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Summary
Mechanized flapping wing flight has the potential to be used on a large scale in the future, due to the
relatively high flight efficiency at small sizes compared to rotary- and rigid wing flight. The potential
of flapping-wing flight is demonstrated by insects and small birds, which use unsteady aerodynamic
effects to create larger pressure differences between the top and bottom of the wing than is possible with
steady aerodynamics as used by conventional aircraft. Currently, mechanical demonstrator flapping-
wing flyers such as the DelFly range show promise and have garnered the interest of the public. But,
to date no flapping wing flyer is under production that suits the needs of the market. To effectively
use these unsteady aerodynamic effects, the wing motion and wing size need to be chosen with care.
After millions of years of evolutionary optimization, flapping wing biological flyers are highly adapted
to this form of flying. Therefore, how insects use these unsteady aerodynamics effects is under great
scientific attention, with robotic flapping-wing apparatuses replicating insect wing motion to discover the
links between wing motion, force production, and resulting flow structures. These robotic flappers are
equipped with precise actuators to control wing motion and force sensors to measure the force on the
wing. Sometimes, advanced flow measurement techniques are used to investigate the flow structures
resulting from the flapping motion. Robotic flapping-wing measurement apparatuses have conflicting
design parameters, as the size of the structure needs to be minimized to better simulate a real wing,
but the structure needs to be stiff to not vibrate due to the forces on the wing during the experiment,
which can obscure the force measurement. In the current state-of-the-art of such force measurements
the temporal resolution is limited due to the need of severe digital filters to suppress the noise because
of the vibration of the mechanical structure.

This report consists of a three-part investigation regarding such force measurements. One part
is a parametric experimental investigation in the force production of revolving, or sweeping, wings
accelerating from rest at a fixed angle of attack. In this investigation, the angle of attack is the varying
parameter. Another part is a similar experimental investigation, but the wing is now revolving at constant
velocity, and then rotates, or pitches, along the spanwise axis. The chordwise location of this spanwise
axis and the rotational velocity are the varying parameters in these experiments. The final part of this
report is an investigation on the use of the Deconvolution Kalman filter for the force measurements,
where the aim is to be less dependent on the stiffness of the measurement structure, but instead to
take the mechanical properties of the measurement structure into account when estimating the forces
on the wing from the data obtained from the sensor. The measurements performed are used to assess
the validity of the results obtained in this way.

The shortcomings of the current state-of-the-art in filtering are demonstrated, where it is shown with
synthetic tests that conventional filtering setups are likely to introduce large errors, both in magnitude
and in timing of the force production for the experiments under consideration, for the phases of the
motions where the time rate of change of the force production is large. It is found that the Deconvolu-
tion Kalman filter is straightforward to set up for a synthetic experiment. For the measurement setup
under consideration, obtaining a good mathematical representation of the mechanical behaviour of the
measurement setup proved to be difficult. A satisfactory result is obtained, and the nature of the fil-
ter seems to be forgiving to minor errors in this process. The force measurements themselves show
interesting results where the expected linear relation between force production and rotational velocity
does not seem to hold true. The measurements also show small but meaningful differences in terms of
normal force and center of pressure location, for experiments with different kinematics, but the same
instantaneous motion parameters. Further interesting results are found where the center of pressure
location is plotted over time, which reveals large differences over time, and between the two different
types of motion under consideration. In general, the wing root seems to produce relatively less force
than would be expected from a blade-element estimation.
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1
Introduction

For a long period in human history, moving wings were considered to be the only feasible mechanism
for heavier-than-air propulsive flight. It took until the 19th century to change this. Only when George
Cayley inscribed his silver coin with the basics of fixed-wing flight, the aeronautic society transformed
from tinkers to scientists. With the advent of fixed-wing gliders and aircraft, fixed-wing flight has been
the main scientific focus, with rotary-wing flight following suit in the 20th century. But flapping-wing
flight has always been subject to human curiosity.

Recently, the advent of Micro Aerial Vehicles (MAV’s) and successful demonstrators such as the
DelFly, have rekindled scientific interest in flapping flight. In general, MAV’s are small, remote controlled
flyers that need to be able to fly and maneuver in populated areas. The flight goals usually include
hovering and low-speed flight. This leads to the need to decouple lift from airspeed. The result is a
current marketplace that is filled with rotary-wing MAV’s. Rotary-wing flight is well-understood and with
current electronic control capabilities can be cost-effective. However, rotary- and fixed wings operate
in the steady-flow regime, as the flow over the wing is constant in time. In Figure 1.1, it is shown that
the maximum lift coefficient attainable in steady-flow drops off steeply for lower Reynolds numbers,
which is a measure of length- and speed scales in which a flyer operates. For example, a very small
flyer with slow moving wings, such as a fruit fly, operates at a Reynolds number of around 1 × 10ኼ,
and a Reynolds number of 1 × 10 is the Reynolds number of the wing of a passenger jet. Insects
operate in the Reynolds number range from 1 × 10ኼ to 1 × 10ኾ. In Figure 1.1, it is shown that there is
a drop in maximum attainable steady-state lift below a Reynolds number of 1 × 10. To compensate,
insects and other small biological flyers usually operate in the unsteady flow regime, in which the flow
over the wing is not constant in time. This allows the biological flyer to use short-lived aerodynamic
effects to increase the attained lift. A schematic, illustrative comparison between steady and unsteady
aerodynamics is shown in Figure 1.2.

Figure 1.1: Maximum lift coefficient vs. Reynolds number, from [29]
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2 1. Introduction

Figure 1.2: Schematic comparison of (A) an airfoil in steady aerodynamic conditions and (B) the unsteady stroke reversal phase
of flapping wing motion (B), adapted from [56]

A logical first step in creating successful flapping wingMAV’s is to learn asmuch as possible from the
wings and wing movement of natural flyers. The flight patterns of insects and small birds have evolved
over many millions of years to employ and exploit unsteady aerodynamic lift generating mechanisms in
the most efficient way possible. To adequately understand natural flapping-wing flight, aerodynamicists
should be able to distinguish: (1) what the flyer does with its wings, (2) if that offers a flight performance
benefit, and if so, (3) which aerodynamic mechanism is responsible for the performance increase.
To meet this challenge, current aerodynamic research frequently utilizes robotic flapper mechanisms.
These robotic flappers can perform a flapping wingmotion, are equippedwith force sensors, and the test
setup can be equipped with flow visualisation equipment. This way, points 2 and 3 can be researched
simultaneously for a given motion. If all motions are understood, and if it is understood how the flow
structures associated with thesemotions interact with each other, it will be possible to design an efficient
mechanical flapping wing MAV, without having to rely on merely replicating insect wing movement, or
having to rely on cumbersome trial and error methods.

In this thesis, the investigation focuses on the force data acquisition of robotic flappers. As will be
demonstrated, it is difficult to accurately measure the force production with the current state-of-the-art
for a flapping type of motion. The difficulty stems from the fact that the measurement setup needs to
be designed for a minimal influence on the flow field, and has to contain numerous force sensors and
actuators. This often results in a structure consisting of long, thin supports, with numerous interfaces
and degrees of freedom. It is very difficult to keep all the vibrational modes of such a structure at
a suitably high frequency in order to avoid interference with the force measurements. This will be
demonstrated in the literature review.

The investigation is threefold. One part of the investigation is a parametric investigation on a re-
volving wing that accelerates from rest at a fixed pitch angle, where each consecutive experiment has
the wing mounted at a different angle. The forces on the wing due to this kind of motion are relatively
well understood, and these measurements are in part used to validate the Deconvolution Kalman filter.

One part is a similar parametric investigation on a flapping motion that replicates the wing rotation
performed by an insect. This is a more complex motion, of which the force generation is less well
investigated, and is more difficult to investigate as the motion kinematics are more impulsive, which
leads to a more impulsive loading of the support structure.

The third part of the investigation deals with the Deconvolution Kalman filter in an effort to improve
the filtering of the measured forces. In the study of Ahlfeld [1] this filter was implemented for a similar
problem, which showed promising results and was reported to be implemented with some ease. This
filter is applied for the measurement setup at hand, and compared to the current state-of-the-art. The
process to implement this filter is also demonstrated in detail. The Deconvolution Kalman filter is in-
vestigated for validity, adaptability for the different motion kinematics, and in terms of influence on the
signal to noise ratio.

This thesis is set up as follows: First, the literature review (Chapter 2) discusses the state-of-the-art
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in flapping wing research. The described complex kinematics of flapping wings are discussed, and the
current state-of-the-art is shown in terms of typical test setups and processing methods. This study
mainly focuses on force generation, but research in flow visualization is also described briefly, both
to show the state-of-the-art, and to help the reader better understand the described unsteady lift gen-
erating effects. Lastly, the current progress in force estimation models is shown. In Chapter 3 the
experimental setup that is used in this study is discussed, including the kinematics used in this inves-
tigation. The improved filtering is discussed in detail in Chapter 4. The results of the measurements
are shown and discussed in Chapter 5. Chapter 6, the final chapter, presents the conclusions from the
previous chapters, and contains recommendations for future work.





2
Literature Review

2.1. Advantages of flapping wing flight for small scale flyers
For small length-, and velocity scales, it is very challenging to design an efficient flyer [34]. This leads,
for fixed- or rotary wing MAV’s, to short flight endurance and limits to how small a flyer can be made. In
contrast, flapping-wing aerodynamics is different from rotary-wing or fixed-wing flight in that unsteady
aerodynamic effects can be exploited to generate more lift for a given power requirement. Dickinson
et al. discussed these unsteady aerodynamic mechanisms in [19]. In nature, flapping wing flight is the
only form of small-scale flight, a testament to the efficiency of this flight strategy. At larger scales, the
aerodynamic advantages of flapping wings decrease, and the physical drawbacks of accelerating and
decelerating large wings become dominant. This can be seen in nature in the flight strategy of larger
birds. Large birds flap very little and glide through air for large amounts of time, where the considered
aerodynamics are more similar to those of airplanes than those of insects, as discussed by Denny [17].

2.2. Kinematics of flapping wing flight
A logical first step in investigating flapping wing flight is to observe and learn from the wings and wing
movement of natural flyers. The flight patterns of insects and small birds have evolved over many
millions of years to employ and exploit unsteady aerodynamic lift generation mechanisms. This has
resulted in highly complex wing motion kinematics, which change depending on flight phase of the flyer.

2.2.1. Reference frames
To get a grip on the kinematics of insect wings, it makes sense to lay the groundwork from which those
movements are defined first. To do so, a generic insect is drawn in Figure 2.1, with the body parts
named and defined. To describe the position of these body parts in relation to each other, reference
frames are needed: an insect body-bound reference frame, and a wing-bound reference frame. These
are shown in Figure 2.2 The insect body reference frame has its origin at the center of gravity of the
insect body, with the axes the principal axes of inertia of the body of the insect, denoted with the -
suffix in Figure 2.2. As the insect moves its wings around the wing root, it makes sense to define a
new reference frame around the wing root to simplify the motion of the wing itself [60]. This wing-root
reference frame has its origin at the wing root, and the relevant axes have the ፫ suffix in Figure 2.2.
The 𝑍፫-axis is perpendicular to the stroke plane. This stroke plane is defined by the points in space of
the wing tip at the extremities of the motion and the wing root. The 𝑋፫-axis is the intersection of the
body 𝑋,𝑍 plane with the stroke plane. with the body length axis of the insect. The 𝑌፫-axis follows from
the 𝑋፫- and 𝑍፫-axes. The last coordinate system needed is the wing-coordinate system, with axes 𝑌፰,
𝑋፰, and 𝑍፰. The 𝑌፰ axis is from the root to the tip of the wing, the 𝑋፰ axis is from the leading edge to
the trailing edge, and the 𝑍፰ axis is perpendicular to both 𝑌፰ and 𝑋፰. It follows that the origin lies along
the root-to-tip line and on the wing surface. The spanwise position is not defined from the definition of
the axis. In this thesis, the origin is placed at the tip of the wing for reasons of convenience.

The flyer body also moves around in space, which has a large influence on the forces on the insect.
However, for convenience and tractability of the problem, the flyer body is chosen to be stationary.
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6 2. Literature Review

Figure 2.1: General insect body with nomenclature, adapted from [56]

2.2.2. Wing position
The position of the wing can now be defined in relation to the body, assuming a rigid insect body using
the set of angles as defined in [60]. In reality, there are nine Euler angles to be defined as there are
three reference frames (assuming a rigid body, no displacements are possible between the reference
frames), however those are not usually considered relevant in the literature of an insect in steady
motion. For a flyer performing flight maneuvers, all these angles need to be named and defined as
the flyer moves its body and stroke plane in response to its surroundings [24]. Again, this is outside
the scope of this discussion, as in general only hovering flight is discussed in literature [20]. As long
as the body posture is constant and the body does not move around in space, only five angles need
to be defined. The angle between the stroke plane and the body length (𝑋) axis is the stroke plane
angle 𝛽 (Figure 2.2B). This angle defines the the wing root reference frame with respect to the body
reference frame. Rotations of the wing-root reference frame in the 𝑋 , 𝑌- or 𝑌 , 𝑍 plane are assumed
to be zero and frequently not mentioned [60]. The Euler angles between the wing-coordinate system
and the wing-root coordinate system are all used in literature. The angle between the 𝑌፰ and 𝑌፫ axes
is the stroke angle 𝜙 (Figure 2.2A), the difference between the maximum and minimum stroke angle is
the stroke amplitudeΦ. A change in stroke angle is effected by sweeping the wing. The angle between
the 𝑌፫, 𝑋፫ plane and 𝑌፰ is the elevation angle 𝜃, also described as heaving angle in [36] (Figure 2.2B).
Changes in the elevation angle are usually described as ’plunging motion’. The last angle is the angle
between 𝑋፰ and the 𝑌፫, 𝑋፫ plane (stroke plane). This is the pitch angle 𝛼, which coincides with the
angle of attack for a hovering insect (Figure 2.2C). Pitching the wing is used to describe a change in 𝛼.
For classical thin-airfoil theory, the angle of attack is not the same as the geometrical angle of attack as
the flow around the wing induces a change in angle of attack and the tip vortex decreases the angle of
attack near the tip. In flapping-wing literature, it has been acknowledged that a similar angle of attack
is very difficult to define as the flows are highly unsteady and frequently detached [56]. Also, for natural
flyers, the wing is usually designed to flex under flight, and flexibility effects change the real angle of
attack over spanwise and chordwise positions. Wing flexibility is not further explored in this thesis.

2.2.3. Insect wing motion
As the reference frames and relevant angles are defined, and the wing can be located in relation to the
insect body, the motion itself can be explored. General insect wing motion is shown in Figure 2.3, for
Drosophila Melanogaster, or a fruit fly. The motion shown is representative, but in general, an insect
changes its wing motion based on flight objective. [36, 57]. The wing motion of an insect consists of two
phases: the upstroke, and the downstroke. The upstroke is roughly the phase of the the stroke where
the wing is swept from the front of the insect (ventral side) towards the rear of the insect (dorsal side).
At the end of the upstroke, the stroke reverses, and the downstroke starts. During the downstroke, the
wing is swept back from the dorsal side to the ventral side, at which point the stroke is reversed and
the upstroke phase starts again. Reversing the stroke at the ventral side is called supination, stroke
reversal at the dorsal side is called pronation. Between these phases, the wing is pitched, with the bulk
of the rotation happening over a short timespan at or around the pronation and supination phase. The
timing of the wing pitching, and the elevation angle during rotation are changed depending on flight goal
[36]. During the upstroke and downstroke, the wing is plunged up and down, generally out of phase
with the upstroke and downstroke (as illustrated in Figure 2.3). Deviations from the general motion are
discussed at length by Zanker [68] where a tethered fruit fly was observed using strobe photography.
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Figure 2.2: Relevant angles and of the insect body and wings, adapted from [37]

Figure 2.3: Typical insect wing motion, adapted from [37] and [56].

2.2.4. Experimental approximation of insect wing motion
For experimental use, the wing motion itself is frequently simplified. The wing motion can be observed
to consist of mainly the up- and downstroke (changes in 𝜙), with a wing rotation (changes in 𝛼) in
between. The plunging motion (changes in 𝜃) is then small compared to the other motions. To limit the
complexity of the experimental setup, the motion is frequently approximated to consist of just stroking
and pitching motions [5–8, 12, 18, 19, 29, 30, 41, 49, 58, 69]. In flapping wing experiments, these are
usually termed ’revolving’ and ’pitching’ motions. An acceleration component in the revolving motion
(�̈�) is frequently described as ’surging’. [49].

2.3. Scaling parameters
There are numerous biological flyers, with very different wing sizes and flapping strategies. This leads
to the difficulty on how to adequately interpret the conclusions drawn from the observed flows and
forces of one flyer to the observed flows and forces of another flyer. To this end, scaling factors have
been invented. A general introduction on scaling factors used in steady aerodynamics can be found
in reference textbooks such as [2]. In this report, it is assumed the reader is familiar with concepts
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such as air density (𝜌), dynamic viscosity (𝜇), dynamic pressure (𝑞ጼ = ኻ
ኼ𝜌ጼ𝑈ኼጼ), Reynolds number

(𝑅𝑒 = ᐴፔᐴ፥
᎙ᐴ ), and force coefficients (force/𝑞ጼ).

In the introduction of this chapter, the mentioned inefficiency of small flyers compared to larger flyers
is related to the Reynolds number. The length scales and speeds involved for MAV’s, insects, and
small birds are much smaller, which leads to a lower 𝑅𝑒. For steady aerodynamics, this results in lower
attainable 𝑐ፋ/𝑐ፃ ratios, and therefore less efficient wings [47]. In general, for steady aerodynamics, the
Reynolds number is the most used scaling parameter.

The state of the art in scaling for flapping wings is the investigation by Lentink and Dickinson [40],
where the following scaling parameters were found to be relevant for flapping wing flight:
(1) The Reynolds number of the time-averaged air speed 𝑈 at the radius of gyration (𝑅፠) of the wing.
𝑅፠ is defined in Formula 2.1, where 𝑟 is the radial position, 𝑅 the wing radius, 𝑐(𝑟) the wing chord
depending on radial position, and 𝑆 the wing surface area.
(2) The angular acceleration number 𝐶ፚ፧፠ (Equation 2.2), which is the rotational acceleration of the
flow divided by the convective flow acceleration. Ω is the angular velocity of the wing.
(3) The Rossby number 𝑅𝑜 (Equation 2.3), which is the Coriolis acceleration divided by the convective
acceleration.
(4) The centripetal acceleration number 𝐶፞፧, which is the centripetal acceleration divided by the con-
vective acceleration, and reduces to the Rossby number for hovering flapping wing flight as discussed
in this report.

In other literature, more scaling parameters are in use [60] [58], which relate more to wing motion
and wing shape than fluid-dynamic accelerations. These are the reduced flapping frequency 𝑘, the
aspect ratio of the wing 𝐴𝑅, and the Strouhal number 𝑆𝑡. The reduced flapping frequency is shown in
Equation 2.4, in which 𝑓 is the flapping frequency in Hz, andΦ the total wing sweep angle as mentioned
earlier. The reduced frequency compares the spatial wavelength of the flow disturbance to the chord
length; providing a measure of unsteadiness. The reduced frequency is also used for measurements
that isolate pitching motion, where 𝑘 = ᎎ̇

ኼፔ . [25, 49]. The aspect ratio 𝐴𝑅 is the ratio between the square
of the span (𝑅), divided by the wing surface area 𝑆 (Equation 2.5). For square wings, this is the same
as the span divided by the chord. Note that the span for flapping wing flight usually denotes the span
of a single wing. The Strouhal number (Equation 2.6) also provides a measure of unsteadiness, but is
more useful for forward flight which is not discussed in this thesis. 𝑉።፧፟ is the speed of forward flight
if the insect is not stationary. Furthermore, scaling parameters for flexible wings exist, but as wing
flexibility is outside the scope of this thesis, these are not discussed.

Finally, for experiments concerning flapping wings, the time is usually non-dimensionalized as well.
This is a topic where little consensus in literature has been achieved. Some papers use time in seconds
such as [58, 69], others use the amount of chords travelled from the start of the motion, with either the
wing tip, radius of gyration, or 75% chord as reference [60], some use fractions of the total up- or
downstroke [64]. Wing sweep angle (𝜙) is also used [5]. In this thesis, the convective time 𝑡∗ (Equation
2.7) will be predominantly used, as in [49]. In Equation 2.7, 𝑡 is the elapsed time in seconds, 𝑈 the
reference velocity at the reference span position and 𝑐 the chord length.

𝑅፠ = √
1
𝑆

ፑ

∫
ኺ
𝑟ኼ𝑐(𝑟)𝑑𝑟 (2.1)

𝐶ፚ፧፠ =
𝑈ኼ
Ω̇𝑅𝑐 (2.2)

𝑅𝑜 = 𝑈ኼ
Ωኼ𝑅𝑐 = 𝑅/𝑐 (2.3)

𝑘 = 𝜋𝑓𝑐
𝑈 (2.4)

𝐴𝑅 = 𝑅ኼ
𝑆 (2.5)



2.4. Unsteady force generation mechanisms 9

𝑆𝑡 = 𝐴𝑅Φ
2𝑈ጼ

(2.6)

𝑡∗ = 𝑈 × 𝑡𝑐 (2.7)

2.4. Unsteady force generation mechanisms
As discussed in the introduction, it is very challenging to design wings for steady airflow that still gen-
erate acceptable lift at low 𝑅𝑒. However, unsteady aerodynamic mechanisms can be exploited to
generate more lift. Most notably, insects and small birds have adapted themselves to become profi-
cient at utilizing unsteady aerodynamic mechanisms to stay aloft. These mechanisms have been listed
and discussed in review papers [36, 56, 60], and the convention of the review paper of Shyy et al. [60]
is followed in this thesis. The unsteady mechanisms discussed are :

• A pronounced Leading Edge Vortex (LEV) which stays attached during the motion instead of
convecting away

• Rotational forces generated as the wing pitches

• Wake Capture which indicates that the insect utilizes the wake of the previous stroke to increase
the force production for the following stroke

• Clap and Fling, which happens at the pronation and supination phases where the insect wings
meet and the wing-wing interaction is used to increase generated lift

• Tip Vortex (TV) which can increase generated forces by interacting with the LEV

• Added mass (although not strictly an unsteady aerodynamic effect as will be explained later)

2.4.1. Leading Edge Vortex
A wing that either starts to translate at an angle of attack that is too high for the flow to stay attached,
or dynamically attains this angle of attack while translating, will generate a vortex on the upper side
of the leading edge of the wing. The presence of this Leading-Edge Vortex (LEV) allows the wing to
generate high amounts of lift as the LEV adds circulation to the wing as the flow around the vortex core
reattaches to the wing, and the wing, together with the LEV, satisfies the Kutta condition, which states
that at the trailing edge, the flow coming from the top of the wing moves parallel to the flow coming from
the bottom of the wing [36]. As the flow curves over the attached vortex and reattaches before the wing
trailing edge, it is accelerated, giving rise to a force normal to the wing surface. As time progresses,
the LEV grows until the flow cannot satisfy the Kutta condition anymore. The vortex then detaches and
is convected away with the rest of the flow. The wing is still at an angle of attack larger than that stall
angle, thus at the leading edge, the flow is still separated, and the wing loses a large portion of the
generated lift. This phenomenon is called ’dynamic stall’ and is very important to helicopter flight, as
the angle of attack for the rotor blades changes constantly as the helicopter moves forward and the
rotor blades rotate. The constant generation and shedding of LEV’s leads to a complex loading on the
rotor. This dynamic stall is therefore considered at length in textbooks such as [39]. As stated, the LEV
convects away for translating wings. However, in flapping wing flight, this LEV stays attached. This
was first observed by Ellington et al. [23], where the attached LEV was also identified as a main factor
for the lift generated by a flapping wing, which is higher than what steady aerodynamic theory would
predict. In Figure 2.5, the spanwise vorticity of a revolving and flapping insect wing is visualized for a
single downstroke. Amongst other features, the LEV is prominently visible as the region of blue vorticity
near the leading edge of the wing for much of the downstroke. The LEV begins to form at �̂�=0.02, as the
small blue dot at the top of the leading edge, and grows steadily until around �̂�=0.12. During this growth,
another opposite vortex grows at the trailing edge, called the Translational Starting Vortex (TSV) by
Birch et al. This TSV convects away, but the LEV stays attached. and persists up until �̂�=0.43, where
it ceases to be identifiable due to the wing rotation. The differences in sustained generated lift and
drag coefficients between a revolving wing and a translating wing are illustrated in Figure 2.4. It is
observed that although the lift increases proportionally with the drag, the overall force generation is
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greatly increased. In the paper by Ellington [23], a similarity between the LEV for a flapping wing and
the LEV for delta wings was observed. Delta wings at high angles of attack also feature LEVs that stay
attached due the component of the flow in line with the axial direction of the vortex, which stabilizes
the LEV by convecting away generated vorticity, which keeps the size of the LEV such that the flow
can reattach.[65] [36]. In [23], an axial flow in the vortex core was observed, which was hypothesised
to have a similar stabilizing effect to the spanwise of delta wings. This axial flow was not observed to
be large enough to stabilize the LEV by Birch and Dickinson [6]. In [6], chordwise wing fences were
installed on a dynamically scaled wing of a fruit fly, which would impede the axial flow through the
core of the LEV. However, the LEV did not detach. A different hypothesis as to why the LEV stays
attached was given in which the downwash induced by the tip vortex and wake vorticity is the main
factor in stabilizing the LEV. In [6], a fruit fly wing was modelled, with a Reynolds number of 160. In
[23], a hawkmoth was investigated, which flies at a Reynolds number of around 6000 [60]. However,
Birch and Dickinson stated that as the spanwise axial flow was found to be not essential for LEV
attachement at Reynolds numbers of around 200, it would also be not essential at Reynolds number of
over 2000. The dissimilarity in LEV core axial flow at different Reynolds numbers was also observed
computationally by Aono et al. [3], where it was stated that the mechanism for LEV stability would be
the same for both the lower- and higher Reynolds number cases. It was offered that the accelerations
due to the sweeping of the wing, as discussed in Section 2.3, could be the source of LEV-stabilizing
spanwise flow components outside the LEV core. Lentink et al. [41] related the angular accelerations
due to wing revolving motion, most notably the Rossby number, to LEV stability as well. This stabilizing
effect was observed to be independent of Reynolds number, and therefore also valid for large birds as
well as insects. Clearly this has been the subject of intense research, with the latest development in
understanding why the LEV stays attached by Lentink et al. [41], where the centripetal- and Coriolis
accelerations, as quantified by the Rossby number, are proposed as the main contributors in stabilizing
the LEV. The downwash due to wake vorticity was described as incorrect since this hypothesis would
also hold true for a translating wing, but a translating wing shows no prolonged attachment of the
LEV. As shown in [51] and [62], the LEV does not stay coherent and attached indefinitely as it was
found that the LEV seems to burst and lose coherence after around 4 chord lengths of travel. It was
found that the force enhancement effect does not decrease after the LEV has lost coherence. As well
as using flow visualization on live insects, as in [9, 23, 35], experiments on the LEV attachment are
performed using dynamically scaled robotic flappers, for either describing the characteristics of the
LEV [6, 15, 16, 22, 28, 29, 32, 41, 48, 62], or parametric studies investigating the influence of the
aspect ratio [14], Reynolds number [8, 30, 41], Rossby number [41], Incident flow [13, 20], pitching
motion, [12, 49], and 𝛼. [32, 41, 51]. Of these parametric studies, [28–30, 41, 49, 51, 62] also include
force measurements of the wing. Numerical simulations are also employed to investigate the leading
edge vortex developments. However, the agreement between numerical investigations andmechanical
experiments is not perfect [28], with the numerical method having difficulties locating the vortices in
time and space. Qualitatively, the agreement between experiment and numerical is considered good.
Numerical investigations are ideally suited for parametric studies. In [11], the effects of 𝛼, stroke pattern,
Rossby number and Reynolds number are investigated. In [43], the wing planform shape, aspect ratio
and wing corrugation are numerically investigated.
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Figure 2.4: Lift-drag polars of translating (2D) and revolving (3D) wings at comparable Reynolds number, adapted from [18].
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Figure 2.5: Spanwise vorticity at 65% of the span during the fourth downstroke of a scaled flapping fruit-fly wing, obtained using
DPIV by Birch et al. [7], numbers in the top-left corner of each image denoting time in fractions of the complete down-upstroke
motion (፭̂), where 0 is the start of the downstroke, and 0.48 is the start of the upstroke. ፑ፞=160, ፑ፨=2.9 ([41]). Red arrow
denotes captured force vector. Note that the kinematics are such that during the downstroke, the wing rotates before reaching
the end of the stroke.
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2.4.2. Rotational Forces
As the wing undergoes a pitching motion, the rotation of the wing generates circulation and therefore
lift. This force augmentation mechanism was not under great scientific attention for flapping wing in-
vestigations, but was first mentioned by Dickinson et al. [19] and researched more in [58]. The effect is
qualitatively similar to the Magnus effect, but the mechanism is quite different, as the rotational forces
add lift as the flow tries to establish the Kutta condition. In contrast, the Magnus effect does not rely on
the Kutta condition as it only applies to blunt bodies. According to Sane [56] this effect is the same as
the effects described by Kramer [33] in the early 1930s, but more focussed on high-Reynolds number,
attached flow for flutter phenomena. However, Lehmann [36] states that the Kramer effect is a sepa-
rate effect that may or may not be of influence for the force generation of insect wings. To estimate
the magnitude of the rotational forces, Sane and Dickinson used the Kutta condition, assumed that
it was valid at the angles of attack of insect flight and used the blade-element method. This method
suggests that the lift generated depends on the distance of the pitching axis from the three-quarter
chord point [56]. This effect generates substantial force augmentation for insect flight, but only for the
duration of the pitching motion, leading to high transient force peaks [19]. This can also be observed
in Figure 2.5, for �̂�=0.38 to 0.48, in which the wing rotates, increases the magnitude of the LEV, which
is then balanced by an increase of vorticity at the trailing edge called the Rotational Starting Vortex
(RSV) by Birch et al. [7]. During this generation of vorticity, a high force peak is generated. In [49], the
forces generated when the wing is rotated are shown to match predictions of the quasi-steady model
of [19], and the flow over the wing underlying the force generation are visualized and quantified using
tomographic particle image velocimetry (PIV). For a translating wing, these rotational forces are para-
metrically investigated for pitching rate by Grandlund et al. [25] for pitching axis location and pitch rate.
It was found that for these translating plates and for higher pitching rates, the pitching motion induced
different effects at different pitching rates. The observed forces that can be related to rotational forces
as opposed to those related to inertial effects are concluded to be more prominent for higher pitch rates
and their magnitude is proportional to the distance of the pitching axis location from the three-quarter
chord point. Again, this is in agreement with the assertions of the quasi-steady model of [19]. For lower
pitching rates, this quasi-steady model was not found to be sufficient, and a time-based scaling of the
pitch-rate induced effects, based on the pitch-axis location was proposed. Yu et al. [66] performed a
parametric investigation based on planform shape of the wing for a translating-pitching plate. It was
found that in general, a tapered plate had a higher generated lift coefficient. It was also found that, all
wing planforms share the same trend in force generation development during the experiment. To the
author’s knowledge, there are no similar parametric studies for revolving wings.

2.4.3. Wake Capture
As the wing decelerates before the reversal of stroke (either pronation or supination), the vortical struc-
tures around the wing are shed into the wake. When the wing accelerates again, the previously shed
wake is encountered. Using this shed wake to increase lift is termed ’wake capture’. This effect is
visualized for butterflies in [61], where it was reported that butterflies can choose to move their wings
through the shed vortex, and that sometimes the flight goals of the insect are such that the effect is
beneficial, but sometimes not. In [61], it was reported that wake capture is a way to increase effi-
ciency of the flight mechanism. This is in agreement with the statements in [18], where it was found
that moving the wing through the wake greatly enhanced lift for a robotic flapper, but that the effect
was highly sensitive to changes in kinematics. Time-wise, the force augmentation by wake capture
effects are close to those of the rotational forces as wing rotation and wake capture happens around
the supination and pronation phases. Dickinson et al. [19] used Particle Image Velocimetry (PIV) and
force measurements on a robotic flapper to demonstrate that these two effects are separate from each
other, where the wake capture was described as greatly improving the overall efficiency of force gen-
eration. The robotic flapper used had only one wing. Generally, flapping-wing flyers have two wings,
and the presence of this second wing is hypothesised to diminish the effectiveness of the wake capture
mechanism in [36], however as the wake capture effect is very dependent on specific kinematics, and
the effect was expected to be small, no hard claims were made if the presence of the second wing
would enhance or decrease the effectiveness or efficiency of the wake capture mechanism. The wake
capture mechanism can be described as a collection of associated effects as shown by way of PIV
experiments in [7] (adapted in Figure 2.5) and [16]. In Figure 2.5, the wing-wake interaction process
can be observed from �̂�=0 to 0.09. At �̂�=0, the large red region is the shed LEV from the upstroke,
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the leftmost dark blue region is the shed RSV. Between these vortices, a jet of fluid is accelerated and
directed at the lower side of the wing, resulting in a force peak. This generation of the new LEV starts,
and at the end of the downstroke, a similar (with reversed vorticity) flow structure is visible with an LEV
and RSV about to be shed, which will result in a new jet during the start of the upstroke.

The early part of the wake capture, where the ’fluid jet’ directs fluid to the underside of the wing is not
considered part of wake capture by Jardin et al. [28], where it is called ’dipole jet’. This produces a high
transient lift peak. Jardin et al. [28] describe the interaction after the ’dipole jet’ phase as enhancing the
lift as the wake interaction allows the new LEV to form more closely to the wing. It was again noted that
this interaction is highly dependent on exact kinematics and wing flexibility. In [28], little wake capture
lift enhancement was found from shed vortex interaction, whereas Perçin et al. [50] observed that the
wake capture effect is only present for the case of flexible wings for the experimental configuration and
motion kinematics they considered in the study.

2.4.4. Clap and Fling
The insect wing can interact with its own shed wake, but also with the other wing. As the insect wing
revolves, it meets the other insect wing at the end of the upstroke. Sane [56] describes it as such (see
Figure 2.6): As the leading edges of the wings approach each other (A), the trailing edges follow (B),
which pushes out the air between the between them (C), giving a net rise in force. This is the ’clap’
phase. Following the ’clap’ phase, the ’fling’ phase starts, where the leading edges start to move apart
with the trailing edges stationary (D). This motion creates a low pressure region between the wings,
which sucks in air from above, adding circulation to the wing (E+F). The ’clap’ phase was found to be
detrimental to the total force production by Lehmann et al. [38], but the ’fling’ phase created a larger
LEV, augmenting the generated force for the entire downstroke. Later investigations by Lehmann et al.
[37] found that the effectiveness of the clap and fling mechanism is highly dependant on kinematics.
For biological flyers, this dependency on kinematics means that if the clap and fling effects align with
the flight goal the, mechanism is utilized by the flyer. Some insects use the clap and fling just for lift-off,
or just for maneuvers. The clap and fling motion is sometimes called ’clap and peel’ for flexible wings
as the wings are pulled apart in a peeling motion. Wing flexibility is another factor influencing the highly
complex clap and fling motion. Miller et al. [46] found that flexible wings were much more efficient at
utilizing the mechanism.
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Figure 2.6: Clap- and Fling motion schematic. The wing chord is shown with the same convention as in Figure 2.1. The light
blue arrows are the generated force, dark blue arrows the induced flows, black lines with arrows the flow lines. Adapted from
[56].

2.4.5. Tip Vortex
For steady translating flight, the Tip Vortex (TV) is usually associated with loss of lift and increased
drag. However, for translating low-aspect ratio wings at 𝑅𝑒 = 1 × 10ኽ suppressing the tip vortex leads
to a decrease in normal force generation as found by Ringuette et al. [54]. A similar kinematic was
numerically investigated by Shyy et al. [59] where it was found that the tip vortex could, depending
on kinematics, help ’anchor’ the shed vortex from the leading edge. A similar statement for revolving
wings was made in the paper by Birch et al. [6], where it was hypothesized that the downwash from the
tip vortex limits the effective anglef of attack, and therefore the growth of the LEV, keeping it attached.
The review paper by Shyy [60] therefore includes the tip vortex as an unsteady lift-enhancing mech-
anism. However, the described ’anchoring’ effect for the LEV was dismissed by Lentink et al. in [41]
as described in section 2.4.1. Numerical simulations suggested that the TV could, depending on wing
kinematics, enhance the force production. [60]. Papers discussed in Chapter 2.4.1 don’t consider the
TV as separate unsteady lift generating mechanism, but for all the cited measurements, the TV is a
prominent flow feature. Aono et al. [3] considered the TV a part of a ’ring-shaped’ vortex consisting of
the LEV, TV and Trailing Edge Vortex (TEV), which forms around the wing, see Figure 2.7. The vortex
called TEV by Aono et al. is called TSV by Birch et al. [7].
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Figure 2.7: Ring-shaped vortex structure comprising the LEV, TV, and detached TEV, adapted from [3].

2.4.6. Added mass
The last force augmentation mechanism described is the only non-circulatory effect, meaning the force
augmentation is not related to flow around the wing. This effect is termed ’added mass’, as when a wing
accelerates, fluid is accelerated by the wing, and in accordance with Newton’s third law, this gives an
opposite reaction force on the wing. This effect is not under a great research focus, although both the
review papers of Lehmann [36] and Sane [56] discuss the added mass force and call for more research
on added mass force generation. On the other hand, in [20], the added mass was found to be small,
and in agreement with simple estimates.

2.5. Modeling and measurements of flapping wings
2.5.1. Quasi steady modeling
The listed fluid-dynamic effects in the previous section not only complicate force measurements, but
also complicate the design of flapping wing measurement apparatuses and experiments on flapping
wings, as it is difficult to predict beforehand what forces will be generated, at what points in time. Also
for future MAV design, quick estimation tools are needed. To this end, a revised quasi-steady model
is suggested by Sane et al. [58]. This quasi-steady model consists of three components: a ”steady”
force corresponding to that generated by the instantaneous motion velocity and angle of attack, a
rotational force due to pitching rotation, and the contributions due to acceleration (added mass). This
is expressed in Equations 2.8 to 2.11. Here, �̇� and �̈� are the wing revolving velocity and acceleration,
while 𝛼, �̇�, and �̈� are the pitch angle, velocity, and acceleration, 𝑉ኺ. is the tangential velocity at the
reference three-quarter span position, 𝑐ፍ is the normal force coefficient, 𝑟 is the spanwise distance from
the revolving axis, 𝑐 is the wing chord length, 𝑏 is the wing span length. The ”steady” force contribution
of the revolving motion is given in Equation 2.9. The value of 𝑐ፍ is obtained from the measurements at
conditions where a steady generated force value has been attained with the wing revolving at a constant
angle of attack and a constant velocity. Therefore, this force contribution does take into account the an
attached LEV or tip vortex effects (should those be generated). The rotational forces are described by
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𝐹፫፨፭ፚ፭።፨፧. 𝐹፫፨፭ፚ፭።፨፧ was obtained by assuming the Kutta condition also holds for large angles of attack.
This leads to the notion that the lift generated by wing rotational velocity is zero if the wing rotation
axis (�̂�ኺ) is at the 75% chord point. This approach has been discussed by Sane et al. [58], Dickinson
et al.[19], and Granlund et al. [25]. The added mass effects are described by 𝐹ፚ፝፝፞፝፦ፚ፬፬, based on
blade-element theory and fluid accelerated with the wing. As can be observed, effects relating to the
reversal of the stroke are not accounted for in this model (wake capture and clap-and-fling). However,
the model can be used to estimate the relative magnitude of these effects. In [49], the model was
found to offer adequate performance for the phase in the motion where the added mass forces were
dominant, but the magnitude of the rotational force was overestimated, and the ’steady’ part of the
generated force shows a time lag. Quantitatively, the quasi-steady model described the generated
force history in [49], but it must be noted that the kinematics were chosen such that no wake capture
or clap-and-fling related forces would arise.

𝐹ፍ = 𝐹፬፭፞ፚ፝፲ + 𝐹ፚ፝፝፞፝፦ፚ፬፬ + 𝐹፫፨፭ፚ፭።፨፧ፚ፥ (2.8)

𝐹፬፭፞ፚ፝፲ = 𝑐ፍ(𝛼)
1
2𝜌(𝑉ኺ.)

ኼ𝑏𝑐 (2.9)

𝐹ፚ፝፝፞፝፦ፚ፬፬ = 𝜌
𝜋
4𝑐

ኼ�̈� sin 𝛼
፫ᑥᑚᑡ

∫
፫ᑣᑠᑠᑥ

𝑟 𝑑𝑟 + 𝜌�̈�𝜋8 𝑐
ኽ𝑏 (2.10)

𝐹፫፨፭ፚ፭።፨፧ = 𝜌𝜋𝑐ኼ�̇��̇�(0.75 − ̂𝑥ኺ)
፫ᑥᑚᑡ

∫
፫ᑣᑠᑠᑥ

𝑟 𝑑𝑟 (2.11)

2.5.2. Typical measurements with flapping wings
The earliest experiments intended to gain insight into the aerodynamics of flapping wing flight relied
on filming or photographing free-flying or tethered insects, bats, and small birds. Sometimes, smoke
was introduced in the airstream to visualize the flow. These experiments were generally focussed
on kinematics and flow phenomena [23, 24, 68], but also recently filming insects has produced new
insights [61]. However, living creatures are difficult to work with as their flight goals, and their associated
kinematics can change between strokes. Also, the forces they produce are very small. For most current
measurements, robotic flapping-wing mechanisms are used to investigate generated forces. Exactly
replicating an insect wing, flapping it at the same frequency of an insect, and also measuring the
produced force with a high degree of accuracy is very difficult. To overcome this problem, the flapping
mechanisms usually use a much larger wing, and are situated in an a water- or oil tank. Reynolds
scaling is then used to obtain a dynamically scaled flow as the biological flyer that was the inspiration.
[6, 18, 19, 58, 69]. Such a setup allows direct force measurements, but also flow visualization as in
[8, 12, 41], frequently this is combined such as in [5, 7, 29, 30, 49].

A robotic flappingmechanism allows the researcher to focus on a specific unsteady flowmechanism,
such as LEV attachment or rotational forces. For a focus on LEV attachment, the kinematics are
simplified in order to exclude the generation of other unsteady force generation mechanisms other than
the LEV, which could interfere with the measurements of the LEV [20]. The kinematics are simplified by
having only one wing, keeping 𝛼 constant and only considering an upstroke without a plunging motion.
This motion then starts with the wing at rest and at a certain 𝛼. The wing accelerates with a certain
rotational acceleration (�̈�) until a certain rotational velocity (�̇�) is reached. When a given 𝜙 is reached,
the wing is stopped. This is termed a revolving-surging kinematic. This way, the wing does not move in
its own wake, does not encounter the other wing and does not rotate, excluding the clap-and-fling, wake
capture and rotational force effects. It is not possible to exclude added mass forces, or the influence of
the TV on the flow field. The added mass force is generated by accelerations, and the TV is a feature
that arises due to the finite span of the wing and the fact that the wing generates a net force.

Until recently, wing rotation effects were obtained from a kinematic simplification that also omitted
the sweeping motion of the wing. The conclusions reached in [59] are based on a translating wing, as
are the findings of Granlund et al. [25] and Yu et al. [67]. However, this simplification foregoes full
dynamic similarity, as the Rossby number is infinite for a translating wing. A more valid and modern
way to research the rotational forces on a flapping wing would be to pitch a rotating wing, as in [49].
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This kinematic involves acceleration of the wing in similar fashion of the revolving-surging motion, with
the exception that the wing is rotated from the starting 𝛼 (usually zero) to a given 𝛼. The advantage
of this kinematic is that the difference between the revolving-surging and revolving-pitching kinematics
are attributable to the pitching of the wing, which allows the researcher to investigate the rotational
forces more directly.

2.5.3. Data processing
Typical force measurements are done with a force sensor located at the root of the wing, and the
reported values are in lift- and drag coefficients (𝑐ፋ and 𝑐ፃ), with the reference velocity the obtained
revolving velocity at the radius of gyration (as discussed in Chapter 2.3). Usually, the measurement
is repeated multiple times for ensemble averaging the raw data. The ensemble averaged data is then
filtered with either low-pass or moving-average filters to remove the electrical noise, generated by the
sensor, the amplification system, and influence of mechanical vibrations [5, 8, 30, 44, 49, 58, 69]. This
is explained clearly in [5] and [29], where the raw data is shown together with the filtering steps (Figure
2.8. Observing the picture it is clear that for the shown kinematics and used experimental setup, it is
difficult to determine which part of the measured signal is due to fluid-dynamic forces and which part
is due to noise or mechanical vibrations. Especially in the paper by Jones et al. [29], there are no
changes in shape of the obtained forces for sinusoidal, linear, and exponential acceleration profiles,
which is something that one would expect based on added-mass force estimates. This may indicate
that the filtering frequency to remove noise was lower than the frequency components associated to
fluid dynamic forces. On the other hand, spurious force peaks due to assumed test rig vibrations as
a result of the impulsive start of the motion have been observed by Perçin et al. [49]. This could
indicate the filtering frequency was too high. It therefore seems that it is indeed difficult to adequately
filter out mechanical resonances on typical force measurement setups for revolving wings, undergoing
impulsive motion. It might even be that when using only low-pass and moving-average filters, it might
be impossible to obtain a suitable cut-off frequency that filters out the mechanical resonance and leaves
the desired fluid-dynamic signal intact.

Figure 2.8: Filtered and unfiltered measured lift coefficients from [5] (A) and [29] (B).

To investigate the possibility of finding a suitable cut-off frequency, a linear simulation is performed.
First, a synthetic force history corrupted by mechanical resonance was created. The uncorrupted force
was obtained from the kinematics for the revolving-surging motion as described in [49], and the quasi-
steady force model by Sane et al. [58], as was also used by Perçin et al. [49].

In the same paper by Perçin et al., the resonance frequency of the mechanical system was found to
be 16.6 Hz. To get a representative response, a second order state-space model is constructed with a
resonance frequency 16.6 Hz. The response of this system is shown by its Bode plot in Figure 2.9. The
system is not intended to be physically representative for the actual experimental setup described, but
merely represents a general spring-mass-damper system with a similar resonance frequency. By linear
simulation of this state-spacemodel using the quasi-steady force estimate as the input, a synthetic force
history is obtained. This synthetic force history is taken to be representative of current measurement
setups. To investigate the influence of filtering, the response is filtered using low-pass filters with
decreasing cut-off frequencies, and moving average filter with increasing spans. The obtained filtered
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force histories, together with the baseline quasi-steady force estimate, are shown in Figures 2.10 A and
B respectively. Clearly, there is a significant drop in oscillatory behaviour with lower cut-off frequency
or larger span filters. However, around the phases in the motion where there are peaks or valleys
in the generated force, the lower cut-off frequencies or larger spans succeed in capturing the general
shape of the motion, but the impulsive behaviour is lost, and the timing itself gets spread out, where the
force generation appears to start earlier and stop later. Higher frequencies and shorter spans leave the
oscillatory mechanical behaviour intact, obscuring the fluid dynamic force peaks. It can be concluded
that a better filtering method is required for force measurements on revolving flapping wings undergoing
impulse motion.

Figure 2.9: Bode plot of system used for testing conventional filtering methods

Figure 2.10: Filter performance of various Chebyshev Type II filters with shown cut-off (-80dB) frequencies, and various moving
average filters with given spans. In this figure, the synthetic force would be the desired result.

2.6. Deconvolution filtering
In search of a better filter, similar problems involving vibrations of test structures interfering with force
measurements were found in rocket test stands and force balances of hypersonic testing facilities.
[1, 45]. To filter out these undesired interferences, so-called deconvolution filters were used. An intro-
duction on deconvolution filtering is given in [53]. Deconvolution is the inverse process of convolution,
where the response of a system, when subjected to an input, is obtained. This system can be a linear
or non-linear set of equations. The process of deconvolution then gives the input, using the known sys-
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tem and the response. If the measurement setup can be described by a linear system, and knowledge
of the response of the linear system is available, the input to the system can be calculated from the
output. Although the description is short, this is not a trivial process.

Types of deconvolution for the same problem were investigated in [1], with a similarly good introduc-
tion in [53]. The general convolution- and deconvolution, in frequency domain, is shown in Equation
2.12, where 𝑌(𝑗𝜔) is the output signal, 𝐻(𝑗𝜔) the system, and 𝑋(𝑗𝜔) the input signal. Usually the
deconvolution process is done in the frequency domain as convolution and deconvolution are multipli-
cation and division operations in the frequency domain while the deconvolution has no mathematical
operator in the time domain.

Convolution
𝑌(𝑗𝜔) = 𝑋(𝑗𝜔) ⋅ 𝐻(𝑗𝜔)

Deconvolution
𝑋(𝑗𝜔) = 𝑌(𝑗𝜔)/𝐻(𝑗𝜔)

(2.12)

However, in the real world, the convolution and deconvolution processes are contaminated with
measurement and modelling errors.

𝑌፦(𝑗𝜔) = 𝑌(𝑗𝜔) + 𝑌፞(𝑗𝜔)
𝐻፦(𝑗𝜔) = 𝐻(𝑗𝜔) + 𝐻፞(𝑗𝜔)

With:
𝑌፦(𝑗𝜔), 𝐻፦(𝑗𝜔) = measured components
𝑌፞(𝑗𝜔), 𝐻፞(𝑗𝜔) = error components

(2.13)

𝑋(𝑗𝜔) = 𝑌፦(𝑗𝜔) − 𝑌፞(𝑗𝜔)
𝐻፦(𝑗𝜔) − 𝐻፞(𝑗𝜔)

(2.14)

Filling in the deconvolution equation as such, it is obvious that problems appear for frequency re-
gions where the magnitude of the measured signal is as large as the error in the system identification.
This is a problem very difficult to circumvent, because it is unlikely that 𝐻፞(𝑗𝜔) is smaller than 𝐻፦(𝑗𝜔),
where 𝐻፦(𝑗𝜔) is small. This division leads to large errors for small changes in the signal. A solution
to this problem is usually a bandpass filter which dampens the fluctuations for regions where the real
signal 𝐻(𝑗𝜔) is expected to be small. However, this usually requires experience and knowledge with
the problem to be solved, which may not be available.

In [1], different types deconvolution filters were investigated. The filter types were Infinite Impulse
Response (IIR) filter and the Finite Impulse Response (FIR) filter, and the Kalman filter. In this sense,
the filter type is the mathematical representation of the test rig. An Infinite Impulse Response filter is a
mathematical model that takes a linear combination of the previous input- and output samples to create
a new output. The IIR filter thus incorporates a feedback loop which requires care in designing the filter
as the feedback loop can create unstable behaviour. The response of even a stable IIR filter to an
impulse input does not damp out to zero, from which the name is derived. In contrast, the response
of an FIR filter does. The output of an FIR filter is a weighted sum of the last input samples, meaning
there is no feedback loop, and instability is not an issue. The output of an FIR filter will damp out to
zero after an arbitrary amount of time. In general, any FIR filter can be approximated by an IIR filter,
and vice versa. IIR and FIR filter design was demonstrated in [1]. The process was described as ”time-
consuming and require a secure foundation in DSP”. The advantages and disadvantages of both the
IIR- and FIR filter design were described as ”rather well balanced”, with the application determining
which filter was preferable.

The rocket test stand in [1] is modeled as an Auto Regressive Moving Average (ARMA) process.
This model type is described as appropriate as the complete system output is a function of a series of
random shocks (MA part) and the behaviour of the model itself (AR part). This model was therefore
considered appropriate for the thrust stand under consideration. This reasoning also holds for a typi-
cal flapping wing test setup, although the involved frequencies are much lower (in the order of 𝟣𝟢Hz
compared to mentioned impulse widths of 𝟣𝟢ms, or 𝟣𝟢𝟢Hz. As the ARMA model can be described in
a similar way to the IIR filter, the IIR filter was deemed the most suitable for the thrust stand problem.
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A third filter type was discussed, the Kalman filter. This filter also uses feedback and IIR coefficients,
but works by calculating an optimal estimation by taking into account measurement and process noise
statistics. This makes the Kalman filter inherently stable. The Kalman filter is also simple to implement.
The downside is that the mentioned statistics need to be provided by the user. However, obtaining
these covariance matrices was later shown to be possible using a heuristic process.

The Kalman filter for deconvolution was used as explained in Bora et al. [10]. First, it was checked if
the model simulating the transient response of the thrust stand matched the real performance. For this,
the simulated response was subtracted from the real response. The noise in the resulting signal should
then ideally by white Gaussian. After investigation, this was found to be not the case as the thrust stand
was too complex to model using a transfer function. This would lead to the Kalman filter not showing
optimal results. However, it was found that the other deconvolution filters offered worse performance
than deconvolution using the Kalman Filter. The performance differences were found at the flanks of
amplitude rises and in the magnitude of the steady-state error. The observed downsides were a higher
computational effort and the need to provide process statistics by way of covariance matrices. It was
found that a heuristic estimation of the covariance matrices usually offers acceptable performance. In
absolute terms, the computational effort for a typical robotic flapper experiment is expected to be in the
order of seconds, and the computations can be done off-line.

2.7. Conclusion
In this literature review, the current state of the art in flapping wing research is evaluated and discussed.
It is found that there exists a possibility for exploration for revolving-pitching wing measurements, as
current data on the forces generated by the pitching motion and the influence of kinematics on the
generated force is limited. It is found that typical robotic flapper setups to investigate flapping wing
flight have shortcomings as the fluid-dynamic forces on the test stand will induce vibrations in the test
setup. These vibrations are picked up by the force sensors, which obscures the fluid-dynamic force of
interest. The current filtering method is shown to be not able to adequately cope with this problem for
impulsive changes in force generation, leading to potential loss of information, or even misinformation.
As both the revolving-surging and revolving-pitching kinematic generate such impulsive forces, a better
filtering method is needed to take into account the structure of the test setup. It is not adviseable to
change the physical structure of the test setup, as changing the test setup to limit the vibrations can
lead to loss of flow similarity over the wing. Computing the test stand response and subtracting that
from the measured response can be performed using deconvolution. To perform this deconvolution,
the Kalman filter for deconvolution (DK filter) is selected. In contrast to other deconvolution filters,
there is access to detailed previous work on the use and implementation of the filter, wherein the DK
filter was shown to work well for a similar problem, and it was considered easy to implement without a
secure foundation in signal processing. It is therefore concluded that the DK filter is the best candidate
to improve the measurement results for a typical robotic flapper.

The goal of this thesis is therefore twofold. 1) implement and validate the Kalman deconvolution filter
for the revolving wing measurement setup. 2) perform a parametric investigation in terms of kinematics
for a revolving-surging and revolving-pitching wing motion.
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Experimental setup and methods

3.1. Experimental Setup
In this chapter the experimental setup, processing and experiments done are discussed.

3.1.1. Measurement Equipment
The experiments were done at Aerodynamics Laboratory of Delft University of Technology. The setup
consisted of a plexiglass octogonal water tank, 60 cm in diameter and approx 60 cm high. In the water
tank, a wing was suspended. A large part of this experimental setup was also used by Perçin and
van Oudheusden in [49]. A photo of this setup is shown in Figure 3.1. The wing revolving motion
was controlled with a geared servo motor above the water line, the wing pitching was controlled with
a submersible servo motor in line with the pitching axis. This motor was mounted in an enclosure
that also housed the force sensor. The wing rotation and wing pitching motors were controlled with a
Maxon motor controller via an in-house code developed in LabVIEW. The motor above the waterline
controlling the revolving rotation had a positional resolution of 24 × 10ዅዀ𝑟𝑎𝑑 and could accelerate the
wing at up to 48𝑟𝑎𝑑/𝑠ኼ. The motor was equipped with a feedback loop and the accuracy of the wing
position and velocity was 8 × 10ዅኽ𝑟𝑎𝑑 and 2 × 10ዅኼ𝑟𝑎𝑑/𝑠 respectively. The pitching rotation could
be controlled up to 17 × 10ዅኽ𝑟𝑎𝑑. This motor did not offer position feedback. The forces on the wing
in Fx, Fy, and Fz direction and moments in Tx, Ty, and Tz direction were measured using the water-
submersible ATI Nano17\IP68 force sensor [4]. The force sensor was mounted at the root of the wing.
The specifications of the sensor are shown in Table 3.1.

Table 3.1: ATI Nano 17 sensing range and typical resolution via [4]

Sensing range Resolution

Fx,Fy (N) Fz (N) Tx,Ty, Tz (Nmm) Fx,Fy, Fz (N) Tx,Ty,Tz (Nmm)
12 17 120 1/320 1/64

3.2. Wing geometry and motion kinematics
3.2.1. Wing geometry
The wing sizing process depended on multiple design factors as listed below:

• The wing aspect ratio should be in the range of related experiments and similar to that of actual
insects [14, 60]

• The wing should be also mounted and moved in such a way that the Rossby number is in the
range of insect flight as described in [40].

• The Reynolds number should be such that it is in the range of insect flight [60].

23



24 3. Experimental setup and methods

Figure 3.1: Photo of experimental setup, adapted from [52]

• The wing tip needs to stay at least 5 chord lengths away from the walls to minimize wall influence.
[44].

• The wing planform shape should be rectangular so that the computation of wing parameters, such
as the aspect ratio, span, and chord are as independent as possible of averaging convention.

• The wing forces should be high enough to have sufficient dynamic range at the given resolution
of the force sensor. [4]. These forces were predicted using the quasi-steady model from [58].

• The working fluid in the water tank is restricted to pure water. This facilitates cleaning, and makes
it feasible to empty the tank daily, which obviates the need for chemicals inhibiting algae growth.

Balancing these needs, using the invaluable experience with the setup of M. Perçin and B. van
Oudheusden, the wing sizing as given in Figure 3.2 was determined as in Table 3.2. This wing is used
for all the motions as discussed in the next section.

Table 3.2: Wing size from Figure 3.2

Parameter size(mm)

Root Radius 27.7
Chord 50
Span 100
Wing thickness 3
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Water level

Rotation

Control

Figure 3.2: Sketch of experimental setup

3.2.2. Motion
As discussed in Chapter 2 revolving-surging and revolving-pitching motions are investigated in this re-
port.
The varying parameter for the revolving-surging motion is the geometric angle of attack (𝛼).
The data from the revolving-surging experiments is used for three goals. The first is the implementation
and validation of the DK filter, the revolving-surging measurements are used as there is more previous
work investigating this type of motion, to which the results in the current investigation can be compared
to. Also, the expected unsteady force generation is less complex, as less of the unsteady force gener-
ation mechanisms (as discussed in Chapter 2.4) will be excited. The second goal is to obtain a value
for 𝐹፬፭፞ፚ፝፲ in the quasi-steady model as discussed in Chapter 2.5.1, for the entire range of 𝛼, to be able
to use the quasi-steady model for the revolving-pitching experiments. Lastly, the initial acceleration of
the revolving-surging motion will excite structural vibrations in the test rig, which, as demonstrated in
Chapter 2, can lead to erroneous results if filtered conventionally. Filtering this phase with the DK filter
is expected to give more accurate force measurements.
The varying parameters for the revolving-pitching motion are the pitching rate (�̇�) and the pitch axis
location. At the start and end of the pitching motion, pitching accelerations are present which can lead
to erroneous force measurements if filtered conventionally (as demonstrated in Chapter 2).

Surging kinematics

To satisfy the need for a value of 𝐹፬፭፞ፚ፝፲, and to investigate the differences in force generation, the
surging measurements are performed at a large range of angles of attack to form a complete polar.

The wing is accelerated to a Reynolds number of 1 × 10ኾ at 75 % span, over one chord length of
travel. Taking this Reynolds number at 75 % span (𝑅𝑒ኺ.) as representative for the wing follows the
convention of recent papers investigating revolving wing aerodynamics. [29], [44] [62]. This translates
to a rotational acceleration of 3.89 𝑟𝑎𝑑/𝑠ኼ and a maximum rotational velocity of 1.95 𝑟𝑎𝑑/𝑠, or 0.2𝑚/𝑠
at the 75% chord point. The wingtip-radius Rossby number was 2.45, the Rossby number at the radius
of gyration was 1.66. [41]. After 13 chords travelled, or slightly more than one revolution, the revolving
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motion was stopped.
The angles of attack tested are shown in Table 3.3.

Table 3.3: Revolving-surging experimental space

Angles of attack tested (∘)

8 13 18 23 28 38 45 49 59 70 80 90 110

Pitching kinematics
The pitching kinematics involve first accelerating the wing to a certain rotational velocity, and then
rotating the wing to a certain angle of attack in a given time. As also shown in Chapter 2, there is little
literature on measurements on revolving-pitching wings, but ample literature on translating pitching
wings [25, 67]. Therefore, the experiment was designed to obtain information on a large range of
pitching rates and pitching locations. The starting angle of attack was zero degrees, the final angle of
attack was 45 degrees. Holes were drilled at the root along the chord of the wing to change the point
where the wing was attached to the pitching motor, and hence what the pitching axis location was. The
non-used holes were taped shut. For clarity, a sketch of the wing planform used is found in Figure 3.3)

Figure 3.3: Sketch of wing planform, showing the mounting holes to scale, the locations of the tested values of ፱Ꮂ, the leading
edge (L.E.) and trailing edge (T.E.)

Figure 3.4: Surging kinematics in terms of rotational acceleration and velocity

The acceleration profiles were determined in terms of chord lengths at 75% span, much like the
surging experiments. While at 0 degree angle of attack, the wing was accelerated to the same velocity
as used in the surging experiments, �̇� =1.95 𝑟𝑎𝑑/𝑠, 𝑉ኺ. = 0.2 𝑚/𝑠. Note that �̇� is equivalent to Ω for
�̇� = 0 and �̇� = 0.

The experimental space spanned was along the pitching location axis and the pitching rate. These
are also the pitching-related variables in the quasi-steady theory from [58]. The rationale between
choosing the pitching axis locations was influenced by the notion from the quasi-steady theory that the
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pitching motion increases lift proportionally to the distance from the 75% chord axis. The other pitching
axis locations were chosen at regular intervals from that chordwise position, with the mounting system
such that the wing could not be mounted closer than 12% chord from either the leading or trailing edge.
The tested values of �̂�ኺ = 𝑥ኺ/𝑐 were 0.12, 0.25, 0.5, 0.75, and 0.88.

The pitching rates were chosen in accordance to the observations in [60] from which the reduced
pitching rates of the observed animals can be computed. These are shown in Table 3.5. Another source
instrumental in determining the pitching rates to test was [25], where meaningful lift augmentation was
found only for reduced pitch rates higher than k = 0.05. The pitch rates of 𝜋, 𝜋/2, 𝜋/3, and 𝜋/4 were
chosen to be tested. The corresponding reduced pitch rate and chords travelled are given in Table 3.4.
The velocities and rotational acceleration of all the different motions are shown in Figure 3.5.

In conclusion, 20 revolving-pitching experiments were performed, at five different pitching axis po-
sitions and four different pitching rates.

Table 3.4: Pitch rates in different formats

Pitch rate

Pitch rate (rad/s) 𝜋 𝜋/2 𝜋/3 𝜋/4
Reduced pitch rate at 75% span (k) 0.39 0.20 0.13 0.10

Chords travelled at 75% span at �̇�፦ፚ፱ 1 2 3 4

Table 3.5: Reduced pitching rates for animals, computed using data from Table 2 and the motion graphs from Fig. 2 from [60]

Animal
pitching Main pitching phase mean flap 75% of mean Reduced
angle length in % of chord amplitude wing tip pitching
(deg) total motion (mm) (rad) velocity rate k

Hawkmoth 45 29 18.30 2.00 3.78 0.34
Honeybee 64 35 3.00 1.59 5.54 0.40

Hummingbird 75 32 12.00 2.02 6.50 0.31

Figure 3.5: Pitching kinematics in terms of rotational acceleration, rotational velocity, and pitching velocity, for all 4 different
pitching velocities
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3.3. Data Processing
3.3.1. Force
The obtained force data consisted of the forces in X, Y and Z direction, and moments in Mx, My, and
Mz direction, obtained at 𝟤 kHz. To facilitate data processing, a static measurement before the real
measurement was performed to obtain ’zero fluid-dynamic force’ voltages, consisting only of gravita-
tional and buoyancy forces. For the revolving-pitching measurements, a set of static measurements
were performed to obtain a function which predicts the change in gravitational forces during the pitching
motion.

The position data was obtained in terms of pitch angle, angular position and angular velocity. This
data was obtained at 𝟥𝟥Hz .

Each experiment was repeated 20 times on the same day, with the 23, 28, and 45 degree surging
experiments were repeated 20 times on two separate days. The results of these double experiments
were averaged after processing.

The force data is filtered before ensemble averaging. The data is first denoised with a 𝟧𝟢Hz cut-off
Chebyshev type II low-pass filter, and subsequently, the data is DK filtered. The denoising and DK
filtering steps are explained in Chapter 4. The 𝟧𝟢Hz low-pass filtered data is checked for outliers,
where an outlier was defined as a measurement run containing more than 1% of samples deviated
more than 30% of the maximum value from the average value.

To accurately match the data and get rid of any lag in the data or any time shifts induced by the
𝟧𝟢Hz low-pass filtering, the 𝟧𝟢Hz filtered data is used to match the repetitions in time by matching up
the deceleration peak from stopping the motion. The matched data is shown in Figure 3.6(A), together
with a closer look at the matched data around 𝟤 t*(B), where the acceleration part of the motion stops.
The deceleration peak is seen prominently at 𝟣𝟦 t*.
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Figure 3.6: Coherence of force histories, all repetitions shown for the 45 degree revolving-surging experiment

The effectiveness of the averaging effect is shown by assuming the 20 measurements cover the
entire range of possible physical values, and randomly generating a large amount of ensemble aver-
aged measurements from this dataset. Of this large amount of datapoints, the 5th and 95th percentile
in magnitude are plotted in Figure 3.8. This gives the assumed 2 standard deviations, or 95% confi-
dence interval for the amount of repetitions shown. Figure 3.7 shows the width of the 95% confidence
interval for terms of 𝑐ፍ, 𝑐ፌ, and 𝑐ፓ, of the DK filtered 𝟦𝟧 °𝛼 revolving-surging experiment. The width
of the confidence interval is given in percent of the maximum value. It is observed that there is little
improvement obtained by going from 10 repetitions to 20.
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Figure 3.7: 95% confidence interval width for ᑅ (A), ᑄ (B) and ᑋ, (C), in percentage of the maximum value.
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The Y and X force are nondimensionalized to 𝑐ፍ and 𝑐ፓ as discussed in chapter 2. The reference
velocity is the terminal tangential velocity at 75% of the span. The pitching moment coefficient 𝑐ፌ
was computed around the computed chordwise center of pressure at the constant-velocity part of the
motion, as the canonical quarter chord point is only valid for thin airfoils at a low angles of attack. To
convert to root-relative force coefficients as in [5], the coefficients obtained at 75% span need to be
divided by 0.65. Note that the root-relative force coefficient is the same as normalizing the generated
force at the radius of gyration reference position. Both methods end up at Equation 3.1

𝐶force =
6 × force

𝜌𝑐�̇�ኼ(𝑟ኽ፭።፩ − 𝑟ኽ፫፨፨፭)
(3.1)

3.3.2. Motion and force matching
Just as the force histories needed to be accurately matched to each other, the force histories need to
be time-matched to the position data. The motion data acquisition frequency is 𝟥𝟥Hz, and the force
data acquisition occurs at 𝟤 kHz. Therefore, the time-resolution of the force data is much higher. To
obtain accurate timing, the position data was interpolated and instead of looking at the position data to
find the motion start, the first force peaks were used to find the start of the motion. For the revolving-
surging experiments, the first force peak of interest was the moment on the force sensor caused by
the tangential force, as the location of this moment peak is related to accelerating the wing from rest,
and therefore the reaction of the fluid force in terms of moment is expected to coincide with any dis-
placement of the wing. The non-ambiguity of the start point location determination is illustrated with
the pitching moment for the 45 degree revolving surging experiment in Figure 3.9

Figure 3.9: Determination of starting point of revolving-surging motion illustrated with the 45 degree angle of attack experiment

For the revolving-pitching experiments, the motion was matched to the force data on where the wing
starts to pitch, as the control over the timing of the pitching motor was considered less accurate than
that of the revolving motor, as the pitching motor control did not include feedback. As in the surging
experiments the motion control sampling output was 𝟥𝟥Hz. However, this data only included the input
to the pitching motor, and not the actual position. To deal with this timing problem, any lag between
input to the pitching motor and actual pitching rotation was considered constant and the moment data
was inspected for a prominent decrease in moment coefficient which indicates a pitch-up moment. This
way, the motion data was matched to the force data. This is visualised in Figure 3.10.
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Figure 3.10: Determination of starting point of revolving-pitching motion illustrated with k = 0.39 and pitching axis location at half
chord.





4
Kalman Deconvolution filter setup and

implementation

4.1. Kalman deconvolution
The test setup is expected to induce vibrations in the measurements, as the setup is very similar to the
one used in [49]. The force results of those measurements required a 𝟣𝟧Hz low-pass filter to remove
most of the mechanical vibrations, which was demonstrated in Chapter 2 to have a chance of also
interfering with the force signal. As discussed, to deal with this problem, the Deconvolution Kalman
filter will be used and investigated in this thesis.

4.1.1. The Kalman Filter
The Kalman filter is the well-known optimal filter to remove Gaussian white noise with a zero mean.
To explain the Kalman filter, the derivation is given here. The derivation and presentation structure is
similar to the original paper [31] and [26].

The goal of the Kalman filter is to obtain an optimal estimation for the system state x(k) from a
measured output y(k), shown in Figure 4.1. This diagram consists of two parts, ”Process” and ”Mea-
surement”. The Process part represents the physical process of interest and noise sources therein, the
Measurement part represents the noise contribution of the measurement apparatus. This is explained
in detail in the rest of the chapter.

Figure 4.1: Process-measurement flow diagram

The process equation consists of updating the process state based on the previous state. This is
performed by the transition matrix which represents the transition from the state at time 𝑘 to the state at
time 𝑘 + 1. 𝑢(𝑡) is a white gaussian random noise source, designated ’process noise’. The unit delay
represents the recently computed state with added noise at 𝑘 + 1 becoming the state at time 𝑘 and as
such completes the loop. The shown process is only dependent on random inputs.

The process equation is shown in Equation 4.1, the process noise covariance matrix is given in
Equation 4.2.

33
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𝐱፤ዄኻ = 𝐅፤ዄኻ,፤𝐱፤ +𝐰፤ (4.1)

𝐸 [𝐰፧𝐰ፓ፤] = {
𝐐፤ for 𝑛 = 𝑘
𝟎 for 𝑛 ≠ 𝑘 (4.2)

Equation 4.3, the measurement equation is similar to the process equation, although it lacks the
iterative loop. The output of the process equation is transformed by the measurement matrix 𝐇፤ and
the measurement noise 𝐯፤ is added. The measurement noise is defined by the measurement noise
covariance matrix, shown in Equation 4.4 and is is equal to the process noise covariance matrix, but
controlled by the parameter 𝐑 instead of 𝐐. As with the process noise, this noise is additive, has a
zero-mean and is of white-Gaussian nature. The ability of the Kalman filter to remove noise in real-life
depends in part on the validity of these assumptions.

𝐱፤ዄኻ = 𝐅፤ዄኻ,፤𝐱፤ +𝐰፤ (4.3)

𝐸 [𝐰፧𝐰ፓ፤] = {
𝐑፤ for 𝑛 = 𝑘
𝟎 for 𝑛 ≠ 𝑘 (4.4)

The goal of the Kalman filter is to estimate the state of 𝐱 for all 𝑘 ≥ 1 from the observed data 𝐲. The
goodness or optimality of the estimation of 𝐱 called �̂� is determined by assigning a cost to the error.
This cost function 𝐽 needs to be chosen such that it is non-decreasing and positive for the estimation
error �̃�፤.

�̃�፤ = (𝐱፤ − �̂�፤). (4.5)

The Kalman filter is set up in such a way that the average cost, shown in Equation 4.6 is minimized. Do
note that the notation has been changed from vector to scalar random variables. This has been done
for readability and does not limit the theory.

𝐸 {𝐽 [𝑥፤ (𝑡፤) − �̂�፤ (𝑡፤)]} = 𝐸 [𝐸 {𝐽 [𝑥፤ (𝑡፤) − �̂�፤ (𝑡፤)] |𝑦ኻ, ..., 𝑦፤}] (4.6)

To find the optimal estimate which minimizes the average cost function two theorems are invoked.

Theorem 1
If the cost function is the mean-square of the error, or 𝐽(�̃�) = (�̃�)ኼ, and the processes {𝑥፤} and {𝑦፤} are
Gaussian, then the random variable �̂�፤ which minimizes the average cost is the conditional expectation,
given in Equation 4.7. Proof and more elaborate explanation of this theorem can be found in [31] and
references therein.

�̂�፤ = 𝐸 [𝑥፤(𝑡፤)|𝑦ኻ, ..., 𝑦፤] (4.7)

Theorem 2
Let {𝑥፤} and {𝑦፤} be random processes with zero mean. Observed are 𝑦ኻ, ..., 𝑦፤. If either

• (A) the random processes {𝑥፤} and {𝑦፤} are Gaussian or;

• (B) the optimal estimate is restricted to be a linear function of the observed values and the cost
function is the mean-square error;

Then, with the vector space 𝑌፤, formed by the set of linear combinations of observed random variables:

፤

∑
።ኻ
𝑎።𝑦። (4.8)

�̂�፤ = orthogonal projection of 𝑥፤ on 𝑌፤ = �̄�(𝑘|𝑘) = �̂� [𝑥፤|𝑌፤] (4.9)

With the optimum estimator defined, the Kalman Filter can be derived.
Suppose there exists an ‘a priori’, or ‘beforehand’ estimate for 𝑥 at time 𝑘, �̂�ዅ፤ and that the ‘new

knowledge’ of the measured value 𝑦 at time 𝑘 is to be used to update the a priori estimate. Since the
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estimation is set up to be linear, the ’a posteriori’ or ’afterwards’ estimate �̂�፤ is a linear combination of
the a priori estimate and the measured value, shown in Equation 4.10.

�̂�፤ = G(ኻ)፤ �̂�ዅ፤ +G፤𝑦፤ (4.10)

The matrices G(ኻ)፤ and G፤ need to be found. Theorem 2 is invoked, where the expected error and
the observed values are Gaussian and uncorrelated, meaning they are orthogonal to each other.

𝐸 [�̃�፤𝑦ፓ። ] = 0 for i = 1, 2, ..., 𝑘 − 1 (4.11)

Filling in Equation 4.11 with previous equations 4.10, 4.3, and 4.5

𝐸 [(𝑥፤ −G(ኻ)፤ �̂�ዅ፤ −G፤H፤𝑥፤ −G፤𝑤፤)𝑦ፓ። ] = 0 for 𝑖 = 1, 2, ..., 𝑘 − 1 (4.12)

Using orthogonality relations similar to 4.11

𝐸 [𝑤፤𝑦ፓ። ] = 0 for 𝑖 = 1, 2, ..., 𝑘 − 1 (4.13)

𝐸 [(𝑥፤ − �̂�ዅ፤ )𝑦ፓ። ] = 0 for 𝑖 = 1, 2, ..., 𝑘 − 1 (4.14)

Equation 4.12 is rewritten to

(I−G፤H፤ −G(ኻ)፤ )𝐸 [𝑥፤𝑦ፓ። ] = 0 for 𝑖 = 1, 2, ..., 𝑘 − 1 (4.15)

This equation is in general true if the first part of the left hand side is zero, or

G(ኻ)፤ = I−G፤H፤ (4.16)

Substitute this into Equation 4.10

�̂�፤ = �̂�ዅ፤ +G፤(𝑦፤ − H፤�̂�𝑘ዅ) (4.17)

Where G፤ is called the Kalman gain in later discussions on the Kalman filter. Where the previous
equations from 4.11 to 4.14 looked at the state estimation part to obtain relations for the Kalman gain,
now the measurement part of the state space relations is used to obtain new relations to obtain the
closed form for the Kalman gain.

First, the innovation �̃� is defined, giving a notion of new information imparted by each new measure-
ment. The new measurement 𝑦፤ is compared to the expected value of the new measurement, given
all previous measurements, �̂�፤.

�̃�፤ = 𝑦፤ − �̂�፤ = H፤𝑥፤ + 𝑣፤ − H፤�̂�ዅ፤
= H፤�̃�ዅ፤ + 𝑣፤

(4.18)

With 4.18 and 4.17 the state estimation error can be rewritten

𝑥፤ − �̂�፤ = �̃�ዅ፤ −G(H�̃�ዅ፤ + 𝑣፤) (4.19)

The orthogonality relation

𝐸 [(𝑥፤ − �̂�፤)�̃�ፓ፤ ] = 0 (4.20)

can be filled in with the rewritten state estimation error.

𝐸 [{(I−G፤H፤)�̃�ዅ፤ −G፤𝑣፤} (H፤�̃�ዅ፤ + 𝑣፤)] = 0 (4.21)

Observing that the measurement noise 𝑣፤ is independent of the a priori state estimation error �̃�ዅ፤ ,
this equation is rewritten such that the measurement noise, Equation 4.4 appears.

(I−G፤H፤)𝐸 [�̃�፤�̃�ፓዅ፤ ]Hፓ፤ −G፤𝐸 [𝑣፤𝑣ፓ፤ ] = 0 (4.22)

Rewriting for the Kalman gain



36 4. Kalman Deconvolution filter setup and implementation

G፤ = 𝐸 [�̃�ዅ፤ �̃�ፓዅ፤ ]Hፓ፤ [H፤𝐸 [�̃�፤�̃�ፓዅ፤ ]Hፓ፤ + R፤]
ዅኻ

(4.23)

Now the update relation relating the a posteriori updated estimate �̂�፤ to the a priori prediction of the
estimate �̂�ዅ፤ is known

�̂�፤ = �̂�ዅ፤ +G፤(𝑦፤ − H፤�̂�ዅ፤ ) (4.24)

The remaining expectation term in Equation 4.23 can be expanded and is called the a priori covari-
ance matrix

Pዅ፤
Pዅ፤ = 𝐸 [�̃�፤�̃�ፓዅ፤ ] = 𝐸 [(𝑥፤ − �̂�ዅ፤ )(𝑥፤ − �̂�ዅ፤ )ፓ] (4.25)

As indicated by the ዅ symbols, this term has an updated counterpart, the a posteriori covariance
matrix P፤

P፤ = 𝐸 [�̃�፤�̃�ፓ፤ ] = 𝐸 [(𝑥፤ − �̂�፤)(𝑥፤ − �̂�፤)ፓ] (4.26)

Substituting Equation 4.21 in the a priori estimation and reformulating using again the independence
of 𝑣፤ from �̃�ዅ፤ and Equation 4.23, the update relation between the a priori and a posteriori covariance
matrices is found

P፤ = (I−G፤H፤)Pዅ፤ (4.27)

With this equation it is possible to compute the influence of a ’new’ measurement or the innovation
on the estimation of the covariance matrix. The next step is the prediction of the covariance matrix, or
computing the new a priori covariance matrix from the previous a posteriori covariance matrix.

First, the update of of the state estimate is defined from the process equation 4.1

�̂�ዅ፤ = F፤,፤ዅኻ�̂�፤ዅኻ (4.28)

Rewriting using Equation 4.5
�̃�ዅ፤ = F፤,፤ዅኻ�̃�፤ዅኻ +𝑤፤ዅኻ (4.29)

When this rewritten a priori state estimation error is filled in in Equation 4.25 and observing that the
process noise 𝑤፤ is independent of �̃�፤ዅኻ, the ’current’ a priori covariance matrix can be written as a
function of the previous a posteriori covariance matrix and the process noise, from Equation 4.2)

Pዅ፤ = F፤,፤ዅኻP፤ዅኻFፓ፤,፤ዅኻ +Q፤ (4.30)

As the total derivation is rather long, a summary (adapted from [26]):

Kalman Filter summary

Given the noise driven state space model

x፤ዄኻ = F፤ዄኻ,፤x፤ +w፤ ,
y፤ = H፤x፤ + v፤

(4.31)

with w፤ and v፤ zero mean, independent Gaussian noise processes, and with covariance matrices Q፤
and R፤;
The optimal estimation filter consists of 5 steps for each 𝑘 and is recursively solved.

• A priori prediction of the state estimate

x̂ዅ፤ = F፤,፤ዅኻx̂፤ዅኻ (4.28)

If the process is not purely noise driven, as in the derivation, but there exists a control signal in
the process with a separate known input variable u፤ and input matrix B, which is customary in
state-space representation, the a priori prediction is slightly different.

x̂ዅ፤ = F፤,፤ዅኻx̂
ዅ
፤ዅኻ + Bu፤ (4.32)
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• A priori prediction of the covariance matrix

Pዅ፤ = F፤,፤ዅኻP፤ዅኻFፓ፤,፤ዅኻ +Q፤ (4.30)

• Kalman gain computation
G፤ = Pዅ፤Hፓ፤ [H፤Pዅ፤Hፓ፤ + R፤]

ዅኻ
(4.33)

• a posteriori update of the state estimate

x̂፤ = x̂ዅ፤ +G፤(y፤ − H፤x̂
ዅ
፤ ) (4.24)

• a posteriori update of the covariance matrix

P፤ = (I−G፤H፤)Pዅ፤ (4.27)

As the filter operates recursively, the initialization state and covariance estimations need to be provided.
If no other information is available, suitable initial values are

x̂ኺ = 𝐸 [xኺ]
Pኺ = 𝐸 [(xኺ − 𝐸 [xኺ])(xኺ − 𝐸 [xኺ])ፓ]

(4.34)

4.1.2. Kalman Deconvolution
In this thesis, the Kalman filter as explained above is used for deconvolution. This was proposed
by Bora et al [10]. In the paper by Bora et al., a random signal convoluted with an ARMA process
(G(z)) and an LTI process (F(z)), was subsequently deconvoluted using the described Kalman filter
and an augmented state-space system consisting of a combination of the state-space representation
parameters of both 𝐺(𝑧) and the 𝐹(𝑧). The process is shown in block-form in Figure 4.2

Figure 4.2: Block diagram of the process demonstrated in the paper by Bora et al. [10]

The method as described in [10] is used by Ahlfeld [1] to deconvolute the measured rocket thrust
pulses, convoluted with the mechanical vibrational dynamics of the thrust stand to which the rocket was
mounted. In this application, the ARMA-process state-space equations were replaced with a built-in
low-pass filter or integrator. This was possible as the parameters of the low-pass filter or ARMA-process
are only used in estimating the process input, which for the physical experiments is already known and
therefore not a goal to obtain. In this sense, the low-pass filter acts as a stabilization, dampening out
high-frequency fluctuations in the estimated input to the LTI process. The integrator also acts as a
stabilization, but in the way of suppressing steady-state errors. The low-pass filter could conceivably
be used to integrate low-pass filtering as a separate signal-processing step in the deconvolution filter.
However, as conventional low-pass filtering is simple to do outside the deconvolution Kalman filter, and
the built-in low-pass filter works counterintuitively [1], this option will not be explored, and the ARMA
process will be represented by an integrator.

In [10], the process F(z) and G(z) are represented as discrete state-space models. The states of
both state-space models are combined into a single state, and the state-space matrices of both models
are combined as well, giving a single augmented state-spacemodel. Using this augmented state-space
model, the Kalman filter can estimate not just the signal without noise, but also without the influence
of the system F(z). How this works is clear by inspection from the augmentation and the Kalman filter
steps. The augmentation itself is straightforward and will be explained using an example, incorporating
the derivation of a state-space model for a mass-spring-damper system, giving physical significance to
the augmentation process.
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System F(z)
In this thesis, the system F(z) from Figure 4.2 will represent the mechanical vibrations corrupting the
signal. F(z) is derived for a single spring-mass-damper system, however in reality this system can be
more complex. The state-space model for F(z) is derived from the second order differential equation
describing the motion of a spring-mass-damper system (Equation 4.35). The conversion from these
equations to both state-space and a transfer function can be found in many books covering engineering
vibrations, such as [27]. It must be noted that the derivation is given for the continuous time domain, and
not for the discrete time domain as is used in the rest of this chapter. The conversion from continuous
time to discrete time is not discussed here. This subject can be explored in various textbooks discussing
linear modelling.

𝐿 = position
𝑚 = mass

𝑐 = damping coefficient
𝑛 = spring constant
𝑢 = force input

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝐿(𝑡) = 𝑢(𝑡)

(4.35)

In the rest of the equations, the suffix ፟ is added to denote that they are part of the state-space
representation of system F.

This second order differential equation is rewritten as a set of two first order differential equations
by defining two new variables 𝐿ኻ = 𝐿 and 𝐿ኼ = �̇� followed by division and differentiation.

�̇�ኻ(𝑡) = 𝐿ኼ(𝑡)
�̇�ኼ(𝑡) = −2𝜁𝜔፧𝐿ኼ(𝑡) − 𝜔ኼ፧𝐿ኻ(𝑡) + 𝑢(𝑡)/𝑚

With:
𝜁 = 𝑐/(2𝑚𝜔፧) = damping ratio

𝜔፧ = √𝑛/𝑚 = undamped natural frequency

(4.36)

The state-space representation is

L̇፟ = 𝐴፟L+ 𝐵፟u
With:

L = [
𝐿ኻ
𝐿ኼ
]

𝐴፟ = [
0 1

−2𝜁𝜔፧ −𝜔ኼ፧𝑚
]

𝐵፟ = [
0
1/𝑚]

(4.37)

In this example, the output of this system is conveniently defined as the force on the base of the
spring-mass-damper.

y = 𝐶፟L+ 𝐷፟u
𝐶፟ = [𝜔ኼ፧ 2𝜁𝜔፧]

𝐷፟ = [0]
(4.38)

Where the D matrix is a zero-matrix as there is no direct link between the output of the model and
the input of the model. In case there is, the D matrix is non-zero.

A low-pass filter can also be expressed in a state-space equation. The from filter parameters can
be found in textbooks concerning signal processing, but will not be part of this thesis. For now, the
state-space matrices of a low-pass filter are accepted to be 𝐴፠, 𝐵፠, 𝐶፠, and 𝐷፠. The state vector is z,
the input vector is w, and the output vector is u.
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The 𝐴, 𝐵, 𝐶, and 𝐷 matrices are combined into an augmented state-space system as described in
[10]

F፤,፤ዅኻ =
⎡
⎢
⎢
⎢
⎣

𝐴፟ 𝐵፟ 0 0
0 0 𝐶፠ 𝐷፠
0 0 𝐴፠ 𝐵፠
0 0 0 0

⎤
⎥
⎥
⎥
⎦

B =
⎡
⎢
⎢
⎢
⎣

0
0
0
I

⎤
⎥
⎥
⎥
⎦

H፤ = [𝐶፟ 𝐷፟ 0 0]

(4.39)

The state- and input vectors are combined into an augmented state- and input vector

x = [L u z w] (4.40)

The size of the zero matrices 0 are found from the context of the other matrices. As can be seen,
any input-output transfer or ’feedthrough’ is incorporated into the augmented state-space matrices and
no separate D matrix is needed. The input of the spring-mass-damper system y፟ is also not present in
the B matrix, as it is part of the estimated augmented state vector. This has minor implications on the
Kalman filter equations, but not on the actual steps, which are as follows:

• A priori prediction of the state estimate

x̂ዅ፤ = F፤,፤ዅኻx̂፤ዅኻ (4.28)

This is the same equation as for the purely noise driven system without input. Although not noise
driven, for the Kalman deconvolution filter, the input is combined into F፤,፤ዅኻ.

• A priori prediction of the covariance matrix

Pዅ፤ = F፤,፤ዅኻP፤ዅኻFፓ፤,፤ዅኻ + BQ፤B
ፓ (4.41)

This is also slightly different from Equation 4.30, however, the BQ፤B
ፓ part reduces to Q፤ if Q፤ is

a number, which it is for 1D signals such as force signals. The other steps are the same.

• Kalman gain computation

G፤ = Pዅ፤Hፓ፤ [H፤Pዅ፤Hፓ፤ + R፤]
ዅኻ

(4.33)

• a posteriori update of the state estimate

x̂፤ = x̂ዅ፤ +G፤(y፤ − H፤x̂
ዅ
፤ ) (4.24)

• a posteriori update of the covariance matrix

P፤ = (I−G፤H፤)Pዅ፤ (4.27)

To obtain the estimation for the input force of system 𝐹(𝑧), one needs to observe the estimated
augmented state vector x̂, and use Equation 4.40 to determine û.
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4.1.3. Code validation
As a check if the code works, the results of Bora et al. [10] are reproduced. In this paper, system F(z)
from Figure 4.2 consists of the state-space matrices 𝐴፟, 𝐵፟, 𝐶፟, and 𝐷፟. System G(z) is a 10th order
Yule-Walker lowpass filter with a normalized cut-off frequency of 0.5𝜋 𝑟𝑎𝑑/sample. The equations and
matrices making up these systems are given in Equation 4.42 and 4.43. Recall Figure 4.2.

x፟(𝑘 + 1) = 𝐴፟x፟(𝑡) + 𝐵፟u(𝑘)
yᖣ(𝑘) = 𝐶፟x፟(𝑘) + 𝐷፟u(𝑘)

With:

𝐴፟ =
⎡
⎢
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−0.0032 0.0309 −0.3297 0.6855

⎤
⎥
⎥
⎥
⎦

𝐵፟ = [0 0 0 1]ፓ

𝐶፟ = [−0.02739 0.1119 −0.4685 0.1935]

𝐷፟ = 0.4652

(4.42)

x፠(𝑘 + 1) = 𝐴፠x፠(𝑘) + 𝐵፠w(𝑘)
u(𝑘) = 𝐶፠x፠(𝑘) + 𝐷፠w(𝑘)

With:

𝐴፠ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

−0.003 −0.03 −0.14 −0.43 −1.08 −1.86 −2.80 −3.09 −2.90 −1.76

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐵፠ = [0 0 0 0 0 0 0 0 0 1]ፓ

𝐶፠ = [0.0098 0.0688 0.2840 0.7282 1.3712 2.0921 2.1327 1.3983 0.6206]

𝐷፠ = 0.2651

(4.43)

These systems are combined as in Equations 4.39 and 4.40.

In Figure 4.3 the performance in terms of input signal (y(𝑘)) to input noise (y’(𝑘)−y(𝑘)) ratio (SNR)
in decibel and SNR of the estimate for a range of Q to R ratios is shown. The estimate noise is defined as
the estimate x̂(𝑘)minus the computed signal x(𝑘). In Figures 4.5 and 4.4, select deconvolution results
are shown for square-wave and white Gaussian noise respectively. As can be seen, the performance
of the Deconvolution Kalman filter is slightly better for the square-wave signal. For the square-wave,
the estimate SNR rises to almost as high as the measurement SNR, for the white Gaussian noise input,
the estimate SNR is markedly lower than the measurement SNR, indicating the DK filter adds noise.
This is contradiction with the statements made in [10]. It must be noted that the exact circumstances
in terms of Q and R were not disclosed. A possible explanation for the lower performance in terms
of Gaussian noise removal of the Deconvolution Kalman filter, compared to the regular Kalman filter,
is that the same Q/R ratio is used to estimate two different processes. For the deconvolution to work
well, the Q/R ratio needs to be set suitably high, or else the magnitude of the estimation will be lower
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than the value to be estimated, which is clearly observable in Figure 4.5. This error in steady state
magnitude converges to a nonzero magnitude for an ill-chosen Q/R ratio. One needs to pay attention
to this behaviour, and ideally set up the experiment such that there is a portion of which there is a region
in the force data of which a nonzero magnitude is known. Then this part can be used as a check on
the magnitude of the DK filter, utilizing the behaviour of the amplitude error for the entire force history.
As can be seen in the figure, if the force magnitude is correct for the steady state, it is correct over the
entire dataset (after convergence of the Kalman gain). The filter still performs up to expectations as, for
high enough Q/R and high enough SNR, the estimate SNR rises to over 𝟧𝟢dB. For lower measurement
SNR values, the error reaches a plateau when the Q/R ratio is suitably high.
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Figure 4.3: Estimation SNR for various measurement SNR (MSNR) values and Q/R ratios for both square wave input and random
noise input
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Figure 4.4: Deconvolution results for 𝟦𝟢dB measurement SNR white-gaussian noise input signal for various Q/R ratios
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Figure 4.5: Deconvolution results for 𝟦𝟢dB measurement SNR block-pulse input signal for various Q/R ratios
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4.1.4. State space system error sensitivity
In the previous section, the sensitivity of the Deconvolution Kalman filter to changes in the Q and R
matrices have been discussed. Also, the DK filter was tested for noisy measurements. However,
the measurements are not expected to be very noisy. As explained in Chapter 3.3, the measured,
denoised data is expected to have a small measurement error besides the mechanical influence. On
the other hand, as will be explained in Chapter 4.2, some necessary assumptions were made in the
system identification process. These assumptions might lead to an identified state-space model which
is not exactly describing reality. This was also the case in [1], however, it was found that the DK filter
still proved better performing than the other tested deconvolution schemes. In the thesis of Richard
Ahlfeld, it was possible to determine the magnitude of the difference between the simulated and real
response. As will be shown in the following sections, this is not possible for the measurement setup
currently under consideration. Therefore, a sensitivity test is set up to investigate the impact of DK
filtering with a misidentified state-space model. The state space system pair identified in Chapter 4.2 is
used to generate a synthetic force history from the quasi-steady model. The state-space systems are
modified in terms of resonance frequency to generate a set of misidentified state-space systems. The
resonance frequency is the selected parameter to modify, as changing the behaviour of the system in
other ways would make the eventual results difficult to interpret. The resonance frequency is shifted 20,
10, and 5% upwards and downwards to obtain 6 ’misidentified’ system pairs. The bode plots of these
misidentified systems together with the identified system is shown in Figure 4.6. The deconvoluted
signal together with the reference deconvoluted signal is shown in Figure 4.7. The standard deviation
from the original signal is shown as well. As can be seen, the SD for the perfect system is very small,
and the standard deviation rises linearly with the system shift. This linearity demonstrates a degree
of robustness of the DK filter, and if the error in system identification is small, the corresponding error
in the deconvoluted result is expected to be small as well. The magnitude of the signal stays intact,
and the general shape of the signal is conserved as well. Still, the error due to misidentification of the
state-space system are much larger than the expected measurement error.

Figure 4.6: Bode plots of modified systems compared to non-modified system
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Figure 4.7: Deconvolution results for 𝟦𝟢dB measurement SNR block-pulse input signal for various Q/R ratios

4.1.5. DK filter accuracy summary
The identified factors for the error in the filtered result were the (1) filter algorithm itself, the input noise,
the shape of the input signal, the Q/R ratio, and how well the system used in the filter matches with the
system that is convoluted with the signal to be estimated. Of these, it was found that for an experimen-
tally representative input signal and a measurement noise in the range of 𝟥𝟢dB to 𝟨𝟢dB, the Q/R ratio
can be tuned with relative ease to find an estimation error slightly larger than the measurement error if
the system representation is perfect. However, it is possible that an imperfect Q/R ratio leads to results
that are correct in terms of shape, but incorrect in terms of magnitude. Therefore, it seems prudent to
design at least a part of the experiment such that there is at least a phase where the forces are known.
In terms of revolving-wing measurements, after few chord lengths travel where the wing is moving at a
constant velocity, the vibrations will have damped out, and the value attained can be used to check the
results of the DK filter. The chance of error due to a wrongly-chosen Q/R ratio is expected to be small
due to the broad range of Q/R ratios giving optimal results for a given input noise and perfect system
identification. But as can be seen in the figures of this chapter, a misidentified system introduces much
larger errors in the DK filtered results. Therefore, the focus on accuracy in the rest of this thesis will be
on the identification of the correct state-space matrices, rather than finding the optimal Q/R ratio.

4.2. System Identification
4.2.1. Introduction to system identification
For the DK filter to work, as described in Chapter 4.1, the test rig vibrations need to be captured in a
state-space system. Converting the real-world test setup into a mathematical model is termed system
identification, and is not trivial [42]. For tractability, one can compare the system identification to finding
a collection of springs, masses, and dampers that respond in the same way as the experimental setup.
The response of such a collection of springs, masses, and dampers can be converted into a set of
equations, such as the state-space form explained in Chapter 4.1. To find this state-space system, an
optimization algorithm searches for the best fitting set of parameters that recreates a given output from
a given input.

4.2.2. Process
The system identification process consists of three parts: (1) obtaining a force input signal, (2) obtaining
a force output signal, and (3) finding a fitting set of equations that describe a process that matches the
input to the output.
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Input force
The force input signal ideally contains the entire frequency spectrum to have a complete description of
the system behaviour. When trying to measure the input force on the system, one encounters the same
problem for which the deconvolution filter and the system identification process is needed, as it is only
possible to measure the output, which is the input, convoluted with the mechanical system response.
Therefore, it is necessary to make assumptions regarding the input force. In [58] a quasi-steady model
for revolving wings was proposed. This model distinguishes between forces generated due to revolving
acceleration and revolving velocity. Especially for the added mass part of the generated fluid-dynamic
forces (Chapter 2), this model offers a good approximation [49].

With the quasi-steady model accurate enough to estimate generated forces during the acceleration
part of the motion, a motion profile is chosen such that it consisted primarily of acceleration, with low
displacements, and low velocities. The motion profile consists of a sharp acceleration peak up and a
sharp acceleration peak down over a short timespan. The forces on the wing during this motion can
be computed accurately using the quasi-steady model. To take up any mechanical slack during the
motion, the acceleration pulse was given while the wing was revolving at low velocity. This low revolving
velocity ( 𝟢.𝟢𝟧m/s at 75% span, see Chapter 3.2) is not expected to influence the force production due
to acceleration, as the force production due to wing acceleration is expected to be purely inertial and
linear. The wing revolves for 𝟧 t* at the described low velocity to let the mechanical vibrations caused
by the initial startup damp out. The velocity input to the motor during the impulsive motion phase is
shown in Figure 4.8 and the calculated force is shown in 4.9 respectively. It must be noted that only the
velocity input to the motor is shown, as the sampling rate of the feedback on the position of the motor
was 𝟥𝟥Hz, not high enough to obtain a detailed force input over the short amount of time. Furthermore,
the motor control used a special control system to position the wing accurately. This can be seen in the
irregular shape of the velocity input graph (Figure 4.8), therefore the motor controller feedback data is
less suitable to obtain input force measurements.

Figure 4.8: Velocity data screenshot from Maxon motor control software.-1 qc/ms is equal to 𝟢.𝟢𝟢𝟦m/s at % span
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Figure 4.9: Quasi-steady estimated input force and 𝟥𝟥Hz Chebyshev Type II low-pass filtered output force for use in system
identification algorithm

Output force
The output force of the wing ideally is the input force convoluted with the state-space system represent-
ing the motion. The measured output force therefore is assumed to be free of time-delayed nonlinear
force generation due to the accelerative input pulse. As the wing is revolving at the mentioned 𝟢.𝟢𝟧m/s
the mechanical oscillations are expected to be centered around the steady-state value of force produc-
tion at that velocity. The experiment was repeated ten times and ensemble averaged. The obtained
force history is shown in Figure 4.10. The start-up occurs at 𝟢.𝟧 t*, then clearly the mechanical reso-
nance is excited. At around 𝟣.𝟧 t*, these vibrations have damped out. At 𝟧 t*, the acceleration pulse is
given, giving rise to substantial vibrations. The motion is stopped at 𝑡∗ =5.5. Interestingly, during the
steady part of the motion, where very little oscillations are expected, there is still a lot of noisy behaviour.
To investigate, a Welch’s power spectral density (PSD) estimate of the measured force is made. This
estimate is shown in Figure 4.11. Clearly to be seen are some very narrow-band frequency peaks, the
first one at 𝟧𝟢Hz. These peaks are assumed to be too narrow to be purely mechanical resonance, and
therefore are deemed difficult to filter out, as high-order response modelling is required. Therefore, the
signal is low-pass filtered with a Chebyshev Type II low-pass filter with a cut off frequency of 𝟧𝟢Hz.
This leaves power peaks at two frequencies. These peaks are broad, and around 𝟣𝟧Hz and 𝟦𝟧Hz.
Taking into account that the magnitude of the generated fluid-dynamic force is low during the steady
part of the velocity, and the expected change in fluid-dynamic force generation only happens over a
short amount of time (around 𝟥𝟥Hz, or 𝟢.𝟢𝟥 t*, these oscillatory peaks are attributed to the mechanical
resonance in the structure.

The impact of low-pass filtering at 𝟧𝟢Hz on the fluid-dynamic force measurements is investigated
in Chapter 4.2.4. The resulting input- and output force data to be used for the system identification are
shown in Figure 4.9.
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4.2.3. Implementation
From the output signal, only the portion after the start of the acceleration peak is used in the system
identification algorithm. The mean is subtracted as that represents the steady-state revolving part of
the signal. After consulting Richard Ahlfeld, a lead-in tail of zeros is added to the signal and only the
first four cycles of the main mode were considered part of the output. These steps are for ease of
convergence for the system identification algorithm. The nominal output signal and input signal to be
used in the system identification algorithm are plotted in Figure 4.9. The system identification algorithm
used was the Prediction Error Minimization (PEM) algorithm from the System Identification Toolbox in
Matlab. This is an iterative optimization algorithm which aims to find a transfer function that can be
used to reconstruct the output, given the input. With the described input and output, the PEM algorithm
produced transfer functions that had a non-zero gain for low-frequency to DC signals. These systems
could not be considered as describing the real world situation. Mechanical equilibrium states that for a
constant applied force, after the vibrations have damped out, the input force is the same as the output
force, which means there can be no gain for a DC signal. In the input-output signal pair there seems to
be a lack of information on the mechanical behaviour at very low-frequency as evidenced by the drop
in power for low frequency ( < 𝟦𝟧Hz) signals in Figure 4.11. The PEM algorithm lacks the physical
insight and therefore, the notion that there should be zero gain at low frequencies should be passed
to the algorithm. To do this, a very low frequency ( 𝟣Hz) sine signal was summed with both the input
and output forces. It was not possible to add this information using the input signal. If the input signal
were to be longer, the nonlinear fluid-dynamic effects are expected to interfere with the assumption
that the output force is predominantly the result of the linear system representing mechanical vibration.
To adequately identify a transfer function with a double response peak as expected from the Welch
PSD estimate of the output force would leave the optimization algorithm with a large amount of free
variables, leading to the chance of the algorithm finding erroneous results. However, from observing
the PSD estimate in Figure 4.11, the transfer function to be found is expected to have two resonance
peaks, one around 𝟣𝟧Hz and one around 𝟦𝟧Hz. Therefore, the PEM algorithm was first tasked to find
a 2-pole and 1-zero transfer function focussing on the 𝟢Hz to 𝟦𝟧Hz part of the signal, and a secondary
transfer function describing the response from 𝟦𝟢Hz to 𝟧𝟢Hz. By setting these limitations on the search
space, the PEM algorithm was able to identify two transfer functions. These were rewritten in state-
space form to use in the DK filter.

4.2.4. System Validity
The identified system pair is shown by way of state-space matrices and Bode response plots in Equa-
tions 4.44, 4.45 and Figure 4.12 respectively. To test the applicability of the system pair for deconvolu-
tion, the original signal used for the system identification is DK filtered using the system pair sequentially
in the DK filter. It makes sense to test the system pair directly in the DK filter as that is the only reason
the system pair was identified. This is shown in Figure 4.13, together with the 𝟧𝟢Hz low pass filtered
quasi-steady estimate of the forces generated during the start and the end of the complete motion. As
can be seen, these forces are replicated within a margin of error acceptable for a quasi-steady model.
The shape is also correct, with no large, spurious oscillatory structures present. The acceleration pulse
used as input is also replicated in a qualitatively correct way as there is a definite up and down pulse.
This pulse is stretched out in time quite significantly. The source of this error could be that the motor
input does not exactly represent the actual input. The motion start and motion end are replicated in
agreement with the expectations. But, the acceleration pulse is not replicated to the same degree.
Therefore, this test is considered not sufficient to either accept or discard the identified system pair as
being a suitable model for the experimental setup. Formal verification is very difficult as it is not possible
to determine the exact forces the DK filtered result should replicate. However, for the revolving-surging
experiments, it is possible to gather some information on features a correctly filtered force history result
should have. These features should be present in the DK filtered force histories.
Another option that is explored is a replication of the DK filter sensitivity test. Replicating the synthetic
results with the measured data can show if the signal quality, determined by observing the previously
obtained features from the measured signal, changes for a modified system pair. If the force signal
quality improves when DK filtering with the modified systems, it follows that the identified system cannot
be accepted as being a good representation.
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System 1:

A = [
1.998 −1
1 0 ]

B = [
0.25
0 ]

C = [0.214 −0.206]

D = 0.052

(4.44)

System 2:

A = [
1.96 −0.981
1 0 ]

B = [
1
0]

C = [0.973 −0.972]

D = 0.992

(4.45)
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Figure 4.12: Bode plot of identified system pair response

Measurement data information
As stated, it is possible to define qualitative properties of the force history for the revolving surging
experiments, that can be used to assess the validity of the DK filtered force history.

For this test case, the measured, 𝟧𝟢Hz filtered normal force from the 𝟦𝟧 °𝛼 revolving-surging ex-
periment (see Chapter 3.2) is used. This force is plotted in Figure 4.13, together with the quasi-steady
estimate. The first observation is that the vibrations are mostly excited by the parts where there is
a notable jump in the expected fluid-dynamic force, such as at the start- and end of the acceleration
phase. This is illustrated more clearly in Figure 4.14, where the measured normal force coefficient (𝑐ፍ)
is band-pass filtered with to accentuate the measured vibrations, together with the acceleration data
of the motion. As the magnitude of the oscillations follows a decaying trend outside of regions where
there are jumps in the expected fluid-dynamic loading on the wing, these oscillations are consistent with
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mechanical vibrations, rather than fluid-dynamic loading. If the oscillations were to be fluid-dynamic in
origin, they are expected show a rise in magnitude as the wing reference velocity increases for 𝟢 t* to
𝟤 t*. Therefore, it is expected that the qualitative behaviour as prescribed by the quasi-steady model
holds true, and it is expected that the ’true’ fluid-dynamic force on the wing is free of large scale os-
cillations for parts of the motion that are not part of the acceleration phase. This also suggests the
true force should be very close to the conventionally filtered results for the phase of the motion with a
constant revolving velocity. The second notion is that since the wing is impulsively started, the initial
force rise should be steep. As can be observed in Figure 4.13, these notions are generally true for the
deconvoluted results under consideration.
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Figure 4.13: 𝟧𝟢Hz low-pass denoised measurement, Quasisteady estimate and DK filtered normal force coefficient for the 𝟦𝟧 °ᎎ
revolving-surging experiment
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Sensitivity test
The second test on the DK filtered force history is a replication of the sensitivity test from Chapter
4.1. To replicate this test, measured force data is used, instead of synthetically generated data, and
then deconvoluted with the same ’shifted’ systems. As can be seen in Figure 4.15, when compared
to Figure 4.7, the qualitative behaviour is very similar, with the modified system pairs not quite cap-
turing the mechanical dynamics, leaving progressively larger oscillations in the deconvoluted result for
larger discrepancies between the identified and modified systems. This indicates that in terms of reso-
nance frequency, the optimization algorithm seems to have found an optimum that matches the system
dynamics up to 𝟧𝟢Hz.
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Figure 4.15: Sensitivity test for measured data, compare with Figure 4.7. The denoised measurement refers to the 𝟧𝟢Hz low-
pass filtered data.

Frequency range of the deconvoluted result
As shown in Chapter 2, a low-pass filter has the risk of impacting the actual forces to be measured.

In this thesis, due to measurement limitations, it was not possible to identify a system pair that could
represent the mechanical dynamics above 𝟧𝟢Hz. Even identification for the dynamics below 𝟧𝟢Hz was
not trivial. However, this has necessitated the use of a 𝟧𝟢Hz low-pass filter. It is important to know if
this impacts the fluid-dynamic force measured. To this end, the obtained DK filtered result is filtered
with progressively lower cut-off frequency Chebyshev type II low-pass filters, until the result is judged to
diverge too much from the original result. This is shown in Figure 4.16. It was concluded that the results
do not diverge much from the 𝟧𝟢Hz filtered result up until a 𝟤𝟨Hz cut-off frequency. The 𝟤𝟨Hz cut off
frequency influences not only the peak position, but also the steepness of the flank of the force signal.
The peak is shifted to 𝟢.𝟢𝟤 t* later, compared to 𝟢.𝟢𝟣 t* shift of the 𝟥𝟤Hz filtered force. As there seems
to be no fluid-dynamic force information lost when filtering with a cut-off frequency of 𝟥𝟤Hz compared
to 𝟧𝟢Hz, it is concluded that it is unlikely that the fluid-dynamic force has frequency components above
𝟧𝟢Hz. Therefore, the 𝟧𝟢Hz upper bound found in the system identification process is not expected to
have an influence on the measured force. Converted to convective time, a 𝟥𝟤Hz response is around 8
cycles per t*. In terms of insect wing kinematics, with a 180 degree flapping angle, properly resolving
force generation requires a measurement system that is capable of resolving at least 120 cycles per
wing beat.

Also shown in Figure 4.16 is the linearity of the DK filter, where the sequence of filtering is inverted.
The results for first low-pass filtering then DK filtering are the same as when the measurements are
first DK filtered and then low-pass filtered.
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System Validity conclusion
In conclusion, the DK filtered force is in agreement with the expectations for the fluid-dynamic force, and
if the system pair is modified, the DK filtered force agrees progressively less well with the mentioned
expectations. Therefore, the author accepts the identified system pair as suitable for use in the DK
filter. There is no appreciable difference in low-pass filtering the measurements at 𝟧𝟢Hz or at 𝟥𝟤Hz,
from which it is concluded that the 𝟧𝟢Hz low-pass filter does not interfere with the fluid-dynamic force
measurements.

4.2.5. System Applicability
In Chapter 4.1 the DK filter was found to be robust in terms of small errors regarding resonance fre-
quency in the system identification. This was repeated in this chapter, with the systems that were
slightly modified not having a large influence on the estimated force. Therefore, it seemed possible
that the identified system pair would also be suitable for use in the DK filter for slightly modified ex-
perimental setup. The system pair was identified with the wing pitched to 𝟦𝟧 °𝛼. As a different pitch
angle could represent a slight change in response, the DK filter performance was investigated for other
angles of attack from 𝟪 °𝛼 to 𝟪𝟢 °𝛼. As the basic structure of the measurement setup does not change,
the mathematical structure of the state-space system representing the mechanical structure should
not be impacted either. For this investigation, it was recalled that a system misidentified in terms of
resonance frequency did not influence the magnitude of the DK filtered forces, but did increase the
oscillations in the force. To quantify the mis-fit, the measured signal is filtered with a 𝟥𝟤Hz low-pass
filter as discussed in the previous section. This way, the increase in oscillations can be quantified, with-
out impacting the shape of the signal. The increase in oscillations is quantified by way of normalized
standard deviation. This is plotted in Figure 4.17, where it can be seen that the standard deviation
increases for angles of attack smaller than 𝟦𝟧 °𝛼. However, as the system was identified for a wing at
𝟦𝟧 °𝛼, the standard deviation was also expected to increase for angles of attack greater than 𝟦𝟧 °𝛼, as
the changes in mechanical dynamics are expected to be qualitatively similar for pitching up or pitching
down. It is concluded that the rise in standard deviation is mainly due to a lower signal to noise ratio
for the wing at a lower 𝛼, as the noise stays the same, but the generated fluid-dynamic force is lower.
The force history shape stays the same for the entire range of 𝛼.

The force components also suffered from low signal to noise ratio due to a low force magnitude. It
was therefore not possible to obtain a state space representation for these forces individually. However,
it was observed that the wing itself is the least stiff in the normal force direction. In the tangential force
direction, the wing is very stiff, and also in the pitching moment direction, no wing vibrational modes
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Figure 4.17: DK filtered response compared to 𝟥𝟤Hz low-pass (LP) filtered DK filtered response of selected experiments. Note
that it is difficult to ascertain differences, but this is this by design as the 𝟥𝟤Hz low-pass filter was chosen as being at the boundary
of not meaningfully interfering with the measured data.

are expected in the wing itself. Therefore, the mechanical structure that causes the vibrations in the
wing normal direction is expected to be very similar to the structure causing vibrations in the wing
tangential- and moment direction. In Figure 4.18, the Welch PSD estimate for the normal force impulse
measurement, tangential force and moment around the centre of pressure (see Chapter 5.1 and 5.2),
during the surging acceleration of the motion is given. As can be seen, the PSDs are very similar in
shape and therefore it seems likely that the magnitude and tangential force can be DK filtered with the
same system pair identified for the normal force component. This is shown in Figure 4.19, where the
DK filtered pitching moment and tangential force are shown. These results seem much noisier than
the DK filtered normal force, however the reader is advised to take note of the Y-axis scale. The DK
filtered results are further smoothed by filtering with a 𝟥𝟤Hz low pass filter as it was demonstrated that
the information on the generated fluid-dynamic force is not affected by this low pass filter.
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Figure 4.18: Welch PSD estimate for the impulse start portion of the motion 𝟢 t* to 𝟣.𝟧 t* for all force components

In conclusion, it can be stated that the identified system pair is suitable in the DK filter to filter the
normal force, tangential force, and pitching moment for the measurement setup at all angles of attack.
This conclusion seems too convenient, but one must keep in mind that the measurement apparatus
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Figure 4.19: DK filter performance for tangential force and moment coefficients. Note that the moment is around the centre of
pressure for steady motion.

stays the same for all the measurements, and the goal of using the DK filter is to filter out vibrational
modes of the measurement apparatus. It would be unlikely that the vibrational modes are aligned
exactly with a measured force direction, and therefore it follows that any vibrational mode is expected
to have a very similar influence on each measured force component. Furthermore, small variations in
the wing mounting are not expected to have influence on the wing modes itself as the wing shape and
wing mounting type stays the same. A change in wing mounting on the entire measurement apparatus
is unlikely as well, since the wing is low in mass compared to the complete setup. In retrospect, it is
therefore not unexpected, nor coincidental that the single identified system pair is suitable for all pitch
angles and all force components.



5
Measurement results and discussion

In this chapter, the measurement results are presented. First, the revolving-surging experiments are
discussed, then the revolving-pitching experiments. The presentation of the measurement result is in
terms of 𝑐ፍ, 𝑐ፓ, force vector angle, and center of pressure location. The measured forces during the
acceleration phase and during the steady phase are discussed separately. It was observed in [49]
that, for revolving-surging and revolving-pitching experiments, the generated 𝑐ፓ is sufficiently small to
consider the force generation to consist mainly of normal force. Therefore, in this chapter, the forces
will be discussed mainly in terms of normal- and tangential force instead of the lift- and drag force as is
customary in steady-flow aerodynamics. As discussed in Chapter 2, a typical filtering setup has a cut-
off frequency in the region of 𝟣𝟧Hz, and in Chapter 4.2.4, the required frequency range to capture all
dynamics in the measurement is up to 𝟥𝟤Hz. The conventional filtering setup is not further discussed
in this chapter. The discussion on the performance increase of the DK filtering compared to a more
conventional filtering setup can be found in Vester et al. [63].

5.1. Revolving-Surging Results and discussion
5.1.1. Unsteady force generation
As discussed, the force normal to the wing surface is expected to be the largest component of the
total force generation. The 𝑐ፓ and 𝑐ፍ conventions as used in this report are shown in Figure 5.1. The
𝑐ፍ values of the revolving-surging experiments for the period t∗ = 0 to 8 are shown in Figures 5.2 to
5.4. It is clear that the normal force history is in general similar for increasing 𝛼. As the motion starts,
there is a short-lived peak in generated force, around 0.2 t∗ wide. Then the force rises sharply as the
wing accelerates. Just before the end of the acceleration phase (t∗ = 2), the force rise levels off. The
fluid-dynamic mechanism responsible is unknown, but the steep rise levels off at the same point in time
for all motions. As the motor controller setup provides revolving velocity feedback, it was checked that
there were no changes in the velocity at the time the rise in normal force levels off. The maximum 𝑐ፍ
magnitude during the acceleration phase is lower than the steady 𝑐ፍ value, presumably as circulatory
effects continue to build up after the acceleration phase As the acceleration falls to zero, the normal
force drops off. The magnitude of this drop-off is almost zero for lower 𝛼, and up to Δ𝑐ፍ = 0.2 for higher
𝛼. A possible explanation is a lower acceleration in the wing-normal direction for the cases of small
angles of attack. After the acceleration phase, there is a broad ’hump’ during 𝟤 t* to 𝟪 t* during which
the measured 𝑐ፍ rises and then drops to the steady-state value. The prominence of this ’hump’ feature
correlates well with the angle of attack, again with the larger 𝛼 showing a larger difference between the
maximum attained value during the hump and the steady-state value. The experiments with a lower 𝛼
show almost no hump, with only a gradual rise towards the steady value. The experiments at high 𝛼
in Figure 5.4 are very similar for the initial phase of the motion. This indicates that at very high 𝛼, the
force generation is to be strongly linked to the cross-sectional area in the direction of motion.
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Figure 5.1: Directions of ᑅ and ᑋ vectors, following the convention of Figure 2.1. The ᑅ vector is perpendicular to the wing
chord, ᑋ is parallel to the wing chord with a positive ᑋ towards the wing leading edge.
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Figure 5.2: DK filtered measured normal force coefficients for 8, 18, 28, 39, and 49∘ᎎ.
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Figure 5.3: DK filtered measured normal force coefficients for 13, 23, 45,and 59∘ᎎ.
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Figure 5.4: DK filtered measured normal force coefficients for 70, 80, 90, and 100∘ᎎ.
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The DK filtered, 𝟥𝟤Hz low-pass filtered (as described in Chapter 4.2) tangential force coefficients
(𝑐ፓ) are plotted for all measured angles of attack in Figures 5.6,5.7, and 5.8. To obtain a reasonably
smooth result, visually free from spurious oscillatory effects, the 𝑐ፓ force history requires 𝟥𝟤Hz low-
pass filtering due to the low signal to noise ratio. Still these forces are less visually clean than the 𝑐ፍ
measurements, but the trend is observable. The first thing to notice is that the 𝑐ፓ is small compared to
the 𝑐ፍ for all but the lowest 𝛼, which is as expected as the force vector of the tangential force aligns
itself with the motion for lower 𝛼. The 𝑐ፓ seems to be less dependent on 𝛼 than the normal force
coefficient. In general, the 𝑐ፓ starts negatively and stays negative during the acceleration. This is
in line with the expectations as the wing is accelerated forward, and the reaction force is expected
towards the trailing edge of the wing. However, for those measurements that show a more pronounced
𝑐ፍ ’hump’ from 𝟤 t* to 𝟨 t*, the 𝑐ፓ values show a mirrored hump towards the positive 𝑐ፓ direction. The
temporal nature of this effect is expected to be related to shedding or formation of vortical structures, the
exact nature of which is difficult to determine from these force measurements. Interestingly, the 90∘𝛼
𝑐ፓ measurements do not oscillate around zero. Oscillations due to a Kármán sheet-like shedding are
expected, but these oscillations are expected to be around zero. It could be that the support structure,
which is not completely symmetrical over the wing chord (see illustration in Figure 5.5) influences the
shedding in such a way that the wing has a different shedding pattern than expected.

Figure 5.5: Sketch of wing support structure to illustrate the mounting being assymetric over the wing chord, and therefore having
a different flow interference effect at the leading edge compared to the trailing edge.
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Figure 5.6: DK filtered measured tangential force coefficients (ᑋ) for 8, 18, 28, 39, and 49∘ᎎ.
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Figure 5.7: DK filtered measured tangential force coefficients (ᑋ) for 13, 23, 45, and 59∘ᎎ.
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5.1.2. Steady-state forces
Several t* after the acceleration phase of the motion, the forces attain an almost constant value, or
’steady-state’ value. This steady-state value is the average measured value from 𝟪 t* to 𝟣𝟤 t*, shown
for 𝑐ፍ, 𝑐ፓ, 𝑐ፋ, and 𝑐ፃ in Figure 5.9. To facilitate comparison with other literature 𝑐ፋ and 𝑐ፃ values
are shown, instead of just the 𝑐ፍ and 𝑐ፓ values. In the Figure, low-order curve fits are presented to
investigate a possible simple relationship between angle of attack and steady-state force generation.
To achieve a good fit (arbitrarily defined as 𝑅ኼ>0.995), the 𝑐ፍ measurements required a single term
sine fit, the 𝑐ፋ and 𝑐ፃ measurements required a two-term sine fit. It is not possible to obtain a good
𝑐ፓ fit, therefore the best attainable fit with a two-term sine fit is used. As the possible explanation can
be found in the very low magnitude of the 𝑐ፓ values (note that they are magnified ten times in Figure
5.9), leading to larger measurement uncertainties. The sine fits and associated 𝑅ኼ values are shown
in Equation 5.1.

The observation that a single term sine fit can adequately capture the steady-state normal force
is considered a promising indication of the possibility to create a simple steady-state force estimation
model, but this is not further explored.

𝑐ፍᑤᑥᑖᑒᑕᑪᎽᑤᑥᑒᑥᑖ = 1.87 sin(1.031𝛼 − 0.047) 𝑅ኼ = 0.996
𝑐ፋᑤᑥᑖᑒᑕᑪᎽᑤᑥᑒᑥᑖ = 0.24 sin(0.286𝛼 + 2.756) + 0.882 sin(1.197 + 1.563) 𝑅ኼ = 0.995

𝑐ፃᑤᑥᑖᑒᑕᑪᎽᑤᑥᑒᑥᑖ = 19.57 sin(0.841𝛼 + 1.935) + 18.966 sin(0.866 − 1.143) 𝑅ኼ = 0.998
𝑐ፓᑤᑥᑖᑒᑕᑪᎽᑤᑥᑒᑥᑖ = 0.093 sin(0.014𝛼 + 3.114) + 0.081 sin(0.047 − 1.201) 𝑅ኼ = 0.955

(5.1)
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5.1.3. Force vector angle
To gainmore insight in the relation between the normal force and the tangential force, the angle between
the normal plane of the wing and the total force vector is computed as in Equation 5.2

Force Vector Angle = 𝑡𝑎𝑛( 𝑐ፓ𝑐ፍ
)ዅ1 (5.2)

Figure 5.10: Definition of the Force Vector Angle FVA in blue, together with ᎎ in grey, and the wing in black, following the
convention of Figure 2.1

From this convention, a force vector angle of 𝟢° means that the force vector is parallel to the wing,
pointing towards the trailing edge, a force vector angle of 𝟫𝟢° is normal to the chord line, and a force
vector angle of 𝟣𝟪𝟢° means that the force vector points towards the leading edge of the wing, parallel
to the chord line. This angle is shown in Figure 5.10, together with 𝛼.

This angle, averaged over 𝟨 t* to 𝟪 t*, for the 45∘𝛼 surging experiment is plotted in Figure 5.11,
together with the force angle results of Birch et al. [8]. In those experiments, the dynamically scaled
wing of a Drosophila Melanogaster was investigated for a revolving-surging motion. The type of motion
kinematics is similar to those in the current study although the 𝑅𝑒 and 𝑅𝑜 are different. The Rossby
number for the wing under consideration in [8] is 2.9 [41], the Reynolds number 140 (low 𝑅𝑒 case) and
1200 (high 𝑅𝑒 case). As can be observed, the force angle coincides reasonably well with the results
of Birch et al [8], especially the ’high 𝑅𝑒 case’. This observation affirms the notion that at high angles
of attack, the wing generates mostly normal force. Similar to measurements in this report, Birch et al.
observed a positive 𝑐ፓ, as can be seen from the measured force vector angle of greater than 90∘.

In Figures 5.12 to 5.14, the complete force vector angle history over the motion is shown for the
revolving-surging experiments. During the acceleration part of the motion, the tangential force is more
prominent, although the normal force is still dominant. The force angle therefore points more towards
the trailing edge during the start-up phase of the motion. This is shown . At high 𝛼, the force vector
angle does not change meaningfully during acceleration, but for lower 𝛼, the force vector angle starts
lower and increases during acceleration as the normal force increases.

Especially for lower 𝛼 during the start of the acceleration phase, the measurements are noisy, with
force vector angle oscillations of up to 20∘ over less than 𝟢.𝟣 t*. This is attributed to the very low force
generated, the resulting low SNR, and the division of two measurements, which further decreases the
SNR.
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Figure 5.11: Average force vector angles over 𝟨 t* to 𝟪 t*, compared with those from Birch et al. [8].
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Figure 5.12: DK filtered measured force vector angles for 8, 18, 28, 39, and 49∘ᎎ.
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Figure 5.13: DK filtered measured force vector angles for 13, 23, 45, and 59∘ᎎ.
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Figure 5.14: DK filtered measured force vector angles for 70, 80, 90, and 100∘ᎎ.



5.1. Revolving-Surging Results and discussion 63

5.1.4. Center of Pressure
The center of pressure (COP) of the wing is the location on the wing on which the average force vector
acts. This is computed by dividing the wing-root bending moment coefficient and the pitching moment
coefficient by 𝑐ፍ. This operation does increase the noise of the measurement, as two measurements
are multiplied. For the experiment with 49∘𝛼 the entire time history is plotted in Figure 5.15. For the
other time histories, the reader is referred to Appendix A. For the experiment with the wing at 49∘𝛼
COP starts at a location quite tipward, and then moves inward during the motion. The rootward speed
of the COP location is high during the acceleration phase, and is lower afterwards when the wing is
revolving at a constant velocity. Even after 𝟧 t*, the COP continues to move rootward, even though
the kinematics have been constant for 𝟥 t*, or three chord lengths at the 75% span. The chordwise
COP stays relatively constant at around 40% chord. The measured position of the COP is oscillates
extensively in the spanwise direction, but not in the chordwise direction.

Figure 5.16 show the location of the COP at the start of the motion (in the middle of the acceleration
phase), and at the end of the motion. In general, the lower 𝛼 experiments have a more tipward COP,
both at the beginning and end of the experiment. The experiments with the lowest 𝛼 even have a COP
outside the wing surface at the start of the motion, which would indicate that during the acceleration
phase, the wing root generates a negative 𝑐ፍ, however this observation cannot be considered conclu-
sive as the fluiddynamic forces are low, with the 𝑐ፍ less than 0.25. This means that the signal to noise
ratio is low as well, and since the COP location computation generates a noisy result as discussed,
the measurement error can be very large. The rootward motion of the COP as described for the 49∘𝛼
case is present for all experiments, with the magnitude of the rootward displacement of the COP more
prominent for the lower 𝛼 experiments. At the end of the experiment, the higher 𝛼 experiments gen-
erally have a more rootward COP location. Curiously, the 45∘𝛼 measurement seems to be an outlier
in terms of COP, where the COP is more tipward over the entire motion, compared to the trend of the
other measurements. However, the measured 𝑐ፍ and 𝑐ፓ are not indicative of an outlier. Chordwise,
the COP goes from around 25% chord for the 8∘𝛼 experiment, to around 65 % chord for the 100∘𝛼
experiment. As also observed for the 𝑐ፓ measurements, the 90∘𝛼 measurements do not behave as
expected. One would expect the COP to be located at the 50% chordwise position, but in contrast, it
is located at the 60% position instead.

Figure 5.15: Center of Pressure (COP) for the revolving-surgingmotion of the wing at 49∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots. Chord = 0 is at the leading edge, Span = 1 is at the wing
tip.
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5.1.5. Comparison with low-order force estimation models
Steady force

Firstly, it is observed that the generated steady normal force is substantially linear up to around 50∘𝛼.
This linear relationship is compared to the theoretical 𝑐ፋ of a Prandtl lifting line, corrected for aspect
ratio (Equation 5.3) in Figure 5.17. The force measurements performed by of Perçin et al. [52], are
also shown in the figure. These measurements were performed on the same measurement apparatus
with slightly different kinematics (𝑅𝑜 = 1.8, 𝑅𝑒 = 20.000 as compared to 𝑅𝑜 = 1.65, 𝑅𝑒 = 10.000 under
consideration). As the kinematics were different, the root-relative 𝑐ፍ was used (as discussed in 3.3
and [5]). Detailed information on the Prandtl lifting line theory can be found in many textbooks, such
as [2]. It can be observed that there is a good agreement between the measured normal force and
lifting-line lift force, up to around 𝛼 =55∘. The experimental results from [52] display the same match,
indicating that the match is likely not out of mere coincidence. This agreement is unexpected as the
lifting line model in general is only suited for a prediction of the lift of a wing at small angles of attack,
under attached-flow conditions. In this case, the normal force for a wing at high 𝛼, under separated-flow
conditions seems to be predicted rather accurately. A possible explanation can be found in that both
the normal force in the measurements is close to the total force vector (as the tangential force is close
to zero), while the lifting line theory also aims to predict the total lift force as the predicted drag force is
zero for a potential flow solution such as the lifting line.

𝑐ፋ =
𝑎ኺ

√1 + ( ፚᎲፀፑ )ኼ + (
ፚᎲ
ፀፑ )

𝛼 with 𝑎ኺ = 2𝜋 (5.3)

Figure 5.17: Normal force coefficients compared to theoretical lifting-line lift coefficients and the normal force coefficients of [52].
All coefficients shown are calculated with the reference velocity at the radius of gyration.

Forces during acceleration
The quasi-steady force estimation model as discussed in Chapter 2 is utilized to estimate the un-

steady forces generated by the revolving wings. To implement this model, the motion data is filtered
mainly to obtain a physically representative motion without discontinuities in the velocity, acceleration,
and jerk (third derivative of the position). The smoothing function used is the 𝐶ጼ function decribed by
Eldredge et al. [21], as also used in [25]. For the revolving-surging motion, a smoothing factor 𝑎፬፦ of
100 was used as in [21]. The amount of smoothing is determined heuristically, and to quantify the mag-
nitude of smoothing, the drop-off in generated force at the end of the acceleration phase is intended to
take 𝟢.𝟣 t*, instead of being discontinuous. 𝐹፬፭፞ፚ፝፲ as described in Equation 2.9 is obtained by using
the function fitted to the steady 𝑐ፍ measurement data from Figure 5.9.

As the normal forces as shown in Figures 5.3 to 5.4 display similar behaviour, so do the quasi-
steady estimations, only the 18, 28 ,45; , and 70∘𝛼 cases are compared to the quasi-steady model.
This is shown in Figure 5.18.

In general, the quasi steady model matches qualitatively with the measured force, especially during
the acceleration phase. There are differences in the force signal shape at the start- and endpoints of
the acceleration phase. At the start of the acceleration phase, there is a slight peak for larger angles of
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Figure 5.18: DK filtered measured normal force coefficients, compared to quasi-steady estimations for 18, 23, 45, and 70∘ᎎ

attack, absent in the quasi-steady model. At the end of the acceleration phase, the observed leveling
off of the force rise for the measurements is not present for the quasi-steady model, and therefore the
generated force peak at the end of the acceleration is much lower than predicted by the quasi-steady
model. Also, the quasi-steady model predicts that the force immediately reaches the steady force
when the acceleration phase is over. The steady force in the quasi-steady model is the circulatory
force component. In the experiments, this force generation mechanism is very time dependent, taking
several t* to build up, and even builds up past the ’steady’ value for the higher 𝛼 experiments (the
observed ’hump’).

The quasi-steadymodel suggests that themagnitude of the initial force peak should rise with the sine
of the angle. This is checked by comparing the mean, normalized value between 𝟢.𝟣 t* to 𝟢.𝟥 t* to the
sine of the angle in Figure 5.19. It is observed that there is a good match between the measurements
above 23∘𝛼 and the expected trend, indicating that the expected ’added mass’ force term is quite
accurate. For comparison, the height of the force peak estimated by the quasi-steady model is also
shown (in relative magnitude of the measured peak), which lags the measured force. It is observed
that the ’added-mass’ force is highest between 𝟢.𝟣 t* to 𝟢.𝟥 t*, and then drops slightly. This drop is up
to 0.05 𝑐ፍ for the higher 𝛼 measurements, and lower for the others. The predicted added-mass force
augmentation stays constant until around 𝟣.𝟪𝟧 t*.
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Figure 5.19: Normalized ᑅ average during the initial peak (𝟢.𝟣 t* to 𝟢.𝟥 t*), compared to sine of the angle and the normalized ᑅ
suggested by the quasi-steady (QS) model. ᑅᑞᑒᑩ at ᎎ = 90∘.

Quantitatively, the generated force lag the quasi-steady model significantly during most of the ac-
celeration phase, save for the very start. A possible explanation can be found in the location of the
(center of pressure) (COP). As the quasi steady model assumes a constant 𝑐ፍ, and the velocity profile
over the wing is linear, the quasi-steady model considers the wing to have a COP is at 61% of the span.
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However, the measurements show a COP more towards the tip of the wing. This could indicate that
the rootward part of the wing generates much less force than predicted by the quasi-steady model.

5.1.6. Measurement uncertainty
As the experiments are repeated multiple times, the standard deviation 𝜎 is computed for each mea-
surement point. This standard deviation is averaged over the 𝟢 t* to 𝟨 t* to find the average 𝜎 for each
experiment. The average width, in 𝑐ፍ, of the 95% confidence interval is then 2𝜎/√𝑁 where 𝑁 is the
number of experiments. The derivation of this can be found in literature on statistical analysis such as
[55]. It should be noted that uncertainty analysis does not take into account any systematic errors. The
95% interval is shown in percentage of the mean measured 𝑐ፍ to give insight in the relative uncertainty.
These uncertainties are similar to those reported in [49], except for the lower angles of attack where
the relative uncertainties are higher as the force magnitudes are much lower. As can be observed, the
DK-filtered forces have a lower confidence interval, showing that the DK filter helps in decreasing the
random error in the force measurement data.

Table 5.1: Uncertainty estimates on the normal force coefficient ᑅ (ዃ% confidence interval) for the differently filtered signals,
in ᑅ × ኻኺኺ

𝑐ፍ uncertainty
Ensemble Denoised DK

8∘𝛼 13.0 1.2 0.7
13∘𝛼 10.9 1.7 1.0
18∘𝛼 7.3 1.5 0.8
23∘𝛼 5.3 1.4 0.7
28∘𝛼 7.1 1.6 0.5
39∘𝛼 6.6 1.5 0.6
45∘𝛼 4.6 2.0 1.1
49∘𝛼 9.6 4.8 1.2
59∘𝛼 7.0 1.6 0.7
70∘𝛼 7.9 2.4 0.9
80∘𝛼 7.0 3.0 2.6
90∘𝛼 10.3 3.6 1.3
100∘𝛼 5.5 2.0 1.6

Average 7.9 2.2 1.1

It can be observed that the raw measurements have a substantial uncertainty of up to 0.79 𝑐ፍ,
compared to a 𝛼 = 45∘ steady 𝑐ፍ value of around 1.35. However, 𝟧𝟢Hz filtering has a substantial effect,
decreasing the uncertainty window to almost a quarter of that. This was expected from the Welch’s
PSD estimates from 3.3, where it was observed that there was information at very specific frequencies
that were too narrow to have an obvious fluid-dynamic or mechanical source. This indicates a noise
source, which would increase the uncertainty. DK filtering further decreases the confidence interval.
Again, this is expected as the magnitude of the force peaks measured during acceleration is decreased
by the DK filtering and as such, the magnitude of the uncertainty interval will decrease similarly.
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5.2. Revolving-Pitching Results and discussion
5.2.1. Evolution of unsteady forces
As discussed in Chapter 2, the total unsteady normal force for the case of revolving-pitching wing
consist of added mass forces due to the pitching acceleration, additional circulation due to the pitching
motion, and a build up of leading edge vorticity. The experiments were done at varying pitching axis
locations (�̂�ኺ), and varying pitch rates (k). The first set of figures (5.20 to 5.23) show the 𝑐ፍ evolution
for varying �̂�ኺ at a fixed k, for the period of motion until a steady state force is obtained. Figure 5.24
shows the 𝑐ፍ evolution for a varying k at a fixed �̂�ኺ = 0.88. Other figures directly comparing the forces
at a fixed �̂�ኺ and a varying k are shown in Appendix B.

The time histories for the normal force coefficients display a similar trend. The force history starts
with a peak as the wing undergoes a pitching acceleration, then displays a linear rise in generated nor-
mal force as the wing is rotating and attains higher 𝛼, followed by a peak in the opposite direction of the
first peak as the wing experiencese a reversed pitching acceleration to stop rotating. The width of these
peaks does not seem to be not related to k. Interestingly, the force peak lags the timing of the pitching
acceleration (compare to Figure 3.5) around 𝟢.𝟦 t*. This time lag is consistent for all experiments, and
not related to k. The peak height is also observed to be related to pitching axis location. The experi-
ments with �̂�ኺ = 0.5 show no prominent peaks associated with the phases of pitching acceleration, with
the other experiments showing peak sizes, and indeed the force generation during the pitching phase,
almost linearly dependent on pitching axis location. This is shown in Figure 5.20, where the �̂�ኺ = 0.25
and �̂�ኺ = 0.75 force histories are shown to be reasonably predicted from linear interpolation between
the experiments at other �̂�ኺ, although the �̂�ኺ = 0.25 force history is overestimated. After the pitching
phase, the experiments with a lower �̂�ኺ (i.e. the cases with the pitching axis location closer to the
leading edge) generate a slightly higher 𝑐ፍ. This is surprising as the motion at this point in time is the
same. The increased force production by the lower �̂�ኺ cases could either be explained by flow effects
which persist for a long time, but also by the different proximity of support structures of the experimental
setup. When the pitching axis location is changed, the wing is mounted at another location (observe
Figures 3.3 and 5.5). The different proximity of the support structure could be of influence on the result.

The experiments with decreasing k, having lower pitching velocity, generate lower forces during the
pitching phase, with similar forces after the pitching phase. The qualitative traits as mentioned are still
present.

Figure 5.20: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5, 0.75,
0.88, k = 0.39, with linear estimates for the ፱̂Ꮂ = 0.25 and ፱̂Ꮂ = 0.75 cases.
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Figure 5.21: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5, 0.75,
0.88, k = 0.2.

Figure 5.22: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5, 0.75,
0.88, k = 0.13.

Figure 5.23: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5, 0.75,
0.88, k = 0.1.
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Figure 5.24: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.88, k = 0.39, 0.2,
0.13, 0.1
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The 𝑐ፓ force histories are shown for k = 0.39 and k = 0.1 in Figures 5.25 and 5.26. As the generated
𝑐ፓ is low in general, it is difficult to find clear traits when the measurement uncertainty is taken into
account. The traits that can be observed are similar for all experiments, as is the case for the 𝑐ፍ
measurements. The most interesting trend is that both the acceleration and deceleration of the pitching
motion give rise to a positive tangential force (towards the leading edge of the wing). This is more
pronounced for the experiments with a higher pitching rate. For those experiments with the pitching
axis more towards the trailing edge, a high tangential force peak appears at the beginning and end
of the pitching periods. For the lower pitching rate shown, the 𝑐ፓ is almost constant after the initial
pitching acceleration phase is over (the same 𝟢.𝟦 t* as also observed for the 𝑐ፍ values), and also almost
completely independent of �̂�ኺ. Other revolving-pitching 𝑐ፓ force histories are shown in Appendix B.

Figure 5.25: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5,
0.75, 0.88, k = 0.39.

Figure 5.26: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, 0.25, 0.5,
0.75, 0.88, k = 0.1.

5.2.2. Force vector angle
The force vector angle is more easily interpreted as the force histories are less noisy. The downside is
that the experiments with a pitching axis locationmore towards the trailing edge have times where the 𝑐ፍ
goes from negative to positive, which causes asymptotic peaks due to the 𝑡𝑎𝑛ዅኻ operation. Therefore,
only the force vector angles of the �̂�ኺ=0.12 experiments are plotted in Figures 5.27 and 5.28. In the
second picture, the time is normalized bymultiplying the time vector by k/k፦ፚ፱ to accurately differentiate
which force effects are dependant on wing pitch angle, and which force effects are dependent on t*.
After the pitching phase, convective time shows to be the more dominant time scale as the force vector
angles match up better. A ’double hump’, with the first hump at at 0.2 t∗፧፨፫፦ and the second at 1 t∗፧፨፫፦
can be discerned in the force vector angle plots, and this is clearly an effect which depends on the
pitching position instead of convective time.
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Figure 5.27: Force vector angle for ፱̂Ꮂ = 0.12, k = 0.39, 0.2, 0.13, 0.1. Vertical lines show where the pitching motion ends.

Figure 5.28: Force vector angle for ፱̂Ꮂ = 0.12, k = 0.39, 0.2, 0.13, 0.1. against a normalized time ( t∗ᑟᑠᑣᑞ = t∗× k/kᑞᑒᑩ). Pitching
motion ends at t∗ᑟᑠᑣᑞ = 1.

5.2.3. Center of Pressure
For the revolving-pitching experiments, the COP is computed in the same way as for the revolving-
surging experiments. As with the force vector angle, the COP trajectory is difficult to interpret for those
experiments with a negative or very low 𝑐ፍ. For the �̂�ኺ = 0.12, k = 0.39 experiment, the complete COP
location history is shown in Figure 5.29. The other COP histories for revolving-pitching experiments
are shown in Appendix B. It can be observed that the COP location is quite noisy, but trends are ob-
servable. Regarding the spanwise position of the COP, the trend is that the COP stays at a relatively
constant position of around 0.95 span during the pitching phase of the motion. After the pitching phase,
the COP stays at the same spanwise position for around 𝟢.𝟦 t*, mirroring the timing of the 𝑐ፍ measure-
ments. The COP then moves towards the root of the wing. In terms of chordwise COP position during
the pitching phase, the COP moves from the trailing edge towards the leading edge of the wing. After
the pithing phase, the chordwise position of the COP stays relatively constant. This gives an interesting
contrast, where the COP moves predominantly chordwise during the pitching phase of the motion, and
predominantly spanwise during the steady-state phase of the motion.

What can be concluded is that just after the pitching phase, between 1 and 𝟤 t*, a lot of flow phe-
nomena are taking place. The 𝑐ፍ goes from around 2.3 to 1, to 1.2, the force angle goes from 92∘ to
90∘, and the COP moves around half a chordlength in total displacement.

The other experiments at �̂�ኺ = 0.12 are represented in terms of start- (𝟣 t*) and end (𝟨 t*) COP in
Figure 5.30, similar to Figure 5.16. For the lower pitching rates, the COP starts outside the physical
surface of the wing, much like the lower 𝛼 revolving-surging experiments.

The final positions of the COP for all experiments are shown in Figure 5.31, together with the COP
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location of the 𝛼 = 45∘ revolving-surging experiment. This affirms the notion of significant differences
between the experiments at different �̂�ኺ, even long after the actual pitching phase; the COP’s of the
experiments with a higher �̂�ኺ are more towards the leading edge by up to 0.3 chord lengths. A relation
between pitching axis location and a more leading-edgeward location of the COP is observed. There
is also a weak relation between a higher k and a more rootward position of the COP endpoint, but this
does not hold true for all experiments.
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Figure 5.29: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.12, k = 0.39.
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5.2.4. Comparison with revolving-surging experiments
In Figure 5.32, the revolving-surging experiment at 𝛼 = 45∘ is plotted together with the extremes of
the parameter space for the revolving-pitching experiments (those with �̂�ኺ at the lowest and highest
value, and k at the lowest and highest value). Note that at the end of the motion, the kinematics are the
same, revolving at 𝟢.𝟤msዅ𝟣 at 𝛼 = 45∘ . The differences in generated force are of interest as they give
an insight in the interaction between the different force augmentation mechanisms. Interestingly, the
differences are pronounced, even after several t* after the pitching or surging parts of the motion. At t*
= 3, the revolving-surging experiment generates Δ𝑐ፍ = 0.15 less than the revolving-pitching experiment
(�̂�ኺ = 0.12, k = 0.39), but at 𝟪 t*, the revolving-surging experiment shows a higher force generation of
around Δ𝑐ፍ = 0.08. Similar differences exist between the different experiments, with the revolving-
pitching experiments for a lower k and higher �̂�ኺ generating lower 𝑐ፍ values. As shown in Chapter
5.1.6, the measurement uncertainty is around Δ𝑐ፍ = 0.01, hence lower than the reported differences in
generated force for the constant phase of the motion.

The inverse is true for the for the 𝑐ፓ values as shown in Figure 5.33. The experiments that show
relatively lower 𝑐ፍ at the end of the motion show relatively higher 𝑐ፓ values. However, although the
relative differences are there, the absolute differences are smaller. The total range of 𝑐ፓ values at the
end of the motion in figure 5.33 is around 0.05, the total range of 𝑐ፍ values in Figure 5.32 is around
0.2. As the trend holds true for the range of experiments, the observation is still considered valid, even
though the differences in the 𝑐ፓ experiments are at the same order of magnitude as the measurement
uncertainties mentioned in Table 5.2.

Interestingly, the similar experiments by Perçin et al. ( [49]) show slightly different results. During
the unsteady phase of the motion, the revolving-surging experiment consistently lags the revolving-
pitching experiment in terms of 𝑐ፍ, with a good match during the steady-state part of the motion. Also,
the 𝑐ፓ is negative for all experiments during the steady-state part, instead of positive as in the current
investigation. The reported differences are expected to stem from the slightly different kinematics.

When comparing the COP locations for both types of experiments (Figure 5.31), it is observed that
the COP is more rootward for those cases that generate higher normal forces at the end of the motion.
For instance, the �̂�ኺ = 0.12, k = 0.39 experiment has a COP around 0.05 span more rootward �̂�ኺ = 0.88,
k = 0.1, and generates around 0.13 𝑐ፍ more at t* = 8. However, the spanwise difference in COP is
the same between the �̂�ኺ = 0.13, k = 0.39 and �̂�ኺ = 0.39, k = 0.1 cases, with a much less pronounced
𝑐ፍ difference (0.05 𝑐ፍ). The COP for the surging experiment is between 0.04 and 0.12 span more
rootward than the pitching experiments. As the COP is more rootward, and the total force generation
higher, this indicates an increased 𝑐ፍ- generating performance of the wing root compared to the wing
tip.
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Figure 5.32: Normal force histories of revolving-surging experiment at 45∘ᎎ and revolving-pitching experiments at ፱̂Ꮂ = 0.12 and
፱̂Ꮂ = 0.88 and k = 0.39 and k = 0.1
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Figure 5.33: Tangential force histories of revolving-surging experiment at 45∘ᎎ and revolving-pitching experiments at ፱̂Ꮂ 0.12
and ፱̂Ꮂ 0.88 and k = 0.39 and k = 0.1

5.2.5. Comparison with quasi-steady model
As in Chapter 5.1, the quasi-steady model is used for the estimation of the forces and the results are
compared with the measured forces. In [58], the quasi-steady model was only suitable for pitching mo-
tions around the leading edge. As the experiments performed rotate around other axes than the leading
edge, Equation 2.10 for 𝐹ፚ፝፝፞፝፦ፚ፬፬ needs to be modified. It is observed that the estimated added-mass
force generation is the same either the wing rotates around the leading edge or the trailing edge, but
the direction of the force vector is reversed. Furthermore, the added-mass force generation should be
zero if the wing is rotated around the half-chord axis as the front half of the wing mirrors the aft part of
the wing. Therefore, in the scope of the quasi-steady model, linear interpolation suffices, and Equation
2.10 is modified to Equation 5.4. Note that the changes only influence the second term.

𝐹ፚ፝፝፞፝፦ፚ፬፬ = 𝜌
𝜋
4𝑐

ኼ�̈� sin 𝛼
፫ᑥᑚᑡ

∫
፫ᑣᑠᑠᑥ

𝑟 𝑑𝑟 + (0.5 − �̂�ኺ)𝜌�̈�
𝜋
4 𝑐

ኽ𝑏 (5.4)

As with the revolving-surging motion, the motion kinematics are smoothed. Accurate motor feed-
back position data is available for the revolving motion, but not for the pitching motion. Therefore the
measurements are used as a guide to determine the motion input to the quasi-steady model. The
smoothing term 𝑎፬፦ in the 𝐶ጼ equation is used to match the resulting quasi-steady force estimation to
the measured force, where the smoothing term is chosen such that the width of the first peak of the
measurements at �̂�ኺ, k = 0.39 matches the width of the first peak of the quasi-steady force estimation.
For 𝑎፬፦ = 40, the results are determined to be acceptable.
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Added mass force

In Figure 5.34, the 𝑐ፍ for the pitching experiments for �̂�ኺ = 0.12, 0.5, 0.75, and 0.88, k = 0.39 are
compared to the forces expected with the quasi-steady model. In terms of force generation in the
steady part of the motion, the quasi-steady model suggests the same force for all the experiments, as
the steady force is assumed to be only dependent on 𝛼. This suggestion does not hold true, but the
differences are slight. The quasi-steady model further suggests that the added-mass force cancels out
for �̂�ኺ = 0.5, which shows in the quasi-steady force prediction as no peaks at the start and end of the
pitching phase. This hypothesis holds, which can be evidenced from the experiments at 𝑥ኺ = 0.5. For
the experiments with different �̂�ኺ, the added mass force can be described as quantitatively correct, as
the measurements show much lower magnitude force peaks. However, it is difficult to ascertain how
much the quasi-steady model misrepresents these force peaks as the peak height also depends on
the heuristically determined 𝑎፬፦ value.

Rotational force

The other term in the quasi-steady model is the force augmentation due to increased circulation as-
sociated with the pitching velocity. It is difficult to obtain a clear estimation of this force in the measure-
ments, as the force peaks associated with the pitching acceleration lag the actual pitching acceleration.
However, from observing the �̂�ኺ = 0.88, k = 0.1 experiment in Figure 5.32, there is a clear ’flat spot’
between a negative and a positive force peak, for 𝟢.𝟩 t* to 𝟣 t*. As the force peak widths are not related
to pitching rate (see Figure 5.24), the peaks are considered not purely related to pitching rate, leaving
the ’flat spot’ as the part of the force history in which there is the highest confidence that the generated
force is predominantly related to pitching rate. This flat spot shows a slight rise in magnitude over time,
which coincides with the notion that the force should consist of a component associated with 𝛼, and
a constant component associated with pitch rate. The positive and negative force peaks themselves
are attributed to pitching acceleration. As discussed, the pitching motor lacks feedback, however, the
width of the peak is much wider than expected, as this would imply that for the experiments at k = 0.39,
the actual k can not be considered constant over the motion. This would also imply the pitching motor
has an angular acceleration of around 2×10ኻ 𝑟𝑎𝑑/𝑠ኼ (pitch rate of 𝜋 𝑟𝑎𝑑/𝑠, 1 t∗ = 0.25s for the motion
under consideration), which seems a very low figure. A potential ’smearing’ on these pitch acceleration
peaks due to the DK filter cannot be ruled out in this instance, however, if this were to be the case, the
DK filter would have a larger ’smearing effect’ for the experiments with a higher pitch rate. However, the
experiments at a lower pitch rate show a very similar peak width, which would imply a larger smearing
effect, for a smaller disturbance. Therefore, the most likely explanation seems to be a fluid-dynamic
damping effect, or simply that the pitching motor control does indeed not reach more than the reported
pitching acceleration.

In Figure 5.34 the magnitude of the forces predicted by the quasi-steady model are higher than the
measured forces for the �̂�ኺ = 0.12, 0.5, and 0.75 experiments, and lower for �̂�ኺ = 0.88. The difference
for the �̂�ኺ = 0.12 experiment is especially large, around Δ𝑐ፍ = 1. The quasi-steady model predicts
a zero force augmentation when �̂�ኺ = 0.75. To determine if �̂�ኺ = 0.75 indeed leads to a zero force
augmentation in the experiments, the different pitching experiments are plotted for a normalized t* (the
same normalized t* as also used in Figure 5.28) in Figure 5.35. If the pitch rate influence is indeed zero,
the force between the normalized convective times 𝟢.𝟩 t* to 𝟣 t* should be the same for k = 1 through
4, as the wing is at the same 𝛼, moving at the same velocity, without any expected force generation
effects other than those related to angle of attack and revolving velocity. For �̂�ኺ = 0.75, this seems the
case, which agrees with the notion in the quasi-steady model, and also agrees with the experiments
from Grandlund et al. [25], Sane et al. [58], and Dickinson et al. [18].

As the �̂�ኺ = 0.75 experiments give a result that has almost zero force augmentation by pitching
velocity, it is possible to estimate the pitching velocity force augmentation effects for the other experi-
ments. This can be compared between the different pitching rates. The quasi-steady model suggests a
linear increase in force for an increase in pitching rate. This is checked by comparing the mean value of
the experiment at a given �̂�ኺ, minus the measured force of the same experiment at �̂�ኺ = 0.75 over 𝟢.𝟩 t*
to 𝟣 t*፧፨፫፦ (this time range as discussed in the previous paragraphs). If the results are indeed linear,
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the mean value over this normalized time span, divided by the pitching rate k should be the same, and
the lines in Figure 5.36 should then be straight. As this is clearly not the case, the force augmentation
due to pitching velocity can not be described as linear with respect to pitch rate. The lines do not show
a straightforward relation between pitching rate and force augmentation, which hints at complex flow
phenomena.

Figure 5.34: DK filtered measured quasi-steady model expected normal force coefficients for revolving-pitching measurements
with ፱̂Ꮂ = 0.12,0.5, 0.75, 0.88, k = 0.39.
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Figure 5.35: DK filtered measured normal force coefficients for ፱̂Ꮂ = 0.5, 0.75, 0.88, k = 0.39, 0.2, 0.13, 0.1 against a normalized
time (t∗ᑟ፨፫፦ = t∗× k/kᑞᑒᑩ).



78 5. Measurement results and discussion

k
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

V
al

ue

-1

0

1

2

3

4
x

0
=0.12

x
0
=0.25

x
0
=0.5

x
0
=0.88

Figure 5.36: mean ᑅ values for a given ፱̂Ꮂ over a normalized t*, minus the mean ᑅ value for ፱̂Ꮂ = 0.75 for the same time,
divided by k

5.2.6. Measurement uncertainty
In Table 5.2, the measurement uncertainty estimations are given for the experiments performed for 𝟢 t*
to 𝟣𝟢 t*, in 𝑐ፍ × 100. These uncertainties are similar to those reported in [49].

Table 5.2: Uncertainty estimates on the normal force coefficient ᑅ (ዃ% confidence interval) for the differently filtered signals,
in ᑅ × ኻኺኺ

𝑐ፍ uncertainty
�̂�ኺ 𝑘 Ensemble Denoised DK

0.12 0.39 6.4 2.7 1.1
0.2 6.4 3.0 1.5
0.13 5.5 3.2 0.8
0.1 8.2 3.6 1.1

0.25 0.39 9.4 2.5 0.7
0.2 7.9 2.1 0.8
0.13 6.3 2.5 0.8
0.1 9.1 3.2 1.2

0.5 0.39 6.0 1.5 0.7
0.2 5.4 1.3 0.7
0.13 5.7 1.7 1.1
0.1 5.2 1.2 0.7

0.75 0.39 7.5 3.3 1.3
0.2 6.3 2.4 0.9
0.13 6.0 2.6 0.9
0.1 5.9 2.3 0.7

0.88 0.39 7.7 4.2 1.0
0.2 7.1 2.7 0.8
0.13 6.8 3.2 0.7
0.1 7.6 3.1 0.8

Average 6.8 2.6 0.9

The observations are very similar to those in Chapter 5.1, with the absolute 𝑐ፍ confidence intervals
showing a good match.
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Conclusions and recommendations

6.1. Conclusions
In this report, the Deconvolution Kalman filter is used to filter force measurements on revolving-pitching
wings in a water tank. It is identified that the current filtering approach for typical water-tank force mea-
surements in flapping wing research has the possibility to introduce errors. It is furthermore identified
that there is little available literature on force measurements on revolving-pitching wings, and that mea-
surements on revolving-surging wings are a logical part of a combined investigation. In this report these
topics are addressed. The measurements are performed on a robotic flapper in water tank, the con-
struction and design of which are considered typical for the performed measurements. To use the DK
filter, a mathematical model capturing the vibrational modes of the measurement setup is required.
For this mathematical model, the loading on the force sensor due to a given input and the mechanical
vibrations of the measurement setup is needed. For the measurement setup under consideration, this
is challenging as it is not directly possible to load the wing in such a way that only the mechanical vibra-
tions were measured without measuring an unknown fluid-dynamic force component. To circumvent
this problem, it is assumed that the motion input on the motor of the wing was accurate, and that a
short pulse with high wing accelerations, but low velocity and displacement could be used to construct
an input signal, of which the measured output signal would not contain large amounts of circulatory
fluid-dynamic loading. A satisfactory state-space system is obtained using the PEM algorithm in Mat-
lab, together with the advice of Richard Ahlfeld. The following steps are found necessary to obtain a
satisfactory state space system. First, the impulse pulse is performed with the wing revolving at low
speed to have a mechanical pre-load on the test rig, in an effort to reduce potential hysteresis effects.
The force measurements need to be matched in time to a higher degree of accuracy than obtained
by the start-point of the motion as obtained from the motion controller. If this time-matching is not
performed, slight mismatches in timing can create large differences in oscillatory behaviour, as narrow
force peaks can be ensemble averaged into a wider force peak. After inspection of the PSD estimate,
it is concluded that low-pass filtering is necessary as noise components above 𝟧𝟢Hz would greatly
decrease the chance of a successful identification of a linear system. When using the PEM algorithm,
care needs to be taken that the algorithm has knowledge of the spectrum down to 𝟢Hz. Finally, the
search space is further limited by identifying separate lower-order systems for the two main modes of
the structure, and by limiting the time span of the input signal.

The DK filter is found to be well-suited to reconstruct synthetically generated force signals. It is
found to be straightforward to implement and robust regarding errors in the resonance frequency of the
state-space system. The required covariance matrices can be determined heuristically, and it is found
that the filter results are equally valid for a broad range of covariance matrix ratios. The steady-state
error is very low and independent of frequency. In earlier work, a decrease in noise of the deconvoluted
result is reported, which could not be replicated in this report. However, the uncertainty in the validity of
the state-space system is found to be greater than the noise introduced by the deconvolution process
for the measurements under consideration. Taking these points in consideration, it seems that the DK
filter is very well suited to the type of measurements discussed in this report.
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Generally, a statement can be made about the spatial resolution needed for force measurements
to capture the complete dynamics of the wing. For the shown test rig, the spatial resolution is 𝟧𝟢Hz, or
12.5 cycles per t*. When low-pass filtering this data, no discernible loss of resolving power was found
up until a cut-off frequency of 𝟥𝟤Hz, or 8 cycles per t*. Therefore value of 8 cycles per t* seems a
good lower bound for required spatial resolution of similar experiments. It is possible that there are
higher-frequency fluid-dynamic force mechanisms, but this is considered unlikely as the Welch’s PSD
estimates in Chapter 3.3 show that the measurement frequency content above 𝟧𝟢Hz consists mainly
of peaks that are too narrow to be considered fluid-dynamic in origin. Also, frequency content above
12.5 cycles per t* would be in the order of 𝟣 × 𝟣𝟢𝟤 cycles per wingbeat for a biological flyer. This seems
too high in frequency to be worthwhile to exploit for flapping wings.

The quasi-steady model as described in Chapter 2 qualitatively matches the measurement data.
The surging- and pitching force histories show that the forces during accelerations in the motion can be
considered a combination of the steady-state value, the rotational forces, and an added-mass value.
This is an important observation and can be used designing future experiments, or during the initial
design process of a flapping-wing flyer.

For the steady-state results, an agreement is found between the theoretical lift force generated by
a Prandtl lifting-line (corrected for aspect ratio) and the normal force of the measurements. The same
agreement is found for previous experiments, and this agreement can be used for future estimation
models.

Quantitatively, the forces during the unsteady force generation are lower than the quasi-steady
predictions, and previous experiments. However, generated forces during the steady part of themotion,
especially for the surging experiments match up well with previous experiments in terms of normal force
and force vector angle. A possible fluid-dynamic reason for the lower than expected forces during the
unsteady phase is found in the lower than expected force contribution of the root part of the wing, as
evidenced by the COP locations plotted in Chapter 5. This relation holds true for the entire range of
experiments. This in itself is interesting, but without flow visualization it is difficult to hypothesize a
reason for this. It must be noted that the lower forces are reported for both the revolving-surging and
revolving-pitching experiments, which suggests a relation to either the wing mounting or morphology
instead of a relation to wing kinematics. Especially when compared to earlier experiments using almost
the same setup, which showed a higher force production (Perçin et al. [49]), the changes in morphology
are small: a slightly lower Rossby number (1.66 compared to 1.8) and a change in pitching axis location
(�̂�ኺ = 0.12 compared to 0). These changes are small in absolute magnitude, but non-linear effects can
potentially be responsible for the lower force production in this report. The COP location during the
pitching experiment shows that the pitching motion itself has a pronounced effect on the location of
the COP, ’pushing’ the COP tipward. After the pitching phase, the COP moves towards the location
it will stay for the steady part of the motion, over a period of around Δ𝑡∗ = 3. This time period can be
considered the time for the large-scale effects introduced by the pitching to dissipate, however, the 𝑐ፍ
value and COP location are different than for the 𝟦𝟧 °𝛼 surging experiment, indicating that the pitching
changes the structure of the flow around the wing for an extended period of time. This is contrary to
what the quasi-steady model suggests. There is an observed relation between the COP chordwise
location and the pitching axis location, where the experiments with a more trailing edge-ward pitching
axis show a COP that is more towards the leading edge, at the end of the motion. Furthermore, a
relation between a lower 𝑐ፍ during the steady part of the motion, and a higher positive 𝑐ፓ was found.
However, the absolute differences in magnitude are very small, and the found relation did not translate
into meaningful differences in terms of wing performance (𝑐ፍ/𝑐ፓ).

Another finding is that the expected linear relationship between pitching rate and generated force
due to pitching motion does not hold for the experiments under consideration. More importantly, there
does not seem to be a straightforward relationship between pitching rate and generated force due to
pitching motion. Based on the data in this report, the possibility of developing an accurate estimation
model taking into account pitching rate is doubtful.
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6.2. Recommendations
The recommendations are, as the conclusions, split up in the three parts described in this thesis.

The Deconvolution Kalman Filter seems to work well to more accurately filter force measurement
setups, given that the measurement setup can be described by a state-space system. Finding such a
system was a challenging requirement. For future work, to more accurately perform the system identi-
fication, to have more confidence in the identified system, and to facilitate the process, the measured
forces due to an excitation of the measurement setup need to be known more precisely. This is es-
pecially true for the excitation signal, which, in this report, was obtained using numerous assumptions.
This greatly complicated the system identification process. To improve on this, more sophisticated
measurement equipment is needed to generate a known excitation of the mechanical vibration of the
measurement setup. It could also be of interest to explore the option of designing the measurement
setup such that the response can be better captured by a linear state-space system. The need for more
sophisticated deconvolution algorithms can be explored and was mentioned by both Bora et al. [10],
and Ahlfeld [1], however, the current setup of the DK filter seems to work well and is rather simple to
implement, with the most difficult part being the system identification process. According to the author,
the need for a more sophisticated deconvolution algorithm, that for instance can work with non-linear
systems, only arises if it proves impossible to have a linear system representing the measurement
setup. Then the need for a non-linear system identification process also arises, which is expected to
further increase the complexity, and decrease the tractability of the filtering stage of the experiment.
It is expected that it is be possible to design a measurement setup that can be described by a linear
state-space system, especially for the rather low frequencies under consideration.

The filter does offer the possibility to create measurement setups that are less traditionally rigid,
but have less interference with the flow. In this report, the presence of the wing pitching servo box is
suspected to influence the flow measurements. With a filter that is better suited to deal with mechanical
vibrations, more slender constructions might lead to measurement setups in which the researcher can
have more confidence regarding flow similarity.

The force measurements itself raised questions, not in terms of the validity of the data, but in terms
of what was happening with the flow. The data is found to offer a solid foundation to design new flow vi-
sualisation experiments, especially in terms of the relation between the chordwise location of the COP
and the pitching axis, even after several t* after the pitching phase. Also during the pitching phase
itself, it is expected that it is possible to identify flow structures that can be related to the diminished
force production compared to the theoretical force production of the rotating wing. Furthermore, an in-
vestigation in the magnitude of the force augmentation related to pitching could be fruitful as the limited
amount of data points in this report (16, see Figure 5.36) paint a confusing picture, in disagreement
with current simplified models.

To have a good agreement between measurement and data, it is vital that the researcher knows
exactly what motion the wing is performing. Wing position sensors with a high spatial and temporal
resolution can be considered a requirement for future research into estimation models.

The described agreement between the normal force at steady velocity for a revolving wing and the
lift force for an aspect ratio-corrected lifting line could be tested for other wing configurations as the
relation could be beneficial to design future force estimation models, or to design new experiments.
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Appendix A

A.1. Centre of Pressure locations for revolving-surging measure-
ments

Figure A.1: Center of Pressure (COP) for the revolving-surging motion of the wing at 8∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.2: Center of Pressure (COP) for the revolving-surging motion of the wing at 13∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.
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Figure A.3: Center of Pressure (COP) for the revolving-surging motion of the wing at 23∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.4: Center of Pressure (COP) for the revolving-surging motion of the wing at 28∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.5: Center of Pressure (COP) for the revolving-surging motion of the wing at 39∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.
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Figure A.6: Center of Pressure (COP) for the revolving-surging motion of the wing at 45∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.7: Center of Pressure (COP) for the revolving-surging motion of the wing at 59∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.8: Center of Pressure (COP) for the revolving-surging motion of the wing at 70∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.



88 A. Appendix A

Figure A.9: Center of Pressure (COP) for the revolving-surging motion of the wing at 80∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.10: Center of Pressure (COP) for the revolving-surgingmotion of the wing at 90∘ᎎ. The colorbar signifies the progressing
of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.

Figure A.11: Center of Pressure (COP) for the revolving-surging motion of the wing at 100∘ᎎ. The colorbar signifies the pro-
gressing of time in t∗, with t∗ = 0.5,1,2,3,4,5,8, and 10 indicated with black dots.
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B.1. Revolving-pitching normal force coefficient for constant pitch-
ing axis location

Figure B.1: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, k = 0.39, 0.2,
0.13, 0.1

Figure B.2: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.25, k = 0.39, 0.2,
0.13, 0.1
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Figure B.3: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.50, k = 0.39, 0.2,
0.13, 0.1

Figure B.4: DK filtered measured normal force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.75, k = 0.39, 0.2,
0.13, 0.1
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B.2. Revolving-pitching thrust coefficient for constant pitching axis
location

Figure B.5: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.12, k = 0.39, 0.2,
0.13, 0.1

Figure B.6: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.25, k = 0.39, 0.2,
0.13, 0.1
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Figure B.7: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.50, k = 0.39, 0.2,
0.13, 0.1
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Figure B.8: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.75, k = 0.39, 0.2,
0.13, 0.1

Figure B.9: DK filtered measured tangential force coefficients for revolving-pitching measurements with ፱̂Ꮂ = 0.88 k = 0.39, 0.2,
0.13, 0.1
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B.3. Centre of Pressure locations for revolving-pitching measure-
ments
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Figure B.10: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.12, k = 0.2. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.11: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.12, k = 0.13. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.12: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.12, k = 0.1. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.13: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.25, k = 0.39. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.14: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.25, k = 0.2. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.15: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.25, k = 0.13. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.16: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.25, k = 0.1. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.17: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.5, k = 0.39. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.18: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.5, k = 0.2. The colorbar signifies the progressing of time in
t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.19: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.5, k = 0.13. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.20: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.5, k = 0.1. The colorbar signifies the progressing of time in
t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.21: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.75, k = 0.39. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.22: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.75, k = 0.2. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.23: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.75, k = 0.13. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.24: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.75, k = 0.1. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.25: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.88, k = 0.39. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.26: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.88, k = 0.2. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.27: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.88, k = 0.13. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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Figure B.28: Center of Pressure location for entire motion for ፱̂Ꮂ = 0.88, k = 0.1. The colorbar signifies the progressing of time
in t∗, with t∗ = 0.5,1,2,3,4,5,6,7, and 9 indicated with black dots.
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