
Multi-Level Inversion Based On
Mesh Decoupling

Benny Shachor

Multi-Level Inversion Based On
Mesh Decoupling

by

Benny Shachor
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday December 9, 2019 at 9:00 AM.

Student number: 4748573
Thesis committee: Dr. Domenico Lahaye, TU Delft, supervisor

Dr. Hadi Hajibeygi, TU Delft, supervisor
Dr. Ir. Femke Vossepoel, TU Delft

This thesis is confidential and cannot be made public until December 9, 2019.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Understanding the permeability of the subsurface is a crucial step to simulate fluid flow in the subsurface.
A parameter estimation problem for the flow equations can be solved to find the permeability. The robust
identification of material parameters remains a significant challenge. In classical approaches, the non-linear
least-squares problem is formulated as a non-linear optimization problem in which the partial differential
equation governing the permeability field acts as a constraint. These approaches lead to large scale problems
and are, therefore, computationally challenging. This thesis proposes a new approach based on mesh decou-
pling of state and design variables. This approach allows treating the design variables on various scales of
resolution without comprising the accuracy of the state and adjoint solver. The method is implemented on a
one-dimensional and two-dimensional Poisson problem taken from the literature. The first numerical results
show that the multilevel approach is able to accelerate the initial stages of the search procedure significantly.

iii

Acknowledgements

I would like to use this opportunity to thank my supervisors Dr. Domenico Lahaye and Dr. Hadi Hajibeygi.
Without their guidance, supervision, insights, and help, I would not be able to do this work. I thank them for
believing in me and willing to accept the challenge of combining pure mathematical research with petroleum
engineering aspects to explore new ideas that can benefit both aspects of science. During the work, both have
let me the flexibility to test my thoughts, some time to fail, all to be a better student and researcher for later
stages. This approach has taught me a lot, and I thank them for that.

I thank Dr. Ir. Femke Vossepoel for her interest in my work and for being a committee member for my
thesis defense. During my studies, the courses and interactions with professor Vossepoel have encouraged
me to find interest in geostatistics and different interpolation methods.

I want to thank the TU Delft university staff for the different courses, classes, presentations, and fieldwork.
All that prepared me to be a better scientific researcher, petroleum engineer, and a co-worker.

Last but not least, I would like to thank my dear family and especially my dear mother for the constant
support in the challenging times and for encouraging me to go abroad and pursue an MSc.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Parameter Estimation 3

3 Concepts from Numerical Mathematics 7

3.1 Introduction . 7
3.2 Finite Element Elements for the Poisson Equation: weak form and spatial discretization 7

3.2.1 Finite Element Method . 7
3.2.2 One Dimensional Problem . 10
3.2.3 Two Dimensional Problem . 10

3.3 Non-Linear Optimization Methods for Non-Linear Inversion 11
3.3.1 Newton Method . 11
3.3.2 Newton with Trust Region Method . 13
3.3.3 Criterias for the different methods . 14

4 Parameter Estimation for the Poisson Equation 15

4.1 Introduction . 15
4.2 Problem formulation . 15

4.2.1 One dimensional problem . 16
4.2.2 Two dimensional problem . 18

4.3 Illposedness and Regularization . 20
4.3.1 Well and Ill-Posed problems . 20
4.3.2 Ill-posed problem . 21
4.3.3 Tikhonov Regularization . 22
4.3.4 Regularization functional . 22
4.3.5 Choosing the regularzation parameter . 23

4.4 Adjoint Equation . 24
4.4.1 Gradient Computation . 25
4.4.2 Hessian Computation . 25

4.5 Numerical Differentiation. 26
4.6 Adjoint Method and Numerical Differentiation . 26
4.7 Solving Non-Linear Least Squares Problem . 26

4.7.1 Cost of computation . 27
4.8 Convergence Result . 27

4.8.1 Convergence . 27

5 Multi-Level Method 29

5.1 Introduction . 29
5.1.1 The Multi-Level approach . 29
5.1.2 Why is it faster . 29

5.2 The Multi-Level Algorithm . 30
5.3 The Bisection: . 31

5.3.1 1D in space . 31
5.3.2 2D in space . 31

5.4 The Projection Prolongation operator: . 32
5.4.1 1D in space . 32
5.4.2 2D in space . 32

vii

viii Contents

6 Numerical Results for the Poisson Equation 35

6.1 Introduction . 35
6.2 Julia as a programming language . 35
6.3 Implementation in Julia. 35
6.4 Numerical Results in 1D . 36

6.4.1 Inversion results and comparison of the optimization methods 36
6.4.2 Regularization parameter α study . 38
6.4.3 L-Curve method . 39
6.4.4 Solution using the MultiLevel approach . 39

6.5 Numerical Results in 2D . 40
6.5.1 1 design variable . 40
6.5.2 General number of design variables . 42
6.5.3 Benchmark problem . 45
6.5.4 Multi-Level on the Benchmark problem . 47

7 Conclusion 49

Bibliography 51

List of Figures

2.1 To the left there are two different permeabilty fields and to the right is each permeability field
affect on the oil flow in the reservoir . 3

2.2 Different sources are combined in order to get a permeabilty field 4
2.3 A permeabilty field which contains different objects and facies . 5
2.4 A field with constant permeability which includes two objects. One has a very high permeability

and the other has a slightly higher permeability compared to the permeability of the filed 5

3.1 The nodes are denoted as xi , 0 ≤ i ≤ n. The elements are denoted as ei , 1 ≤ i ≤ n. The boundary
nodes are x0, xn . 7

3.2 The 2 dimensions discretization where ni represent the number of the node and ei represents
the element number. In this example there are 21 nodes and 28 elements 8

3.3 1D basis functions example. The basis function φ4,φ5,φ6 has a value of 1 at the points x4, x5, x6

respectively and zeros on the other nodes. Between the nodes the functions are linear 10
3.4 2D basis function examples. In green and blue are the basis function φ17,φ18 respectively. The

basis function φ17,φ18 has a value of 1 at the nodes x17, x18 respectively and zeros on the other
nodes. Between the nodes the functions are linear . 10

4.1 The sources of the two experiments. The sources are located at x = 1
3 , 2

3 for the two experiments
respectively. Both sources are a Dirac delta which has a value of 1 at one point grid and every-
where else are equal to zero . 17

4.2 The exact design variable plot has a gaussian shape . 17
4.3 Forward model and sampled data for two experiments, The circles are the observations taken

from each experiment. The observations includes the noise of the FEM solution 18
4.4 The mesh includes 49 nodes and 76 elements, the maximum distance between two nodes is

Hmax = 0.45. the observations used in each experiment are the red circles 19
4.5 The sources in 2D, each source represent a Dirac delta which has a value of 1 at one point grid

(the source location) and everywhere else are equal to zero. Each source correspond to one
experiment . 19

4.6 Exact solution for design variables where there is a circle inside a rectangle. This will be also
used as an input for the forward modeling . 20

4.7 Forward model experiments solutions. As expected in each solution the peak is at the location
of the source term . 20

4.8 L-curve method, the figure was taken from Hansen [10], The Vertical part is dominated by the
perturbation error and the horizontal part is dominated by the regularization error 23

4.9 System variable for different alpha, Number of elements is 76 . 26

5.1 Bisection in the 1D state space for 3 different levels . 31
5.2 Bisection in the 2D state space for 3 levels . 31
5.3 Projection of design variable mesh to the state variable mesh in the 1D state space 32
5.4 Projection of design variable mesh to the state variable mesh in the 1D state space 33

6.1 Comparison of the Inverse problem solution and the exact solution used to simulate the for-
ward model. Regularization parameter used is α= 1e −7, Norm of solutions: ||Tr ustReg i on −
E xact || = 0.06044 , ||New ton −exact || = 0.06044 . 36

6.2 Newton and Newton Trust Region cost function comparison with a regularization of α= 1e −9 . 37
6.3 The different cost function value and the Newton Trust Region region are calculated for each

iteration. The regularization parameter used is α= 1e −9 . 37
6.4 The regularization parameter used is α= 1.56e −9, the different evaluations of the design vari-

ables are presented for the different iterations . 38

ix

x List of Figures

6.5 Design variable for different regularization parametersα values, as the regularization parameter
increases the solution tends to be more constant . 38

6.6 Observation at each location of the grid point helps getting closer to convergence, no regular-
ization is needed . 39

6.7 The left figure represents the raw graph of the residual and the regularization function for dif-
ferent regularization parameters α, The right figure represents the L curve values after applying
the triangle method . 39

6.8 Mulit-Level method using Newton with Trust Region, the evolution of the design variables dur-
ing the different iterations . 40

6.9 Cost function vs the amount of PDE’s solve in the Hessian, comparison between the Single-Level
and the Multi-Level . 40

6.10 The mesh for a 2D case with sources and observations on the same locations denoted as red
circles . 41

6.11 Cost function for 1 Design Variable and the iterative solution for the design variable with each
iteration denoted in red circles. The iterations start at the most right red point k = 100 41

6.12 The quadratic approximation to the cost function is represented by the green line. The line is
being cut at the end of the Newton Trust Region region . 42

6.13 A quadratic approximation to the cost function is represented by the green line. The line is being
cut at the region of the Trust Region method . 42

6.14 Compare the solutions for the inverse problem for a case of al pha = 1e-6 43
6.15 Compare Cost Solution for the 2 methods. The results are almost the same and graphs lie on

each other . 43
6.16 Compare Cost function for different iterations, where: α= 1e −8 44
6.17 Compare Cost Solution and ∆max for α= 1e −8 . 44
6.18 Benchmark design variable exact solution . 45
6.19 Inverse solution for the benchmark problem . 45
6.20 Solution with CG . 46
6.21 Inverse solution for the benchmark problem Hmax 0.3 . 47
6.22 Multi-Level and Single-Level methods on the benchmark problem with low regularization pa-

rameter for the finest level of α= 1e −10 . 47
6.23 Cost function vs the amount of PDE’s solve in the Hessian, comparison between the Single-Level

and the Multi-Level for the 2D Benchmark Problem . 48
6.24 Limitations of the Multi-Level method . 48

List of Tables

3.1 Optimization stopping criteria . 14
3.2 Trust Region parameters . 14

4.1 1D problem parameters . 16
4.2 2D problem parameters . 18
4.3 Gradient and Hessian cost table . 27

6.1 Hessian approximation using BFGS and Finite Difference methods 46

xi

1
Introduction

The flow of fluid in porous media arises in different fields of science, such as flow in the subsurface, flow
of blood in veins. To be able to model the physical phenomena of fluid flow in the subsurface, one needs
to be able to understand several characteristics of the subsurface and the fluid. One of the characteristics
of the subsurface is permeability. Measuring the permeability is complicated because the subsurface is not
reachable. In the best case, the subsurface is reached on limited locations one would like to investigate.

Modeling of oil flow in the subsurface is a crucial aspect of the oil and gas industry. Accurate modeling
will allow the engineer to decide on the right spots to place the well, what kind of surface facilities is needed,
what are the economic circumstances and the projection of the expected production. Therefore one needs to
understand the reservoir characteristics and among them the permeability.

Mainly, the estimation of the subsurface permeability is being done by taking core samples while drilling
the wells. In the laboratory, the rock properties will be estimated. Using the rock properties and different cor-
relations, the permeability can be approximated. The calculated permeability is valid for the location of the
wells. Then the permeability field can be interpolated/extrapolated to different areas of the field. The main
methods used to do the interpolations are geostatistical methods such as kriging, object-based modeling, etc.
The disadvantage of using these procedures is the large uncertainty that is involved in each of the processes.
Starting from the seismic acquisition and finishing in the different geostatistical methods. Although disad-
vantages exist, the petroleum industry works with these methods and manage to reduce the uncertainty to
produce oil and gas economically.

Inverse problems arise when one tries to estimate a parameter that is unreachable using measurements
and observations of a process that was caused by the existence of these parameters. The formal studies of the
mathematical theory of inverse problems started in the 20th century. Since then, they are widely investigated
due to the significant importance of these methods to science. Among the application of inverse problems are
Medical Imaging, Acoustics, Remote sensing, Astronomy, Geosciences, etc. Using inverse problem methods,
one can estimate the permeability of the subsurface.

The current research will try to extend the known methods of inverse problems with the use of the Newton
Trust Region method to do the optimization and will include the Multi-Level approach to reach more accurate
and faster results. The use of MultiLevel methods will help solve the implications of the large scale problems
that arise in the inverse problem. Those problems are formulated to a non-linear least squares problem,
which is governed by non-linear behavior due to the elliptic equations that govern the permeability field.

The research will use the Julia programming language to emphasize the capabilities and benefits of using
it in the geosciences computation applications.

Inverse problem for elliptic equations is described at [19], [9], where a basic 1D examples are being il-
lustrated including guidelines to solve this kind of inverse problems. The FEM to help one discretize PDE’s
is described by the work of [18]. Regularization is a key to solve the illposedness of Inverse problems and is
described at the work of [2], [10], [19], [9]. The inverse problem parameter estimation can be stated as a least
squares problem which is described at [12], [3]. Numerical Optimization and the Newton with Trust Region
method are described at [4],[15]. Multi-Level appraoches help reduce computation and yet stay robust and
similar ideas are introduced in [5],[14],[17]. The use of Julia and applications is described at [1], [6], [13]

In chapter 1, an introduction to the topic is mentioned. In Chapter 2, the parameter identification prob-
lem will be introduced, including the methods used these days by the oil and gas industry to estimate the

1

2 1. Introduction

subsurface permeability and what will be the benchmark problem that is tested in this thesis. Chapter 3 will
explain the concepts used in the scope of this thesis from numerical mathematics. Chapter 4 describes how
the parameter estimation was done, including stating the problem. Chapter 5, presents state of the art Multi-
Level method and algorithm, chapter 6 shows the results and analysis reached during the work of this thesis.
Chapter 7 will conclude the work of this thesis, primary findings, and future work on the topic.

2
Parameter Estimation

Parameter estimation problems arise when one conducts an experiment. In the experiment, the source and
outputs can be captured. The problem arises when one would like to know what type of parameters causes
the process. Parameter estimation problems arise in many physical problems such as Tomography, Radar,
Acoustics, Petroleum engineering, etc. For example, in Tomography applications, one tries to estimate the
shape of the human body internals without doing any penetration. In Geosciences, one would like to know
what are the characteristics and structure of the subsurface where the limitation is that the subsurface can be
reached only for limited locations.

Different methods are used to estimate the various parameters of the subsurface. The main methods are
by Remote Sensing and Seismic acquisition.

Parameter estimation is important to any forward modeling being done. When one wants to calculate
the flow of oil in the subsurface, a permeability field is needed. The simulation results are sensitive to the
permeability map. In fig. 2.1 the difference in the permeability field has a different affect on the oil saturation
and pressure fields of the simulation.

Figure 2.1: To the left there are two different permeabilty fields and to the right is each
permeability field affect on the oil flow in the reservoir

The parameter estimation methods allow one to link physical phenomena to the data using equations
that describe the process. An example of parameter estimation in geophysics is when one would like to learn
the structure of the subsurface. Drilling a well in the subsurface is very expensive and therefore is done only
on limited locations. A solution to this problem can not be reached without using parameter estimation

3

4 2. Parameter Estimation

methods that allow the user not to penetrate the area of investigation. The existing methods to estimate the
permeability field are as follows: Using seismic acquisition to build the structure of the subsurface. From
the cores taken from the wells, a relationship between the porosity and permeability is derived. In parallel
using the well logs, a geological model is built. Using geostatistical tools, the porosity is interpolated and
extrapolated to the whole extent of the field. Then to conclude, the porosity - permeability correlation is used
to create a permeability map of the field.

For example some methods used in geostatistics as in [11], [16] are:
Object-Based modeling (OBM) is a stochastic method that allows the creation of realistic geological objects
inside the reservoir model. It uses the outcrop analogies to build the necessary objects. The main rule that
leads to object-based modeling is erosion rules. Older strata are in greater depth than younger strata. One
will also use different geological concepts such as the same object can’t intersect the same object. The user
will determine the shapes of the objects. Each object is modeled by a function that allows its creation. The
model can be worked in different scales so different objects can be introduced in the same model. The OBM
will take into consideration seismic, well, production, and interpretation information. For example salt bod-
ies that were seen in the seismic will be an input for the model. In that case, the fluvial object will not be
modeled in the same location as the salt body.
Sequential Indicator Simulation (SIS) using Ordinary Kriging, one can get the best linear unbiased estimate
where one gets a minimum variance. Nevertheless, the Ordinary Kriging estimation has no randomness ele-
ment, and therefore for each simulation, the result of the estimation will be the same. On the other hand, the
subsurface includes a lot of uncertainty. This uncertainty can be modeled using different sequential simula-
tions, which involves random processes for building the estimated grid. A setback for this approach is that
this kind of procedure will have to run for a long time since it involves a lot of mathematical operations.
Kriging methods allows one to get the best unbiased with minimum variance interpolator. The kriging
method creates weight for each point of data and then interpolates for different regions. Different kriging
methods exist, and each has its benefits. The kriging can be used in the gaussian simulation to create a more
random behavior to the interpolation.

An illustration of the different sources used to build the permeability field are in Fig. 2.2, an example for
the permeability results coming from that sources is presented in fig. 2.3.

(a) Seismic data the shows the structure of the sub-
surface. The seismic also includes the drilled wells

(b) A geological model example

Figure 2.2: Different sources are combined in order to get a permeabilty field

As part of this thesis, to reduce the uncertainty that exists in the used methods, a different approach is
used. The flow equations will represent the process of fluid flow in the subsurface. The flow occurs due to
changes in pressures between the reservoir and the subsurface. The study will try to understand the structure
of the reservoir and the permeability field in it using an Inverse problem technique. When one tries to solve
the non-linear inverse problem, a lot of difficulties arise. One significant obstacle is the large scale of the
problem. The Mult-Level approach introduced in this work tries to solve part of this difficulty.

The main limitations of the this thesis approach in solving parameter estimation problem is:

• The flow equation used for the research is a steady-state, incompressible equation which doesn’t rep-
resent many cases of oil and gas flow problems

• The methods use regularization that depends on the user. Different methods will have different solu-
tions for the solution

5

Figure 2.3: A permeabilty field which contains different objects and facies

• In what cases the Multi-Level approach fails is not clear

• Non-linear SVD analysis doesn’t exist yet. The analysis can give a lot of information about the type of
the regularization needed

The final problem to be solved as part of this thesis is described below. The problem comes as an example
as in [8], where two bodies exist in the subsurface. One with very high permeability (can be, a lobe of sand).
The second with a minor increase in permeability.

(a) Permeability field (b) Permeability field in a log scale

Figure 2.4: A field with constant permeability which includes two objects. One has a very
high permeability and the other has a slightly higher permeability compared to the perme-
ability of the filed

3
Concepts from Numerical Mathematics

3.1. Introduction
In this chapter, the Theoretical concepts of the Finite Element Method (FEM) for solving the elliptic equation
are introduced. The weak formulation and spatial discretization used in this thesis will be presented, as well.
The basis function used for the FEM will be piece-wise linear. Later, the Quadratic Newton and Newton Trust
Region methods for solving optimization problems are explained. This thesis consists of a comparison of the
two methods.

The notations used in the chapters are:
∇ is the gradient operator, · is the dot operator, <,> is the dot product,Ω is the domain andΓ is the domain

boundary, ||x||2 is the Euclidean norm and is described as ||x||2 =∑n
i=1 (xi)2, Hess is the Hessian operator

3.2. Finite Element Elements for the Poisson Equation: weak form and
spatial discretization

3.2.1. Finite Element Method
Weak Form and Spatial discretization:
The Elliptic problem is described as:

−∇· (k∇u) = f

where k,u,x are function of space x.
Multiplying by a function v and integrating over the domainΩ to get:∫

Ω

(−∇· (k∇u)v dΩ=
∫
Ω

f v dΩ

v is a function of space x as well.

Discretization of the domain to node locations xi for i = 1....n.
In 1 dimension the discretization is of points on a line as in the next figure:

Figure 3.1: The nodes are denoted as xi , 0 ≤ i ≤ n. The elements are denoted as ei , 1 ≤ i ≤ n.
The boundary nodes are x0, xn .

In 2 dimensions the discretization looks like:

7

8 3. Concepts from Numerical Mathematics

Figure 3.2: The 2 dimensions discretization where ni represent the number of the node and
ei represents the element number. In this example there are 21 nodes and 28 elements

The Divergence theorem: ∫
Ω

(∇·F) =
∫
Γ

(F ·n)

Where n is the normal to the domain boundary Γ. Defining F = (k∇u)v and using the divergence theorem to
get the weak formulation: ∫

Ω

k∇u ·∇v dΩ−
∫
Γ

k
∂u

∂n
v dΓ=

∫
Ω

f v dΩ

By approximating the solution u to be a linear combination of basis functions φ j :

un(x) =
n∑

j=1
a jφ j (x)

and substituting u in the weak form to get the next equation:

n∑
j=1

(∫
Ω

k∇φ j ·∇v dΩ−
∫
Γ

k
∂φ j

∂n
v dΓ

)
a j =

∫
Ω

f v dΩ

By choosing n functions as v =φi to get:

n∑
j=1

(∫
Ω

k∇φ j ·∇φi dΩ−
∫
Γ

k
∂φ j

∂n
φi dΓ

)
a j =

∫
Ω

f φi dΩ

In our problem the boundary conditions are Dirichlet boundary conditions (and choosing: φi |Γ = 0).
Therefore: ∫

Γ

k
∂φ j

∂n
φi dΓ= 0

Discretizing the equation to get the next linear equation:

A(k)u = f

3.2. Finite Element Elements for the Poisson Equation: weak form and spatial discretization 9

Where u is the desired state solution, A is the stiffness matrix, and f is the flux density of the source vector.
To add the Dirichlet boundary condition to the discretiazation A(k) at the rows and colums of the boundary
nodes will be equal to zero, except for the nodes A(i,i) = 1, where i is in Boundary Nodes. And f(i) = 0. Where i
is in boundary nodes.
The stiffness matrix is constructed in the following manner:

[A]i , j =
∫
Ω

k∇φi ·∇φ j dΩ

Since the domain Ω =
n∑

j=1
e j where e j is the j element. And the integral can be estimated on each element

with the Quadrature method as:∫
ei

k∇φ j ·∇φi d v = ki (volei)AV (∇φ j ·∇φi)|All nodes o f element i

where k is homogeneous over the element, volei is the volume of the element ei and AV () represents the
mean function.

To conclude each entree in the stiffness matrix is discretized as the following:

[A]i , j =
nel m∑
i=1

ki (volei)AV (∇φ j ·∇φi)|All nodes o f element i

and nelm represents the number of elements.
The vector f :

[f]i =
∫
Ω

f φi

and is discretized in the same manner:

[f]i =
Nel m∑
m=1

fei (volem)(AV (φi)|All nodes o f element m)

where fei is homogeneous over the element. [18]
The basis function used in this projects are linear functions such as:

di m∑
i=1

ai xi +b = 0

and di m denotes the dimension of the problem, i.e. in 2 dimensions in space di m = 2. The basis functions
will be defined as:

φi (x j) = δi , j

Therefore:
∇φ j ·∇φi =< ai , a j >

Where ai , a j are the coefficients of the functions φi ,φ j respectively.

10 3. Concepts from Numerical Mathematics

3.2.2. One Dimensional Problem
1D Basis Functions

In one dimension the basis functions looks like: a1x1 +a2 = 0.

Figure 3.3: 1D basis functions example. The basis function φ4,φ5,φ6 has a value of 1 at the
points x4, x5, x6 respectively and zeros on the other nodes. Between the nodes the functions
are linear

3.2.3. Two Dimensional Problem
2D basis functions

In two dimension the basis functions looks like: a1x1 +a2x2 +a3 = 0.

Figure 3.4: 2D basis function examples. In green and blue are the basis function φ17,φ18
respectively. The basis function φ17,φ18 has a value of 1 at the nodes x17, x18 respectively
and zeros on the other nodes. Between the nodes the functions are linear

3.3. Non-Linear Optimization Methods for Non-Linear Inversion 11

3.3. Non-Linear Optimization Methods for Non-Linear Inversion
Optimization algorithms are meant to help one to solve a problem where the solution is difficult or unknown
but can be approximated by several techniques. These techniques are called mathematical optimization.
Each problem usually has a few algorithms that can help solve the problem. In the case of this thesis, the
least square problem nature is non-linear, and therefore the use of optimization algorithms for non-linear
problems is needed. The two methods to be used are Newton and Newton Trust Region.

3.3.1. Newton Method

The Newton Method in optimization is an iteration solver for a non-linear optimization problem. The idea
of the newton method in calculus is to find the roots of an equation. In optimization, we apply the calculus
Newton method to find the roots of the derivative of the function of the stationary points of the function,
which are the maximum (max) and minimum (min) of the function. Newton method is a local method that
will find a local min/max but not the global min and max. The global min or max are the smallest and biggest
values of the function over the space the function is defined on. The advantage of the method is that if the
method converges, it can converge very fast. The setbacks of the Newton method is that it will not promise a
convergence if the initial guess is far from the min/max point. The globalized Newton method can help solve
this issue and is discussed at 3.3.2.
The Newton Method is described by the next algorithm: Starting at initial guess k0 and looking at the quadratic

approximation for the cost function f (k): m(r) = f (k + r) = f (k)+ r T ∇ f |k + r T

2! Hess(f)|k r one would like to
minimize m(r). Therefore to find a minimum one takes a derivative with respect to r and gets the next step
of the Newton iteration loop: 0 =∇ f |k +Hess(f)|k r −→ r =−[Hess(f)|k]−1∇ f |k . Describing r = kν+1 −kν one
finally gets: kν+1 = kν+ r . By choosing a stopping criteria one can stop the Newton loop.

12 3. Concepts from Numerical Mathematics

The Newton Algorithem is:

Quadratic ap-
proximation to

the function:
m(r) = f (kν+ r) =
f (kν)+ r T ∇ f |kν +

r T

2! Hess(f)|kνr

Derivative with
respect to r : dm

dr =
∇ f |kν +Hess(f)|kνr

Find extremum
points dm

dr = 0 −→ r =
−[Hess(f)|kν]−1∇ f |kν

r T Hess(f)r >= 0

r T ∇ f < 0r T ∇ f > 0

r = rr =−r

kν+1 = kν + r

Check if convergence criteria are met

Done. use k = kν+1

Iterate the Newton
method. ν+=1

yes

yes

yes
no

no

yes
no

No

3.3. Non-Linear Optimization Methods for Non-Linear Inversion 13

3.3.2. Newton with Trust Region Method

The Trust Region algorithm aims to guarantee convergence of the optimization problem. Therefore it is some-
times called a global convergence method. It is essential to notice that the name global convergence can be
confusing since the technique will not find definitely the global max/min of the problem, but it will find a
max/min for sure. This is why the Newon with Trust Region method got the name of a global solver.

The Trust Region method is an iterative solver as the Newton solver. The difference is in the way one
chooses the next step of the iteration and also a constraint to the minimization problem.

In the Trust Region method, the function is being approximated (in this thesis by a quadratic approx-
imation). Then an optimization for the sub-problem will be solved inside the region. The solution to the
optimization will be used to check how good was the approximation of the function compared to the objec-
tive function. If the estimate is good, the region will be increased, and a new optimization problem will be
solved in the new region. The point where the function was approximated will be the new point found from
the last step.
The Trust Region problem is:

minimize
r

m(r) = f (k)+ r T ∇ f |k +
r T

2!
Hess(f)|k r

subject to ‖r‖ ≤∆
(3.1)

A way to solve the minimization problem (3.1) can be found in [15]. This approach to solving the mini-
mization problem is also implemented in the Julia package Optim.jl as explained in 6.3.

After finding r we can evaluate the next expression:

ρν = f (kν)− f (kν+ rν)

mν(0)−mν(rν)

This expression gives the ratio that shows how good is the quadratic approximation to the objective func-
tion. The nominator will be called the actual reduction, and the denominator is the predicted reduction. If
the ratio ρν ≈ 1, the model is a good representation for the objective function, and one should increase the
Trust Region. If the ratio ρν ≈ 0, it means the model is not a good representation. Notice, the denominator is
positive since one minimizes the problem on a space, which includes r = 0. If ρk is negative it means that the
next step f (kν+ r > f (xν) didn’t manage to minimize the objective function. Therefore one will not accept
the step.

The Trust Region algorithm:
1. Solving a minimzation problem:

Solve the minimization problem

Update the region for next step

Update the step

14 3. Concepts from Numerical Mathematics

2. Updating the Trust Region:

ρν < η2

∆ν+1 = t1 ‖rν‖ρν < η3 and ‖rν‖ =∆ν

∆ν+1 = mi n(t2∆ν,∆max)∆ν+1 =∆ν

yesno

yesno

3. Updating the step:

ρν ≥ η1

kν+1 = kν+ rνkν+1 = kν

yesno

Typical values for the parameters from [15] are: 0 ≤ η1 ≤ η2,η2 = 0.25,η3 = 0.75, t1 = 0.25, t2 = 2

3.3.3. Criterias for the different methods
stopping criteria

Max Iter 25
xtol 1e −6
∇tol 1e −9

Table 3.1: Optimization stopping criteria

Trust Region parameters

∆i ni t i al 1
∆max 100
η1 0.1
η2 0.25
η3 0.75

Table 3.2: Trust Region parameters

4
Parameter Estimation for the Poisson

Equation

4.1. Introduction
In this chapter, the Poisson Parameter estimation problem will be described. The Poisson problem is formu-
lated to a Non-Linear Least Square problem. Next, the Ill-posedness of the inverse problem is discussed. To
solve the Ill-Posedness, a regularization term will is used. A way to choose the regularization function and
its weight (the regularization parameter) will be explained. The adjoint method and Numerical differentia-
tion are the methods used to calculate the Gradient and Hessians. The cost of computing the Gradient and
Hessian will be presented as well.

4.2. Problem formulation
Looking at the elliptic equation:

∇· (k∇u) = f

discretizing using FEM as in 3.2.1 to get the next linear problem:

A(k)u = f

k is the design variables, u is the state variables and A is the diffusion operator:

A =−∇· (k(x)∇(·))

If one assumes that the observed data d can be described as:

d =Cu +η
C is the state to observation map such as (Cu)i = u(xi) , ∀i = 1, ...,n and n is the amount of points that u was
observed in the experiment.

One would like to find k that minimizes the next least squares minimization problem:

mi n
u∈U ,k∈K

1

2
∥Cu −d ∥2

2

adding a regulariztion term to get the minimization problem that will be solved as part of the scope of this
thesis:

mi n
u∈U ,k∈K

1

2
∥Cu −d ∥2

2 +αJ (k)

J is the regularization functional, and α is the positive regularization parameter.
Since u = A−1 f and assuming the problem in 4.2 is well posed one can denote F (k) =C A(k)−1 f to get the

next minimization problem:

mi n
k∈K

1

2
∥ F (k)−d ∥2

2 +αJ (k)

15

16 4. Parameter Estimation for the Poisson Equation

Measurements can be taken from different experiments for different sources f . Then the minimization
problem is:

mi n
u∈U ,k∈K

n∑
i=1

(1

2
∥ F (k)−d ∥2

2 +αJ (k)
)

Where n is the number of experiments. By denoting α= α
n one can write the problem as:

mi n
u∈U ,k∈K

(n∑
i=1

1

2
∥ F (k)−d ∥2

2

)
+αJ (k)

For the scope of this work, the minimization problem will be solved using the Newton and Newton with
Trust Region methods. Both methods involve the use of the Gradient and Hessian of the function. One can
sum the Gradient and Hessian of each experiment due to derivative rules. Moreover, one can add the Gradient
and Hessian of the regularization term.

4.2.1. One dimensional problem

The Elliptic problem in 1 dimension is described as:

− ∂

∂x
(k
∂u

∂x
) = f

where k,u and f are function of space x.

As a test case for the inverse problem, a comparison to the problem at [19] is conducted. The details of
the problem are listed below:

Number of x points 65
x positions equidistant between [0,1]

Number of observations 5
Location of Observations [0.1 , 0.3, 0.5 , 0.7, 0.9]

Boundary Conditions Dirichlet on edges (uΓ = 0)
Number of experiments 2

Table 4.1: 1D problem parameters

Forward model and source functions

The source function used is a Dirac delta in different locations, the locations of the nodes before x = 1
3 , 2

3 .
Each source will be used one time as an experiment. Later the two experiments will be used together to solve
the inverse problem.

4.2. Problem formulation 17

Figure 4.1: The sources of the two experiments. The sources are located at x = 1
3 , 2

3 for the
two experiments respectively. Both sources are a Dirac delta which has a value of 1 at one
point grid and everywhere else are equal to zero

The design variables k values for the model will have a Symmetric Gaussian shape:

Gauss = e
−(x−c)2

2σ2

where c = 0.45,σ= 1
12 and the Design Variables are:

k =−0.2Gauss +1

Figure 4.2: The exact design variable plot has a gaussian shape

18 4. Parameter Estimation for the Poisson Equation

Discretizing the elliptic equation using FEM as in 3.2.1 and then solving u(k) = A(k)−1 f to find the state
variable forward problem values. Notice, the solution u includes the noise of the FEM solution. This noise
will later be used as the observation noise for the inverse problem. The forward model solution and the
observations taken for the inverse problem are:

Figure 4.3: Forward model and sampled data for two experiments, The circles are the ob-
servations taken from each experiment. The observations includes the noise of the FEM
solution

4.2.2. Two dimensional problem

The details of the problem are listed below:

Number of nodes 49
Number of elements 76

Number of observations 5
Boundary Conditions Dirichlet (uΓ = 0)

Number of experiments 5

Table 4.2: 2D problem parameters

The discretization and observation locations:

The sources will be located at the closest nodes to [− 1
2 ,− 1

2], [− 1
2 , 1

2], [0,0], [1
2 ,− 1

2], [1
2 , 1

2]. In each experi-
ment, there will be used one source.

4.2. Problem formulation 19

Figure 4.4: The mesh includes 49 nodes and 76 elements, the maximum distance between
two nodes is Hmax = 0.45. the observations used in each experiment are the red circles

Figure 4.5: The sources in 2D, each source represent a Dirac delta which has a value of 1
at one point grid (the source location) and everywhere else are equal to zero. Each source
correspond to one experiment

The exact solution has the shape of a ball inside a rectangle. Since the values of the design variables are
not smooth over space, it will add complexity to the problem.

As in the 1D case above, after discretizing and solving using the FEM, one gets the forward solution, which
includes the noise of the FEM. The exact solution is:

20 4. Parameter Estimation for the Poisson Equation

Figure 4.6: Exact solution for design variables where there is a circle inside a rectangle. This
will be also used as an input for the forward modeling

Figure 4.7: Forward model experiments solutions. As expected in each solution the peak is
at the location of the source term

4.3. Illposedness and Regularization
4.3.1. Well and Ill-Posed problems
Jacques Hadamard introduced the term Well Posed problem. A well-posed problem is a problem that satisfies
the next three rules:

• A solution exists

• The solution is unique

• The solution’s behavior changes continuously with the initial conditions (Or in other words the solution
is stable)

Jacques Hadamard was a mathematician among his work is the mathematical representation of physical
phenomenons.

4.3. Illposedness and Regularization 21

4.3.2. Ill-posed problem
A problem that violates any of the terms to be well-posed is an Ill-posed Problem.

Most inverse problems are Ill-posed. Among them are also the least-squares of the elliptic inverse equa-
tion. The reason the equation is Ill-posed is that it violates the rules of well-posedness.

• Existence - In some cases where we have a measurement error, a solution might not exist.

• Uniqueness - The solution is not unique as there could be more than one solution in locations where
we do not have a measurement

• Stability - Small changes in the observation can cause a big change in the inverse solution due to mea-
surements error

Solving the Ill-posedness intuition from linear Problems:

• Existence - instead of solving: Ax = b to find x one solves m
x

i n
∥∥(

Ax
)− (

b
)∥∥

2 Now a solution will exist.

• Uniqueness & Stability - adding a regularization term, which causes the problem to become slightly
different. The new problem will be unique and stable. The regularization term will force one solution
to the problem also in locations where measurements do not exist. Moreover, the regularization term
will smooth the solution and remove the noise that causes the problem to be unstable.

Motivation from Linear Problems to explain how the regularization solves the stability issue:
Looking at the problem:

Ax = b

where A is known, x us the state variable solution one would like to find, and b are the measurements.
Using Singular Value Decomposition for the matrix A will lead to the next analysis:

A =UΣV T =
n∑

i=1
uiσi vT

i

where U is an m ×m unitary matrix , V is an n ×n unitary matrix. Σ is a diagonal m ×n matrix with
non-negative real numbers (σi - the singular values) on the diagonal.

Looking at the inverse problem x = A−1b and combining the SVD analysis one gets:

x = A−1b =
n∑

i=1

uT
i b

σi
vi

b can be written as the real value of the measurement while adding the noise. Therefore:

b = b +e

where e is the noise. In that case one can write the problem as:

x =
n∑

i=1

uT
i b

σi
vi +

uT
i e

σi
vi

Which means that if uT
i b does not decay faster to zero, then σi the error will be much more dominant for

smaller σi and convergence will not be reached to the desired solution. [9]
Smoothing norms:
A smoothing norm can act as the regularization term one would like to add to his problem to solve the

stability and uniqueness conditions.
A smoothing norm can be chosen based on the problem that one is trying to solve. The weighted Sobolov

norm is:

S(k) =
n∑

i=0
αi ||(k(i))||22

Where the norm is the L2 norm and k(i) is the i-th derivative of k, i.e. k(2) is the second derivative of k.
The smoothing norm will be minimum if the curve represents the order of the problem, which means,

for example, that in the second-order smoothing norm, the minimum of the function is presented by using a
quadrature approximation to the problem at the points where there are no measurements.

The regularization term chosen for this thesis is the first order norm S(k) = ||(k(1))||22 which is a first order
smoothing norm.

22 4. Parameter Estimation for the Poisson Equation

4.3.3. Tikhonov Regularization
Tikhonov has offered a way to solve the Ill-posedness of a problem by adding a regularization term. The
regularization term is another constraint to the problem. The regularization will have a weight as well, which
will be called the regularization parameter.

If one looks at the linear problem introduced in 4.3.2, the new problem to be solved is:

m
x

i n

∥∥∥∥(
A
αL

)
x −

(
b
0

)∥∥∥∥2

2
= m

x
i n ‖Ax −b‖2

2 +α‖Lx‖2
2

since: ∥∥∥∥(
y
z

)∥∥∥∥2

2
=

(
y
z

)T (
y
z

)
= yT y + zT z = ∥∥y

∥∥2
2 +‖z‖2

2

Doing so added a constraint for the minimization problem, which is: αLx = 0, L is the smoothing norm.
Looking at the representation of the equations as described by Hansen [9]:(

A
αL

)
=

(
b
0

)
⇒

(
A
αL

)T (
A
αL

)
=

(
A
αL

)T (
b
0

)
⇒ x = (AT A+α2LLT)−1 AT b

In the last formulation and by using SVD formulation [9] and assume for the example that L = I which is
zero order smoothing. :

x =V (Σ2 +α2I)−1ΣU T b

Therefore the inverse part of the equation has higher singular values due to the addition of α2I , which
will help to solve the issue of lower singular values that make the noise not controllable.

In the scope of this thesis to try and do a parameter identification one solves:

m
x

i n

∥∥∥∥(
C A(k)−1 f

αLk

)
−

(
d
0

)∥∥∥∥= m
x

i n
∥∥C A(k)−1 f

∥∥2
2 +α‖Lk ‖2

2

By solving the problem above, one tries to find a balance between the first term that measures if one has
a good fit to the model and the second term that measures how regularized is the solution.

4.3.4. Regularization functional
The regularization functional J will be chosen to be:

J = 1

2
|| d

d x
k||2 = 1

2
kT Lk

where k is the design variables one wants to find, d
d x is the forward difference with homogenous boundary

conditions operator and L is the discrete Laplacian matrix with Neumann boundary conditions.
The matrix L is coming from the form:

|| d

d x
k||2 =< d

d x
k,

d

d x
k >=< k,

d

d x

T d

d x
k >=< k,Lk >

Where L = d
d x

T d
d x . The matrix L is the Laplacian matrix which is the discrete form to the next continues

problem:
−∇·∇u = f

The problem is discretized to:
Lu = f

where L is the Negetive Laplacian matrix, u is the solution vector and f is the source.
The Gradient of the regularization functional is: Lk. The Hessian of the regularization functional is sim-

ply: L. α the regularization parameter will be chosen based on the L curve method at 4.3.5
An example from the 1D case is for a regularization functional that represents a smoothing norm of the

first order:

4.3. Illposedness and Regularization 23

d

d x
=

−1
h1

1
h1−1
h2

1
h2

. . .
. . .
−1
hn

1
hn

d

d x

T d

d x
=

−1
h1
1

h1

−1
h2

. . .
. . .
1

hn−1

−1
hn
1

hn

−1
h1

1
h1−1
h2

1
h2

. . .
. . .
−1
hn

1
hn

=

1
h2

1

−1
h2

1−1
h1

2

1
h2

1
+ 1

h2
2

−1
h2

2

. . .
. . .

. . .
−1

h2
n−1

1
h2

n−1
+ 1

h2
n

−1
h2

n−1
hn2

1
hn2

= L

4.3.5. Choosing the regularzation parameter
The L-curve method

Trying to approximate the best estimation for the inverse solution, one tries to find the most suitable
regularization parameter α. The regularization parameter is the weight given to the regularization term.

One method to choose the regularization parameter is by using the L-Curve method. The L-Curve method
tries to find a compensation between the regularization error and the perturbation error. In the linear case
of the least square problem one was trying to solve the problem Ax = b and the minimization problem with
regularization was mi n||Ax − b||2 +α||T x||2, using the L-curve method one would plot the residual vs the
regularization (log (||Ax −b||22), l og (||T x||22))

The reason the method plots the terms in a log-log plot is to be able to focus on the major changes in the
relationship between the perturbation and regularization.

The compensation between the regularization error and the perturbation error can be found by finding
the maximum curvature in the graph as described in [10]. In the fig. 4.8 one can see a typical L-curve plot
where the regularization functional T is the identity matrix.

Figure 4.8: L-curvemethod, the figure was taken fromHansen [10], The Vertical part is dom-
inated by the perturbation error and the horizontal part is dominated by the regularization
error

In the graph, one can look at the bottom right corner where the regularization parameter is the largest,
and see that the residual is constant. The regularization term tends to zero since the weight of the regular-
ization term is big enough to cause the problem to try and minimize mainly this part. In the second part,
moving with the curve to the left one can see a decrease in the regularization parameter and a reduction in
the residual while the change in the regularization term is minor compared to other changes. In this part,
one reduces the regularization and by that removing perturbations from the problem and getting closer to

24 4. Parameter Estimation for the Poisson Equation

the best approximation. In the third part (the vertical part), there is not enough reduction of the noise, and
that causes the solution to be perturbations dominant. Therefore, the best point is the point of maximum
curvature, which is a minimization of the regularization term and the residual. This point is between the
second and third parts.

The work on the L curve method for the Non-linear Least Square problem can be found in the work of [7],
where one could see that the same features of the L-curve exist in the non-linear case and are relevant as well.
Therefore, in the case of this thesis where the problem is as in 4.2 one plots: log (||Cu(k)−d ||2), log (||Lk||2)
To find the maximum curve, one can use the Triangle method.

The triangle method:
The triangle method is introduced in [2] The triangle method allows one to find the maximum curvature

of the L-curve method within a set of measurement. First, the method checks the monotonicity of the points
(norm of the residual decreases, and the norm of regularization term increases where the regularization pa-
rameter decreases). It discards any point that doesn’t satisfy these conditions. Second, The method creates
triangles between the last point measured and all sets of two other points. Then it tries to find the largest
angle on the vertex of the triangle. The largest angle, which also holds the criteria of being smaller than 7π

8 ,
will be the point of maximum curvature. The method will also check the convexity at the point of interest by
checking the orientation of the triangle using the determinant of the area.

4.4. Adjoint Equation
The adjoint derivation as in [19]. The left side of the minimization problem 4.2 is:

Jl s =
1

2
∥ F (k)−d ∥2

2

where F (k) =C A(k)−1 f . One can write the left side as:

Jl s =
1

2
< F (k)−d ,F (k)−d >

The derivative with repect to ki is descried as ∇i =< dF (k)
dki

,r >
This equation can be written as:

∇i =< d

dτ
F (k +τei)|τ−>0,r >

Now using the definition for F (k) and the fact that C , f are not dependent on ki the equation can be written
as:

∇i =<C
d

dτ
A(k +τei)−1|τ−>0 f ,r >

The calculation for the inverse of the derivative is as follows:

A A−1 = I

d A

dk
A−1 + A

d A−1

dk
= 0

d

dk
A(k)−1 =−A(k)−1 d A

dk
A(k)−1

Using the fact of the next relationship of the derivative:

d

dτ
A(k +τei)|τ=0 = d A

dk
ei

d A
dk is a tensor with size of n ×n ×kn .
d A
dk ei =

(
d A
dk

)
i

which is a matrix with the size of n ×n

Each entry of the third dimension of the tensor
(

d A
dk

)
i

is the same as d A
dki

.

4.4. Adjoint Equation 25

d A

dk
ei = d A

dki
=

d a1,1
dki

d a1,2
dki

. . .
d a1,n
dki

d a2,1
dki

d a2,2
dki

. . .
d a2,n
dki

...
...

. . .
...

d an,1
dki

d an,2
dki

. . .
d an,n

dki

from the definition of the derivative of the inverse and the definitiaiton of the derivative of the matrix A:

∇i =<−C A−1 d A

dk
ei A−1 f ,r >=< d A

dk
ei A−1 f ,−A−1∗C∗r >⇒∇i =< d A

dk
ei A−1 f ,−(A−1)T C T r >

Where the first equality comes from the inner product rules and the second equality comes from the fact that
under Rn the next equality holds: A∗ = AT . Defining the adjoint as z in the next equation:

A∗z =−C∗r

and using the discrete equation Au = f leads to the gradient:

∇i =< (
d A

dk
ei)u, z >

4.4.1. Gradient Computation
Using the additivity of the gradient:

∇=∇l s +∇r eg

By definition of the gradient:

gl s ≡
d

dτ
Jl s (k +τei)|τ=0 i = 1, ...,n

As described in 4.4 yields to:

[gl s]i =
〈

(
d A

dk
ei)u, z

〉
U

, i = 1, ...,n

z will denote the costate equation:
A∗(k)z =−C∗r (k)

and r (k) = F (k)−d .
The gradient of the regularization term is simply:

∇r eg = (Lk)

4.4.2. Hessian Computation
Using the additivity of the Hessian:

H = Hl s +Hr eg

The evaluation of the matrix-vector product can be done using finite differences. By applying the matrix
vector product to the standard basis vector ei . One gets:

H(k)ei ≈ g (k +τei)− g (k)

τ

H , g denotes the Hessian and Gradient respectively. Now the Hessian can be constructed using the next fact:

[H(k)]i , j = 〈H(k)ei ,e j 〉

The regularization functional Hessian is simply the matrix Hr eg = L

26 4. Parameter Estimation for the Poisson Equation

4.5. Numerical Differentiation
To find the Gradient and Hessian of a function one can use Numerical Differentiation. Numerical Differenti-
ation is a central difference method applied on a function. It can be described as:

f ′(x) ≈ f (x +h)− f (x −h)

2h

h can be chosen as h = ε 1
3 where ε is the machine epsilon which is around 10−16.

4.6. Adjoint Method and Numerical Differentiation
To check the validity of the adjoint method, one can compare the Adjoint method and numerical differenti-
ation to compute the Gradients. The advantage of using the Adjoint method compared to Numerical Differ-
entiation is that the Adjoint method is much less expensive. To compute the Adjoint method, one needs to
solve 1 PDE, which includes Matrix assembly, LU factorization, and inversion of the LU. And adding to that
one LU linear equation solve in order to get the adjoint. In Numerical differentiation, one needs to solve 2N
PDE’s. A one PDE solve for the cost function and 2 cost functions for each degree of freedom.

First, one can see that both methods match:

Figure 4.9: System variable for different alpha, Number of elements is 76

Second, looking at the CPU time needed to compute both methods: Numerical Differentiation takes: 2.3
- 3 minutes, where the Adjoint method takes 0.1-0.2 minutes.

4.7. Solving Non-Linear Least Squares Problem
The minimization of the Least Squares method is a criterion that helps approximate a solution to match a
function output to a set of observations. The minimization problem will find the inputs of the problem that
can cause the smallest value in the least-squares sense. The list square sense is the summation of the squared
differences between the outputs of the function and the observations.

4.8. Convergence Result 27

To solve the Least Squares minimization problem, one can use different non-linear optimization methods
during the scope of this thesis, two methods will be used. The first is the Newton method, and the second is
the Newton with Trust Region method.

4.7.1. Cost of computation
The computation effort needed to compute the cost function is a 1 PDE solve for each source. After com-
puting the cost function, the gradient can come for free since the residual is already calculated in the cost
function calculation, and the adjoint can be computed in a much easier manner when using the matrix fac-
torization for the stiffness matrix used in the cost function computation. Hessian computation has two parts.
The first one is by using the gradient that was already computed. The second part is the calculation of gradi-
ent in each degree of freedom. The cost of computation is mentioned in tab. 4.3

1LU 1 LU Factorization
1M atr i x assembl y 1 FEM matrix asembly

1LU l i near equati on sol ve 1 LU linear equation solve
1PDE Sol ve 1LU +1M atr i x assembl y +1LU l i near equati on sol ve

1Ad j oi nt 1LU l i near equati on sol ve

N∇ Number of degrees of freedom
Nexper i ment s Number of experiments

Cost 1PDE Sol ve

Gr adi ent (Cost +1Ad j oi nt) ·Nexper i ment

Hessi an Gr adi ent +Nexper i ment s ·N∇ · (Gr adi ent)

Table 4.3: Gradient and Hessian cost table

4.8. Convergence Result
4.8.1. Convergence
Denoting n as the number of experiments, and assume one collects the next measurements:

dn = F (ktr ue)+ηn

Where d is the measurement, F (k) s the true value and η is the noise. Assuming that the noise ||η|| = δn and
converge to zero as n −→∞. By assuming the next three assumptions one can achieve convergence:

αn −→ 0 as n −→∞

δ2
n

αn
−→ 0 as n −→∞

F (k) 6= F (ktr ue), whenever : k 6= ktr ue

A proof can be found at [19]. For the scope of this thesis, the last criteria will not be met since measure-
ments will not be taken at all grid locations. Therefore, the exact solution using an inverse problem is not
expected to be reached.

5
Multi-Level Method

5.1. Introduction

5.1.1. The Multi-Level approach

The Multi-Level approach helps to reach a faster convergence yet accurate results compared to the methods
described in 4, where a single-level method is described. The Multi-Level approach is an iterative optimiza-
tion solver where, for each level, the design variables space changes from coarse to fine. The state variables
stay at the finest scale for all iterations. The reduction of degrees of freedom of the design variable has a pos-
itive effect on the direction the optimizer "is going" while looking for a solution and forces less computation
as well. The Multi-Level gives a faster yet reliable approach to solve the Poisson equation.

The calculation of the cost and gradient functions include solving a partial differential equation in the
state variable space. Therefore, on each level, a projection of the design variables is made to the state variable
space. While moving between the different levels, the fining of the design variables space is being done by
bisecting the grid of design variables. For example, in the one dimension in the state space problem, each
element is bisected at the center to two elements.

5.1.2. Why is it faster

The multi-level approach is faster due to two main reasons. First, while iterating the reduction of the degrees
of freedom allows the solution on the coarse level to have similar shape of the real solution and to highlight
the important difference in the different grid cells, later when fining the level a solution can be reached in an
easier manner since the initial guess from the last level includes some information of the important features
in the solution. Second, it involves fewer degrees of freedom when computing the gradient and especially
when computing the Hessian, where the number of degrees of freedom can cause a very high computation
need.

29

30 5. Multi-Level Method

5.2. The Multi-Level Algorithm
Level = i ; Number
of design variables

= ni , Number of
state and adjoint

variables = Nnodes

Calculate the dis-
crete Laplacian ma-
trix with size ni ×ni

Calculate the derivative
of the matrix A. d A

dk with
size Nnodes ×Nnodes ×ni

I ter ati on = j ;
The Projection:

calculate the
design variables
values on each

element, see 5.4

Calculate the
Cost, Gradient

and Hessian
function with

sizes: [1], [ni], [ni ×
ni] respectively

Do the optimiza-
tion as in 3.3.2 and
get a new value for
the design variable

Check if the
optimization
convergence
criteria met

Check if the
design variables

are on the
finest level

Iterate the
MultiLevel

method.
i+=1. Do

the bisection
as in 5.3

Iterate the
optimization
algorithem

j+=1

Process is done

No

Yes

No

Yes

5.3. The Bisection: 31

5.3. The Bisection:
The Bisection is the method of moving between the different levels while iterating in the algorithm. The main
idea is that when fining between the levels, the new center of the element gets the value of the design variable,
it used to be inside in the coarser level.

5.3.1. 1D in space
Figure 5.3 shows how, on each level, the number of design variables is multiplied by two, and each design
variable is cut to two at the center of the design variable line. The value of the design variables carries on
when bisecting. For example, when moving from the coarse level to the medium level, one can see how k1 in
the medium-scale will be at the same locations of earlier k1 in the coarse scale.

Figure 5.1: Bisection in the 1D state space for 3 different levels

5.3.2. 2D in space
Figure 5.2 shows how, on each level, the number of design variables is multiplied by four, and each design
variable is divided into four equal-area squares. The value of the design variables carries on when bisecting.
For example, when moving from the coarse level to the medium level one can see how k1 in the left top corner
is projected to the medium-scale at the same locations of the coarse-scale (i.e. in the medium-scale it is the 4
top left squares)

Figure 5.2: Bisection in the 2D state space for 3 levels

32 5. Multi-Level Method

5.4. The Projection Prolongation operator:

The projection is needed in order to be able and solve the elliptic PDE on the state variable space. The idea
is to project the design variables values to each element in the state space. The Projection checks what is
the center of each triangular element in the state space, check where this center will be located in the design
variable space and assign that design variable value to the state space element.

5.4.1. 1D in space

Figure 5.3 illustrates 1D in space case. The grids are different for the state and design spaces. The space grid is
at the finest level. 3 levels are described for the design variables where the Coarse, Medium, Fine levels have
4, 8, 16 design variables, respectively. The value of each design variable is described as ki . The elements in
the space grid are described as ei . The projection of the design variables ki on the state variables in space is
described as well where one can see that for example at the Coarsest level elements e1,e2,e3,e4 will have a
design variable value of k1.

Figure 5.3: Projection of design variable mesh to the state variable mesh in the 1D state
space

5.4.2. 2D in space

Figure 5.4 illustrates 2D in space case. The grids are different for the state and design spaces. The state grid is
at the finest level. Three levels are described for the design variables where the Coarse, Medium, Fine levels
have 4, 16, 64 design variables, respectively. The value of each design variable is described as ki . The elements
in the space grid are described as ei . The projection of the design variables ki on the state variables in space
is made by taking the center of the triangular element and checking inside which design variable square it is.
Then the value of ki will be equal for the whole element.

5.4. The Projection Prolongation operator: 33

Figure 5.4: Projection of design variable mesh to the state variable mesh in the 1D state
space

6
Numerical Results for the Poisson Equation

6.1. Introduction
Julia language is a high-level programming language that was launched in 2012. Julia was designed for high-
performance computation in science applications. Julia is an open-source, free language. Julia allows the user
to write the code easily but still allows an efficient code. Further, Julia supports different options for the use
of libraries, packages, and functions from other programming languages such as C, Fortran, Phyton, Matlab,
etc. Julia compiler is doing the compilation just-in-time, which allows the software to compile while running
the program. Parallelization is a major advantage in Julia, which allows different methods of parallelization,
including parallelization from the command line.

6.2. Julia as a programming language
Julia language is a high-level programming language that was launched
in 2012. Julia was designed for high-performance computation in science
applications. Julia is an open-source, free language. Julia allows the user
to write the code easily but still allows an efficient code. Further, Julia
supports different options for the use of libraries, packages, and functions
from other programming languages such as C, Fortran, Phyton, Matlab,
etc. Julia compiler is doing the compilation just-in-time, which allows
the software to compile while running the program. Parallelization is a
major advantage in Julia, which allows different methods of paralleliza-
tion, including parallelization from the command line. Multiple dispatch is a key point in the programming
paradigm of Julia. Multiple dispatches allow a function or method to be called, and while the program runs,
it can dynamically decide what process of the function to run based on attributes of the argument [1]. Julia
includes a built-in package manager that includes over 2400 registered Julia packages. The packages allow
the user to save time and the user doesn’t need to program all from scratch.

6.3. Implementation in Julia
During the work of this thesis, the code was implemented using the Julia language. The main packages used
are JuliaFEM, Optim, LinearAlgebra, MATLAB, SparseArrays and DelimitedFiles.

• JuliaFEM - to calculate finite element models [6]. The JuliaFEM allows the user to create a PDE problem
with the type of his choice. Then the user creates the elements as wishes with the desired parameters
in each element. Such as geometry, conductivity(/permeability), flux, boundary conditions, etc. The
last step is to assemble the matrixes which JuliaFEM has a built-in function for.

• Optim - to use the Trust region Newton method algorithm [13]. The function allows the user to build
his gradient and hessian functions and to use them as part of the optimizer. Further, it enables the user
to choose between a few optimization algorithms

• MATLAB - to use built-in MATLAB functions that don’t exist in Julia such as generating unstructured
meshes.

35

36 6. Numerical Results for the Poisson Equation

• DelimitedFiles - Saving files as a tab-delimited files. It was mainly used to be able to compare cases
to Matlab functions and also to use the outputs of the problem by using some of the plotting tools
MATLAB allows

• LinearAlgebra - to use special Linear Algebra functions. Used to compute LU decomposition, eigenval-
ues, SVD, Transpose, etc.

• Sparse Arrays - Operations on sparse arrays. Used to do Linear Algebra operations in sparse arrays in
order to save computation time for the Linear Algebra algorithms

6.4. Numerical Results in 1D

6.4.1. Inversion results and comparison of the optimization methods

In figure 6.1, one can see the inversion solution of the Newton and Newton with Trust Region methods. Both
solutions match to each other. Moreover, although one solves a minimization problem, which includes the
regularization term, it still manages to reach a good approximation to the exact solution.

Figure 6.1: Comparison of the Inverse problem solution and the exact solution used to sim-
ulate the forward model. Regularization parameter used is α = 1e − 7, Norm of solutions:
||Tr ustReg i on −E xact || = 0.06044 , ||New ton −exact || = 0.06044

In figure 6.2 a comparison of the two methods for a lower regularization parameters α = 1e −9 with the
same convergence criteria. The Newton solution doesn’t manage to converge while the Newton Trust Region
converges in 13 iterations. It shows how robust is the Newton Trust Region method is. For the newton so-
lution, the lack of weight on the regularization term causes the function not to converge and actually after
some iteration to travel to incorrect solutions. In a more detailed look, one can see that at iteration number
7, the newton solution travels too far and the quadratic approximation is not good. Since the quadratic ap-
proximation is not good the Trust Region method stays constant and decreases the region. Then in iteration
number 11 the newton method travels too far and from there it cannot converge to a solution that meets the
cost function convergence criteria.

6.4. Numerical Results in 1D 37

Figure 6.2: Newton andNewtonTrust Region cost function comparisonwith a regularization
of α= 1e −9

Figure 6.3 the evaluation of the trust-region solution can be studied. In the figure, it can be seen that until
iteration number seven, the cost function decreases between iterations, and the region of the trust region
method is constant. This is because the approximation to the objective function is good enough by the criteria
set earlier. After iteration seven, one can see that the cost function is constant, and the region decreases. It
is because the quadratic approximation is not good enough. Therefore no step is being done to compute
a new design variable solution and with it a new cost function value. Instead, the region is decreased until
the quadratic approximation to the objective function is good enough at iteration 9. There the cost function
decreases, and the region is constant.

Figure 6.3: The different cost function value and the Newton Trust Region region are calcu-
lated for each iteration. The regularization parameter used is α= 1e −9

38 6. Numerical Results for the Poisson Equation

Figure 6.4 the evolution of the trust-region solution for the design variable k is presented. It takes 13
iterations to reach convergence using the Newton Trust Region method and the final ||er r or || = 0.1024. In
each iteration, the previous iteration solution is used as the initial guess.

Figure 6.4: The regularization parameter used is α = 1.56e −9, the different evaluations of
the design variables are presented for the different iterations

6.4.2. Regularization parameter α study
To understand better the effect of the regularization parameter, a test for different values of the regularization
parameter α was done in figure 6.5. One can see that when using a bigger value of regularization parameter
α the dominant part of the objective function is the regularization part, which causes to minimize mainly
based on the regularization criteria. The result is a constant solution to all the one-dimensional space. The
more weight applied to the regularization, the more the first derivative of the design variables as a function of
space is minimized. By trying to minimize the first derivative one tries to get dk

d x → 0. Which therefore leads
to a constant value for k(x).

Figure 6.5: Design variable for different regularization parameters α values, as the regular-
ization parameter increases the solution tends to be more constant

Figure 6.6 compares the case where all nodes are an observation point: αr eg = 0, ||er r or ||2 = 3.4778e−07.
The results are that although no regularization is applied, the results still match. It is because of all grid points

6.4. Numerical Results in 1D 39

in space include observation. That solves the uniqueness issue that comes with the inverse problem. In the
case the noise in the observation will decrease to zero a convergence can be fulfilled as in 4.8.1.

Figure 6.6: Observation at each location of the grid point helps getting closer to conver-
gence, no regularization is needed

6.4.3. L-Curve method
In fig. 6.7, the L-curve method in 1D is described. The triangle method helps to find the best regularization
parameterα. The left figure represents the raw values of the (log(residual),log(regularization)) the largest reg-
ularisation parameterα is at the bottom right of the L-Curve. At the right figure, the triangle method removes
all points that are not monotonic (decrease in α, decrease in the residual, and increase in the regularization
term). In fig. 6.7 the best regularization parameter that leads to the best compensation between the residual
and the regularization α is the one to the top left at the right subfigure.

Figure 6.7: The left figure represents the raw graph of the residual and the regularization
function for different regularization parameters α, The right figure represents the L curve
values after applying the triangle method

6.4.4. Solution using the MultiLevel approach
Figure 6.8 shows the different design variables values during the different iterations of the Multi-Level algo-
rithm. The Multi-Level allows one to get closer to the raw function quicker. As can be seen in the figure,

40 6. Numerical Results for the Poisson Equation

the important features of the graph and the general shape can be found even at the first and coarsest level.
Comparing the evolution of the solution of the Multi-Level to fig.6.4 where the Single-Level method is used
it can clearly be seen that at the Single-Level at the first iterations the raw shape of the solution isn’t reached.
In fig. 6.9 one can see the effect of the coarse level in the Multi-Level methods on the cost function. With a
limited number of degrees of freedom at the coarsest level, one doesn’t need to do a lot of computation effort
to compute the Hessian. At a certain point with enough iterations, both methods match as expected.

Figure 6.8: Mulit-Level method using Newton with Trust Region, the evolution of the design
variables during the different iterations

Figure 6.9: Cost function vs the amount of PDE’s solve in the Hessian, comparison between
the Single-Level and the Multi-Level

6.5. Numerical Results in 2D
6.5.1. 1 design variable
In this subsection, a 2D test case with 1 design variable case is presented. The design variable value is k = 3
The discretization will include 76 elements, as can be seen in figure 6.10. The optimization method used will
be the Newton Trust Region method.

6.5. Numerical Results in 2D 41

Figure 6.10: The mesh for a 2D case with sources and observations on the same locations
denoted as red circles

Figure 6.11 shows how the solution progresses starting from an initial value of ki ni t i al = 100 moving to
the left until it finishes close to k = 3. To explain the Newton quadratic approximation, one can view figures
6.12,6.13 where a quadratic approximation at a certain iteration is plotted. The green line, which represents
the quadratic approximation function, is also cut at the limit of the region that is found in the Trust Region
algorithm.

Figure 6.11: Cost function for 1 Design Variable and the iterative solution for the design
variable with each iteration denoted in red circles. The iterations start at the most right red
point k = 100

42 6. Numerical Results for the Poisson Equation

Figure 6.12: The quadratic approximation to the cost function is represented by the green
line. The line is being cut at the end of the Newton Trust Region region

Figure 6.13: A quadratic approximation to the cost function is represented by the green line.
The line is being cut at the region of the Trust Region method

6.5.2. General number of design variables

Looking at example 4.2.2 and solving it using Newton and Newton Trust Region methods where a regulariza-
tion parameter ofα= 1e−6 is used. In fig. 6.14 and fig. 6.15, a comparison of the two methods is done for the
inversion. One can see that the solutions are almost the same.

6.5. Numerical Results in 2D 43

(a) Newton with Trust Region solution (b) Newton Solution

Figure 6.14: Compare the solutions for the inverse problem for a case of al pha = 1e-6

Figure 6.15: Compare Cost Solution for the 2 methods. The results are almost the same
and graphs lie on each other

To test the difference between the methods, one can test a smaller regularization parameter α = 1e −8.
Figure 6.16 shows that until iteration number 3, the solution is the same, but at this iteration, the Newton
method step is too big, and the solution jumps much more than needed. There it gets to another local mini-
mum, and it gets stuck on the local neighborhood of a wrong minimum.

On the other hand, looking at figure: 6.17, the Trust region algorithm doesn’t increase the region after
iteration number 3, which helps the solver to stay on the right track towards the "good" valley - the smallest
minimum. After iteration 5, the cost function is constant since each step is being rejected, and the Trust-
Region algorithm decreases the region ∆max until the quadratic newton approximation is good enough to
keep iterating to convergence.

44 6. Numerical Results for the Poisson Equation

Figure 6.16: Compare Cost function for different iterations, where: α= 1e −8

Figure 6.17: Compare Cost Solution and ∆max for α= 1e −8

6.5. Numerical Results in 2D 45

6.5.3. Benchmark problem

The benchmark problem as illustrated in chapter 2 contains a permeability field with two features. One with
very high permeability (k = 300) and the second with a slightly higher permeability (k = 15) compared to the
field (k = 10). The location of sources and observations is as in 4.2.2, this time a much finer mesh will be
used. The number of nodes is 725 and the number of elements is 1368. The problem will be solved using the
Newton with Trust Region method.

(a) Benchmark problem design variables (b) Benchmark problem design variables in a log scale

Figure 6.18: Benchmark design variable exact solution

Figure 6.19 presents the solution for the case where a regularization parameter of α= 1e −8 is used. The
inverse solution manages to capture both locations of different permeabilities but it doesn’t manage to con-
verge to the very high permeability value.

(a) Inverse Solution (b) Inverse Solution in a log scale

Figure 6.19: Inverse solution for the benchmark problem

Due to the use of a fine grid the computation time increased tremendously. The big increase in the degrees
of freedom caused the Hessian computation to be very long. In order to test whether a Hessian free method
can be used, a Conjugate Gradient (CG) method [15] was tested. The Conjugate Gradient method needs only
a gradient function in order to conduct the optimization and therefore is fitted for the purpose of the test.
Figure 6.20 shows the result of the CG method. The CG method didn’t converge to the approximate solution
at all. The CG algorithm has a maximum iteration criteria of 50 iterations while using the Newton Trust Region
method a 25 maximum iteration criterion was used.

46 6. Numerical Results for the Poisson Equation

Figure 6.20: Solution with CG

Another try can be the use of Hessian approximations in order to reduce the computation time of the
Hessian. Using the BFGS algorithm one can estimate the Hessian matrix. Doing so for a small problem with 36
elements and testing based on the benchmark problem exact solution for the modeling. Doing one iteration
using the Newton Trust-Region algorithm where the Hessain is being approximated with finite difference
method. To calculate the Hessain of the second iteration two methods are used one with finite difference and
one with BFGS algorithm. The BFGS algorithm used can be found at [15]. Table 6.1 shows the differences in
the approximations and the design variable solutions using the two methods.

||HessBFGS || 0.161
||HessF D || 0.366

||HessBFGS −HessF D ||/||HessF D || 0.229
||HessBFGS −HessF D || 1.42
||k2BFGS −k2F D ||/||k2F D || 0.216

Table 6.1: Hessian approximation using BFGS and Finite Difference methods

For a case of 350 degrees of freedom, the time to compute the BFGS Hessian approximation was 4 seconds
and the time to compute the Hessian approximation with finite difference was 90 seconds. The BFGS involve
much shorter operations of computation. But, as can be seen in table 6.1 the BFGS approximation is not good
enough. This will cause one who tries to use the BFGS algorithm to need and do more iterations in order to
converge. Even then, the BFGS doesn’t guarantee the same solution as an approach that approximate the
Hessian with finite difference method.

To explain the reasoning behind the fact that for this test a finer mesh was used a coarse mesh test was
conducted. The coarse mesh had 89 nodes and 148 elements. Figure 6.21 shows the results. The results show
that in the coarse scale the solution is much more spread, it happens due to the fact that we try to minimize
the first order derivative as part of the regularization. It is much easier to create a slope of decreasing values
when a large number of degrees of freedom exist compared to a case where there is a limited number of
degrees of freedom.

6.5. Numerical Results in 2D 47

(a) Inverse Solution coarse mesh (b) Inverse Solution in a log scale coarse mesh

Figure 6.21: Inverse solution for the benchmark problem Hmax 0.3

6.5.4. Multi-Level on the Benchmark problem
In fig.6.22 one can see the Multi-Level and Single-Level solutions for the benchmark problem. The number of
iterations on levels [1,2,3,4,5] are [5,3,3,2,2] respectively. Level 6 is the finest level and will have a max iteration
stopping criteria of 30 iterations. A smaller regularization parameter of α = 1e −10 was used compared to a
larger regularization parameter as in fig. 6.19 on the finest scales. Figure 6.23 shows the difference in the
number of PDE solves that are needed between the different levels. The Multi-Level methods accelerate the
search for the solution.

(a) Benchmark solution for the single level (b) Multi-Level solution for the benchmark problem

Figure 6.22: Multi-Level and Single-Level methods on the benchmark problem with low reg-
ularization parameter for the finest level of α= 1e −10

48 6. Numerical Results for the Poisson Equation

2D cost function comparison:

Figure 6.23: Cost function vs the amount of PDE’s solve in the Hessian, comparison be-
tween the Single-Level and the Multi-Level for the 2D Benchmark Problem

Multi-Level limitations: One of the Multi-Level method limitations is presented in fig. 6.24. In the figure,
the Multi-Level solution converged to a coarse level solution. The reason for this behavior is the fact that too
many iterations where made on the coarser levels. Thererfore, the Trust-Region minimizer found a neighbor-
hood of a solution which makes the cost function to decrease when moving to finer levels but still is not the
minimizer that one would look for when solving this type of a problem.

(a) The benchmark exact solution (b) Limitation of the Multi-Level

Figure 6.24: Limitations of the Multi-Level method

7
Conclusion

This thesis introduces the use of Multi-Level approaches in a combination of mesh decoupling to solve pa-
rameter estimation problems. Parameter estimation methods are large and costly to solve. The Multi-Level
method allows one to reduce the degrees of freedom while searching for the solution and yet stay robust. The
use of Multi-Level and upscaling methods are introduced in Moraes et al. [14] and in Echeverria et al. [5], this
thesis illustrates the robustness of upscaling in the design variable space. Further, this thesis demonstrates
the use of inversion to find the reservoir characteristics. The method should be used to reduce uncertainty in
subsurface characterization. The Optimization uses the Newton Trust Region algorithm as a robust optimizer
for this type of problem, as described by Toint et al. [17]. The thesis tests the assumptions by an example in
one dimension taken from Vogel [19]. To test a more realistic case of geology and subsurface problems, a
similar example to Haber [8] is used for the two-dimension case. In this example, the reservoir characteristics
have a large variance to illustrate different geological bodies as part of the problem.

The conclusions from this study are:

• Multi-Level method allows one to reduce computation cost and still stay robust. While using the Multi-
Level, the degrees of freedom of the problem is reduced. This allows the search to focus on the most
important features in each coarse cell. While moving between the levels, the initial guess is closer to
the real solution since it already includes the main components of the solution

• The Multi-Level method should be used carefully. One has to use a limited amount of iterations on
a coarser level in order to converge to the desired minimum and not to converge to the coarser level
minimum

• Non-Linear Least Square inversion to find the reservoir parameters is useful. The methods help identify
the different bodies and differences in the bodies that lie in the subsurface. There is a lack of theoretical
results regarding that type of non-linear problems. Yet, the numerical results show that the method
helps remove uncertainty regarding parameter estimation

• Refining the mesh is a crucial part of being able to get a more accurate result and remove part of the
sensitivity that comes from the use of the regularization. If the grid is not fine enough, the smoothing
norm will smooth the variations in a large area instead of with a small area that includes many design
variables

• Finding the best regularization parameter α is a costly operation. To reduce the cost, a search for the
regularization parameter should be conducted on a coarse scale. As a rule of thumb, the parameter will
be lower for finer meshes. The triangle method [2] is a convenient tool to find the biggest curvature in
the L-Curve method

• The Trust Region algorithm is robust. It allows one to choose smaller regularization parameters and yet
converge to the desired solution. The cost of using the Trust Region algorithm is negligible compared
to the cost of computing the Hessian. Where the Hessian needs to be computed for the Newton and the
Newton with Trust-Region methods

49

50 7. Conclusion

• Hessian approximation computation is needed to find the right solution. The curvature of the objective
function is important in the search procedure of the optimization algorithm. The study on the use of
the Conjugate Gradient, which is a Hessian free method, illustrated that point

• Julia language is a strong tool to write efficient code in speed while minimizing the development time of
the code. Julia offers a wide range of packages that save a crucial amount of time. Julia is recommended
to use in any computational science environment

Recommendation:

• Multi-Level methods should be further investigated and tested with adding adapted parameters to the
inversion while iterating. Those parameters can be the selection of the region for the trust region, an
adaptive mesh refinement in a location with large variations, and regularization parameter selection
for the different levels

• Study on methods that try to avoid the limitation that comes from a Mulit-Level method when too
many iterations are used on the coarser levels

• The use of finite differences to compute the Hessian is expensive. Hessian approximation should be
studied in more detailed to reduce the cost of the Hessian approximation.

• The Inversion can be extended to more realistic problems such as transport equations. Moreover, One
can add restrictions to the minimization problem by taking into account data found from the well cores.
Doing so will help the algorithm to reach more accurate solutions

• Julia’s use can be extended. New features such as parallelization and cloud computation can be useful
in order to reduce the computing time of the costly inverse problem

Bibliography

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98, 2017.

[2] J Longina Castellanos, Susana Gómez, and Valia Guerra. The triangle method for finding the corner of
the l-curve. Applied Numerical Mathematics, 43(4):359–373, 2002.

[3] Guy Chavent. Nonlinear least squares for inverse problems: theoretical foundations and step-by-step
guide for applications. Springer Science & Business Media, 2010.

[4] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1. Siam, 2000.

[5] D Echeverría and PW Hemker. Manifold mapping: a two-level optimization technique. Computing and
Visualization in Science, 11(4-6):193–206, 2008.

[6] Tero Frondelius and Jukka Aho. JuliaFEM - open source solver for both industrial and academia
usage. Rakenteiden Mekaniikka, 50(3):229–233, 2017. doi: 10.23998/rm.64224. URL https://

rakenteidenmekaniikka.journal.fi/article/view/64224.

[7] Mårten Gulliksson and Per Wedin. Using the nonlinear l-curve and its dual. 09 1998.

[8] Eldad Haber. Computational methods in geophysical electromagnetics, volume 1. SIAM, 2014.

[9] P. Hansen. Discrete Inverse Problems. Society for Industrial and Applied Mathematics, 2010. doi: 10.
1137/1.9780898718836. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898718836.

[10] Per Christian Hansen. The L-Curve and Its Use in the Numerical Treatment of Inverse Problems, volume 4,
pages 119–142. 01 2001.

[11] J. Jensen, L.W. Lake, P.W.M. Corbett, and D. Goggin. Statistics for Petroleum Engineers and Geoscientists.
Handbook of Petroleum Explorat. Elsevier Science, 2000. ISBN 9780444505521. URL https://books.

google.nl/books?id=mHF_peTBFBIC.

[12] Charles L Lawson and Richard J Hanson. Solving least squares problems, volume 15. Siam, 1995.

[13] Patrick Kofod Mogensen and Asbjørn Nilsen Riseth. Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24):615, 2018. doi: 10.21105/joss.00615.

[14] R Moraes, Hadi Hajibeygi, and Jan Dirk Jansen. A multiscale method for data assimilation. In ECMOR
XVI-16th European Conference on the Mathematics of Oil Recovery, 2018.

[15] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and Financial
Engineering. Springer New York, 2006. ISBN 9780387400655. URL https://books.google.nl/books?
id=VbHYoSyelFcC.

[16] M.J. Pyrcz and C.V. Deutsch. Geostatistical Reservoir Modeling. OUP USA, 2014. ISBN 9780199731442.
URL https://books.google.nl/books?id=wNhBAgAAQBAJ.

[17] Ph Toint, Serge Gratton, Annick Sartenaer, and Philippe Toint. Numerical experience with a recursive
trust-region method for multilevel nonlinear optimization. 07 2006.

[18] JJIM van Kan, A Segal, and FJ Vermolen. Numerical methods in scientific computing. VSSD, 2005. ISBN
90-71301-50-8.

[19] C. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathe-
matics, 2002. doi: 10.1137/1.9780898717570. URL https://epubs.siam.org/doi/abs/10.1137/1.

9780898717570.

51

https://rakenteidenmekaniikka.journal.fi/article/view/64224
https://rakenteidenmekaniikka.journal.fi/article/view/64224
https://epubs.siam.org/doi/abs/10.1137/1.9780898718836
https://books.google.nl/books?id=mHF_peTBFBIC
https://books.google.nl/books?id=mHF_peTBFBIC
https://books.google.nl/books?id=VbHYoSyelFcC
https://books.google.nl/books?id=VbHYoSyelFcC
https://books.google.nl/books?id=wNhBAgAAQBAJ
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570

	List of Figures
	List of Tables
	Introduction
	Parameter Estimation
	Concepts from Numerical Mathematics
	Introduction
	Finite Element Elements for the Poisson Equation: weak form and spatial discretization
	Finite Element Method
	One Dimensional Problem
	Two Dimensional Problem

	Non-Linear Optimization Methods for Non-Linear Inversion
	Newton Method
	Newton with Trust Region Method
	Criterias for the different methods

	Parameter Estimation for the Poisson Equation
	Introduction
	Problem formulation
	One dimensional problem
	Two dimensional problem

	Illposedness and Regularization
	Well and Ill-Posed problems
	Ill-posed problem
	Tikhonov Regularization
	Regularization functional
	Choosing the regularzation parameter

	Adjoint Equation
	Gradient Computation
	Hessian Computation

	Numerical Differentiation
	Adjoint Method and Numerical Differentiation
	Solving Non-Linear Least Squares Problem
	Cost of computation

	Convergence Result
	Convergence

	Multi-Level Method
	Introduction
	The Multi-Level approach
	Why is it faster

	The Multi-Level Algorithm
	The Bisection:
	1D in space
	2D in space

	The Projection Prolongation operator:
	1D in space
	2D in space

	Numerical Results for the Poisson Equation
	Introduction
	Julia as a programming language
	Implementation in Julia
	Numerical Results in 1D
	Inversion results and comparison of the optimization methods
	Regularization parameter study
	L-Curve method
	Solution using the MultiLevel approach

	Numerical Results in 2D
	1 design variable
	General number of design variables
	Benchmark problem
	Multi-Level on the Benchmark problem

	Conclusion
	Bibliography

