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Abstract

Algorithmic recourse aims to provide individuals affected by a negative classifi-
cation outcome with actions which, if applied, would flip this outcome. Various
approaches to the generation of recourse have been proposed in the literature; these
are typically assessed on statistical measures such as the validity of generated ex-
planations or their proximity to the training data. However, little to no attention has
been paid to the underlying dynamics of recourse. If a group of individuals applies
the suggested actions, they may over time induce a shift in the domain or model.
We propose a framework for the measurement of such intrinsic shifts, and conduct
an analysis of the dynamics of recourse implemented by the generators proposed
by Mothilal et al. and Wachter et al.. Our results suggest that the application of
recourse is likely to introduce statistically significant shifts in the system, and that
the underlying dataset and model impact the behavior of the generators.

1 Introduction

Many of the commonly employed artificial intelligence techniques have to be treated as black boxes
that are impossible to interpret even by experts. At the same time, the ever-increasing impact of these
techniques on different areas of human life – from job recruitment to healthcare interventions [1], [2]
– emphasizes the importance of transparent decision-making. To that end, the Explainable Artificial
Intelligence paradigm has been introduced as an umbrella term for various approaches to increase,
among other things, the interpretability and transparency of AI [3]. As suggested in the foundational
work of Wachter et al., explainability may be achieved even “without opening the black box” by
providing the stakeholders affected by a classification with a set of actions that, if applied, would
lead to a different outcome [4]. Such sets of actions may take the form of counterfactual explanations
(CEs) informing how the state of the world would have to (realistically) change for the outcome to
change (“if your salary had been e3000 per month, you would have been approved for the loan”).

Explanations in form of actionable changes are referred to as algorithmic recourse. Previous work
has presented various approaches for the generation of recourse which typically extend on the
optimization problem introduced by Wachter et al. [4] that serves as the baseline for our work. While
our framework can be used with many generators, we specifically focus on Diverse Counterfactual
Explanations (DiCE) which aims to promote the actionability of suggestions for the interested
stakeholders with the addition of diversity constraints [5]. In our research, we use the implementations
of the aforementioned techniques available in the Counterfactual And Recourse LibrAry (CARLA)
which is a Python framework “for benchmarking counterfactual explanation methods” [6].

To the best of our knowledge, no research has been conducted on the intrinsic dynamics of the
algorithmic recourse. After it is implemented for some individuals, the domain and model may shift
even if no new samples are introduced to the model. One can imagine how individuals unhappy with
their loan decision request explanations from the bank and implement them. When an individual
applies the recommendation some values for their attributes change, which over time leads to a
domain shift. As the bank attempts to maximize the performance of its machine learning model, it is
periodically retrained on this updated dataset which in turn leads to a model shift.

This is an important limitation as even small shifts may disrupt the performance of models such as
deep neural networks [7]. Shifts of the model may inadvertently change the classification outcomes
for the individuals who were not part of the recourse group. Shifts in the domain include the formation
of new clusters of data points. As the generators generally attempt to find low-cost explanations,
such clusters of individuals who have undergone recourse may be created in the vicinity of the (old)
decision boundary. Shifts that stem from the application of recourse are endogenous in nature [8].

Our work was conducted to answer the research question RQ1: what are the differences in the
characteristics of the domain and model shifts induced by the DiCE and Wachter et al. recourse
generators?. To that end, we answer six sub-questions:

1. (SQ1) how can the domain shifts due to the application of algorithmic recourse be measured?
2. (SQ2) how can the model shifts due to the application of algorithmic recourse be measured?
3. (SQ3) what are the characteristics of shifts induced by the Wachter et al. generator?
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4. (SQ4) what are the characteristics of shifts induced by the DiCE generator?

5. (SQ5) what factors may influence the potential difference in the dynamics of recourse?

6. (SQ6) what appear to be good ways to mitigate the potential endogenous shifts?

Our contributions to the state of knowledge are two-fold. First, we introduce a framework built on
top of CARLA which allows for the measurement of algorithmic recourse in terms of the endogenous
domain and model shifts. Our framework can be applied to any recourse generator; its implementation
is provided along with the paper1. Second, we use this framework to provide the first in-depth analysis
of the dynamics of recourse induced by Wachter et al. and DiCE generators.

This paper conforms to the following structure. In Section 2 we analyze the previous research in the
relevant domains. Then, Section 3 provides an overview of the proposed experimental procedure.
Section 4 describes the experiments which were conducted to analyze the dynamics of recourse. We
place the results in a broader context in Section 5. Subsequently, Section 6 is a discussion on the
ethics and reproducibility of our research. Finally, Section 7 is the conclusion to this paper.

2 Related work

In this Section we provide a review of the relevant literature. First, Subsection 2.1 discusses the
existing research within the domain of counterfactual explanations and algorithmic recourse. Then,
Subsection 2.2 describes the previous work on the measurement of dataset and model shifts.

2.1 Algorithmic recourse

Many approaches for the generation of algorithmic recourse have been described in the literature.
An October 2020 survey by Karimi et al. discovered 60 algorithms that have been proposed since
2014 [9]. Another survey published in the same month by Verma et al. described 29 algorithms [10].
There exists a large variety in terms of the objective functions, employed tools (from brute force
through gradient-based approaches to graph traversal algorithms), and further constraints placed on
the generated counterfactuals such as actionability, plausibility, diversity, or sparsity.

Our paper focuses on the Wachter et al. and DiCE recourse generators. The former is proposed
in [4] as a simple optimization problem where the generator attempts to find the closest possible
counterfactual explanation for some original point from the training set. This is implemented as a
gradient descent procedure which continues until a CE that satisfies some decision threshold is found.
The authors of DiCE build on this approach to develop a recourse generator with diversity constraints
which aim to provide stakeholders with multiple sets of actions that would flip the classification
outcome. To that end, DiCE employs determinantal point processes [11] to generate multiple CEs
for every factual instance. While the algorithm of Wachter et al. finds the most feasible (actionable)
counterfactual instances by default, DiCE increases the feasibility of its suggestions post hoc.

Although we leave the analysis of the dynamics of other generators as future work, we summarize the
approaches of some other generators to emphasize the variety in the field. Dhurandhar et al. introduce
CEM [12] which makes use of a gradient-based procedure to discover what may be present and what
must be absent to classify a sample. Antorán et al. suggest CLUE [13], a method to analyze the
factors which influence the certainty of neural networks in a Bayesian setting. FACE [14], presented
by Poyiadzi et al., employs a graph-based algorithm to avoid explanations which are not feasible
for the interested individual. Finally, Joshi et al. provide REVISE [15] which attempts to produce
realistic recourse using a variational auto-encoder to model the underlying data manifold.

Preceding studies on the impact of algorithmic recourse had focused mainly on the quality of
generated explanations in terms of statistical measures such as the validity of explanations [6], [9],
[16] in static systems. A review of Verma et al. called for recourse generators which can work in
dynamic systems [10] in their 9th research challenge. Later, Upadhyay et al. suggested potential
adaptations to the generators to increase their robustness against model shifts due to, for example,
temporal or geospatial reasons [17]. Nonetheless, the changes investigated in their work are strictly
of external origin (exogenous) because they occur regardless of the application of recourse.

1https://github.com/abuszydlik/model-shifts-with-dice
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2.2 Domain and model shifts

Much attention has been paid to the detection of dataset shifts – situations where the distribution of
data changes over time. Rabanser et al. suggest a framework to detect data drift from a minimal
number of samples through the application of two-sample tests [18]. This task is a generalization of
the anomaly detection problem for large datasets – could two sets of samples have been generated
from the same probability distribution. Numerous approaches to anomaly detection have been
summarized by Chandola et al. [19]. Another well research topic is that of concept drift – situations
where external variables influence the patterns between the input and the output of a model [20]. For
instance, Gama et al. offer a review of the adaptive learning techniques which can handle concept drift
[21]. Less work is available on the related topic of model drift - deterioration of model performance
over time. Nelson et al. review how resistant different machine learning models are to the model drift.
[22]. Ackerman et al. offer a method to detect changes in model performance when ground truth is
not available [23]. In our research, we are interested in quantifying the characteristics of changes to
the model, such as the position of the decision boundary, rather than only detecting these changes.
We have not identified previous work on this topic.

3 Methods

As one of our main contributions, we introduce a framework built on top of CARLA for the measure-
ment and comparison of endogenous domain and model shifts. Our experimental procedure explained
in Subsection 3.1 allows for the parallel implementation of algorithmic recourse using multiple
generators. We describe synthetic and real-world datasets used in our experiments in Subsection 3.2.
Finally, in Subsection 3.3 we explain the metrics used to compare the dynamics of induced recourse.

3.1 Procedure

We propose the following experimental procedure to investigate the dynamics of model shifts. It aims
to simulate the application of recourse for an increasing number of individuals over multiple rounds.
This corresponds to the previously mentioned bank system that generates counterfactual explanations
for its customers who make use of them to change their classification outcomes.

1. Sample records from the dataset D to estimate the original probability distribution.
2. Split D into a training set and a test set, use the former to train a classifier M .
3. Quantify the performance of M .
4. Create independent copies Dg and Mg of D and M for each generators g.
5. Calculate in each round the sets of negative instances S predicted by each model.
6. Find the intersection Sr of these sets which will be used to generate recourse.

7. Generate CEs for a set of k samples from Sr, yielding updated datasets D
′

g .

8. Retrain Mg on D
′

g for each generator.
9. Apply the metrics explained in subsection 3.3 to assess the dynamics of shifts.

10. Measure the quality of recourse with CARLA benchmarking tools after all N rounds.

A noteworthy practical consideration is the choice of N and k. The higher these values, the more
factual instances undergo recourse throughout an experiment. Of course, this is likely to lead to more
pronounced domain and model shifts. At the same time, it is generally improbable that a very large
part of the population would request an explanation of the algorithm’s decisions. In our experiments,
we choose the values so that N · k corresponds to the application of recourse on 25-50% of the
negative instances from the initial dataset. As we collect data on every round of the experiment, we
can also verify the impact of recourse when it is implemented for a smaller number of individuals.
Our experiment can be conducted on an arbitrary number of algorithmic recourse generators in parallel.
As all generators make use of the same initial model and initial dataset, the differences in domain and
model shifts observed throughout the rounds depend solely on the employed generator.
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3.2 Datasets

In our experiments we quantify different potential characteristics of recourse using 6 synthetic binary
classification datasets consisting of 200-400 samples grouped in normally-distributed clusters2. Our
datasets are presented in Figure 1 (see also Appendix A for a formal description). Samples from the
negative class are marked in blue while samples of the positive class are marked in orange.

(a) Linearly separable data (b) Overlapping data (c) Plus-shaped data

(d) Two balanced clusters (e) Two unbalanced clusters (f) Categorical data

Figure 1: A visualization of the synthetic classification datasets used in our experiments.

Ex ante we expect to see that Wachter et al. will create a new cluster of counterfactual instances
in the proximity of the initial decision boundary. Thus, the choice of a black-box model may have
an impact on the paths of the recourse. In cases 1c, 1d, and 1e with two clusters of points from the
positive class, these CEs will be consistently generated closer to one of the positive clusters. In the
case 1e, we should see that the CEs are closer to the upper positive cluster which consists of more
samples. At the same time, we expect to see the counterfactual explanations of DiCE spread around
the classification space. In the aforementioned cases, this means that the two initial positive clusters
will likely be merged by the generated counterfactuals.

Additionally, we use two real-world datasets from the domain of banking. First, Give Me Some
Credit dataset with the task to predict whether a borrower is likely to experience financial difficulties
in the next two years [24]. Originally consisting of 250000 instances with 11 numerical attributes,
the dataset was processed by selecting a sample of 3000 records in a balanced manner resulting in
1500 individuals in the positive class and 1500 individuals in the negative class3. Second, German
Credit dataset with the task to predict the credit risk of bank customers [25]. It consists of 700
positive and 300 negative instances with 7 numerical and 13 categorical attributes. We process the
dataset in two ways: (1) the values of the “Personal status and sex” feature are aggregated by the two
represented genders; (2) the most common values are calculated for all categorical features such that
a feature F with the mode V is transformed into a new binary feature is_V4.

3.3 Metrics

We formulate two desiderata for the set of metrics used to measure domain and model shifts induced
by recourse. First, the metrics should be applicable regardless of the dataset or classification
technique so that they allow for the meaningful comparison of the generators in various scenarios.
As the knowledge of the underlying probability distribution is rarely available, the metrics should
be empirical and non-parametric. This further ensures that we can also measure large datasets
by sampling from the available data. Moreover, while our study was conducted in a two-class

2https://github.com/abuszydlik/model-shifts-with-dice/blob/main/notebooks/synthetic_datasets.ipynb
3https://github.com/drobiu/recourse_analysis/blob/master/notebooks/Dataset_subsampling.ipynb
4https://github.com/abuszydlik/model-shifts-with-dice/blob/main/notebooks/GC_processing.ipynb
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classification setting, our choice of metrics should remain applicable in the future research on multi-
class recourse problems. Second, the set of metrics should allow to capture various aspects of the
previously mentioned magnitude, path, and tempo of changes while remaining as small as possible.

Metrics for the domain shifts

Operating point of the k-means algorithm is used to measure whether the counterfactual instances
tend to be generated within the positive class or as a separate cluster of data points. It is desirable that
CEs resemble the actual positive instances – an accurate representation of the underlying probability
distribution will generally reduce domain and model shifts. Thus, the operating point (elbow) of the
k-means algorithm should not change over time for a successful recourse generator. While there
exist several algorithms for the automated discovery of elbow points, in the framework we employ
the Kneedle method introduced in [26] to suggest whether the operating point has changed between
rounds. Kneedle selects the optimal value of k by rotating the inertia curve onto the horizontal
axis and selecting a local minimum. While working with the synthetic datasets we also use domain
knowledge and confirm the results of Kneedle through the visual inspection of data.

Unbiased estimate of the squared population Maximum Mean Discrepancy (MMD) given as:

MMD2
u[F , X, Y ] =

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

where F is a unit ball in a Reproducing Kernel Hilbert Space H [27], and X , Y represent independent
and identically distributed samples drawn from probability distributions p and q respectively [28].
MMD is a measure of the distance between the kernel mean embeddings of p and q in RKHS H.
An important consideration is the choice of the kernel function k(·, ·). In our implementation we
make use of the radial basis function (RBF) kernel with a constant length-scale parameter of 0.5.
As RBF captures all moments of distributions p and q, MMD2

u[F , X, Y ] = 0 if and only if X = Y .

At the beginning of the experiment, we sample the initial distribution of both classes and use the
samples to calculate changes in the MMD after every round of recourse. We additionally follow the
ideas of [29] to measure the statistical significance of the observed shifts under the null hypothesis that
samples X and Y were drawn from the same probability distribution. To that end, we combine the
two samples and generate a large number of permutations of X+Y . Then, we split the permuted data
into two new samples X ′ and Y ′ having the same size as the original. If X and Y have been generated
by the same process, MMD2

u[F , X ′, Y ′] should be approximately equal to MMD2
u[F , X, Y ]. Thus,

we can estimate the p-value by calculating how often the latter is greater than or equal to the former.

We calculate the MMD for both classes individually based on the ground truth labels. We do not
expect the distribution of the negative class to change over time – application of recourse makes this
class shrink but it does not mutate the samples. Conversely, unless a recourse generator can perfectly
replicate the original probability distribution, we expect the MMD of the positive class to increase.
Thus, when discussing MMD, we mean the shift in the distribution of the positive class.

Feature mean and feature standard deviation are calculated to verify how the implementation of
recourse impacts every attribute in the dataset. Although MMD already captures information about
the expected value and variance, we may also be interested in the actual values. If little changes in
the distribution of a feature are seen, then the generator correctly mimics the probability distribution.

Metrics for the model shifts

Pseudo-distance for the Disagreement Coefficient (Disagreement) introduced in [30] is expressed
as Pr[h(x) ̸= h′(x)] and describes the probability that two classifiers do not agree on the outcome
for a randomly chosen sample. Thus, it is not relevant whether the classification is correct given the
ground truth but only whether the sample lies on the same side of the two decision boundaries. In
other words, this metric quantifies the overlap between the initial model (trained before the application
of recourse) and the updated model. It is desirable that the disagreement is 0 which indicates that
the classification has not changed for the interested population. Nonetheless, even two models are in
perfect agreement, it is still possible that the decision boundary shifted.
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Decisiveness metric is introduced to quantify the likelihood that a model assigns a high probability to
its classification of a sample. We define the metric as

∑n
i=0(Pr(x)− 0.5)2/n, the average predicted

probability that a sample belongs to each of the classes centered around 0.5 which represents the lack
of preference for either of the classes. Although the exact values for this metric are unimportant for
our study, they can be used to detect the model shifts. If decisiveness changes over time, then it is
probable that the decision boundary moves towards either of the classes.

Predicted Probability MMD (PP MMD) is the final measure that we introduce to quantify model
shifts. We adapt Maximum Mean Discrepancy as described above and apply it to the probabilities
assigned by the model to a set of samples from the dataset. If the model shifts, the probabilities
assigned to each sample will change; again, this metric will equal 0 only if the two classifiers are the
same. It is worth noting that while we apply the technique to samples drawn from the dataset, it can
also be successfully employed on artificial data points selected from the entire classification space.
The latter approach is theoretically more robust; however, in practice, it becomes difficult to select
enough points to overcome noise, especially in high-dimensional domains.

Metrics for the quality of recourse

We use the evaluation measures as described in CARLA [6] to assess the quality of recourse:

• Mean number of features changed, a higher value may suggest lower feasibility of the CEs;
• Mean redundancy measuring how many feature changes were not necessary, a higher value

suggests that the CEs impose unnecessary demands on the affected individuals;
• Mean size of the maximum change (Chebyshev distance);
• Mean Taxicab and Euclidean distance between the factual and the counterfactual;

Additionally, we calculate three metrics ourselves:

• Mean predicted probability, measuring the probabilities assigned by the underlying classifier
to the newly-generated counterfactual instances. If high, the suggested changes are more
reliable and it is less likely that future changes to the model will invalidate them;

• Mean computation time taken to generate a single counterfactual instance. We introduce
a time limit (120 seconds) after which the search for a CE is deemed unsuccessful;

• Success rate, measuring the proportion of CEs which are generated within the time limit.

4 Experiments

We measure the dynamics of recourse applied by DiCE and Wachter et al. in a series of three
experiments. First, in Subsection 4.1, we analyze the patterns of recourse given different underlying
machine learning models. Then, in Subsection 4.2, we investigate the impact of the data on the
dynamics of induced recourse. Finally, in Subsection 4.3, we verify how the hyper-parameters of
the DiCE generator influence the found counterfactuals. Each experiment was repeated 5 times with
different initial conditions, the results presented in this section are averaged over all runs. We consider
a CE to be valid if the probability that it is assigned to the positive class is above 0.5. All black-box
models are trained using the RMSProp optimizer for gradient descent [31] while the internal models
of the generators use the Adam optimizer [32]. These choices are enforced by CARLA.

In our experiments, we use three classifiers with varying levels of complexity. These are always
trained over 10 epochs using a stochastic gradient descent procedure with a learning rate of 0.01.
In the description of our experiments, we use C1, C2, and C3 to refer to these classifiers.

• (C1) a Logistic Regression model;
• (C2) a Neural Network, one hidden layer of 5 neurons;
• (C3) a Neural Network, two hidden layers of 10 and 5 neurons respectively.

4.1 Impact of the machine learning model on the generated recourse

Recourse is induced over 10 epochs, with 5 randomly selected negative factual instances turned into
counterfactuals in each epoch. We simulate the expected usage of DiCE by generating 3 diverse
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counterfactuals for every factual and randomly turn the factual into one of these instances. We also
assess the Wachter et al. generator on the default CARLA hyper-parameters. This experiment is
repeated on two synthetic datasets shown in Figures 1a and 1b. Our results are presented in Table 1.

Model & Generator MMD ↓ PP MMD ↓ Decisiveness ↑ Disagreement ↓ Clusters

Dataset: linearly separable

(C1) DiCE 0.1369 (**) 0.2392 (**) -0.0024 0.0580 2.6
(C1) Wachter et al. 0.3209 (***) 0.3810 (***) -0.0184 0.2660 2.0
(C2) DiCE 0.1450 (***) 0.3002 (**) 0.0000 0.0590 2.0
(C2) Wachter et al. 0.3214 (***) 0.3411 (***) -0.0036 0.2550 2.0
(C3) DiCE 0.1533 (***) 0.2359 (**) 0.0000 0.0750 2.6
(C3) Wachter et al. 0.3310 (***) 0.4073 (***) -0.0182 0.3010 2.0

Dataset: overlapping

(C1) DiCE 0.0275 (ns) 0.2670 (***) 0.0093 0.0260 3.0
(C1) Wachter et al. 0.0854 (**) 0.2492 (***) 0.0063 0.1535 3.0
(C2) DiCE 0.0401 (ns) 0.1289 (*) 0.0009 0.0195 3.0
(C2) Wachter et al. 0.0919 (**) 0.1677 (**) 0.0003 0.1190 3.0
(C3) DiCE 0.0270 (ns) 0.1758 (**) -0.0005 0.0550 3.0
(C3) Wachter et al. 0.1047 (**) 0.2909 (***) -0.0057 0.2212 2.4

Table 1: Average shifts of the domain and model with varying complexity of the underlying classifier.
Significance levels given in parentheses: (ns) is non-significant, (*) is 5%, (**) is 1%, (***) is 0.1%.

We note that the choice of a model does not have a large impact on the magnitude of domain shifts for
either of the generators which can be partly explained by the quasi-linearly-separable nature of the
data at hand. We see more variation in terms of the model shifts measured with PP MMD although
there does not seem to be a clear correlation between the complexity of a model and the value of
this metric. Additionally, the inherent characteristics of the algorithm may be a confounding factor.
For the Wachter et al. generator we observe statistically significant domain and model shifts in all
scenarios. Domain shifts induced by DiCE are significant on the linearly separable data but in relative
terms they are around two times smaller than the baseline. The application of recourse with DiCE
always results in statistically significant model shifts but again the magnitude of shifts induced by
DiCE is generally smaller than the baseline. This is also supported by the Disagreement metric.

Figure 2: Recourse generated by DiCE (top) and Wachter et al. (bottom) throughout one experiment.

The Kneedle algorithm typically discovers that both generators create a new cluster of data points
although DiCE seems to be more prone to change the operating point of k-means. Nonetheless, the
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changes in probability distribution induced by Wachter et al. are more perceptible when visually
inspected. Figure 2 shows the recourse generated using the C1 model. While CEs created by DiCE
are spread throughout the classification space, Wachter et al. takes negative instances towards the
decision boundary where they form a new cluster. This is consistent with our initial expectations.

Finally, we did not observe any potential correlation between the type of the black-box model and the
benchmark scores calculated by CARLA and our framework for the generators.

4.2 Impact of the initial data distribution on the generated recourse

In this experiment, we apply recourse on the synthetic datasets to assess the patterns of generated
CEs. We also verify whether these remain present in use-case scenarios using real-world datasets.

Synthetic datasets

We measure the dynamics of algorithmic recourse induced by DiCE and Wachter et al. on the 6
synthetic datasets described in subsection 3.2. Algorithmic recourse is implemented over 10 rounds
with 5 randomly-selected negative instances turned into counterfactuals in every round. C2 is used as
the black box model. Our results are presented in Table 2 and visualized in Appendix B.

Generator MMD ↓ PP MMD ↓ Disagreement ↓ Pred. proba. ↑ Success rate ↑
Dataset: linearly separable

DiCE 0.1531 (**) 0.2457 (**) 0.081 0.9859 0.764
Wachter et al. 0.3211 (***) 0.3917 (***) 0.254 0.6449 1.000

Dataset: overlapping

DiCE 0.0230 (ns) 0.1523 (**) 0.030 0.9287 0.884
Wachter et al. 0.0877 (*) 0.1896 (**) 0.154 0.5661 0.940

Dataset: plus-shaped

DiCE 0.0402 (ns) 0.1700 (***) 0.030 0.9458 0.972
Wachter et al. 0.0260 (ns) 0.2059 (***) 0.155 0.5885 1.000

Dataset: two balanced clusters

DiCE 0.0393 (ns) 0.1447 (**) 0.011 0.9876 0.909
Wachter et al. 0.1286 (*) 0.1757 (**) 0.135 0.5608 0.977

Dataset: two unbalanced clusters

DiCE 0.0373 (ns) 0.1515 (**) 0.012 0.9864 0.904
Wachter et al. 0.1383 (**) 0.1689 (**) 0.134 0.5638 0.988

Dataset: categorical

DiCE 0.1526 (ns) 0.3430 (***) 0.216 0.9593 1.000
Wachter et al. - - - - 0.000

Table 2: Dynamics of recourse implemented by DiCE and Wachter et al. on the synthetic datasets.
Significance levels given in parentheses: (ns) is non-significant, (*) is 5%, (**) is 1%, (***) is 0.1%.

Our results show that DiCE consistently outperforms the Wachter et al. generators, leading to smaller
domain shifts, model shifts, and maximizing the predicted probability of the counterfactual instances.
Only in one case (the plus-shaped dataset) are the changes in distribution more pronounced for
DiCE; however, they remain statistically insignificant. On four datasets Wachter et al. introduces
domain shifts that are up to four times larger than those of DiCE. A similar trend holds for the model
shifts. Although the differences are typically less pronounced when measured with the Predicted
Probability MMD, the models used by Wachter et al. undergo much larger shifts when measured
with the Disagreement metric. This suggests that DiCE can generate CEs on the positive side of the
initial decision boundary (resembling more closely the training data), while for Wachter et al. these
CEs are close to the negative instances. This is confirmed by the predicted probability scores. We
also note that Wachter et al. as implemented by the CARLA team does not work for purely categorical
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datasets. We observe that categorical variables are never modified by this generator and in the last
case, Wachter et al. did not generate any counterfactuals.

DiCE’s higher robustness against domain and model shifts is at the cost of the success rate. It is more
likely to fail at finding a CE within the time limit (120 seconds). Additionally, samples generated by
DiCE are less actionable as they require larger changes from the individuals. Figure 3 presents the
scores on four criteria of actionability averaged over the five synthetic datasets (1f is omitted).

Figure 3: Counterfactual explanations created by DiCE are less actionable and more redundant.

We observe that counterfactuals generated by DiCE are on average much more demanding to satisfy.
Additionally, DiCE introduces redundant changes much more often than our baseline.

Real-world datasets

We also assess how the two generators fare on the real-world datasets: GMSC (30 rounds with 25
counterfactuals per round) and German Credit (15 rounds with 10 counterfactuals per round). We
repeat this experiment on C1 and C2. Our results are summarized in Tables 3 and 4 respectively.

Model & Generator MMD ↓ PP MMD ↓ Disagreement ↓ Clusters Euclid. dist. ↓
Round 10

(C1) DiCE 0.0582 0.1971 0.1578 3.2 -
(C1) Wachter et al. 0.0118 0.1696 0.1631 4.0 -

(C2) DiCE 0.0485 0.2350 0.0923 3.2 -
(C2) Wachter et al. 0.0322 0.2130 0.1070 4.0 -

Round 20

(C1) DiCE 0.1098 0.3108 0.1667 3.2 -
(C1) Wachter et al. 0.0386 0.2706 0.1937 4.0 -

(C2) DiCE 0.0976 0.2748 0.0857 3.6 -
(C2) Wachter et al. 0.0322 0.2642 0.0987 4.0 -

Round 30

(C1) DiCE 0.1544 (***) 0.4138 (***) 0.1737 4.4 0.9310
(C1) Wachter et al. 0.0567 (***) 0.3724 (***) 0.2186 4.0 0.0354
(C2) DiCE 0.1619 (***) 0.3422 (***) 0.0798 4.8 0.7460
(C2) Wachter et al. 0.0601 (ns) 0.3444 (***) 0.0955 4.0 0.0257

Table 3: Dynamics of recourse implemented by the generators on the GMSC dataset over 30 rounds.
Significance levels given in parentheses: (ns) is non-significant, (*) is 5%, (**) is 1%, (***) is 0.1%.
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Model & Generator MMD ↓ PP MMD ↓ Disagreement ↓ Clusters Euclid. dist. ↓
Round 5

(C1) DiCE 0.0514 0.1580 0.1474 4.0 -
(C1) Wachter et al. 0.0519 0.2213 0.1798 4.0 -

(C2) DiCE 0.0516 0.1158 0.0786 4.0 -
(C2) Wachter et al. 0.0515 0.0934 0.0848 4.0 -

Round 10

(C1) DiCE 0.0396 0.1019 0.1010 3.0 -
(C1) Wachter et al. 0.0405 0.1450 0.1246 3.2 -

Last round (15 for C1, on average 8 for C2)

(C1) DiCE 0.0485 (***) 0.1082 (ns) 0.1128 3.6 0.6678
(C1) Wachter et al. 0.0499 (***) 0.1541 (***) 0.1054 4.0 0.3498
(C2) DiCE 0.0514 (**) 0.1300 (**) 0.0792 4.0 1.0412
(C2) Wachter et al. 0.0513 (**) 0.1044 (**) 0.0856 4.0 0.3485

Table 4: Dynamics of recourse implemented by the generators on the German Credit dataset.
Significance levels given in parentheses: (ns) is non-significant, (*) is 5%, (**) is 1%, (***) is 0.1%.

The advantage of DiCE over Wachter et al. disappears on the GMSC dataset where the final domain
shifts induced by DiCE are up to 2.7 times larger than those of the baseline. DiCE also underperforms
with regards to the data clustering – the operating point heavily fluctuates from the initial value of
4. At the same time, we note that the magnitude of the model shifts is relatively comparable. We
explain the results by looking at the mean Euclidean distance between the factual instance and the
corresponding counterfactual – it is approximately 28 times larger for DiCE. As it introduces much
larger changes than required, it completely fails at modeling the underlying data manifold.

DiCE works better on the German Credit dataset; however, we again observe the fluctuating number
of clusters found by Kneedle. The differences in terms of the model shifts are more pronounced on
both metrics. We also note a smaller discrepancy in the Euclidean distance metric although again
Wachter et al. is able to generate more feasible explanations. Importantly, the experiment on C2
terminates early due to the lack of common negative instances which suggests that the two models
undergo very different changes in terms of the position of the decision boundary.

Figure 4: Changes in the decision boundaries of DiCE and Wachter et al. over one experiment.
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To further analyze the dynamics on real-world datasets, we apply the technique described in [33]
where the dimensionality of data is first reduced using t-distributed Stochastic Neighbor Embedding
[34] and then the decision boundary is approximated with Voronoi tesselation. We approximate the
latter step using a 1-NN classifier. Figure 4 above presents the changes to the decision boundary
due to the application of recourse. We observe that in both cases DiCE induces erratic model
shifts. In particular, on GMSC, DiCE generates four distinct clusters of counterfactual instances at
−20 ≤ feature2 ≤ 20 while in the Wachter et al. case the structure of clusters resembles the initial
data. This is in line with the previously described tendency of DiCE to generate less feasible CEs.

4.3 Impact of the generator hyper-parameters on the generated recourse

In this experiment, we verify whether the hyper-parameters of DiCE impact the dynamics of algo-
rithmic recourse. Again, we induce recourse over 10 epochs, with 5 new factual instances turned
into counterfactuals in each epoch. A neural network with one hidden layer of 5 neurons (C2) is the
underlying black-box model. We obtained the results on the overlapping dataset.

Impact of the number of generated counterfactuals for each factual instance

In this experiment we employ 5 DiCE generators which attempt to find 1, 2, 3, 5, and 8 explanations
for each provided factual. Then, we select one of these explanations at random to update the
generator’s dataset. This simulates a scenario where the client of our bank receives multiple sets of
actions and implements the one which they find most feasible. Our results are presented in Table 5.

Generator MMD ↓ PP MMD ↓ Disagreement ↓ Success rate ↑
DiCE (1) 0.0323 (ns) 0.2399 (***) 0.1070 0.960
DiCE (2) 0.0244 (ns) 0.2572 (***) 0.0975 0.936
DiCE (3) 0.0393 (ns) 0.2728 (***) 0.1145 0.876
DiCE (5) 0.0272 (ns) 0.2253 (***) 0.0835 0.836
DiCE (8) 0.0245 (ns) 0.2434 (***) 0.1085 0.728

Table 5: Average shifts for DiCE generators with increasing number of CEs per factual.

We observe that the number of generated counterfactuals for every factual instance does not seem to
have an impact on the magnitude of domain shifts which is confirmed by the analysis of changes to
the mean and standard deviation. There is also no apparent difference in terms of the model shifts
when measured with the Predicted Probability MMD and the Disagreement metrics.

Impact of the amount of post-processing for each counterfactual instance

In this experiment we employ 6 DiCE generators, each generating 3 counterfactual explanations per
factual instance, with an increasing amount of post-processing. The value of this hyper-parameter cor-
responds to the quantile of the absolute deviation of the feature which will be taken into consideration
when attempting to minimize the number of the suggested changes. Table 6 shows the results.

Generator MMD ↓ PP MMD ↓ Mean redundancy ↓ Success rate ↑
DiCE (0.0) 0.0581 (ns) 0.1131 (ns) 0.5880 1.000
DiCE (0.2) 0.0412 (ns) 0.0873 (ns) 0.3934 0.764
DiCE (0.4) 0.0249 (ns) 0.0207 (ns) 0.4549 0.576
DiCE (0.6) 0.0255 (ns) 0.0208 (ns) 0.4579 0.524
DiCE (0.8) 0.0344 (ns) 0.0712 (ns) 0.4331 0.484
DiCE (1.0) 0.0319 (ns) 0.0308 (ns) 0.4414 0.508

Table 6: Average shifts for DiCE generators with increasing fraction of post-processed results.

We would intuitively expect that as the number of post-processing steps increases, the redundancy
of suggested changes decreases. Indeed, the counterfactuals generated by the DiCE model with no
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post-processing are much more frequently redundant (≈ 1.5 times) than for all other models which
negatively impacts their actionability. At the same time, we acknowledge an important limitation of
this experiment: increasing the sparsity of the explanations post-hoc becomes very computationally
expensive for larger values of the hyper-parameter. This leads to frequent timeouts of the generators –
four of them successfully generate a CE in only ≈ 50% of the cases.

5 Discussion

In this section, we review our findings. First, in Subsection 5.1 we summarize the results of our
experiments on the synthetic and real-world datasets to answer the research question RQ1. Then, in
Subsection 5.2 we analyze the objective functions of both generators to explain our results.

5.1 Characteristics of the observed domain and model shifts

Our results show that both generators are prone to inducing domain and model shifts. We discover
that the complexity of the underlying black box model does not have a large impact on the magnitude
of the domain shifts measured with MMD, but it may have an impact on the operating point of the
k-means algorithm. This is especially noticeable on the synthetic datasets although we also observe
similar results on the real-world datasets. At the same time, we observe relatively large differences
in terms of the model shifts (measured with PP MMD and the Disagreement metric). Nevertheless,
there does not seem to be a clear correlation between the complexity of a model and the magnitude of
induced shifts. This holds for synthetic and real-world datasets alike. We note that the underlying
data has a much more pronounced impact on the characteristics of the induced shifts. This is expected
as domain and model shifts occur when the generator fails at preserving the distribution of the initial
samples – some distributions are inherently more difficult to preserve.

In our experiments, we observe several characteristics of domain and model shifts induced by Wachter
et al.. As the generator simply brings the negative instances to the other side of the decision boundary,
it performs well on datasets that are not linearly separable, provided that the model can generate
a non-linear boundary. Conversely, it induces larger shifts when the data is linearly separable as
the decision boundary lies between the two classes. Although the change in the number of clusters
is sometimes not detected by Kneedle, visual inspection of the data confirms that Wachter et al.
introduces new clusters of data points consisting of its counterfactual explanations.

We find that the dynamics of recourse implemented by DiCE are different. On the synthetic datasets,
DiCE performed better than the baseline generator – while it also induces significant domain and model
shifts, these are typically several times smaller in magnitude on the synthetic datasets. Nonetheless,
experiments on the real-world datasets suggest that DiCE may not be suitable in all cases as its
tendency to generate CEs spread throughout the classification space can become a major problem. In
particular, the generator suggests much larger changes than required to flip the outcome of a negative
instance. This ultimately leads to much worse performance than the baseline. At the same time,
we note that recourse implemented by DiCE may be considered more robust. Larger changes in the
features result in a higher certainty of the classifier that the counterfactual instance belongs to the
positive class. Therefore, we can also expect that there is a lower risk that the CEs of DiCE become
outdated as the model continues to evolve, which is an advantage for the affected stakeholders.

Given these findings, we provide a set of guidelines to mitigate the unwanted endogenous dynamics
of recourse. First, we recommend that until a large-scale survey of the domain and model shifts
induced by recourse generators becomes available, the interested stakeholders should assess multiple
generators to select the best one for their use case. As previously discussed, the underlying data
distribution may have a major impact on the behavior of a generator. Second, although our experiments
were conducted in a setting where the size of the dataset does not change over time, it may be useful to
consider an approach where the initial negative samples remain in the dataset and the counterfactual
samples are treated as new data points. It is important to emphasize that although some individuals
may request an explanation of their outcome, this does not mean that the initial model was incorrect
in assigning this outcome. Thus, preserving negative instances can likely attenuate the magnitude
of induced shifts. Finally, we again remark that we generated recourse for 25-50% of individuals
with the negative outcome – in practice, it is not likely that such a large number of individuals would
request a CE and successfully apply it. This limits the severity of possible shifts.
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5.2 Comparison of the objective function

Here we explain the factors which influence the differences in the dynamics of recourse. To that end,
we compare the objective functions of the generators. For Wachter et al. it is expressed as:

argmin
c

λ(f(c), y) + d(c, x) (1)

with the first term nudging the instance in the direction of the positive outcome, and the second term
preventing the counterfactual from being generated too far from the original point.

DiCE, on the other hand, optimizes the following function:

arg min
c1,...,ck

1

k

k∑
i=1

λ(f(ci), y) +
r1
k

k∑
i=1

d(ci, x)− r2 det(K) (2)

it can be noted that the first two terms of Equation 2 fully correspond to the Equation 1 (although
summed over all generated counterfactuals). The third term introduces diversity constraints – it is
the determinant of a kernel matrix where Ki, j = 1

1+d(ci, cj)
. This also means that when k = 1,

i.e. when DiCE generates a single counterfactual instance, Equation 2 simplifies to:

argmin
c

λ(f(c), y) + r1 d(c, x) (3)

which is the Wachter et al. objective function with an additional regularization hyper-parameter.
Nonetheless, our experiments suggest that even when k = 1, the patterns of recourse presented by
the two generators are different which is presented in Figure 5.

Figure 5: Recourse generated by DiCE with k = 1 (left) and Wachter et al. (right).

It can be observed that when the diversity constraints are removed, DiCE still manages to generate
counterfactual explanations which are spread around the classification space. This is different from
the type of recourse implemented by Wachter et al. generator where the samples are brought towards
the decision boundary. Additionally, Experiment 4.3 suggestes that, in general, the choice of k does
not seem to have a major impact on the dynamics of domain and model shifts induced by DiCE.
Therefore, the difference in the behavior of the generators cannot be explained the third term of
Equation 2. Further, both generators are described in their respective papers using the same distance
metric: L1 norm divided by the sum of the mean absolute deviations of the features. While authors
of DiCE propose a different metric for categorical features, this also cannot have an impact on the
recourse – all but two of our datasets consists of only numerical features. Finally, Wachter et al.
do not explicitly state the loss function λ, thus, in our experiments, we use binary cross-entropy
(BCE). Mothilal et al. specifically suggest hinge loss which ensures that valid counterfactuals are not
penalized if they satisfy the classification threshold. Although λ may have an impact on the behavior
of the generators, we again turn to Figure 5 to explain why this is unlikely to be the only factor. Some
of the CEs generated by DiCE are “far” from the original decision boundary but this should not be the
case if the generator minimizes hinge loss with a threshold of 0.5 as was the case in our experiments.

Thus, we look into the source code of the two algorithms in CARLA for another explanation of the
differences. Wachter et al. is implemented by the framework team5. We note that the implementation
5https://github.com/carla-recourse/CARLA/blob/main/carla/recourse_methods/catalog/wachter/library/wachter.py
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generally follows the principles given in [4] although it uses simple L1 norm as the distance function
rather than the suggested normalized L1 norm. DiCE is available as part of the InterpretML
package6 and used in CARLA as-is. We discover that – although the authors of CARLA refer to a
gradient-based implementation of DiCE [6] – the framework uses another approach where features
are randomly sampled7 and transformed to increase sparsity. Thus, Equation 2 does not play a role in
the counterfactual generation process which explains the differences observed in Section 4.

6 Responsible Research

Our research was conducted without external funding and we do not have any conflicts of interest to
report. Throughout the research process we took multiple precautions to maintain the integrity of our
results and to uphold high ethical standards of the work. We review our process on two criteria: ethics
of the field of research (Subsection 6.1) and future reproducibility of the results (Subsection 6.2).

6.1 Ethical machine learning

Our work was conducted in the domain of trustworthy artificial intelligence with various possible
future use cases such as banking, healthcare, job recruitment. The use of black box algorithms
for decision-making in cases where the algorithm’s verdict has possible impacts on human lives
is inherently questionable. While legislation aiming to ensure that affected stakeholders have the
right of appeal is being developed around the world [35], [36], the mechanisms in place are still
limited. Our work aims to alleviate these issues by introducing a benchmarking framework for the
comparison of recourse generators in identical experimental conditions. We see two main scenarios
where our framework can increase the explainability, interpretability, and justifiability of black-box
decisions. First, we provide a tool for the researchers of algorithmic recourse generators which allows
to take into consideration the social welfare of the population by designing generators which are less
prone to modifying the domain and model. Second, we hope to empower officials responsible for the
introduction of recourse procedures to consider how different generators behave in their use case.

6.2 Reproducibility of the results

We conducted our work on six synthetic and two real-world dataset. We provide the code required to
construct the exact versions of our datasets; interested researchers may generate these datasets and
use them directly in our framework which is published along with this paper. While we cannot claim
that our software is completely bug-free – also because it heavily relies on CARLA which is still
under active development – our algorithms were manually tested to minimize the risk that the results
are influenced by the faults in our software. To ensure that our findings do not stem from random
factors, all experiments were repeated five times and the presented results were averaged over all
runs. Additionally, within every single experiment we employed multiple datasets and models to
verify whether the observed behavior is inherent to the generator, rather than it being a product of
the experimental conditions. Other researchers should be able to repeat our analysis, either using
our own datasets and the framework or their own implementation thereof. As we controlled for the
randomness of experiments with repeated runs, we opted not to use seeds for the pseudo-random
number generators. This also means that while other researchers should arrive to the same conclusions
after replicating our steps, the results they obtain will not be exactly equal to our results.

7 Conclusions and Future Work

Our research was conducted to discover the differences in dynamics of algorithmic recourse induced
by two generators: one proposed by Wachter et al., the other introduced by Mothilal et al. to generate

“diverse counterfactual explanations”. As no previous work has been conducted on the topic of
endogenous domain and model shifts, we introduced a framework that allows for a robust comparison
of recourse generators. Our contributions there are two-fold: we suggested an experimental framework
which allows to quantify different aspects of the dynamics of recourse, and we made use of this
framework to analyze the behavior of the aforementioned generators in different scenarios.

6https://github.com/interpretml/DiCE
7https://github.com/carla-recourse/CARLA/blob/main/carla/recourse_methods/catalog/dice/model.py
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We employ multiple metrics to quantify these dynamics. For the domain shifts, we track the changes
in the operating point of the k-means algorithm to verify whether recourse introduces new clusters to
the data, and make use of the Maximum Mean Discrepancy metric to quantify the distance between
the probability distributions. For the model shifts, we adapt the Disagreement metric from the domain
of active learning, apply MMD to the probabilities assigned by the classifiers to the samples, and
introduce our Decisiveness metric which measures the sum of normalized probabilities.

Our results suggest that both DiCE and Wachter et al. generators are likely to induce significant
shifts to the underlying data and model. Although DiCE increases the actionability of suggestions by
generating multiple counterfactual explanations for every factual instance, this happens at the cost of
their feasibility. Suggestions of Wachter et al. require fewer changes from the affected stakeholders;
however, possible external changes to the model are much more likely to make them outdated. While
our experiments on the synthetic datasets suggest that DiCE is better equipped to mimic the original
training data, it performs worse in real-world scenarios.

Our work is primarily limited by the availability of statistical methods to measure the model shifts.
While there are ample techniques to verify whether the performance of a model deteriorates, no
techniques quantifying, for example, the position of the decision boundary with respect to available
data have been identified in the literature. Nonetheless, we successfully employ a model visualization
technique to gain insight into the dynamics of algorithmic recourse on high-dimensional datasets.
Additionally, our work relies on CARLA which is still under development. Thus, some components of
our framework must work around the current limitations of CARLA. Notably, due to the restrictions
imposed by CARLA, our work was conducted only on a single type of the DiCE generator. Lastly,
the generation of CEs becomes a computationally expensive process on large domains and and with
complex models, thus, our experiments were conducted only on small- and medium-sized datasets.

In the future, our work can be extended with further measures of the endogenous shifts. As parametric
dimensionality reduction techniques allow for the application of the same transformation of data in
all rounds of recourse, they could be a powerful method to measure the changes in the model. In
particular, the technique described in [33] could be applied with parametric t-SNE [37]. Further, a
more robust method to determine the operating point of the k-means algorithm would be beneficial
for the measurement of domain shifts. As one option, we suggest the “gap statistic” [38]. Other
researchers may also focus on the dynamics of algorithmic recourse in multi-class classification
settings. For instance, when multiple outcomes can be considered “positive” and the affected
individuals may freely request a counterfactual explanation informing how to achieve any of those
outcomes. Finally, our solution can be used to perform a large-scale survey of recourse generators as
the framework supports the benchmarking of generators which follow the interface defined by CARLA.
If such analysis is conducted on a diverse collection of real-world datasets, it may be possible to relate
the characteristics of these datasets to the behavior of the generators. This in turn could facilitate the
implementation of recourse procedures in organizations and positively influence the interpretability
and explainability in decision-making domains that have a direct impact on human lives.
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A Formal description of the synthetic datasets

Dataset Negative class Positive class

No samples Means Cov. matrices No samples Means Cov. matrices

1a 100 (−5, −5)
(

5 −4
−4 5

)
100 (8, 8)

(
5 −4

−4 5

)
1b 200 (−5, −5)

(
12 0
0 12

)
200 (5, 5)

(
12 0
0 12

)

1c 100
100

(−6, 0)
(6, 0)

(
2 0
0 2

)
(
2 0
0 2

) 100
100

(−6, 0)
(6, 0)

(
2 0
0 2

)
(
2 0
0 2

)

1d 200 (−7.5, 0)
(
3 0
0 3

)
100
100

(5, −6)
(5, 6)

(
4 0
0 4

)
(
2 0
0 2

)

1e 200 (−7.5, 0)
(
3 0
0 3

)
50
150

(5, −6)
(5, 6)

(
4 0
0 4

)
(
2 0
0 2

)
1f 100 (1.5, 5) - 100 (4, 3) -

Table 7: Parameters of the normally-distributed synthetic datasets used in our experiments.
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B Visualization of recourse on the synthetic datasets

Initial distribution and model DiCE (Round 10) Wachter et al. (Round 10)

Dataset: linearly separable

Dataset: overlapping

Dataset: plus-shaped

Dataset: two balanced clusters

Dataset: two unbalanced clusters

Figure 6: Domain and model shifts induced on the synthetic datasets at the end of round 10.
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