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Abstract
Federated Learning has gained prominence in
recent years, in no small part due to its abil-
ity to train Machine Learning models with
data from users’ devices whilst keeping this
data private. Decentralized Federated Learn-
ing (DFL) is a branch of Federated Learn-
ing (FL) that deals with clients directly com-
municating with each other as opposed to us-
ing a central server. Client mobility describes
how users’ devices move in the real world,
and its effects on the learning performance of
Hierarchical Federated Learning (HFL) sys-
tems have been found to be significant. How-
ever, the effects of client mobility on DFL sys-
tems have not been explored. In this work,
we fill this research gap. First, we develop a
model that can describe client mobility in a
DFL system. Then, using synthetic datasets,
we show that client mobility has a positive im-
pact on learning performance, which we quan-
tify. Moreover, we show that there is a dis-
parity in learning performance between high-
mobility and low-mobility clients when us-
ing a baseline model aggregation algorithm.
To address this disparity, we propose a new
mobility-aware model aggregation algorithm.
Our experimental results on synthetic datasets
show that our solution reduces the disparity in
learning performance between high- and low-
mobility clients in the scenarios where this dis-
parity is greatest, with no appreciable down-
sides in global learning performance.

1 Introduction
Federated Learning (FL) is a privacy-preserving machine
learning paradigm that permits multiple clients to bene-
fit from a shared model trained from clients’ data, shar-
ing model parameters instead of client data [14]. The in-
ception of FL presented a centralized network architec-
ture now called Centralized Federated Learning (CFL),
whereby clients send model updates (see Fig. 1c) to
a central server, that then performs model aggregation
based on these updates [14]. However, since then, a va-
riety of FL architectures have arisen, including Hierar-
chical Federated Learning (HFL) (see Fig. 2) and Decen-
tralized Federated Learning (DFL) (see Fig. 1d) systems.
In HFL, clients send data to a layer of multiple edge
servers, which act as intermediaries that subsequently
perform model aggregation and forwarding to a central
server [13]. In DFL, the need for a centralized controller
(server) is foregone completely [9], and instead clients
share model parameters with each other using a vari-
ety of decentralized communication algorithms [18]. Al-
though less studied, DFL has gained attention for some

use-cases due to its inherently decentralized architecture.
Certain systems, such as networks of interconnected mo-
bile devices, are particularly well-suited to DFL, with
shorter communication ranges conserving bandwidth on
constrained devices and improving response times [1].
Other systems crucially benefit from DFL being impervi-
ous to Single Point of Failure (SPoF) attacks, and being
more resilient to Distributed Denial of Service (DDoS)
attacks [7].

Client mobility describes how a client device moves
in the real world. The effects of client mobility on HFL
systems have been studied in recent years and have been
found to be significant [5]. Client mobility in this space
has been a subject of investigation due to HFL clients be-
ing able to move between different access points between
iterations, which affects learning (see Fig. 2). However,
as far as we know, there are no works that have stud-
ied client mobility in a DFL setting. Additionally, other
works have noted that, in DFL, imbalanced parameter ex-
changes between clients will lead to some models having
significantly different parameters than others [6]. Client
mobility may make this effect more pronounced, leading
to the unfair situation of higher-mobility clients having
better models than lower-mobility clients.

Motivated by this research gap and potential unfair-
ness, we analyze the performance of a DFL system with
varying levels of client mobility, and propose a mobility-
aware model aggregation algorithm to bridge the gap be-
tween high- and low-mobility clients. Our contributions
can be summarized as follows:

• We develop a theoretical framework to describe
client mobility in a DFL system.

• Using synthetic datasets, we show and quantify that
increasing the proportion of high-mobility clients
has a marked positive impact on global learning per-
formance.

• We identify a disparity in learning performance be-
tween high-mobility and low-mobility clients.

• We propose a mobility-aware model aggregation al-
gorithm, designed to bridge the gap between high-
and low-mobility clients. Experimental results on
synthetic datasets show that this algorithm reduces
the disparity in learning performance in scenarios
where this disparity is greatest, with no appreciable
downsides in global learning performance.

2 Background
McMahan et al. [14] proposed the first and most popu-
lar FL algorithm, called federated averaging (FedAvg).
At each communication round clients upload their local
models to a centralized server, from which a weighted
average is computed, with the weights being proportional
to the number of samples of the respective client.

Since then, a broad taxonomy of FL systems has
emerged [11]. Aside from the different aforementioned
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Figure 1: Illustration of different types of learning architectures. We note that (c) corresponds to CFL and HFL, and (d) corresponds
to DFL. For HFL, there is an intermediate layer of cloud computing servers, which then aggregate and forward parameters to a
centralized server. From [18].

Figure 2: Illustration of a Hierarchical Federated Learning sys-
tem, with 3 edge servers. Note how clients can move to differ-
ent edge servers between iterations. From [17].

DFL and HFL communication architectures that were
proposed, different model aggregation techniques have
been proposed [16], many as improvements of FedAvg.
These techniques, amongst other things, may involve ad-
justing the weights, especially since aggregation weights
based on the amount of client data (such as in FedAvg)
may lead to worse performance [16].

In contrast to CFL, where aggregation is only done in
one centralized server, in DFL every client is a model ag-
gregator, meaning that the client aggregates the models
that it receives with its own model [11]. A number of
aggregation algorithms have been proposed, and unlike
CFL with FedAvg, there is no aggregation algorithm that
is an accepted baseline for DFL [1].

3 Related Work
Mobility in Hierarchical Federated Learning In re-
cent years, the research gap regarding the effects of
client mobility in learning performance on HFL systems

has gained attention. Feng et al. [5] highlight this gap
and develop a theoretical model to characterize client
mobility in HFL systems, where clients can move be-
tween different access points (APs). Moreover, they pro-
pose a mobility-aware cluster FL (MACFL) algorithm,
whereby their experiments show that this algorithm im-
proves learning performance compared to baseline meth-
ods. Similarly, Feng et al. [4] investigate the effects of
mobility on HFL systems through analysis and simula-
tions. However, neither of the mentioned works consid-
ers systems other than HFL systems. In contrast, we con-
sider DFL systems.

Bian and Xu [2] address the impact of mobility on the
learning performance of asynchronous FL by using mo-
bile relaying between clients, proposing and benchmark-
ing a new FL algorithm for doing so. Similarly, Peng
et al. [15] theoretically investigate how mobility affects
the performance of FL systems deployed on mobile net-
works, developing a closed-form expression and finding
that client mobility can improve learning performance
for the examined mobile network. Nevertheless, we note
that both works solely focus on a mobile network set-
ting more reminiscent of HFL, in which clients can in-
teract with intermediary servers (and in the case of Bian
and Xu, additionally exchange information with other
clients). We deem it important to provide a more syn-
thetic analysis of client mobility, particularly in a fully
decentralised system.

Decentralized Federated Learning Frameworks
DecentralizePy [3] is an extensible framework for de-
centralized learning simulations. In the aforementioned
work, the authors partly demonstrate the usefulness of
their framework by showing how the performance of
DFL is affected by network topology. However, the
authors do not implement a model for client mobility
nor do they conduct experiments to evaluate its effect,
which we focus on in this work.
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Mobility in Decentralized Federated Learning
Gecer et al. [6] give a survey of mobility-related FL
solutions and, in doing so, give limitations regarding
FL systems for mobility applications. Amongst these,
a problem relating to the parameter exchanges in DFL
systems is mentioned [6], which highlights how DFL
systems may lead to imbalanced parameter exchanges
between clients, due to some clients having more
neighbours than others. In our work, we recognise that
client mobility may exacerbate this effect further (i.e.
high-mobility clients will have more neighbours than
low-mobility clients), and we explore this possibility
further by simulating a variety of DFL systems with
varying levels of client mobility.

4 Methodology
Our research methodology involves a mixture of mod-
elling and simulation. We first create a model that is
capable of describing client mobility in a DFL system.
This is necessary due to the lack of client mobility re-
search on DFL systems. Second, we propose an algo-
rithm to bridge the expected performance gap between
high-mobility and low-mobility clients. This gap can be
predicted due to the aforementioned imbalanced param-
eter exchanges in DFL systems [6], which can be further
exacerbated due to high-mobility clients having a signif-
icantly higher number of neighbours than low-mobility
clients. Third, we choose to investigate client mobility
by changing the proportion (symbolically represented by
p) of high-mobility clients within a population sample.
This was chosen due to many real-world systems hav-
ing entities with significantly different mobility distribu-
tions. As an example, in a city we would expect many
pedestrians (which are lower-mobility), and fewer vehi-
cles (which are higher-mobility). We then generate syn-
thetic data and run experiments for these differing sce-
narios, recording the learning performance for each al-
gorithm. We later compare, with differing proportions of
high-mobility clients, for each algorithm:

• How learning performance is affected
• How the performance gap between high-mobility

and low-mobility clients is affected
This methodology allows us to quantify how client
mobility affects DFL systems, address potential fair-
ness/performance issues by proposing an appropriate so-
lution, and show that the solution ameliorates these prob-
lems.

5 Client Mobility in DFL Systems
In this section, we first explain how clients and their mo-
bility can be modelled, leading to the modelling of a dy-
namic DFL system. Second, we detail the examined DFL
system. Finally, we give the proposed mobility-aware
aggregation algorithm, as well as specify the correspond-
ing baseline algorithm.

5.1 Client Mobility Model
World Modeling We model the world as a two-
dimensional grid (x, y) with width w and height h. For-
mally, the world is represented as a continuous space R2

bounded by [0, w]× [0, h].
Time For the purpose of simulating clients’ move-
ments precisely, time is defined continuously, i.e., t ∈ R.
However, simulations are composed of iterations, which
always take 1 unit of time. Formally, for any iteration k,
we denote its start time tk ∈ N.
Client Mobility Let U denote the set of all clients.
Each client i ∈ U at iteration k with start time tk ∈ N is
characterized as follows:

• Movement Direction: We model the mobility of
clients as a random walk [10]. Define a probability
vector qi = [ui, di, li, ri] for each client i, where ui,
di, li, and ri represent the probabilities of moving
up, down, left, or right respectively in a time unit.
The chosen direction is denoted by di(tk). For this
work, we set ui = di = li = ri =

1
4 for all clients.

This is because any statistical bias in direction leads
to an unrealistic clustering of clients at the bounds
of the grid.

• Starting Velocity: Each client i moves with a speed
si. The initial velocity is given by

vi(tk) ∈ {(0,−si), (0, si), (−si, 0), (si, 0)}

if di(tk) is up, down, left or right respectively.
• Position Computation: We compute the position
pi ∈ R2 of client i in iteration k at time tk <
t+∆t ≤ tk+1 by:

pi(t+∆t) = pi(t) + vi(t)∆t (1)

Where the velocity vi is computed by:

vi,x(t+∆t) =


−vi,x(t) if pi,x(t)+vi,x(t)∆t>w

or pi,x(t)+vi,x(t)∆t<0

vi,x(t) otherwise

vi,y(t+∆t) =


−vi,y(t) if pi,y(t)+vi,y(t)∆t>h

or pi,y(t)+vi,y(t)∆t<0

vi,y(t) otherwise
(2)

Through this computation, we simulate clients trav-
elling at a constant speed si, with their direction
di reversing if they encounter the grid’s boundaries
[0, w] × [0, h]. This simulates the clients rebound-
ing off the grid’s boundaries, maintaining constant
speed but opposite velocity.

• Neighbours: The neighbours of a client i at iteration
k are defined as the set of all clients j ∈ U such that,
at any point when moving from time t − 1 to t, the
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Euclidean distance between client i and client j is
less than or equal to the radius R. Formally, the set
of neighboursMi(tk) of client i at iteration k, start
time tk is given by

Mi(tk) =

{j ∈ U |
∃τ ∈ [tk−1, tk] s.t. ∥ pi(τ)− pj(τ)∥≤ R}

With the edge-case of Mi(t0) = {i}. This im-
plies that any two clients i and j are neighbours if
and only if they are within each other’s communica-
tion radius between training rounds, simulating di-
rect communication between one-hop neighbours.
In our model, every client has the same radius R.

Initial Parameters The initial parameters for each ex-
periment are distributed as follows:

• Initial client positions: The initial position of each
client i ∈ U pi(0) = (xi(0), yi(0)) is determined
by i.i.d uniform random variables:

xi(0) ∼ Uniform(0, w), yi(0) ∼ Uniform(0, h).

• Client speeds: Define the following variables:

smax = maximum velocity for low-mobility clients
β = scaling factor for high-mobility clients

For low-mobility clients, we have that:

si ∼ Uniform(0, smax)

Otherwise, for high-mobility clients, we have that:

si ∼ Uniform(smax × β, 2× smax × β)

Where β > 1 ensures that high-mobility clients
have a higher velocity range.
These distributions guarantee that all high-mobility
clients will be faster than all low-mobility clients by
a factor of at least β.

5.2 System Setup
DFL encompasses a wide range of categories and
types [18], making it essential for us to focus on a par-
ticular system for our analysis. For the optimizer, we
selected a basic stochastic gradient descent (SGD) op-
timizer with logarithmic loss. For the communication
algorithm between clients and model aggregation, we
chose decentralized parallel stochastic gradient descent
(D-PSGD) [12]. D-PSGD is a decentralized learning al-
gorithm in which clients avoid needing a central server
by relying on given communication topologies. Models
from neighbouring clients for a given client i at iteration
k are averaged following Alg. 1, where for each neigh-
bouring client j the importance of its model xk

j is de-
termined by its corresponding weight Wij . A variety of
weighting schemes W can be used - we now present the
baseline for benchmarking and later the proposed solu-
tion.

5.3 Baseline Model Aggregation Algorithm
For the baseline comparison, we use plain model aver-
aging, that is, every neighbouring model has equal im-
portance in the averaging. This leads to the same weight
matrix W that is presented in the original D-PSGD pub-
lication [12]. Concretely, for a given client i at iteration
k, start time tk, for any neighbour j ∈Mi(tk), we define
its corresponding model weight Wij as

Wij =
1

N

where N = ∥Mi(tk)∥, i.e. the number of neighbours
of i at iteration k.

5.4 Mobility-Aware Model Aggregation
Algorithm

Here we propose a solution to the presumed performance
disparity between low- and high-mobility clients, due to
high-mobility clients on average having a significantly
higher number of neighbours over multiple rounds, thus
having an imbalanced parameter exchange and better
learning performance. The principal idea is to leverage
this foresight and the additional assumption that clients
know the velocities of their neighbours to weigh their
neighbour’s models proportionally to their velocity.

A naive approach would be to normalise the neigh-
bours’ speeds relative to the other neighbours and use
these for the aggregation weights. Concretely, for a given
client i at iteration k, start time tk, for any neighbour
j ∈ Mi(tk), we define its corresponding normalised
speed Xij as

Xij =
sj∑

x∈Mi(tk)
sx

Preliminary experiments showed that using Xij as the
aggregation weight would lead to too much bias towards
the neighbour’s speed. To control for this, we introduce a
ratio hyperparameter α to calculate the final aggregation
weights Wij as

Wij =
1

N
+ α(Xij −

1

N
)

where N = ∥Mi(tk)∥, i.e. the number of neighbours
of i at iteration k. We note that at α = 0.0, the algorithm
devolves into the plain averaging baseline of Sec. 5.3,
whereas at α = 1.0 we have naive Wij = Xij .

6 Evaluation
In this section, we first demonstrate the performance
effects of client mobility, as well as the performance
gap between low- and high-mobility clients, on the
previously-described DFL system in Sec. 5.2. Moreover,
we compare and contrast these aforementioned prop-
erties with the proposed model-averaging algorithm in
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Algorithm 1 Our adaptation of D-PSGD with dynamic topologies for client i (logical view). Adapted from [12]

Require: Initialize local model {xi
0} with the initialization, learning rate γ, batch size M , and total number of itera-

tions K.
1: for k = 0, 1, . . . ,K − 1 do
2: Randomly sample a batch ξk := (ξ1, ξ2, . . . , ξM ) from local data of client i.
3: Compute the stochastic gradient locally gk(x̂

i
k; ξ

i
k) :=

∑M
j=1∇F (x̂i

k; ξ
i
k,j).

4: Partially update the local model xi
k+1/2 ← xik

k − γgk(x̂
ik
k ; ξikk )

5: Contact its neighbours j ∈Mi(tk) and receive their partial models xj
k+1/2.

6: Average local model with neighbours’ models by xi
k+1 ←

∑
j∈Mi(tk)

Wijx
j
k+1/2

7: end for
8: Output the average of the models on all workers for inference.

Sec. 5.4. We give an in-depth analysis of results for sys-
tems with non-IID data partitioning in Sec. 6.2 through
Sec. 6.4, as well as a summary for systems IID data par-
titioning in Sec. 6.5.

6.1 Experimental Setup
The experiments are run on one hyperthreading-enabled
machine on 2 Intel Xeon Gold 6253CL @ 3.10GHz, hav-
ing access to a total of 30 cores and 240GB of RAM. For
the dataset, we use the CIFAR-10 dataset [8] with non-
IID data partitioning. The experiments are run with a
total of N = 48 clients. Each experiment is run 3 times,
each with a new randomised seed, from which we take
and present the average.

To simulate these DFL systems, we use an ex-
tended version of DecentralizePy [3], an easily extensi-
ble framework for decentralized ML. The source code
for the extended version used in this work, along with
random seeds and extra configurations used for these ex-
periments, can be found in a publicly available online
repository2.

6.2 Performance Effects of Increasing
High-Mobility Clients

The results of these experiments are summarised in
Tab. 1.

Proportion
(p)

Accuracy improvement
relative to p = 0 (%)

5% +2.73
20% +4.64
40% +6.51
60% +6.71
80% +8.56
100% +8.97

Table 1: Average final test accuracy difference from p = 0%
for varying proportions of high-mobility clients p

2https://github.com/asturnox/decentralizepy
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Figure 3: Test accuracy per round for systems with 0%, 20%,
40% and 60% high-mobility clients.

0 500 1000 1500 2000 2500 3000 3500 4000
Round

30

40

50

60

70

Av
er

ag
e 

Te
st

 A
cc

ur
ac

y

Test Accuracy per Round

60% High Mobility
80% High Mobility
100% High Mobility

Figure 4: Test accuracy per round for systems with p = 60%,
80% and 100%. Returns in increased test accuracy are negligi-
ble beyond p = 60%.

The results of these experiments show a marked im-
provement in test accuracy when increasing p from 0% to
20%, 40%, 60% (see Fig. 3). We observe that the biggest
change occurs from 0% to 20%, after which returns ap-
pear to be diminishing. This is confirmed by comparing
performance with systems with p = 60%, 80% and 100%
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Proportion
(p)

Average test accuracy
advantage (%)

5% +4.81
20% +4.13
40% +2.53
60% +2.04
80% +0.90

Table 2: Average test accuracy advantage throughout experi-
ment between high-mobility and low-mobility clients for vary-
ing levels of p.

(see Fig. 4), in which differences appear to be less pro-
nounced, especially between p = 80% and p = 100%.

These diminishing returns are explained by high val-
ues of p leading to low-mobility clients have a similar
amount of neighbours than their high-mobility counter-
parts, as most of their neighbours become high-mobility
clients. This means that further replacement of low-
mobility clients with high-mobility clients does not lead
to much more parameter exchanges. A comparison
between the number of neighbours of high- and low-
mobility clients can be found in App. B.

We also observe that having a relatively small p has
an outsized impact on learning performance compared to
p = 0%, noting a 2.73% improvement by just increasing
p to 5%.

6.3 Performance Gap Between High-Mobility
and Low-Mobility Clients

The difference in learning performance between high-
and low-mobility clients, for varying levels of p, is sum-
marised in Tab. 2. It should be noted that due to the vari-
ability of test accuracies at the end of each experiment
for high-mobility clients (due to some scenarios having
a limited amount of these clients), the average test ac-
curacy difference throughout the experiment is given in-
stead.

The results of these experiments show that high-
mobility clients have a clear learning advantage over
low-mobility clients. In particular, in Fig. 5 we observe
that, in environments with a low proportion of high-
mobility clients (in this case p = 5%), high-mobility
clients generally have a significantly higher test accuracy
throughout. This confirms our presumption that high-
mobility clients would have better learning performance
due to the increased amount of neighbours throughout
iterations leading to more voluminous and varied param-
eter exchanges.

Interestingly, we also note that increasing p signifi-
cantly past 20% (see Fig. 6) closes the gap between high-
mobility and low-mobility clients, with low-mobility
clients improving their learning performance. This can
be explained by low-mobility clients communicating
with more high-mobility clients (due to the latter be-
coming much more common), thus resulting in a signifi-
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Figure 5: A comparison of high-mobility vs low-mobility
clients in a system with p = 5%. There is a significant differ-
ence in learning performance between high- and low-mobility
clients.
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Figure 6: A comparison of High-Mobility vs Low-Mobility
clients in a system with p = 80%. There is a negligible differ-
ence in learning performance between high- and low-mobility
clients.

cant increase in parameter exchanges for lower-mobility
clients, thus providing more varied parameters for aggre-
gation and closing this gap with high-mobility clients.

6.4 Comparison with Mobility-Aware
Aggregation Algorithm

Given the results of the plain-averaging algorithm
baseline, we now compare these results to using the
aforementioned mobility-aware aggregation algorithm in
Sec. 5.4. We first compare the performance difference
between low- and high-mobility clients, followed by a
comparison in global learning performance.

Difference Between High-Mobility and
Low-Mobility Clients
In environments with a low proportion of high-mobility
clients (p = 5% and p = 20%), for all configurations of
α, we show (see Tab. 3) a less exaggerated performance
gap between high- and low-mobility clients. In partic-
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Table 3: Average test accuracy difference (%) between HM and LM clients throughout experiments, different aggregation methods.

p = 0.05 p = 0.2 p = 0.4 p = 0.6 p = 0.8

Plain Averaging +4.81 +4.13 +2.53 +2.04 +0.90

Mobility-Aware
(α = 0.1) +4.66 +3.79 +2.84 +1.90 +1.27

Mobility-Aware
(α = 0.2) +3.35 +3.70 +3.00 +2.35 +1.20

Mobility-Aware
(α = 0.3) +4.26 +3.92 +2.81 +1.97 +1.24

Mobility-Aware
(α = 0.4) +3.16 +3.17 +2.64 +2.28 +1.19

Mobility-Aware
(α = 1.0) +3.76 +3.45 +3.47 +3.44 +2.89

ular, we note that for this particular system, mobility-
aware aggregation with α = 0.4 seems to be well-suited,
with absolute differences in test accuracy being reduced
by more than 1.5% in the scenario where this difference
is the highest (i.e. p = 5%), by around 1.0% in the sce-
nario with the second-highest gap (p = 20%), and simi-
lar disparities to the baseline in higher-mobility scenarios
(p values of 40%, 80%, 100%).

Nevertheless, we also note in Tab. 3 that the proposed
solution is sensitive to the hyperparameter α. While all
values of α lead to lower or similar differences between
clients for values of p = 5% and p = 20% than the
baseline, increasing p sometimes leads to the opposite
intended effect - with the baseline leading to a signifi-
cantly lower difference in the naive case of α = 1.0.

This trend reversal could be explained by the fact that,
given a critical proportion of high-mobility clients, low-
and high-mobility clients have a similar amount of neigh-
bours ∥Mi(tk)∥ and thus a similar variety of parameter
exchanges. Given this scenario, the heuristic of bias-
ing towards higher-mobility clients fails (as both client
classes are now similar), and a plain averaging algorithm
is indeed fairer and better performing.

Overall Learning Performance Comparison
For mobility-aware aggregation with α values of 0.1, 0.2,
0.3, 0.4, we see a negligible difference in learning per-
formance compared to plain averaging throughout values
of p. Concretely, we see the largest absolute difference
when α = 0.1 and p = 0.2, in which the baseline has
a 1.53% higher final test accuracy. Moreover, we note
that there is no identifiable trend in learning differences
- increasing p for an equal value of α may lead to both
negligibly positive or negative improvements. A com-
plete table of results can be found in App. A.

A possible explanation may be that the values of α
may be too small, leading to the weights being too sim-
ilar to those of the baseline, thus leading to a reduced
difference. However, this is disputed by the fact that
we did see consistently lower differences between high-

and low-mobility clients (in lower-mobility scenarios)
in the previous section. Another possible explanation
may be that despite biasing weights towards clients with
more complete models (i.e., higher mobility), we may be
losing too much knowledge by ignoring lower-mobility
clients. We may thus have two opposing effects with no
truly beneficial compromise for learning performance:
biasing towards good models (improving accuracy), but
ignoring worse models (deteriorating accuracy).

This latter explanation seems to be verified by the
naive case of α = 1.0, where we observe (see Tab. 4)
a clear decrease in performance compared to using plain
averaging. Interestingly, we note that this difference is
highest at around p = 20%, after which this difference
tends to 0.

Expanding on the previous explanation, this de-
creased performance in environments with low p stems
from small differences in velocity affecting aggregation
weights substantially to no major benefit - as an example,
a low-mobility client with a movement speed s close to 0
may still encounter many neighbours and have useful pa-
rameters, but its model will be essentially discarded due
to its low velocity. This lack of attention to extremely
low-mobility clients is reminiscent of problems that can
arise in FedAvg from clients that have low amounts of
data, due to model weights based on the amount of data
each client possesses [16].

6.5 Summary of IID Results
Here we summarise the analogous results to the previous
sections, but with IID data partitioning.

• Performance Effects of Increasing HM Clients: In
general, we see significantly lower learning perfor-
mance improvements when increasing p (see Tab.
5) than in the non-IID scenario. However, similarly
to the non-IID scenario, we still observe dimin-
ishing returns in learning performance, with most
of the improvements stemming from p = 0% to
p = 60%.
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Proportion
(p)

Accuracy difference with
naive mobility-aware

aggregation (%)
0% -2.28
5% -4.20

20% -5.11
40% -4.51
60% -2.03
80% -1.20
100% -0.56

Table 4: Average final test accuracy difference between naive
(α = 1.0) mobility-aware and plain averaging for varying val-
ues of p

Proportion
(p)

Average test accuracy
improvement (%)

5% +0.07
20% +1.12
40% +1.08
60% +1.43
80% +1.90
100% +2.11

Table 5: Average final test accuracy difference from p = 0%
for varying values of p, IID data distribution

Proportion
(p)

Average test accuracy
advantage (%)

5% +1.57
20% +1.21
40% +0.94
60% +0.85
80% +0.60

Table 6: Average test accuracy difference throughout experi-
ments between high-mobility and low-mobility clients for vary-
ing levels of p, IID data distribution

• Performance Gap Between HM and LM Clients:
We generally see a smaller advantage between high-
and low-mobility clients (see Tab. 6) compared to
the non-IID scenario. Nevertheless, we observe that
this advantage still closes as p increases, which re-
flects the non-IID scenario.

• Performance of Mobility-Aware Aggregation Algo-
rithm: Similarly to the non-IID results, we see no
significant differences in learning performance be-
tween both algorithms. A full table of results can be
found in App A.

These generally less pronounced results come entirely
due to the dataset being IID. When the dataset is non-IID,
increasing the number of higher-mobility clients leads to
more parameter exchanges for the entire system, thus in-
creasing the likelihood that representative samples are
exchanged at each model aggregation step [14]. How-

ever, this does not apply to IID datasets, thus leading
to much more modest learning performance improve-
ments. The same logic can be applied to the lowered per-
formance gap between high- and low-mobility clients:
high-mobility clients are not exaggeratedly more likely
to receive more representative samples than low-mobility
clients, hence we can expect a lower performance gap.

7 Responsible Research
The author declares that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence this work. Moreover, to help
ensure reproducibility, all data, code and analyses used
in this work have been publicly published and linked.
Finally, resources that were used to produce this work,
including DecentralizedPy and CIFAR-10, have been ap-
propriately referenced.

8 Conclusions and Future Work
In conclusion, this work investigated the effects of client
mobility on Decentralized Federated Learning systems,
identifying a performance gap between high- and low-
mobility clients and proposing a new aggregation algo-
rithm to close this gap. We showed that increasing the
proportion p of high-mobility clients results in substan-
tial increases in test accuracy until p = 80%, with re-
turns diminishing past p = 20%. We showed that,
despite a higher test accuracy between high- and low-
mobility clients in lower-mobility scenarios (p = 5%
and p = 20%), this difference can be closed by using a
mobility-aware aggregation algorithm, without impact-
ing overall learning performance. Finally, we demon-
strated that these results are far more exaggerated in non-
IID scenarios, whereas IID scenarios show fewer perfor-
mance improvements as p increases and smaller learning
performance disparities between high- and low-mobility
clients.

Due to the synthetic nature of the generated mobility
dataset, the authors recognise that the results of this work
might diverge from real-world systems. As such, an in-
teresting direction for future work would be to use real-
life mobility traces. Moreover, due to the broad taxon-
omy of Decentralized Federated Learning systems [11],
investigating a Decentralized Federated Learning sys-
tem with a different communication protocol, aggrega-
tion paradigm or iteration order is another interesting di-
rection for future work. Finally, automating the α hyper-
parameter in the mobility-aware aggregation algorithm
could be a valuable future work.
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A Learning Performance Comparison
Here, we present a direct comparison in learning perfor-
mance between using the baseline plain averaging algo-
rithm and mobility-aware aggregation for different val-
ues of its hyperparameter α. As explained in the evalua-
tion, neither for the IID nor the non-IID cases do we see
a significant difference in learning performance, except
for the naive mobility-aware aggregation with α = 1.0.
The non-IID comparison can be found in Tab. 7, and IID
results can similarly be found in Tab. 8

A.1 Non-IID Results

Table 7: Average final test accuracy difference (%) between
mobility-aware aggregation and plain-aggregation, for varying
values of p and α, non-IID data distribution.

p = 0.0 p = 0.05 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0
Mobility-Aware

(α = 0.1) +0.02 +0.85 -1.53 +0.42 +1.33 -0.05 -0.70

Mobility-Aware
(α = 0.2) +0.29 -0.37 +0.16 -0.07 +0.91 +0.01 -0.13

Mobility-Aware
(α = 0.3) +0.91 -1.30 +0.05 -0.63 +0.53 +0.13 -0.30

Mobility-Aware
(α = 0.4) +0.98 -1.40 -0.43 -1.05 +0.13 -1.17 -0.30

Mobility-Aware
(α = 1.0) -2.28 -4.20 -5.11 -4.51 -2.03 -1.20 -0.56

A.2 IID Results

Table 8: Average final test accuracy difference (%) between
mobility-aware aggregation and plain-aggregation, for varying
values of p and α, IID data distribution.

p = 0.0 p = 0.05 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0
Mobility-Aware

(α = 0.1) -0.23 +0.39 -0.53 +0.18 +0.18 -0.09 -0.05

Mobility-Aware
(α = 0.2) +0.17 +0.23 -0.42 -0.01 +0.06 +0.02 -0.09

Mobility-Aware
(α = 0.3) -0.34 -0.05 -1.03 +0.01 -0.03 -0.03 -0.03

Mobility-Aware
(α = 0.4) -0.90 +0.12 -1.02 -0.14 -0.13 -0.01 -0.05

Mobility-Aware
(α = 1.0) -1.73 -2.26 -4.37 -1.98 -1.98 -0.76 -0.24
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B Number of Neighbours Comparison
Here we show how varying p affects the number of
neighbours for both high- and low-mobility clients.
Fig. 7 shows a significantly wider gap in neighbours
between an average high- and low-mobility node with
p = 5% compared to Fig. 8, where this difference is
smaller due to the higher value of p = 80%.
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Figure 7: Cumulative number of neighbours on average for
high-mobility and low-mobility nodes, p = 5%

0 500 1000 1500 2000 2500 3000 3500 4000
Round

0

2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e 

Nu
m

be
r o

f N
ei

gh
bo

rs

Cumulative Average Number of Neighbors, p=0.8
High Mobility Nodes
Low Mobility Nodes

Figure 8: Cumulative number of neighbours on average for
high-mobility and low-mobility nodes, p = 80%
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