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Identifiability of Location and
Magnitude of Flow Barriers in

Slightly Compressible Flow
S. Kahrobaei, Delft University of Technology; M. Mansoori Habibabadi, Delft University of Technology and Sharif
University of Technology; G. J. P. Joosten, Shell Global Solutions International, P. M. J. Van den Hof, Eindhoven

University of Technology; and J. D. Jansen, Delft University of Technology

Summary

Classic identifiability analysis of flow barriers in incompressible
single-phase flow reveals that it is not possible to identify the
location and permeability of low-permeability barriers from pro-
duction data (wellbore pressures and rates), and that only aver-
aged reservoir properties in between wells can be identified. We
extend the classic analysis by including compressibility effects.
We use two approaches: a twin experiment with synthetic produc-
tion data for use with a time-domain parameter-estimation tech-
nique, and a transfer-function formalism in the form of bilaterally
coupled four-ports allowing for an analysis in the frequency do-
main. We investigate the identifiability, from noisy production
data, of the location and the magnitude of a low-permeability bar-
rier to slightly compressible flow in a 1D configuration. We use
an unregularized adjoint-based optimization scheme for the nu-
merical time-domain estimation, by use of various levels of sensor
noise, and confirm the results by use of the semianalytical trans-
fer-function approach. Both the numerical and semianalytical
results show that it is possible to identify the location and the
magnitude of the permeability in the barrier from noise-free data.
By introducing increasingly higher noise levels, the identifiability
gradually deteriorates, but the location of the barrier remains iden-
tifiable for much-higher noise levels than the permeability. The
shape of the objective-function surface, in normalized variables,
indeed indicates a much-higher sensitivity of the well data to the
location of the barrier than to its magnitude. These theoretical
results appear to support the empirical finding that unregularized
gradient-based history matching in large reservoir models, which
is well-known to be a severely ill-posed problem, occasionally
leads to useful results in the form of model-parameter updates
with unrealistic magnitudes but indicating the correct location of
model deficiencies.

Introduction

Estimating reservoir parameters from measured data is an ill-
posed inverse problem because of the large number of parameters
and the limited available data (Shah et al. 1978; Oliver et al.
2008). Consequently, it is important to understand which parame-
ters can be estimated with reasonable accuracy from the available
data. This aspect can be addressed as determining the identifiabil-
ity of the parameters.

From a systems-and-control-theory perspective, the transient
response of a dynamic system contains information about dynam-
ics-related properties of a system. Consequently, including com-
pressibility effects (leading to a transient response) can result in a
more-accurate reservoir-parameter estimation than just consider-
ing the steady-state response. The pressure behavior of a slightly
compressible single-phase fluid in a reservoir can be described
accurately by the diffusivity equation. Theoretically, the tran-

sient-pressure response of every point in a reservoir to a step or
impulse input may contain information about reservoir boundaries
and reservoir heterogeneities (Grader and Horne 1988; Van Doren
2010). However, certain parameters have a more-significant effect
on this transient response than others, and in many cases a unique
identification of parameters is not possible. Subsequently, by
investigating the effect of different parameters on the dynamic
behavior, we can understand which parameters are more identifia-
ble from the available data. On the other hand, presence of noise
in the data may hamper the identifiability of such parameters and
can result in unrealistic parameter estimates (Dogru et al. 1977).
Hence, it is important to also investigate the effect of noise on
identifiability of different parameters.

Identifiability of reservoir heterogeneity has been studied by
many authors both from a classic well-testing perspective and
from a systems-and-control perspective (Stallman 1952; Watson
et al. 1984; Yaxley 1987; Grader and Horne 1988; Feitosa et al.
1994; Oliver 1996; Van Doren et al. 2008; Zandvliet et al. 2008;
Ahn and Horne 2010; Van Doren 2010). The concept of identifi-
ability as used in systems-and-control theory can loosely be
defined as the capacity to infer the magnitude of model parame-
ters from given specific input and output data. Moreover, the con-
cept of structural identifiability is, loosely speaking, concerned
with whether it is possible to infer the magnitude of model param-
eters at all from input/output data, assuming an optimally chosen,
“persistently exciting” input. Van Doren (2010) provides a more-
precise, mathematical definition of (structural) identifiability as
applied to porous-media flow. Stallman (1952) analyzed the pres-
sure response of a constant-rate well and presented log/log-type
curves for constant-pressure boundaries as well as impermeable
linear boundaries. Watson et al. (1984) investigated the identifi-
ability of estimates of two-phase reservoir properties in history
matching. They concluded that for single-phase incompressible
flow, only the harmonic average of the permeability distribution is
identifiable, and subsequently the presence of the saturation distri-
bution is essential to identify the absolute-permeability spatial dis-
tribution. Yaxley (1987) investigated the effects of a partially
communicating linear fault on transient-pressure behavior. Grader
and Horne (1988) and Ahn and Horne (2010) considered (slightly)
compressible flow and used well-testing-related methods such as
interference testing and pulse testing to investigate the detectability
of reservoir heterogeneities. They showed that there is sometimes
information about the distance between wells and flow-relevant
features (e.g., reservoir boundaries, impermeable subregions, or
permeability distribution) in the data, although to a limited extent
because of the diffusive nature of pressure transients.

The objective of this study is to investigate the identifiability
of location and magnitude of a flow barrier in compressible sin-
gle-phase flow by analyzing the effect of this heterogeneity on dy-
namical behavior of the flow. The motivation stems from a study
by Joosten et al. (2011) that showed that sometimes the applica-
tion of unregularized reservoir-parameter estimation still appears
to have added value. They argued, by use of numerical examples,
that localized unrealistic-parameter values can be used as an indi-
cator of model errors in the underlying reservoir model, a concept
that they named “model maturation.” In a follow-up study,
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Kahrobaei et al. (2014) showed that the application of unregular-
ized reservoir-parameter estimation may sometimes give an indi-
cation of the location of significant missing features in the
model. In the present study we further analyze this phenomenon
by addressing the identifiability of flow-relevant features. In par-
ticular, we apply two approaches to study the possibility of
detecting a low-permeability barrier from the observations (out-
puts of the system). In the first approach, we conduct three
different twin-experiments with synthetic production data conta-
minated with different noise levels in the time domain. In our
twin experiments, an unregularized parameter estimation is
applied to update uncertain parameters (gridblock permeabil-
ities) in a 1D reservoir model that contains a major deficiency in
the form of a missing low-permeability feature. In the second
approach, we develop an analytical method to explain our time-
domain findings. In this approach we consider flow through po-
rous media as a linear system and develop a method that gives an
analytical expression for the dynamic characteristics of the sys-
tem as a function of the system’s geometric properties and heter-
ogeneity in the frequency domain. This solution is obtained by
use of a transfer-function formalism applied to a series of bilater-
ally coupled porous-media models.

The structure of this study is as follows: Next we present and
discuss the numerical twin-experiment results in the time domain.
The transfer-function formulation is derived next. Afterward we
investigate effects of location and magnitude of a flow barrier on
the output of a system and present and discuss the parameter-esti-
mation results on the basis of the frequency responses of the sys-
tem. Next, the objective-function space is visualized and the
(structural) parameter identifiability is discussed. We end the
study with a brief discussion and conclusions.

Time-Domain Twin Experiments

We perform three twin experiments. They all use the same “truth
model” to generate synthetic data, but the resulting data are conta-
minated with different noise levels. The first experiment involves
the assimilation of noise-free production data, whereas in the last
two experiments we assimilate noisy production data.

Synthetic Truth. Consider 1D single-phase flow of a slightly
compressible fluid through a porous medium. The domain has a
homogeneous permeability distribution with a low-permeability
barrier in between. The size of the reservoir is 500�50�2 m,
which is divided into 50 gridblocks. Fluid compressibility is
1.0�10�7 Pa�1, and fluid viscosity is 1�10�3 Pa�s. The reservoir
is produced with an injector at the left side and a producer at the

right side. A low-permeability barrier with a width of 30 m is
located 350 m from the injector. The background permeability is
300 md, and the permeability of the barrier is 0.1 md. The reser-
voir has a uniform porosity of 0.2. The initial pressure is 300 MPa.
The producer is operating at a bottomhole pressure of 250 MPa
and the injector at a constant flow rate of 0.002 m3/s (172.8 m3/d).
The reservoir is simulated for 1,000 days and we measure the flow
rates in the producer on a daily basis. Fig. 1 shows the permeabil-
ity field of the reservoir with its low-permeability barrier.

Starting Reservoir Model. The low-permeability barrier in the
reservoir is missing in the starting model. All remaining parame-
ters in the starting model are identical to those of the truth case.
Fig. 2 depicts the uniform-permeability field of the starting model
with a constant permeability of 300 md.

For parameter-estimation purposes we try to minimize an
objective function, which is defined as a mismatch between
observed data and simulated data:

JðmÞ ¼ ½d� yðmÞ�TP�1
d ½d� yðmÞ�; ð1Þ

where m is a vector of unknown model parameters (gridblock per-
meabilities for the present study), d is a vector of data (measure-
ments), y is a vector-valued function that relates the model
parameters to the model outputs (i.e., the simulated data), and Pd

is a square positive semidefinite matrix of weight factors that is
chosen as the measurement-error covariance matrix. Minimization
of the objective function is achieved by adjustment of the model
parameters m. Various numerical techniques are available to per-
form this minimization, with the most-efficient one being gradi-
ent-based minimization where the gradient is computed by use of
the adjoint method (Oliver et al. 2008). For the present study, we
used an in-house reservoir simulator with adjoint functionality to
calculate the gradients of the objective function (Kraaijevanger
et al. 2007). We used the limited-memory Broyden-Fletcher-
Goldfarb-Shanno method to minimize the objective function (Gao
and Reynolds 2006).

Experiment No. 1: Parameter Estimation on the Basis of

Noise-Free Measurements. In the first twin experiment, parame-
ter estimation is performed starting from the uniform reservoir
model, depicted in Fig. 2, on the basis of the perfect (noise-free)
production data. Fig. 3 shows the updated permeability field after
parameter estimation. For this experiment, the covariance matrix
is chosen as an identity matrix.

. . . . . . . . . . . . . .
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Fig. 3—Updated permeability field of the 1D reservoir model for Experiment No. 1. Permeability values are expressed as the natural
logarithm of permeability in md.
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Fig. 1—Permeability field of a 1D homogeneous reservoir model with a low-permeability barrier. Permeability values are expressed
as the natural logarithm of permeability in md. The blue and orange dots indicate the injector and the producer, respectively.
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Fig. 2—Permeability field of the starting model. Permeability values are expressed as the natural logarithm of permeability in md.
The blue and orange dots indicate the injector and the producer, respectively.
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Table 1 lists the gridblock numbers and corresponding perme-
ability values of the low-permeability barrier in the truth case and
the updated model (Figs. 1 and 3, respectively).

As can be seen in Table 1, the gridblock numbers and the grid-
block permeabilities of the low-permeability barrier in the
updated model are exactly the same as those in the truth case.

Experiment No. 2: Parameter Estimation on the Basis of

Noisy Measurements: High Signal/Noise Ratio. In second twin
experiment, parameter estimation is performed starting from the
same reservoir model as Experiment No. 1 but on the basis of
noisy production data. Errors are generated by sampling from a
Gaussian distribution with zero mean and a standard deviation
equal to 27.8�10�3 m3/s (1 m3/d). Negative production rates, af-
ter the addition of noise, are reset to zero. It is assumed that the
measurements were affected by independent noise, which results
in a diagonal covariance matrix with equal-magnitude elements
for the observation errors. The same covariance matrix was used
in the objective function defined by Eq. 1. Fig. 4 depicts the
updated permeability field after parameter estimation on the basis
of noisy data (with known covariance).

Table 2 lists the gridblock numbers and corresponding perme-
ability values of the low-permeability barrier in the truth case and
the updated model for Experiment No. 2.

As can be seen in Table 2, in the experiment with noisy meas-
urements the positions of the low-permeability barriers in the
truth case and the updated model are exactly the same, but the
permeability value of the corresponding gridblocks in the
updated model are not as accurate as those obtained in the noise-
free experiment.

Experiment No. 3: Parameter Estimation on the Basis of

Noisy Measurements: Low Signal/Noise Ratio. In the third
twin experiment, the amount of error in the data is increased in
comparison with Experiment No. 2. In this case, the errors are
generated from a Gaussian distribution with zero mean and a
standard deviation equal to 278�10�3 m3/s (10 m3/d) by use of
the same approach as in the previous experiment. Fig. 5 depicts
the updated permeability field of the 1D reservoir model after pa-
rameter estimation.

Table 3 lists the gridblock numbers and corresponding perme-
ability values of the low-permeability barrier in the truth case and
the updated model for Experiment No. 3.

As can be seen in Table 3, by increasing the noise level in the
measurements, the positions of the gridblocks with the lowest per-
meabilities in the updated model and the truth case are still identical,
but the permeability values of those gridblocks are now significantly

different. The harmonic average over all gridblocks on the basis of
true permeability distribution is 1.65, and for the noise-free experi-
ment, the low-level-noise experiment, and the high-level-noise
experiment they are 1.65, 1.66, and 1.30, respectively.

We note that the deviation of our estimates from the true val-
ues is caused by random noise in the measurements. Different
realizations of the measurement noise will therefore result in dif-
ferent deviations of the estimates.

Transfer-Function Representation

To further analyze the behavior that was observed in our 1D twin
experiments in the time domain, we conduct 1D experiments by
use of a transfer-function formalism to characterize the identifi-
ability of the location and magnitude of model deficiencies (ab-
sence of flow barriers). We use a two-port network approach that
results in a lumped-parameter representation of our system (Car-
slaw and Jaeger 1959). The structure of the 1D initial-boundary-
value problem allows for the input/output representation of the
system in terms of pressure and flow rate at two points in the spa-
tial domain, mapped by a linear transformation.

Model Description. The 1D reservoir model that was described
previously can be considered as a system that consists of three
blocks. The total length of the domain and the length of the mid-
dle block are known. The length of the first block of the domain is
unknown, resulting in an unknown position of the middle block.
Note that length of the third block is a function of the length of
the first block because the total length of the domain is constant.
The middle block works as a barrier to flow from Point 1 to Point
4 (Fig. 6).

Governing Equations. The pressure behavior of a slightly com-
pressible single-phase fluid in a reservoir can be described by the
diffusivity equation. The pressure-diffusion equation for linear
flow between two points can be written as

@pðx; tÞ
@t

¼ g
@2pðx; tÞ
@x2

; ð2Þ

in which g is defined as hydraulic diffusivity,

g ¼ k

/lct
; ð3Þ

where k is permeability, / is porosity, l is viscosity, and ct is total
compressibility. Moreover, the flow rate for linear flow can be
written as

qðx; tÞ ¼ �A
k

l
@pðx; tÞ
@x

; ð4Þ

where A is the surface area.
Note that wells in Fig. 6 are to be imagined as (infinite conduc-

tivity) fractures fully penetrating a channel of constant cross sec-
tion A, and that skin, wellbore storage, and near-well radial-flow
convergence are neglected.

Dimensionless Variables. To transform Eqs. 2 and 4 into dimen-
sionless equations, various dimensionless variables are defined.

Dimensionless length is defined as

n ¼ x

L
; ð5Þ

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 4—Updated permeability field of the 1D reservoir model for Experiment No. 2. Permeability values are expressed as the natural
logarithm of permeability in md.

Model Gridblock No. 
Permeability
value (md)

36 0.1 
37 0.1 

Truth parameters 

38 0.1 
36 0.1 
37 0.0997 

Updated parameters 

38 0.1 

Table 1—Gridblock numbers and permeabilities of the low-per-

meability barrier in the truth and the updated models.
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where L is total constant length of the first and the last blocks of
Fig. 6.

Dimensionless pressure is defined as

p ¼ p� pi

p̂
; ð6Þ

where p̂ is the pressure at the outlet boundary and pi is initial
pressure.

Dimensionless time is defined as

s ¼ kt

lct/L2
: ð7Þ

By use of these dimensionless variables, we can rewrite Eqs. 2
and 4 in dimensionless form:

@p
@s
¼ @

2p

@n2
; ð8Þ

h ¼ �a
@p
@n
; ð9Þ

where h is dimensionless flow rate defined as

h ¼ q

q̂
; ð10Þ

and a is a dimensionless number defined as

a ¼ Akp̂

Llq̂
; ð11Þ

in which q̂ is the flow rate at the inlet boundary.
In this study, Eqs. 8 and 9 will be applied in three different

regions of constant permeability.

Transfer-Function Derivation. To find input/output relations of
the system depicted in Fig. 6, first the transfer functions of each
block are derived and then they are coupled together to obtain
transfer functions that describe the entire system. In the next sub-
section we derive the transfer functions for the first block of the
system depicted in Fig. 6. Similar derivations would apply to the
other blocks as well.

Input/Output Relations of One Block of the System. By
applying a Laplace transform to Eq. 8, we obtain

@2

@n2
Pðn; sÞ � sPðn; sÞ ¼ 0: ð12Þ

Eq. 12 has a solution of the form

Pðn; sÞ ¼ C1en
ffiffi
s
p
þ C2e�n

ffiffi
s
p
: ð13Þ

Moreover, Eq. 9 can also be written in the Laplace domain as
follows:

Hðn; sÞ ¼ �aC1

ffiffi
s
p

en
ffiffi
s
p
þ aC2

ffiffi
s
p

e�n
ffiffi
s
p
; ð14Þ

where functions C1 and C2 can be determined by requiring the so-
lution to satisfy the boundary conditions that are chosen as flow
rate at the left side and pressure at the right side of the block; that
is, Hðn; sÞ ¼ Hðn1; sÞ at n ¼ n1 and Pðn; sÞ ¼ Pðn2; sÞ at n ¼ n2.
Consequently, solving for C1 and C2 leads to

C1 ¼
1

KðsÞ þ K�1ðsÞ
Pðn2; sÞ �

1

a
ffiffi
s
p K�1ðsÞ

KðsÞ þ K�1ðsÞ
Hðn1; sÞ;

� � � � � � � � � � � � � � � � � � � ð15Þ

C2 ¼
1

KðsÞ þ K�1ðsÞ
Pðn2; sÞ þ

1

a
ffiffi
s
p KðsÞ

KðsÞ þ K�1ðsÞ
Hðn1; sÞ;

� � � � � � � � � � � � � � � � � � � ð16Þ

in which

KðsÞ ¼ en2

ffiffi
s
p
: ð17Þ

At the boundaries we have the following output variables:

Pðn1; sÞ ¼ C1 þ C2; ð18Þ

Hðn2; sÞ ¼ �aC1

ffiffi
s
p

KðsÞ þ aC2

ffiffi
s
p

K�1ðsÞ: ð19Þ

Inserting values of C1 and C2 from Eqs. 15 and 16 into Eqs. 18
and 19 gives the final solutions:

Pðn1; sÞ ¼
2

KðsÞ þ K�1ðsÞ
Pðn2; sÞ þ

1

a
ffiffi
s
p KðsÞ � K�1ðsÞ

KðsÞ þ K�1ðsÞ
Hðn1; sÞ;

� � � � � � � � � � � � � � � � � � � ð20Þ

Hðn2; sÞ ¼

a
ffiffi
s
p K�1ðsÞ � KðsÞ

KðsÞ þ K�1ðsÞ
Pðn2; sÞ þ

2

KðsÞ þ K�1ðsÞ
Hðn1; sÞ:

� � � � � � � � � � � � � � � � � � � ð21Þ

Subsequently, Hðn2; sÞ and Pðn1; sÞ can be written as a func-
tion of the boundary conditions:

�
Hðn2; sÞ
Pðn1; sÞ

�
¼
�

A11 A12

A21 A22

��
Hðn1; sÞ
Pðn2; sÞ

�
; ð22Þ

where Aij are the transfer functions of the first block, which
explain the input/output relations as a function of model parame-
ters. These transfer functions can be derived as

A11 ¼
2

en2

ffiffi
s
p
þ e�n2

ffiffi
s
p ¼ 1

coshðn2

ffiffi
s
p
Þ ; ð23Þ

A12 ¼ a
ffiffi
s
p e�n2

ffiffi
s
p
� en2

ffiffi
s
p

en2

ffiffi
s
p
þ e�n2

ffiffi
s
p ¼ �a

ffiffi
s
p

tanhðn2

ffiffi
s
p
Þ; ð24Þ

A21 ¼
1

a
ffiffi
s
p en2

ffiffi
s
p
� e�n2

ffiffi
s
p

en2

ffiffi
s
p
þ e�n2

ffiffi
s
p ¼ 1

a
ffiffi
s
p tanhðn2

ffiffi
s
p
Þ; ð25Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . . .

. . . . .

. . . . . . .

Model Gridblock No.
Permeability
value (md)

36 0.1 
37 0.1 

Truth parameters 

38 0.1 
36 0.1036 
37 0.1206 

Updated parameters

38 0.08 

Table 2—Gridblock numbers and permeabilities of the low-per-

meability barrier in the truth and the updated models.
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Fig. 5—Updated permeability field of the 1D reservoir model for Experiment No. 3. Permeability values are expressed as the natural
logarithm of permeability in md.
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A22 ¼
2

en2

ffiffi
s
p
þ e�n2

ffiffi
s
p ¼ 1

coshðn2

ffiffi
s
p
Þ : ð26Þ

In this way we can derive the transfer functions for each block
of our system.

Input/Output Relations of the Entire System. By coupling
the transfer functions of the three blocks, we can derive the input/
output relations for the entire system. Fig. 7 depicts the coupled
model in block-diagram representation for our 1D reservoir
model, where we used the letters A, B, and C to indicate the three
consecutive blocks of Fig. 6.

Each block of Fig. 7 has an input/output relation in the form of
Eq. 22. Consequently, by performing matrix multiplications, we
can find the transfer functions that represent the input/output rela-
tions for the entire system. The matrix form of the input/output
relations can be written as

�
Hðn4; sÞ
Pðn1; sÞ

�
¼
�

S11 S12

S21 S22

��
Hðn1; sÞ
Pðn4; sÞ

�
; ð27Þ

where the elements Sij are given by

S11 ¼ �
A11B11C11

C21ðB12 þ A12B11B22 � A12B12B21Þ þ A12B21 � 1
;

� � � � � � � � � � � � � � � � � � � ð28Þ

S12 ¼

�

C12 � A12C12B21 þ C11C22B12 � C12C21B12

þ A12C11C22B11B22 � A12C11C22B12B21

� A12C12C21B11B22 þ A12C12C21B12B21

A12B21 þ C21B12 þ A12C21B11B22 � A12C21B12B21 � 1
;

� � � � � � � � � � � � � � � � � � � ð29Þ

S21 ¼

�

A21 þ A11A22B21 � A12A21B21 � A21C21B12

þ A11A22C21B11B22 � A11A22C21B12B21

� A12A21C21B11B22 þ A12A21C21B12B21

A12B21 þ C21B12 þ A12C21B11B22 � A12C21B12B21 � 1
;

� � � � � � � � � � � � � � � � � � � ð30Þ

S22 ¼ �
A22C22B22

A12ðB21 þ C21B11B22 � C21B12B21Þ þ C21B12 � 1
;

� � � � � � � � � � � � � � � � � � � ð31Þ

where Aij, Bij, and Cij are the transfer functions of the three con-
secutive blocks of Fig. 6. Consequently, the block diagram of the
system (Fig. 7) can be simplified to the configuration depicted in
Fig. 8.

Effect of Location and Magnitude of Barrier on
Dynamic System Output

In the time-domain twin experiments, we used flow rates in the in-
jector and pressures in the producer as inputs and flow rates in the
producer as outputs. Therefore, we can simplify the configuration
depicted in Fig. 8 in such a way that the single output of our sys-
tem, Hðn4; sÞ, is influenced by two inputs: Hðn1; sÞ and Pðn4; sÞ.
Consequently, the input/output relation of the system is described
by the transfer functions S11 and S12 only (Fig. 9).

With the aid of Eq. 27, we can now write an expression for the
system output:

Hðn4; sÞ ¼ Hðn1; sÞS11 þPðn4; sÞS12: ð32Þ

Because we used step inputs in the time-domain twin experi-
ments, the dimensionless form of our inputs in the Laplace do-
main can be written as

Hðn1; sÞ ¼
1

s
; ð33Þ

Pðn4; sÞ ¼
1

s
: ð34Þ

By substituting Eqs. 33 and 34 into Eq. 32, the output of the
system can be written as

Hout ¼ Hðn4; sÞ ¼
1

s
S11 þ

1

s
S12 ¼

1

s
ðS11 þ S12Þ: ð35Þ

Note that all the variables, and therefore the transfer functions,
are dimensionless.

. . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

Model Gridblock No.
Permeability
value (md)

36 0.1 
37 0.1 

Truth parameters 

38 0.1 
36 0.026 
37 19.15 

Updated parameters 

38 89.6 

Table 3—Gridblock numbers and permeabilities of the low-per-

meability barrier in the truth and the updated models.

L

La Lb Lc = L – La – Lb

1 2 3 4

Fig. 6—Schematic of two 1D domains separated by a low-permeability barrier.
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Fig. 7—Coupled model in block-diagram representation for the model depicted in Fig. 6.
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At this stage we can replace s in Eq. 35 with jxD, where j is
the imaginary unit and xD is dimensionless frequency. Dimen-
sionless sampling frequency is defined according to sampling
dimensionless time in our time-domain experiments. This will
result in a frequency-response description of our system. Now we
are able to investigate the effect of location and magnitude of the
middle block (the flow barrier) on the output of our system. To
perform a sensitivity analysis and a parameter estimation, which
are presented later in the study, we define a “truth” case, with pa-
rameters listed in Table 4. The truth parameters are equivalent to
the parameters of the time-domain truth case. Moreover, in our
experiments the dimensionless frequency range is chosen between
0.6 and 600. The analytical truth case is used to generate synthetic
measurements for parameter-estimation purposes in the later sec-
tion Parameter Estimation in the Frequency Domain.

Effect of Location of a Flow Barrier. In this case we vary the
location (n2) of the middle block of the system, whereas the per-
meability magnitude of that block is fixed at a small value
(ab¼ 0.0025), and evaluate the corresponding output of the sys-
tem by use of Eq. 35. Fig. 10 depicts the amplitude of the system
output for different middle-block positions at different frequen-

cies. The dashed line in Fig. 10 is the amplitude of the system out-
put in the absence of the flow barrier.

As can be seen in Fig. 10, the output of the system is quite sen-
sitive to the location of the middle block when it has a small mag-
nitude. In the other words, the location of the low-permeability
barrier significantly affects the output of our system. Moreover, it
can be concluded from Fig. 10 that when the barrier location is
closer to the producer, it has more effect on the output.

Effect of Permeability Magnitude of a Flow Barrier. In this
case we vary the permeability magnitude (ab) of the middle block
of the system while its location is fixed (n2¼ 0.7). Subsequently
we evaluate the corresponding output of the system for different
values of the middle block’s permeability magnitude. Fig. 11
depicts the frequency response for these cases. Dashed line in
Fig. 11 is the amplitude of the system output in the absence of
the flow barrier.

It can be clearly seen that as the permeability magnitude of
the middle block increases—that is, as the resistance to flow
decreases—the output of the system becomes less sensitive to the
magnitude variations.

Parameter Estimation in the Frequency Domain

In this section we try to estimate uncertain parameters by use of
frequency responses obtained from the transfer function of the
system. In this study the location (n2) and magnitude (ab) of the
middle block are considered as unknown parameters (Fig. 6). We
try to estimate these parameters by minimizing a mismatch objec-
tive function defined as

V ¼ ðHobs �HoutÞTP�1
H ðHobs �HoutÞ; ð36Þ

where Hobs is the truth output vector, which is generated by use of
truth parameters and Eq. 35 at different frequencies by replacing s
with jx. Vector Hout is the simulated output. The starting model
parameters are identical to the truth parameters except for the
middle-block location and magnitude. PH is the measurement-

. . . . . . . . . . .

S11

S22

S
21

S
12

Π (ξ1,s)

Θ (ξ1,s)

Π (ξ4,s)

Θ (ξ4,s)

+

+

Fig. 8—Modified block-diagram representation for the model
depicted in Fig. 6.

Parameters Magnitude Unit 

La/L=ξ2–ξ1 0.7 – 
Lb/L=ξ3–ξ2 0.06 –

αa, αc 57.0 –

αb 0.0025 –

Table 4—Truth parameter values.

S11

S12

+ Θ (ξ4,s)

Π (ξ4,s)

Θ (ξ1,s)

Fig. 9—Input/output relation in the reservoir system.
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Fig. 10—Amplitude of system output for different barrier posi-
tion and a fixed low-barrier-permeability magnitude.
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Fig. 11—Amplitude of system output for different barrier-per-
meability magnitude and fixed location.
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error covariance matrix, which is chosen as an identity matrix in
this study. Note that the derivative of the objective function can
be calculated analytically. Moreover, because the data vectors
(observed and model output) consist of complex numbers, we
can make our data real-valued by considering them as 2D data
points; i.e., with real and imaginary parts (Blom and Van den
Hof 2010). Following this approach, we define an augmented-
data vector by stacking the real and imaginary parts of the com-
plex-valued vectors.

Experiment No. 1: Noise-Free Parameter Estimation. In the
first experiment we use noise-free measurements for parameter-
estimation purposes. Eq. 36 is minimized by adjustment of the
location and the magnitude of the middle block. The minimization
converges in 15 iterations. The truth-, starting-, and estimated-pa-
rameter values for this experiment are listed in Table 5.

It can be concluded from Table 5, similar to Experiment No. 1
in time domain, that in the case of noise-free measurements we
are able to retrieve the location and the magnitude of a low-per-
meability barrier with 100% accuracy.

Noise Effect on Estimation of Location and Magnitude of a

Low-Permeability Barrier. In presence of noise, Eq. 35 can be
written as

Hout ¼
1

jx
ðS11 þ S12Þ þ �; ð37Þ

where � represents Laplace-transformed noise converted to the
frequency domain. If we assume to have Gaussian white noise in
the time domain, which is the case in our time-domain examples,
this transformation also results in white noise in the frequency do-
main. Note that in our experiments noise only affects the output.

Experiment No. 2: High Signal/Noise Ratio. In this experiment,
we generate white noise from the same distribution as used in the
subsection Experiment No. 2: Parameter Estimation Based on
Noisy Measurements: High Signal/Noise Ratio for the high sig-
nal/noise-ratio experiment in the time domain, and use a Fourier
transform to transform the noise to the frequency domain. Subse-
quently, we perform parameter estimation on the basis of this
noisy data. The minimization converges in 14 iterations. The
truth-, starting-, and estimated-parameter values for this experi-
ment are listed in Table 6.

It can be concluded from Table 6, similar to Experiment No. 2
in the time domain, that for a low amount of noise the location
and the magnitude of the low-permeability barrier can be still
retrieved with an acceptable accuracy.

Experiment No. 3: Low Signal/Noise Ratio. In this experiment
we increase the amount of noise in the data. Noise is generated
from the same distribution as used in the subsection Experiment
No. 3: Parameter Estimation Based on Noisy Measurements:
Low Signal/Noise Ratio for the low signal/noise-ratio experi-

ment in the time domain. A Fourier transform is used to trans-
form the noise into the frequency domain. Subsequently, we
perform parameter estimation on the basis of this noisy data. The
minimization converges in 11 iterations. The truth-, starting-,
and estimated-parameter values for this experiment are listed in
Table 7.

It can be interpreted from Tables 6 and 7 that as the noise
increases, the accuracy of the estimation of the magnitude param-
eter becomes worse although the location of the barrier is still
accurate. In addition, these results confirm our twin-experiment
results in the time domain.

Visualization of the Objective Function

In this section we consider the objective function, expressed in
Eq. 36, which is a function of transfer functions S11 and S12 and
we then plot it as a function of our two uncertain parameters
(location and magnitude of the barrier) in an attempt to visualize
the objective-function shape and its spatial dependence on the two
parameters. Fig. 12 depicts the objective-function surface in the
two-variable space. The red dot in Fig. 12 indicates the minimum
of the objective function (truth parameters).

If we zoom in on the vicinity of the minimum of Fig. 12, we
observe that the surface also displays a varying magnitude with a
minimum in the ab direction (Fig. 13).

Figs. 12 and 13 clearly show that our objective function is
more sensitive to the barrier location than to the barrier magni-
tude, which means that, for the currently chosen input/output con-
figuration and input signals, the barrier location has a higher
probability to be estimated correctly from noisy data than the per-
meability magnitude. This behavior was indeed observed in our
parameter-estimation results when the amount of noise in the data
was increased.

Structural Identifiability

Whether parameters can be uniquely identified from measured
data can be considered in two ways. The first approach considers
identifiability, or whether through a specific input/output combi-
nation we can distinguish a change in any of the parameters (Van
Doren 2010). Such an identifiability analysis was performed in
the previous sections where we considered a specific input/output
configuration with specific inputs and measurement errors. The
second approach considers (local) structural identifiability, or
whether we can distinguish a change in any of the parameters at
all from input/output data, assuming an optimally chosen,
“persistently exciting” input. (Glover and Willems 1974; Van den
Hof et al. 2009) Such a structural-identifiability analysis is per-
formed in this section by considering the properties of the para-
meterized-transfer functions, which were derived previously in
this study. To this end, we investigate the sensitivity of transfer
functions S11 and S12 with respect to our uncertain parameters
(barrier location and barrier magnitude) around the truth parame-
ters. Because the parameters have different orders of magnitude,
scaling will influence the identifiable parameter space. Here, we
scale the sensitivity vectors by the truth parameters. Fig. 14
depicts the sensitivity of the system-transfer functions with
respect to barrier location and barrier magnitude. It can be clearly
seen that the system-transfer functions are more sensitive to the
barrier location than to the barrier magnitude for all frequencies
considered. This result confirms the findings from the previous
sections and, moreover, implies that the difference in

. . . . . . . . . . . . . . . . . . .

Parameters Truth Value 
Starting
Value

Estimated
Value

ξ2 0.7 0.4 0.7 
αb 0.0025 0.75 0.0025 

Table 5—Model parameters for Experiment No. 1.

Parameters Truth Value 
Starting
Value

Estimated
Value

ξ2 0.7 0.4 0.69 
αb 0.0025 0.75 0.0026 

Table 6—Model parameters for Experiment No. 2.

Parameters Truth Value 
Starting
Value

Estimated
Value

ξ2 0.7 0.4 0.74 
αb 0.0025 0.75 1.02E–5 

Table 7—Model parameters for Experiment No. 3.
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identifiabilty between location and magnitude is not data-depend-
ent but is a structural property of the system.

Discussion and Conclusions

The time-domain examples presented in this study are derived
from experimental results for a model in which only spatially
varying permeabilities are parameterized, whereas the frequency-
domain examples use a model where a structured physics-based
approach is applied in terms of location of the barrier and magni-
tude of its permeability. We note that there exist techniques to
represent the transient response to spatially varying heterogene-
ities in the Laplace domain with the aid of transformed variables,
but we did not pursue these (Levitan and Crawford 2002). In our
study the frequency-domain approach therefore uses more prior
knowledge (the barrier is parameterized) than the time-domain
approach (where all permeabilities are estimated separately). Sec-
ond, the first approach is truly experiment-driven, whereas the
second approach has to the capacity to say something about iden-
tifiability independent of the particular experimental data that are
used. Moreover, the frequency-domain approach could be used to
analyze in which particular frequency region the sensitivity of the
parameters is largest, and to design an experiment by picking a
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Fig. 13—Zoomed-in objective-function space. The red dot indicates the minimum.
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sinusoidal signal of that (maximum sensitive) frequency, for
example. Similar ideas have been discussed in the well-testing
community since the early 1970s, for purposes of “harmonic
testing” (Hollaender et al. 2002).

We note that we could have used the pressure in the injector as
an additional output. However, in practice, wellbore pressures in
injectors seem to be less frequently available for history-matching
studies than wellbore (or tubing-head) pressures in producers.
Moreover, pressures in injectors are strongly influenced by the
near-wellbore effects of induced fractures, which makes their
value for reservoirwide-information inference limited. A similar
argument could be made for pressures in the producers, which we
used as known inputs, because they may be influenced by the
near-wellbore effects of formation damage (skin). We expect that
including the injector pressure in our analysis (i.e., adding transfer
function S21 and S22 to Fig. 9) would improve the identifiability,
whereas leaving out the producer pressure from the inputs (i.e.,
removing transfer function S12 and only keeping S11 in Fig. 9)
will deteriorate the identifiability.

In this study, we have investigated the possibility of detecting
the location and the magnitude of flow barriers in a 1D reservoir
for slightly compressible single-phase flow from the observations
(outputs) under different noise conditions. To this end, we have
conducted different twin experiments in the time domain and the
frequency domain. For the latter, we have developed an analytical
expression for the dynamical characteristics of the system as a
function of system properties modeled after a transfer-function
formalism in the form of bilaterally coupled porous-media mod-
els. We conclude the following:
1. The frequency-domain analytical solution makes it possible to

investigate the effect of different parameters on the dynamic
behavior of the system.

2. It is possible to estimate location and magnitude of a flow bar-
rier from noise-free measurements in slightly compressible sin-
gle-phase flow.

3. When the noise level in the data is increased, the location of
the barrier remains relatively more identifiable than its perme-
ability magnitude.

4. The presence of noise in the data results in unrealistic perme-
ability-magnitude estimates.

5. Visualization of the objective-function space in the frequency
domain illustrates that the dynamic output of our system is
more sensitive to the barrier location than to barrier magnitude.

6. A structural identifiability analysis by use of the transfer-func-
tion approach shows that the difference in identifiability
between location and magnitude is not data-dependent but is a
structural property of the system.

Nomenclature

A ¼ surface area, L2, m2

Aij ¼ transfer functions for block A, dimensionless
Bij ¼ transfer functions for block B, dimensionless

ct ¼ total compressibility, Lm�1 t2, Pa�1

Cij ¼ transfer functions for block C, dimensionless
d ¼ vector of measured data (flow rates), L3 t�1, m3/s
J ¼ mismatch objective function in the time domain,

dimensionless
k ¼ permeability, L2, m2

L ¼ total length of the domain, L, m
m ¼ vector of unknown model parameters (permeability),

L2, m2

p ¼ pressure, L�1m t�2, Pa
p̂ ¼ pressure at the outlet boundary, L�1m t�2, Pa

Pd ¼ measurement-error correlation matrix, L6 t�2, m6/s2

q̂ ¼ flow rate at the inlet boundary, L3 t�1, m3/s
s ¼ Laplace variable

Sij ¼ transfer functions for entire system, dimensionless
t ¼ time, t, seconds

V ¼ mismatch objective function in the frequency domain,
dimensionless

x ¼ location, L, m
y ¼ vector of simulated data (flow rates), L3 t�1, m3/s
a ¼ dimensionless permeability magnitude
g ¼ hydraulic diffusivity, L2t�1, m2/s
h ¼ dimensionless flow rate
H ¼ Laplace-domain dimensionless flow rate

Hobs ¼ augmented vector of measured data in frequency domain,
dimensionless

Hout ¼ augmented vector of simulated data in frequency domain,
dimensionless

l ¼ viscosity, L�1m t�1, Pa�s
n ¼ dimensionless length
p ¼ dimensionless pressure
P ¼ Laplace-domain dimensionless pressure
s ¼ dimensionless time
/ ¼ dimensionless porosity

xD ¼ dimensionless frequency
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