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Abstract
The existence of cross-sectionally averaged morphodynamic equilibria of tidal inlets is investigated, using a cross-
sectionally averaged model, and their sensitivity to variations of geometry, deposition parameter, frictional effects and
advective sediment transport is analysed. Different geometries, from exponentially converging to exponentially diverging,
are considered for inlets with lengths typical for the Dutch Wadden Sea. Standard continuation techniques are employed to
numerically obtain morphodynamic equilibrium solutions, i.e. solutions for which the tidally averaged bed level does not
change anymore. It is known that when the water motion at the entrance of the inlet is only forced by a M2 tidal constituent
assuming the water level to be spatially uniform and only diffusive sediment transport is considered, the morphodynamic
bed equilibrium has a constantly sloping profile for a rectangular inlet. We find that the bed profile in equilibrium becomes
convex (concave) when we change the frictionless embayment geometry to a diverging (converging) geometry. Upon letting
the deposition parameter depend on the depth, a more convex bed profile for all geometries considered is found. Including
frictional effects in the momentum equation has a minor effect when only diffusion is considered, but the bed profile
changes significantly when advection is included. When the tidal forcing of the sea surface elevation depends on a M4

tidal constituent as well, the morphodynamic equilibrium bed varies from very deep to shallow, depending on the relative
phase. For a diverging inlet geometry, there are combinations of the relative phase and tidal basin length for which we
show the existence of multiple equilibria. This implies that for these geometries, the cross-sectionally averaged bed profile
in morphodynamic equilibrium can change significantly when the relative phase or the embayment length is changed. The
magnitude of the perturbation necessary to actually evolve towards the other equilibrium and the time scale associated with
this change can not be inferred from the analysis presented in this paper.

Keywords Tidal basin · Idealised model · Morphodynamic equilibrium · Sediment transport · Multiple equilibria

1 Introduction

A barrier coast consists of several barrier islands with a tidal
inlet between these islands connecting one or more back
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barrier basins to the sea or ocean. This type of coastal
feature occurs at approximately 10% of world’s coastline,
Glaeser (1978). Large parts of these basins fall dry during
a part of the tidal cycle, which makes them important
for ecological, economical and recreational purposes. To
manage these different interests, it is essential to obtain a
better understanding of these systems and their sensitivity
to natural and human interference.

Already quite some research has been conducted on
this topic. Both the water motion and the morphodynamic
evolution in shallow tidal inlet systems have been studied
extensively. The linear dynamics of the tidal motion was
first studied by Green (1837). It was shown in Parker (1991)
and Zimmerman (1981) that nonlinear interactions result in
the generation of overtides and residual currents. In the last
decades, many analytic solutions have been presented for
the tidal motion in a wide range of estuarine geometries,
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see Friedrichs (2010) for a review. In the studies mentioned
above, no feedback to morphology was considered. When
taking the interaction of the currents with the erodible
bed into account, complex patterns can develop, see De
Swart and Zimmerman (2009). A lot of research has been
conducted on the sensitivity of these bed patterns to various
physical parameters. The influence of sediment supply on
morphodynamic bed equilibria was studied by Van der
Wegen et al. (2017), Maan et al. (2015) and Robert et al.
(2000), the influence of frictional effects by Lanzoni and
Seminara (1998, 2002), and Schuttelaars and de Swart
(2000), the influence of including mud in the sediment
transport by Van Ledden et al. (2004) and the influence of
geometry by Lanzoni and Seminara (1998, 2002) and Van
Leeuwen et al. (2000).

Although many studies have investigated a similar
topic, one has to take care in directly comparing the
results, because the studies often use different models and
solution methods. For a classification of these different
types of morphodynamic models, see De Vriend and
Ribberink (1996) and Murray (2013). Here, we restrict
ourselves to cross-sectionally averaged idealised process-
based models, which are mathematical models based on
first physical principles. The equations are simplified such
that only those processes are taken into account which,
according to a detailed scaling analysis, are important. Note
that by averaging the models over the width, observed
channel-shoal patterns cannot be reproduced, only cross-
sectionally averaged quantities are found. However, a good
understanding of cross-sectionally averaged equilibria is
essential as the first step in a depth-averaged (linear)
stability approach that can be used to unravel the initial
formation of channel-shoal patterns and the resulting
finite-amplitude patterns (see Dijkstra et al. (2014)). This
approach implies that the influence of tidal flats which are
shown to be important by Ridderinkhof et al. (2016) and Van
Prooijen and Wang (2013) is not parametrically included
in the width-averaged model, but only starts to play an
important role as tidal flats are formed in a 2DH analysis.

In Van Leeuwen et al. (2000), the authors used such
an idealised model to analyse geometric variations of the
embayment on the morphodynamic bed profiles. The sea
surface elevation was assumed to be spatially uniform and
the sediment concentration was given by an advection-
diffusion equation. When the sea surface elevation was only
forced by a M2 tidal constituent and diffusive sediment
transport was assumed to be dominant, the authors found
that the morphodynamic bed profile becomes more convex
as the width convergence increases. When the sea surface
elevation was forced by both aM2 and aM4 tidal constituent
and a converging embayment, there was a maximum length
for the embayment for which a morphodynamic equilibrium
could be found, for a relative phase difference φ between

M2 and M4 of φ ∈ [0◦, 180◦]. Letting the deposition
parameter depend on the depth, the authors found that the
equilibrium bed profiles became more convex.

Instead of fixing the bed at the landward boundary,
Lanzoni and Seminara (2002) created an inner boundary
condition at the landward side to allow for wetting and
drying. Using this approach the authors defined the length
of an embayment as the maximum length for which a
morphodynamic equilibrium still exists. These results were
confirmed by Todeschini et al. (2008). From these studies, it
was concluded that the maximum length of the embayment
was mainly governed by the convergence length, although
frictional effects also influenced the maximum length for
weakly convergent embayments.

In Van Leeuwen et al. (2000), and Lanzoni and
Seminara (1998, 2002), the morphodynamic equilibria were
found by time-integration. A different way of solving a
morphodynamic model is to make use of a fixed point
seeker. This method was first used in Schuttelaars and de
Swart (1996). In their model, the authors neglected effects
of waves, density currents, inertia and friction and the sea
surface elevation was assumed to be spatially uniform.
The authors considered a rectangular embayment with a
fixed bed at the seaward and landward boundaries and
assumed the deposition parameter to be spatially constant.
The authors performed a systematic analysis of the different
types of sediment transport. Considering only a prescribed
M2 tidal forcing at the entrance, a unique morphodynamic
equilibrium was found with a constantly sloping bed. When
the sea surface elevation at the entrance was forced by both
a M2 and M4 tidal constituent, the bed profile became either
convex (0◦ < φ < 180◦) or concave (180◦ < φ < 360◦).
Schuttelaars and de Swart (2000) extended this analysis to
embayments of arbitrary length, including bottom friction
and inertia. The existence of multiple stable equilibria was
shown for long enough embayments, when the water motion
was forced by both a M2 tidal constituent and a strong
enough M4 constituent. These results were confirmed in
Hibma et al. (2003) using a numerical simulation model.

In Ter Brake and Schuttelaars (2010), the authors
extended the idealised model of Schuttelaars and de Swart
(1996) by including a topographically induced transport
term in the bed evolution equation. The authors also
analysed the influence of different boundary conditions on
the bed. The sea surface elevation was again assumed to be
uniform and the geometry of the embayment was considered
to be rectangular.

The research presented in this paper extends the model of
Ter Brake and Schuttelaars (2010) by including inertial and
frictional effects in the momentum equation and allowing
for geometrical variations in the embayment. The channel-
shoal structure of observed patterns develop as instabilities
on the width-averaged morphodynamic equilibria. In this
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article, these width-averaged morphodynamic equilibria are
identified. The goal of this article is to analyse the sensitivity
of width-averaged morphodynamic equilibria in a rectangu-
lar, exponentially converging and exponentially diverging
embayment for the following physical parameters: iner-
tia, bed shear stress, depth-dependence of the deposition
parameter, inclusion of advective processes and inclusion
of an externally prescribed overtide. To validate the model,
results are qualitatively compared to profiles obtained from
observations.

The outline of this article is as follows. In Section 2, the
model geometry and equations are presented. In Section 3
the full model equations are scaled and analysed using
an asymptotic expansion. The effect of choosing various
geometries for the embayment when only considering
diffusive processes is analysed in Section 4. In this section,
the influence of the formulation of the deposition parameter,
the friction and the inclusion of advective sediment transport
for different geometries is also studied. Furthermore, the
existence of multiple equilibria is discussed. Conclusions
are given in Section 5.

2 Themodel

2.1 The geometry of the embayment

The geometry of the embayment that we consider has
a prescribed length L and a prescribed width W that is
allowed to vary as a function of the longitudinal coordinate
x, see Fig. 1. The embayment has three non-erodible
coastlines, an open connection to the sea at x = 0 and a
bed that is erodible. The sea surface elevation is denoted
by z = ζ , the bottom is located at z = −H + h which
results in a local water depth given by H − h + ζ , with
H the undisturbed water depth. The landward boundary is
located at the intersection of the bed and the sea surface
elevation. Due to the tidally varying sea surface elevations,
the landward boundary is actually a moving boundary and is
denoted by x̂. The length of the embayment is defined such
that < x̂ >= L, with < · > representing tidal averaging.

2.2 Modelling approach

In order to find morphodynamic equilibria, we construct
a model that describes the complex interaction between
the water motion, sediment transport and bed evolution.
The water motion is described by the shallow water
equations and transport of suspended sediment is described
by an advection-diffusion equation. The bed evolves due to
convergences and divergences of suspended load transport,
resulting from erosion of the bed and deposition of
suspended material and bed load transport. When the

bed is steady over the long morphodynamic timescale, a
morphodynamic equilibrium is said to be obtained.

2.3 The water motion

We consider embayments, representative for those observed
in the Wadden Sea, with lengths between 10 km and 20 km,
widths varying between 0.5 km and 19 km, and depths
∼ 10 m. Hence, the embayment is shallow (H � L). In
this case, the water motion can be described by the depth-
integrated and width-averaged shallow water equations
for a homogeneous fluid, see Csanady (1982). When the
influence of wind and waves is not taken into account and
density differences are neglected, the continuity equation
and the momentum equation are given by

Wζt + [W(ζ + H − h)u]x = 0,

ut + uux + τbed,x

ρ(H − h + ζ )
= −gζx .

Here, u is the depth-averaged and width-averaged water
velocity, g denotes the gravitational acceleration, and ρ the
density of water. We use a linearised formulation for the
bottom friction term, (Zimmerman 1992):

τbed,x = ρru.

Here, r the bottom friction coefficient, which is given by
r = 8Ucd

3π with U a characteristic velocity scale and cd

the drag coefficient. At the seaward side, the sea surface
elevation ζ is prescribed as a combination of the M2 tidal
constituent and its first overtide M4. We assume the water
depth to vanish at the landward boundary. This leads to the
boundary conditions

ζ = AM2 cos(σ t − φM2) + AM4 cos(2σ t − φM4) at x = 0,

u = x̂t at x = x̂,

where the frequency of the principal tide is given by σ =
2π
T
, with T the tidal period of theM2-tidal constituent. Here,

AM2 and AM4 are the tidal amplitudes of the M2 and M4

tidal constituents at the entrance of the embayment, and φM2

and φM4 their corresponding phases.

2.4 Suspended sediment transport

To describe the sediment transport, the concentration
equation is integrated over the depth and averaged over the
width, see Van Rijn (1993),

WCt + [WCu]x − κh (WCx)x = Wαu2 − ω2
s

κv

βWC,

with C the depth-integrated and width-averaged sediment
concentration with dimension kg/m2, κh the horizontal
diffusivity, κv the vertical diffusivity, ωs the settling velocity
and α a sediment erosion coefficient. The first term on the
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Fig. 1 A sketch of the geometry
used. a A top view of the
embayment with a rectangular
(solid), converging (dotted) or
diverging (dashed) width
profile. b A cross-sectionally
view of the embayment

right-hand side models the whirling up of sediment from
the bed and the second term the deposition of sediment. On
the left-hand side, the temporal changes of the concentration
are described by the first term, the second term denotes
the divergence of the advective sediment transport and
the remaining term models the diffusive contribution.
Following Ter Brake and Schuttelaars (2010), we take the
erosion coefficient α as

α = ρs(1 − p)
�ωs

u2c
,

with ρs the density of the sediment, p the bed porosity,
uc the critical depth-averaged friction velocity for erosion
and � an empirical constant (Smith and McLean 1977;
Van Leeuwen 2002). Moreover, similar to Ter Brake and
Schuttelaars (2010) and Van Leeuwen et al. (2000), we let
the deposition parameter depend exponentially on the local
water depth:

β =
(
1 − e

− ωs
κv

(H−h+ζ )
)−1

.

Since we are interested in morphodynamic equilibria, we
impose at the seaward side the condition that the tidally
averaged bed level does not change, implying a balance
between tidally averaged sediment erosion and deposition.
At the moving landward boundary no residual sediment
transport is allowed. This leads to
〈
αu2 − ω2

s

κv

βC

〉
= 0 at x = 0,

−κh 〈WCx〉 = 0 at x = x̂.

Note that there is no sediment transport due to advection
at x = x̂ because we consider a moving boundary. There-
fore, only the diffusive part has to be zero. The sediment
concentration can be decomposed into a fluctuating and a
residual part, C = Ĉ+ < C >, with < Ĉ >= 0. Note
that there is the possibility that a diffusive boundary layer
develops at one of the boundaries in the fluctuating part
of the concentration, see Van Leeuwen et al. (2000). To
avoid these temporally fluctuating boundary conditions, we
assume that, in the limit of κh → 0, the fluctuating part of
the solution of the sediment concentration equation agrees

with the solution for κh = 0. Hence, for the fluctuating part
of the sediment transport, the boundary conditions are given
by

lim
κh→0

Ĉ(x, t, κh) = Ĉ(x, t, κh = 0) at x = 0 and x = x̂.

2.5 The bed evolution equation

The bed evolution is described by considering the net effect
of sediment erosion and deposition during one tidal cycle,

Wρs(1−p)ht =ρs(1−p)μ (Whx)x−
〈
W

(
αu2− ω2

s

κv

βC

)〉
,

(2.1)

with μ the magnitude of the bedload transport related to
bed slope effects. The first term on the right-hand side of
Eq. 2.1 represents the diffusive bedload transport related to
bed slope effects. The other terms model the local erosion
and deposition of sediment, respectively. At the seaward
boundary, we require that the bottom is fixed and at the
moving landward boundary, the undisturbed water depth is
zero,

h = 0 at x = 0,

h = H − h + ζ at x = x̂.

Since we are looking for equilibrium solutions, a boundary
condition at the entrance has to be prescribed for the
depth. Here, we choose to prescribe the depth of the tidal
basin system at the entrance Ter Brake and Schuttelaars
(2010). For a detailed discussion on the choice of the
boundary condition at the entrance, we refer to Ter
Brake and Schuttelaars (2010) where it is shown how
morphodynamic equilibria which result from imposing a
boundary condition at the entrance, different from the one
used in this paper, can be obtained from the equilibria found
with a prescribed depth at the entrance. As shown in Ter
Brake and Schuttelaars (2010), using a boundary condition
different from fixing the depth at the entrance, results
in morphodynamic equilibria with an a priori unknown
depth at the entrance (i.e. the depth at the entrance cannot
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be chosen arbitrarily when the length of the system is
prescribed). In this paper, we will focus on morphodynamic
equilibria for embayments with a prescribed length and
a fixed depth at the entrance (which is consistent with
requiring h = 0 at x = 0), where one can think of
the prescribed length and entrance depth as coming from
observations (see Section 4.4 for two examples). This
implies that we try to find morphodynamic equilibria, given
the length of the system and the depth at the entrance.
Transient behaviour can not be captured using this type of
models.

3 Solutionmethod

3.1 Scaling themodel

To develop an idealised model that contains only the most
essential processes, we need to assess the importance of
the various terms in the equations. Therefore, we intro-
duce dimensionless variables by scaling the dimensional
variables by their characteristic scales. Here, we use the
typical orders of magnitude of the physical parameters
representative for the Ameland Inlet system, see Table 1.

The relation between the dimensional and dimensionless
variables is given by

x = Lx∗, t = t∗σ−1, u = Uu∗,
ζ = AM2ζ

∗ = HU
σL

ζ ∗, C = αU2κv

ω2
s

C∗, h = Hh∗, W = W0W
∗,

(3.1)

with W0 the width at the entrance of the inlet. To relate
the velocity scale to the tidal forcing, we use mass

Table 1 Characteristic values for the Ameland Inlet embayment, see
Ridderinkhof and Zimmerman (1992), Van Rijn (1993), and Dyer
(1986)

Channel Sediment

L = 20 · 103 m cd = 0.001

H = 12 m g = 9.81 ms−2

B = 2 · 103 m κh = 102 m2 s−1

ωs = 0.015 m s−1

Tide κv = 0.1 m2s−1

AM2 = 0.84 m α = 0.02 kg s m−4

AM4 = 0.08 m ρs = 2650 kg m−3

σ = 1.4 · 10−4 s−1 p = 0.4

φ = 195◦ � = 7.8 · 10−5

T = 44.9 · 103s uc = 0.3m s−1

μ = 1.4 · 10−4m2s−1

This embayment can be found in the Dutch part of the Wadden Sea.
Here the width at the seaward side is chosen as the characteristic width

conservation arguments. Requiring the first and the last
term of the continuity equation to be of similar order leads

to U ∼ AM2σL

H
. Moreover, we require an approximate

balance between sediment deposition and erosion. Hence,
the scaling of the sediment concentration C is obtained by

requiring αU2 ∼ ω2
s

κv
C where we assume β to be O(1).

After substituting the dimensionless variables, the
dimensionless model equations are given by

W ∗ζ ∗
t∗ + [

W ∗(1 − h∗ + εζ ∗)u∗]
x∗ = 0, (3.2)

ut∗ + εu∗u∗
x∗ + r̃u∗

1 − h∗ + εζ ∗ + �2ζ ∗
x∗ = 0, (3.3)

νW∗C∗
t∗ + νε

(
W∗C∗u∗)

x∗ − νκ
(
W∗C∗

x∗
)
x∗ = W∗(u∗2− β̃C∗), (3.4)

W ∗h∗
t∗ + δμ̃

(
W ∗h∗

x∗
)
x∗ + δ

〈
W ∗(u∗2 − β̃C∗)

〉
= 0. (3.5)

The dimensionless deposition parameter reads

β̃ =
(
1 − e−λ(εζ ∗+1−h∗)

)−1 ; (3.6)

all dimensionless parameters are defined in Table 2, along
with their characteristic values for the Ameland Inlet, (using
Table 1).

The scaled boundary conditions at the seaward side, x =
0, are given by

ζ ∗ = cos(t∗) + γ cos(2t∗ − φ),〈
u∗2 − βC∗〉 = 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0),

h∗ = 0,

Table 2 Dimensionless parameters for the Ameland Inlet

ε = U
σL

= AM2
H

∼ 0.07 tidal excursion length
embayment length

r̃ = 8cdAM2L

3πH 2 ∼ 0.099 bottom friction parameter

�2 = gH

σ 2L2 ∼ 15.015
(

tidal wave length
embayment length

)2

ν = σκv

ω2
s

∼ 0.0622 deposition timescale
tidal period

κ = κh

σL2 ∼ 1.79 · 10−3 tidal period
diffusive timescale

λ = Hωs

κv
∼ 1.8 vertical diffusion timescale

deposition timescale

δ = αU2

σHρs (1−p)
∼ 7.19 · 10−5 tidal period

morphodynamic timescale

γ = AM4
AM2

∼ 0.095 M4amplitude
M2amplitude

μ̃ = μ

σL2 ∼ 2.5 · 10−9
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where γ is the ratio of the M4 and the M2 tidal ampli-
tude. At the landward side, x∗ = x̂, the scaled boundary
conditions result in

u∗ = x̂∗
t ,

−νκ
〈
W ∗C∗

x∗
〉 = 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0).

We use the approach taken in Ter Brake and Schuttelaars
(2010) to transform the moving boundary x∗ = x̂ into a
fixed boundary condition at x∗ = 1. The moving boundary,
x̂, can be determined by studying the intersection point of
the bed and the water level which is given by the following
relation

1 − h∗(x∗) + εζ ∗(x∗, t∗) = 0.

Next we use that the tidally averaged condition implies that
the length of the scaled embayment is 1. After substituting
this condition into the continuity equation, we reformulate
the boundary conditions at the landward side. Since the
boundary is now fixed, there is sediment transport due to
both diffusion and advection at the boundary. Therefore, at
x∗ = 1, the boundary conditions read

u∗
x∗ is finite,

< ε(W ∗C∗u∗) − κ(W ∗C∗
x∗) >= 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0)

Using Table 2, we observe that the parameter δ ∼
7.2 · 10−5 is small. Therefore, it follows from Eq. 3.5 that
h∗

t∗ = O(δ) and hence the bed level is constant on the
O(1)-timescale, which is the fast hydrodynamic timescale.
Therefore, a new slow time coordinate is introduced, τ ∗ =
δt∗ on which h∗ does vary. Upon tidally averaging Eq. 3.4,
we obtain 〈νε(W ∗C∗u∗)x∗ − νκ(W ∗C∗

x∗)x∗〉 = 〈W(u∗2 −
β̃C∗)〉. Substituting this expression for the tidally averaged
erosion and deposition flux into the bed evolution Eq. 3.5,
we obtain, written in terms of the slow timescale,

Wh∗
τ = − < F ∗ >x∗ . (3.7)

Here, the dimensionless sediment transport F ∗ consists
of bed slope effects of bedload transport and diffusive
and advective contributions of the suspended sediment
transport,

F ∗ = F ∗
bl + F ∗

diff + F ∗
adv,

with

F ∗
bl = −μ̃W ∗h∗

x∗ ,

F ∗
diff = −νκW ∗C∗

x∗,

F ∗
adv = νεW ∗u∗C∗.

The boundary condition at the landward side for the
residual sediment concentration can also be given in terms
of these sediment transport and reads

< F ∗
bl + F ∗

diff + F ∗
adv >= 0. (3.8)

3.2 The analysis of themodel

For some simplified situations, the model can be analyti-
cally solved, see Schuttelaars and de Swart (1996). How-
ever, in general the model has to be solved numerically. As
indicated above, the bed evolves due to convergences of dif-
ferent types of sediment transport. In this article, we study
the influence of the contribution of these different processes.
To systematically assess the importance of the various trans-
port contributions, the model output is analysed in terms of
these transport contributions. Leaving out the slope contri-
bution of the bedload transport is not allowed as this would
make it impossible to impose boundary conditions for the
bed evolution equation at the seaward and landward side.
Since it is essential to impose these boundary conditions,
at least the slope term of the bedload component has to be
retained, although its contribution is (at least in the main
part of the embayment) negligible.

We consider two types of advective sediment transport.
We define external advective transport as transport due to
those advective processes that occur when an externally
prescribed overtide is included and internal advective
transport as transport due to those advective processes
that occur due to the nonlinear interactions inside the
embayment. Note that both temporal and spatial settling
lag effects (Burchard et al. 2018) contribute to the external
and internal advective transport. The sediment transport due
to the bed slope effect is a diffusive term in the bed level
equation. In this analysis, we make use of the values of
Table 2, which indicates that both ε � 1 and γ � 1.
Since γ is associated with the external advective processes
and ε with the internal advective processes, we treat these
two parameters as independent to distinguish between the
two advective processes instead of introducing one small
parameter. Note that these parameters are not necessarily of
different order. We expand all variables in terms of the small
parameters as

X = X0,0 + εX1,0 + γX0,1 + h.o.t., (3.9)

where X = {ζ, u, C}. The first superscript denotes the order
of the variable in ε and the second the order in γ .

We determine which terms of the sediment transport F ∗
that are present in Eq. 3.7 are time-independent since only
these terms contribute to the bed evolution. To do this, we
decompose all terms in expression (3.9) in their fluctuating
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parts and their residual component as follows

Xk,j =< χk,j (x) > +
∑
ω

R
(
χk,j

ω (x)e−iωt
)

,

where the frequency of the time-dependent components is
denoted by ω and R denotes taking the real part of the
expression. Here, χk,j (x) and χ

k,j
ω (x) denote the spatial

dependency of the residual and the fluctuating parts of
the solution, respectively. Note that, in general, χ

k,j
ω (x) is

a complex function. We only consider the M0 (residual
component), M2 and M4 tidal constituents, and assume that
all other tidal constituents are much smaller and can be
neglected. Using the boundary conditions for the sea surface
elevation and the nonlinear terms in the sediment transport
equation, we can deduce which tidal constituent contributes
to the velocity, the sea surface elevation and the sediment
concentration at different orders, see Table 3.

We substitute expansion (3.9) into Eqs. 3.2–3.4 and
collect terms of equal order to obtain model equations at
leading order, O(ε) and O(γ ). We rewrite the equations
at the different orders back into their dimensional form
by using the transformations (3.1) and the expressions in
Table 2. This way, we can immediately study the influence
of the physical parameters on solutions to the model. At
leading order, the dimensional equations read

Wζ
0,0
t +

[
W(H − h)u0,0

]
x

= 0, (3.10)

u
0,0
t + ru0,0

H − h + h0
+ gζ 0,0

x = 0, (3.11)

WC
0,0
t −κh

(
WC0,0

x

)
x
−W

(
α u0,0

2 − ω2
s

κv

β0,0C0,0
)

=0. (3.12)

Since the deposition parameter β, see Eq. 3.6, also
depends on ε, only the leading order contribution,

β0,0 =
[
1 − hδe

− ωs
κv

(H−h)
]−1

,

is used in the equation above. We have introduced constants
0 < hδ < 1 and h0 � 1 to prevent divergences
of the deposition and bottom friction term, respectively.
From the scaling arguments, we should conclude that the
diffusion term is much smaller than the other terms, (νκ ∼
O(10−4)), and therefore, should not be present in the
leading order sediment concentration equation. However, a
residual concentration term can lead to a diffusive boundary

Table 3 The tidal constituents which contribute to the velocity, the sea
surface elevation and the sediment concentration for the leading (order
one), ε and γ orders

O(1) O(ε) O(γ )

u, ζ M2 M0, M4 M4

C M0, M4 M2 M2

layer. This is a thin layer at the boundaries where the
diffusive transport can still be significant, compared to the
other transport contributions. For that reason, the diffusion
term has to be taken into account at leading order. The
leading order boundary conditions are given by

ζ 0,0 = AM2 cos(σ t) at x = 0,

W(H − h)u0,0 = 0 at x = L,

< α u0,0
2 − ω2

s

κv

βC0,0 >= 0 at x = 0

lim
κh→0

Ĉ0,0(x, t, κh) = Ĉ0,0(x, t, κh = 0) at x = 0, L.

At O(γ ), there is no residual concentration. Therefore,
we do not need the diffusion term to compensate for a
potential diffusive boundary layer. Hence, the system of
equations at O(γ ) reads:

Wζ
0,1
t +

[
W(H − h)u0,1

]
x

= 0,

u
0,1
t + ru0,1

H − h + h0
+ gζ 0,1

x = 0,

WC
0,1
t − W

(
2αu0,0u0,1 − ω2

s

κv

β0,0C0,1
)

= 0,

with corresponding boundary conditions

ζ 0,1 = AM4 cos(2σ t − φ) at x = 0,

W(H − h)u0,1 = 0 at x = L,

lim
κh→0

Ĉ0,1(x, t, κh) = Ĉ0,1(x, t, κh = 0) at x = 0, L.

At O(ε), again neglecting the diffusive sediment
transport, the equations read

Wζ
1,0
t +

[
W(H − h)u1,0

]
x

+
[
Wζ 0,0u0,0

]
x

= 0,

u
1,0
t + u0,0u0,0x + ru1,0

H − h + h0
+ gζ 1,0

x + ru0,0ζ 0,0

(H − h + h0)2
= 0,

WC
1,0
t +

(
WC0,0u0,0

)
x

− W

(
2αu0,0u1,0 − ω2

s

κv

β0,0C1,0 − ω2
s

κv

β1,0C0,0
)

= 0.

Here, the O(ε)-term in the deposition parameter β,
Eq. 3.6 has to be taken into account. It is given by

β1,0 = ωshδ

κv

e
− ωs

κv
(H−h)

(
1 − hδe

− ωs
κv

(H−h)
)−2

.

The corresponding boundary conditions are given by

ζ 1,0 = 0 at x = 0,

W(H − h)u1,0 + Wζ 0,0u0,0 = 0 at x = 0,

lim
κh→0

Ĉ1,0(x, t, κh) = Ĉ1,0(x, t, κh = 0) at x = 0, L.
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3.3 Morphodynamic equilibria

Next, we study the existence of morphodynamic equilibria.
We want to emphasise that we do not use time-integration to
obtain morphodynamic equilibria. This implies that we look
for a morphodynamic equilibrium, given the length of the
inlet system and a fixed depth at the entrance. We make use
of the fact that a morphodynamic equilibrium arises when
hτ = 0, and hence, using Eq. 3.7 and boundary condition
(3.8) we find that

< F >= 0, (3.13)

with the dimensional sediment transport F given below
by expression (3.14). This means that the sum of the
tidally averaged diffusive and advective suspended sediment
transports and the bed slope effects of the bedload transport
have to balance at each location in the embayment. To obtain
these tidally averaged transports, we use the tidal constituent
information of the velocity u and the sediment concentration
C, given in Table 3, and the expressions for the sediment
transport (3.14). All terms with periodic behaviour average
to zero after tidal averaging. Therefore, only the terms of
the sediment transport which are time-independent lead to
a contribution. This reveals that the leading order tidally
averaged internal advective sediment transport is O(νε2),
the external advective sediment transport isO(νεγ ) and the
diffusive sediment transport is O(νκ). Using the parameter
values given in Table 1, this means that all types of sediment
transport are of the same order, and hence, have to be taken
into account. In terms of the regular expansion, the total
tidally averaged sediment transport consists to leading order
of four components

< F >=< F
0,0
bl > + < F

0,0
diff > + < F

2,0
adv > + < F

1,1
adv >,

(3.14)

with their dimensional expressions given by

< F
0,0
bl > = −ρs(1 − p)μWhx,

< F
0,0
diff > = −κh < WC0,0

x >,

< F
2,0
adv > = < W(u0,0C1,0 + u1,0C0,0) >,

< F
1,1
adv > = < W(u0,0C0,1 + u0,1C0,0) > .

We denote the transport due to internal advection by F 2,0

and due to external advection by F 1,1.

3.4 Numerical method

To obtain morphodynamic equilibria, the model equations at
leading order, order ε and γ are solved numerically using a
finite element method. As a first step, we convert the model
equations into their weak formulation and we discretise
the model equations using piecewise linear functions. We

apply a so-called continuation method: starting with a
known equilibrium profile for a specific set of parameters
as an initial guess, one can obtain equilibria by slowly
varying parameters or the geometry using a Newton-
Raphson procedure. The morphodynamic equilibrium that
we use as a starting point in the continuation method
is the morphodynamic equilibrium of a short, rectangular
embayment where sediment transport is dominated by
diffusive transport and inertia and friction are neglected.
This equilibrium bed profile is constantly sloping, see
Schuttelaars and de Swart (1996, 2000) and Ter Brake and
Schuttelaars (2010).

4 Results

Single tidal inlet systems consist of a back barrier basin
and one inlet connecting the basin to the sea. Typically,
single tidal embayments in the Wadden Sea have an
embayment length between 10 km and 20 km. Hence,
we focus on analysing the morphodynamic equilibria in
embayments with lengths between L = 8 km and L =
22 km. Although we allow for arbitrary width variations,
to systematically analyse the effect of width variations
on the morphodynamic equilibria, we mainly focus on
exponentially converging and diverging inlets:

W(x) = W0e
− x

Lb . (4.1)

Here, W0 the width of the embayment at the entrance
and Lb the exponential convergence length. Our first
results show the influence of geometrical variations on
the morphodynamic equilibria by keeping the length L =
20 km fixed and varying the convergence length. Next, we
vary the length of the system by keeping W0 = 2 km
and Lb constant. This results in a varying width at the
landward side. We consider three different geometries with
profiles sketched in Fig. 1: an exponentially converging,
rectangular and exponentially diverging embayment. Unless
stated otherwise, we use the characteristic values of the
Ameland Inlet system, given in Table 1.

4.1 Diffusively dominated transport

In this section, we assume that the suspended load transport
is dominated by diffusive processes.

Geometry We start by studying the effect of variations
in the geometry of the embayment on morphodynamic
equilibria. Here, we neglect frictional effects in the water
motion (cd = 0) and we assume that the deposition
parameter is depth-independent (β = 1). In Fig. 2,
the resulting equilibrium bed profiles are shown for an
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Fig. 2 The influence of geometrical variations on the morphodynamic
equilibria. a Equilibrium bed profiles are shown as a function of the
location in the tidal embayment (horizontal axis) for inlets that range
from strongly converging, L−1

b = 0.2 km−1, to strongly diverging,

L−1
b = −0.2 km−1 (vertical axis). Using the default embayment width

at the seaward side of W0 = 2 km, L
Lb

= 1 corresponds to a land-

ward width of 0.7 km and L
Lb

= −1 to a landward width of 5.4 km.

The water depth is indicated by the colour coding where the colder
(warmer) colours correspond to larger (smaller) dephts. b Equilibrium
bed profiles are shown for a rectangular embayment (infinite con-
vergence length Lb, solid blue line), a diverging embayment (Lb ≈
−5.6 km, dashed red line) and a converging embayment (Lb = 20 km,
dashed-dotted green line)

embayment with a length of L = 20 km for different
convergence lengths.

For the rectangular inlet (blue line in Fig. 2b), we observe
that the water depth constantly decreases. This result is
similar to what was already found in Schuttelaars and de
Swart (1996) and Ter Brake and Schuttelaars (2010), using
a model formulation in which inertia was assumed to be
negligible in the momentum equation. Our results show that
inertia does not influence the bed equilibrium profile. For a
tidal embayment with width variations in the along-channel
direction, it is found that for a more diverging (converging)
inlet, a more convex (concave) equilibrium bed profile is
obtained.

To explain this dependency, we neglect the bedload
transport. Then, the morphodynamic equilibrium condition
is attained when F

0,0
diff = −κh < WC

0,0
x >= 0, in other

words, < C0,0 > must be constant in morphodynamic
equilibrium. Assuming that erosion and deposition balance
approximately, it follows from Eq. 3.12 that

< C0,0 >≈< u0,0
2

> . (4.2)

Hence, in morphodynamic equilibrium the amplitude u0,0

must be independent of x since C0,0 has to be independent
of x. This result is consistent with findings in Friedrichs
and Aubrey (1996), Pritchard and Hogg (2003), Toffolon
and Lanzoni (2010), and Todeschini et al. (2008). Using the
boundary conditions at the seaward boundary and that local
inertia is negligible, the momentum Eq. 3.11 implies that
the sea surface elevation behaves like ζ 0,0 ≈ AM2 cos(σ t).

Then, from Eq. 3.10, it follows that the resulting velocity
becomes

u0,0 ≈ σAM2Lb

H − h

(
1 − e

x−L
Lb

)
sin(σ t). (4.3)

Now, requiring that the amplitude of u0,0 does not depend
on x, we find that

h(x) ∼ H − σAM2Lb

(
1 − e

x−L
Lb

)
.

From this, we conclude that for a converging embayment
(Lb > 0), the first and second derivative of the depth are
positive and hence, the morphodynamic profile is concave.
On the other hand, for a diverging embayment (Lb < 0), the
first derivative is still positive, but the second derivative is
negative, resulting in a convex bed profile.

Deposition parameter In the previous paragraph, morpho-
dynamic equilibria were obtained assuming a constant
deposition parameter, β0,0 = 1, i.e. hδ = 0. Here, the
influence of a depth-dependent deposition parameter on
the resulting equilibria is investigated by comparing the
results obtained with hδ = 0 (no depth-dependent deposi-
tion parameter) and hδ = 0.9 (depth-dependent deposition
parameter). Note that we do not take hδ = 1.0 to avoid
singularities. To highlight the influence of depth-dependent
deposition on the morphodynamic equilibria, the bed pro-
files are subtracted from each other as shown in the left
column of Fig. 3 for various embayment geometries.

We observe that for a rectangular inlet, the equilibrium
bed profile becomes convex when the depth-dependency
of the deposition parameter is incorporated. This result
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Fig. 3 The influence of the
deposition parameter for
diverging (top), rectangular
(middle) and converging
(bottom) embayment
geometries. In the colourplots in
the left column, the difference of
the bed profiles
(solhδ=0.9 − solhδ=0) is shown as
a function of the distance to the
seaward boundary (horizontal
axis) and the embayment length
(vertical axis). The colour
indicates the effect of the
deposition parameter on the
morphodynamic equilibria: blue
colours indicate that the local
water depth is not sensitive to
the depth-dependence of the
deposition parameter, warmer
colours indicate that the
difference between the local
water depth with and without
depth-dependent deposition
increases. In the column on the
right, examples of equilibrium
bed profiles are shown for
different basin lengths with
(dashed) and without (solid) a
depth-dependent deposition
parameter
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is in agreement with earlier findings in Ter Brake and
Schuttelaars (2010) and Van Leeuwen et al. (2000). We
see that the same change also occurs when the geometry
of the embayment is varied in the along-channel direction.
The location where the solution is most convex is found in
the middle of the embayment for a diverging geometry and
lies more towards the landward boundary as the embayment
becomes more converging.

These results can be explained by considering the morpho-
dynamic equilibrium condition, again neglecting the bed-
load transport. We find that in order for F

0,0
diff = −κh <

WC
0,0
x >= 0 to be satisfied, the leading order residual sed-

iment concentration, C0,0 cannot depend on x. Using this

in Eq. 3.12, it follows that < β0,0C0,0 >≈< u0,0
2

>.
Since C0,0 has to be spatially uniform, this implies that
(u0,0)2

β0,0 must also be spatially uniform, where β0,0 =

[
1 − hδe

− ωs
κv

(H−h)
]−1

. From Fig. 3, we deduce that the bed

profiles are non-decreasing functions of the longitudinal
coordinate x. Since the exponent of the leading order depo-
sition parameter depends on the bed profile, this implies that
the leading order deposition parameter increases towards
the landward boundary when hδ is non-zero. Therefore, for
(u0,0)2

β0,0 to remain spatially uniform, the amplitude u0,0 of the
velocity has to increase towards the landward boundary as
well. Using expression (4.3), we deduce that for the veloc-
ity to increase, H − h has to decrease, i.e. the water depth
has to decrease.

Friction To study the influence of the bottom friction
on the morphodynamic equilibria, we take the deposition
parameter to depend on the depth, hδ = 0.9, and add
frictional effects by setting cd = 0.001 and cd = 0.003.
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Again, we vary the length of the tidal embayment and
subtract the solutions obtained with and without friction.
The results for a diverging embayment are shown in
Fig. 4. The figure shows that bottom friction becomes
more important for longer embayments. Including frictional
effects leads to more convex bed profiles, although the
concave-profile of the bed equilibrium for a converging
geometry is still present. This latter result agrees with
findings of Lanzoni and Seminara (2002). The influence for
a converging and rectangular embayment is qualitatively the
same, although the influence is much smaller.

The above results can be explained as follows. The bot-
tom friction parameter depends linearly on the embayment
length L. This implies that as the length of the embayment
increases, the bottom friction term becomes more impor-
tant. Furthermore, the bottom friction term is divided by the
local water depth in the leading order momentum equation,
(3.11). This suggests that this term becomes more signifi-
cant when the local water depth decreases. As we have seen
in the previous section when friction was neglected, the bed
is much shallower for a diverging embayment than for a
converging one. Therefore, if friction effects are added, their
influence is largest for a diverging inlet.

4.2 Advective and diffusive transport without an
externally prescribed overtide

In this section, we analyse the influence of advective
sediment transport due to internally generated overtides
and the associated suspended sediment concentrations on
the morphodynamic equilibria. The deposition parameter
is taken to be depth-dependent and frictional effects are
included. Again, the solutions with internal advection and

without (from Section 4.1) are subtracted from each other.
In Fig. 5, the results are shown for various geometries.

For a rectangular inlet, we find that the morphodynamic
bed equilibrium is less convex compared to the case
where only diffusion is considered. This result is similar
to the findings of Ter Brake and Schuttelaars (2010),
although the effect of adding internal advection is stronger
in our study which is due to frictional effects. When
only diffusion is considered, friction only resulted in
minor adjustments to the equilibrium bed profile, but the
influence of friction is not negligible anymore when internal
advection is considered. From Fig. 5, we conclude that for
a larger embayment length, the internal advective processes
become more important. Also, the importance of internally
generated advective sediment transport becomes larger for
more strongly divergent tidal inlets widths, for which
the equilibrium bed profile is very shallow towards the
landward side of the basin. Furthermore, when including
internal advection the velocities decrease (increase) into
the landward direction when the system is diverging
(converging).

To explain this influence, we again study the morphody-
namic equilibrium condition, neglecting bedload transport,
which now reads,

−κhW < C0,0
x > +W < u0,0C1,0 + u1,0C0,0 >= 0. (4.4)

For a morphodynamic equilibrium when only diffusive
processes are taken into account, the first term of Eq. 4.4
is zero whereas the other terms are negative. This implies
that when advection is included, the advective sediment
transport due to internal processes is directed towards the
sea. Therefore, for this equilibrium condition to hold, the
diffusive sediment transport needs to become positive. From

0 2 4 6 8 10 12 14 16 18 20 22
Distance to seaward boundary [km]

8

10

12

14

16

18

20

22

Le
ng

th
 o

f e
m

ba
ym

en
t [

km
]

0

5

10

15

20

D
iff

er
en

ce
 [m

]

10 -3

0 2 4 6 8 10 12 14 16 18 20 22
Distance to seaward boundary [km]

8

10

12

14

16

18

20

22

Le
ng

th
 o

f e
m

ba
ym

en
t [

km
]

0

0.05

0.1

0.15

D
iff

er
en

ce
 [m

]

Fig. 4 The influence of the bottom friction parameter for a diverging
embayment. The colourplots show the difference between the bed pro-
files when friction is included and not included, left: (solcd=0.001 −
solcd=0) and right: (solcd=0.003 − solcd=0). The embayment length is
varied between L = 8 km and L = 22 km (vertical axis) and the
distance to the seaward boundary on the horizontal axis. The colour
indicates the influence of bottom friction: the blue colours indicate that

the morphodynamic equilibrium is not sensitive to frictional effects.
For warmer colours the influence of bottom friction on the local water
depth increases. The figure shows that frictional effects are negligible
when the embayment length is L = 8 km and these effects become
stronger as the length of the embayment increases with a maximum
difference of ∼ 0.02 m for cd = 0.001 and ∼ 0.1 m for cd = 0.003
when the embayment length is L = 20 km
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Fig. 5 The influence of internal
advection. The embayment
geometry is diverging (top),
rectangular (middle) and
converging (bottom). a
Colourplots of the difference
(soldiff+adv − soldiff) bed profiles
are shown for the embayment
length versus the distance to the
seaward boundary. The colour
indicates the effect of including
the internal advection on the
morphodynamic equilibria: red
colours indicate that the local
water depth is not sensitive to
internal advection, for colours
towards the blue the difference
between the local water depth
with and without internal
advective sediment transport
increases. b Examples of
equilibrium bed profiles are
shown for different parameter
settings
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Eqs. 4.3 and 4.2 it follows that this can be achieved by
increasing the water depth.

4.3 Advective and diffusive transport with an
externally prescribed overtide

In this section, the sea surface elevation is forced by
both a M2 tide and a M4 tide. The deposition parameter
β depends on the depth and frictional effects are taken
into account. In discussing the results, we focus on the
sensitivity of morphodynamic equilibria to the relative
phase of the overtide. We discuss the sensitivity of the
maximal tidal embayment length to the relative phase,
see for example Schuttelaars and de Swart (2000), Ter
Brake and Schuttelaars (2010), Todeschini et al. (2008),
and Seminara et al. (2010). To determine the maximum
embayment length, morphodynamic equilibria are obtained

for each relative phase by increasing the length from L =
8 km. The maximum embayment length is the largest L

for which a morphodynamic equilibrium can still be found
numerically for the parameters under consideration. If the
embayment length L = 22 km is reached, a maximum
length might still exist but it is not in the range of lengths
we are focusing on.

4.3.1 Converging tidal embayment

In Fig. 6, we give the maximum embayment length as
a function of the relative phase. The figure shows that
the maximum embayment length significantly changes
when varying this parameter, the drag coefficient and
the amplitude of the external overtide. For the default
parameter values, the smallest maximum length is obtained
for φ = 270◦ and is around L = 8 km. We see that
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Fig. 6 The relative phase is plotted versus the maximum embayment
length (or 22 km) for a converging embayment geometry. The blue
solid line corresponds to the default parameter values given in Table 1.
The other lines are obtained by varying one parameter: AM4 = 0.04
(red dashed line) and cd = 0.01 (green dashed-dotted line)

when frictional effects are increased, the maximum length
increases. Decreasing the amplitude of the M4-tide also
increases the maximum embayment length.

These results can be explained by analysing the different
sediment transport contributions. Decreasing the amplitude
of the M4 tide results in a smaller contribution of the
advective transport due to externally generated overtides.
Therefore, it is easier to balance this contribution by
the internally generated and diffusive sediment transport,
resulting in an increase of the maximum length for all values
of the relative phase. Increasing the drag coefficient leads to
an increase of the internal advection, resulting in a balance
for longer tidal inlet systems.

Even though we observe that the maximum length
of the embayment is highly influenced by parameters,
we find that the morphodynamic bed equilibria and the
balance of their corresponding sediment transport are quite

similar when considering the same relative phase. However,
when the relative phase is varied, the morphodynamic
equilibria change significantly. In Fig. 7, bed profiles
of the morphodynamic equilibria and their corresponding
sediment transport are shown for φ = 195◦ and φ = 67◦.
We see that for the first choice of φ, the main balance
is between the internal and external advective sediment
transport, whereas the balance in the latter case is between
diffusion and external advection. Note that the net sediment
transport remains zero, but the sediment transport due to
external advection changes from importing for φ = 195◦ to
exporting for φ = 67◦, which agrees with the embayment
going from flood dominated to ebb dominated. Also, the bed
profile changes from a shallow to a deep one.

4.3.2 Rectangular tidal embayment

We performed a similar analysis for a rectangular geometry
of the embayment and found that the bed profiles are,
apart from being less concave, qualitative the same as those
for the converging geometry embayment. The dependency
of the maximum length on the relative phase is similar
to the relation found for the converging embayment. The
maximum length decreases as the convergence length
increases for all values of the relative phase which agrees
to findings of Seminara et al. (2010). The maximum length
for a rectangular embayment forced by an overtide with a
relative phase φ around 270◦ is still approximately Lmax =
8 km which was also found by Ter Brake and Schuttelaars
(2010).

4.3.3 Diverging tidal embayment

When we choose the geometry embayment to be diverging,
the values of the relative phase for which there is a
maximum length start to differ significantly: there are
less parameter combinations for which no morphodynamic
equilibrium can be found. The region around φ = 270◦

Fig. 7 Morphodynamic bed
equilibria are shown as solid red
lines, together with the
corresponding sediment
transport contributions: diffusion
(solid blue line), advection due
to internal processes (dashed
blue line) and advection due to
external processes
(dashed-dotted blue line). The
embayment has a converging
geometry. In a The relative
phase is taken to be φ = 195◦, in
b the relative phase is φ = 67◦ 0 5 10 15 20
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where no equilibrium is found for larger lengths still exists,
although it is much smaller than for a converging and
rectangular embayment.

A new aspect is that the morphodynamic equilibria are
not necessarily unique anymore; there exists a range of
values for the relative phase and the embayment length for
which multiple morphodynamic equilibria exist, see Fig. 8.

To study this in more detail, the mean water depth is
plotted in Fig. 8b. Considering the embayment lengths
L = 14 km and L = 18 km, the mean depth of the
morphodynamic equilibrium bed profile is large for 0◦ <

φ < 180◦ and changes to a shallow profile for a relative
phase between 180◦ < φ < 360◦. For an embayment with
L = 18 km, this transition between a deep and a shallow
equilibrium profile is more sudden than for L = 14 km.
For L = 19.6 km a saddle-node bifurcation takes place
at approximately φ = 70◦ and φ = 170◦, respectively.
In between these values of φ, there exist multiple stable
solutions, one of them corresponding to a deep profile and

the other one to a more shallow character. The deeper
equilibrium still exists when increasing the relative phase
φ and the more shallow one when decreasing the relative
phase. There is also a third unstable equilibrium with a
shallow character.

In Fig. 8c, we give the three different bed equilibria
that exist at a relative phase of φ = 163◦ for an
embayment length of L = 19.6 km. The corresponding
sediment transport of these three equilibria are shown as a
function of the location in the embayment in Fig. 9. We
see for all three equilibria that the diffusive transport is
very small and that the main balance exists between the
internal and external advective sediment transport. Note that
the sediment transport corresponding to the shallow bed
profiles, Fig. 9b, c, look similar. When the bed profile is
shallow, the sediment transport due to external advection is
exporting, whereas it is importing when the bed profile has a
deep character. The tidal embayment is changing from flood
dominant to ebb dominant although the relative phase has

Fig. 8 a Plot of the number of equilibria for the relative phase versus
the embayment length. For every combination in this parameter plane,
the figure indicates whether there exists zero (diagonal lines), one (no
lines) or multiple (horizontal lines) morphodynamic equilibria. b The
mean value of the equilibrium bed profile is given versus the rela-
tive phase for three different embayment lengths L = 14 km (dashed

blue line), L = 18 km (dashed-dotted green line) and L = 19.6 km
(red solid line). c The three different morphodynamic bed profiles are
shown for a relative phase of φ = 163◦ and L = 19.6 km. Here the
points A, B and C of b and c correspond to each other
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Fig. 9 The sediment transport
corresponding to the three
morphodynamic equilibria for
an embayment length of
L = 19.6 km and relative phase
φ = 163◦. The subfigures a, b
and c correspond to the bed
profiles A, B and C of Fig. 8c,
respectively
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not been changed. When the geometry is more diverging,
the values of the embayment length for which multiple
equilibria exist decreases.

4.4 Comparison with observed bed profiles

In the previous subsections, the geometry of the embayment
was taken to be either exponentially converging, exponen-
tially diverging or rectangular. Since it is possible to choose
arbitrary width variations in the model, we take a realistic
width profile.

We have used data from observations of the Ameland
Inlet and the Friesche Zeegat, both systems in the Dutch part
of The Wadden Sea, with the water level measured at Nes
and Schiermonnikoog.

Using observations of the depth, (2011 observations for
the Ameland Inlet and 1987 for the Friesche Zeegat), we
have determined a width profile and corresponding width-
averaged bed profile of each system. First, a depth profile of
the area is constructed using measurements, and the center
line through the inlet has been constructed. For points on
the center line, perpendicular lines have been drawn from
one lateral boundary to the other, where we defined the
lateral boundary of the inlet at the locations where the
undisturbed water was 0.5 m. For each point, we choose the
width of the embayment to be equal to the distance between
the two coastlines. The corresponding depth is obtained by
averaging the depth between the two coastlines. These width
and depth profiles are shown by the dashed lines on the left
side of Fig. 10 in blue and red, respectively.

We have then smoothed the obtained width profile
and used this profile in our model to determine the
corresponding morphodynamic equilibrium bottom. For the
Ameland Inlet, we have used the characteristic values
listed in Table 1 and for the Friesche Zeegat, the values
used in Ter Brake and Schuttelaars (2010) have been
employed. Furthermore, we have performed a harmonic
analysis on the measured values of the water level at Nes and
Schiermonnikoog resulting in the amplitude of the M2-tide
and the M4-tide. A comparison between the data and the
model results is presented in Fig. 10, showing a reasonable
agreement with the main trends rather well-captured.

Concerning the amplitudes of the sea surface elevation,
the difference between the observed and the modelled
amplitudes varies from 3 to 10 cm.

The difference between the data and the model results
can have multiple reasons. One, it is unknown whether
the characteristic values used in this article were the best
choices for the physical parameters when the measurements
were carried out. We have shown in the previous section
that varying physical parameters can have a significant
influence on the bed level and, hence, on the amplitudes
of the tidal constituents. Second, the data amplitudes have
been determined using measurements performed over a
whole year, whereas the width and depth values have been
obtained at one moment. Third, the measuring locations for
the sea surface elevation are close to the coast. It is therefore
not necessarily a representative value when comparing
to the modelled width-averaged sea surface elevation.
Furthermore, lateral processes are only parametrically taken



236 Ocean Dynamics (2019) 69:221–238

0 5 10 15 20
Distance to seaward boundary [km]

-15

-10

-5

0

D
ep

th
 o

f e
qu

ili
br

iu
m

 b
ed

 p
ro

fil
e 

[m
]

0

2

4

6

8

W
id

th
 o

f e
m

ba
ym

en
t [

km
]

0 5 10 15 20
Distance to seaward boundary [km]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
m

pl
itu

de
 ti

da
l c

on
st

itu
en

ts
 [m

]

Amp M2 model
Amp M2 data
Amp M4 model
Amp M4 data

0 5 10 15
Distance to seaward boundary [km]

-15

-10

-5

0

D
ep

th
 o

f e
qu

ili
br

iu
m

 b
ed

 p
ro

fil
e 

[m
]

0

2

4

6

8

10

W
id

th
 o

f e
m

ba
ym

en
t [

km
]

0 5 10 15
Distance to seaward boundary [km]

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de
 ti

da
l c

on
st

itu
en

ts
 [m

]

Amp M2 model
Amp M2 data
Amp M4 model
Amp M4 data

Fig. 10 A comparison between data and model results for the Ameland
Inlet (top) and the Friesche Zeegat (bottom). At the left, the width pro-
files and the corresponding width-averaged bed profiles are shown as a
function of the position in the embayment. The dashed lines represent
the observed profiles and the solid lines the modelled profiles. At the
right, the modelled amplitudes of the M2 (blue lines) and the M4 (red
lines) tidal constituent are shown as a function of the position in the

embayment. The dots correspond to the values of the measured com-
ponents. The measuring location Nes is about 7 km from the seaward
boundary and the location Schiermonnikoog about 9.5 km. Character-
istic values for the Ameland Inlet are given in Table 1. For the Friesche
Zeegat, the characteristic values that are different compared to the val-
ues of the Ameland Inlet are AM2 = 0.93 m, φ = 207◦, H = 7.5 m
and L = 15 km, see Ter Brake and Schuttelaars (2010)

into account, and many possibly important processes were
not accounted for.

5 Conclusion

We have analysed the existence of morphodynamic equi-
libria and their sensitivity to geometrical variations, inertia,
bottom friction, depth-dependency of the deposition param-
eter and the importance of advective processes both with
and without an externally prescribed overtide. We consid-
ered tidally dominated embayments with a length between
L = 8 km and L = 22 km, representative for basins
in the Wadden Sea. The geometry of the embayment was
chosen to be rectangular, exponentially converging or expo-
nentially diverging. We used the cross-sectionally averaged
shallow water equations to describe the water motion and an
advection-diffusion equation for the sediment concentration
equation. We assumed that the bed evolves due to conver-
gences and divergences of diffusive and advective sediment
transport.

We started with only considering diffusive processes and
prescribing the sea surface elevation by only a M2-tide.
For the frictionless case, the obtained morphodynamic bed
equilibrium was highly influenced by varying the geometry.
For a rectangular embayment, a constantly sloping bed
profile was found. When the geometry was changed,
the bed profile became more convex (concave) for a
diverging (converging) embayment. Letting the deposition
parameter depend on the depth resulted in more concave
bed profiles. If we increased the embayment length, the
frictional influence became stronger as well. The effect
of bottom friction for a converging embayment was
negligible, but becomes more significant for a more strongly
diverging embayment. When also advective processes were
taken into account, the influence of frictional effects
increased significantly. When we considered diffusive
and advective sediment transport without an externally
prescribed overtide, we found that the bed profiles became
less convex compared to those with only diffusive processes
considered. Although this occurred for all geometries
considered, the influence of adding advective sediment
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transport was much stronger when the geometry of the
embayment was diverging.

When the prescribed sea surface elevation consisted of
both a M2 and a M4 tide, we found a maximum length of
the embayment for which there still existed morphodynamic
equilibria. The maximum embayment length decreased
when the geometry became more converging. The smallest
embayment length was found for a relative phase of φ =
270◦ for converging embayments. Making the geometry less
converging, increasing the bottom friction or decreasing the
amplitude of the M4-tide, resulted in increasing maximum
embayment lengths. We obtained two types of bed profiles,
depending on the values of the relative phase: a shallow one
where the external sediment transport was exporting and a
deep one for importing external sediment transport.

When considering a diverging embayment geometry,
there is a parameter range of relative phases and embayment
lengths for which two stable bed profiles co-exist, along
with a third unstable equilibrium. These results indicate
that for systems with the characteristics of the Wadden
Sea systems, there are parameter values for which both
a relatively shallow and a much deeper width-averaged
morphodynamic equilibrium can exist. For a proper
management, it is important to be aware of the existence
of multiple equilibria in tidal inlet systems. The analysis
given in this paper does not indicate the magnitude of the
perturbation necessary to go from one equilibrium to the
other, nor the time scale at which a change would take place,
this is topic of further research. However, we would like
to stress that the existence of multiple equilibria has been
observed in Schuttelaars and de Swart (2000) as well; they
found multiple equilibria for a rectangular long embayment
with a length of approximately L = 120 km, these model
results were confirmed by simulations done with a complex
numerical model (Hibma et al. 2003). It would be interesting
to investigate the presence of multiple equilibria for longer
systems with width variations. For a rectangular system, this
has already been done in Schuttelaars and de Swart (2000),
where indeed it was found that multiple equilibria can exist
as well (see Fig. 6 in that paper), and these results were
qualitatively reproduced in the paper of Hibma et al. (2003)
using a complex model.

The morphodynamic model derived in this paper
can be improved upon by explicitly considering lateral
processes what will result in observed complex channel-
shoal patterns. Furthermore, the accuracy of the water
motion close to the landward boundary can be improved
by considering more tidal harmonics, which might be
necessary as the parameter ε is not small near this boundary.
This might shed some light on the fact that we obtain
equilibria which exist on a long morphodynamic timescale
while many simulation models, like Van Ledden et al.
(2004), and Maan et al. (2015) result in an infilling of

embayments which occur on an even longer timescale.
Another interesting extension to the existing model would
be the inclusion of wind, waves and density flows, which
have been shown to be important (Green and Coco 2014;
Gatto et al. 2017; Burchard et al. 2008) and the inclusion of
flooding and drying processes.
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