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OFFSET FREE MODEL PREDICTIVE CONTROL OF AN OPEN 
WATER REACH 

 

BORAN EKIN AYDIN (1), PETER JULES VAN OVERLOOP (1), XIN TIAN (1) 

(1): Delft University of Technology, Section of Water Resources Management, Stevinweg 1, 2628 CN, 

Delft, The Netherlands 

Model predictive control (MPC) is a powerful tool which is used more and more to managing 

water systems such as reservoirs over a short-term prediction horizon. However, due to 

unknown disturbances present in the water system and other uncertainties, there is always a 

mismatch between the model and the actual system. To overcome this mismatch and achieve 

offset free control of the water system, the internal model of the MPC is updated by adding the 

disturbance dynamics of the actual system by means of a disturbance model. In this paper, the 

conditions to achieve offset free control for an open water reach are provided. A disturbance 

model is designed and used to achieve offset free control in a test canal assessed from 

simulation results. 

INTRODUCTION 

Model Predictive Control (MPC) is an optimization based control strategy which makes use of 

a process model to predict the future process outputs within a specified prediction horizon [1]. 

At each sample time the system state is estimated and a new open-loop optimization is carried 

out [3]. The model accuracy directly affects the performance of the MPC. Due to the modelling 

error, unknown disturbances and other uncertainties in the system, there is always a mismatch 

between the model and the real system. To overcome this mismatch and achieve offset free 

control there are two main ways: augmenting an integral action to the MPC controller  [2] or 

modelling the disturbances by a disturbance model which augments the system states with 

integrating disturbances  [5]. The latter is  the focus in this study. 

In this work, offset free MPC method described by Pannocchia et al. [5], is used to control 

the first pool of the laboratory canal UPC-PAC (Technical University of Catalonia - Control 

Algorithms Test Canal) located in Barcelona, at the Northern Campus of the University. Canal 

Automation Model (CAM), an unsteady flow simulation program for irrigation canal with 

automatic gates developed by the Irrigation Training and Research Center is used for the 

simulations.  

Offset free control is obtained by augmenting the internal model with an integrating 

disturbance as an additional state. A Kalman filter is designed for the augmented model to 

adjust the integrating disturbance and the states using the measurements. This paper will first 

introduce the test canal and the internal model used which will be followed by design guides for 

the disturbance model and the estimator. The results of the simulations will be followed by 

conclusions and future work. 

TEST CANAL AND INTERNAL MODEL 

The test canal modelled and controlled in this study is the first pool of the UPC-PAC. The canal 

length is 220 m, depth is 1 m, width is 0.44 m, and has a zero bottom slope in order to achieve 

the largest possible time delay. The maximum discharge is 0.150 m
3
/s. In this article, the first 

pool of this canal is modelled and controlled; its length is 87m. An undershot gate at the 



upstream end of the canal is used to separate the pool from a constant level reservoir. At the 

downstream end there is an undershot gate.  

 

The model used is the integrator resonance model (IR) taken from Overloop et al. [4].  

2 2

02

0
2 1 22 2

3 2 3 2

0 0

2
2

s

s s s s

s s
A M

h Q Q
s s

A s A s A s A s
M M




 

   


   

       

                    (1) 

 

where As =  38.28 m
2
, ω0 = 0.101 rad/s and M = 1.2092 which is valid for a flow of 0.010 

m
3
/s. 

In state-space form the model is given by:  
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The objective of the controller is to keep the downstream water level at set point (0.8 m). 

The downstream flow Q2 acts as a known disturbance. Sampling time is 10 seconds and the 

prediction horizon is 20 steps.  

 

The objective function is: 
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is minimized over the prediction horizon with the change of ∆Q1. The penalties of deviation of 

water level from set point (We) and the upstream flow change (WΔQ) are used as 100 and 10000, 

respectively. 

States of the internal model are the errors e(k), e(k-1), e(k-2) given in Eq. (4) and the inflow 

discharges Q1(k), Q1(k-1), Q1(k-2) (number of states = n = 6). The controlled variable is the 

error e(k+1) given in Eq. (4) (number of controlled variable = nc = 1). The manipulated 

variable is the change of inflow discharge ∆Q1(k+1) given in Eq. (5) (number of manipulated 

variable = m = 1) and the measured variable is the error e(k) given in Eq. (4) (number of 

measured variable = p = 1). 

According to Pannocchia et al. [5] one can control a system whose number of measured 

variables (p) is smaller than or equal to the number of manipulated variables (m). In this study, 

since both p and m are 1 this condition holds, so we can apply the method described by 

Pannocchia et al. [5] to control our model without offset. Further restrictions and details of the 

method can be found in Pannocchia et al. [5] which will not be described in this paper, however 

are checked for this application. 

DISTURBANCE MODEL 

A disturbance model is required to achieve offset free control of the controlled variables by 

removing the unmeasured nonzero disturbances [5]. One way of disturbance modelling is to 



augment the original internal model by adding integrating disturbances (daug) to each controlled 

variable.  

The state space form of this augmented system is given by; 
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Where daug,k is the integrating disturbance vector and since there is only one controlled variable 

in the internal model, it is a scalar in this case. The selection of Bd,aug and Cd,aug matrices directly 

affects the disturbance model. In this study, Bd,aug is used similar as Bd and Cd,aug as identity 

matrix. The integrating disturbance vector in the augmented model cancels the effect of 

unmeasured nonzero disturbances in the controlled variables. 

ESTIMATOR 

In order to estimate the states, Xk, and the integrating disturbance, dk, a steady state kalman filter 

is used which uses the measurements, yk, of the system. The Kalman filter is designed for the 

following augmented system.  
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The Kalman predictor for this model is given as: 
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In this equation Kk,1 and Kk,2 are the Kalman gain matrices for the state and the disturbance 

respectively.  

For computational easiness the following notation is used in the application of the Kalman 

Filter design 
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The measurement error covariance matrix (R) and process noise matrix (Q) are defined 

according to the Kalman Filter used by Overloop et al. [4]. 

In the operation of the Kalman filter, kalman gain (Kk) and the error covariance (Pk) are 

updated at every step using the filter update equations [6] given below. The filter update 

equations have two parts: measurement and time update equations. The time update equations 

are responsible for estimating (predicting) the a priori estimates of the current state and error 

covariance for the following step. The measurement update equations are used to improve 

(correct) a priori estimate to obtain a posteriori estimate [6]. During the simulation, previous a 

posteriori estimates are used to predict the new a priori estimates.   

 



Measurement Update Equations (“Correct”) 

1) Compute the Kalman Gain, Kk 
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2) Update estimate, ˆ
kX , with measurement, yk 
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3) Update the error covariance, Pk 
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Time Update Equations (“Predict”) 

1) Project the State ahead, 
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2) Project the error covariance ahead, 1kP

  
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The filter needs an initial estimate of the state ( ˆ
kX  ) and the error covariance (

kP ). The 

initial state is used as the steady state values while the initial error covariance is obtained from 

the Kalman operator.  

OFFSET FREE CONTROL AND SIMULATION RESULTS      

At 30 minute, the outflow discharge (0.010 m
3
/s up to 30 min) is increased by 0.010 m

3
/s as a 

known disturbance. To add an offset to the model, the downstream flow is increased by 10 % 

over the entire simulation. This extra discharge is unknown to the controller. The downstream 

flow during the simulation can be seen in figure 1. 

 

 
 

Figure 1. Downstream flow, Q2 (m3/s), throughout the simulation 

 

The reaction of the controller without an offset controller is shown in figure 2. 

 



 
 

Figure 2. Offset in downstream water level, h2 (m)  

 

As it is seen in figure 2, the controller cannot reach to set point (0.8 m) due to the fact that 

the internal model is lacking the information about the unknown 10% disturbance in the 

outflow discharge.  

 

To overcome this problem, the internal model is augmented with an integrating disturbance 

and an estimator is used to update the states and the disturbance using the measurements of the 

system. The results of the controller are provided in figure 3 and figure 4. 

  

 
 

Figure 3. Upstream flow, Q1 (m3/s), throughout the simulation 

 

As can be seen there is a slight decrease in the flow just before the step occurs. Remember 

that the prediction horizon is 20 steps so the controller reacts on the step about 3.3 minutes 

before it occurs. The controller quickly responds to the step and the upstream flow is stabilized 

in a short time.  



 
 

Figure 4. Downstream water level, h2 (m) obtained by offset free MPC 

 

As can be seen from figure 4, the offset free MPC quickly removes the offset at the start of 

the simulation and the water level stabilizes at the set point. Then at 30 minutes after the step in 

the downstream flow occurs, the controller again removes the offset very quickly and smoothly. 

 

CONCLUSION AND FUTURE STUDY 

This study shows that offset free control of an irrigation canal is possible by augmenting 

integrating disturbances to the controlled variables of the system. Comparing the simulation 

results one can clearly see that the offset in the water level in an irrigation canal can be removed 

by augmenting the internal model with integrating disturbances.  

Moreover, this paper can be used as a guideline of applying offset free control on irrigation 

canals by providing the required knowledge about the method. General conditions and 

restrictions of applying this method can be found on Pannocchia et al. [5].  

As future work, the writers are focusing on comparing this method to other methods that 

can obtain offset free control of irrigation canals. 
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