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Transverse-EPT: A Local First Order Electrical Properties

Tomography Approach Not Requiring Estimation
of the Incident Fields

Reijer Leijsen1, *, Wyger Brink1, Xin An2, Andrew Webb1, and Rob Remis2

Abstract—A new local method for magnetic resonance electrical properties tomography (EPT),
dubbed transverse-EPT (T-EPT), is introduced. This approach iteratively optimizes the dielectric
properties (conductivity and permittivity) and the z-component of the electric field strength, exploiting
the locally E-polarized field structure typically present in the midplane of a birdcage radiofrequency
(RF) coil. In contrast to conventional Helmholtz-based EPT, T-EPT does not impose homogeneity
assumptions on the object and requires only first order differentiation operators, which makes the
method more accurate near tissue boundaries and more noise robust. Additionally, in contrast to
integral equation-based approaches, estimation of the incident fields is not required. The EPT approach
is derived from Maxwell’s equations and evaluated on simulated data of a realistic tuned RF coil model
to demonstrate its potential.

1. INTRODUCTION

In electrical properties tomography (EPT), the goal is to obtain quantitative conductivity (σ) and,
to a lesser extent, permittivity (ε) maps from non-invasive measurements of the circularly polarized
radiofrequency transmit field B+

1 = (Bx + jBy)/2 acquired with a magnetic resonance scanner.
Since the conductivity influences the specific absorption rate (SAR), EPT has potential applications
in hyperthermia treatment planning and SAR assessment [1, 2]. Additionally, due to the relation
between ionic content and tissue conductivity, conductivity may provide a useful biomarker in tumour
diagnostics [3, 4]. A large number of EPT methods are currently available [5–7]; however, they all
suffer from one or multiple challenges such as noise sensitivity, the need for estimation of the incident
electromagnetic fields, or a high computational demand.

Here, we present a new approach, dubbed transverse-EPT (T-EPT), which exploits the E-polarized
field structure typically present in the midplane of a birdcage radiofrequency (RF) coil [8], an assumption
that is frequently used for two-dimensional EPT approaches [9, 10]. In contrast to conventional
Helmholtz-based EPT (H-EPT) [11, 12], this approach does not impose assumptions on the spatial
homogeneity of the tissue structures, which would otherwise degrade reconstructions around tissue
interfaces and small tissue structures. Additionally, the proposed method involves only first order
differentiation operators acting on B+

1 instead of second or higher order derivatives, improving noise
robustness [11, 13]. Furthermore, in contrast to integral-based methods, this method does not require
knowledge of incident fields, making the method easier to apply [9, 10] and, in contrast to data-based
methods, no training data is required to allow for generalization [14, 15]. Finally, compared to three-
dimensional methods that take all field components into account [16–18], this technique is fast and easy
to implement.

Received 10 February 2021, Accepted 26 April 2021, Scheduled 11 May 2021
* Corresponding author: Reijer Leijsen (R.L.Leijsen@lumc.nl).
1 C.J. Gorter Center, Leiden University Medical Center, The Netherlands. 2 Circuits and Systems Group, Delft University of
Technology, The Netherlands.



138 Leijsen et al.

Through Maxwell’s equations, we derive the two fundamental equations that relate the B+
1 field to

the electrical properties (EPs) and z-component of the electric field strength (Ez). These two equations
are then combined in an objective function, which is minimized to estimate the EPs. Numerical
experiments on both a head and pelvis model are performed in two- and three-dimensional configurations
with a realistic RF coil model to evaluate the effect of field components that are not accounted for in the
E-polarized field representation. Moreover, the effects of the transceive phase assumption (TPA) [19]
as well as noise are evaluated to show the potential of T-EPT.

2. THEORY

The fundamental assumption of T-EPT is that longitudinal variations of the longitudinal magnetic
field and transverse electric field can be neglected within the midplane of a birdcage coil. A purely
E-polarized electromagnetic field satisfies this assumption, and we therefore consider the z-component
of the Maxwell-Ampère law and the x- and y-components of Faraday’s law to arrive at the fundamental
EPT equations. Specifically, in steady state (time factor exp(jωt)) the z-component of the Maxwell-
Ampère’s law is given by

∂yBx − ∂xBy + μ0ηEz = 0 (1)

with μ0 the permeability of free space (air) and η = σ + jωε the admittance containing the EPs (σ
and ε). Now in EPT, the B+

1 field is considered known through measurements and the above Maxwell
equation can be used to relate this measured field to ηEz, the z-component of the induced electric
current density. In particular, by acting with the Wirtinger derivative ∂− = (∂x − j∂y)/2 on the B+

1
field, we obtain

∂−B+
1 =

1
4

[∂xBx + ∂yBy − j (∂yBx − ∂xBy)] ,

=
1
4

(∂xBx + ∂yBy + jμ0ηEz) ,

=
1
4

(−∂zBz + jμ0ηEz) , (2)

where we used Equation (1) in the first step and Gauss’ law of magnetism (∂xBx + ∂yBy + ∂zBz = 0)
in the second step. For relatively large human tissue structures in the midplane of a birdcage RF coil
we typically have |∂zBz| � |μ0ηEz| which allows for setting ∂zBz ≈ 0, which is consistent with our
assumption on the structure of the electromagnetic field, and the previous equation can therefore be
simplified to

4
jμ0

∂−B+
1 = ηEz, (3)

which relates first-order derivatives of the data to the product of η and Ez. This is our first fundamental
T-EPT equation.

Subsequently, we consider the x- and y-components of Faraday’s law and write these equations as

Bx = − 1
jω

(∂yEz − ∂zEy) and By =
1
jω

(∂xEz − ∂zEx) . (4)

Substituting these expressions in the definition of the B+
1 field gives

B+
1 =

1
2
(Bx + jBy) =

1
ω

(
∂+Ez − ∂zE

+
)
, (5)

with ∂+ = (∂x + j∂y)/2 and E+ = (Ex + jEy)/2. In the neighbourhood of the midplane of a birdcage
RF coil we typically have |∂zE

+| � |∂+Ez| which allows setting ∂zE
+ ≈ 0, and therefore in this region

the above equation simplifies to

B+
1 =

1
ω

∂+Ez. (6)

This is our second fundamental T-EPT equation. We note that a purely E-polarized field (Ex = Ey =
Bz = 0) satisfies the two fundamental T-EPT equations (3) and (6) exactly. Also note the dual character
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of both equations: a Wirtinger derivative of B+
1 is proportional to Ez, while a Wirtinger derivative of

Ez is proportional to B+
1 .

Having the fundamental T-EPT equations available, we attempt to reconstruct the admittance η,
and thus the EPs, by minimizing the discrepancy in Equations (3) and (6). To this end, let ‖ · ‖ denote
the standard two-norm of scalar complex-valued field quantities defined on the midplane of the birdcage
coil. We now reconstruct the admittance from available B+

1 data by iteratively minimizing the objective
function

F (Ez, η) =
1
2

∣∣∣∣
∣∣∣∣

4
jμ0

∂−B+
1 − ηEz

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣

4
jμ0

∂−B+
1

∣∣∣∣
∣∣∣∣
2 +

1
2

∣∣∣∣
∣∣∣∣B+

1 − 1
ω

∂+Ez

∣∣∣∣
∣∣∣∣
2

∣∣∣∣B+
1

∣∣∣∣2 (7)

for the electric field and admittance in an alternating fashion. Specifically, for a fixed admittance,
we first update the electric field Ez via a conjugate gradient update (see Appendix A), followed by a
least-squares minimization of Equation (3) to obtain η (note that η is present in the first term on the
right-hand side of Equation (7) only, which measures the discrepancy in satisfying Equation (3)). These
steps are repeated until convergence or a maximum number of iterations is reached. The conductivity
and permittivity maps are finally extracted from the real and imaginary part of the admittance.

3. METHODS

Synthetic data was acquired by simulating a 3T birdcage body transmit coil driven in quadrature at
128 MHz using XFdtd (XF7.5, Remcom State College, PA, USA). The coil had 16 rungs (leg length
420 mm, leg width 40 mm and endring width 80 mm), a length of 580 mm and a diameter of 704 mm, and
was surrounded by an RF shield which was 700 mm in length and 743 mm in diameter. The coil model
was tuned with endring and leg capacitors with a capacitance of 26.7 pF and 67 pF, respectively, and
driven in quadrature mode by two 50 ohm voltage sources with a +90 degree phase shift. The coil model
was loaded by either the Duke or Ella body models from the virtual family [20]. The Duke body model
had its pelvis centered in the coil, while the Ella body model was centered around its corpus callosum.
The models occupy a domain of 190×150 and 109×87 voxels of 2×2 mm2 for the pelvis and head model,
respectively. For each object the current density distribution on the loaded coils was acquired to simulate
two-dimensional settings using in-house simulation code in MATLAB (version 2019b, The MathWorks,
Inc., Natick, MA, USA). The electromagnetic fields were extracted and processed to construct the B+

1
data with transmit phase ϕ+. The coil was also driven in anti-quadrature mode with a −90 degree
phase shift between the sources in order to construct the transceive phase ϕ± to evaluate the effect of
the TPA (estimating the transmit phase as half the transceive phase [19]). Finally, a noisy dataset was
constructed by adding complex Gaussian noise to the last described dataset of both models to achieve
a signal-to-noise ratio (SNR) of 100 defined as mean B+

1 over standard deviation of noise [15].
The reconstruction approach was discretized (see Appendix B) and implemented in MATLAB.

First, it was tested in a two-dimensional configuration in which all field data are consistent with the
E-polarized field representation. Second, it was tested in a three-dimensional configuration to evaluate
the effect of field components that are not represented by the E-polarized field structure. Third, the
method was tested on transmit field data with a transceive phase distribution and the effect of the
TPA therein was evaluated. Finally, the method was tested on noisy data and compared to H-EPT
with a 7 × 7 × 5 noise suppression kernel as defined in [19, 21]. The iterative process was initialized
by estimating the EP maps with H-EPT and by computing Ez through Equation (3). The iterative
process was stopped after 1000 iterations.

4. RESULTS

Figure 1 shows absolute maps of the electric field strength components and different phase maps
corresponding to the Duke pelvis model and the Ella head model configurations, to indicate the validity
of the E-polarized field assumption as well as the accuracy of the TPA. We observe in the pelvis model
that the magnitude of the x- and y-components of the electric field strength are significantly smaller
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Figure 1. Simulations of the electric field strength and the (absolute difference between) the true
transmit field and that estimated from the available transceive phase for (a), (b) the Duke pelvis model
and (c), (d) the Ella head model. The magnitude of (a), (c) the electric field strength components and
(b), (d) the phase maps.

than the magnitude of the z-component, while this magnitude difference is smaller in the head model
configuration. This indicates that the fields conform better to the assumed E-polarized field structure
in the pelvis model than in the head model configuration. In contrast, the TPA shows smaller errors in
the head model configuration than in the pelvis model configuration, indicating that the TPA is more
accurate in the head model than in the pelvis model.

Figure 2 compares the reconstructed conductivities of the Duke pelvis region in the two- and three-
dimensional configurations, which are obtained within a few seconds on an Intel i7-6700 CPU with 32 GB
memory. (The permittivity results are shown in the supplementary information.) The reconstruction
results for a two-dimensional configuration, where the E-polarized field structure is ensured, are shown
in Figure 2(b). An artefact is visible on the diagonal of the object which coincides with the region
where the magnitude of Ez is low, see Figure 1(a). The result when T-EPT is applied on B+

1 data with
ϕ+ generated in a three-dimensional configuration is shown in Figure 2(c). Since the EM field is no
longer strictly E-polarized, approximations made to obtain Equations (3) and (6) are not completely
satisfied, leading to errors in the reconstructed EPs. The tissue structure is maintained, but larger errors
are visible across the diagonal of the object where the magnitude of Ez is small. Finally, Figure 2(d)
shows the reconstruction results when the TPA is applied to ϕ±. The reconstructed conductivity map
is different from the map obtained without TPA, but remains of a similar overall quality. Significant
differences are mainly observed in the permittivity map, especially at locations where the TPA does
not hold.

The conductivity results from the Ella head model are shown in Figure 3. (The permittivity
results are shown in the supplementary information.) The reconstructed conductivity map in the two-
dimensional configuration has good accuracy in the reconstruction of the tissue structure, but shows
large underestimations for high conductivity values, which also coincide with areas of low electric field
strength. The three-dimensional configuration shows a larger reconstruction error in the head model



Progress In Electromagnetics Research M, Vol. 102, 2021 141

C
on

du
ct

iv
ity

m
ap

0

0.75

1.5
[S/m]

A
bs

ol
ut

e
er

ro
r

0

0.25

0.5
[S/m]

(a) (b) (c) (d)

True 2D, ϕ 3D, ϕ 3D, ϕ   /2+ ±+

Figure 2. (a)–(d) Reconstructed conductivity and (e)–(h) relative permittivity map, with their
corresponding absolute error map, of the Duke pelvis model for different B+

1 datasets.
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Figure 3. Reconstructed conductivity map (top row) and the corresponding absolute error map
(bottom row) of the Ella head model for different B+

1 datasets.

than in the pelvis model, when compared to their corresponding two-dimensional configurations. This
is in agreement with the results observed in Figure 1(c), which shows larger deviations from the E-
polarized field structure in the head model when compared to the pelvis model. Figure 3(d) shows the
reconstruction when the transmit phase is estimated from ϕ± via the TPA, which yields essentially the
same reconstruction as when based on ϕ+. This is in agreement with the results observed in Figure 1(d),
which shows relatively small errors due to the TPA.

The T-EPT conductivity reconstruction results of both models with uniform Gaussian noise added
to the simulated data are shown in Figure 4 and compared to H-EPT with a noise robust Laplacian
kernel. (The permittivity results are shown in the supplementary information.) The first-order
differentiation-based T-EPT results are disturbed by the noise, but the underlying tissue structure
remains clearly visible. This is in contrast to H-EPT, which utilizes second-order differentiation
operators leading to severely degraded reconstructions. The T-EPT reconstruction of the central region
with low Ez appears to obtain a similar quality as H-EPT.
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Figure 4. Reconstructed conductivity map of (a), (b) the Duke pelvis model and (c), (d) the Ella head
model from noisy three-dimensional transmit field data with an SNR of 100 and with TPA applied.

5. DISCUSSION

T-EPT only applies first-order differences to the data making it significantly more noise robust than
H-EPT (which applies second-order differences), even though the H-EPT implementation incorporates
noise mitigation strategies while the T-EPT implementation did not. Regularization strategies, such as
adding a multiplicative total variation term to the objective function, might further reduce the noise
effects on the T-EPT reconstructions [9]. Note that since the proposed approach is fairly straightforward,
extensions are relatively easy to implement. Additionally, T-EPT does not require imposing tissue
homogeneity assumptions, which are required in Helmholtz-based approaches [11–13, 22], resulting in
significantly better reconstruction accuracy at tissue interfaces, allowing also for the reconstruction of
smaller tissue structures. Furthermore, the method does not require knowledge of the incident fields, in
contrast to integral equation-based EPT approaches [9, 10, 17, 18], making the method easier to apply
to and avoiding the need for vendor-specific information on the transmit coil or additional calibration
experiments [23]. Also, in contrast to methods based on a dictionary or on machine learning [14, 15], the
method does not require an exhaustive set of example data, which can be difficult to obtain. Moreover,
the method requires only a few seconds to arrive at a solution, while integral equation-based approaches
that take the three-dimensional field structure into account can require several hours [17] up to days [18].

Similar to other two-dimensional approaches in EPT [9, 10], the proposed approach revolves around
Ez, and in regions where its magnitude is low, an artefact can be observed. As the conduction and
displacement current are low in this region, the underlying EPs leave an inherently weaker imprint on
the measured B+

1 data. These regions can be positioned elsewhere by using a transmit array coil with
multiple elements [25], and their effect on the reconstruction can be mitigated by incorporating multiple
complementary antenna settings into the objective function [9, 24]. The reconstruction process can be
regularized to avoid error-propagation in regions with weak Ez.

In all discussions, we note that the higher accuracy observed in the conductivity maps than the
permittivity maps can be assigned to the larger influence of the conduction than the displacement
currents on the B+

1 at this frequency [17]. This finding is in line with many other studies. Although the
permittivity results are inaccurate, resulting in essentially meaningless absolute values from a physical
point of view, relatively accurate conductivity values can still be obtained.

The 2D reconstructions show that T-EPT is applicable in regions where the longitudinal variations
of Ex, Ey, and Bz are small, i.e., in a region where the electromagnetic fields have an E-polarized field
structure, which is typically a fair approximation around the midplane of a birdcage coil. However, the
results from the 2D and 3D fields indicate a substantial underestimation of the true EP value, indicating
that further refinement of the method is warranted. Other anatomical areas where T-EPT may prove
useful may include more “cylindrical” body parts such as legs or arms. Additionally, other transmit
coil topologies such as TEM coils [26] might satisfy the made assumptions better and may, therefore,
provide improved reconstruction performance. We note that numerical experiments of transversal slices
several centimeters away from the midplane resulted in EP maps with comparable quality.

The TPA introduces artefacts for non-symmetrical objects [19]. Since the head model is fairly
circular and symmetrical, the differences between using ϕ+ or ϕ±/2 are negligible. However, the
TPA results in larger reconstruction errors in the pelvis model. Other EPT techniques overcome the
unavailability of ϕ+ by reformulating the problem in terms of magnitude only [18, 27], in terms of ϕ± [28]
or in terms of relative phases when a multi-element array is available [29], and these approaches may
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also be applicable to T-EPT.

6. CONCLUSION

This manuscript introduces transverse EPT, a new reconstruction technique that is noise robust,
accurate at tissue boundaries, fast, easy to implement and does not require knowledge of the incident
fields. It builds on the symmetry between the transmit and receive phases typical to magnetic resonance
imaging configurations and yields promising reconstruction results in regions where the electromagnetic
fields are sufficiently E-polarized, and the z-component of the electric field strength is high. Further
validation through simulations and experiments is warranted to further this approach and demonstrate
clinical potential.
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APPENDIX A. ELECTRIC FIELD UPDATES

After initialization, the z-component of the electric field strength is updated according to the formula

E[n]
z = E[n−1]

z + α[n]v[n], (A1)

with α the step length, v the update direction, and n the iteration number. As update direction the
Polak-Ribière update directions are taken, which are given by

v[n] = g[n] +
Re

〈
g[n], g[n] − g[n−1]

〉
∥∥g[n−1]

∥∥2 v[n−1], (A2)

where Re denotes the real part, with the inner product and norm restricted to the object domain and
defined as in [9]. Furthermore, g is the gradient of the functional from Equation (7) w.r.t. Ez, which
can be found to be given by

g[n] = −2

⎛
⎜⎜⎜⎝

ηr[n−1]

∥∥∥∥
4

jμ0
∂−B+

1

∥∥∥∥
2 +

1
ω

∂−ρ[n−1]

∥∥B+
1

∥∥2

⎞
⎟⎟⎟⎠ , (A3)

where the overbar denotes conjugation, r = 4
jμ0

∂−B+
1 − ηEz and ρ = B+

1 − 1
ω ∂+Ez. On the update

directions we apply an automatic direction reset, by setting negative values to zero. Finally, the step
length is obtained by setting the gradient of the functional from Equation (7) w.r.t. α to zero and can
be found to be given by

α[n] = −1
2

Re
〈
g[n], v[n]

〉

∥∥ηv[n]
∥∥2

∥∥∥∥
4

jμ0
∂−B+

1

∥∥∥∥
2 +

∥∥∥∥
1
ω

∂+v[n]

∥∥∥∥
2

∥∥B+
1

∥∥2

. (A4)

APPENDIX B. DISCRETIZATION

We simplify our notation and set

u = Ez, b = B+
1 , b̃ =

4
jμ0

∂−B+
1 , and De =

1
ω

∂+, (B1)
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such that we can write our fundamental equations as

ηu = b̃ and Deu = b. (B2)
To discretize both equations of Equation (B2), we first introduce a computational grid consisting of
M pixels in the x-direction and N pixels in the y-direction. The side lengths of the pixels in the x-
and y-directions are δx > 0 and δy > 0, respectively, and the midpoints of the pixels have x- and
y-coordinates given

xi =
δx

2
+ (i − 1) δx and yj =

δy

2
+ (j − 1) δy, (B3)

for i = 1, 2, . . . ,M and j = 1, 2, . . . , N with Mδx = �x and Nδy = �y, where �x > 0 and �y > 0 are the
side lengths of the computational domain in the x- and y-direction.

We assume that B+
1 data is available at the midpoints of the pixels in the computational domain.

In other words, the M -by-N matrix

B+
1 =

⎛
⎜⎜⎜⎜⎝

B+
1 (x1, y1) B+

1 (x1, y2) . . . B+
1 (x1, yN )

B+
1 (x2, y1) B+

1 (x2, y2) . . . B+
1 (x2, yN )

...
...

. . .
...

B+
1 (xM , y1) B+

1 (xM , y2) . . . B+
1 (xM , yN )

⎞
⎟⎟⎟⎟⎠

(B4)

is known through measurements. We turn this matrix into a vector by applying the vec-operator to
matrix B+

1 . The vec-operator stacks the columns of the matrix it operates on from left to right. Applying
this operator to matrix B+

1 produces the MN -by-1 B+
1 data vector

b = vec
(
B+

1

)
. (B5)

Subsequently, we construct the discretized counterpart of the scaled and differentiated data b̃. At the
midpoints of the pixels, we have

b̃(xi, yj) =
4

jμ0
∂B+

1

∣∣
(xi,yj)

=
4

jμ0
· 1
2

(
∂xB+

1

∣∣
(xi,yj)

− j ∂yB
+
1

∣∣
(xi,yj)

)

For interior pixels, the spatial derivative with respect to the x-coordinate is approximated by a central
finite-difference formulate, that is, we approximate,

∂xB+
1

∣∣
(xi,yj)

≈ B+
1 (xi+1, yj) − B+

1 (xi−1, yj)
2δx

for i = 2, 3, . . . ,M − 1 and j = 1, 2, . . . , N . For boundary pixels, we approximate the derivative by a
forward and backward finite-difference formula. Explicitly, for i = 1 we use the forward formula

∂xB+
1

∣∣
(x1,yj)

≈ B+
1 (x2, yj) − B+

1 (x1, yj)
δx

for j = 1, 2, . . . , N , while for i = M we use the backward formula

∂xB+
1

∣∣
(xM ,yj)

≈ B+
1 (xM , yj) − B+

1 (xM−1, yj)
δx

for j = 1, 2, . . . ,M . Similar formulas are used to approximate the partial derivative with respect to the
y-coordinate.

Replacing the partial derivatives by their finite-difference approximants, we arrive at a finite-
difference representation of b̃. The finite-difference formulas can be written in global matrix form
through the introduction of the differentiation matrices

X =
1

2δx

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2
−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and

Y =
1

2δy

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2
−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that both matrices are square — matrix X is of order M , while matrix Y is of order N . Finally,
introducing the M -by-N matrix

B̃ =

⎛
⎜⎜⎜⎜⎝

b̃(x1, y1) b̃(x1, y2) . . . b̃(x1, yN )
b̃(x2, y1) b̃(x2, y2) . . . b̃(x2, yN )

...
...

. . .
...

b̃(xM , y1) b̃(xM , y2) . . . b̃(xM , yN )

⎞
⎟⎟⎟⎟⎠

we can write all finite-difference equations in one single matrix equation as

B̃ =
4

jμ0
· 1
2

(
XB+

1 − jB+
1 YT

)
.

Applying the vec-operator to this equation, using its linearity, and the property

vec (AXB) =
(
BT ⊗ A

)
vec (X) ,

where ⊗ denotes the Kronecker or tensor product, we arrive

b̃ = vec
(
B̃

)
=

4
jμ0

Db,

where we have introduced the discretized del-bar operator as

D =
1
2

[(IN ⊗ X) + j (Y ⊗ IM )] (B6)

and the overbar denotes complex conjugation. Furthermore, IM is the identity operator of order M .
Finally, we introduce the field and conductance per unit length matrices as

F =

⎛
⎜⎜⎜⎝

u(x1, y1) u(x1, y2) . . . u(x1, yN )
u(x2, y1) u(x2, y2) . . . u(x2, yN )

...
...

. . .
...

u(xM , y1) u(xM , y2) . . . u(xM , yN )

⎞
⎟⎟⎟⎠

and

T =

⎛
⎜⎜⎜⎝

η(x1, y1) η(x1, y2) . . . η(x1, yN )
η(x2, y1) η(x2, y2) . . . η(x2, yN )

...
...

. . .
...

η(xM , y1) η(xM , y2) . . . η(xM , yN )

⎞
⎟⎟⎟⎠ ,

respectively. These matrices are turned into vectors as well by once again applying the vec-operator to
these equations. We obtain

c = vec (T) and u = vec (F) .

The global discretized field equations are now given by

Cu = b̃ and Deu = b,

with C = diag(c), b̃ = −4jμ−1
0 Db, De = ω−1D, and D is the discretized counterpart of the del operator

and is given by Equation (B6).
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Figure S1. Reconstructed permittivity map (top row) and the corresponding absolute error map
(bottom row) of the Duke pelvis model for different B+

1 datasets.
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Figure S2. Reconstructed permittivity map (top row) and the corresponding absolute error map
(bottom row) of the Ella head model for different transmit field datasets.
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Figure S3. Reconstructed permittivity map of (a), (b) the Duke pelvis model and (c), (d) the Ella
head model from noisy three-dimensional transmit field data with an SNR of 100 and with TPA applied.
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