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a b s t r a c t

Sliding Mode Observer (SMO) based methods have been extensively used for Fault Estimation (FE).
However, the fault detection (FD) problem for these SMO based FE methods has not been completely
solved. In this paper a robust threshold on the so-called Equivalent Output Injection (EOI) is presented
which enables FD for systems with measurement noise and unmatched uncertainties. This threshold
is applicable to a large class of existing SMO based FE methods, and its applicability can easily be
verified. Theoretical guarantees on the detection performance of this threshold are provided, and
further demonstrated via a simulation study.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Following the ever growing adoption of automation technolo-
ies, also safety critical systems, such as industrial processes
nd autonomous vehicles, are gaining increasing autonomy. Such
evelopment calls for robust fault detection, identification, and
stimation (FDIE), in order to sustain system autonomy also in the
resence of faults, without requiring intervention by a supervisor.
Unknown Input Observers (UIOs) have been applied exten-

ively for this purpose, allowing for fault estimation (FE) and
etection (FD) (Chen & Zhang, 1991; Koenig, 2005; Lan & Pat-
on, 2017; Odgaard & Stoustrup, 2012) for a class of systems
s defined in Saif and Guan (1993). More recently, also sliding
ode observers (SMOs) were adopted for this purpose (Alwi,
dwards, & Tan, 2008; Edwards, Spurgeon, & Patton, 2000; Frid-
an, Davila, & Levant, 2008; Hermans & Zarrop, 1996; Tan &
dwards, 2003). These SMO-based FE methods are applicable to
larger class of systems and have, in certain applications, better
erformance (Edwards & Tan, 2006).
SMO-based FE methods have furthermore been developed to

llow for even broader applicability. Methods have been pro-
osed to achieve this using higher order exact differentiators (de

✩ The material in this paper was partially presented at the 58th IEEE
Conference on Decision and Control, December 11–13, 2019, Nice, France. , and
the 7th IFAC Workshop on Distributed Estimation and Control in Networked
Systems, NecSys 2018, August 27–28, 2018, Groningen, The Netherlands. This
paper was recommended for publication in revised form by Associate Editor
Hernan Haimovich under the direction of Editor Sophie Tarbouriech.
∗ Corresponding author.

E-mail addresses: t.keijzer@tudelft.nl (T. Keijzer), r.ferrari@tudelft.nl
R.M.G. Ferrari).
ttps://doi.org/10.1016/j.automatica.2022.110600
005-1098/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
Loza, Henry, Cieslak, Zolghadri, & Davila, 2015; Floquet, Ed-
wards, & Spurgeon, 2007; Fridman, Levant, & Davila, 2007; Ríos,
Davila, Fridman, & Edwards, 2015) or by using multiple cascaded
SMOs (Tan & Edwards, 2010). However, also methods exist where
a single first order SMO (FOSMO) is used, while still relaxing the
matching condition (Keijzer, Jarmolowitz, & Ferrari, 2021; Raoufi,
Marquez, & Zinober, 2010; Tan, Crusca, & Aldeen, 2008; Tan &
Edwards, 2003), non-minimum phase condition (Bejarano, 2011;
Zhang, Swain, & Nguang, 2013), or both (Hmidi, Brahim, Hmida,
& Sellami, 2020; Wang, Tan, & Zhou, 2017; Zhirabok, Zuev and
Shumsky, 2021).

Nevertheless, a challenge that still needs to be addressed is
the design of SMO-based FD methods when measurement noise
is present. Such noise prevents ideal sliding motion to be reached:
this causes the FE results to no longer be exact, and thus existing
methods that use them for FD cannot lead to robust detection.
In this work, we will address the FD problem for systems with
measurement noise and (un)matched uncertainties, by develop-
ing a robust detection threshold. Some works consider the effects
of measurement noise on SMO-based state and fault estimation
using higher order SMOs, giving time-averaged/order bounds on
the accuracy (de Loza et al., 2015; Fridman et al., 2007; Levant,
2003; Poznyak, 2003). However, the works considering the ef-
fect of measurement noise on FOSMO-based FE are very limited.
In Zhirabok, Shumsky and Zuev (2021) it is required that mea-
surement errors directly affect the state equation, whereas (Yang,
Zhu, & Zhang, 2013) assumes the measurement noise derivatives
to be bounded. Both these noise representations are restrictive
and may limit the practical applicability.

In this work the FD problem for SMO based FDIE is addressed
by designing a robust and deterministic FD threshold, appli-

cable to a large class of FOSMOs, such as Alwi et al. (2008),

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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dwards et al. (2000), Keijzer et al. (2021), Tan and Edwards
2001, 2002, 2003) and Wang et al. (2017). Specifically, it will be
roven that the threshold is applicable to the SMOs from Keijzer
t al. (2021) and Tan and Edwards (2003). The designed thresh-
ld allows for robust FD on systems with measurement noise
nd (un)matched uncertainties. Furthermore, sufficient condi-
ions will be presented (1) for which there exists a realisation of
he uncertainty and measurement noise such that detection oc-
urs and (2) for which detection is guaranteed for all uncertainty
nd noise realisations.
In Section 2 the threshold design problem is formulated. In

ection 3 a time response of the so-called Equivalent Output
njection (EOI) is presented, such that it can be used as the basis
f the fault detection threshold design in Section 4. In Section 5,
uarantees on the detection performance are presented. In Sec-
ion 6 it will be proven that the designed threshold is applicable
o a large class of SMOs. Lastly, a simulation example of a col-
aborative vehicle platoon is used to demonstrate the threshold
erformance in Section 7.

.1. Notation

For a vector x, x(i) denotes the ith element of x. Inequalities
for vectors are evaluated element-wise. x̃ and

˜
x denote the true,

possibly unknown bounds on x which are defined element-wise
as x̃(i) ≜ maxt (|x(i)|) and

˜
x(i) ≜ mint (|x(i)|). x̄ and x denote known

ounds such that x̄ ≥ x̃ and x ≤
˜
x always hold. Superscript 0

enotes healthy behaviour, and superscripts u and l denote the
ariable is related to the so-called upper and lower thresholds
espectively. diag(X) denotes a column vector containing the
iagonal elements of a square matrix X . |x| denotes the element-
ise absolute value of a matrix or vector x. Lastly, when x = 0, it

is considered sign(x) = −sign(xnz) where xnz is the last non-zero
x.

2. Problem formulation

The aim of this paper is to present a design for a robust
detection threshold that is applicable to a large class of FOSMO
based fault estimation schemes. The class of systems to which the
threshold is applicable will be characterised in this section using
three propositions. Such statements are not restrictive, as they
can be proven to hold for many existing SMOs. In Section 6, due
to space constraints, the proofs will be presented only for two
selected SMOs. Furthermore, in this section, the threshold design
problem is formalised by introducing suitable design criteria.

2.1. System description

Let us consider a dynamical system with the form⎧⎨⎩
ẋ1 = A11x1 + As

12x2 + h1(y, u)+ E11ζ1 + Es
12ζ2 + N1f

ẋ2 = A21x1 + As
22x2 + h2(y, u)+ E21ζ1 + Es

22ζ2 + N2f
y = C2x2 + Fζ2 ,

where x1 ∈ Rn−p and x2 ∈ Rp are partitions of the system
state; y ∈ Rp is the system output; u ∈ Rw is the system
input; f ∈ Rr is a time varying term representing the fault to
be detected; ζ1 ∈ Rq1 is the system uncertainty; ζ2 ∈ Rq2 is the
measurement noise; and h1 : Rp×w

→ Rn−p and h2 : Rp×w
→ Rp

are known, possibly nonlinear functions. The following, common
assumptions characterise the fault and the uncertainties.

Assumption 1. f (t) = 0, while t < T .
f
2

Assumption 2. ζ1, ζ2, and f are bounded as ζ̄1 ≥ ζ̃1 ≜ maxt (|ζ1|),
ζ̄2 ≥ ζ̃2 ≜ maxt (|ζ2|), and f̄ ≥ f̃ ≜ maxt (|f |). Using the notation
defined in Section 1.1, ζ̄1, ζ̄2 and f̄ are assumed to be known,
deterministic values.

We will consider an SMO of the general form⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x1 = A11x̂1 + As

12x̂2 + h1(y, u)− (As
12 − A12)C−12 ey − K1ν ,

˙̂x2 = A21x̂1 + As
22x̂2 + h2(y, u)− (As

22 − A22)C−12 ey − K2ν ,

ν ≜ −sign(Pey)
ŷ = C2x̂2 ,

where x̂1 ∈ Rn−p, x̂2 ∈ Rp and ŷ ∈ Rp are the state and output
estimates; ey ≜ y − ŷ; and ν ∈ Rp is the switching output
feedback. The error dynamics then becomes⎧⎨⎩

ė1 = A11e1 + A12e2 + E11ζ1 + E12ζ2 + N1f + K1ν ,

ė2 = A21e1 + A22e2 + E21ζ1 + E22ζ2 + N2f + K2ν ,

ey = C2e2 + Fζ2 ,

(1)

where e1 ≜ x1 − x̂1 ∈ Rn−p and e2 ≜ x2 − x̂2 ∈ Rp are
the state estimation errors, E12 = Es

12 − (As
12 − A12)C−12 F , and

E22 = Es
22 − (As

22 − A22)C−12 F . The fault is then estimated by f̂
based on the switching term ν via

ν̇eq = −Kν(νeq − ν)

f̂ = g(νeq)
(2)

where Kν ≻ 0 ∈ Rp×p is the gain matrix of a stable filter, νeq is
the so-called Equivalent Output Injection (EOI), and g : Rp

→ Rr

is the fault estimation function.

Remark 1. The function g(νeq) can vary and depends on the
specific SMO which is used. However its definition does not affect
the applicability of the threshold derived in the present work.

2.2. Threshold applicability propositions

Based on the error dynamics, Propositions 1–3 together pro-
vide a sufficient condition for the threshold to be applicable. As
an exemplification, in Section 6 we will prove that they hold for
the SMOs from Keijzer et al. (2021) and Tan and Edwards (2003).

Proposition 1. In Eq. (1), A11 is Hurwitz, Kν ≻ 0 is a diagonal
matrix, C2 is invertible, and K2 ̸= 0.

Proposition 2. The following conditions on e2 hold.⎧⎪⎪⎪⎨⎪⎪⎪⎩
|e2| ≤ ẽ2 ≤ ē2
sign(ė2) = −sign(Pey)

if ė2 > 0 : ė+2 ≤
˜
ė+2 ≤ |ė2| ≤ ˜̇e

+

2 ≤
¯̇e+2

if ė2 < 0 : ė−2 ≤
˜
ė−2 ≤ |ė2| ≤ ˜̇e

−

2 ≤
¯̇e−2

(3)

where ẽ2, ˜̇e+2 ,
˜
ė+2 , ˜̇e

−

2 , and
˜
ė−2 are the unknown true bounds, and

ē2, ¯̇e+2 , ė
+

2 , ¯̇e
−

2 , and ė−2 , are the known bounds on e2. Furthermore,
equivalent bounds for the healthy system can be obtained, denoted
with superscript 0.

Remark 2. The unknown bounds on e2 introduced in Proposi-
tion 2 may not admit an algebraic closed form, albeit they can
still be computed numerically from Eq. (1) and the true bounds
introduced in Assumption 2. The known bounds, instead, need
only to satisfy relations (3) and can be freely defined by the user
in any form.
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The relation between true-faulty and known-healthy bounds
can thus be conveniently written as

ẽ2 + δe = ē02 + δf (f ) ,
˜̇e+2 + δė = ¯̇e

0,+
2 + δ+

ḟ
(f ) ;

˜
ė+2 − δė = ė0,+2 + δ+

ḟ
(f ) ,

˜̇−
2 + δė = ¯̇e

0,−
2 − δ−

ḟ
(f ) ;

˜
ė−2 − δė = ė0,−2 − δ−

ḟ
(f ) ,

(4)

here δe > 0 and δė > 0 represent the difference between the
rue and known bound, and δf : Rr

→ Rp, δ+
ḟ
: Rr
→ Rp, and

−

ḟ
: Rr

→ Rp represent the effect of a fault. Here, and in the
ollowing, the superscripts + and − denote a variable relates to
ime periods during which the sign of ė2 is, respectively, positive
r negative.

roposition 3. For any j and df such that |f(j)| ≥ df , there exists a
> 0 and an index i such that either of the following holds.

I. δf ,(i)(f ) ≥ 0, δ+
ḟ ,(i)

(f ) ≤ −γ df and δ−
ḟ ,(i)

(f ) ≤ 0.

II. δf ,(i)(f ) ≥ 0, δ+
ḟ ,(i)

(f ) ≥ 0 and δ−
ḟ ,(i)

(f ) ≥ γ df .

emark 3. Proposition 1 presents some requirements on the
bserver matrices which are common for SMOs. Furthermore,
roposition 2 bounds the area around the ideal sliding surface to
hich the observer error is attracted. These conditions will form
he basis of the threshold design. Lastly, Proposition 3 requires
he fault to affect the system, which is needed for the fault to be
etected.

.3. Threshold design problem

In this paper a threshold is designed on the EOI, νeq. The lower
nd upper thresholds are denoted as ν̄eq and νeq respectively.
etection occurs if νeq > ν̄eq or νeq < νeq. The thresholds ν̄eq

and νeq are designed such that:

1. The threshold is applicable to all systems and SMOs which
fit the general error dynamics of (1) and for which Propo-
sitions 1–3 hold.

2. The threshold is deterministic and robust to uncertainties,
i.e. there are no false positives.

3. If δe = 0 and δė = 0, for any non-zero fault there exists a
realisation of the uncertainty and noise such that detection
occurs.

4. Any fault of sufficient magnitude, which is sustained for
a sufficient duration, is detected for all realisations of the
uncertainty and noise. Here the sufficient magnitude and
duration are specified in Theorem 3.

. Equivalent output injection dynamics

The detection logic which will be used in this paper is based
n comparing the EOI, νeq, to the detection threshold. Therefore,

in this section we will first derive the time response of the EOI.
Then in Section 4 this will be used for threshold design.

Recall the definition of the EOI in Eq. (2). As ν is piece-
wise constant, the time response of each element of the EOI,
νeq,(i), can be written in closed form. To simplify notation, for
each element νeq,(i), let us denote ki = Kν,(i,i). Furthermore, we
define the so-called switching times, {tj}i, as the sequence of times
at which ν(i) changes sign. Note that the switching times are
not equally spaced, but depend on the system dynamics. In the
following, wherever possible, derivations will be shown for one
element νfil,(i) and the subscript iwill be dropped to ease notation.
Furthermore, without loss of generality, it is assumed that ν(i) is
positive during each period [t t ], and ν is negative during
2j 2j+1 (i) c

3

Fig. 1. Example healthy EOI response - t0 ≤ t ≤ t4; Worst-case EOI response
or the peak threshold design - t2j ≤ t ≤ t2j + t̄0 . Both with corresponding e2
ehaviour.

ach period [t2j+1 t2j+2]. With this, the EOI response over any
eriod [t2j t] where t2j ≤ t ≤ t2j+1, can be written as

eq,(i)(t) = e−k(t−t2j)νeq,(i)(t2j)+ (1− e−k(t−t2j)) . (5)

During the next period [t2j+1 t2j+2], ν(i) = −1, so the EOI response
over any period [t2j+1 t], where t2j+1 ≤ t ≤ t2j+2, can be written
as

νeq,(i)(t) = e−k(t−t2j+1)νeq,(i)(t2j+1)− (1− e−k(t−t2j+1)) . (6)

Substituting Eq. (5), with t = t2j+1, into Eq. (6) gives

νeq,(i)(t) = e−k(t−t2j)νeq,(i)(t2j)− e−k(t−t2j) + 2e−k(t−t2j+1) − 1 , (7)

for t2j+1 ≤ t ≤ t2j+2. Substituting Eq. (7), with t = t2j+2, into
itself, and repeating this process N times, the EOI at t2N for any
N ∈ Z+ can be calculated as

νeq,(i)(t2N ) =e−k(t2N−t0)νeq,(i)(t0)

− e−k(t2N−t0) + 2
2N−1∑
j=1

(
(−1)j+1e−k(t2N−tj)

)
− 1 .

(8)

n example of a healthy EOI response, with the corresponding
ehaviour of e2 is shown on the left in Fig. 1.

. Fault detection threshold

In this section the detection threshold is designed as an upper
ound on the healthy EOI response. This way, by construction,
he threshold is guaranteed to have no false positives, i.e. design
riterion 2 is satisfied. The resulting threshold consists of two
arts. First, a threshold is designed bounding the EOI response
onsidering only one period between switches. This threshold is
alled the peak threshold. However, for this threshold no sufficient
onditions guaranteeing detection exist. Therefore, a so-called
ustained condition is designed to serve as an initial condition
or the peak threshold. The resulting threshold will be called the
ombined threshold. Sufficient conditions for fault detection using
he combined threshold are presented in Section 5.

Because the threshold is modelled as a bound on the healthy
OI, first recall the EOI responses in Eqs. (5) and (8). From these
OI responses, a particular observation can be made, which will
orm the basis of the whole threshold design: the EOI can be
etermined by the knowledge of its initial value and by the duration
f the periods between switches, tj − tj−1. These periods between
witches can be bound based on the known limits on e2 from
roposition 2. Bounding the duration of these periods in healthy

onditions will thus form the core of the threshold design.
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emark 4. In the following the design procedure will only be
hown for the upper threshold. The lower one can be derived
imilarly and only the end result will be stated.

.1. Peak threshold

The peak threshold considers the worst-case behaviour of the
ealthy EOI over one period between switches. As can be seen
n Eq. (5), this occurs for the maximum duration of a period
etween switches, which we will denote t̃0,u. t̃0,u occurs for the
ypothetical behaviour of e2 where e2 moves from its minimum,
−ẽ02, to its maximum, ẽ02, with the minimum rate, ė0,+2 =

˜
ė0,+2 ,

s illustrated in the right part of Fig. 1, leading to the definition
elow. Similarly also the known bound t̄0,ui is defined below,

based on the known bounds on e2.

t̃0,ui ≜
2ẽ02,(i)

˜
ė0,+2,(i)

; t̄0,ui ≜
2ē02,(i)

¯
ė0,+2,(i)

,

where we will drop the subscript i to ease notation. With these
efinitions, by Proposition 2, t̄0,ui ≥ t̃0,ui . Substituting t− t2j = t̄0,u

in Eq. (5), gives the bound on the healthy EOI

ν̄
peak
eq,(i)(t2j) ≜ e−kt̄

0,u
νeq,(i)(t2j)+ 1− e−kt̄

0,u
,

which is the so-called peak threshold. Here the argument t2j
denotes the time at which the threshold is calculated, or reset
based on the current value of the EOI, νeq,(i)(t2j). The resulting
hreshold is constant until a new peak threshold is calculated at
2(j+1). This threshold is used with the fault detection logic

i, j s.t. νeq,(i)(t) > ν̄
peak
eq,(i)(t2j) for t ∈ [t2j t2(j+1)] . (9)

A lower peak threshold can be designed similarly as

ν
peak
eq,(i)(t2j+1) = e−kt̄

0,l
νeq,(i)(t2j+1)− 1+ e−kt̄

0,l
,

t̄0,l ≜
2ē02,(i)

¯
ė0,−2,(i)

,

or which the fault detection logic is

i, j s.t. νeq,(i)(t) < ν
peak
eq,(i)(t2j+1) for t ∈ [t2j+1 t2j+3] . (10)

his lower threshold has to be calculated, or reset, at every t2j+1
ased on the current value of the EOI νeq,(i)(t2j+1), and holds until
2j+3. The peak thresholds, as presented above, are applicable to
he considered SMOs, and are deterministic, i.e. design criteria 1
nd 2 hold.1 However, its detection capabilities are not consis-
ent, thus failing to meet criterion 4. This issue is formalised by
he following theorem.

heorem 1. If ẽ2 ≤ maxt (C−12 Fζ2(t)), no sufficient condition on
exists guaranteeing fault detection using the peak thresholds. That

s, regardless of f there always exists a realisation of ζ2(t) such that
either of the detection conditions are satisfied.

roof. From (3) and the hypothesis, |e2| ≤ ẽ2 ≤ maxt (C−12 Fζ2),
mplying there always exists a ζ2 such that C−12 Fζ2 = e2. Substi-
uting this ζ2 in the definition of ey from (1) gives ey = 0. Thus
here always exists a ζ2 such that ey = 0. By the definition of
he sign function (see Section 1.1), a switch occurs when ey =
, thus there always exists a realisation of ζ2 that makes the
ime between switches arbitrarily small. Detection with the peak
hreshold occurs only if the time between two switches is suffi-
iently large, specifically if t2j+1 − t2j > min(t̄0,u, t̄0,l). Therefore,
etection with the peak threshold can never be guaranteed. □

1 Design criterion 3 also holds for the peak thresholds, however due to space
onstraints the proof will not be provided.
4

Remark 5. In Section 6 it will be proven that ẽ2 ≤ maxt (C−12 Fζ2)
holds for the two selected SMOs.

To satisfy design criterion 4, the threshold design needs to
be changed. In particular, we no longer want to use νeq(t2j) and
νeq(t2j+1) as reset conditions for the peak thresholds. This will
allow to decouple the detection performances from the actual
trajectory of νeq, which depends on the uncertainty realisation
and not only on the fault f . To achieve this, in the following
section global bounds on νeq(t2j) and νeq(t2j+1) will be designed.

4.2. Sustained condition & combined threshold

In this section the so-called sustained condition, denoted by
ν̄eq,0,(i), is introduced as an initial condition for the peak threshold.
The sustained condition replaces the reset to νeq,(i)(t2j), which was
used for the upper peak threshold. The sustained condition will
be defined later. Using the sustained condition as initial condition
for the peak threshold gives the so-called combined threshold as

ν̄eq,(i)(t2j) = e−kt̄
0,u

ν̄eq,0,(i)(t2j)+ 1− e−kt̄
0,u

. (11)

To guarantee that the combined threshold does not result in any
false detection, for healthy behaviour the sustained condition
should globally upper-bound νeq,(i)(t2j). By doing so the combined
threshold can globally bound the healthy EOI without requiring
the resets previously needed for the peak threshold. Furthermore,
νeq,0 should be an initial condition for the peak threshold. There-
fore, the hypothetical behaviour of e2 leading to νeq,0 should also
be an initial condition for the behaviour of e2 leading to the peak
threshold. Therefore, as the hypothetical behaviour leading to the
peak threshold starts at e2 = −ẽ2, for the design of ν̄eq,0, e2 needs
to be constrained as e2(t2j) = −ẽ2 ∀j, as can be seen in Fig. 2. Now
we will use the bounds on e2 from Proposition 2, together with
the newly found constraint e2(t2j) = −ẽ2 ∀j to bound the time
between switches as

e2,(i)(t2j+2)− e2,(i)(t2j) = 0 =
∫ t2j+2

t2j

ė02,(i)dt

=

∫ t2j+1

t2j

|ė02,(i)|dt −
∫ t2j+2

t2j+1

|ė02,(i)|dt

= ė0,+2,(i)(t2j+1 − t2j)− ė0,−2,(i)(t2j+2 − t2j+1) = 0

→
t2j+1 − t2j

t2j+2 − t2j+1
=

ė0,−2,(i)

ė0,+2,(i)

,

(12)

here ė0,+2,(i) and ė−,0
2,(i) are the average of |ė02,(i)| over periods

[t2j t2j+1], and [t2j+1 t2j+2], respectively. These averages, ė0,+2,(i) and
˙
−,0
2,(i), can be bound in the same way as |ė02| is bound by Propo-
sition 2. Using these bounds, the ratio between switching times
defined in Eq. (12) can be bound for healthy behaviour as

t2j+1 − t2j
t2j+2 − t2j+1

≤

¯̇e0,−2,(i)

ė0,+2,(i)

.

Now we will use this bound on the duration between switches to
bound the EOI. Let us define r0,ue =

¯̇e0,−2,(i)

ė0,+2,(i)
, and tj− = t2j−t2j−1, such

hat we can write t2j+1− t2j ≤ r0,ue tj−. Using this bound in the EOI
esponse from Eq. (8) gives the upper sustained condition as

¯eq,0,(i)(t2j) = e−k(1+r
0,u
e )

∑j
ℓ=0 tℓ−νeq,(i)(t0)− e−k(1+r

0,u
e )

∑j
ℓ=0 tℓ−

− 1+ 2
2j−1∑
ℓ=1

(
(−1)ℓ+1e−k(

∑⌈
ℓ
2

⌉
q=1 tq−+r

0,u
e

∑⌊
ℓ
2

⌋
q=1 tq−)

)
.

(13)
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Fig. 2. Worst-case EOI response for the sustained condition design with
corresponding hypothetical e2 behaviour.

which can be calculated at time t2j, for each j ∈ Z+, and is valid
over the period [t2j t2j+2]. Substituting this sustained condition
in Eq. (11) gives the combined threshold. Note that, by construc-
tion, this combined threshold satisfies design criteria 1 and 2. The
corresponding detection logic is given in Eq. (9).

Remark 6. The sustained condition from Eq. (13) can be calcu-
lated recursively as

ν̄eq,0,(i)(t2j) =e−k(1+r
0,u
e )tj−νeq,0,(i)(t2j−2)

− e−k(1+r
0,u
e )tj− + 2e−ktj− − 1 ,

(14)

o reduce the computational load.

A lower combined threshold can be designed similarly as

νeq,(i)(t2j+1) =e
−kt̄0,lνeq,0,(i)(t2j+1)− 1+ e−kt̄

0,l
, (15)

eq,0,(i)(t2j+1) =e
−k(1+r0,le )

∑j
ℓ=0 tℓ+νeq,(i)(t1)+ e−k(1+r

0,l
e )

∑j
ℓ=0 tℓ+

+ 1− 2
2j−1∑
ℓ=1

(
(−1)ℓ+1e−k(

∑⌈
ℓ
2

⌉
q=1 tq++r

0,l
e
∑⌊

ℓ
2

⌋
q=1 tq+)

)
,

with tj+ = t2j+1 − t2j, t2j+2 − t2j+1 ≤ r0,le tj+, r0,le =
¯̇e0,+2,(i)

ė0,−2,(i)
, and the

etection logic as in Eq. (10).
Even though this combined threshold is not reset at every

witch, like the peak threshold was, it still requires to be re-
alculated at every switch, as tj− and tj+ are actual durations
between switches. Furthermore, as tj− and tj+ are also influenced
by the system uncertainty and measurement noise, the combined
threshold is different for each realisation. Therefore, in the next
section a constant upper-bound to the combined threshold will
be designed, which can be calculated off-line.

4.3. Constant combined threshold

In this section a constant upper-bound to the combined
threshold is designed. This threshold will be called the constant
combined threshold. A constant threshold reduces the computa-
tional burden to a single off-line calculation. To calculate the
constant threshold, first, without loss of generality, assume tj− =
t− for all j. This allows us to rewrite Eq. (13) as

ν̄eq,0,(i) =e−k(1+r
0,u
e )Nt−νeq,(i)(t0)+ 2(e−kt− − 1)

N∑
i=0

e−ki(1+r
0,u
e )t−

+ 1+ e−kN(1+r0,ue )t− − 2e−k(N+1+Nr
0,u
e )t− .

Considering the effect of N alone, this bound will always increase
for increasing N . Therefore, take N → ∞ to get a simplified
5

constant threshold.

lim
N→∞

ν̄eq,0,(i) = 1+ 2(e−kt− − 1) lim
N→∞

N∑
i=0

e−ki(1+r
0,u
e )t−

= 1− 2
e−kt− − 1

e−k(1+r
0,u
e )t− − 1

.

nly considering the effect of t−, this expression is maximised for
inimal t−. So, by taking the limit for t− → 0, once again a sim-
lified upper-bound on the time-varying threshold is obtained.
sing L’Hospital’s rule this gives

¯
const
eq,0,(i) = 1− 2

−k

−k(1+ r0,ue )
=

r0,ue − 1

1+ r0,ue
.

Substituting the definition of r0,ue this gives

ν̄const
eq,0,(i) =

¯̇e0,−2,(i) − ė0,+2,(i)

¯̇e0,−2,(i) + ė0,+2,(i)

. (16)

ubstituting this expression in Eq. (11) gives the constant com-
ined threshold as

¯
const
eq,(i) = e−kt̄

0,u
ν̄const
eq,0,(i) + 1− e−kt̄

0,u
. (17)

he used detection logic can be found in Eq. (9). A lower com-
ined constant threshold can be designed similarly, resulting
n
const
eq,(i) = e−kt̄

0,l
νconst
eq,0,(i) − 1+ e−kt̄

0,l
,

νconst
eq,0,(i) = −

¯̇e0,+2,(i) − ė0,−2,(i)

¯̇e0,+2,(i) + ė0,−2,(i)

,

with detection logic as in Eq. (10).
To summarise, in this section, first the so-called peak thresh-

old ν̄
peak
eq has been designed in Section 4.1. This threshold does

llow for fault detection, but, detection can never be guaranteed.
o address this sensitivity to measurement noise, the sustained
ondition, ν̄eq,0, was introduced in Section 4.2 as a global ini-
tial condition from which the combined threshold, ν̄eq, can be
alculated. For this combined threshold fault detection can be
uaranteed, as will be proven in Section 5. However, it still has to
e recalculated online at every switch of ν. To reduce the compu-
ational burden, in Section 4.3, a constant combined threshold ν̄const

eq
as been designed which over-bounds the combined threshold.

emark 7. The derived detection thresholds are based on a novel
pproach to bound νeq. As such, a full analytical derivation and a
uitable notation were required. However, this does not lead to a
igh computational cost. ν̄eq can be obtained online by Eqs. (11)
nd (14); ν̄const

eq can be obtained offline by Eqs. (16) and (17).

. Detectability analysis

In this section the performance of the combined threshold is
nalysed. In doing so it will be proven that the threshold satisfies
esign criteria 3 and 4. First, in Theorem 2 a condition will be
resented for which there exists a realisation of the noise and
ncertainty such that detection occurs. Then, in Corollary 1, it will
e proven that without uncertainty the condition from Theorem 2
educes to f ̸= 0, proving design criterion 3 is satisfied.

heorem 2. If |δ+
ḟ
(f )ė0,−2 + δ−

ḟ
(f )¯̇e0,+2 | > δė(¯̇e

0,+
2 + ė0,−2 ), and

δf (f )ė
0,+
2 − δ+

ḟ
(f )ē02 > δėē02 + δeė

0,+
2 or δf (f )ė

0,−
2 + δ−

ḟ
(f )ē02 >

δėē02+δeė
0,+
2 there exists a realisation of the uncertainty ζ1 and noise

ζ such that detection occurs with the combined threshold.
2
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roof. In order to prove that there exists a realisations of ζ1 and
2 such that detection occurs (using the upper threshold), we first
esign a function ν̃eq such that ∃t, ζ1, ζ2 s.t. νeq(t) ≥ ν̃eq . Then,

based on this function

ν̃eq > ν̄eq (18)

eeds to hold to prove the theorem. The behaviour leading to
he upper combined threshold is based on the realisations of ζ1
nd ζ2 that maximise νeq. Therefore, with the same methodology,
ut using the faulty-true bounds instead of the healthy-known
ounds, ν̃eq is defined as

˜eq,(i) = e−kt̃
u
ν̃eq,0,(i) + (1− e−kt̃

u
),

where t̃u = 2ẽ2

˜
ė+2

and ν̃eq,0,(i) is defined as in Eq. (13) where we

eplace r0,ue ←− r̃ue =
˜̇e−2

˜
ė+2

. Satisfying relation (18) is now implied

by t̃u > t̄0,u and r̃ue > r0,ue . Using Eq. (4) t̃u > t̄0,u can be written
as

δf (f )ė
0,+
2 − δ+

ḟ
(f )ē02 > δėē02 + δeė

0,+
2 ,

nd r̃ue > r0,ue can be written as
+

ḟ
(f )ė0,−2 + δ−

ḟ
(f )¯̇e0,+2 < −δė(¯̇e

0,+
2 + ė0,−2 ).

Similarly, using the lower peak threshold, we obtain

δf (f )ė
0,−
2 + δ−

ḟ
(f )ē02 > δėē02 + δeė

0,+
2 ,

+

ḟ
(f )ė0,−2 + δ−

ḟ
(f )¯̇e0,+2 > δė(¯̇e

0,+
2 + ė0,−2 ) . □

orollary 1. Assume δe = 0 and δė = 0. If f ̸= 0 there exists a
ealisation ζ2 and ζ1 for which detection occurs.

Proof. Using the equalities in the theorem statement, the condi-
tions on f in Theorem 2 reduce to |δ+

ḟ
(f )ė0,−2 +δ−

ḟ
(f )¯̇e0,+2 | > 0, and

f (f )ė
0,+
2 −δ+

ḟ
(f )ē02 > 0 or δf (f )ė

0,−
2 +δ−

ḟ
(f )ē02 > 0. By Proposition 3

these conditions are implied by f ̸= 0. □

In the following, a sufficient condition will be presented guar-
anteeing fault detection in terms of a minimum fault magni-
tude, i.e. all faults continuously larger than this magnitude are
guaranteed to be detected in finite time.

Theorem 3. If

δ+
ḟ
(f )+ δ−

ḟ
(f )+ (δ+

ḟ
(f )− δ−

ḟ
(f ))ν̄eq <

− (ė0,−2 +
¯̇e0,+2 )ν̄eq + (ė0,−2 −

¯̇e0,+2 + 2δė)
or

δ+
ḟ
(f )− δ−

ḟ
(f )− (δ+

ḟ
(f )− δ−

ḟ
(f ))νeq <

(ė0,−2 +
¯̇e0,+2 )νeq + (ė0,+2 −

¯̇e0,−2 + 2δė) ,

fault is guaranteed to be detected within finite time.

roof. To prove that detection is guaranteed for all realisations
f ζ1 and ζ2, first define a function such that ∃t s.t. νeq(t) ≥

˜
eq ∀ζ1, ζ2 . Then, based on this function, the relation

˜
eq > ν̄eq (19)

eeds to hold to prove the theorem statement.
For the design of

˜
νeq, consider the behaviour leading to the

lower sustained condition, νeq,0. The lower sustained condition is
esigned such that for all realisations of ζ1 and ζ2, νeq(t2j+1) ≥
eq,0(t2j+1) if e2(t2j+3) ≥ e2(t2j+1). Furthermore, as e2 is bounded,
∃t s.t. e (t ) ≥ e (t ). Therefore, with the same methodology,
2 2j+3 2 2j+1

6

but using the true-faulty bounds instead of the known-healthy
bounds,

˜
νeq can be defined as

˜
νeq,(i) = −

˜̇e+2,(i) −
˜
ė−2,(i)

˜̇e+2,(i) +
˜
ė−2,(i)

.

With this, detection can be guaranteed, according to Eq. (19), if

−

˜̇e+2,(i) −
˜
ė−2,(i)

˜̇e+2,(i) +
˜
ė−2,(i)

> ν̄eq,(i)

which can be simplified to

δ+
ḟ
(f )+ δ−

ḟ
(f )+ (δ+

ḟ
(f )− δ−

ḟ
(f ))ν̄eq <

− (ė0,−2 +
¯̇e0,+2 )ν̄eq + (ė0,−2 −

¯̇e0,+2 + 2δė) .

where subscript (i) is dropped to ease notation. Similarly consid-
ering detection by the lower threshold we obtain

−δ+
ḟ
(f )− δ−

ḟ
(f )− (δ+

ḟ
(f )− δ−

ḟ
(f ))νeq <

(ė0,+2 +
¯̇e0,−2 )νeq + (ė0,+2 −

¯̇e0,−2 + 2δė) . □

Corollary 2. If f̃ is sufficiently large there always exists an f such
that the conditions in Theorem 3 hold.

Proof. By Assumption 2 and Proposition 3 there exists an f
such that δ+

ḟ ,(i)
(f ) < −γ df for any 0 < df < f̃ and δ−

ḟ ,(i)
(f ) ≤

. Substituting this in the first condition of Theorem 3 – for
etection with the upper threshold – gives

˜ >
(ė0,−2 +

¯̇e0,+2 )ν̄eq − (ė0,−2 −
¯̇e0,+2 + 2δė)

γ (1+ ν̄eq)
. (20)

Similarly for detection with the lower threshold we get

f̃ >
(ė0,−2 +

¯̇e0,+2 )νeq + (ė0,+2 −
¯̇e0,−2 + 2δė)

γ (νeq − 1)
. (21)

herefore, if f̃ satisfies Eqs. (20) or (21), there exists an f s.t. one
f the conditions in Theorem 3 holds. □

. Proving the applicability propositions

In this section, Propositions 1–3 from Section 2 are proven for
he SMOs proposed in Keijzer et al. (2021) and Tan and Edwards
2003). Similar proofs exist for many other existing SMOs such
s Alwi et al. (2008), Edwards et al. (2000), Tan and Edwards
2001, 2002) and Wang et al. (2017). However, due to space
onstraints these proofs are omitted.

.1. SMO from Keijzer et al. (2021)

The work by Keijzer et al. is one of the few which relaxes
he matching condition for fault estimation while still only using
single FOSMO. By doing so, however, the state partition x1

cannot be estimated. Furthermore, Keijzer et al. (2021) already
considers system uncertainties and measurement noise, such that
the threshold is applicable without any change to the observer.
The SMO error dynamics in Keijzer et al. (2021) can be written as

⎧⎪⎪⎨⎪⎪⎩
ė1 = A11e1 + A12e2 + E11ζ1 + E12ζ2 + N1f
ė2 = A21e1 + A22e2 + E21ζ1 + E22ζ2 + N2f + K2ν

ey ≜ ŷ− y = e2 − ζ2

ν = −sign(ey)

(22)

where ζ1, ζ2 and f are bounded (see Assumptions 2 and 3 in Kei-
jzer et al. (2021)), such that Assumption 2 holds. Below we
present proofs of Propositions 1–3 from Section 2.2.
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roof of Proposition 1. Assumption 4 and Proposition 1 of Kei-
zer et al. (2021). □

roof of Proposition 2. Proof of these statements can be found in
Proposition 1 in Keijzer et al. (2021), where known bounds ē2, ¯̇e+2 ,
ė+2 , ¯̇e

−

2 , and ė−2 have been derived directly. The true bounds ẽ2, ˜̇e+2 ,
ė+2 , ˜̇e

−

2 , and
˜
ė−2 can be found following the same methodology. □

Proof of Proposition 3. From Proposition 1 in Keijzer et al.
(2021) it can be seen that δf = 0 and δ−

ḟ
= δ+

ḟ
= r(f ), where in

steady state r(f ) = (F2 − A21A
†
11F1)f . By Assumption 5 in Keijzer

et al. (2021) F2 − A21A
†
11F1 is full column-rank. □

6.2. SMO from Tan and Edwards (2003)

The SMO design by Tan and Edwards considers a system with
model uncertainty to estimate both actuator and sensor faults.
The work, however, does not consider measurement noise and
requires the matching condition. Here, the SMO is applied on
a system with measurement noise Fζ2. With the measurement
noise, the observer error dynamics from equations (23) and (24)
in Tan and Edwards (2003) can be written in the general form (1)
as⎧⎪⎪⎨⎪⎪⎩
ė1 = A11e1 + A12e2 + E11ζ1 + E12ζ2
ė2 = A21e1 + A22e2 + E21ζ1 + E22ζ2 + N2f + K2ν

ey ≜ ŷ− y = e2 − Fζ2

ν = −sign(Pey)

where ζ1, ζ2 and f are bounded (see Eq. (3) and below in Tan
and Edwards (2003)), such that Assumption 2 holds. Below we
will present the proofs of Propositions 1–3, as introduced in
Section 2.2.

Proof of Proposition 1. The proof can be found in Eq. (19),
the Remark below Equation (21) and Equation (24) of Tan and
Edwards (2003). □

Proof of Proposition 2. We extend Proposition 1 in Tan and
Edwards (2003). Here statement (26) in Tan and Edwards (2003)
depends on e⊤2 Pν < 02, which is true trivially for a system
without measurement noise. For a system with measurement
noise this can be untrue if −Fζ2 < e2 < Fζ2. Therefore, only
practical convergence to an area |e2| ≤ maxt (Fζ2) = ẽ2 can be
proven. This allows to define ē2 = |F |ζ̄2. By substituting ρ in the
right hand side of Equation (24) in Tan and Edwards (2003) it can
be proven that sign(ė2) = −sign(Pey). Furthermore, bounds on ė2
an be obtained by bounding the right hand side of Equation (24)
n Tan and Edwards (2003). □

roof of Proposition 3. From the bounds on e2 in Proposition 2
t can directly be found that δf = 0 and δ−

ḟ
= δ+

ḟ
= N2f , where

2 is full column rank. □

. Simulation example

As a simulation example, we consider a platoon of cooperative
utonomous cars. Collaboration occurs by communication of the
ontrol input to the following car and only longitudinal dynamics
re considered. The communicated control input is subject to
an-In-The-Middle attacks, which should be detected. Below,

irst, the considered system will be introduced. Then, the observer
rom Keijzer et al. (2021) will be applied to this system using two

2 Tan and Edwards (2003) use e to denote e .
y 2 o

7

Table 1
Parameters used in simulation.
Param. Value Param. Value Param. Value

τi 0.1 [s] τi−1 0.11 [s] τ̂i−1 0.1 [s]
ζ̄1 1

[
m
s2

]
f̄ 10

[
m
s2

]
A21 0

A22 −0.1I4 P I4 K1 0

different sets of observer parameters. A discussion is presented
on the effect of these parameter choices. The model used by the
SMO for car i is taken from Keijzer and Ferrari (2021) and can be
stated as⎧⎨⎩

ẋ1 = A11x1 + As
12x2 + E11ζ1 + B1u+ N1f

ẋ2 = A21x1 + As
22x2 + B2u

y = C2x2 + Fζ2

A11 =

[
0 0
0 −

1
τ̂i−1

]
; As

12 =

[
0 1 1 0
0 0 0 0

]
; A21 =

⎡⎢⎣0 0
0 1
0 0
0 0

⎤⎥⎦ ;

As
22 =

⎡⎢⎣
0 1 0 0
0 0 0 −1
0 0 0 1
0 0 0 −

1
τi

⎤⎥⎦ ; B1 =

[
0 0
1

τ̂i−1
0

]
; B2 =

⎡⎢⎣
0 0
0 0
0 0
0 1

τi

⎤⎥⎦ ;
N1 =

[
0
−

1
τ̂i−1

]
; E11 =

[
0
1

τ̂i−1

]
; F = I4

where ζ2 is white noise. To obtain this model, we assume ∆ỹ =
0 in Equation (3) in Keijzer and Ferrari (2021). Of the SMOs
considered in Section 6, only the one from Keijzer et al. (2021) can
be applied to this model as N1 ̸= 0. Furthermore, the detectors
in Yang et al. (2013) and Zhirabok, Shumsky et al. (2021) are
not applicable due to the measurement noise ζ2. The noise is
bounded as ζ̄2 = [15 30 3 15]⊤ · 10−2. Other model and observer
parameters used in this section are presented in Table 1.

7.1. Parameter study

In this section we will investigate the detection performance
of the designed detection threshold for the system presented
above. To this end we introduce two sets of design parameters
which will be referred to as the slow and fast parameter sets. The
slow parameter set is K2 = [2.35 3.3 2.2 3.6], Kν = 0.1 · I4; and
the fast parameter set is K2 = [10.35 11.3 10.2 11.6], Kν = 2 · I4.

In Fig. 3 the detection time of a step attack with magnitude
.8 [m/s2] is presented for both parameter sets and for varying
easurement noise bounds ζ̄2. Note that for this parameter study

he measurement noise bounds on each measurement are equal.
ne can see that for low noise bounds better detection results are
btained with the fast parameter set. However, for larger noise
ounds the attack is no longer detected with the fast parameter
et. This because for the same noise bound the threshold corre-
ponding to the fast parameter set is higher than for the slow
arameter set. Based on this result, the optimal parameter set for
ny application of the presented detection threshold depends on
he system uncertainty, including measurement noise, and the
xpected fault/attack magnitude. Furthermore, the fault/attack
hape is another factor that is not taken into consideration here.
s the detector is guaranteed to have no false detections, it is
ossible to simultaneously use multiple detectors, without loss in
ccuracy. Each detector can then be designed for a specific type

f fault.
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Fig. 3. Detection time of a step attack of 2.8 m/s2 for different measurement
oise bounds ζ̄2 . ζ̄1 = 1 is kept constant.

Fig. 4. (a) Input of lead vehicle and cyber-attack. (b), (c) Second element of EOI
with its lower threshold. Vertical axes are inverted to highlight the estimation
capability of the SMO. (b) Fast parameters; (c) Slow parameters.

7.2. Detection results for a simulation scenario

The scenario that has been simulated considers a platoon of
two cars, the leader vehicle (vehicle 0) and the follower vehicle
(vehicle 1). The true input of the leader vehicle is shown with
the dashed black line in Fig. 4a. Furthermore, two attacks are
introduced on the communication from the leader vehicle to
the follower vehicle, which are depicted by the red solid line
in Fig. 4a. First, at 2 s a varying step-like attack is introduced.
Secondly, at 37 s a ramp attack is introduced.

For the scenario presented above we have applied the SMO
from Keijzer et al. (2021) with the slow and fast parameter sets
presented above. Detection performance for both parameter sets
are shown in Figs. 4b and c, where the blue line is the element
of the EOI relevant for detection, the solid purple line is the
corresponding lower combined threshold, the dashed purple line
is the lower constant combined threshold, and the red areas
indicate cyber-attack detection by the constant combined thresh-
old. Furthermore, note that for the considered combination of
system and observer, by Proposition 3, we have f̂ = −νeq,(2).
Therefore, the estimation capability of the SMO can also directly
be seen from Figs. 4b and c. As shown in Figs. 4b and c, the
threshold for the slow parameter set is closer to zero than for
the fast parameter set. In general, the threshold is lower for
lower values of K2 and Kν . Therefore, with the slow parameter
set smaller cyber-attacks can be detected. This can also be seen
in the presented scenario where the ramp-shaped attack is de-
tected at 55.8 s with the slow parameter set but not with the
fast parameter set. Conversely, if the attack is sufficiently large,
detection with the fast parameter set is faster as illustrated by
detection of the first step-like attack. Here the attack is detected
at 3 s with the fast parameter set and at 7.1 s with the slow
parameter set. In the considered platooning scenario, the step-
like attack causes a crash between the vehicles at 6.2 s, meaning
8

only detection with the fast parameter set is sufficiently fast. For
the ramp attack a crash occurs at 56.2 s, meaning detection with
the slow parameter set at 55.8 s is sufficiently fast. Therefore,
both parameter sets need to be used simultaneously to provide
sufficiently fast detection for this simulation example.

8. Concluding remarks

Sliding Mode Observers (SMOs) have been used extensively for
fault estimation (FE), allowing for exact fault estimation under
idealised assumptions such as the absence of measurement noise.
In this paper the fault detection (FD) problem is addressed when
these SMOs are applied to systems with unmatched uncertainties
and measurement noise. To this end time-varying and constant
robust thresholds are designed for which theoretical guarantees
on detection performance are provided.

The applicability of the designed threshold can be evaluated
based on three propositions relating the structure of the SMO
error dynamics, boundedness of the healthy SMO errors, and
the influence of the fault. Based on this, it can be concluded
the threshold is applicable to a large class of SMOs. The SMO
is finally applied to two existing SMOs, one of which is then
demonstrated in a simulation of a Collaborative Vehicle Platoon.
The simulation example shows that the theoretical detection
guarantees provided hold in this scenario.
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