

(
B

B − i

)
, i = 1, . . . , B − 1. (7)

Supposing that the total number of observations in the ith bin
is fi, the test statistic is defined as [36]

χ2
0 =

B∑
i=1

(fi −m/B)2

m/B
, (8)

where χ2
0 follows a χ2 distribution with B − 2 degrees of

freedom [37]. Given the significance level α, the critical value
χ2
α is obtained. If χ2

0 < χ2
α, we sustain the hypothesis that the

m observations are from the same distribution, which means
the pixel did not change during the acquisition time, hence it

is not a temporary coherent scatterer. Note that due to speckle
noise in the single look image, increasing the significance level
α will lead to more detected changes, hence more potential
TCS’s. This initial result will be refined in the following steps.

C. Step-change Location Estimation (Heaviside function)

Determining for which period a point is coherent requires
locating the time of a step-wise change automatically. We
propose an iterative algorithm under the assumption that the
two subsets of amplitude time series on each side of the step
are from different distributions if a change happens to the
ground targets and this step is applied on the TCS candidates
obtained in Section II-B. This problem is tackled via another
hypothesis test: testing whether the two independent subsets
are from the same Rayleigh distribution. First, we consider
the single-step case. If this step is located between the pth
image and the p+ 1th image, the whole time series is divided
into two groups, A1, . . . , Ap and Ap+1, . . . , Am. To test the
hypothesis that σ2

1 = σ2
2 , the test statistic is defined as [36]

Fp =

∑p
i=1A

2
i

2p

/∑m
i=p+1A

2
i

2(m− p)
=
σ̂2

1

σ̂2
2

∼ F2p,2(m−p),0, (9)

with a central F-distribution with 2p and 2m − 2p degrees
of freedom, where σ̂2

1 and σ̂2
2 denote the unbiased estimated

variances of the two subsets. Its worth noting that the F-value
is always larger than one. The ratio and degrees of freedom
are inverted when σ̂2

1 < σ̂2
2 . Given the significance level α,

the critical value Fα is obtained. If Fp > Fα, we reject the
hypothesis that the two subsets are from the same distribution,
which means that the step is located after the pth image. At
this time, decreasing the significance level α will reduce the
number of false detected TCS. This way, the location of the
step is given by

p̂ = arg maxp=1:m−1

(∑p
i=1A

2
i

2p

/∑m
i=p+1A

2
i

2(m− p)

)
. (10)

If more than one step exists, this process can be repeated
several times until no step exists in the remaining subsets of
the time series. Based on the above two hypothesis tests (8)
and (9), the whole approach of identifying TCS is established,
which is shown in Fig. 1. This yields a time series which
is divided into n + 1 subsets with n step-times. The MT-
InSAR process requires enough observations in time domain,
as the number of images must be larger than a particular
threshold [9]. The IDS among the TCS candidates will have
an Fp values smaller than the Fα, and will be removed in
this process. Additionally, CCS are removed based on the PS-
InSAR result.

This approach allows us to distinguish three possible
changes, (i) ”appearing” TCS: the time series is coherent from
the last step-time to the end, (ii) ”disappearing” TCS: the
time series is coherent from the first acquisition up to the first
step-time, and (iii) ”visiting” TCS: the time series is coherent
between two adjacent step-times (at least two step-times exist
in this case).
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Fig. 1: Flowchart of iteratively identifying TCS. This proce-
dure is part of the total flow chart in Fig. 2.

III. PHASE ANALYSIS

A. Arc Solution

In MT-InSAR, the basic observations are the differential
interferometric phases of the arcs. Considering m−1 differen-
tial interferograms from m SAR images, the phase difference
between two points i and j of a single arc in the kth
interferogram can be expressed as follows:

∆φki,j = Ci,j−
4π

λ

Bk⊥,i
Ri sin θi

∆hi,j−
4π

λ
tk∆vi,j+2πnki,j+eki,j ,

(11)
where ∆hi,j and ∆vi,j denote the residual height difference
and the velocity difference between the two points; nki,j ∈ Z
denotes the integer phase ambiguity; tk and Bk⊥,i denote
the temporal baseline and perpendicular baseline respectively;
Ri is the slant range, θi is the local incidence angle and
λ is the radar wavelength; Ci,j denotes the phase constant
that corresponds to the atmospheric delay difference in the
master image, and eki,j denotes the random error of the phase,

including the atmospheric delay difference in the slave image.
The Integer Least Squares (ILS) model of PS can be defined
as follows [38]:

E{

 ∆φ1
i,j

...
∆φm−1

i,j

} =

2π 0 0

0
. . . 0

0 0 2π


 n1

i,j
...

nm−1
i,j



− 4π

λ


B1
⊥,i

Ri sin θi
t1

...
...

Bm−1
⊥,i

Ri sin θi
tm−1

[∆hi,j∆vi,j

]
+ Ci,j ,

(12)

where E{·} denotes the expectation. Arc solutions are ob-
tained using (12), and details of the main process can be found
in [39]. In our approach, the variance-covariance (VC) matrix
used to weight the observations is determined by variance
component estimation (VCE). Phase unwrapping for arcs is
implemented using the Lambda method [38], [40] and the
validation of the ambiguity resolution is tested by the ratio test
[41]. Then parameters can be estimated using a least-squares
approach, satisfying the acceptance condition.

Then the model for appearing TCS, disappearing TCS, and
visiting TCS is defined as:

E{

∆φtstart
i,j
...

∆φ
tstop
i,j

} =

2π 0 0

0
. . . 0

0 0 2π


n

tstart
i,j
...

n
tstop
i,j



− 4π

λ


B
tstart
⊥,i

Ri sin θi
tstart

...
...

B
tstop
⊥,i

Ri sin θi
tstop


[
∆hi,j
∆vi,j

]
+ Ci,j ,

(13)

where tstart and tstop denote the locations of the step-times as
discussed in Section II-C. For appearing TCS, tstop is m − 1
and tstart is the last step-time. For disappearing TCS, tstop is
the first step-time and tstart is 1. For visiting TCS, tstart and
tstop are two adjacent step-times.

B. Network Construction

As TCS and PS time series have different lengths, it is not
possible to process them together. Additionally, PS selected
by different thresholds will also have a different noise level.
Therefore, an agile processing method is required and points
with different qualities should be processed with different
strategies. Fig. 2 shows the flowchart of processing points in
different groups. During our processing, points are divided into
three groups, (i) PS with low noise, (ii) PS with medium noise
and (iii) TCS. These three groups are processed separately.

First, PS points with low noise are selected with a strict
threshold to provide high precision of the final result. For
example, 0.25 is a recommended threshold of the normalized
amplitude dispersion (NAD) to select PS [9]. In this group,
VCE is applied to determine the weight matrix and parameters
for the orbit error are estimated if necessary. Then the refer-
ence network is established using two steps. An initial network
is generated by a Delaunay network to link all points. After
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(Level Two)

Parameters of 
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Precision 

(Level two)

Fig. 1

Appearing 

TCS

Disappearing 

TCS
Visiting TCS

Fig. 2: Flowchart of processing points in different groups.

removing poor arcs, the main network which contains most
points is identified by the depth-first search algorithm [42].
Every isolated point is connected to its nearest neighbors in
the main network and the number of nearest points is increased
sequentially. Additionally, only points that are connected to
other points more than two times are accepted in the reference
network.

Second, points with medium noise are selected by increasing
the NAD threshold . A second-order network is used to link
these new points to the reference network. This process is
similar to the second step in the reference network. New
arcs are generated by connecting every point to its nearest

neighbors in the reference network and these new arcs are
solved using the same way. During this process, the weight
matrix and the parameters of the orbit error, as determined by
the reference network, are used again.

Third, TCS and their step-times are obtained by amplitude
analysis. In the third group, the three types of TCS (appearing,
disappearing and visiting TCS) are processed using the same
way separately. First of all, TCS are divided into several
levels of temporal subsets according to the subset length.
Fig. 3 illustrates three levels of adaptive temporal subsets
on 45 randomly selected TCS including 15 appearing TCS,
15 disappearing TCS and 15 visiting TCS. Then every TCS
is connected to its nearest PS to generate the second-order
network at each level. Unfortunately, if PS are unevenly
distributed over the area, its difficult to find a sufficient number
of arcs between TCS and PS. So a secondary network is
adopted. The first network is used to link some of the TCS
to the PS network and the secondary network is used to link
remaining TCS to the previously linked TCS for each type
of TCS separately. Here, we always connect ”new” appearing
TCS to previously linked appearing TCS since they always
span a common time interval, cf. Fig. 3. This also holds for
disappearing TCS. For visiting TCS, we calculate the length
of the common time interval when connecting ”new” visiting
TCS to previously linked visiting TCS. If the length is smaller
than a given threshold (see Fig. 2), this arc is dropped from
the processing.
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Fig. 3: Example of the adaptive temporal subsets on an
arbitrary subset of TCS. Every point has its own coherence
interval.

C. Parameter Estimation and Precision

In the reference network, a velocity map can be obtained
for all n1 points by integrating all arc solutions

v1 = (BT1 Q
−1
1 B1)+BT1 Q

−1
1 ∆v1, (14)
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where B1 denotes the design matrix related to the network;
∆v1 denotes the estimated differential deformation rate of all
arcs; (·)+ denotes the pseudo-inverse and is solved by a faster
algorithm [43]. Q−1

1 is the weight matrix related to the quality
of the arc solutions which is defined as

Q−1
1 = diag(σ−2

∆v1
, . . . , σ−2

∆vn
), (15)

where σ2
∆v denotes the variance of the estimated deformation

rate and n denotes the number of accepted arcs. The term
diag(·) denotes the diagonal elements of the matrix. The
precision of all points can be estimated as follows:

D{v1} = σ2
1(BT1 Q

−1
1 B1)+(BT1 Q

−1
1 B1)(BT1 Q

−1
1 B1)+,

(16)
where the σ2

1 denotes the variance of unit weight. No reference
point is specified during the estimation.

Based on the established reference network, PS points with
medium noise as well as TCS can be included in the second-
order network. The velocity map for n2 new points can be
obtained by integrating new arc solutions jointly with points in
the reference (first-order) network. The estimated parameters
of the points in the reference network don’t change in the
subsequent steps and the solution of the second-order network
is formulated as follows:[

v2

k

]
=

[
BT2 Q

−1
2 B2 GT

G 0

]−1 [
BT2 Q

−1
2 ∆v2

v1

]
, (17)

where B2 denotes the design matrix related to the network;
∆v2 denotes the estimated differential deformation rate of all
arcs; Q−1

2 is the weight matrix related to the quality of the arc
solution which is defined in the same way as Q−1

1 ; and k is a
Lagrange coefficient vector, without physical meaning which
we don’t use during the process.

The constraints matrix G is defined as:

G v2 = v1. (18)

The first n1 columns of matrix G are a unit matrix with
dimension n1 × n1, while the remaining n2 columns are a
zeros matrix with dimension n1 × n2.

The precision of points in the second-order network can be
formulated as follows:

D{v2} = σ2
2(BT22Q

−1
2 B22)−1BT22Q

−1
2 Ql

·Q−1
2 B22(BT22Q

−1
2 B22)−1, (19)

where Ql is defined as follows:

Ql = Q2 +B21(Dv1/σ
2
1)BT21, (20)

where B21 and B22 are obtained by splitting the design matrix
B2:

B2 = [B21|B22]. (21)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Change Detection of a Single Pixel

Real SAR data was used to test and demonstrate the change
detection algorithm with amplitude time series of single pixels.
All pixels are classified in three groups, based on their
normalized amplitude dispersion (NAD). The first group, with

NAD<0.25, is assumed to contain high quality PS points,
which exhibit a homogeneous behavior over time. The second
group, with 0.25 <NAD< 1 is assumed to contain PS points
with more noise, as well as DS points. The third group, with
NAD> 1 may hold points which are either incoherent, or
exhibit a discontinuity in their temporal behavior (TCS).
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Fig. 4: Amplitude time series and F-values of three pixels. (a)
(c) and (e) are the results of three time-series obtained by our
method; (b) (d) and (f) are obtained by ANOVA. (the black
dashed line indicates the threshold F-value.)

Fig. 5: Amplitude images of the first time series from the 7th
to the 18th image.The first row corresponds to the amplitude
images from the 7th to the 12th while the second row
corresponds to the amplitude images from the 13th to the 18th.
(Red cross indicates the location of the pixel.)

Three amplitude time-series from the different groups were
chosen to validate our method, with NAD values of 1.04, 0.21
and 0.67, respectively. Setting the level of significance α to
0.02, both our method and ANOVA were applied to the three
time series, see Fig. 4.
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Fig. 6: NADs obtained by different positions of step-times
using the first time series.

Figs. 4 (a), (c) and (e) are obtained by our method. Con-
secutively testing the step-time for each image, we obtain the
corresponding F-values using (9). Different from ANOVA, the
threshold of each F-value varies, so we set an F-value which
is smaller than the critical value Fα to zero. The step-time is
then located at maximum F-value. Here we only consider a
single step-time. The step-time of the first time series is at the
12th image, while there are no changes in the second and third
time series. Figs. 4 (b), (d) and (f) are obtained by ANOVA.
The threshold for the F-value is represented as a black dashed
line and the step-time is located at the maximum F-value, as
long as it is also greater than the threshold. So the step-time
of the first time series is after the 11th image and after the
18th and the 17th image, for the second and third time series,
respectively. Then, we show the amplitude images of the first
time series from the 7th to the 18th image in Fig. 5. The point
changed from the 12th image, and there is no signal after the
12th image. Therefore, the step-time is located at the 12th
image. Further, Fig. 6 shows the NADs obtained by different
positions of step-times using the first time series. Comparing
the positions of the step-times obtained by the two methods,
the results by our method are more consistent with the actual
situation.

While the algorithm indicates that there is no change (since
0.25 <NAD< 1 for the third time series and NAD< 0.25
for the second time series), a visual inspection of the point
confirms that the amplitude is very stable and the phase time
series is steady-state. Therefore, the ANOVA method results
in false alarms of changes.

On the other hand, considering the computational burden
of single pixel change detection, time complexity of the
two algorithms is compared. Supposing that only one step-
time exists, the time complexity of both methods is O(m).
However, if there were s step-times, the time complexity of
ANOVA is O(ms) while that of our method is O(m logm),
which is much faster.

B. Case Study I: Delft

The first demonstration of the amplitude-augmented inter-
ferometric processing was implemented using forty Sentinel-
1A (S1A) images between April 2016 and February 2018 in
Delft, The Netherlands. The data set covered a 10×10 km

area and was registered using GMT5SAR software [44]. The
slant-range and azimuth pixel spacings are 2.3 m and 14.7 m,
respectively.
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Fig. 7: Distributions of the temporal and spatial baselines. Red
dot indicates the master image and blue dots indicate the slave
images.

Fig. 8: Velocity on PSs in Delft, the Netherlands.

Most areas didn’t change during the evaluated time slot
and PS points were distributed with high density throughout
the area. External digital elevation models (DEMs) were not
used in our process and only a flattened phase correction was
applied during data preprocessing. During the interferometric
process, PS points in the first and second group were selected
using an NAD with thresholds of 0.25 and 0.4. Higher values
could be chosen as the second threshold, but the noise would
increase accordingly. Fig. 7 shows the distribution of the spa-
tial and temporal baselines. The maximum temporal baseline
was 200 days and the maximum spatial baseline was less than
150 m.
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Fig. 9: Distribution of step-times on appearing TCS and
disappearing TCS.

Fig. 10: Distribution of NADs on TCS obtained from the
subset and the entire time series.

PS points in the first and second groups were solved and
the final velocity map contained 50294 points, which is shown
in Fig. 8. The subsidence rates range from −15 to +10 mm/a
and PS points are evenly distributed over the whole area. Then
the iterative change detection algorithm described in Section II
was applied where the significance levels of the two hypothesis
tests were set to 0.5 and 0.02. The initial result is extremely
noisy, hence interferometric processing is required to refine the
result. The distribution of the appearing and disappearing TCS
with the corresponding step-times in the whole area are shown
in Figs. 9. Based on the step-times, the NADs of the TCS can
be recalculated using the subsets of the time series. Fig. 10
shows the distribution of the NADs on TCS by the entire and

subset time series. If the threshold was set to 0.4, the number
of available points increased from 6283 to 23273. Further, the
longer the length of time series is, the higher the precision
of the estimated parameters that can be obtained in the MT-
InSAR algorithm. A temporal threshold on the subset length
is set to obtain reliable solutions of TCS. In this case, the
thresholds cover 70%, 50% and 30% of the whole time series,
which corresponds to the length of 28, 20 and 12, respectively.
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Fig. 11: Amplitude time series with adaptive temporal sam-
pling on four TCS. Red lines indicates the coherent interval
and blue lines mark the locations of step-times.

Fig. 12: Velocity on TCS in Delft. White rectangles identify
the selected areas for details.
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Four pixels are selected to show the amplitude time series
with adaptive temporal subsets. Figs. 11 (a) and (b) are ap-
pearing and disappearing TCS. Figs. 11 (c) and (d) are visiting
TCS. The coherent interval is determined by interferometric
processing. Fig. 12 shows the velocity of the TCS. The number
of accepted appearing TCS is 6741, that of the disappearing
TCS is 7449 and that of the visiting TCS is 2188. We also
estimate the standard deviations of linear deformation velocity
for all TCS, which are used to evaluate the reliability of the
parameters.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13: Magnified views of selected area. The first row
corresponds to velocity on PS, the second row to velocity on
TCS, the third and the forth rows to Google Earth images. (a),
(d), (g), and (j) are region A. (b), (e), (h), and (k) are region
B. (c), (f), (i), and (l) are region C. Colors are as in Fig. 12.

Three small regions (A, B, and C) are selected to show
more details, which are marked as three white rectangles in
Fig. 12. There are new buildings in the three selected area
and magnified views of these area are shown in Fig. 13.
According to Figs. 13 (a)∼(f), results of PS do not include
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Fig. 14: Amplitude time series of the TCS in the area C.

any valid points in these areas, while results of TCS highlights
these changes. Figs. 13 (g)∼(l) show the construction of the
new buildings in the selected area from the Google Earth
comparison, which shows good agreement with the result of
TCS. It’s obvious to find the changes caused by construction.
Additionally, Fig. 14 shows the amplitude time series of
several TCS in selected region B. All points contain a jump
at similar times and their step-times are at the 9th, 10th and
11th image, which means this construction is most likely to
occur between 16th January 2017 and 9th February 2017.

C. Case Study II: Shanghai HongQiao Airport

The second demonstration of the amplitude-augmented in-
terferometric processing uses thirty-seven TerraSAR-X (TSX)
images (Mar 2009–Oct 2012). The data set covered a 3×6 km
area of Shanghai HongQiao international airport, during the
time when the T2-terminal was built. The data set was
coregistered using the GAMMA software. The slant-range and
azimuth pixel spacing are 0.91 m and 1.97 m, respectively.

Mar-09 May-10 Aug-11 Oct-12

Image date

-300

-200

-100

0

100

200

300

400

S
p

a
ti

a
l 

b
a
se

li
n

e
 (

m
)

Fig. 15: Distribution of the temporal and spatial baselines. The
red dot indicates the master image; blue dots indicate the slave
images.

The thresholds and steps conducted in this case-study were
identical to the ones in the Delft study area. The main
difference between the two cases is the distribution of the
points. Points in the Delft case are distributed with high
density in the entire area, while points in the Shanghai case are
distributed with high density only in some areas. Fig. 15 shows
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Fig. 16: Velocity on PS in Shanghai HongQiao airport.

Fig. 17: Velocity on TCS in Shanghai HongQiao airport,
visualized under the assumption that the velocity of each point
is constant over the entire time range.

the distribution of the spatial and temporal baselines. The
maximum temporal baseline was 850 days and the maximum
spatial baseline was 400 m.

The final velocity map of PS contains 40934 points with
subsidence rates ranging between −25 and +15 mm/a, see
Fig. 16. PS points are only detected in the north and east
area due to the construction of the airport during the entire
(100%) time-range. Valid PS points are extremely sparse, so
it is difficult to estimate the deformation of the entire area
based on this result. If we plot appearing, disappearing, and
visiting TCS in this area, we obtain Fig. 17, which contains
94519 points. Note that this is double the amount of PS, and
therefore the inclusion of TCS to the PS yields an increase of
200% in the number of valuable points. Moreover, note that
the visualization of these points in a single velocity figure is
sub-optimal, as points which are coherent only over a subset
of time may exhibit a different velocity compared to the
continuously coherent PS points.

Comparison with the PS velocity map, cf. Fig. 16, shows
buildings and constructions that were not detected using the
full time series.

In addition to the TCS velocity map, the results of the
amplitude-based change detection approach show the dates
of appearance and disappearance of structures see Fig. 18.
From the appearance map (left) in Fig. 18, the T2-terminal
including its surrounding facilities and new roads around the
airport were completed later than March 2011. According to
the disappearance map (right), Fig. 18, some structures on the
west of the airport were removed between Dec 2009 and Aug
2010. The homogeneity in the appearance and disappearance
dates can be used as a reliability metric of the results.

Fig. 18: Change detection in the construction area of Shang-
hai HongQiao airport. Left is appearance map and right is
disappearance map.
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D. Adaptive Temporal Subsets and Secondary Network

Four results considering the adaptive temporal subset ap-
proach and secondary network were obtained and only appear-
ing TCS were used to perform a comparison. TABLE II shows
the number of appearing TCS with different strategies. Fig. 19
shows the velocity of appearing TCS, where the number of
appearing TCS is 62820.

Fig. 19: Velocity of appearing TCS at HongQiao airport with
a three-level (70/50/30%) process and a secondary network.

First, we used the three levels of temporal subsets, but did
not apply the secondary network. The velocity of appearing
TCS is shown in Fig. 20. The density of TCS is lower, and the
total number of accepted TCS is much lower, i.e. 47119 points.
Three small regions (A, B, and C) were selected to show
more details, which were marked as three white rectangles in
Figs. 19 and 20. According to Fig. 21, more TCS are accepted
with the help of the secondary network, which shows details
of the subsidence.

Second, the temporal subset approach was limited to only
one level, i.e. 30% of the entire time series. However, this
time, the secondary network was applied. Now, the number of
accepted TCS is 63233, which contains a similar point density

The third test was applied with a one-level process (30%
of the entire time range), but without the secondary network.
The number of accepted TCS is 42672 and the point density
over the runways is lower again, From the comparison, both
the one-level (30%) and three-level (70, 50, and 30%) pro-
cesses show a relatively high point density, and the secondary
network appears to be necessary if the PS are not evenly
distributed over the whole area.

Fig. 20: Velocity of appearing TCS at HongQiao airport with
a three-level (70/50/30%) process but without the secondary
network.

TABLE II: Accepted number of appearing TCS with different
strategies

With secondary network Without secondary network
Three levels 62820 47119

One level 63233 42672

The standard deviations (SDs) of the appearing TCS ob-
tained by different strategies in the Shanghai case-study have
been compared. The first comparison is the SDs of appearing
TCS obtained by three-level and one-level with secondary
network, which is shown in Fig. 22. The SDs of points
obtained by the three-level process are smaller than those of
points obtained by the one-level process. The quality of points
with a longer time series is better than that of points with
shorter time series, so its reasonable to process points with a
different temporal support separately. The second comparison
concerns the SDs of appearing TCS obtained by the three-
levels approach with and without the secondary network,
which is shown in Fig. 23. Although the number of points
in these two groups is different, the SDs of the appearing
TCS are similar. Through the above analysis considering
the number of accepted TCS and their SDs, the process of
the secondary network appears to be useful to include more
potential TCS and the adaptive temporal subset approach is
helpful to evaluate the quality of TCS properly.
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(a) (b) (c)

(d) (e) (f)

Fig. 21: Magnified views of selected area. The first row
corresponds to velocity of appearing TCS with a secondary
network, the second row to velocity of appearing TCS without
a secondary network. (a) and (d) are region A. (b) and (e) are
region B. (c) and (f) are region C. Colors are as in Fig. 19.

Fig. 22: Comparison of SDs on TCS obtained by the three-
level (70/50/30%) and the one-level (30%) processing.

V. CONCLUSIONS

A new method for processing TCS is proposed based on
amplitude change detection. Amplitude time series can be used
to select potential TCS and locate the step-time automatically.
Assuming a Rayleigh distribution, two hypothesis tests are
introduced to conduct single pixel change detection. The inter-
ferometric phase is used to refine the initial result and estimate
the parameters of the TCS. Only TCS which have enough
arcs connected to the reference network are accepted, which
separates the pure noise and true TCS from the candidates.

Fig. 23: Comparison of SDs on TCS obtained by the three-
level (70/50/30%) process with and without the secondary
network.

Additionally, during the interferometric processing of the
TCS, an adaptive temporal subset approach is established,
considering the length of the time series, to improve the
precision of the estimates. A secondary network is used to
include as many points as possible. Both options improve
the density and precision of the final points especially for
a spatially uneven distribution of points over the area. Two
cases with a different distribution of points using S1A data
in Delft and TSX data in Shanghai Hongqiao international
airport were conducted. Not only does the velocity map of the
TCS have a greater point density and show the deformation
characteristics of the area, but it also highlights the changes
in the construction area accurately.
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