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Abstract

We analyze the spatially discretized version of the Allen-Cahn partial differential
equation. The second order derivative is numerically approximated by a weighted in-
finite sum. The coefficients of this sum as well as the function f in the differential
equation have got freedom inside determined restrictions. For this spatially discretized
variation of the Allen-Cahn partial differential equation, we prove the existence of a
travelling wave solution.

Lekensamenvatting

In dit verslag bekijken we een speciale versie van de Allen-Cahn vergelijking. De Allen-Cahn
vergelijking wordt gebruikt om verschillende processen uit de natuur te beschrijven, zodat
we deze beter kunnen begrijpen. Een voorbeeld van zo’n proces is de transportatie van een
impuls door een zenuw. We gaan onderzoeken of de Allen-Cahn vergelijking oplossingen
heeft die zich gedragen als een golf. Dit kunnen we doen in het continue geval of in het
discrete geval. In de continue wereld beweegt alles vloeiend, terwijl in de discrete wereld
alles stapsgewijs beweegt. Een voorbeeld van een golf in een continue ruimte is een golf zoals
we die zien in de zee, want deze beweegt zich vloeiend voort. Een voorbeeld van een golf
in een discrete ruimte is een wave in het stadion. Deze beweegt zich namelijk stapsgewijs
voort. Wij gaan ons verdiepen in het discrete geval en ons doel luidt dan ook: ’Het bewijzen
van het bestaan van een golfoplossing voor de gediscretiseerde Allen-Cahn vergelijking’.
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Summary

In this thesis we prove that the spatially discretized Allen-Cahn partial differential equa-
tion has a travelling wave solution. We start by giving some background information in
the Introduction. The Allen-Cahn equation is introduced and some of its applications are
mentioned. Furthermore, the spatial discretization used is discussed and motivated. The
body of the report consists of two sections, namely the Problem Setup and the Main Proof.

In the first part, the problem for which we want to prove a solution exists is laid out. Several
assumptions are made regarding the discretization, the function f in the Allen-Cahn equa-
tion and the fact that we seek a travelling wave solution. After applying these assumptions
it is shown that the Allen-Cahn equation can be written as

cεu
′
ε −∆εuε + f(uε) = 0, uε(±∞) = ±1.

Here

∆εu(x) =
1

ε2

∑
k>0

αk [u(x− kε) + u(x+ kε)− 2u(x)] .

This is the problem for which, mainly in the second part, it will be proven a solution exists.
But first, the operators L±

ε,δϕ, R(c, ϕ) and N(u0, ϕ) are introduced to rewrite the equation

above in a form suitable for the proof in the second part, namely as L+
ε,δϕε = R(cε, ϕε).

Here L+
ε,δϕε is the linearization of the discrete Allen-Cahn equation around the travelling

wave solution u0 of the Allen-Cahn partial differential equation, while operator R(cε, ϕε)
contains the difference between the discrete and the continuous equation. The nonlinear
part of this difference is denoted as N(u0, ϕ). The first of the two main sections ends with
proves of some properties of ∆ε.

The second part consists almost exclusively of theorems and proofs. The entire section
functions as a setup to be able to apply Banach’s Fixed Point Theorem on the mapping
Tϕ = (L+

ε,δ)
−1R(cε(ϕ), ϕ) in the end. From this it immediately follows that there exists a

travelling wave solution and thus the goal is achieved. Most of the work is in showing that
T satisfies the requirements in order to apply Banach’s Fixed Point Theorem. This is done
by making estimates involving the operators L±

ε,δϕ and R(cε(ϕ), ϕ). To estimate expressions

containing L±
ε,δϕ, there are first made similar estimations with the related operator L±

0 ϕ.

Finally, the result that has been proven in the report is discussed in the Conclusion. Fur-
thermore, ideas for further research concerning this subject are shared.
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1 Introduction

In this report we discuss a partial differential equation (PDE) that is related to the Allen-
Cahn equation. The one dimensional Allen-Cahn equation is given by

∂u

∂t
− ∂2u

∂x2
+ f(u) = 0. (1.1)

It is a reaction-diffusion equation used to describe numerous processes in nature. An example
of such a process is the propagation phenomenon of nerve excitation. If the equation is used
to describe this, it is referred to as the Nagumo equation.

The structure of the nonlinearity f has a major impact on the behaviour of the solutions to
the PDE. We will examine this equation for a particular kind of functions f called bistable
functions. These functions will include the function

f(u) = (u− 1)(u+ 1)(u− q), with q ∈ (−1, 1). (1.2)

Then the diffusion-free equation of (1.1) has two stable equilibria u = −1, 1 and an unstable
equilibrium u = q. Such a system is named a bistable system and (1.1) is then called a
bistable reaction-diffusion equation.

An example of a situation that can be modelled by a bistable system is the competition
between two species for dominance in a certain area[1]. Then the two stable equilibria each
represent full dominance of one of the two species. Another example is the phase transitions
of materials. Here the stable equilibria represent two material phases.

The Allen-Cahn equation has been used to understand a variety of concepts in dynamical
systems theory. In many of these concepts, travelling wave type solutions play an important
role. These can be written as

u(x, t) = ϕ(x+ ct), ϕ(±∞) = ±1. (1.3)

These boundary conditions represent the stable equilibria, allowing that one of the stable
equilibria dominates the total solution. To satisfy PDE (1.1), the pair (c, ϕ) has to satisfy

cϕ′ = ϕ′′ − f(ϕ), (1.4)

known as the travelling wave equation.

We will study these wave type solutions, but in slightly different circumstances. We want to
examine whether there exist wave type solutions with the presence of spatial discretization.
Usually we discretize in space to avoid having to solve a PDE analytically. Famous methods
for solving PDE’s that make use of this idea are the finite difference method, the finite
element method and the finite volume method. But in this case we can actually find solutions
to (1.4) using analytic methods. These solutions, analyzed by Fife and McLeod[7], are given
by

ϕ(ξ) =
1

2
+

1

2
tanh

(√
2

4
ξ

)
, c =

√
2

2
(1− 2q). (1.5)

So why would we discretize in space? The answer is that for some phenomena in nature a
discretized space fits them better than a continuous space. An example is the Josephson
effect, which is a phenomenon that occurs when two superconductors are placed in proximity,
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with a small barrier of non-conducting material between them. Such a device is called a
Josephson junction. The Josephson effect produces a current that flows across the Josephson
junction. When we consider an array of Josephson junctions we can already see that this
array has strong connections to a discretized grid. Other examples are chains of coupled
diode resonators, coupled chemical or biochemical reactors, myelinated nerve fibers, neuronal
networks, and patchy ecosystems. In all of these situations it makes more sense to use a
discretized space, rather than a continuous space.

Now we specify how the spatial discretization will be executed. We discretize in space by
setting the spatial coordinate x = εn in the travelling wave assumption (1.3). Here ε is
small and represents the discretization step size and n is some integer denoting the amount
of steps taken. So instead of (1.3), we use a discrete travelling wave assumption that is
given by

un(t) = u(εn+ ct), u(±∞) = ±1. (1.6)

This assumption gives us a different equation compared to (1.4). What will make the prob-
lem we are going to study a really difficult one, is that the second derivative in space will
be approximated by an infinite sum. In order to keep the analysis general, we don’t impose
too many restrictions on the infinite sum. So we consider a collection of approximations
for the second spatial derivative. This collection contains well known numerical approx-
imations such as the second order central difference. But a more complicated numerical
approximation such as

∂2

∂x2
u(x, t) → 1

ε2

∑
k>0

[uj+k(t) + uj−k(t)− 2uj(t)] e
−k (1.7)

is also included. The idea of the central difference approximation is being extended. The
coefficients e−k ensure the further away from x we are, the less impact the value of u has
on the approximation.

For our research we combine all the ideas mentioned in the previous paragraphs to modify
the Allen-Cahn equation. So we seek travelling wave solutions for a spatially discretized
and bistable Allen-Cahn equation, where the second space derivative is approximated by an
infinite sum. The existence of such a travelling wave solution was first proven by Bates, Chen
and Chmaj[2], but their work omitted several calculations, proofs of claims and subtleties.
The main contribution of this thesis is to fill in these gaps, by providing fully worked out
proofs.

Likely, our work will make it easier to generalize these results. For example, consider a
version of equation (1.1) where the second derivative is replaced by a convolution kernel of
the form

∂2

∂x2
u(x, t) →

∫ ∞

−∞
K(y)uj(y + t) dy. (1.8)

These type of discretizations incorporate both continuous and discrete parts and have been
studied, for instance, in [5] and [6].

Mathematically, the problem we will study is given by

u̇n(t) =
1

ε2

∞∑
k=−∞

αkun−k(t)− f(un), n ∈ Z, (1.9)
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with un(t) as in (1.6). This differential equation originates from Ising models. These are
models used to describe magnets, among other things. The magnet is discretized into
a lattice where every site has its own magnetic moment, called spin. Each spin has a
direction, which is either up or down. This idea of having two states, namely up and down,
makes the Ising models also very fitting for describing all sorts of behaviour related to phase
transitions. When an Ising model is used to describe a phase transition between liquid and
gas, then liquid and gas behave as the two states.
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2 Problem Setup

This section is mainly focused on introducing the problem for which we will prove a solu-
tion exists. The Allen-Cahn equation will be modified using some made assumptions and
thereafter, by introducing a few operators, will be written in a convenient way such that we
can later prove a solution exists.

Let us first state the partial differential equation that plays a central role throughout this
thesis. It is called the Allen-Cahn or Nagumo partial differential equation (PDE) and is
given by

∂u

∂t
=
∂2u

∂x2
− f(u). (2.1)

As mentioned we will make some assumptions and we start with an assumption regarding
the function f(u).

Assumption (A1). f ∈ C2(R) is a function with exactly 3 zeroes at −1, q ∈ (−1, 1) and

1, with f ′(±1) > 0. Furthermore
∫ 1

−1
f(y) dy ̸= 0.

An example of such a function is

f(u) = (u− 1)(u+ 1)(u− q), with q ∈ (−1, 1). (2.2)

Thus we could keep in mind the third order polynomial for f if we would like, but in general
we will assume f is any function satisfying (A1).

We want to examine whether there exist wave type solutions to equation (2.1). So the next
assumption we make is that u(x, t) = Φ(x + ct), which represents a travelling wave with
wave speed c. We want to insert this travelling wave into equation (2.1). In order to do this
we first compute the derivatives of u(x, t) using our travelling wave assumption. We find

∂u

∂t
= Φ′(x+ ct)

∂

∂t

[
x+ ct

]
= cΦ′(x+ ct),

∂u

∂x
= Φ′(x+ ct)

∂

∂x

[
x+ ct

]
= Φ′(x+ ct),

∂2u

∂x2
= Φ′′(x+ ct)

∂

∂x

[
x+ ct

]
= Φ′′(x+ ct).

(2.3)

After substitution, equation (2.1) is transformed into

cΦ′(x+ ct) = Φ′′(x+ ct)− f(Φ). (2.4)

For better readability we introduce the variable ξ = x+ ct, so that the equation can now be
written as

cΦ′(ξ) = Φ′′(ξ)− f(Φ). (2.5)

We will be examining a spatially discretized version of this equation. Namely, the problem

u′n(t) =
1

ε2

∞∑
k=−∞

αkun−k(t)− f(un), n ∈ Z, (2.6)

where ε > 0 and where un(t) is a travelling wave solution of the form

un(t) = u(εn+ ct) satisfying u(±∞) = ±1. (2.7)

Furthermore, an assumption is made for the coefficients {αk}.
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Assumption (A2). The coefficients {αk} satisfy
∑
k αk = 0, αk = α−k,

∑
k>0 αkk

2 = 1
and

∑
k>0 |αk| k2 < ∞. Furthermore, we have an extra condition when k = 0, namely

α0 < 0. As a final condition we have that A(z) =
∑
k>0 αk (1− cos (kz)) ≥ 0 for all z ∈ [0, 2π].

Equation (2.6) seems like a completely different equation compared to (2.5), but we get
the original equation (2.5) back after letting ε go to 0. We will first show this is true in the
case of an example where the coefficients have certain given values. Later we will prove this
for the general case in which the coefficients {αk} satisfy (A2). But first we’ll explain how
we get to this spatially discretized equation.

To explain this we need to go back to equation (2.5). Here we discretize in space by writing
the spatial coordinate as x = εn for n ∈ Z. This makes ξ depend on n and thus we write
ξn = εn+ ct. Applying this to (2.5), we get that cΦ′(εn+ ct) = Φ′′(εn+ ct)− f(Φ) for each
n ∈ Z. Note that ∂Φ

∂t = cΦ′(εn+ ct) and replace every Φ with a u just for notation reasons.

Then we have ∂u
∂t = u′′(εn+ct)−f(u). As a final step we can write u(εn+ct) = un(t) which

is the definition for un(t). This transforms the equation into u′n(t) = u′′(εn + ct) − f(un).
Now the only difference with equation (2.6) is the second derivative term. But we will later
see that if ε is approximating zero, the term including the summation in equation (2.6)
approximates this second derivative with the help of the assumptions we made in (A2). So
this term can be considered as a numerical approximation for the second derivative. Note
that for this reason it makes sense see ε as the discretization step size and n as the amount
of steps taken.

As an example we choose the coefficients as follows: α1 = α−1 = 1, α0 = −2 and αk = 0 for
all other values of k. Note that the coefficients in this example satisfy (A2). This choice of
coefficients corresponds to the so-called nearest neighbour discretization. However, we also
allow cases where infinitely many coefficients are nonzero. As mentioned before we want to
show that we get equation (2.5) back when letting ε go to 0.

To be able to show this we first need a few derivations. We denote x = εn+ ct. With this
notation we first derive expressions for the u terms in our equation which are needed later
on. We have

u′n(t) = u′(x)
∂

∂t

[
εn+ ct

]
= cu′(x), (2.8)

un−k(t) = u(ε(n− k) + ct) = u(εn+ ct− kε) = u(x− kε). (2.9)

Furthermore, we write α0 in a clever way. We can do this by using some of the made
assumptions (A2). We obtain

α0 = α0 −
∑
k

αk = −
∑
k ̸=0

αk = −
∑
k<0

αk −
∑
k>0

αk = −2
∑
k>0

αk. (2.10)

Now everything is ready to show the claim that letting ε to 0 gives us back the original
equation. We move all the terms in equation (2.6) to the left-hand side and then use (A2)
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and the expressions that just have been derived. This gives

0 = u′n(t)−
1

ε2

∞∑
k=−∞

αkun−k + f(un)

= cu′(x)− 1

ε2

∞∑
k=−∞

αku(x− kε) + f(u)

= cu′(x)− 1

ε2

∑
k>0

αku(x− kε)− 1

ε2

∑
k<0

αku(x− kε)− 1

ε2
α0u(x) + f(u)

= cu′(x)− 1

ε2

∑
k>0

αku(x− kε)− 1

ε2

∑
k>0

αku(x+ kε)− 1

ε2
α0u(x) + f(u)

= cu′(x)− 1

ε2

∑
k>0

αku(x− kε)− 1

ε2

∑
k>0

αku(x+ kε) +
2

ε2

∑
k>0

αku(x) + f(u)

= cu′(x)− 1

ε2

∑
k>0

αk [u(x− kε) + u(x+ kε)− 2u(x)] + f(u)

= cu′(x)−
∑
k>0

αkk
2u(x− kε) + u(x+ kε)− 2u(x)

(kε)2
+ f(u).

(2.11)

We now use the prescribed values of the coefficients from the earlier given example by
inserting these into the final expression. Then we find that

0 = cu′(x)− u(x− ε) + u(x+ ε)− 2u(x)

ε2
− f(u). (2.12)

To get to equation (2.5) there is one step left to do, which is letting ε go to 0. It is well

known from numerical mathematics that the fraction u(x−ε)+u(x+ε)−2u(x)
ε2 is converging to

the second derivative of u(x) if ε→ 0. So after letting ε→ 0 we end up with

cu′(x)− u′′(x) + f(u) = 0, u(±∞) = ±1. (2.13)

Note that this is exactly the same equation as (2.5). So we can conclude that (2.6) is indeed
a discretized version of (2.5). But we only showed this in the case of the example coefficient
values. It will later be shown in Corollary 1 that this is also valid in the general case.

We’ll now rewrite equation (2.6) a little by introducing some new notation. Note that during
the derivations in (2.11) we found out that (2.6) can be written as

cu′(x)− 1

ε2

∑
k>0

αk [u(x− kε) + u(x+ kε)− 2u(x)] + f(u) = 0, u(±∞) = ±1. (2.14)

To make this equation look a bit neater we introduce the operator ∆ε that is denoted as

∆εu(x) =
1

ε2

∑
k>0

αk [u(x− kε) + u(x+ kε)− 2u(x)] . (2.15)

So now we can write (2.14) as

cεu
′
ε −∆εuε + f(uε) = 0, uε(±∞) = ±1. (2.16)
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Here (cε, uε) is the solution pair to equation (2.14) with a certain value for ε that is given
in the subscripts. The goal of this thesis is to show that this problem has a solution. To be
able to prove this we have to further rewrite this problem into a form suitable for the proof.
But first we’ll discuss function spaces.

2.1 Function spaces

In the process of solving this problem we will often take functions that live in different
function spaces. In this small section these function spaces will be discussed.

First a remark about notation. The inner product will be denoted as ⟨·, ·⟩ and the norm
will be denoted as ∥·∥. We now discuss the first type of function spaces called Lp spaces.
For our problem we are only interested in L2(R) and L∞(R). For L2(R) we will give the
corresponding definition, inner product and norm. These are given by

L2(R) =
{
f : R → R

∫ ∞

−∞
|f(x)|2dx <∞

}
,

⟨f, g⟩L2 =

∫ ∞

−∞
f(x)g(x)dx,

∥f∥L2 =

(∫ ∞

−∞
|f(x)|2dx

)1/2

.

(2.17)

In this report we will omit writing L2 in ⟨f, g⟩L2 , since we will almost always use the inner
product corresponding to L2(R). So this means that ⟨f, g⟩ denotes the L2 inner product. If
we use an inner product corresponding to another function space, then this will be specified.

Now we’ll introduce L∞(R). L∞(R) contains measurable functions that are bounded. Fur-
thermore the corresponding norm is given by

∥f∥L∞ = sup
x∈R

|f(x)| . (2.18)

The second type of function spaces we discuss are Sobolev spaces. These type of function
spaces are denoted by Hk(R). Here we are only interested in the cases k = 1 and k = 2.
For both H1(R) and H2(R) we state the definition and the norm. These are given by

H1(R) =
{
f : R → R | f ∈ L2(R), f ′ ∈ L2(R)

}
,

∥f∥H1 =
(
∥f∥2L2 + ∥f ′∥2L2

)1/2
,

(2.19)

H2(R) =
{
f : R → R | f ∈ L2(R), f ′ ∈ L2(R), f ′′ ∈ L2(R)

}
,

∥f∥H2 =
(
∥f∥2L2 + ∥f ′∥2L2 + ∥f ′′∥2L2

)1/2
.

(2.20)

Finally we also give the definition of function space C∞
0 (R). This function space won’t occur

too often. It’s definition is given by

C∞
0 (R) =

{
f : R → R | f is infinitely differentiable and limx→±∞ f(x) = 0

}
. (2.21)

All the function spaces we need have now been introduced. There are some useful properties
for certain inner products. These are stated in the next lemma.
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Lemma 1. For ϕ in certain function spaces some useful identities for inner products follow.
We have

(i) for any ϕ ∈ H1(R), ⟨ϕ′ , ϕ⟩ = 0;

(ii) for any ϕ ∈ H2(R), ⟨ϕ′′ , ϕ⟩ ≤ 0.

Proof. (i) Let ϕ ∈ H1(R) arbitrary. Then applying integration by parts gives

⟨ϕ′ , ϕ⟩ =
∫
R
ϕ′(x)ϕ(x) dx = [ϕ(x)ϕ(x)]

∞
−∞ −

∫
R
ϕ′(x)ϕ(x) dx. (2.22)

Since ϕ ∈ H1(R) we have that ϕ(x) → 0 if we let x → ±∞. This implies that
[ϕ(x)ϕ(x)]

∞
−∞ = 0. So we find

⟨ϕ′ , ϕ⟩ = −
∫
R
ϕ′(x)ϕ(x) dx = −⟨ϕ′ , ϕ⟩ . (2.23)

From this it follows that ⟨ϕ′ , ϕ⟩ = 0.

(ii) Let ϕ ∈ H2(R) arbitrary. Then applying integration by parts gives

⟨ϕ′′ , ϕ⟩ =
∫
R
ϕ′′(x)ϕ(x) dx = [ϕ′(x)ϕ(x)]

∞
−∞ −

∫
R
ϕ′(x)ϕ′(x) dx. (2.24)

Since ϕ ∈ H2(R) we have that ϕ(x) → 0 and ϕ′(x) → 0 if we let x→ ±∞. From this
it follows that [ϕ′(x)ϕ(x)]

∞
−∞ = 0. So we find

⟨ϕ′′ , ϕ⟩ = −
∫
R
ϕ′(x)ϕ′(x) dx = −∥ϕ′(x)∥2L2 ≤ 0. (2.25)

2.2 Rewriting the problem

We now return to the problem we want to solve. To be able to show that equation (2.16)
has a solution the problem has to be rewritten. This will be done in this section.

If we study equation (2.16), we observe that for one value of ε we already know the solution
to this equation. This is the case for ε equal to 0. We have seen this gives us equation (2.13)
for which the solution is known. We denote this solution by (c0, u0). Thus we have got the
identity

c0u
′
0 − u′′0 + f(u0) = 0, u0(±∞) = ±1. (2.26)

But there is more known about the solution (c0, u0), which is stated in a theorem and a
lemma.

Theorem 1 ([8, §1]). Consider the equation c0u
′
0(x)−u′′0(x)+f(u0(x)) = 0 with the bound-

ary conditions u0(±∞) = ±1. Then there exists a solution u0(x). Furthermore u′0(x) > 0
for all x ∈ R and u0(x) converges exponentially to ±1 as x→ ±∞.
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Lemma 2. Assume f is a function satisfying (A1) and let (c0, u0) be defined as the solution
to (2.26). Then c0 ̸= 0

Proof. We first take equation (2.26) and multiply it on both sides by u′0(x). This gives

c0 [u
′
0(x)]

2 − u′′0(x)u
′
0(x) + f(u0(x))u

′
0(x) = 0. (2.27)

Now we integrate from −∞ to ∞ on both sides of the equation, after which we get

c0

∫ ∞

−∞
[u′0(x)]

2
dx−

∫ ∞

−∞
u′′0(x)u

′
0(x) dx+

∫ ∞

−∞
f(u0(x))u

′
0(x) dx = 0. (2.28)

Let us now analyze the latter two integrals in the equation above. Using the substitution
y = u0(x) we can write ∫ ∞

−∞
f(u0(x))u

′
0(x) dx =

∫ 1

−1

f(y) dy. (2.29)

It follows from Theorem 1 that u′0 ∈ L2(R). So we can apply Lemma 1(i) to u′0, which gives
that ∫ ∞

−∞
u′′0(x)u

′
0(x) dx = ⟨u′′0 , u′0⟩ = 0. (2.30)

Using both of these observation we can rewrite (2.28) to

c0 =
−
∫ 1

−1
f(y) dy∫∞

−∞ [u′0(x)]
2
dx
. (2.31)

(A1) tells us that
∫ 1

−1
f(y) dy ̸= 0. Furthermore

∫∞
−∞ [u′0(x)]

2
dx > 0. So we can conclude

that c0 ̸= 0.

To rewrite our problem we introduce the operators L±
ε,δϕ, R(c, ϕ) and N(u0, ϕ). These

are given by

L±
ε,δϕ =

{
±c0 d

dx −∆ε + fu(u0) + δ
}
ϕ, (2.32)

R(c, ϕ) = (c0 − c)(u′0 + ϕ′) + (∆ε − d2

dx2 )u0 + δϕ−N(u0, ϕ), (2.33)

N(u0, ϕ) = f(u0 + ϕ)− f(u0)− fu(u0)ϕ. (2.34)

Here L±
ε,δϕ is the linearization of the spatially discretized Allen-Cahn equation (2.16) around

the travelling wave solution (c0, u0). Furthermore, R(c, ϕ) contains the difference between
the continuous and the discrete equation, where the nonlinear parts of this difference are
contained in N(u0, ϕ). Now we are able to rewrite the problem with the help of a lemma.

Lemma 3. Let (c0, u0) be the solution to equation (2.13). Write uε = u0 + ϕε, where
ϕε ∈ H1(R) and let δ > 0 be a small number. Then the following 2 problems are equivalent:

1. cεu
′
ε −∆εuε + f(uε) = 0.

2. L+
ε,δϕε = R(cε, ϕε).
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Proof. We will prove this by showing L+
ε,δϕε−R(cε, ϕε) = cεu

′
ε−∆εuε+f(uε). We compute

L+
ε,δϕε −R(cε, ϕε) = c0

d
dxϕε −∆εϕε + fu(u0)ϕε + δϕε − (c0 − cε)(u

′
0 + ϕ′ε)−∆εu0

+ d2

dx2u0 − δϕε + f(u0 + ϕε)− f(u0)− fu(u0)ϕε

= c0ϕ
′
ε −∆εϕε − c0u

′
0 − c0ϕ

′
ε + cεu

′
0 + cεϕ

′
ε

−∆εu0 + u′′0 + f(u0 + ϕε)− f(u0)

= cε(u
′
0 + ϕ′ε)−∆ε(u0 + ϕε) + f(u0 + ϕε)− (c0u

′
0 − u′′0 + f(u0))

= cεu
′
ε −∆εuε + f(uε).

(2.35)

Note that, in the final step, we used that uε = u0 + ϕε and that (c0, u0) is the solution to
equation (2.13), since this implies that c0u

′
0 − u′′0 + f(u0) = 0. Furthermore we remark that

we can also do all steps in reverse. Thus it follows that 1. and 2. are equivalent.

From now on we will work with the rewritten equation from Lemma 3. Before we start
with the main part of this report where we prove this problem has a solution, we first treat
two lemmas with some useful results for later on.

Lemma 4. Let ∆ε be defined as in (2.15) and let the coefficients {αk} satisfy (A2). Then

(i) for any ϕ ∈ L∞(R) with ϕ′′ ∈ L2(R) and with limx→±∞ ϕ(x) and limx→±∞ ϕ′(x)
existing, we have

∥∆εϕ− ϕ′′∥L2 → 0 as ε ↓ 0;

(ii) for any ϕ ∈ H1(R), ⟨∆εϕ, ϕ
′⟩ = 0;

(iii) for any ϕ, ψ ∈ L2(R), ⟨∆εϕ, ψ⟩ = ⟨ϕ,∆εψ⟩;

(iv) for any ϕ ∈ L2(R), ⟨∆εϕ, ϕ⟩ ≤ 0.

Proof. (i) First notice that, since limx→±∞ ϕ(x) and limx→±∞ ϕ′(x) exist, we have

lim
x→±∞

∆εϕ(x) =
1

ε2

∑
k>0

lim
x→±∞

αk [ϕ(x− kε) + ϕ(x+ kε)− 2ϕ(x)]

=
1

ε2

∑
k>0

lim
x→±∞

αk [ϕ(x) + ϕ(x)− 2ϕ(x)]

= 0.

(2.36)

Because [∆εϕ(x)]
′
= ∆εϕ

′(x), it follows in exactly the same way that limx→±∞ ∆εϕ
′(x) = 0

as well. We will use F [ϕ] (ξ) as notation for the Fourier transform of ϕ. So

F [ϕ] (ξ) =

∫ ∞

−∞
ϕ(x)eiξx dx. (2.37)
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Now integration by parts will be applied twice to rewrite the Fourier transform of
∆εϕ. This gives

F [∆εϕ] (ξ) =

∫ ∞

−∞
∆εϕ(x)e

iξx dx

=
1

iξ

[
∆εϕ(x)e

iξx
]∞
−∞ − 1

iξ

∫ ∞

−∞
∆εϕ

′(x)eiξx dx

= − 1

iξ

∫ ∞

−∞
∆εϕ

′(x)eiξx dx

=
1

ξ2
[
∆εϕ

′(x)eiξx
]∞
−∞ − 1

ξ2

∫ ∞

−∞
∆εϕ

′′(x)eiξx dx

= − 1

ξ2

∫ ∞

−∞
∆εϕ

′′(x)eiξx dx

= − 1

ξ2
F [∆εϕ

′′] (ξ).

(2.38)

Furthermore, using translations, we can write

F [∆εϕ
′′] (ξ) =

∫ ∞

−∞
∆εϕ

′′(x)eiξx dx

=
1

ε2

∫ ∞

−∞

∑
k>0

αk [ϕ
′′(x− kε) + ϕ′′(x+ kε)− 2ϕ′′(x)] eiξx dx

=
1

ε2

∑
k>0

αk

(∫ ∞

−∞
ϕ′′(x− kε)eiξx +

∫ ∞

−∞
ϕ′′(x+ kε)eiξx − 2

∫ ∞

−∞
ϕ′′(x)eiξx dx

)
=

1

ε2

∑
k>0

αk

(∫ ∞

−∞
ϕ′′(x)eiξ(x+kε) +

∫ ∞

−∞
ϕ′′(x)eiξ(x−kε) − 2

∫ ∞

−∞
ϕ′′(x)eiξx dx

)
=

1

ε2

∑
k>0

αk
(
eiξkε + e−iξkε − 2

)
F [ϕ′′](ξ).

(2.39)

Using Euler’s formula we find that eiξkε + e−iξkε = 2 cos(ξkε). Combining this with
the just derived (2.38) and (2.39) gives that

F [∆εϕ] (ξ) = − 1

ξ2ε2

∑
k>0

αk (2 cos(ξkε)− 2)F [ϕ′′](ξ)

=
2

ξ2ε2

∑
k>0

αk (1− cos(ξkε))F [ϕ′′](ξ),

(2.40)

and thus

F [∆εϕ− ϕ′′](ξ) =

(
2
∑
k>0 αk (1− cos(ξkε))

ξ2ε2
− 1

)
F [ϕ′′](ξ)

=

(
2
∑
k>0 αk (1− cos(ξkε))− ξ2ε2

ξ2ε2

)
F [ϕ′′](ξ).

(2.41)
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We denote

qε(ξ) =
2
∑
k>0 αk (1− cos(ξkε))− ξ2ε2

ξ2ε2
. (2.42)

We want to estimate qε(ξ). We use that
∑
k>0 αk (1− cos(ξkε)) ≥ 0, which follows

from (A2), to find a lower bound. We estimate

qε(ξ) =
2
∑
k>0 αk (1− cos(ξkε))− ξ2ε2

ξ2ε2
≥ −ξ2ε2

ξ2ε2
= −1. (2.43)

Of course we also want to have an upper bound. To find one, we need the known
inequality 2 − 2 cos(x) ≤ x2. Furthermore, we need another assumption from (A2),
namely

∑
k>0 αkk

2 = 1. Applying both of these we find

qε(ξ) =
2
∑
k>0 αk (1− cos(ξkε))− ξ2ε2

ξ2ε2

≤
(∑

k>0 αkk
2
)
ξ2ε2 − ξ2ε2

ξ2ε2
=
ξ2ε2 − ξ2ε2

ξ2ε2
= 0.

(2.44)

So we have that qε(ξ) ∈ [−1, 0]. Now we let δ > 0 arbitrary. Notice that since
ϕ′′ ∈ L2(R), Plancherel’s identity implies that also F [ϕ′′] ∈ L2(R). So this means we
can pick N > 0 such that ∫

(∞,−N ]∪[N,∞)

|F [ϕ′′](ξ)|2 dξ < δ

2
. (2.45)

This implies that ∫
(∞,−N ]∪[N,∞)

|qε(ξ)F [ϕ′′](ξ)|2 dξ < δ

2
, (2.46)

since |qε(ξ)| ≤ 1.

We claim that we can choose ε0 > 0 such that |qε(ξ)| ≤ δ
2∥F [ϕ′′]∥2

L2
for all 0 < ε < ε0

and all −N ≤ ξ ≤ N . To show this claim is true we first analyze the equation∑
k>0

αk(2− 2 cos(kx)) =

(
1− δ

2∥F [ϕ′′]∥2L2

)
x2 (2.47)

for positive x. Writing cos(kx) as its Taylor expansion around 0 allows us to write

∑
k>0

αk(2− 2 cos(kx)) =
∑
k>0

αk

(
2− 2

(
1− k2x2

2
+
∑
n≥2

(−1)n(kx)2n

(2n)!

))

=
∑
k>0

αkk
2x2 − 2

∑
k>0

αk
∑
n≥2

(−1)n(kx)2n

(2n)!

= x2 +O(x4).

(2.48)
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Notice that, in the final step, we used that
∑
k>0 akk

2 = 1, which is assumed in (A2).

We can assume without loss of generality that 0 < 1− δ
2∥F [ϕ′′]∥2

L2
< 1. This means that

if x is small enough, then
∑
k>0 αk(2−2 cos(kx)) >

(
1− δ

2∥F [ϕ′′]∥2
L2

)
x2. Furthermore

we observe that at x = 2π we have
∑
k>0 αk(2 − 2 cos(kx)) = 0. So we get a similar

situation to the one in the graph below.

0 π K 2π
0

1

2

3

4

5

x

(
1− δ

2∥F [ϕ′′]∥2
L2

)
x2∑

k>0 αk(2− 2 cos(kx))

From the graph it follows that equation (2.47) definitely has a solution. We denote
this solution by K > 0. Now we are ready to show that the earlier made claim holds.
We have

|qε(ξ)| ≤ δ

2 ∥F [ϕ′′]∥2L2

⇐⇒ − qε(ξ) ≤ δ

2 ∥F [ϕ′′]∥2L2

⇐⇒
∑
k>0

αk (2 cos(ξkε)− 2) + ξ2ε2 ≤ δ

2 ∥F [ϕ′′]∥2L2

ξ2ε2

⇐⇒
∑
k>0

αk (2 cos(ξkε)− 2) ≤
(

δ

2 ∥F [ϕ′′]∥2L2

− 1

)
ξ2ε2

⇐⇒
∑
k>0

αk (2− 2 cos(ξkε)) ≥
(
1− δ

2 ∥F [ϕ′′]∥2L2

)
ξ2ε2.

(2.49)

In the graph we can see that this inequality holds when |ξε| ≤ K. Thus it also holds
if |ξ| ≤ K

ε . So choosing ε0 such that N = K
ε0

proves the claim. Now using the claim
by letting 0 < ε < ε0, we can estimate∫ N

−N
|qε(ξ)F [ϕ′′](ξ)|2 dξ ≤ δ

2 ∥F [ϕ′′]∥2L2

∫ N

−N
|F [ϕ′′](ξ)|2 dξ ≤ δ

2
. (2.50)

17



From this together with (2.46) it follows that

∥qεF [ϕ′′]∥2L2 =

∫
(∞,−N ]∪[N,∞)

|qε(ξ)F [ϕ′′](ξ)|2 dξ +
∫ N

−N
|qε(ξ)F [ϕ′′](ξ)|2 dξ

<
δ

2
+
δ

2
= δ,

(2.51)

whenever 0 < ε < ε0. So we have now shown that

lim
ε↓0

∥F [∆εϕ− ϕ′′]∥2L2 = lim
ε↓0

∥qεF [ϕ′′]∥2L2 = 0. (2.52)

Plancherel’s identity implies that ∥F [∆εϕ− ϕ′′]∥L2 = ∥∆εϕ− ϕ′′∥L2 . So it follows
that

lim
ε↓0

∥∆εϕ− ϕ′′∥2L2 = 0 (2.53)

and thus also
lim
ε↓0

∥∆εϕ− ϕ′′∥L2 = 0, (2.54)

which concludes the proof.

(ii) We first claim that for any integer k,∫
R
ϕ′(x) [ϕ(x+ εk) + ϕ(x− εk)] dx = 0. (2.55)

We’ll show now that this actually holds. We apply integration by parts to obtain∫
R
ϕ(x+ εk)ϕ′(x) dx = [ϕ(x+ εk)ϕ(x)]

∞
−∞ −

∫
R
ϕ′(x+ εk)ϕ(x) dx. (2.56)

We observe that [ϕ(x+ εk)ϕ(x)]
∞
−∞ vanishes. This is a consequence of ϕ(x) being a

function that is part of function space H1(R). Because this tells us that if we let x go
to ±∞, ϕ(x) will converge to 0. From this it follows that

0 =

∫
R
ϕ(x+ εk)ϕ′(x) dx+

∫
R
ϕ′(x+ εk)ϕ(x) dx

=

∫
R
ϕ(x+ εk)ϕ′(x) dx+

∫
R
ϕ′(x)ϕ(x− εk) dx

=

∫
R
ϕ′(x) [ϕ(x+ εk) + ϕ(x− εk)] dx.

(2.57)

Note that we applied a translation of εk to the second integral. Thus indeed we find
that our claim holds. If we take k = 0, it follows from our claim that

2

∫
R
ϕ(x)ϕ′(x) dx = 0. (2.58)
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Now we are ready to prove the original statement with the help of our claim and also
its special case for when k = 0. We have

⟨∆εϕ, ϕ
′⟩ =

∫
R
[∆εϕ(x)]ϕ

′(x) dx

=
1

ε2

∫
R

∑
k>0

αk [ϕ(x+ εk) + ϕ(x− εk)− 2ϕ(x)]ϕ′(x) dx

=
1

ε2

∑
k>0

αk

∫
R
[ϕ(x+ εk) + ϕ(x− εk)− 2ϕ(x)]ϕ′(x) dx

=
1

ε2

∑
k>0

αk

(∫
R
ϕ′(x) [ϕ(x+ εk) + ϕ(x− εk)] dx− 2

∫
R
ϕ(x)ϕ′(x) dx

)
= 0.

(2.59)

(iii)

⟨∆εϕ, ψ⟩ =
∫
R
[∆εϕ(x)]ψ(x) dx

=

∫
R

1

ε2

∑
k>0

αk [ϕ(x+ εk) + ϕ(x− εk)− 2ϕ(x)]ψ(x) dx

=
1

ε2

{∫
R

∑
k>0

αkϕ(x+ εk)ψ(x) dx+

∫
R

∑
k>0

αkϕ(x− εk)ψ(x) dx

−2

∫
R

∑
k>0

αkϕ(x)ψ(x) dx

}
,

(2.60)

where after translations with w = x± εk in the first 2 terms we get

⟨∆εϕ, ψ⟩ =
1

ε2

{∫
R

∑
k>0

αkϕ(w)ψ(w − εk) dw +

∫
R

∑
k>0

αkϕ(w)ψ(w + εk) dw

−2

∫
R

∑
k>0

αkϕ(w)ψ(w) dw

}

=

∫
R

1

ε2

∑
k>0

αk [ψ(w + εk) + ψ(w − εk)− 2ψ(w)]ϕ(w) dw

= ⟨ϕ,∆εψ⟩.

(2.61)

(iv) To be able to show this we will need Plancherel’s identity. Here it implies that
⟨∆εϕ , ϕ⟩ = ⟨F [∆εϕ] , F [ϕ]⟩, where we use F [ϕ] as notation for the Fourier trans-
form of ϕ as defined in (2.37).

Before analyzing ⟨F [∆εϕ] , F [ϕ]⟩, we will first rewrite F [∆εϕ](ξ) in terms of F [ϕ](ξ).
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This gives

F [∆εϕ](ξ) =

∫ ∞

−∞
∆εϕ(x)e

iξx dx

=

∫ ∞

−∞

1

ε2

∑
k>0

αk
(
ϕ(x− kε) + ϕ(x+ kε)− 2ϕ(x)

)
eiξx dx

=
1

ε2

∑
k>0

αk

∫ ∞

−∞

(
ϕ(x− kε) + ϕ(x+ kε)− 2ϕ(x)

)
eiξx dx

=
1

ε2

∑
k>0

αk

(∫ ∞

−∞
ϕ(x− kε)eiξx dx+

∫ ∞

−∞
ϕ(x+ kε)eiξx dx− 2

∫ ∞

−∞
ϕ(x)eiξx dx

)
,

(2.62)

where after translations with kε in the first two integrals we get

F [∆εϕ](ξ) =
1

ε2

∑
k>0

αk

(∫ ∞

−∞
ϕ(x)eiξ(x+kε) dx+

∫ ∞

−∞
ϕ(x)eiξ(x−kε) dx− 2F [ϕ](ξ)

)
=

1

ε2

∑
k>0

αk
(
eiξkε + e−iξkε − 2

)
F [ϕ](ξ)

=
1

ε2

∑
k>0

αk (2 cos(ξkε)− 2)F [ϕ](ξ)

= − 2

ε2
A(ξε)F [ϕ](ξ).

(2.63)

Note that in the last step we have used notation A(z) which was introduced in assump-

tion (A2). Now we can analyze ⟨F [∆εϕ] , F [ϕ]⟩. Since [F [ϕ](ξ)]
2 ≥ 0 and A(ξε) ≥ 0

for all ξ ∈ R, it follows that

⟨F [∆εϕ] , F [ϕ]⟩ = 2

ε2

∫
R
[F [ϕ](ξ)]

2
A(ξε) dx ≤ 0. (2.64)

So by Plancherel’s identity we can conclude that ⟨∆εϕ , ϕ⟩ = ⟨F [∆εϕ] , F [ϕ]⟩ ≤ 0.

Corollary 1. Let ∆ε be defined as in (2.15) and let the coefficients {αk} satisfy (A2). If
we then let ε ↓ 0 in the spatially discretized Allen-Cahn equation (2.6), it converges to its
continuous version (2.5).

Proof. During the derivations in (2.11) we found that

0 = u′n(t)−
1

ε2

∞∑
k=−∞

αkun−k + f(un)

= cu′(x)− 1

ε2

∑
k>0

αk [u(x− kε) + u(x+ kε)− 2u(x)] + f(u)

= cu′(x)−∆εu(x) + f(u).

(2.65)
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Now it follows from Lemma 4(i) that if we let ε ↓ 0 on both sides, then we get

cu′(x)− u′′(x) + f(u) = 0. (2.66)

Furthermore, the boundary condition u(±∞) = ±1 is still valid. So we see that we get
back problem (2.5) if we let ε go to 0 in (2.6). Thus we can conclude that (2.6) is indeed a
discretized version of (2.5).

Lemma 5. Assume f is a function satisfying (A1) and let (c0, u0) be defined as the solution
to (2.26). Then fu(u0) is bounded.

Proof. To show fu(u0) is bounded we will examine what happens if x→ ±∞. If we let this
happen, we know that u0(x) → ±1 from (2.26). This causes fu(u0) → fu(±1), since f ′ is
continuous by the assumption f ∈ C2(R). Note that fu(±1) are both finite values. Because
of the values being finite and fu(u0) being continuous it follows that fu(u0) is bounded.

The properties stated in these two lemmas will come in handy during the proofs of some
main theorems in later sections. The setting up of the problem has been finished and thus
we can start with the main part of this report, which contains the body of the proof.
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3 Main Proof

The Allen-Cahn equation and its discretized version have been been discussed in the previous
section. Also the problem has been set up in more detail by introducing a different way to
state the problem and showing some interesting properties. This means we are finally ready
to state the theorem which is essentially the theorem we want to prove in this thesis.

Theorem 2. Assume f satisfies (A1) and assume the coefficients {αk} satisfy (A2). Then
there exists a constant ε∗ such that for all ε ∈ (0, ε∗), problem (2.16) has at least one solution
(cε, uε). This solution is locally unique in H1(R) up to translation and has the property

lim
ε↓0

(cε, uε) = (c0, u0) in R×H1(R). (3.1)

If we are able to prove this, then our problem is solved. But we don’t have enough
firepower yet to prove this result. We need a proposition which will help us prove Theorem 2.
This is Proposition 1 and is stated below.

Proposition 1. There exists a positive constant C0 and a positive function ε0(·) : R+ 7→
R+ such that for every δ > 0 and every ε ∈ (0, ε0(δ)), L±

ε,δ is a homeomorphism, see

Definition A3, from H1(R) to L2(R). Furthermore∥∥∥(L±
ε,δ

)−1
ψ
∥∥∥
H1

≤ C0

{
∥ψ∥L2 +

1

δ

∣∣⟨ψ , ϕ∓0 ⟩∣∣} (3.2)

where ϕ∓0 ∈ L2(R) is as in (3.5) below and ψ ∈ L2(R) arbitrary. If also ψ ⊥ ϕ∓0 , then we
have ∥∥∥(L±

ε,δ

)−1
ψ
∥∥∥
H1

≤ C0 ∥ψ∥L2 . (3.3)

Unfortunately this proposition is also not easy to prove and preparations are necessary.
These preparations will be executed in the following two subsections. More information
about the operator L±

ε,δ is required, on which the focus will lie in the second section. To get

there we consider another operator L±
0 in the first subsection. This operator is related to

L±
ε,δ, since both operators are linearizations of the Allen-Cahn equation around the solution

(c0, u0). The difference is that L±
ε,δ is a linearization in the discrete case, while L±

0 is a

linearization in the slightly easier continuous case. So it makes sense to first consider L±
0

such that we can make the connection to L±
ε,δ.

After these preparations we will be ready to show Proposition 1 indeed holds. Then, after
some more estimating, we are finally ready to prove the main result stated as Theorem 2.

3.1 Linearization L±
0 of the continuous Allen-Cahn equation

In this section we treat the operator L±
0 and the function ϕ±0 (x). These are given by

L±
0 ϕ = ±c0ϕ′ − ϕ′′ + fu(u0)ϕ, (3.4)

ϕ+0 (x) =
u′0(x)

∥u′0(x)∥L2

, ϕ−0 (x) =
u′0(x)e

−c0x

∥u′0(x)e−c0x∥L2

. (3.5)
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Here L±
0 maps functions from H2(R) to L2(R). To understand the operators a bit better,

we remark that L+
0 can be seen as the linearization of the system (2.13) around the solution

(c0, u0). The observant reader will question if the taking of the L2-norms above is allowed.
But we have exponential convergence for u0 by Theorem 1, which is a property that is
preserved under differentiation. This justifies the taking of the L2-norms. We now treat a
lemma consisting of properties involving L±

0 and ϕ±0 (x).

Lemma 6. Let L±
0 and ϕ±0 be as above in (3.4) and (3.5). Then the following statements

hold.

(i) ∥ϕ±0 ∥L2 = 1.

(ii) L±
0 ϕ

±
0 = 0.

(iii)
〈
L±
0 ϕ , ψ

〉
=
〈
ϕ , L∓

0 ψ
〉
, for any ϕ, ψ ∈ H2(R).

(iv) ϕ±0 ∈ H2(R).

(v) There exists a positive constant C such that for all x > 0, we have

ϕ±0 (x)

∫ x

0

1

ϕ±0 (y)
dy ≤ C and

1[
ϕ±0 (x)

]2 ∫ ∞

x

[
ϕ±0 (y)

]2
dy ≤ C. (3.6)

(vi) For every ψ ∈ L2(R) the problem

L±
0 ϕ = ψ with ϕ ∈ H2(R) and ϕ ⊥ ϕ±0 (3.7)

has a unique solution if and only if ψ ⊥ ϕ±0 . Furthermore, there exists a positive
constant C1, such that

∥ϕ∥H2 ≤ C1

∥∥L±
0 ϕ
∥∥
L2 for all ϕ ∈ H2(R) satisfying ϕ ⊥ ϕ±0 . (3.8)

Proof. (i) This result is not so hard to show. It follows directly from the definition of ϕ±0 .
Since we have

∥ϕ+0 ∥L2 =

∥∥∥∥ u′0(x)

∥u′0(x)∥L2

∥∥∥∥
L2

=
∥u′0(x)∥L2

∥u′0(x)∥L2

= 1, (3.9)

which proves the statement for ϕ+0 . In exactly the same way we have ∥ϕ−0 ∥L2 = 1.

(ii) We want to show L±
0 ϕ

±
0 = 0. First we take identity (2.26) and differentiate this on

both sides. This gives
c0u

′′
0 − u′′′0 + fu(u0)u

′
0 = 0, (3.10)

which we will use later on. Now using (3.10) it follows almost immediately that
L+
0 ϕ

+
0 = 0. Since we get

L+
0 ϕ

+
0 =

1

∥u′0(x)∥L2

(
c0u

′′
0 − u′′′0 + fu(u0)u

′
0

)
= 0. (3.11)
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To show L−
0 ϕ

−
0 = 0 we have to put in some more effort. First, (ϕ−0 )

′ and (ϕ−0 )
′′ have

to be computed. We get

(ϕ−0 )
′ =

1

∥u′0(x)e−c0x∥L2

(
u′′0e

−c0x − c0u
′
0e

−c0x
)

=
e−c0x

∥u′0(x)e−c0x∥L2

(
u′′0 − c0u

′
0

)
,

(3.12)

(ϕ−0 )
′′ =

e−c0x

∥u′0(x)e−c0x∥L2

(
u′′′0 − 2c0u

′′
0 + c20u

′
0

)
. (3.13)

From this it follows that

L−
0 ϕ

−
0 =

e−c0x

∥u′0(x)e−c0x∥L2

(
c20u

′
0 − c0u

′′
0 − u′′′0 + 2c0u

′′
0 − c20u

′
0 + fu(u0)u

′
0

)
=

e−c0x

∥u′0(x)e−c0x∥L2

(
c0u

′′
0 − u′′′0 + fu(u0)u

′
0

)
= 0.

(3.14)

Here we again used (3.10). So we indeed see that L±
0 ϕ

±
0 = 0.

(iii) Let ϕ, ψ ∈ H2(R) arbitrary. We obtain, by applying integration by parts, that

⟨±c0ϕ′ , ψ⟩ = ±c0
∫
R
ϕ′ψ dx = ±c0 [ϕψ]∞−∞ ∓ c0

∫
R
ϕψ′ dx = ⟨ϕ , ∓c0ψ′⟩ . (3.15)

Notice that [ϕψ]
∞
−∞ vanishes here because both ϕ, ψ ∈ H2(R). By using repetitive

integration by parts and using that ϕ, ψ ∈ H2(R), we get the following result in a
similar way as done above. We find

⟨ϕ′′ , ψ⟩ = ⟨ϕ , ψ′′⟩ . (3.16)

Furthermore, we have the more trivial

⟨fu(u0)ϕ , ψ⟩ = ⟨ϕ , fu(u0)ψ⟩ . (3.17)

Using these three results we find〈
L±
0 ϕ , ψ

〉
= ⟨±c0ϕ′ − ϕ′′ + fu(u0)ϕ , ψ⟩
= ⟨±c0ϕ′ , ψ⟩ − ⟨ϕ′′ , ψ⟩+ ⟨fu(u0)ϕ , ψ⟩
= ⟨ϕ , ∓c0ψ′⟩ − ⟨ϕ , ψ′′⟩+ ⟨ϕ , fu(u0)ψ⟩
= ⟨ϕ , ∓c0ψ′ − ψ′′ + fu(u0)ψ⟩
=
〈
ϕ , L∓

0 ψ
〉
.

(3.18)

(iv) Differentiating (2.26) gives the differential equation c0u
′′
0 − u′′′0 + fu(u0)u

′
0 = 0 with

the boundary condition u0(±∞) = ±1. Note that u0 = u0(x). So if we let x → ±∞
our differential equation will be very similar to

c0ũ0
′′ − ũ0

′′′ + fu(±1)ũ0
′ = 0. (3.19)
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We will solve this equation for ũ0
′. This way we get to know how u0 roughly behaves

at ±∞ and thus also understand ϕ±0 a lot better. To solve this equation we write ũ0
′

in the form ũ0
′(x) = erx, where r is a constant, and substitute this into differential

equation (3.19). This gives

erx
(
c0r − r2 + fu(±1)

)
= 0. (3.20)

Because erx is never equal to 0 we get

r2 − c0r − fu(±1) = 0. (3.21)

Then completing the square gives

(
r − c0

2

)2
=
c20
4

+ fu(±1) (3.22)

so that

r =
c0
2

±
√
c20
4

+ fu(±1). (3.23)

Hence

ũ0
′(x) = α±e

(
c0
2 +

√
c20
4 +fu(±1)

)
x
+ β±e

(
c0
2 −

√
c20
4 +fu(±1)

)
x

as x→ ±∞. (3.24)

So we have that

u′0(x) ∼ α±e

(
c0
2 +

√
c20
4 +fu(±1)

)
x
+ β±e

(
c0
2 −

√
c20
4 +fu(±1)

)
x

as x→ ±∞. (3.25)

Boundary condition u0(±∞) = ±1 implies that u′0(x) must be bounded. We can use
this to be more specific about u′0(x). First we make an observation. We know from
(A1) that fu(±1) > 0. So we get

c0
2

+

√
c20
4

+ fu(±1) > 0 and
c0
2

−
√
c20
4

+ fu(±1) < 0. (3.26)

We consider the case when x→ ∞. Using the two inequalities above, we see that

e

(
c0
2 +

√
c20
4 +fu(±1)

)
x

−→ ∞ and e

(
c0
2 −

√
c20
4 +fu(±1)

)
x

−→ 0. (3.27)

Since ũ0
′(x) has to be bounded, it follows that α+ = 0. We can apply similar reasoning

in the case that x→ −∞. Using the two inequalities from (3.26) again, we find that

e

(
c0
2 +

√
c20
4 +fu(±1)

)
x

−→ 0 and e

(
c0
2 −

√
c20
4 +fu(±1)

)
x

−→ ∞. (3.28)
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By the boundedness of u′0(x), it now follows that β− = 0. Using that α+ = β− = 0
we can rewrite (3.25). We define the constant γ±, where γ+ = β+ and γ− = α−. This
allows us to write (3.25) as

u′0(x) ∼ γ±e

(
c0
2 ∓

√
c20
4 +fu(±1)

)
x

as x→ ±∞. (3.29)

From this we observe that u′0(x) converges exponentially to 0 x → ±∞. Exponential
convergence is a property that is maintained while taking derivatives. Hence u′′0(x)
converges exponentially to 0 as x → ±∞. Thus both u′0(x), u

′′
0(x) ∈ L2(R). So, from

this it follows that ϕ±0 ∈ H2(R).

(v) First of all note that ϕ±0 (x) > 0, because u′0(x) > 0 by Theorem 1. We keep this
in mind during the proof. In the proof of Lemma 6(iv) we have found that u′0(x)
converges exponentially to 0 when x→ ∞. It follows from (3.29) there exists a r > 0,
such that for every x ≥ r, we have

u′0(x) ∼ γ+e

(
c0
2 −

√
c20
4 +fu(±1)

)
x
. (3.30)

For notation reasons we define the positive constant A = −
(
c0
2 −

√
c20
4 + fu(±1)

)
. So

for every x ≥ r, we now have
u′0(x) ∼ γ+e

−Ax. (3.31)

Furthermore we define

m = min
x∈(0,r]

ϕ±0 (x) and M = max
x∈(0,r]

ϕ±0 (x). (3.32)

We start with showing that the first of the two inequalities holds. Let x > 0 be
arbitrary. We’ll consider the cases x ≥ r and x ≤ r separately. First assume x ≤ r.
Then

ϕ±0 (x)

∫ x

0

1

ϕ±0 (y)
dy ≤M

∫ x

0

1

m
dy =

Mx

m
≤ Mr

m
. (3.33)

Now we consider the other case where x ≥ r. We find that

ϕ+0 (x)

∫ x

r

1

ϕ+0 (y)
dy =

u′0(x)

∥u′0(x)∥L2

∫ x

r

∥u′0(x)∥L2

u′0(y)
dy

= γ+e
−Ax

∫ x

r

eAy

γ+
dy

=
e−Ax

A

[
eAy
]x
r

=
e−Ax

A

(
eAx − eAr

)
=

1

A

(
1− eA(r−x)

)
≤ 1

A
.

(3.34)

Using the previous estimations (3.33) and (3.34) we obtain

ϕ+0 (x)

∫ x

0

1

ϕ+0 (y)
dy = ϕ+0 (x)

(∫ r

0

1

ϕ+0 (y)
dy +

∫ x

r

1

ϕ+0 (y)
dy

)
≤ Mr

m
+

1

A
. (3.35)
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Note that we have only estimated for ϕ+0 . If we take ϕ
−
0 instead of ϕ+0 , the estimations

above can be done in exactly the same way. The only difference is that A has to be
replaced by A+ c0, which is also a positive constant. So, after we define A+ = A and
A− = A+ c0, we have

ϕ±0 (x)

∫ x

0

1

ϕ±0 (y)
dy ≤ Mr

m
+

1

A± for all x > 0. (3.36)

Now we move on to the second inequality. Let x > 0 be arbitrary and again we split
the cases x ≥ r and x ≤ r. First we condider x ≥ r. Then

1[
ϕ+0 (x)

]2 ∫ ∞

x

[
ϕ+0 (y)

]2
dy =

∥u′0(x)∥2L2

[u′0(x)]
2

∫ ∞

x

[u′0(y)]
2

∥u′0(x)∥2L2

dy

=
e2Ax

γ2+

∫ ∞

x

γ2+e
−2Ay dy

= −e
2Ax

2A

[
e−2Ay

]∞
x

= −e
2Ax

2A

(
0− e−2Ax

)
=

1

2A
.

(3.37)

Notice that this estimation is almost the same when ϕ+0 is replaced by ϕ−0 . We only
have to replace A, by A+ c0 as mentioned before. So, to be precise, we have

1[
ϕ±0 (x)

]2 ∫ ∞

x

[
ϕ±0 (y)

]2
dy ≤ 1

2A± for all x ≥ r. (3.38)

Now we consider the case where x ≤ r. Then we obtain

1[
ϕ±0 (x)

]2 ∫ r

x

[
ϕ±0 (y)

]2
dy ≤ 1

m2

∫ r

0

M2 dy =
M2r

m2
. (3.39)

Combining (3.38) and (3.39) we find that

1[
ϕ±0 (x)

]2 ∫ ∞

x

[
ϕ±0 (y)

]2
dy

=
1[

ϕ±0 (x)
]2 (∫ r

x

[
ϕ±0 (y)

]2
dy +

∫ ∞

r

[
ϕ±0 (y)

]2
dy

)
≤ M2r

m2
+

1

2A± .

(3.40)

So we have that

1[
ϕ±0 (x)

]2 ∫ ∞

x

[
ϕ±0 (y)

]2
dy ≤ M2r

m2
+

1

2A± for all x > 0. (3.41)

Thus if we take C = max
{
Mr
m + 1

A± ,
M2r
m2 + 1

2A±

}
, we see that both of the inequalities

indeed hold.

(vi) Let’s first prove the if and only if statement in the forward direction. Let ψ ∈ L2(R)
arbitrary. We assume that ϕ is the unique solution to

L±
0 ϕ = ψ with ϕ ∈ H2(R) and ϕ ⊥ ϕ±0 . (3.42)
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So we have that ϕ ∈ H2(R) and, by Lemma 6(iv), also ϕ∓0 ∈ H2(R). Hence we can
apply Lemma 6(iii). It implies that ⟨ψ , ϕ∓0 ⟩ = ⟨L±

0 ϕ , ϕ
∓
0 ⟩ = ⟨ϕ , L∓

0 ϕ
∓
0 ⟩. Lemma 6(ii)

states that L∓
0 ϕ

∓
0 = 0 and thus it follows that ⟨ψ , ϕ∓0 ⟩ = 0.

Now we want to prove the backward direction. We find a special solution ϕsp(x) to the
equation L±

0 ϕ = ψ if we solve this by variation of parameters. This special solution
ϕsp(x) is given by

ϕsp(x) = ϕ±0 (x)

∫ x

0

1

ϕ+0 (y)ϕ
−
0 (y)

∫ ∞

y

ϕ∓0 (z)ψ(z) dz dy. (3.43)

We will show that ϕsp(x) indeed satisfies the equation L±
0 ϕ = ψ. To do this we first

introduce some new notation

η(y) =

∫ ∞

y

ϕ∓0 (z)ψ(z) dz, (3.44)

so that we now can write

ϕsp(x) = ϕ±0 (x)

∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy. (3.45)

To be able to elaborate L±
0 ϕsp we need to know the derivatives η′(y), ϕ′sp(x) and

ϕ′′sp(x). ϕ
′′
sp(x) can be derived using η′(y) and ϕ′sp(x) and these are given by

η′(y) = −ϕ∓0 (y)ψ(y), (3.46)

ϕ′sp(x) =
(
ϕ±0 (x)

)′ ∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy +
η(x)

ϕ∓0 (x)
. (3.47)

With the help of these two derivatives we find

ϕ′′sp(x) =
(
ϕ±0 (x)

)′′ ∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy +

(
ϕ±0 (x)

)′
η(x)

ϕ+0 (x)ϕ
−
0 (x)

−
ϕ∓0 (x)ψ(x)ϕ

∓
0 (x) +

(
ϕ∓0 (x)

)′
η(x)[

ϕ∓0 (x)
]2

=
(
ϕ±0 (x)

)′′ ∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy +

(
ϕ±0 (x)

)′
η(x)

ϕ+0 (x)ϕ
−
0 (x)

− ψ(x)−
(
ϕ∓0 (x)

)′
η(x)[

ϕ∓0 (x)
]2 .

(3.48)

Now we are ready to write out L±
0 ϕsp which should equal ψ(x). This gives
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L±
0 ϕsp =± c0

(
ϕ±0 (x)

)′ ∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy ± c0
η(x)

ϕ∓0 (x)
−
(
ϕ±0 (x)

)′′ ∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy

−
(
ϕ±0 (x)

)′
η(x)

ϕ+0 (x)ϕ
−
0 (x)

+ ψ(x) +

(
ϕ∓0 (x)

)′
η(x)[

ϕ∓0 (x)
]2 + fu(u0)ϕ

±
0 (x)

∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy

=

∫ x

0

η(y)

ϕ+0 (y)ϕ
−
0 (y)

dy

(
±c0

(
ϕ±0 (x)

)′ − (ϕ±0 (x))′′ + fu(u0)ϕ
±
0 (x)

)
+

η(x)[
ϕ∓0 (x)

]2
(
±c0ϕ∓0 (x)−

(
ϕ±0 (x)

)′
ϕ∓0 (x)

ϕ±0 (x)
+
(
ϕ∓0 (x)

)′)
+ ψ(x).

(3.49)

Note that the expression in brackets after the integral is just L±
0 ϕ

±
0 and by Lemma 6(ii)

L±
0 ϕ

±
0 =0. So

L±
0 ϕsp =

η(x)[
ϕ∓0 (x)

]2
(
±c0ϕ∓0 (x)−

(
ϕ±0 (x)

)′
ϕ∓0 (x)

ϕ±0 (x)
+
(
ϕ∓0 (x)

)′)
+ ψ(x). (3.50)

Remember ϕsp(x) is a solution to the PDE if L±
0 ϕsp = ψ. So if the first term of (3.50)

equals 0, then ϕsp(x) is a solution to the PDE. We claim that the expression between
the round brackets equals 0. We will use the definitions of ϕ+0 (x) and ϕ−0 (x), stated
in (3.5), to evaluate this expression for ϕ+0 (x) and ϕ

−
0 (x) separately. We find that

c0ϕ
−
0 (x)−

(
ϕ+0 (x)

)′
ϕ−0 (x)

ϕ+0 (x)
+
(
ϕ−0 (x)

)′
= c0

u′0(x)e
−c0x

∥u′0(x)e−c0x∥L2

−
u′′0(x)u

′
0(x)e

−c0x ∥u′0(x)∥L2

∥u′0(x)∥L2 ∥u′0(x)e−c0x∥L2 u′0(x)

+
u′′0(x)e

−c0x − c0u
′
0(x)e

−c0x

∥u′0(x)e−c0x∥L2

=
c0u

′
0(x)e

−c0x − u′′0(x)e
−c0x + u′′0(x)e

−c0x − c0u
′
0(x)e

−c0x

∥u′0(x)e−c0x∥L2

= 0,

(3.51)
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−c0ϕ+0 (x)−
(
ϕ−0 (x)

)′
ϕ+0 (x)

ϕ−0 (x)
+
(
ϕ+0 (x)

)′
= −c0

u′0(x)

∥u′0(x)∥L2

−

(
u′′0(x)e

−c0x − c0u
′
0(x)e

−c0x
)
u′0(x) ∥u′0(x)e−c0x∥L2

∥u′0(x)e−c0x∥L2 ∥u′0(x)∥L2 u′0(x)e
−c0x

+
u′′0(x)

∥u′0(x)∥L2

=
−c0u′0(x)− u′′0(x) + c0u

′
0(x) + u′′0(x)

∥u′0(x)∥L2

= 0.

(3.52)

So we can conclude that

±c0ϕ∓0 (x)−
(
ϕ±0 (x)

)′
ϕ∓0 (x)

ϕ±0 (x)
+
(
ϕ∓0 (x)

)′
= 0 (3.53)

and thus we find that L±
0 ϕsp(x) = ψ(x), which means ϕsp(x) is indeed a solution to

L±
0 ϕ = ψ.

Now we’ll derive an upper estimate for η(y) which will be useful to obtain an upper
estimate for ϕsp(x). To find such an estimate we use Cauchy-Schwarz and the second
inequality of (3.6) stated in Lemma 6(v). It follows that for every y > 0 we have

|η(y)| =
∣∣∣∣∫ ∞

y

ϕ∓0 (z)ψ(z) dz

∣∣∣∣ ≤
√∫ ∞

y

[
ϕ∓0 (z)

]2
dz

∫ ∞

y

ψ(z)2 dz

≤

√
C
[
ϕ∓0 (y)

]2 ∫ ∞

y

ψ(z)2 dz

=
√
C
∣∣ϕ∓0 (y)∣∣

√∫ ∞

y

ψ(z)2 dz.

(3.54)

Using the derived inequality above, we obtain that for every x > 0

|ϕsp(x)| ≤
∣∣ϕ±0 (x)∣∣ ∫ x

0

∣∣∣∣ 1

ϕ+0 (y)ϕ
−
0 (y)

∣∣∣∣ |η(y)| dy
≤

√
C
∣∣ϕ±0 (x)∣∣ ∫ x

0

(∣∣∣∣ 1

ϕ+0 (y)ϕ
−
0 (y)

∣∣∣∣ ∣∣ϕ∓0 (y)∣∣
√∫ ∞

y

ψ(z)2 dz

)
dy

=
√
C
∣∣ϕ±0 (x)∣∣ ∫ x

0

(
1∣∣ϕ±0 (y)∣∣

√∫ ∞

y

ψ(z)2 dz

)
dy.

(3.55)
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To further bound |ϕsp(x)| we need some observations. Note that ϕ±0 (x) > 0, because
u′0(x) > 0 by Theorem 1. Together with the first inequality of (3.6) from Lemma 6(v)
this implies that ∣∣ϕ±0 (x)∣∣ ∫ x

0

1∣∣ϕ±0 (y)∣∣dy = ϕ±0 (x)

∫ x

0

1

ϕ±0 (y)
dy ≤ C. (3.56)

Furthermore we notice that
√∫∞

y
ψ(z)2 dz ≤

√∫∞
−∞ ψ(z)2 dz = ∥ψ∥L2 . Using these

two derived inequalities we find that

√
C
∣∣ϕ±0 (x)∣∣ ∫ x

0

(
1∣∣ϕ±0 (y)∣∣

√∫ ∞

y

ψ(z)2 dz

)
dy ≤ C

√
C ∥ψ∥L2 . (3.57)

So if we denote A1 = C
√
C, it follows that

|ϕsp(x)| ≤ A1 ∥ψ∥L2 for x > 0. (3.58)

We can also write this as ∥ϕsp∥L∞(0,∞) ≤ A1 ∥ψ∥L2 . Here the norm ∥ϕsp∥L∞(0,∞) takes

the maximum value of |ϕsp(x)| for x ∈ (0,∞). Furthermore, by applying l’Hôpital’s
rule, it follows that limx→∞ ϕsp(x) = 0.

Now we want to show there exists another constant A2 such that a similar statement
holds for x ∈ (−∞, 0), namely ∥ϕsp∥L∞(−∞,0) ≤ A2 ∥ψ∥L2 . To show this we assume

ψ ⊥ ϕ±0 , then for every y ∈ R we have

0 =

∫ ∞

−∞
ψ(x)ϕ±0 (x) dx

=

∫ y

−∞
ψ(x)ϕ±0 (x) dx+

∫ ∞

y

ψ(x)ϕ±0 (x) dx

(3.59)

so that ∫ ∞

y

ψ(x)ϕ±0 (x) dx =

∫ −∞

y

ψ(x)ϕ±0 (x) dx. (3.60)

Bounds as in Lemma 6(v) can also be obtained for x < 0. These are found in the
same way as for x > 0. In a manner similar to the case when x is positive it can
be shown, using (3.60), that ∥ϕsp∥L∞(−∞,0) ≤ A2 ∥ψ∥L2 for some positive constant

A2 and that limx→−∞ ϕsp(x) = 0. So we find that ϕsp is bounded by ψ and that
limx→±∞ ϕsp(x) = 0. It is claimed in [2, Lemma 5(2)] that this is enough to show
there exists a positive constant A such that ∥ϕsp∥H2 ≤ A ∥ψ∥L2

1.

We define ϕ = ϕsp − ⟨ϕsp , ϕ±0 ⟩ϕ
±
0 and claim that ϕ is a unique solution to problem

(3.7). This would finish the proof immediately. We’ll show that this claim indeed
holds.

1It is claimed this result follows using the differential equation L±
0 ϕsp = ψ and an energy estimate.
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Recall that L±
0 ϕsp = ψ. Furthermore we have L±

0 ϕ
±
0 = 0 by Lemma 6(ii). Using both

of these observations, we find

L±
0 ϕ = L±

0

[
ϕsp − ⟨ϕsp , ϕ±0 ⟩ϕ

±
0

]
= L±

0 ϕsp − ⟨ϕsp , ϕ±0 ⟩L
±
0 ϕ

±
0 = L±

0 ϕsp = ψ. (3.61)

Now we show that ϕ ⊥ ϕ±0 . Since ∥ϕ±0 ∥L2 = 1 by Lemma 6(i), we have

⟨ϕ , ϕ±0 ⟩ =
〈
ϕsp − ⟨ϕsp , ϕ±0 ⟩ϕ

±
0 , ϕ

±
0

〉
= ⟨ϕsp , ϕ±0 ⟩ − ⟨ϕsp , ϕ±0 ⟩⟨ϕ

±
0 , ϕ

±
0 ⟩

= ⟨ϕsp , ϕ±0 ⟩ − ⟨ϕsp , ϕ±0 ⟩∥ϕ
±
0 ∥2L2

= ⟨ϕsp , ϕ±0 ⟩ − ⟨ϕsp , ϕ±0 ⟩
= 0.

(3.62)

It is left to show that ϕ is a unique solution. First consider the problem L±
0 ϕ̂ = 0.

It follows from Lemma 6(ii) that ϕ±0 is a solution. Another solution to this problem
is ϕ±0

∫ x
0

1
ϕ+
0 (y)ϕ−

0 (y)
dy, which can be found by following the same procedure as during

the evaluation of L±
0 ϕsp, but with setting η(y) = 1. These two solutions are clearly

linearly independent. Since L±
0 ϕ̂ = 0 is a second order ordinary differential equation,

all of its solutions must be linear combinations of these two solutions.

Now let ϕ̃ be another solution to problem (3.7). Then

L±
0

[
ϕ̃− ϕ

]
= L±

0 ϕ̃− L±
0 ϕ = ψ − ψ = 0. (3.63)

As we have just observed, ϕ̃− ϕ must be a linear combination of ϕ±0
∫ x
0

1
ϕ+
0 (y)ϕ−

0 (y)
dy

and ϕ±0 . But ϕ
±
0

∫ x
0

1
ϕ+
0 (y)ϕ−

0 (y)
dy is unbounded and since ϕ̃− ϕ ∈ H2(R), it can only

be a multiple of ϕ±0 . So there exists a constant d such that ϕ̃ − ϕ = dϕ±0 . Using this
together with the fact that both ϕ̃ ⊥ ϕ±0 and ϕ̃ ⊥ ϕ±0 , we find

0 = ⟨ϕ̃− ϕ , ϕ±0 ⟩ = d⟨ϕ±0 , ϕ
±
0 ⟩ = d∥ϕ±0 ∥2L2 . (3.64)

But Lemma 6(i) states that ∥ϕ±0 ∥L2 = 1 and thus it follows that d = 0. Because
ϕ̃− ϕ = dϕ±0 , we find that ϕ̃ = ϕ and we can conclude that ϕ is a unique solution to
(3.7) proving the claim.

Furthermore, we can estimate the H2-norm of ϕ by applying the Cauchy-Schwarz
inequality. We find that

∥ϕ∥H2 =
∥∥ϕsp − ⟨ϕsp , ϕ±0 ⟩ϕ

±
0

∥∥
H2 ≤ ∥ϕsp∥H2 +

∥∥⟨ϕsp , ϕ±0 ⟩ϕ±0 ∥∥H2

= ∥ϕsp∥H2 +
∣∣⟨ϕsp , ϕ±0 ⟩∣∣ ∥ϕ±0 ∥H2

≤ ∥ϕsp∥H2 + ∥ϕsp∥L2 ∥ϕ±0 ∥L2∥ϕ±0 ∥H2

≤ ∥ϕsp∥H2

(
1 + ∥ϕ±0 ∥L2∥ϕ±0 ∥H2

)
.

(3.65)

Using that ∥ϕ±0 ∥L2 = 1, see Lemma 6(i), and using the earlier obtained bound
∥ϕsp∥H2 ≤ A ∥ψ∥L2 we can further estimate this expression. This gives

∥ϕ∥H2 ≤ A
(
1 + ∥ϕ±0 ∥H2

)
∥ψ∥L2 . (3.66)

So defining C1 = A
(
1 + ∥ϕ±0 ∥H2

)
confirms that also (3.8) holds.

32



This lemma is mainly needed to prove the next lemma, where we find an estimate in which
a function ϕ ∈ H2(R) is compared to (L±

0 + δ)ϕ. Later, we will see that a similar estimate
can be obtained where the operator L±

0 + δ is replaced by L±
ε,δ. So, the continuous case

is then being connected to the discrete case. But this will happen in the next section 3.2,
where the operator L±

ε,δ is treated.

Lemma 7. Let L±
0 and ϕ±0 be as in (3.4) and (3.5). Then there exists a positive constant

C2, such that for every δ > 0 and for all ϕ ∈ H2(R) we have

∥ϕ∥H2 ≤ C2

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
where ψ = L±

0 ϕ+ δϕ. (3.67)

Proof. We will consider 3 cases separately to prove this statement. Namely δ is (a)large,
(b)small and (c)intermediate.

(a) We start with δ being large. We denote δ1 = 1 + ∥fu(u0)∥L∞ and we assume δ ≥ δ1.
Let ϕ ∈ H2(R) be arbitrary and set ψ = L±

0 ϕ+ δϕ. Our goal is to show that

∥ϕ∥2H2 = ∥ϕ∥2L2 + ∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ C ∥ψ∥2L2 , where C is a constant.

If we can verify this, then (3.67) will easily follow. We will start by bounding ∥ϕ∥2L2 .
The Cauchy-Schwarz inequality implies that

∥ψ∥L2 ∥ϕ∥L2 ≥ ⟨ψ , ϕ⟩ . (3.68)

By Lemma 1(i), Lemma 1(ii) and the definition of ψ we obtain

⟨ψ , ϕ⟩ = ⟨±c0ϕ′ − ϕ′′ + fu(u0)ϕ+ δϕ , ϕ⟩
= ±c0 ⟨ϕ′ , ϕ⟩ − ⟨ϕ′′ , ϕ⟩+ ⟨fu(u0)ϕ , ϕ⟩+ δ ⟨ϕ , ϕ⟩
≥ ⟨fu(u0)ϕ , ϕ⟩+ δ ⟨ϕ , ϕ⟩ .

(3.69)

Since for all x ∈ R we have fu(u0(x)) ≥ −∥fu(u0)∥L∞ , we find

⟨fu(u0)ϕ , ϕ⟩ =
∫
R
fu(u0(x))ϕ(x)

2 dx

≥ −∥fu(u0)∥L∞

∫
R
ϕ(x)2 dx = −∥fu(u0)∥L∞ ∥ϕ∥2L2 .

(3.70)

Furthermore we of course have ⟨ϕ , ϕ⟩ = ∥ϕ∥2L2 . From these two observations it follows
that

⟨fu(u0)ϕ , ϕ⟩+ δ ⟨ϕ , ϕ⟩ ≥ (δ − ∥fu(u0)∥L∞) ∥ϕ∥2L2 . (3.71)

Connecting (3.68), (3.69) and (3.71) gives

∥ψ∥L2 ∥ϕ∥L2 ≥ (δ − ∥fu(u0)∥L∞) ∥ϕ∥2L2 , (3.72)

which after dividing both sides by ∥ϕ∥L2 is equivalent to

(δ − ∥fu(u0)∥L∞) ∥ϕ∥L2 ≤ ∥ψ∥L2 . (3.73)
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This together with the assumption δ ≥ δ1 implies that

∥ϕ∥L2 = (δ1 − ∥fu(u0)∥L∞) ∥ϕ∥L2

≤ (δ − ∥fu(u0)∥L∞) ∥ϕ∥L2

≤ ∥ψ∥L2 .

(3.74)

After squaring both sides we obtain ∥ϕ∥2L2 ≤ ∥ψ∥2L2 . So we have found a bound for

∥ϕ∥2L2 .

Now we also want to bound ∥ϕ′∥2L2 + ∥ϕ′′∥2L2 by B1 ∥ψ∥2L2 for some constant B1. If
|c0| > 1, we find

∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ ∥c0ϕ′∥
2
L2 + ∥ϕ′′∥2L2 , (3.75)

while if |c0| ≤ 1 we can estimate

∥ϕ′∥2L2 + ∥ϕ′′∥2L2 =
1

c20

(
∥c0ϕ′∥

2
L2 + ∥c0ϕ′′∥

2
L2

)
≤ 1

c20

(
∥c0ϕ′∥

2
L2 + ∥ϕ′′∥2L2

)
.

(3.76)

So we can conclude that

∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ max

{
1,

1

c20

}(
∥c0ϕ′∥

2
L2 + ∥ϕ′′∥2L2

)
. (3.77)

Note that by Lemma 1(i) we have that ⟨ϕ′′ , ϕ′⟩ = 0. We’ll use this to rewrite

∥c0ϕ′∥2L2 + ∥ϕ′′∥2L2 . This gives

∥c0ϕ′∥
2
L2 + ∥ϕ′′∥2L2 =

∫
R

[
c20ϕ

′(x)2 + ϕ′′(x)2
]
dx

=

∫
R
[±c0ϕ′(x)− ϕ′′(x)]

2
dx± 2c0

∫
R
ϕ′′(x)ϕ′(x) dx

=

∫
R
[±c0ϕ′(x)− ϕ′′(x)]

2
dx± 2c0 ⟨ϕ′′ , ϕ′⟩

=
∥∥∥±c0ϕ′(x)− ϕ′′(x)

∥∥∥2
L2
.

(3.78)

By the definition of ψ we obtain ±c0ϕ′ − ϕ′′ = ψ − (fu(u0) + δ)ϕ. So we have

∥c0ϕ′∥
2
L2 + ∥ϕ′′∥2L2 ≤

∥∥ψ − (fu(u0) + δ)ϕ
∥∥2
L2

≤
(
∥ψ∥L2 +

∥∥(fu(u0) + δ)ϕ
∥∥
L2

)2
.

(3.79)

Since fu(u0(x)) ≤ ∥fu(u0)∥L∞ for all x ∈ R, using the same reasoning as in (3.70),
we have that ∥(fu(u0) + δ)ϕ∥L2 ≤ (∥fu(u0)∥L∞ + δ) ∥ϕ∥L2 . Using this together with
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(3.73) and (3.74) we find that

∥c0ϕ′∥
2
L2 + ∥ϕ′′∥2L2 ≤

(
∥ψ∥L2 + (∥fu(u0)∥L∞ + δ) ∥ϕ∥L2

)2
=
(
∥ψ∥L2 + (δ − ∥fu(u0)∥L∞) ∥ϕ∥L2 + 2 ∥fu(u0)∥L∞ ∥ϕ∥L2

)2
≤
(
2 ∥fu(u0)∥L∞ + 2

)2
∥ψ∥2L2

(3.80)

If we now choose B1 = max
{
1, 1

c20

}(
2 ∥fu(u0)∥L∞ + 2

)2
, then it follows from (3.77)

and (3.80) that

∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ B1 ∥ψ∥2L2 . (3.81)

If we now combine this with the estimation ∥ϕ∥2L2 ≤ ∥ψ∥2L2 obtained earlier, then we
have

∥ϕ∥2H2 = ∥ϕ∥2L2 + ∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ (B1 + 1) ∥ψ∥2L2 . (3.82)

Taking the square root on both sides gives

∥ϕ∥H2 ≤
√
B1 + 1 ∥ψ∥L2 ≤

√
B1 + 1

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
. (3.83)

The final step is taking C2 =
√
B1 + 1, after which we end up with the result we were

seeking for.

(b) We consider the case where δ is small. We assume δ ∈ (0, δ0] where δ0 will be defined
later. Again we set ψ = L±

0 ϕ+ δϕ and we let ϕ ∈ H2(R) arbitrary.

First we decompose ϕ. We do this by choosing ϕ⊥ such that ϕ =
〈
ϕ , ϕ±0

〉
ϕ±0 + ϕ⊥.

Therefore we can now write ϕ⊥ = ϕ−
〈
ϕ , ϕ±0

〉
ϕ±0 . Now Lemma 6(i), which states

that ∥ϕ±0 ∥L2 = 1, implies that〈
ϕ⊥ , ϕ±0

〉
=
〈
ϕ , ϕ±0

〉
−
〈
ϕ , ϕ±0

〉 〈
ϕ±0 , ϕ

±
0

〉
=
〈
ϕ , ϕ±0

〉
−
〈
ϕ , ϕ±0

〉 ∥∥ϕ±0 ∥∥2L2

= 0.

(3.84)

So we have found that ϕ⊥ ⊥ ϕ±0 . Furthermore Lemma 6(ii), which states that
L±
0 ϕ

±
0 = 0, helps us finding

L±
0 ϕ

⊥ = L±
0 ϕ−

〈
ϕ , ϕ±0

〉
L±
0 ϕ

±
0 = ψ − δϕ. (3.85)

Now applying the second part of Lemma 6(vi) to ϕ⊥ gives

∥ϕ⊥∥H2 ≤ C1

∥∥L±
0 ϕ

⊥∥∥
L2 = C1 ∥ψ − δϕ∥L2 ≤ C1 {∥ψ∥L2 + δ ∥ϕ∥L2} . (3.86)

This inequality will be used later in the proof. In the proof of Lemma 6(vi) we have
seen that L±

0 ϕ ⊥ ϕ∓0 for ϕ ∈ H2(R). Since L±
0 ϕ = ψ − δϕ, we also have ψ − δϕ ⊥ ϕ∓0

and thus 〈
ψ − δϕ , ϕ∓0

〉
=
〈
ψ , ϕ∓0

〉
− δ

〈
ϕ , ϕ∓0

〉
= 0. (3.87)
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Now bringing δ
〈
ϕ , ϕ∓0

〉
to the other side and replacing ϕ by its decomposition gives〈

ψ , ϕ∓0
〉
= δ

〈
ϕ , ϕ∓0

〉
= δ

〈
ϕ , ϕ±0

〉 〈
ϕ+0 , ϕ

−
0

〉
+ δ

〈
ϕ⊥ , ϕ∓0

〉
. (3.88)

We denote

σ =
〈
ϕ+0 , ϕ

−
0

〉
=

∫
R

[u′0(x)]
2
e−c0x

∥u′0(x)∥L2 ∥u′0(x)e−c0x∥
dx. (3.89)

Notice that σ > 0. Furthermore σ ≤ 1 by the Cauchy-Schwarz inequality in combina-
tion with Lemma 6(i). Consider equality (3.88). We divide it by δ and rewrite it with
our definition of σ. This gives

1

δ

〈
ψ , ϕ∓0

〉
= σ

〈
ϕ , ϕ±0

〉
+
〈
ϕ⊥ , ϕ∓0

〉
. (3.90)

We can now bound σ|⟨ϕ , ϕ±0 ⟩| using Lemma 6(i). We get

σ
∣∣〈ϕ , ϕ±0 〉∣∣ = ∣∣σ 〈ϕ , ϕ±0 〉∣∣

=

∣∣∣∣1δ 〈ψ , ϕ∓0 〉− 〈ϕ⊥ , ϕ∓0 〉
∣∣∣∣

≤ 1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∣∣〈ϕ⊥ , ϕ∓0 〉∣∣
≤ 1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ϕ⊥∥L2∥ϕ±0 ∥L2 =
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ϕ⊥∥L2 .

(3.91)

From this together with the earlier obtained inequality for ∥ϕ⊥∥H2 it follows that

σ
∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥H2 ≤ 1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ϕ⊥∥L2 + ∥ϕ⊥∥H2

≤ 1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2∥ϕ⊥∥H2

≤ 1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2C1 ∥ψ∥L2 + 2δC1 ∥ϕ∥L2 .

(3.92)

After rewriting this is equivalent to

1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2C1 ∥ψ∥L2 ≥ σ
∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥H2 − 2δC1 ∥ϕ∥L2 . (3.93)

We want to find a lower bound for the left side of this expression that is of the
form A(δ) ∥ϕ∥L2 . To find such a lower bound one more inequality is required. This
inequality is obtained via the definition of ϕ in the following way. We have

∥ϕ∥L2 =
∥∥〈ϕ , ϕ±0 〉ϕ±0 + ϕ⊥

∥∥
L2

≤
∥∥〈ϕ , ϕ±0 〉ϕ±0 ∥∥L2 + ∥ϕ⊥∥L2

=
∣∣〈ϕ , ϕ±0 〉∣∣ ∥ϕ±0 ∥L2 + ∥ϕ⊥∥L2

=
∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥L2 .

(3.94)
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Now we are ready to find the lower bound for σ|⟨ϕ , ϕ±0 ⟩| + ∥ϕ⊥∥H2 − 2δC1 ∥ϕ∥L2 .
Besides the just derived inequality we’ll also use that σ ≤ 1 during our derivation. We
find

σ
∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥H2 − 2δC1 ∥ϕ∥L2 ≥ σ

∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥L2 − 2δC1 ∥ϕ∥L2

≥ σ
{ ∣∣〈ϕ , ϕ±0 〉∣∣+ ∥ϕ⊥∥L2

}
− 2δC1 ∥ϕ∥L2

≥ σ ∥ϕ∥L2 − 2δC1 ∥ϕ∥L2

= (σ − 2δC1) ∥ϕ∥L2 .

(3.95)

So we also have got

1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2C1 ∥ψ∥L2 ≥ (σ − 2δC1) ∥ϕ∥L2 , (3.96)

which is equivalent to

∥ϕ∥L2 ≤ 1

σ − 2δC1

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2C1 ∥ψ∥L2

}
. (3.97)

We will now finally set the value of δ0. We let δ0 = σ/4C1 such that δ ≤ σ/4C1. This
implies

∥ϕ∥L2 ≤ 2

σ

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ 2C1 ∥ψ∥L2

}
=

4C1

σ

{
1

2C1δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
. (3.98)

Note that we can choose C1 as big as we like. We take C1 ≥ 1/2. If we now set
B2 = 4C1/σ we get

∥ϕ∥L2 ≤ B2

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
. (3.99)

In a very similar way as in (a) we can find a bound for ∥ϕ′∥2L2 + ∥ϕ′′∥2L2 . The main

difference is that we use (3.99) instead of (3.74) when bounding ∥c0ϕ′∥2L2 + ∥ϕ′′∥2L2 as
in (3.80). This leads to a slightly different bound of course. We find that

∥c0ϕ′∥
2
L2 + ∥ϕ′′∥2L2 ≤ B3

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}2

, (3.100)

where B3 = (2B2 ∥fu(u0)∥L∞ + 2)
2
. We now use (3.77) which implies

∥ϕ′∥2L2 + ∥ϕ′′∥2L2 ≤ B3 max

{
1,

1

c20

}{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}2

. (3.101)

Just like in (a), we square inequality (3.99) and add inequality (3.101) to it. Thereafter
we take the square root on both sides of the obtained inequality to get the final result.
Namely

∥ϕ∥H2 ≤ C2

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
, (3.102)

with C2 =

√
B2

2 +B3 max
{
1, 1

c20

}
.
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(c) The final case we consider is for δ ∈ [δ0, δ1], where we assume that δ0 ≤ δ1. If this is
not the case, then parts (a) and (b) already complete the full proof. We define

Λ̃±(δ) = inf
∥ϕ∥H2=1

∥∥L±
0 ϕ+ δϕ

∥∥
L2 , (3.103)

Λ̂± = inf
δ∈[δ0,δ1]

Λ̃±(δ). (3.104)

Let {ϕj}∞j=0 and {δj}∞j=0 be sequences in respectively H2(R) and R, with ∥ϕj∥H2 = 1
and δj ∈ [δ0, δ1], such that

lim
j→∞

∥∥L±
0 ϕj + δjϕj

∥∥
L2 = Λ̂±. (3.105)

Define ψj = L±
0 ϕj + δjϕj . Then limj→∞ ∥ψj∥L2 = Λ̂± and therefore {ψj}∞j=0 is

a bounded sequence in L2(R). Since ∥ϕj∥H2 = 1 for all j, we have that {ϕj}∞j=0

is a bounded sequence in H2(R). So it follows from Theorem A1 that, by taking
subsequences if necessary, there exist ϕ ∈ H2(R) and ψ ∈ L2(R) such that

ψj → ψ in L2(R) weakly, as j → ∞, (3.106)

ϕj → ϕ in H2(R) weakly, as j → ∞. (3.107)

Furthermore Theorem A2 implies that, by taking another subsequence if necessary,
we have

ϕj → ϕ in L2
loc(R), as j → ∞. (3.108)

For each j we have that δj ≤ δ1. So {δj}∞j=0 is a bounded sequence. Now the
Bolzano-Weierstrass Theorem tells us there exists a δ ∈ [δ0, δ1] such that, by taking a
subsequence if necessary, δj → δ as j → ∞.

Now we take a test function ζ ∈ C∞
0 (R) ∩H2(R). Then

⟨ψj , ζ⟩ =
〈
L±
0 ϕj + δjϕj , ζ

〉
=
〈
L±
0 ϕj , ζ

〉
+ ⟨δjϕj , ζ⟩ =

〈
ϕj , L∓

0 ζ
〉
+ δj ⟨ϕj , ζ⟩ .

(3.109)

We want to examine what happens if we let j → ∞ on both sides. Since ψj → ψ
weakly in L2(R), we know that ⟨ψj , ζ⟩ converges to ⟨ψ , ζ⟩. Since ϕj → ϕ weakly
in H2(R), it follows that

〈
ϕj , L∓

0 ζ
〉
→
〈
ϕ , L∓

0 ζ
〉
and ⟨ϕj , ζ⟩ → ⟨ϕ , ζ⟩. We also

observed earlier that δj → δ. Using all of these observations, we see that letting
j → ∞ on both sides of (3.109) gives

⟨ψ , ζ⟩ =
〈
ϕ , L∓

0 ζ
〉
+ δ ⟨ϕ , ζ⟩

=
〈
L±
0 ϕ , ζ

〉
+ ⟨δϕ , ζ⟩ =

〈
L±
0 ϕ+ δϕ , ζ

〉
.

(3.110)

Because this holds for every ζ ∈ C∞
0 (R) ∩ H2(R), we find that ψ = L±

0 ϕ + δϕ. We

claim that Λ̂± > 0. We will show this by contradiction and therefore we assume from
now on that Λ̂± = 0. It follows from Theorem A3 that

∥ψ∥L2 ≤ lim inf
j→∞

∥ψj∥L2 = Λ̂±. (3.111)
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This implies that ψ = 0 and thus it follows that L±
0 ϕ+δϕ = ψ = 0. In [2, Lemma 5(3)],

the authors claim that the positivity of the functions ϕ±0 and the fact that L±
0 ϕ

±
0 = 0

allows one to use Liouville’s theorem to conclude that the equation (L±
0 + δ)ϕ = 0

does not have any nontrivial bounded solution2. So we find that ϕ = 0.

Our goal is to also show that ϕ ̸= 0 and thus obtain a contradiction. We start by
deriving two inequalities that will come in handy later in the proof.

Let’s derive the first of the two inequalities. We start by observing that〈
fu(u0)ϕj , ϕ

′′
j

〉
− ∥ϕ′′j ∥2L2 =

〈
fu(u0)ϕj , ϕ

′′
j

〉
−
〈
ϕ′′j , ϕ

′′
j

〉
=
〈
fu(u0)ϕj − ϕ′′j , ϕ

′′
j

〉
=
〈
L±
0 ϕj ∓ c0ϕ

′
j , ϕ

′′
j

〉
=
〈
L±
0 ϕj + δjϕj , ϕ

′′
j

〉
+
〈
∓c0ϕ′j − δjϕj , ϕ

′′
j

〉
.

(3.112)

Now it follows from Lemma 1(i) and Lemma 1(ii) that〈
∓c0ϕ′j − δjϕj , ϕ

′′
j

〉
= ∓c0

〈
ϕ′j , ϕ

′′
j

〉
− δj

〈
ϕj , ϕ

′′
j

〉
≥ 0 (3.113)

and thus〈
fu(u0)ϕj , ϕ

′′
j

〉
− ∥ϕ′′j ∥2L2 ≥

〈
L±
0 ϕj + δjϕj , ϕ

′′
j

〉
=
〈
ψj , ϕ

′′
j

〉
. (3.114)

By using the Cauchy-Schwarz inequality we find that〈
fu(u0)ϕj , ϕ

′′
j

〉
≤ ∥fu(u0)∥L∞

〈
ϕj , ϕ

′′
j

〉
≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′′j ∥L2 , (3.115)〈

ψj , ϕ
′′
j

〉
≥ −∥ψj∥L2 ∥ϕ′′j ∥L2 . (3.116)

Applying these estimates to both sides of (3.114) gives

∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′′j ∥L2 − ∥ϕ′′j ∥2L2 ≥ −∥ψj∥L2 ∥ϕ′′j ∥L2 (3.117)

and thus

∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′′j ∥L2 + ∥ψj∥L2 ∥ϕ′′j ∥L2 ≥ ∥ϕ′′j ∥2L2 . (3.118)

After diving this inequality by ∥ϕ′′j ∥L2 we get

∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2 ≥ ∥ϕ′′j ∥L2 . (3.119)

2We could not find which theorem the authors refer to as Liouville’s theorem. Likely, they mean a theorem
that provides a link between the number of zeroes of an eigenfunction and an ordering of the eigenvalues.
In particular, the eigenfuction ϕ±0 having no zeroes would imply that 0 is the smallest eigenvalue, which
means that −δ cannot be an eigenvalue. This is similar to classical Sturm-Liouville theory. However, the
operator L±

0 does not correspond to a Sturm-Liouville boundary value problem, so this theory cannot be
applied here directly.
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Squaring both sides gives(
∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2

)2 ≥ ∥ϕ′′j ∥2L2 (3.120)

We now further estimate the left hand side using the well known inequality (x+y)2 ≤
2x2 + 2y2. So then

2 ∥fu(u0)∥2L∞ ∥ϕj∥2L2 + 2 ∥ψj∥2L2 ≥ ∥ϕ′′j ∥2L2 (3.121)

and we end up with

0 ≥ ∥ϕ′′j ∥2L2 − 2 ∥fu(u0)∥2L∞ ∥ϕj∥2L2 − 2 ∥ψj∥2L2 . (3.122)

This is the first of two inequalities we will need later on in the proof. Now we be-
gin with deriving the second inequality. From the definition of L±

0 it follows that
±c0ϕ′j = L±

0 ϕj + ϕ′′j − fu(u0)ϕj . Using this as well as Lemma 1(i), we observe that

±c0∥ϕ′j∥2L2 =
〈
±c0ϕ′j , ϕ′j

〉
=
〈
L±
0 ϕj + (δjϕj − δjϕj) + ϕ′′j − fu(u0)ϕj , ϕ

′
j

〉
=
〈
L±
0 ϕj + δjϕj , ϕ

′
j

〉
− δj

〈
ϕj , ϕ

′
j

〉
+
〈
ϕ′′j , ϕ

′
j

〉
−
〈
fu(u0)ϕj , ϕ

′
j

〉
=
〈
ψj , ϕ

′
j

〉
−
〈
fu(u0)ϕj , ϕ

′
j

〉
.

(3.123)

Multiplying this on both sides by ± sign(c0) gives

|c0| ∥ϕ′j∥2L2 = ± sign(c0)
〈
ψj , ϕ

′
j

〉
∓ sign(c0)

〈
fu(u0)ϕj , ϕ

′
j

〉
(3.124)

and thus

|c0| ∥ϕ′j∥2L2 ∓ sign(c0)
〈
ψj , ϕ

′
j

〉
= ∓ sign(c0)

〈
fu(u0)ϕj , ϕ

′
j

〉
. (3.125)

We can estimate both sides of this equality by Cauchy-Schwarz. For estimating the
right hand side we also use that ∥fu(u0)ϕj∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 , which follows
from the fact that fu(u0(x)) ≤ ∥fu(u0)∥L∞ for all x ∈ R. We find

|c0| ∥ϕ′j∥2L2 ∓ sign(c0)
〈
ψj , ϕ

′
j

〉
≥ |c0| ∥ϕ′j∥2L2 − ∥ψj∥L2 ∥ϕ′j∥L2 , (3.126)

∓ sign(c0)
〈
fu(u0)ϕj , ϕ

′
j

〉
≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′j∥L2 . (3.127)

Applying both of these estimates to (3.125) gives

|c0| ∥ϕ′j∥2L2 − ∥ψj∥L2 ∥ϕ′j∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′j∥L2 , (3.128)

which after dividing by ∥ϕ′j∥ is equivalent to

|c0| ∥ϕ′j∥L2 − ∥ψj∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2

⇐⇒ |c0| ∥ϕ′j∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2 .
(3.129)

Now we square both sides of the inequality and thereafter use the earlier seen inequality
(x+ y)2 ≤ 2x2 + 2y2. This gives

c20∥ϕ′j∥2L2 ≤
(
∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2

)2
≤ 2 ∥fu(u0)∥2L∞ ∥ϕj∥2L2 + 2 ∥ψj∥2L2

(3.130)
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and thus
0 ≥ c20∥ϕ′j∥2L2 − 2 ∥fu(u0)∥2L∞ ∥ϕj∥2L2 − 2 ∥ψj∥2L2 . (3.131)

This is the second inequality that will come in handy later on in proof. Now we
introduce the positive constants a and m. We first define

a =
1

2
min {fu(1), fu(−1)} . (3.132)

Note that (A1) implies that a > 0. Now we take a positive constant m satisfying

a = min
|x|≥m

{fu(u0(x))} . (3.133)

This is possible because fu(u0(x)) converges to fu(±1) as x → ±∞ and is taking
values smaller then 1

2 min {fu(1), fu(−1)} for certain values of x. In particular there
exist values of x such that fu(u0(x)) = 0, which follows from u0(x) taking values in
(−1, 1) in combination with (A1).

Recall that our goal is to show that ϕ ̸= 0. Therefore we are seeking a positive lower
bound for

∫
|x|≤m ϕ

2(x) dx. To obtain such a bound a lot of estimating has to be done.

Using Lemma 1(i), Lemma 1(ii) and the fact that fu(u0(x)) ≥ −∥fu(u0)∥L∞ for all
x ∈ R, we obtain

⟨ψj , ϕj⟩ = ⟨L±
0 ϕj + δjϕj , ϕj⟩

=
〈
±c0ϕ′j − ϕ′′j + fu(u0)ϕj + δjϕj , ϕj

〉
= ±c0

〈
ϕ′j , ϕj

〉
−
〈
ϕ′′j , ϕj

〉
+ ⟨fu(u0)ϕj , ϕj⟩+ δj ⟨ϕj , ϕj⟩

= −
〈
ϕ′′j , ϕj

〉
+ ⟨fu(u0)ϕj , ϕj⟩+ δj ∥ϕj∥2L2

≥ ⟨fu(u0)ϕj , ϕj⟩

=

∫
R
fu(u0(x))ϕ

2
j (x) dx

=

∫
|x|≥m

fu(u0(x))ϕ
2
j (x) dx+

∫
|x|≤m

fu(u0(x))ϕ
2
j (x) dx

≥ min
|x|≥m

{fu(u0(x))}
∫
|x|≥m

ϕ2j (x) dx− ∥fu(u0)∥L∞

∫
|x|≤m

ϕ2j (x) dx

= a

(∫
R
ϕ2j (x) dx−

∫
|x|≤m

ϕ2j (x) dx

)
− ∥fu(u0)∥L∞

∫
|x|≤m

ϕ2j (x) dx

= a ∥ϕj∥2L2 − (a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx.

(3.134)
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We nowmake another estimate using both Cauchy-Schwarz and the inequality−xy ≥ − 1
2x

2 − 1
2y

2.
This inequality follows from the well known inequality x2 + y2 ≥ 2xy. We find

a ∥ϕj∥2L2 − ⟨ψj , ϕj⟩ ≥ a ∥ϕj∥2L2 − ∥ψj∥L2 ∥ϕj∥L2

= a ∥ϕj∥2L2 −
(

1√
a
∥ψj∥L2

)(√
a ∥ϕj∥L2

)
≥ a ∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 −

a

2
∥ϕj∥2L2

=
a

2
∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 .

(3.135)

We combine the two previous obtained inequalities by first rewriting (3.134) and then
applying (3.135) to it. This gives

(a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx ≥ a ∥ϕj∥2L2 − ⟨ψj , ϕj⟩

≥ a

2
∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 .

(3.136)

It is time to use the two inequalities we derived at the start of the proof. We denote

the positive constant B = c20 +2(c20 +1) ∥fu(u0)∥2L∞ . We now multiply (3.122) by
ac20
2B

and (3.131) by a
2B . So we get

0 ≥ ac20
2B

∥ϕ′′j ∥2L2 −
ac20 ∥fu(u0)∥

2
L∞

B
∥ϕj∥2L2 −

ac20
B

∥ψj∥2L2 (3.137)

and

0 ≥ ac20
2B

∥ϕ′j∥2L2 −
a ∥fu(u0)∥2L∞

B
∥ϕj∥2L2 −

a

B
∥ψj∥2L2 . (3.138)

Adding both of these to (3.136) gives

(a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx ≥ ac20
2B

(
∥ϕ′′j ∥2L2 + ∥ϕ′j∥2L2

)
+

(
a

2
−
a ∥fu(u0)∥2L∞ (c20 + 1)

B

)
∥ϕj∥2L2

−
(

1

2a
+
a(c20 + 1)

B

)
∥ψj∥2L2 .

(3.139)

Furthermore, we notice that

a

2
−
a ∥fu(u0)∥2L∞ (c20 + 1)

B

=
a
(
c20 + 2(c20 + 1) ∥fu(u0)∥2L∞

)
2B

−
2a ∥fu(u0)∥2L∞ (c20 + 1)

2B
=
ac20
2B

.

(3.140)
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We can substitute this into (3.139). To further simplify inequality (3.139) we introduce
the positive constants B4 and B5. These are defined as

B4 =
ac20

2B (a+ ∥fu(u0)∥L∞)
, (3.141)

B5 =

(
1

2a
+
a(c20 + 1)

B

)
1

(a+ ∥fu(u0)∥L∞)
. (3.142)

Note that B4 is indeed positive, since c0 ̸= 0, shown in Lemma 2. We can now rewrite
(3.139) using these constants. We first divide the inequality by (a+ ∥fu(u0)∥L∞) and
thereafter insert the constants B4 and B5 where possible. This way we find that∫

|x|≤m
ϕ2j (x) dx ≥ B4

(
∥ϕ′′j ∥2L2 + ∥ϕ′j∥2L2 + ∥ϕj∥2L2

)
−B5∥ψj∥2L2

= B4∥ϕj∥2H2 −B5∥ψj∥2L2

= B4 −B5∥ψj∥2L2 .

(3.143)

Here we used that ∥ϕj∥H2 = 1, which we assumed in the beginning of the proof. Recall

that limj→∞ ∥ψj∥L2 = Λ̂± and that ϕj → ϕ in L2
loc. So letting j → ∞ on both sides

of the inequality gives ∫
|x|≤m

ϕ2(x) dx ≥ B4 −B5(Λ̂
±)2 = B4, (3.144)

since we assumed that Λ̂± = 0. Because B4 is a positive constant it follows that ϕ ̸= 0.
But this gives a contradiction since we earlier obtained that ϕ = 0. Thus we must
have that Λ̂± > 0.

So we know there exists a positive constant C2 such that Λ̂± ≥ 1
C2

. We now let

δ ∈ [δ0, δ1] and ϕ ∈ H2(R) be arbitrary and we denote ψ = L±
0 ϕ+ δϕ. Since we have

∥ ϕ
∥ϕ∥H2

∥H2 = 1, it follows from the definition of Λ̂± that

Λ̂± ≤
∥∥∥∥L±

0

ϕ

∥ϕ∥H2

+ δ
ϕ

∥ϕ∥H2

∥∥∥∥
L2

=

∥∥L±
0 ϕ+ δϕ

∥∥
L2

∥ϕ∥H2

=
∥ψ∥L2

∥ϕ∥H2

. (3.145)

Dividing by Λ̂± and multiplying by ∥ϕ∥H2 gives

∥ϕ∥H2 ≤ 1

Λ̂±
∥ψ∥L2 . (3.146)

After applying Λ̂± ≥ 1
C2

, we obtain

∥ϕ∥H2 ≤ C2 ∥ψ∥L2 (3.147)

and thus also

∥ϕ∥H2 ≤ C2

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
(3.148)

concluding the proof.
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3.2 Linearization L±
ε,δ of the discretized Allen-Cahn equation

Now we’ll study the operator L±
ε,δ as defined in (2.32). We do this by also using the

information we gained about L±
0 in the previous section.

Let us first introduce two new quantities. We define Λ±(ε, δ) and Λ±(δ) for every ε > 0 and
for every δ > 0. These are given by

Λ±(ε, δ) = inf
∥ϕ∥H1=1

{∥∥∥L±
ε,δϕ

∥∥∥
L2

+
1

δ

∣∣∣〈L±
ε,δϕ , ϕ

∓
0

〉∣∣∣} , (3.149)

Λ±(δ) = lim inf
ε↓0

Λ±(ε, δ). (3.150)

Before stating the main lemma of this section we treat some key properties of L±
ε,δ. These

will help us proving Lemma 9 right after.

Lemma 8. Let L±
ε,δ be as in (2.32). Then

(i) L±
ε,δ : H

1(R) → L2(R) is a bounded operator;

(ii) for any ϕ ∈ L2(R) and any ζ ∈ C∞
0 (R) ∩H1(R), we have

〈
L±
ε,δϕ , ζ

〉
=
〈
ϕ , L∓

ε,δζ
〉
.

Proof. (i) Let ϕ ∈ H1(R). Since we want to show boundedness, we need an upper bound
for ∥Lε,δϕ∥L2 of the form A ∥ϕ∥H1 , with A being a positive constant. To find such an
upper bound we estimate

∥Lε,δϕ∥L2 = ∥±c0ϕ′ −∆εϕ+ fu(u0)ϕ+ δϕ∥L2

≤ ∥±c0ϕ′∥L2 + ∥∆εϕ∥L2 + ∥fu(u0)ϕ∥L2 + ∥δϕ∥L2

(3.151)

Now since fu(u0(x)) ≤ ∥fu(u0)∥L∞ for all x ∈ R, we get

∥Lε,δϕ∥L2 ≤ |c0| ∥ϕ′∥L2 + ∥∆εϕ∥L2 + (∥fu(u0)∥L∞ + δ) ∥ϕ∥L2

≤ ∥∆εϕ∥L2 + (|c0|+ ∥fu(u0)∥L∞ + δ) ∥ϕ∥H1

(3.152)

The upper bound is almost in the right form. Only the term ∥∆εϕ∥L2 is still a problem.
Estimating ∥∆εϕ∥L2 gives

∥∆εϕ∥L2 =

∥∥∥∥∥ 1

ε2

∑
k>0

αk [ϕ(x− kε) + ϕ(x− kε)− 2ϕ(x)]

∥∥∥∥∥
L2

≤ 1

ε2

∑
k>0

|αk|
(
∥ϕ(x− kε)∥L2 + ∥ϕ(x− kε)∥L2 + 2 ∥ϕ(x)∥L2

)
=

4

ε2

∑
k>0

|αk| ∥ϕ∥L2

≤ 4

ε2

∑
k>0

|αk| ∥ϕ∥H1 .

(3.153)
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Since
∑
k>0 |αk| <∞ by (A2), we can choose

A =
4

ε2

∑
k>0

|αk|+ |c0|+ ∥fu(u0)∥L∞ + δ, (3.154)

satisfying ∥Lε,δϕ∥L2 ≤ A ∥ϕ∥H1 . So we can conclude that Lε,δ is a bounded operator
from H1(R) to L2(R).

(ii) Let ϕ ∈ L2(R) and ζ ∈ C∞
0 (R) ∩H1(R). Then〈

L±
ε,δϕ , ζ

〉
= ⟨±c0ϕ′ −∆εϕ+ fu(u0)ϕ+ δϕ , ζ⟩

= ±c0 ⟨ϕ′ , ζ⟩ − ⟨∆εϕ , ζ⟩+ ⟨fu(u0)ϕ , ζ⟩+ ⟨δϕ , ζ⟩ .
(3.155)

It is easy to see that ⟨fu(u0)ϕ , ζ⟩ = ⟨ϕ , fu(u0)ζ⟩ and that ⟨δϕ , ζ⟩ = ⟨ϕ , δζ⟩. By
Lemma 4(iii) we have that ⟨∆εϕ , ζ⟩ = ⟨ϕ , ∆εζ⟩. Using integrating by parts we find

⟨ϕ′ , ζ⟩ =
∫
R
ϕ′(x)ζ(x) dx = [ϕ(x)ζ(x)]

∞
−∞ −

∫
R
ϕ(x)ζ ′(x) dx

= [ϕ(x)ζ(x)]
∞
−∞ − ⟨ϕ , ζ ′⟩ .

(3.156)

Since ζ ∈ C∞
0 (R), we have limx→±∞ ζ(x) = 0. This causes [ϕ(x)ζ(x)]

∞
−∞ to vanish.

Thus we get that ⟨ϕ′ , ζ⟩ = −⟨ϕ , ζ ′⟩. Now we can rewrite the final expression in
(3.155). This gives〈

L±
ε,δϕ , ζ

〉
= ∓c0 ⟨ϕ , ζ ′⟩ − ⟨ϕ , ∆εζ⟩+ ⟨ϕ , fu(u0)ζ⟩+ ⟨ϕ , δζ⟩

= ⟨ϕ , ∓c0ζ ′ −∆εζ + fu(u0)ζ + δζ⟩

=
〈
ϕ , L∓

ε,δζ
〉
.

(3.157)

Lemma 9. There exists a positive constant C0 such that Λ±(δ) ≥ 1
C0

for all δ > 0.

Proof. First of all we remark that the proof of this statement will be very similar to part
(c) of the proof of Lemma 7. But, for completeness, we will yet show the proof.

Let δ > 0 be any positive fixed constant. We take two sequences with certain properties,
namely {εj}∞j=0 and {ϕj}∞j=0. We let {εj}∞j=0 be a sequence with εj ∈ (0, 1) for all j,

where limj→∞ εj = 0. For our other sequence {ϕj}∞j=0, we let every ϕj ∈ H1(R) such that

∥ϕj∥H1 = 1. By the definition of Λ±(δ) there exist such sequences {εj}∞j=0 and {ϕj}∞j=0
that satisfy

lim
j→∞

{
∥ψj∥L2 +

1

δ

∣∣〈ψj , ϕ∓0 〉∣∣} = Λ±(δ), where ψj = L±
εj ,δ

ϕj . (3.158)

From this it follows that lim supj→∞ ∥ψj∥L2 ≤ Λ±(δ). Thus {ψj}∞j=0 is a bounded sequence

in L2(R). Since ∥ϕj∥H1 = 1 for all j, we have that {ϕj}∞j=0 is also a bounded sequence, but
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in H1(R). Now Theorem A1 can be applied to both sequences. It tells us that, by taking
subsequences if necessary, there exist functions ψ ∈ L2(R) and ϕ ∈ H1(R) such that

ψj → ψ in L2(R) weakly, as j → ∞, (3.159)

ϕj → ϕ in H1(R) weakly, as j → ∞. (3.160)

Furthermore Theorem A2 implies that, by taking another subsequence if necessary, we have

ϕj → ϕ in L2
loc(R), as j → ∞. (3.161)

By the definition of weak convergence, see Definition A1, and by the continuity of the
absolute value we have

1

δ

∣∣〈ψ , ϕ∓0 〉∣∣ = lim
j→∞

1

δ

∣∣〈ψj , ϕ∓0 〉∣∣ . (3.162)

Together with Theorem A3, this gives that

∥ψ∥L2 +
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣ ≤ lim inf
j→∞

{
∥ψj∥L2 +

1

δ

∣∣〈ψj , ϕ∓0 〉∣∣} = Λ±(δ). (3.163)

Now we take a test function ζ ∈ C∞
0 (R) ∩H2(R). From Lemma 8(ii) it follows that

⟨ψj , ζ⟩ =
〈
L±
εj ,δ

ϕj , ζ
〉
=
〈
ϕj , L∓

εj ,δ
ζ
〉
. (3.164)

Now we let j → ∞ on both sides of the equation. On the left hand side it’s quite easy to see
what happens when we let j → ∞. Since ψj → ψ weakly in L2(R), we know that ⟨ψj , ζ⟩
converges to ⟨ψ , ζ⟩. On the right hand side things are a bit more difficult. Writing out
gives 〈

ϕj , L∓
εj ,δ

ζ
〉
=
〈
ϕj , ∓c0ζ ′ −∆εjζ + fu(u0)ζ + δζ

〉
= ∓c0 ⟨ϕj , ζ ′⟩ −

〈
ϕj , ∆εjζ

〉
+ ⟨ϕj , fu(u0)ζ⟩+ ⟨ϕj , δζ⟩ .

(3.165)

Now we examine what happens with each of the terms if we send j → ∞. Since ϕj converges
to ϕ weakly in H1(R), it immediately follows that ⟨ϕj , ζ ′⟩ → ⟨ϕ , ζ ′⟩, ⟨ϕj , fu(u0)ζ⟩ →
⟨ϕ , fu(u0)ζ⟩ and ⟨ϕj , δζ⟩ → ⟨ϕ , δζ⟩. By Lemma 4(i) we have limj→∞

∥∥∆εjζ − ζ ′′
∥∥
L2 = 0.

Thus Theorem A4 implies that
〈
ϕj , ∆εjζ

〉
→ ⟨ϕ , ζ ′′⟩ as j → ∞. So we find

lim
j→∞

〈
ϕj , L∓

εj ,δ
ζ
〉
= ∓c0 ⟨ϕ , ζ ′⟩ − ⟨ϕ , ζ ′′⟩+ ⟨ϕ , fu(u0)ζ⟩+ ⟨ϕ , δζ⟩

= ⟨ϕ , ∓c0ζ ′ − ζ ′′ + fu(u0)ζ + δζ⟩
=
〈
ϕ ,
(
L∓
0 + δ

)
ζ
〉
.

(3.166)

So we conclude that letting j → ∞ on both sides of (3.164) gives

⟨ψ , ζ⟩ =
〈
ϕ ,
(
L∓
0 + δ

)
ζ
〉
=
〈(
L±
0 + δ

)
ϕ , ζ

〉
. (3.167)

Since this holds for every ζ ∈ C∞
0 (R) ∩H2(R), we have ψ =

(
L±
0 + δ

)
ϕ = L±

0 ϕ+ δϕ. This

is one of the requirements to be able to apply Lemma 7 to ϕ. Now writing out L±
0 ϕ in this

expression enables us to write ϕ′′ = ±c0ϕ′+ fu(u0)ϕ+ δϕ−ψ. Each term on the right hand
side is part of L2(R). So ϕ′′ ∈ L2(R). Thus also ϕ ∈ H2(R), as we assumed earlier that
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ϕ ∈ H1(R). We have shown that all requirements to be able to apply Lemma 7 on ϕ hold.
Using Lemma 7 and (3.163) we get

∥ϕ∥H2 ≤ C2

{
1

δ

∣∣〈ψ , ϕ∓0 〉∣∣+ ∥ψ∥L2

}
≤ C2Λ

±(δ). (3.168)

It remains to find a lower bound for ∥ϕ∥L2 . Directly from the definition of L±
ε,δ we find that

±c0ϕ′j = L±
εj ,δ

ϕj + ∆εjϕj − fu(u0)ϕj − δϕj . Together with Lemma 1(i) and Lemma 4(ii)
this implies

±c0∥ϕ′j∥2L2 =
〈
±c0ϕ′j , ϕ′j

〉
=
〈
L±
εj ,δ

ϕj +∆εjϕj − fu(u0)ϕj − δϕj , ϕ
′
j

〉
=
〈
L±
εj ,δ

ϕj , ϕ
′
j

〉
+
〈
∆εjϕj , ϕ

′
j

〉
−
〈
fu(u0)ϕj , ϕ

′
j

〉
− δ

〈
ϕj , ϕ

′
j

〉
=
〈
ψj , ϕ

′
j

〉
−
〈
fu(u0)ϕj , ϕ

′
j

〉
.

(3.169)

Multiplying this on both sides by ± sign(c0) gives

|c0| ∥ϕ′j∥2L2 = ± sign(c0)
〈
ψj , ϕ

′
j

〉
∓ sign(c0)

〈
fu(u0)ϕj , ϕ

′
j

〉
(3.170)

⇐⇒ |c0| ∥ϕ′j∥2L2 ∓ sign(c0)
〈
ψj , ϕ

′
j

〉
= ∓ sign(c0)

〈
fu(u0)ϕj , ϕ

′
j

〉
. (3.171)

We can estimate both sides of this equality by Cauchy-Schwarz. For estimating the right
hand side we again use ∥fu(u0)ϕj∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 as seen in multiple proofs before.
This gives

|c0| ∥ϕ′j∥2L2 ∓ sign(c0)
〈
ψj , ϕ

′
j

〉
≥ |c0| ∥ϕ′j∥2L2 − ∥ψj∥L2 ∥ϕ′j∥L2 , (3.172)

∓ sign(c0)
〈
fu(u0)ϕj , ϕ

′
j

〉
≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′j∥L2 . (3.173)

If we apply both of these estimates to (3.171) we obtain

|c0| ∥ϕ′j∥2L2 − ∥ψj∥L2 ∥ϕ′j∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 ∥ϕ′j∥L2 , (3.174)

which after dividing by ∥ϕ′j∥ is equivalent to

|c0| ∥ϕ′j∥L2 − ∥ψj∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2

⇐⇒ |c0| ∥ϕ′j∥L2 ≤ ∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2 .
(3.175)

Now squaring both sides of the inequality and thereafter applying the well known inequality
(x+ y)2 ≤ 2x2 + 2y2 gives

c20∥ϕ′j∥2L2 ≤
(
∥fu(u0)∥L∞ ∥ϕj∥L2 + ∥ψj∥L2

)2
≤ 2 ∥fu(u0)∥2L∞ ∥ϕj∥2L2 + 2 ∥ψj∥2L2 .

(3.176)

We will need this inequality later in the proof. We define

a =
1

2
min {fu(1), fu(−1)} . (3.177)
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Then by (A1) we notice that a > 0. Now we take a positive constant m satisfying

a = min
|x|≥m

{fu(u0(x))} . (3.178)

This is possible because fu(u0(x)) converges to fu(±1) as x → ±∞ and is taking values
smaller then 1

2 min {fu(1), fu(−1)} for certain values of x. In particular there exist values of
x such that fu(u0(x)) = 0, which follows from u0(x) taking values in (−1, 1) in combination
with (A1). Using Lemma 1(i), Lemma 4(iv) and the fact that fu(u0(x)) ≥ −∥fu(u0)∥L∞

for all x ∈ R, we obtain

⟨ψj , ϕj⟩ = ⟨L±
εj ,δ

ϕj , ϕj⟩

=
〈
±c0ϕ′j −∆εjϕj + fu(u0)ϕj + δϕj , ϕj

〉
= ±c0

〈
ϕ′j , ϕj

〉
−
〈
∆εjϕj , ϕj

〉
+ ⟨fu(u0)ϕj , ϕj⟩+ δ ⟨ϕj , ϕj⟩

= −
〈
∆εjϕj , ϕj

〉
+ ⟨fu(u0)ϕj , ϕj⟩+ δ ∥ϕj∥2L2

≥ ⟨fu(u0)ϕj , ϕj⟩

=

∫
R
fu(u0(x))ϕ

2
j (x) dx

=

∫
|x|≥m

fu(u0(x))ϕ
2
j (x) dx+

∫
|x|≤m

fu(u0(x))ϕ
2
j (x) dx

≥ min
|x|≥m

{fu(u0(x))}
∫
|x|≥m

ϕ2j (x) dx− ∥fu(u0)∥L∞

∫
|x|≤m

ϕ2j (x) dx

= a

(∫
R
ϕ2j (x) dx−

∫
|x|≤m

ϕ2j (x) dx

)
− ∥fu(u0)∥L∞

∫
|x|≤m

ϕ2j (x) dx

= a ∥ϕj∥2L2 − (a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx.

(3.179)

We now make another estimate using Cauchy-Schwarz and the inequality−xy ≥ − 1
2x

2− 1
2y

2,
which follows from the well known inequality x2 + y2 ≥ 2xy. We find

a ∥ϕj∥2L2 − ⟨ψj , ϕj⟩ ≥ a ∥ϕj∥2L2 − ∥ψj∥L2 ∥ϕj∥L2

= a ∥ϕj∥2L2 −
(

1√
a
∥ψj∥L2

)(√
a ∥ϕj∥L2

)
≥ a ∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 −

a

2
∥ϕj∥2L2

=
a

2
∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 .

(3.180)

We’ll combine the two previous derived inequalities by rewriting (3.179) and applying (3.180)
to this rewritten inequality. This gives

(a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx ≥ a ∥ϕj∥2L2 − ⟨ψj , ϕj⟩

≥ a

2
∥ϕj∥2L2 −

1

2a
∥ψj∥2L2 .

(3.181)
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If we now multiply (3.176) by a
2(2∥fu(u0)∥2

L∞+c20)
, we get

a ∥fu(u0)∥2L∞ ∥ϕj∥2L2

2 ∥fu(u0)∥2L∞ + c20
+

a ∥ψj∥2L2

2 ∥fu(u0)∥2L∞ + c20
≥

ac20∥ϕ′j∥2L2

2
(
2 ∥fu(u0)∥2L∞ + c20

) . (3.182)

So we have

0 ≥
ac20∥ϕ′j∥2L2

2
(
2 ∥fu(u0)∥2L∞ + c20

) − a ∥fu(u0)∥2L∞ ∥ϕj∥2L2

2 ∥fu(u0)∥2L∞ + c20
−

a ∥ψj∥2L2

2 ∥fu(u0)∥2L∞ + c20
. (3.183)

Adding this to (3.181) gives

(a+ ∥fu(u0)∥L∞)

∫
|x|≤m

ϕ2j (x) dx ≥ a

2

(
1−

∥fu(u0)∥2L∞

∥fu(u0)∥2L∞ + c20/2

)
∥ϕj∥2L2

+
ac20

2
(
2 ∥fu(u0)∥2L∞ + c20

)∥ϕ′j∥2L2

−

(
1

2a
+

a

2 ∥fu(u0)∥2L∞ + c20

)
∥ψj∥2L2 .

(3.184)

Furthermore, we notice that

a

2

(
1−

∥fu(u0)∥2L∞

∥fu(u0)∥2L∞ + c20/2

)
=
a

2

(
∥fu(u0)∥2L∞ + c20/2− ∥fu(u0)∥2L∞

∥fu(u0)∥2L∞ + c20/2

)

=
ac20

2
(
2 ∥fu(u0)∥2L∞ + c20

) . (3.185)

To simplify inequality (3.184) we introduce the positive constants C3 and C4. These are
defined as

C3 =
ac20

2
(
2 ∥fu(u0)∥2L∞ + c20

)
(a+ ∥fu(u0)∥L∞)

, (3.186)

C4 =

(
1

2a
+

a

2 ∥fu(u0)∥2L∞ + c20

)
1

(a+ ∥fu(u0)∥L∞)
. (3.187)

We are now able to rewrite (3.184) in a nice way. We first divide inequality (3.184) by
(a+ ∥fu(u0)∥L∞) and afterwards insert the just defined constants C3 and C4 where possible.
After executing these operations we find∫

|x|≤m
ϕ2j (x) dx ≥ C3

(
∥ϕj∥2L2 + ∥ϕ′j∥2L2

)
− C4 ∥ψj∥2L2

= C3 ∥ϕj∥2H1 − C4 ∥ψj∥2L2

= C3 − C4 ∥ψj∥2L2 .

(3.188)

Here we used that ∥ϕj∥H1 = 1, which we assumed at the start of the proof. Recall that
ϕj → ϕ in L2

loc(R). From the definition of convergence in L2
loc(R), see Definition A2, it
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follows that letting j → ∞ on both sides of the inequality gives∫
|x|≤m

ϕ2(x) dx ≥ C3 − C4 lim
j→∞

∥ψj∥2L2 . (3.189)

Because 1
δ |⟨ψ , ϕ

∓
0 ⟩| is nonnegative, it follows from (3.158) that limj→∞ ∥ψj∥2L2 ≤ Λ±(δ)2.

If we apply this, we get that∫
|x|≤m

ϕ2(x) dx ≥ C3 − C4Λ
±(δ)2. (3.190)

From (3.168) it follows that ∥ϕ∥2H2 ≤ C2
2Λ

±(δ)2. We can connect this to the inequality
above. We find

C2
2Λ

±(δ)2 ≥ ∥ϕ∥2H2 ≥ ∥ϕ∥2L2 =

∫
R
ϕ2(x) dx ≥

∫
|x|≤m

ϕ2(x) dx ≥ C3 − C4Λ
±(δ)2. (3.191)

Rewriting this gives (
C2

2 + C4

)
Λ±(δ)2 ≥ C3

⇐⇒ Λ±(δ)2 ≥ C3

C2
2 + C4

.
(3.192)

Now defining 1
C0

=
(

C3

C2
2+C4

)1/2
gives that Λ±(δ) ≥ 1

C0
concluding the proof.

Remark. For this proof to make sense it is important that c0 ̸= 0, which has been proven
in Lemma 2. Because in the case that c0 = 0 we would only have shown that Λ±(δ) ≥ 0,
since in that case C3 = 0. But this result immediately follows from the definition of Λ±(δ)
and clearly is too weak to advance in proving Theorem 2.

With this theorem we managed to use the knowledge from the continuous case and connect
this to the discrete case. Now we are ready to prove Proposition 1 as stated on page 22.

3.3 Proof of Proposition 1

Proof. Let δ > 0 be arbitrary. From Lemma 9 we know there exists a positive constant C0

not depending on δ such that Λ±(δ) ≥ 1
C0

. By the definition of Λ±(δ) there has to exist

a positive constant ε0(δ) such that for all ε ∈ (0, ε0(δ)) we have Λ±(ε, δ) ≥ 1
C0

. Now we

consider the operator L±
ε,δ for ε ∈ (0, ε0(δ)).

Before showing L±
ε,δ is a homeomorphism from H1(R) to L2(R), we will first prove that we

have a homeomorphism when L±
ε,δ maps from H1(R) to its image L±

ε,δ(H
1(R)). Surjectivity

is easily given, since we let L±
ε,δ map to its image. Furthermore, since Lemma 8(i) implies

that L±
ε,δ is bounded, it follows from Theorem A5 that L±

ε,δ is continuous.

For injectivity we show that ker(L±
ε,δ) = {0}. We first take ϕ ∈ H1(R) with ∥ϕ∥H1 = 1.

Assuming L±
ε,δϕ = 0 then gives Λ±(ε, δ) = 0. This is impossible because we observed earlier

that Λ±(ε, δ) ≥ 1
C0

. So we must have L±
ε,δϕ ̸= 0 in the case of ∥ϕ∥H1 = 1. Now we can go

to the general case taking ϕ ∈ H1(R) with ∥ϕ∥H1 = A > 0. Using the linearity of L±
ε,δ we
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get L±
ε,δϕ = L±

ε,δ(A
ϕ
A ) = AL±

ε,δ(
ϕ
A ). Since ∥ ϕA∥H1 = 1, we have L±

ε,δ(
ϕ
A ) ̸= 0 and thus also

L±
ε,δϕ ̸= 0. So we indeed have ker(L±

ε,δ) = {0} and thus L±
ε,δ is injective.

To show that the inverse of L±
ε,δ is also continuous we use Theorem A5. It tells us the inverse

of L±
ε,δ is continuous if there exists a constant K > 0 such that

sup
ψ∈L±

ε,δ(H
1(R)), ∥ψ∥L2≤1

∥∥∥(L±
ε,δ

)−1
ψ
∥∥∥
H1

= K. (3.193)

So our goal is to find a constant K > 0 such that this holds. First we let ψ ∈ L±
ε,δ(H

1(R))
and assume 0 < ∥ψ∥L2 ≤ 1. For better readability we denote ϕ = (L±

ε,δ)
−1ψ, from which we

can derive ψ = L±
ε,δϕ. Since ∥ ϕ

∥ϕ∥H1
∥H1 = 1, we have, by the definition of Λ±(ε, δ), that

Λ±(ε, δ) ≤
∥∥∥∥L±

ε,δ

ϕ

∥ϕ∥H1

∥∥∥∥
L2

+
1

δ

∣∣∣∣〈L±
ε,δ

ϕ

∥ϕ∥H1

, ϕ∓0

〉∣∣∣∣
=

1

∥ϕ∥H1

∥ψ∥L2 +
1

δ ∥ϕ∥H1

∣∣〈ψ , ϕ∓0 〉∣∣ . (3.194)

Dividing by Λ±(ε, δ) and multiplying by ∥ϕ∥H1 gives

∥ϕ∥H1 ≤ 1

Λ±(ε, δ)

(
∥ψ∥L2 +

1

δ

∣∣〈ψ , ϕ∓0 〉∣∣) . (3.195)

Now applying the inequality Λ±(ε, δ) ≥ 1
C0

we obtain

∥ϕ∥H1 ≤ C0

(
∥ψ∥L2 +

1

δ

∣∣〈ψ , ϕ∓0 〉∣∣) , (3.196)

which is one of the results in Proposition 1 indicated by (3.2). From this we can also derive
(3.3), because after assuming ψ ⊥ ϕ∓0 it immediately follows that

∥ϕ∥H1 ≤ C0 ∥ψ∥L2 . (3.197)

After this little detour we now get back to showing that (3.193) holds for some K > 0. We
apply the inequality ∥ψ∥L2 ≤ 1, Lemma 6(i) and Cauchy-Schwarz to (3.196). This gives

∥ϕ∥H1 ≤ C0

(
∥ψ∥L2 +

1

δ
∥ψ∥L2 ∥ϕ∓0 ∥L2

)
≤ C0

(
1 +

1

δ

)
.

(3.198)

So we have found that ∥(L±
ε,δ)

−1ψ∥H1 = ∥ϕ∥H1 is bounded above by a constant when as-

suming ψ ∈ L±
ε,δ(H

1(R)) and ∥ψ∥L2 ≤ 1. So it follows that there has to exist a constant

K > 0 such that (3.193) holds. Thus we can conclude that the inverse of L±
ε,δ is continuous.

So we have now shown that the operator L±
ε,δ mapping functions from H1(R) to its image

L±
ε,δ(H

1(R)) satisfies all the properties of a homeomorphism. We are done if we can show
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that L±
ε,δ(H

1(R)) = L2(R). We claim that this is the case and we’ll prove it by contradic-
tion.

So we first assume L±
ε,δ(H

1(R)) ̸= L2(R). We have just shown that H1(R) and L±
ε,δ(H

1(R))
are homeomorphic. BecauseH1(R) is complete, it follows from Theorem A9 that L±

ε,δ(H
1(R))

is complete as well. Lemma 8(i) tells us that L±
ε,δ(H

1(R)) ⊂ L2(R). So we can use Theo-

rem A10 to conclude that L±
ε,δ(H

1(R)) must be closed in L2(R).

Now Theorem A6 implies there exists a nontrivial ψ ∈ L2(R) being orthogonal to L±
ε,δ(H

1(R)).
So by Lemma 8(ii) we have 0 = ⟨L±

ε,δϕ , ψ⟩ = ⟨ϕ , L∓
ε,δψ⟩ for all ϕ ∈ H1(R)∩C∞

0 (R). Writing
this out we find

0 = ⟨ϕ , L∓
ε,δψ⟩ = ⟨ϕ , ∓c0ψ′ −∆εψ + fu(u0)ψ + δψ⟩

= ∓c0 ⟨ϕ , ψ′⟩+ ⟨ϕ , −∆εψ + fu(u0)ψ + δψ⟩ .
(3.199)

Using integration by parts it can be found, in the same way as in the proof of Lemma 8(ii),
that ⟨ϕ , ψ′⟩ = −⟨ϕ′ , ψ⟩. After applying this, we do some rewriting to find

⟨ϕ′ , ψ⟩ = −
〈
ϕ,

1

∓c0
(∆εψ − fu(u0)ψ − δψ)

〉
. (3.200)

So we know the weak derivative of ψ, see Definition A4, and we will denote it as ψw. Hence
we have ψw = 1

∓c0 (∆εψ − fu(u0)ψ − δψ). In the proof of Lemma 8(ii) we showed that

∥fu(u0)ψ∥L2 ≤ ∥fu(u0)∥L∞ ∥ψ∥L2 and that ∥∆εψ∥L2 ≤ 4
ε2

∑
k>0 |αk| ∥ψ∥L2 . Using these

we find that

∥ψw∥L2 =
1

∓c0
∥∆εψ − fu(u0)ψ − δψ∥L2

≤ 1

∓c0
(∥∆εψ∥L2 + ∥fu(u0)ψ∥L2 + ∥δψ∥L2)

≤ 1

∓c0

(
4

ε2

∑
k>0

|αk|+ ∥fu(u0)∥L∞ + δ

)
∥ψ∥L2 .

(3.201)

Notice that
∑
k>0 |αk| < ∞ by (A2). Since we also have that ψ ∈ L2(R), it follows that

∥ψw∥L2 < ∞ and thus ψw ∈ L2(R). A more formal definition for H1(R) states that a
function f lies in H1(R) if both f and its weak derivative lie in L2(R). Because this is the
case for ψ, we can conclude that ψ ∈ H1(R) and therefore L±

ε,δψ ∈ L2(R).

Now we take ζ ∈ L2(R) arbitrary. Since H1(R) ∩ C∞
0 (R) is dense in L2(R), there exists a

sequence {ζn}∞n=0 in H1(R) ∩ C∞
0 (R) such that ζn → ζ as n→ ∞. Using this together with

the earlier obtained fact that ⟨ϕ , L∓
ε,δψ⟩ = 0 for all ϕ ∈ H1(R) ∩ C∞

0 (R), we find that

⟨ζ , L∓
ε,δψ⟩ = lim

n→∞
⟨ζn , L∓

ε,δψ⟩ = lim
n→∞

0 = 0. (3.202)

This tells us that L∓
ε,δψ is orthogonal to every function in L2(R). Since L∓

ε,δψ ∈ L2(R), it
must be that L∓

ε,δψ = 0. From the injectivity of L∓
ε,δ it follows that ψ = 0. So ψ is indeed

trivial and we have a contradiction. Thus we must have L±
ε,δ(H

1(R)) = L2(R). We can now

conclude that L±
ε,δ is a homeomorphism from H1(R) to L2(R).
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3.4 Proof of Theorem 2

Before proving Theorem 2 we do some last preparations. During these preparations we
want to find bounds for some norms involving operator R(c, ϕ), where R(c, ϕ) is as in
(2.33). These bounds will turn out to be very helpful when proving Theorem 2. To obtain
these, a handful of lemmas is treated. But first we introduce a few things.

We define
Xη =

{
ϕ ∈ H1(R) | ∥ϕ∥H1 ≤ η

}
. (3.203)

For every ϕ ∈ Xη, we choose cε = cε(ϕ) such that R(cε, ϕ) ⊥ ϕ−0 . So we have

⟨R(cε, ϕ) , ϕ
−
0 ⟩ = c0⟨u′0 + ϕ′ , ϕ−0 ⟩ − cε⟨u′0 + ϕ′ , ϕ−0 ⟩

+⟨∆εu0 − u′′0 , ϕ
−
0 ⟩+ δ⟨ϕ , ϕ−0 ⟩ − ⟨N(u0, ϕ) , ϕ

−
0 ⟩ = 0.

(3.204)

After rewriting this we find that

cε(ϕ) = c0 +
⟨∆εu0 − u′′0 , ϕ

−
0 ⟩+ δ⟨ϕ , ϕ−0 ⟩ − ⟨N(u0, ϕ) , ϕ

−
0 ⟩

⟨u′0 + ϕ′ , ϕ−0 ⟩
. (3.205)

Furthermore we let σ̂ be defined as σ̂ = 1
2

〈
u′0 , ϕ

−
0

〉
. Writing this out gives

σ̂ =
1

2

〈
u′0 , ϕ

−
0

〉
=

∫
R

[u′0(x)]
2
e−c0x

2 ∥u′0(x)e−c0x∥L2

dx =

∫
R [u′0(x)]

2
e−c0x dx

2
(∫

R [u′0(x)]
2
e−2c0x

)1/2
dx

> 0. (3.206)

So σ̂ is a positive constant. Using Cauchy-Schwarz and Lemma 6(i) we obtain

|⟨ϕ′ , ϕ−0 ⟩| ≤ ∥ϕ′∥L2 ∥ϕ−0 ∥L2 ≤ ∥ϕ∥H1 ≤ η for every ϕ ∈ Xη. (3.207)

We use this and from now on require η ≤ σ̂. It follows that

⟨u′0 + ϕ′ , ϕ−0 ⟩ = ⟨u′0 , ϕ−0 ⟩+ ⟨ϕ′ , ϕ−0 ⟩ = 2σ̂ + ⟨ϕ′ , ϕ−0 ⟩ ≥ 2σ̂ − η ≥ σ̂ for every ϕ ∈ Xη.
(3.208)

This property of σ̂ will be helpful when deriving some of the estimates in the following
lemmas.

Lemma 10. Let N(u0, ϕ) be defined as in (2.34) and require η ≤ σ̂. Then there exists a
positive constant M such that

|N(u0, ϕ)| ≤Mη |ϕ| and |N(u0, ϕ1)−N(u0, ϕ2)| ≤Mη |ϕ1 − ϕ2| (3.209)

pointwise for all ϕ, ϕ1, ϕ2 ∈ Xη.

Proof. We let ϕ, ϕ1, ϕ2 ∈ Xη arbitrary and we require η ≤ σ̂. From Theorem A7 it follows
that there exists a positive constant a such that ∥ϕ∥L∞ ≤ a ∥ϕ∥H1 , ∥ϕ1∥L∞ ≤ a ∥ϕ1∥H1

and ∥ϕ2∥L∞ ≤ a ∥ϕ2∥H1 . These inequalities will be used quite frequently in this proof.
Furthermore we can, without loss of generality, assume that a ≥ 2. This will turn out to be
quite helpful.

Before we estimate the nonlinear term N(u0, ϕ), we first rewrite f(u0 + ϕ) pointwise using
Taylor’s theorem. It tells us that

f(u0 + ϕ) = f(u0) + fu(u0)ϕ+
1

2
fuu(t)ϕ

2 with t lying between u0 and ϕ. (3.210)
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So |t| can be estimated by |t| ≤ |u0|+ |ϕ|. Theorem 1 implies that ∥u0∥L∞ ≤ 1. This allows
us to further bound |t|. We get

|t| ≤ |u0|+ |ϕ| ≤ ∥u0∥L∞ + ∥ϕ∥L∞ ≤ 1 + a ∥ϕ∥H1 ≤ 1 + aη ≤ 1 + aσ̂. (3.211)

We define M̃ = sup|s|≤1+3aσ̂ |fuu(s)| and set M = aM̃ . Notice that |fuu(t)| ≤ M̃ . We are
now ready to estimate N(u0, ϕ). Using (3.210) we find that

|N(u0, ϕ)| = |f(u0 + ϕ)− f(u0)− fu(u0)ϕ| =
1

2

∣∣fuu(t)ϕ2∣∣ ≤ ∣∣fuu(t)ϕ2∣∣
≤ |fuu(t)| ∥ϕ∥L∞ |ϕ| ≤ a |fuu(t)| ∥ϕ∥H1 |ϕ| ≤ aM̃η |ϕ| =Mη |ϕ| .

(3.212)

It remains to estimate the distance between two nonlinear terms. Using Taylor’s theorem
we can write that

fu(u0 + ϕ2) = fu(u0) + fuu(t2)ϕ2 pointwise with t2 lying between u0 and ϕ2. (3.213)

We also rewrite f(u0 + ϕ1) pointwise using Taylor’s theorem. It states that there exists a
constant t1 lying between u0 + ϕ2 and ϕ1 − ϕ2 such that

f(u0 + ϕ1) = f(u0 + ϕ2) + fu(u0 + ϕ2)(ϕ1 − ϕ2) +
1

2
fuu(t1)(ϕ1 − ϕ2)

2. (3.214)

Replacing fu(u0 + ϕ2) by (3.213) gives

f(u0 + ϕ1) = f(u0 + ϕ2) + (fu(u0) + fuu(t2)ϕ2)(ϕ1 − ϕ2) +
1

2
fuu(t1)(ϕ1 − ϕ2)

2. (3.215)

We estimate the difference of the nonlinear terms by replacing f(u0+ϕ1) with (3.215). This
gives

|N(u0, ϕ1)−N(u0, ϕ2)| = |f(u0 + ϕ1)− f(u0)− fu(u0)ϕ1 − f(u0 + ϕ2) + f(u0) + fu(u0)ϕ2|

= |fuu(t2)ϕ2(ϕ1 − ϕ2) +
1

2
fuu(t1)(ϕ1 − ϕ2)

2|

≤ |fuu(t2)||ϕ2||ϕ1 − ϕ2|+
1

2
|fuu(t1)||ϕ1 − ϕ2|2.

(3.216)

This bound is not the one we are after and thus we want to bound it even further. Since
|t2| can be bounded in the same way as |t| in (3.211), it follows that |fuu(t2)| ≤ M̃ . |t1| can
be estimated in a similar way. We have

|t1| ≤ |u0 + ϕ2|+ |ϕ1 − ϕ2| ≤ 1 + |ϕ1|+ 2 |ϕ2| ≤ 1 + ∥ϕ1∥L∞ + 2 ∥ϕ2∥L∞

≤ 1 + a ∥ϕ1∥H1 + 2a ∥ϕ2∥H1 ≤ 1 + 3aη ≤ 1 + 3aσ̂.
(3.217)

So we also have |fuu(t1)| ≤ M̃ . As estimated many times before in this proof we have
|ϕ1| ≤ η and |ϕ2| ≤ η. Using these we can bound |ϕ1 − ϕ2|2. We get

|ϕ1 − ϕ2|2 = |(ϕ1 − ϕ2)
2| = |ϕ21 − ϕ1ϕ2 + ϕ22 − ϕ1ϕ2|

≤ |ϕ21 − ϕ1ϕ2|+ |ϕ22 − ϕ1ϕ2| = |ϕ1||ϕ1 − ϕ2|+ |ϕ2||ϕ2 − ϕ1| ≤ 2η|ϕ1 − ϕ2|.
(3.218)
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Combining all these observations we can further bound (3.216). We also use the assumption
a ≥ 2 that was made in the beginning of the proof. We find that

|N(u0, ϕ1)−N(u0, ϕ2)| ≤ M̃η|ϕ1 − ϕ2|+ M̃η|ϕ1 − ϕ2| ≤ aM̃η|ϕ1 − ϕ2| =Mη|ϕ1 − ϕ2|
(3.219)

concluding the proof.

Corollary 2. Let N(u0, ϕ) be defined as in (2.34) and require η ≤ σ̂. Then there exists a
positive constant M such that

∥N(u0, ϕ)∥L2 ≤Mη2 and ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 ≤Mη ∥ϕ1 − ϕ2∥H1 (3.220)

for all ϕ, ϕ1, ϕ2 ∈ Xη.

Proof. Let M be the positive constant from Lemma 10 and let ϕ, ϕ1, ϕ2 ∈ Xη be arbitrary.
Both results follow almost immediately from Lemma 10. It implies that

∥N(u0, ϕ)∥L2 =

(∫
R
|N(u0, ϕ)|2 dx

)1/2

≤
(∫

R
M2η2ϕ(x)2 dx

)1/2

=Mη ∥ϕ∥L2 ≤Mη2

(3.221)

and that

∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 =

(∫
R
|N(u0, ϕ2)−N(u0, ϕ1)|2 dx

)1/2

≤
(∫

R
M2η2 |ϕ1(x)− ϕ2(x)|2 dx

)1/2

=Mη ∥ϕ1 − ϕ2∥L2

≤Mη ∥ϕ1 − ϕ2∥H1 .

(3.222)

Lemma 11. Let cε(ϕ) be defined as in (3.205) and require η ≤ σ̂. Then there exists a
positive constant M such that the inequalities

|cε(ϕ)− c0| ≤
1

σ̂

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
(3.223)

and

|cε(ϕ1)− cε(ϕ2)| ≤ ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η)(δ +Mη)

)
(3.224)

hold for all ϕ, ϕ1, ϕ2 ∈ Xη.
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Proof. Let M be the positive constant from Lemma 10 and let ϕ, ϕ1, ϕ2 ∈ Xη be arbitrary.
From (3.208) and Lemma 6(i) it follows that

|cε(ϕ)− c0| =
∣∣∣∣ ⟨∆εu0 − u′′0 , ϕ

−
0 ⟩+ δ⟨ϕ , ϕ−0 ⟩ − ⟨N(u0, ϕ) , ϕ

−
0 ⟩

⟨u′0 + ϕ′ , ϕ−0 ⟩

∣∣∣∣
≤ 1

σ̂

(∣∣⟨∆εu0 − u′′0 , ϕ
−
0 ⟩
∣∣+ δ

∣∣⟨ϕ , ϕ−0 ⟩∣∣+ ∣∣⟨N(u0, ϕ) , ϕ
−
0 ⟩
∣∣)

≤ 1

σ̂

(
∥∆εu0 − u′′0∥L2 ∥ϕ−0 ∥L2 + δ ∥ϕ∥L2 ∥ϕ−0 ∥L2 + ∥N(u0, ϕ)∥L2 ∥ϕ−0 ∥L2

)
≤ 1

σ̂

(
∥∆εu0 − u′′0∥L2 + δη + ∥N(u0, ϕ)∥L2

)
.

(3.225)

Using the estimate of ∥N(u0, ϕ)∥L2 from Corollary 2 we find that

|cε(ϕ)− c0| ≤
1

σ̂

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
. (3.226)

The first part of the proof is now completed. So we can start with the second part, in which
we estimate the difference between cε(ϕ1) and cε(ϕ2). For readability reasons we introduce
D(ϕ) as

D(ϕ) = ⟨∆εu0 − u′′0 , ϕ
−
0 ⟩+ δ⟨ϕ , ϕ−0 ⟩ − ⟨N(u0, ϕ) , ϕ

−
0 ⟩. (3.227)

Rewriting the difference between cε(ϕ1) and cε(ϕ2) as one fraction gives

|cε(ϕ1)− cε(ϕ2)| =
∣∣∣∣ D(ϕ1)

⟨u′0 + ϕ′1 , ϕ
−
0 ⟩

− D(ϕ2)

⟨u′0 + ϕ′2 , ϕ
−
0 ⟩

∣∣∣∣
=

∣∣∣∣ ⟨u′0 + ϕ′2 , ϕ
−
0 ⟩D(ϕ1)− ⟨u′0 + ϕ′1 , ϕ

−
0 ⟩D(ϕ2)

⟨u′0 + ϕ′1 , ϕ
−
0 ⟩⟨u′0 + ϕ′2 , ϕ

−
0 ⟩

∣∣∣∣ .
(3.228)

Now it follows from (3.208) that

|cε(ϕ1)− cε(ϕ2)| ≤
1

σ̂2

∣∣⟨u′0 + ϕ′2 , ϕ
−
0 ⟩D(ϕ1)− ⟨u′0 + ϕ′1 , ϕ

−
0 ⟩D(ϕ2)

∣∣ . (3.229)
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Now we take
∣∣⟨u′0 + ϕ′2 , ϕ

−
0 ⟩D(ϕ1)− ⟨u′0 + ϕ′1 , ϕ

−
0 ⟩D(ϕ2)

∣∣ and write it out in a handy form
such that we can estimate it. We compute∣∣⟨u′0 + ϕ′2 , ϕ

−
0 ⟩D(ϕ1)− ⟨u′0 + ϕ′1 , ϕ

−
0 ⟩D(ϕ2)

∣∣
=
∣∣∣[⟨u′0 , ϕ−0 ⟩+ ⟨ϕ′2 , ϕ−0 ⟩

] [
⟨∆εu0 − u′′0 , ϕ

−
0 ⟩+ δ⟨ϕ1 , ϕ−0 ⟩ − ⟨N(u0, ϕ1) , ϕ

−
0 ⟩
]

−
[
⟨u′0 , ϕ−0 ⟩+ ⟨ϕ′1 , ϕ−0 ⟩

] [
⟨∆εu0 − u′′0 , ϕ

−
0 ⟩+ δ⟨ϕ2 , ϕ−0 ⟩ − ⟨N(u0, ϕ2) , ϕ

−
0 ⟩
] ∣∣∣

=
∣∣∣⟨u′0 , ϕ−0 ⟩(δ⟨ϕ1 − ϕ2 , ϕ

−
0 ⟩+

〈
N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0

〉)
+ ⟨∆εu0 − u′′0 , ϕ

−
0 ⟩⟨ϕ′2 − ϕ′1 , ϕ

−
0 ⟩

+ δ
(
⟨ϕ′2 , ϕ−0 ⟩⟨ϕ1 , ϕ

−
0 ⟩ − ⟨ϕ′1 , ϕ−0 ⟩⟨ϕ2 , ϕ

−
0 ⟩
)

−⟨ϕ′2 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ
−
0 ⟩+ ⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩
∣∣∣

≤
∣∣∣⟨u′0 , ϕ−0 ⟩(δ⟨ϕ1 − ϕ2 , ϕ

−
0 ⟩+

〈
N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0

〉)∣∣∣
+
∣∣⟨∆εu0 − u′′0 , ϕ

−
0 ⟩⟨ϕ′2 − ϕ′1 , ϕ

−
0 ⟩
∣∣

+
∣∣∣δ(⟨ϕ′2 , ϕ−0 ⟩⟨ϕ1 , ϕ−0 ⟩ − ⟨ϕ′1 , ϕ−0 ⟩⟨ϕ2 , ϕ

−
0 ⟩
)∣∣∣

+
∣∣⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩ − ⟨ϕ′2 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ

−
0 ⟩
∣∣ .

(3.230)

We want to bound this further. This will be done by treating each term in absolute value
separately. Lemma 6(i), implying that ∥ϕ−0 ∥L2 = 1, will be used a lot of times in this part
of the proof.

To estimate the first term we use the estimate of ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 from Corol-
lary 2. Furthermore we recall the definition of σ̂, which implies ⟨u′0 , ϕ−0 ⟩ = 2σ̂. We find
that∣∣∣⟨u′0 , ϕ−0 ⟩ (δ⟨ϕ1 − ϕ2 , ϕ

−
0 ⟩+

〈
N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0

〉)∣∣∣
≤ δ

∣∣⟨u′0 , ϕ−0 ⟩∣∣ ∣∣⟨ϕ1 − ϕ2 , ϕ
−
0 ⟩
∣∣+ ∣∣⟨u′0 , ϕ−0 ⟩∣∣ ∣∣〈N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0

〉∣∣
≤ 2δσ̂ ∥ϕ1 − ϕ2∥L2 ∥ϕ−0 ∥L2 + 2σ̂ ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 ∥ϕ−0 ∥L2

≤ 2δσ̂ ∥ϕ1 − ϕ2∥H1 + 2σ̂Mη ∥ϕ1 − ϕ2∥H1

= 2σ̂ ∥ϕ1 − ϕ2∥H1

(
δ +Mη

)
.

(3.231)

The first term has been estimated, so we move on to the second term. We estimate∣∣⟨∆εu0 − u′′0 , ϕ
−
0 ⟩⟨ϕ′2 − ϕ′1 , ϕ

−
0 ⟩
∣∣ ≤ ∥∆εu0 − u′′0∥L2 ∥ϕ−0 ∥L2 ∥ϕ′2 − ϕ′1∥L2 ∥ϕ−0 ∥L2

≤ ∥∆εu0 − u′′0∥L2 ∥ϕ2 − ϕ1∥H1

≤ 2 ∥∆εu0 − u′′0∥L2 ∥ϕ2 − ϕ1∥H1 .

(3.232)

In the final step the expression is doubled. This isn’t necessarily needed, but it will turn
out that it fits in very nicely with the estimations of the other terms. Now we estimate the
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third term. This gives∣∣∣δ(⟨ϕ′2 , ϕ−0 ⟩ ⟨ϕ1 , ϕ−0 ⟩ − ⟨ϕ′1 , ϕ−0 ⟩⟨ϕ2 , ϕ
−
0 ⟩
)∣∣∣

= δ
∣∣∣⟨ϕ′2 , ϕ−0 ⟩⟨ϕ1 , ϕ−0 ⟩ − ⟨ϕ′2 , ϕ−0 ⟩⟨ϕ2 , ϕ

−
0 ⟩+ ⟨ϕ′2 , ϕ−0 ⟩⟨ϕ2 , ϕ

−
0 ⟩ − ⟨ϕ′1 , ϕ−0 ⟩⟨ϕ2 , ϕ

−
0 ⟩
∣∣∣

= δ
∣∣∣⟨ϕ′2 , ϕ−0 ⟩⟨ϕ1 − ϕ2 , ϕ

−
0 ⟩+ ⟨ϕ2 , ϕ−0 ⟩⟨ϕ′2 − ϕ′1 , ϕ

−
0 ⟩
∣∣∣

≤ δ
∣∣⟨ϕ′2 , ϕ−0 ⟩⟨ϕ1 − ϕ2 , ϕ

−
0 ⟩
∣∣+ δ

∣∣⟨ϕ2 , ϕ−0 ⟩⟨ϕ′2 − ϕ′1 , ϕ
−
0 ⟩
∣∣

≤ δ
(
∥ϕ′2∥L2 ∥ϕ−0 ∥L2 ∥ϕ1 − ϕ2∥L2 ∥ϕ−0 ∥L2 + ∥ϕ2∥L2 ∥ϕ−0 ∥L2 ∥ϕ′1 − ϕ′2∥L2 ∥ϕ−0 ∥L2

)
≤ δ
(
∥ϕ2∥H1 ∥ϕ1 − ϕ2∥H1 + ∥ϕ2∥H1 ∥ϕ1 − ϕ2∥H1

)
= 2δ ∥ϕ2∥H1 ∥ϕ1 − ϕ2∥H1

≤ 2δη ∥ϕ1 − ϕ2∥H1 .

(3.233)

Only the final term is yet to be estimated. For this we use the estimates from Corollary 2.
We find that∣∣∣⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩ − ⟨ϕ′2 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ

−
0 ⟩
∣∣∣

=
∣∣∣⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩ − ⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ

−
0 ⟩

+⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ
−
0 ⟩ − ⟨ϕ′2 , ϕ−0 ⟩⟨N(u0, ϕ1) , ϕ

−
0 ⟩
∣∣∣

=
∣∣∣⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0 ⟩+ ⟨ϕ′1 − ϕ′2 , ϕ

−
0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩
∣∣∣

≤
∣∣⟨ϕ′1 , ϕ−0 ⟩⟨N(u0, ϕ2)−N(u0, ϕ1) , ϕ

−
0 ⟩
∣∣+ ∣∣⟨ϕ′1 − ϕ′2 , ϕ

−
0 ⟩⟨N(u0, ϕ2) , ϕ

−
0 ⟩
∣∣

≤ ∥ϕ′1∥L2 ∥ϕ−0 ∥L2 ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 ∥ϕ−0 ∥L2 + ∥ϕ′1 − ϕ′2∥L2 ∥ϕ−0 ∥L2 ∥N(u0, ϕ2)∥L2 ∥ϕ−0 ∥L2

≤ ∥ϕ1∥H1 Mη ∥ϕ1 − ϕ2∥H1 + ∥ϕ1 − ϕ2∥H1 Mη2

≤ 2Mη2 ∥ϕ1 − ϕ2∥H1 .

(3.234)

We have found an estimation for each of the four terms. Thus we are now able to further
bound the expression we were left with at (3.230). Using the four estimations we find that∣∣∣⟨u′0 +ϕ′2 , ϕ−0 ⟩D(ϕ1)− ⟨u′0 + ϕ′1 , ϕ

−
0 ⟩D(ϕ2)

∣∣∣
≤ 2σ̂ ∥ϕ1 − ϕ2∥H1

(
δ +Mη

)
+ 2 ∥∆εu0 − u′′0∥L2 ∥ϕ2 − ϕ1∥H1

+ 2δη ∥ϕ1 − ϕ2∥H1 + 2Mη2 ∥ϕ1 − ϕ2∥H1

= 2 ∥ϕ1 − ϕ2∥H1

(
∥∆εu0 − u′′0∥L2 + σ̂ (δ +Mη) + δη +Mη2

)
= 2 ∥ϕ1 − ϕ2∥H1

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η) (δ +Mη)

)
.

(3.235)
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So it now follows from (3.229) that

|cε(ϕ1)− cε(ϕ2)| ≤ ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η) (δ +Mη)

)
(3.236)

completing the proof.

Lemma 12. Let R(c, ϕ) be defined as in (2.33) and let cε(ϕ) be as in (3.205). Furthermore
require η ≤ σ̂. Then there exists a positive constant M such that the inequalities

∥R(cε(ϕ), ϕ)∥L2 ≤
(
1

σ̂

{
∥u′0∥L2 + η

}
+ 1

)(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
(3.237)

and

∥R(cε(ϕ1), ϕ1)−R (cε(ϕ2), ϕ2)∥L2

≤ ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η)(δ +Mη)

)(
∥u′0∥L2 + η + σ̂/2

) (3.238)

hold for all ϕ, ϕ1, ϕ2 ∈ Xη.

Proof. Let M be the positive constant from Lemma 10 and let ϕ, ϕ1, ϕ2 ∈ Xη be arbitrary.
Since c0 − cε(ϕ) is just a constant we have that

∥R(cε(ϕ), ϕ)∥L2 = ∥(c0 − cε(ϕ))(u
′
0 + ϕ′) + (∆εu0 − u′′0) + δϕ+N(u0, ϕ)∥L2

≤ |c0 − cε(ϕ)| ∥u′0 + ϕ′∥L2 + ∥∆εu0 − u′′0∥L2 + δ ∥ϕ∥L2 + ∥N(u0, ϕ)∥L2

≤ |c0 − cε(ϕ)|
(
∥u′0∥L2 + ∥ϕ′∥L2

)
+ ∥∆εu0 − u′′0∥L2 + δ ∥ϕ∥L2 + ∥N(u0, ϕ)∥L2 .

(3.239)

We can bound this further using Lemma 11 and Corollary 2. We get

∥R(cε(ϕ), ϕ)∥L2 ≤ 1

σ̂

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)(
∥u′0∥L2 + ∥ϕ∥H1

)
+ ∥∆εu0 − u′′0∥L2 + δ ∥ϕ∥H1 +Mη2

≤ 1

σ̂

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)(
∥u′0∥L2 + η

)
+ ∥∆εu0 − u′′0∥L2 + (δ +Mη)η

=

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)(
1

σ̂

{
∥u′0∥L2 + η

}
+ 1

)
.

(3.240)

So the first of the two inequalities has now been proved. It remains to show that the second
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inequality holds as well. We get

∥R(cε(ϕ1), ϕ1)− R(cε(ϕ2), ϕ2)∥L2

=
∥∥(c0 − cε(ϕ1))(u

′
0 + ϕ′1) + ∆εu0 − u′′0 + δϕ1 −N(u0, ϕ1)

− (c0 − cε(ϕ2))(u
′
0 + ϕ′2)− (∆εu0 − u′′0)− δϕ2 +N(u0, ϕ2)

∥∥
L2

=
∥∥(cε(ϕ2)− cε(ϕ1))u

′
0 + (c0 − cε(ϕ1))ϕ

′
1

− (c0 − cε(ϕ2))ϕ
′
2 + δ(ϕ1 − ϕ2)+N(u0, ϕ2)−N(u0, ϕ1)

∥∥
L2

≤ |cε(ϕ2)− cε(ϕ1)| ∥u′0∥L2 + ∥(c0 − cε(ϕ1))ϕ
′
1 − (c0 − cε(ϕ2))ϕ

′
2∥L2

+ δ ∥ϕ1 − ϕ2∥L2 + ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 .

(3.241)

The term ∥(c0 − cε(ϕ1))ϕ
′
1 − (c0 − cε(ϕ2))ϕ

′
2∥L2 is the most difficult to estimate. Therefore

we will first estimate it seperately. We find that

∥(c0 − cε(ϕ1))ϕ
′
1 − (c0 − cε(ϕ2))ϕ

′
2∥L2

= ∥(c0 − cε(ϕ1))ϕ
′
1 − (c0 − cε(ϕ2))ϕ

′
2 + (c0 − cε(ϕ1))ϕ

′
2 − (c0 − cε(ϕ1))ϕ

′
2∥L2

= ∥(c0 − cε(ϕ1))(ϕ
′
1 − ϕ′2) + (cε(ϕ2)− cε(ϕ1))ϕ

′
2∥L2

≤ |c0 − cε(ϕ1)| ∥ϕ′1 − ϕ′2∥L2 + |cε(ϕ2)− cε(ϕ1)| ∥ϕ′2∥L2

≤ |c0 − cε(ϕ1)| ∥ϕ1 − ϕ2∥H1 + |cε(ϕ2)− cε(ϕ1)| ∥ϕ2∥H1

≤ |c0 − cε(ϕ1)| ∥ϕ1 − ϕ2∥H1 + |cε(ϕ2)− cε(ϕ1)| η.

(3.242)

Furthermore we have that δ ∥ϕ1 − ϕ2∥L2 ≤ δ ∥ϕ1 − ϕ2∥H1 . So now bounding (3.241) further
gives

∥R(cε(ϕ1), ϕ1)− R(cε(ϕ2), ϕ2)∥L2

≤ |cε(ϕ2)− cε(ϕ1)|
(
∥u′0∥L2 + η

)
+ |c0 − cε(ϕ1)| ∥ϕ1 − ϕ2∥H1

+ δ ∥ϕ1 − ϕ2∥H1 + ∥N(u0, ϕ2)−N(u0, ϕ1)∥L2 .

(3.243)

Now we apply the inequalities from Lemma 11 and Corollary 2 to this expression. It follows
that

∥R(cε(ϕ1), ϕ1)− R(cε(ϕ2), ϕ2)∥L2

≤ ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η) (δ +Mη)

)(
∥u′0∥L2 + η

)
+ ∥ϕ1 − ϕ2∥H1

1

σ̂

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
+ ∥ϕ1 − ϕ2∥H1 (δ +Mη)

= ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η) (δ +Mη)

)(
∥u′0∥L2 + η

)
+ ∥ϕ1 − ϕ2∥H1

1

σ̂

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η)(δ +Mη)

)
= ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η) (δ +Mη)

)(
∥u′0∥L2 + η + σ̂/2

)
.

(3.244)
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Consequence 1. Since ∥R(cε(ϕ), ϕ)∥L2 is bounded, it follows that R(cε(ϕ), ϕ) ∈ L2(R).

We have acquired enough information about the operators L±
ε,δϕ and R(c, ϕ) to be able to

prove Theorem 2, see page 22, which is the main goal of this thesis.

Proof of Theorem 2

Proof. We start by letting δ and η be small positive constants. The exact values will be
determined later, but we already require η ≤ σ̂. Furthermore we require ε < ε0(δ), where
ε0(·) is the function as defined in Proposition 1. We define T : Xη ⊂ H1(R) → H1(R) by

Tϕ = (L+
ε,δ)

−1R(cε(ϕ), ϕ). (3.245)

Consequence 1 states that R(cε(ϕ), ϕ) ∈ L2(R) for any ϕ ∈ Xη. Since (L+
ε,δ)

−1 maps

function from L2(R) to H1(R), it is clear that T indeed maps functions from Xη to H1(R).

The goal is to show that this mapping T has got a fixed point. If this is the case, it is not
too hard to show that equation (2.16) has a solution. We can show that T has a fixed point
by using Theorem A8, known as Banach’s Fixed Point Theorem. We are allowed to use
this theorem if T satisfies two properties. The first one is that T has to be a mapping to
itself, so from Xη to Xη. The second one is that T has to be a contraction mapping, see
Definition A5.

We will proceed as follows. First we find bounds for ∥Tϕ∥H1 and ∥Tϕ1−Tϕ2∥H1 . Thereafter
we determine the values of δ and η. This will be done in such a way that both required
properties for T follow.

Let us first find a bound for ∥Tϕ∥H1 with ϕ ∈ Xη arbitrary. Since R(cε, ϕ) ⊥ ϕ−0 ,
Proposition 1 implies that we have

∥Tϕ∥H1 =
∥∥∥(L+

ε,δ)
−1R(cε(ϕ), ϕ)

∥∥∥
H1

≤ C0 ∥R(cε(ϕ), ϕ)∥L2 . (3.246)

We can further bound this using Lemma 12. This gives

∥Tϕ∥H1 ≤ C0

(
1

σ̂

{
∥u′0∥L2 + η

}
+ 1

)(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
. (3.247)

We now introduce E = max {1, 2σ̂}. Then E ≥ 2σ̂, from which it also follows that
C0E
σ̂ ≥ 2C0 ≥ C0. Remember we also did require η ≤ σ̂. So we can estimate

C0

(
1

σ̂

{
∥u′0∥L2 + η

}
+ 1

)
≤ C0E

σ̂

(
2

σ̂

{
∥u′0∥L2 + σ̂

}
+ 1

)
. (3.248)

We will denote the constant on the right hand side by A. So

A =
C0E

σ̂

(
2

σ̂

{
∥u′0∥L2 + σ̂

}
+ 1

)
. (3.249)
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This constant does not depend on δ, η or ε. This will be an important detail when deter-
mining the values of δ and η. Now we apply (3.248) to (3.247). We find

∥Tϕ∥H1 ≤ A

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
. (3.250)

Later in the proof it will turn out that this bound is precisely the one we need. Now we
move on and try to find a bound for ∥Tϕ1 − Tϕ2∥H1 where we let ϕ1, ϕ2 ∈ Xη arbitrary.
Note that (L+

ε,δ)
−1 is linear since it’s an inverse of a linear bijective mapping. We use this

and again apply Proposition 1 to find that

∥Tϕ1 −Tϕ2∥H1 =
∥∥∥(L+

ε,δ)
−1R(cε(ϕ1), ϕ1)− (L+

ε,δ)
−1R(cε(ϕ2), ϕ2)

∥∥∥
H1

=
∥∥∥(L+

ε,δ)
−1
(
R(cε(ϕ1), ϕ1)−R(cε(ϕ2), ϕ2)

)∥∥∥
H1

≤ C0 ∥R(cε(ϕ1), ϕ1)−R(cε(ϕ2), ϕ2)∥L2 .

(3.251)

Now it follows from Lemma 12 and the definition of E that

∥Tϕ1−Tϕ2∥H1

≤ C0 ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + (σ̂ + η)(δ +Mη)

)(
∥u′0∥L2 + η + σ̂/2

)
≤ C0 ∥ϕ1 − ϕ2∥H1

2

σ̂2

(
∥∆εu0 − u′′0∥L2 + 2σ̂(δ +Mη)

)(
∥u′0∥L2 + σ̂ + σ̂/2

)
≤ ∥ϕ1 − ϕ2∥H1

2C0E

σ̂2

(
∥∆εu0 − u′′0∥L2 + δ +Mη

)(
∥u′0∥L2 + σ̂ + σ̂/2

)
= ∥ϕ1 − ϕ2∥H1

C0E

σ̂
· 2
σ̂

(
∥u′0∥L2 + σ̂ + σ̂/2

)(
∥∆εu0 − u′′0∥L2 + δ +Mη

)
= ∥ϕ1 − ϕ2∥H1

C0E

σ̂

( 2
σ̂

{
∥u′0∥L2 + σ̂

}
+ 1
)(

∥∆εu0 − u′′0∥L2 + δ +Mη
)

= A
(
∥∆εu0 − u′′0∥L2 + δ +Mη

)
∥ϕ1 − ϕ2∥H1 .

(3.252)

We have now also got a bound for ∥Tϕ1−Tϕ2∥H1 , which means we are ready to determine
δ and η. We choose

δ =
1

4A
and η = min

{
σ̂,

1

4MA

}
. (3.253)

From Theorem 1 it follows that u0(x) satisfies the conditions of Lemma 4(i). So we have
that

lim
ε↓0

∥∆εu0 − u′′0∥L2 = 0. (3.254)

Therefore we can choose a small positive constant ε∗ ≤ ε0(δ) such that

sup
ε∈(0,ε∗)

∥∆εu0 − u′′0∥L2 ≤ min{1, η}
4A

. (3.255)

Keep in mind that A doesn’t depend on δ, η or ε. From now on we assume ε ∈ (0, ε∗).
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Using the bound above and the given values to δ and η we can further bound (3.250). We
estimate

∥Tϕ∥H1 ≤ A

(
∥∆εu0 − u′′0∥L2 + (δ +Mη)η

)
≤ A

(
min{1, η}

4A
+ δη +Mη2

)
≤ A

(
η

4A
+

η

4A
+Mηmin

{
σ̂,

1

4MA

})
≤ A

( η

4A
+

η

4A
+

η

4A

)
=

3η

4

≤ η.

(3.256)

Hence Tϕ ∈ Xη. So we can conclude that T is a mapping to itself, namely from Xη to Xη.
We still have to show that T is a contraction. We again use (3.253) and (3.255), but now
to further bound (3.252). We estimate

∥Tϕ1 −Tϕ2∥H1 ≤ C5

(
∥∆εu0 − u′′0∥L2 + δ +Mη

)
∥ϕ1 − ϕ2∥H1

≤ C5

(
min{1, η}

4C5
+

1

4C5
+M min

{
σ̂,

1

4MC5

})
∥ϕ1 − ϕ2∥H1

≤ C5

(
1

4C5
+

1

4C5
+

1

4C5

)
∥ϕ1 − ϕ2∥H1

=
3

4
∥ϕ1 − ϕ2∥H1 .

(3.257)

So we see that T is indeed a contraction mapping. Thus we can use Theorem A8, which
states that T must have a unique fixed point. So there exists a ϕε ∈ Xη such that Tϕε = ϕε.
Hence (L+

ε,δ)
−1R(cε(ϕε), ϕε) = ϕε by the definition of T. Now we let L+

ε,δ operate on both
sides of this equation to obtain

R(cε(ϕε), ϕε) = L+
ε,δ ϕε. (3.258)

Now it follows from Lemma 3 that uε = u0 + ϕε must satisfy cεu
′
ε −∆εuε + f(uε) = 0,

where we use the shorthand notation cε = cε(ϕε). So (cε, uε) is a solution to equation
(2.16). Since we have let ε ∈ (0, ε∗) arbitrarily, there exist such a solution pair (cε, uε) for
every ε ∈ (0, ε∗). Uniqueness follows from the uniqueness of the fixed point ϕε.

It is only left to show that limε↓0(cε, uε) = (c0, u0). If we let ε ↓ 0, then the left hand side
of (3.255) will become very small. So this means we can pick η very small without violating
(3.255). Thus if we let ε ↓ 0, we can let η ↓ 0 as well. Since ϕε ∈ Xη, ϕε has to converge to
0. So limε↓0 uε = u0 + limε↓0 ϕε = u0.

We can use this reasoning again to derive that cε converges to c0 if we let ε ↓ 0. From the
definition of cε(ϕ), see (3.205), it follows that

cε = cε(ϕε) = c0 +
⟨∆εu0 − u′′0 , ϕ

−
0 ⟩+ δ⟨ϕε , ϕ−0 ⟩ − ⟨N(u0, ϕε) , ϕ

−
0 ⟩

⟨u′0 + ϕ′ε , ϕ
−
0 ⟩

(3.259)
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We’ll show that all of the terms in the numerator converge to 0 as ε ↓ 0. Lemma 4(i) tells
us that ∆εu0−u′′0 converges to 0 in L2-norm as we let ε ↓ 0. So applying Theorem A4 gives
that limε↓0⟨∆εu0 − u′′0 , ϕ

−
0 ⟩ = 0.

Recall that letting ε ↓ 0 allows us to let η ↓ 0. Then Lemma 10 implies that

lim
ε↓0

∥N(u0, ϕε)∥L2 ≤ lim
ε↓0

Mη2 = lim
η↓0

Mη2 = 0. (3.260)

So N(u0, ϕε) converges to 0 in L2-norm and we can again apply Theorem A4. This gives
that limε↓0⟨N(u0, ϕε) , ϕ

−
0 ⟩ = 0.

Since ϕε converges to 0 as ε ↓ 0 it follows that limε↓0 δ⟨ϕε , ϕ−0 ⟩ = 0. Combining these
observations we find that

lim
ε↓0

cε(ϕε) = c0 + lim
ε↓0

⟨∆εu0 − u′′0 , ϕ
−
0 ⟩+ δ⟨ϕε , ϕ−0 ⟩ − ⟨N(u0, ϕε) , ϕ

−
0 ⟩

⟨u′0 + ϕ′ε , ϕ
−
0 ⟩

= c0. (3.261)

Thus indeed limε↓0(cε, uε) = (c0, u0), which concludes the proof.
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4 Conclusion

In this thesis we have shown that discretized partial differential equation (2.16) has a so-
lution. The equation depends on the value of ε and thus we get different solutions when
we vary the discretization step size. So if we regard a real process in nature that can be
described by (2.16), then the space we work in can really impact the behaviour of such a
process. But what is still unclear, is how big this impact is. It would be very interesting to
examine what the impact of choosing the discretization step size has on the solution. One
could also wonder for what values of the discretization step this model is suitable.

Furthermore, we have only looked into travelling waves, so waves with a nonzero wave speed.
But what if the wave speed is equal to zero? Can we then still find a solution to our prob-
lem? We could also replace the infinite sum we used to approach the second order spatial
derivative with some other approximation, for example in the form of an integral. Does
the equation then still have solutions? And if it has solutions, how does it differ from the
solution to the equation in this report?

Thus we see that this study can still be extended in various ways and perhaps improved.
But the proof shown in this study could be helpful in future research regarding this subject.
An example is when the second order spatial derivative is replaced by a convolution kernel
such as

∂2

∂x2
u(x, t) →

∫ ∞

−∞
K(y)uj(y + t) dy.

This research can also be helpful when considering the discretized Allen-Cahn equation in
more than one dimension. So there are plenty of opportunities for further research.
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Appendix

Definition A1. Let H be a Hilbert space and let {ϕj}∞j=0 be a sequence in H. Then we say
ϕj converges weakly to ϕ in H if

⟨ϕj , ψ⟩H → ⟨ϕ , ψ⟩H as j → ∞, for all ψ ∈ H.

Definition A2. Let {ϕj}∞j=0 be a sequence in L2(R). Then we say ϕj converges to ϕ in

L2
loc(R) if for every compact set K ⊆ R∫

K

(ϕj − ϕ)
2 → 0.

Definition A3. Let X and Y be normed vector spaces and let T : X → Y be a mapping.
Then T is called a homeomorphism if it is a bijective and continuous linear mapping that
has an inverse mapping which is continuous. If such a mapping exists, we call X and Y
homeomorphic.

Definition A4. Let ψ ∈ L2(R). We say that ψw ∈ L2(R) is the weak derivative of ψ if

⟨ϕ′ , ψ⟩ = −⟨ϕ , ψw⟩

for all ϕ ∈ C∞
0 (R).

Definition A5. Let X be a subset of a normed vector space. Then T : X → X is called a
contraction mapping if there exists some constant α with 0 ≤ α < 1 such that

∥Tx− Ty∥ ≤ α ∥x− y∥

for all x, y ∈ X.

Theorem A1 ([9, Theorem 5.73]). Let {ψj}j=∞
j=0 be a sequence in either L2(R), H1(R) or

H2(R). If {ψj}j=∞
j=0 is a bounded sequence, then {ψj}j=∞

j=0 has a subsequence that weakly
converges in the corresponding function space.

Theorem A2. Let {ψj}j=∞
j=0 be a bounded sequence in H1(R). Then {ψj}j=∞

j=0 has a sub-

sequence that converges in L2
loc(R).

Theorem A3 ([9, Exercise 5.29]). Let H be a Hilbert space. Assume that ψj → ψ weakly
in H as j → ∞. Then

∥ψ∥H ≤ lim inf
j→∞

∥ψj∥H .

Theorem A4. Let H be a Hilbert space. Assume {ϕj}∞j=0 is a bounded sequence in H.
Furthermore assume ϕj → ϕ weakly in H and ψj → ψ in H-norm as j → ∞. Then

⟨ϕj , ψj⟩H → ⟨ϕ , ψ⟩H as j → ∞.

Proof. Let {ϕj}∞j=0 be a bounded sequence in H that converges weakly to ϕ in H as j → ∞.
Let {ψj}∞j=0 be a sequence in H that converges to ψ in H-norm as j → ∞. Then

lim
j→∞

⟨ϕj , ψ⟩H = ⟨ϕ , ψ⟩H
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and

lim
j→∞

|⟨ϕj , ψj − ψ⟩H | ≤ lim
j→∞

∥ϕj∥H ∥ψj − ψ∥H = 0.

So limj→∞⟨ϕj , ψj − ψ⟩H = 0 and it follows that

lim
j→∞

⟨ϕj , ψj⟩H = lim
j→∞

⟨ϕj , ψ⟩H + lim
j→∞

⟨ϕj , ψj − ψ⟩H = ⟨ϕ , ψ⟩H .

Theorem A5 ([9, Lemma 4.1]). Let X and Y be normed vector spaces and let T : X → Y
be a linear mapping. Then the following are equivalent:

(i) T is continuous.

(ii) T is continuous in 0.

(iii) There exists a constant K > 0 such that

sup
x∈X, ∥x∥≤1

∥Tx∥ = K.

(iv) There exists a constant K > 0 such that

∥Tx∥ ≤ K ∥x∥ for all x ∈ X.

Theorem A6 ([9, Exercise 3.19]). Let Y be a closed linear subspace of a Hilbert space H.
If Y ̸= H, then Y ⊥ ̸= {0}.

Theorem A7 ([3, Theorem 8.8]). There exists a constant a > 0 such that

∥ϕ∥L∞ ≤ a ∥ϕ∥H1 for all ϕ ∈ H1(R).

Theorem A8 ([4, Theorem 7.13]). Let X be a complete metric space, and let T : X → X
be a contraction mapping, see Definition A5. Then T has a unique fixed point x0 in X(i.e.
Tx0 = x0).

Theorem A9 ([9, Lemma 4.38(c)]). Let X, Y be normed linear spaces that are homeomor-
phic, see Definition A3. Then X is complete if and only if Y is complete.

Theorem A10 ([4, Theorem 7.9]). Let M be a complete metric space and let A be a subset
of M . Then A is complete if and only if A is closed in M
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