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abstract
In this paper, a method is proposed to automatically correct misalignment of or-
thophotos in time-series caused by an inaccurate geotransform. The proposed
method relies on common literature concepts such as keypoint identification, key-
point matching, and model fitting using random sample consensus (RANSAC). Tra-
ditional keypoint identification methods such as the scale invariant feature trans-
form (SIFT) are not suited for this problem as no real scale- or rotation-invariance
is required, instead, time-invariance is required. To achieve this, crops are sug-
gested as keypoints, and two different keypoint descriptors are put forth. The first
descriptor is based on the shape and size of the crops, while the alternative descrip-
tor is based on the planting pattern of crops. The method, and both descriptors,
generate promising results for certain scenario’s. However, in later growth stages
performance drops significantly as the identification of crops -required beforehand-
becomes troublesome due to dense growth.
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1 introduction
In the agricultural sector, crop monitoring via drones is an increasingly used tech-
nique. Often times, one is interested in a time-series, and in doing change detection
between instances of this time-series, for example, establishing the rate at which
a crop has grown. Before doing such analysis, however, image stitching using
a photogrammetry pipeline is required. Using common software such as Agisoft
Metashape or OpenDroneMap, one may combine the separate images acquired by the
drone into what is referred to as an ‘orthophoto’. An orthophoto is geometrically
correct and may be used as a map in the sense that one can directly infer distances
from it. Furthermore, it has a ‘geotransformation’ attached to it, which assigns a
latitude and longitude to each pixel in the orthophoto.
In this attached geotransformation one is presented with the problem this paper
attempts to address. The geotransformation, being a result of the GPS built into the
camera of the drone, is accurate in the order of ten meters.1 It is clear how this is
problematic given the scope of change detection. Correction can be performed man-
ually by creating so-called ‘ground control points’, which are corresponding points
between two orthophotos, after which a transformation may be applied. This pa-
per will attempt to provide a framework to automate the creation of such ground
control points by using an approach comparable to what is used in common pho-
togrammetry pipelines for stitching images into an orthophoto.

1 Indeed, the problem may also be addressed by more accurate GPS positioning, however, currently,
this is a problematic path to take for two reasons. The cost associated with such a GPS systems is rather
high, while the payload is also drastically larger, creating various new problems such as the requirement
for larger drones and a higher fuel consumption.
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2 creation of orthophotos
When processing separate images in order to create an orthophoto, see figure 3, a
three-dimensional reconstruction of the scene is required first. Crucial for creating
this three-dimensional reconstruction, given a set of two-dimensional images, is the
essential matrix or E, introduced originally by Longuet-Higgins (1981).

2.1 Essential Matrix

The essential matrix follows directly from the coplanarity condition. Suppose we
have two cameras, camera A and B, in a three-dimensional space, see figure 1. Both
cameras have their own coordinate system, (XA, YA,ZA) and (XB, YB,ZB), respec-
tively. As a convention, the Z-direction will always coincide with the direction in
which the camera is pointed. The translation between the cameras is given by the
vector t, which is a vector in the coordinate system of camera A, pointing the origin
of that of camera B.

Figure 1: Two cameras and their three-dimensional coordinate systems, observing a single
point in space that is seen by both cameras, q1 and q2.

Now, suppose both cameras observe some point in space. The position of this point
with respect to camera A may be denoted by the vector q1, while the position with
respect to camera B is given by q2. Note that t, q1 and q2 are coplanar. However,
the coplanarity condition cannot be applied directly, as q2 is a vector in (XB, YB,ZB)
while the other vectors are given in the coordinate system of camera A. Let R denote
the rotation between the two coordinate systems, consequently, coplanarity should
hold for t, q1 and Rq2.
If three vectors are coplanar, taking the cross product between two of them produces
a vector orthogonal to the plane. Consequently, taking the dot product with the
third vector should then always yield zero. Thus, by coplanarity:

q1 · (t× Rq2) = 0. (1)

The cross-product with the three-dimensional translation vector t is equivalent to
multiplication with the 3× 3 matrix representation [t]×, defined as:

[t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (2)

Since R is a 3× 3 rotation matrix, we may define the essential matrix as E = R[t]×,
again a 3× 3 matrix, resulting in:

qT1Eq2 = 0. (3)

Given this definition of the essential matrix, one may wonder how it relates to two-
dimensional image coordinates. Consider one camera and the corresponding image
plane, see Figure 2.
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Figure 2: One camera and the corresponding image plane a focal lenght f in front of the
camera, observing a single point that is given by q and forms projection p on the
image plane.

Note that the image plane is actually a focal length f behind the camera and in-
verted, but for geometric reasons it may as well be placed normally in front of the
camera. Consequently, in the pinhole camera model, the relation between image
and three-dimensional coordinates is given by:[

x

y

]
=
f

Z

[
X

Y

]
. (4)

Without loss of generality, the scene may be scaled by setting f = 1, resulting in
homogeneous image coordinates: xy

1

 =
1

Z

XY
Z

 . (5)

As a result, an observed point q in three dimensional space is projected on the image
plane in p, given by p = (1/qZ)q, where qZ denotes the Z-component of q. Note
that this implies p is a three-dimensional vector, referencing a two-dimensional
point in the image plane.
Consider again figure 1 and equation (3). Given the found relation between three-
and two-dimensional coordinates, it can be shown that the essential matrix also
relates image coordinates:

qT1Eq2 = 0, (6)(
1

qZ1

)(
1

qZ2

)
qT1Eq2 = 0, (7)

pT1Ep2 = 0. (8)

Since the essential matrix also relates image coordinates, correspondences between
two images may be used to infer the essential matrix and thus translation and
rotation between the cameras.
Given p1 in image A that corresponds to p2 in image B, (8) must hold. Rewriting
this gives:

[
px1p

x
2 px1p

y
2 px1 p

y
1p
x
2 p

y
1p
y
2 p

y
1 px2 p

y
2 1

...

]
E11
E12

...
E33

 = 0. (9)

Here, the top row contains the known x- and y-components of the identified points,
while the column vector contains elements of the unknown essential matrix. If more
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corresponding points are identified, they may be added as extra rows, arriving at
the linear system Ae = 0, with e = 〈E11, ...,E33〉T .
Consider (8), clearly, it would still hold for Ê = kE with any scalar k. In order to
avoid this scaling problem as well as the trivial solution to Ae = 0, the constraint
‖e‖ = 1 is added (Hartley, 1997). Now, eight linear independent rows determine
an unique nontrivial solution. Since then A ∈ R8×9 and the rows are linearly
independent, one has rank(A) = 8. Consequently, A has eight non-zero singular
values.
Consider the singular value decomposition of A as:

A = UΣVT , (10)

where U ∈ R8×8, Σ ∈ R8×9, and V ∈ R9×9. The columns of V contain the right-
singular vectors of A. Since A has eight non-zero singular vectors, exactly one right
singular vector in V will correspond to a zero singular vector. By definition, this
vector spans the null space of A. Normalising this vector provides an e that satisfies
Ae = 0 and ‖e‖ = 1. See also Hartley (1997) for details on deriving E from eight
correspondences.

The fact that eight rows are required, and thus eight point correspondences, leads
to the so-called ‘eight-point problem’, originally introduced as well by Longuet-
Higgins (1981). Moreover, it is possible, though not as straight-forward, to use as
little as five correspondences, see Fathian et al. (2018).
Solving the eight-point problem, that is, finding at least eight corresponding points
between two images, allows one to determine the essential matrix. Consequently,
translation and rotation may be inferred, see Nistér (2004). Given translation and
rotation, points may be triangulated, creating one combined three-dimensional re-
construction of the scene. Finally, this pointcloud may be projected onto a flat
surface, creating the desired orthophoto, see figure 3.

2.2 Point Correspondences

In order to solve the eight-point problem itself, a set of point correspondences be-
tween images is required first. This set of correspondences can be retrieved by use
of keypoints in images. Finding correspondences by keypoints can be divided in
number of subsequent steps: determining keypoint locations, associating keypoint
descriptors with each location, using descriptors to match keypoints in different
images, and finally, model-fitting.

2.2.1 Keypoint Location and Descriptor

Broadly speaking, keypoint identification consists of two steps; identifying loca-
tions and describing these. There exist various algorithms for this purpose, in-
cluding SIFT, SURF, KAZE, ORB, BRISK, and others (Li et al., 2015). Presumably,
the Scale Invariant Feature Transform (SIFT) is the best known algorithm amongst
these, introduced by Lowe (1999). SIFT finds keypoint locations, pi, by analysing
the Gaussian scale-space of an image, thus creating scale invariance. Subsequently,
each keypoint is described by a corresponding descriptor vector, fi, in a way that
is rotation invariant, and illumination invariant to some degree. See Rey-Otero and
Delbracio (2014) for a detailed explanation of SIFT.

2.2.2 Keypoint Matching

Next, keypoints should be matched such that correspondences between images are
created. This is achieved by matching the descriptors to their nearest neighbours.
Given image A that has keypoints i with i ∈ SA and image B with keypoints that
have index i ∈ SB. Each keypoint i has a location pi and a descriptor fi assigned by
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e.g. SIFT. For some keypoint i ∈ SA, a candidate match ι is defined as the nearest
neighbour in the descriptor space:

ι = arg min
τ∈SB

‖fi − fτ‖ . (11)

As suggested by Lowe (2004), this candidate will be accepted if and only if:

‖fi − fι‖ < C min
τ∈SB\{ι}

‖fi − fτ‖ , (12)

where C 6 1 is a constant. In other words, ι will be accepted as match to i if there
is no close runner-up match, which is checked by considering the distance to the
second-nearest neighbour in the descriptor space.

2.2.3 Model Fitting

When keypoints are matched between images, the model, in this case the essen-
tial matrix E, should be fit to the data. Commonly used techniques such as least-
squares are ill-suited for this problem, since data does not always consist of ‘model
plus Gaussian noise’ terms and outliers may have disproportionally large errors.
Hence, the RANdom SAmple Consensus (RANSAC) algorithm is commonly used
for model fitting (Fischler and Bolles, 1981).
For a number of iterations, a random sample of size eight -recall that eight corre-
spondences were required in (9)- is drawn from the set of all matches. Correspond-
ing to this sample we find a certain candidate essential matrix Ẽ by solving the
system. This Ẽ is tested against all data by checking how many matches are ‘inliers’,
i.e., satisfy:

pTi Ẽpι < ε, (13)

for some threshold error ε. The Ẽ corresponding to the random sample that pro-
duced the largest number of inliers after all iterations is saved as the true essential
matrix E.

Figure 3: The three images on the left, which were taken by the drone, are used -amongst
others- to create the orthophoto on the right. Notice the images depict a road and
a ditch, which is recognisable again on the right-hand side of the orthophoto. Fur-
thermore, notice also that the orthophoto is depicted overlaid on the OpenStreetMap
2 reference map, which is possible due to the attached geotransform.

2 https://www.openstreetmap.org
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3 time alignment of orthophotos

Figure 4: Orthophoto A and B taken at different dates misaligned in a common reference
frame. The point 〈x0,y0〉A refers to some crop centroid, however, due to the mis-
alignment, 〈x0,y0〉B does not refer to this centroid anymore.

The geotransform attached to orthophotos that places them in a common reference
frame is correct only up to roughly ten meters, causing misalignment between or-
thophotos. Consequently, for two orthophotos A and B taken at different dates,
〈x0,y0〉A may not refer to the same location as 〈x0,y0〉B, see figure 4. It is observed
that the error may mostly be characterised by translation, as well as rotation in the
two-dimensional plane, see figure 11 for an explanation. Possibly, by accumulation
of error in the photogrammetry pipeline, minor local deformations may be found
as well. It is thus assumed that the error between orthophoto A and B may be
characterised as:

xA = t+ RxB +w(xB), (14)

where t is a two-dimensional translation vector, R is a 2× 2 rotation matrix, and
w is some unknown vector field. If t, R, and w are known, orthophoto B may be
corrected by xBc = t+ RxB +w(xB), such that now, 〈x0,y0〉A refers to the same
locations as 〈x0,y0〉Bc .
The unknown error -characterised by t, R, and w- may be found by finding corre-
spondences between orthophoto A and B. In the context of aerial imaging, these
correspondences are usually called ground control points and are created by iden-
tifying man-made markers in the scene. As this method is labour intensive, it may
prove advantageous to use a method comparable to the method presented in litera-
ture for finding point correspondences between pairs of images.
However, traditional methods, such as keypoint identification by the scale invariant
feature transform (SIFT), are not suited for the problem as no real scale or rotation
invariance is required. Instead, time-invariant keypoints are required that are im-
mune to the changes that occur within the time-series such as growth of vegetation,
change of lighting, or change of weather. Crops are put forth as a candidate for the
creation of such keypoints since they are guaranteed to be present in the orthophoto,
but also the main interest within the orthophoto, making it advantageous to have
correspondences in close proximity to them.
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3.1 Modelling Growth

In order to facilitate time-invariance, growth of crops must be modelled such that
it can be accounted for in creating correspondences. Let a crop contour, in nadir
view, at some time t be described by a parametrized vector function using polar
coordinates:

r(ξ, t) = r(ξ, t)n(ξ) + s, ξ ∈ [0, 2π], n(ξ) = 〈cos ξ, sin ξ〉, (15)

where s denotes the position of the stem of the crop, which is fixed and thus inde-
pendent of t, see figure 5.

Figure 5: Crop contour r(ξ, t) at some time t, see (15). The contour is described in polar
coordinates by the radius r(ξ, t) from the fixed position s to the edge of the crop
for ξ ∈ [0, 2π].

Given that crops exhibit periods of exponential growth, while tending to a finite
circular shape, a logistical growth model was assumed:

∂r

∂t
= αr

(
1−

r

R

)
, (16)

where R represent the maximum achievable radius of a crop. The expansion rate,
that is, the speed at which a crop grows, is given by the constant α. Integrating (16)
with respect to t, an expression for r(ξ, t) may be found as:

r(ξ, t) =
R

1+
R−r(ξ,t0)
r(ξ,t0)

e−αt
. (17)

Now suppose that for some t0 we have that r(ξ1, t0) > r(ξ2, t0). It can be shown
that then it must also hold that r(ξ1, t) > r(ξ2, t) for all t > t0:

r(ξ1, t0) > r(ξ2, t0), (18)
R

r(ξ1, t0)
<

R

r(ξ2, t0)
, (19)

1+
R− r(ξ1, t0)
r(ξ1, t0)

e−αt < 1+
R− r(ξ2, t0)
r(ξ2, t0)

e−αt, (20)

R

1+
R−r(ξ1,t0)
r(ξ1,t0)

e−αt
>

R

1+
R−r(ξ2,t0)
r(ξ2,t0)

e−αt
, (21)

r(ξ1, t) > r(ξ2, t), (22)

where (19) holds since R > 0, (20) holds since r > 0 and e−αt > 0, and (21) is true
again since R > 0. Consequently, it is thus shown that if one were to sample radii
of a crop at a set of ξ and order the results, the order cannot change over time.
Moreover, assuming that for some specimen all crops have the same α and R, it is
true that the global order of radii cannot change over time. This observation, based
on (22), may be used later to ‘create’ time-invariance.
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3.2 Time-Invariant Correspondences

As presented in literature, correspondences are usually found by determining key-
point locations pi, describing these in a descriptor fi which are then used to match
keypoints, and finally, the matched keypoints are filtered using RANSAC and the
essential matrix E. In this section an adaptation of this pipeline is presented based
on the concept of using crops as keypoints, using the previously introduced crop
parametrization and growth model.

3.2.1 Keypoint Location

Since each identified crop will be a keypoint, the keypoint location pi of keypoint,
or crop, i may intuitively be selected as the crop’s stem s, see (15) and figure 5. This
choice offers attractive properties as it’s position cannot change over time. However,
the position of the stem is not visible in the airborne orthophoto, thus, instead, the
centroid of the foliar mass will be used as a substitute. The location of the centroid
is defined as:

c(t) =
1

A(t)

∫∫
Ω(t)

rdΩ, (23)

with A(t) the area of the crop and Ω(t) the domain defined by r(ξ, t) in (16). Now,
time evolution of the centroid is governed by:

c(t) =
1

A(t)

(∫∫
Ω(t)

c(t0)dΩ+

∫∫
Ω(t)

(
r− c(t0)

)
dΩ

)
, (24)

= c(t0) +
1

A(t)

∫2π
0

n(ξ)

∫r(ξ,t)

0
ρ2dρdξ, (25)

= c(t0) +
1

3A(t)

∫2π
0
r3(ξ, t)n(ξ)dξ. (26)

Clearly, it must hold that
∫2π
0 r3(ξ, t0)n(ξ)dξ = 0.

Notice that, when growth is purely exponential, one has c(t) = c(t0), since:

c(t) = c(t0) +
e3αt

3A(t)

∫2π
0
r3(ξ, t0)n(ξ)dξ = c(t0). (27)

Additionally, when growth is of logistic nature, as was assumed in (16), but r(ξ, t0)
is perfectly circular, i.e. r(ξ, t0) = r0 for some constant r0, one also finds c(t) =

c(t0), since by substitution of (17) in (26):

c(t) = c(t0) +
R3

3A(t)

∫2π
0

(
1+

R− r(ξ, t0)
r(ξ, t0)

e−αt
)−3

n(ξ)dξ, (28)

= c(t0) +
R3

3A(t)

∫2π
0

r3(ξ, t0)(
Re−αt − r(ξ, t0)e−αt + r(ξ, t0)

)3n(ξ)dξ, (29)

= c(t0) +
R3

3A(t)
(
Re−αt − r0e−αt + r0

)3 ∫2π
0
r3(ξ, t0)n(ξ)dξ = c(t0). (30)
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On the contrary, when r(ξ, t0) is irregularly shaped, and growth is of a logistic
nature as in (16), one may expect the centroid to drift when comparing with t > t0.
In order to investigate the magnitude of this drift, a Taylor series of r3(ξ, t) around
t0 is substituted in (26):

c(t) = c(t0)+
1

3A(t)

∫2π
0

(
r3(ξ, t0)+

∂r3(ξ, t0)
∂t

(t− t0)+
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

= c(t0)+
1

3A(t)

∫2π
0
3r2(ξ, t0)

∂r(ξ, t0)
∂t

(t− t0)n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

(I)
= c(t0)+

α(t− t0)

A(t)

∫2π
0
r3(ξ, t0)

(
1−

r(ξ, t0)
R

)
n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

= c(t0)−
α(t− t0)

A(t)R

∫2π
0
r4(ξ, t0)n(ξ)dξ+

1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

(II)
= c(t0)−

α(t− t0)

A(t)R

∫2π
0
r3(ξ, t0)

(
r(ξ0, t0)+

∂r(ξ0, t0)
∂ξ

(ξ−ξ0)

+
∂2r(ξ0, t0)
2∂ξ2

(ξ−ξ0)
2+ . . .

)
n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

= c(t0)−
α(t− t0)

A(t)R

∂r(ξ0, t0)
∂ξ

∫2π
0
r3(ξ, t0)ξn(ξ)dξ

+
α(t− t0)

A(t)R

∫2π
0

(
∂2r(ξ0, t0)
2∂ξ2

(ξ−ξ0)
2+ . . .

)
r3(ξ, t0)n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

(III)
= c(t0)−

α(t− t0)

A(t)R

∂r(ξ0, t0)
∂ξ

[ξ ∫ξ
0
r3(ξ ′, t0)n(ξ ′)dξ ′

]2π
0

−

∫2π
0
r3(ξ, t0)n(ξ)dξ


+
α(t− t0)

A(t)R

∫2π
0

(
∂2r(ξ0, t0)
2∂ξ2

(ξ−ξ0)
2+ . . .

)
r3(ξ, t0)n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

= c(t0)+
α(t− t0)

A(t)R

∫2π
0

(
∂2r(ξ0, t0)
2∂ξ2

(ξ−ξ0)
2+ . . .

)
r3(ξ, t0)n(ξ)dξ

+
1

3A(t)

∫2π
0

(
∂2r3(ξ, t0)
2∂t2

(t− t0)
2+ . . .

)
n(ξ)dξ,

(31)

where (I) holds by substitution of (16), (II) holds by substitution of a Taylor series
of r(ξ, t0) around some ξ0, and (III) holds by using integration by parts as

∫
udv =

uv−
∫
vdu with u = ξ and dv = r3(ξ, t0)n(ξ). Additionally, at various points the

previously found property
∫2π
0 r3(ξ, t0)n(ξ)dξ = 0 is used, which follows from (26).

In general, r(ξ, t0) may not be perfectly circular, however, it is likely that parts of
the contour are circular. Consequently, r is constant over a small segment of ξ, and
ξ0 may now be chosen such that higher order derivatives in ξ0 with respect to ξ
equal zero. Thus, as a result, (31) reduces to:

c(t) = c(t0) +
(t− t0)

2

6A(t)

∫2π
0

(
∂2r3(ξ, t0)

∂t2
+ . . .

)
n(ξ)dξ. (32)

Note that, in comparison with the first substitution of the Taylor series around t0,
the first two terms have dropped. It is clear now that the shift in c(t) is dependent
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mostly on the second derivative of r3(ξ, t0) with respect to t. Additionally, it can
be shown through repeated use of the chain rule and (16) that:

∂2r3(ξ, t0)
∂t2

= α2
(
9r3(ξ, t0) − 21

r4(ξ, t0)
R

+ 12
r5(ξ, t0)
R2

)
. (33)

The r3(ξ, t0) terms cancel again, based on the observation in (26), such that:

c(t) = c(t0) +
(t− t0)

2

6A(t)

∫2π
0

(
α2

R

(
12R−1r5(ξ, t0) − 21r4(ξ, t0)

)
+ . . .

)
n(ξ)dξ.

(34)
Since α denotes growth of r per units t, α(t− t0) scales with how much the radius
can grow between two instances of the time-series, which should always be small
for a sensible time-series. Additionally, the area of the crop A(t) and the maximum
achievable radius R are magnitudes larger. As a result, α2(t− t0)2(A(t)R)−1 must
be small.

3.2.2 Keypoint Descriptor

Having selected the centroid as the keypoint’s position pi, see (23), this section will
introduce two different possible descriptors fi that may be used to describe each
keypoint, or crop, i. The first descriptor is based on the shape and size of the crop
in question, while the second one considers the local pattern in which crops are
planted.

Shape and Size Based Descriptor

First, a naive descriptor vector is setup using simply the radius of crop i at n differ-
ent angles ξj:

fi =

{
ri(ξj)

∣∣∣ ξj = j2π
n

for j = 1, ...,n
}

, (35)

An example of such a naive descriptor based on the contour in figure 5 is given in
figure 6.

Figure 6: Naive shape and size based descriptor as defined in (35) for the contour given in
figure 5

Note that this descriptor fails to be time-invariant, as the radius is expected to
increase over time by (16). Based on the observation in (22), a global normalisation
per orthophoto will be introduced. For one orthophoto, let the set F of all naive
descriptor values be given as:

F =
{
fi,j | ∀i, j

}
. (36)

Next, a lookup table is created as the vector l:

l = {Fv | v = 1, ..., 100} , (37)
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where Fv denotes the v-th percentile of the set F. Finally, a normalisation can be
applied to each descriptor in the orthophoto by revising each element as:

fi,j ← v if lv−1 < fi,j 6 lv, (38)

where it may be used that l0 = 0. An example of this revision step for the naive
descriptor presented in figure 6 is given in figure 7.

Figure 7: Result of revising the naive descriptor given in figure 6 by (38) using some l based
on the set of all contours present in the orthophoto, see (36) and (37).

Note that in the example in figure 7 there is a domain of ξ for which the revised
descriptor equals 100. This implies that the radius found at this domain of ξ is
strictly larger than 99 % of other radii found in the orthophoto thus being in the
100

th quantile. Based on the observation in (22) it is expected that for any given
moment in the future, the radii for this contour in this domain of ξ remain in the
100

th quantile.

Planting Pattern Based Descriptor

Alternatively, a descriptor can be constructed based solely on the pattern in which
crops are planted. Consider orthophoto A with crops i ∈ SA, a descriptor vector of
dimension n for crop or keypoint i, is created by:

fi =

∥∥∥pi −pkj

∥∥∥
2

∣∣∣ kj = arg min
k∈SA\{k1,..,kj−1}

‖pi −pk‖2 , for j = 1, ...,n

 . (39)

That is, a descriptor fi is created by storing the sorted distances to the n nearest
identified crops. An schematic example using n = 5 is given in figure 8.

Figure 8: Example of the pattern based descriptor for some keypoint, or contour, with posi-
tion p using n = 5. The distances to the n nearest other contours are gathered and
sorted creating the descriptor according to (39) given on the right-hand side.

Under the error present between orthophoto A and B, see (14), these distances
should be preserved between two orthophotos A and B, thus making (39) a suitable
descriptor. To see why this is true, consider a set of n corresponding points (i↔ ι)
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with xi a point in orthophoto A corresponding to xι in orthophoto B. By (14) it is
true that for each (i↔ ι):

xAi = t+ RxBι +w(xBι ). (40)

Let the translation, rotation and scaling be defined through:

(t,R) = arg min
(t̃,R̃)

∑
(i↔ι)

∥∥∥xAi − t̃− R̃xBι

∥∥∥2
2

. (41)

Writing t = 〈t1, t2〉 and R = [r1,−r2; r2, r1], the minimisation problem in (41) can
be formulated as an over-determined linear system Ax = b as:

I P1
I P2
...

...
I Pn



t1
t2
r1
r2

 =


xA1
xA2

...
xAn

 , (42)

with:

Pι =

[
xBι −yBι
yBι xBι

]
. (43)

The least-squares solution x̂ to the system Ax = b has as property that AT (b −

Ax̂) = 0. Since t and R are chosen as such a least-squares solution to the system
given in (42), it follows -in combination with (40)- that:

I P1
I P2
...

...
I Pn


T 

w(xB1 )

w(xB2 )
...

w(xBn)

 = 0, (44)


1 0 1 0 . . . 1 0

0 1 0 1 . . . 0 1

xB1 yB1 xB2 yB2 . . . xBn yBn
−yB1 xB1 −yB2 xB2 . . . −yBn xBn



u(xB1 )

v(xB1 )
...

u(xBn)

v(xBn)

 =


0

0

0

0

 , (45)

where w(x) = 〈u(x), v(x)〉. Based on the first and second row combined, third row,
and fourth row in (45), one has respectively:

n∑
ι=1

w(xBι ) = 0, (46)

n∑
ι=1

(
xBι

)T
w(xBι ) = 0, (47)

n∑
ι=1

(
Rox

B
ι

)T
w(xBι ) = 0, (48)

where Ro〈x,y〉 = 〈−y, x〉, therefore R0 = [0,−1; 1, 0]. Based on these properties:

n∑
i=1

n∑
ı̃=1

∥∥∥xAi −xAı̃

∥∥∥2
2
=

n∑
ι=1

n∑
ι̃=1

∥∥∥R(xBι −xBι̃

)
+w(xBι )−w(xBι̃ )

∥∥∥2
2

,

=

n∑
ι=1

n∑
ι̃=1

((
xBι −xBι̃

)T
RTR

(
xBι −xBι̃

)
+
∥∥∥w(xBι )−w(xBι̃ )

∥∥∥2
2
+ 2

(
w(xBι )−w(xBι̃ )

)T
R
(
xBι −xBι̃

))
,

=
(
r21+ r

2
2

) n∑
ι=1

n∑
ι̃=1

∥∥∥xBι −xBι̃

∥∥∥2
2
+

n∑
ι=1

n∑
ι̃=1

∥∥∥w(xBι )−w(xBι̃ )
∥∥∥2
2

(49)
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where in the last line it was used that RTR = (r21 + r
2
2)I and R = r1I+ r2Ro, which,

in the latter case, causes the last term to cancel by (47) and (48). Notice that the
(r21 + r

2
2) term corresponds to scaling. For pure rotation by r1 = cos θ and r2 =

sin θ, this term equals one. However, since r1 and r2 are selected as the least-
squares solution to (42), it is possible to have some scaling depending on the points
correspondences that are used. The distortion in the mutual distances between
points is given by:

n∑
ι=1

n∑
ι̃=1

∥∥∥w(xBι )−w(xBι̃ )
∥∥∥2
2
=

n∑
ι=1

n∑
ι̃=1

∥∥∥w(xBι )
∥∥∥2
2
+

n∑
ι=1

n∑
ι̃=1

∥∥∥w(xBι̃ )
∥∥∥2
2

− 2

n∑
ι=1

n∑
ι̃=1

w(xBι̃ )
T

︸ ︷︷ ︸
0T by (46)

w(xBι ),

= 2n

n∑
ι=1

∥∥∥w(xBι )
∥∥∥2
2

.

(50)

Notice that this distortion is related to the ‘standard deviation’ in the sampled
points of the distortion field w around its mean of zero, see (46). Indeed, divid-
ing by the total number of mutual distances, n2, one finds:

mean
(∥∥∥xAi − xAı̃

∥∥∥2
2

)
=
(
r21 + r

2
2

)
mean

(∥∥∥xBι − xBι̃

∥∥∥2
2

)
+ 2σ2w, (51)

where the variance σ2w of the residual distortion vectors w(xBι ) is defined as:

σ2w =
1

n

n∑
ι=1

∥∥∥w(xBι )
∥∥∥2
2

, (52)

and the ’mean’ operator denotes the arithmetic mean. Thus, after applying a global
correction of the error – using t and R – the mean mutual squared distance between
points in orthophoto A will remain larger than its counterpart in the corrected
orthophoto Bc by the amount that equals two times the variance of the residual
vectors w(xBi ). For the given dataset, w was found to be of a small magnitude,
hence, the amount that fi, as defined in (39), differs for different orthophotos is
expected to be small.

3.2.3 Keypoint Matching

Keypoint matching may be done in a comparable way to what was presented in lit-
erature, however, with the added constraint of locality. The geotransform provided
with the orthophotos is incorrect, but only up to a certain extent, which provides
an upper bound in possible spatial distance between keypoints.
Consider orthophoto A with keypoints i ∈ SA, and orthophoto B with keypoints
that have index i ∈ SB. Each keypoint again has a location pi and descriptor fi as-
signed to it, provided now by the methods previously proposed. For some keypoint
i ∈ SA, a set of nearby keypoints τ in orthophoto B can be defined as:

SB(i,D) =
{
τ
∣∣∣ τ ∈ SB, ‖pi −pτ‖2 < D

}
. (53)

Here, D provides an upper bound of the shift in geotransform between two or-
thophotos. In practice, D is dependent on the accuracy of the GPS built into the
camera. Given this group SB(i,D) of nearby keypoints, matching may proceed as
described in literature by defining a candidate match as:

ι = arg min
τ∈SB(i,D)

‖fi − fτ‖1 , (54)
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and accepting this candidate as match, if and only if:

‖fi − fι‖1 < C1 min
τ∈SB(i,D)\{ι}

‖fi − fτ‖1 , (55)

where C1 6 1 is a constant. Note the slight differences between (54) and (11), and
(55) and (12).
Equation (55) allows one to check that ι is a ‘unique’ match to i, however, it -
presumably- does not check whether i is an unique match to ι. Suppose that we
have i, j ∈ SA that are similar keypoints. That is, fi ≈ fj. By the proposed method
for matching, both i and j may be matched to the same ι ∈ SB. To avoid this, it may
prove useful to apply the same criterion backwards, and accept the match only if
-in addition to (55)- also:

‖fι − fi‖1 < C2 min
τ∈SA(i,D)\{i}

‖fι − fτ‖1 , (56)

Again, C2 6 1 is a constant. Setting C2 = 1 is equivalent to not using this additional
check.

3.2.4 Model Fitting

Having a set of matched keypoints between the two orthophotos A and B, the error
characterised in t, R, and w may be derived such that it can be corrected for. For
a number of iterations, a random sample is drawn from the set of all matches. The
required sample size, used only to estimate t and R, is three. Corresponding to the
drawn random sample, a candidate t̃ and R̃ are found, which are tested against all
data by checking how many matches are ‘inliers’, i.e., satisfy:∥∥∥pi − (t̃+ R̃pι)∥∥∥

2
< ε, (57)

for some threshold error ε. The candidates set t̃ and R̃ the largest number of inliers
after all iterations is saved as the true t and R. Alternatively, t and Rmay be selected
as the least-squares fit on the largest set of inliers. Next, the residual vector field w

is determined by collecting all w(xBι ) and applying for example a piece-wise linear,
or a polynomial fit to it. Notice that a piece-wise linear fit is exact in correctly
matches points, however, it may not be smooth, thus a second degree polynomial
fit for w was used in the current implementation. Finally, orthophoto B may be
corrected by xBc = t+ RxB +w(xB).
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4 time-series dataset
The dataset used for development and testing of the proposed methods is a time-
series of a potato field. The field, that is, the area in which crops are planted, is
approximately 75 by 250 meters. The time-series contains a total of seven instances,
or orthophotos, divided between May and June of 2019, each created using around
300 images. These images were captured using a DJI Phantom 4 Pro 3 at an altitude of
30 meters, and processed into orthophotos using the open-source photogrammetry
pipeline WebODM by OpenDroneMap 4. The resulting orthophotos have a ground
sampling distance of 1 cm, that is, one pixel contains a square 1 cm2 area.
A single image corresponding to one of the orthophotos is shown in figure 9. The
settings used for creation of the orthophotos with WebODM are given in table 1.
Finally, an overview of the resulting orthophotos in the time-series, as well as a
representation of the growth stages that were captured, is given in figure 10.

Figure 9: A 5472 × 3648 image corresponding to the 2019-06-12 orthophoto in the time-series.
Captured by the DJI Phantom 4 Pro at an altitude of 30 meters.

mesh-octree-depth 12

min-num-features 10000

resize-to -1
texturing-nadir-weight 0

orthophoto-resolution 1

dem-resolution 1

ignore-gsd true

build-overviews true

crop 0

camera-lens brown

skip-3dmodel true

depthmap-resolution 1280

Table 1: Parameter settings for WebODM used to create orthophotos in the time-series. The
dataset for each instance consists of roughly 300 separate images with a certain
overlap.

3 https://www.dji.com/phantom-4-pro/info
4 https://github.com/OpenDroneMap/WebODM
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2019-05-18 2019-05-21

2019-05-24 2019-05-29

2019-06-07 2019-06-12

2019-06-19

Figure 10: Orthophotos created by WebODM using the settings given in table 1, and the
images captured by the DJI Phantom 4 Pro. The varying growth stages in this time-
series are visualised using a fixed zoom-level showing roughly the same location
in each instance.
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5 results
Seen as how descriptor matching is crucial to the proposed method, this part will
be tested separately first, after which the full method is tested. In order to enable
both these testing purposes, a ground-truth is created first.

5.1 Ground-Truth

Ground-truth is established by leveraging a total of approximately 1300 small white
cards, coincidentally present in the field. Using their location, the error t,R,w may
be found. Consider some orthophoto A. The orthophoto (RA,GA,BA) is translated
to a binary map IA by:

IA(x) =

{
1, if RA(x) > tr, GA(x) > tg, BA(x) > tb,
0, otherwise.

(58)

Here, tr denotes a threshold value for the red channel, etc. In the current imple-
mentation for white cards, tr = tg = tb = 235 was chosen.
One may think of IA as a large connected graph, in which each pixel corresponds
to a node, that is connected eight -or four- of its neighbouring pixels by an edge.
Deleting all nodes for which IA(x) = 0, the remaining connected components cor-
responding to IA(x) = 1 can be extracted, which should correspond to the white
cards.
Each component i is a set of pixels again, denoted by Ci. For orthophoto A, let
i ∈ SA. The position pi is selected as the centroid of the set Ci, defined as the
arithmetic mean of all pixels in Ci. First, however, all components are filtered by
area:

if |Ci| < Amin or |Ci| > Amax then discard Ci. (59)

In the case of the white cards, Amin = 10 cm2 and Amax = 500 cm2, corresponding
to the expected size of the card. Now, consider also orthophoto B. Similar to before,
IB is constructed and a number of white cards i with i ∈ SB are extracted. For
i ∈ SA, a set of matches ι ∈ SB is defined by:

ι =
{
τ
∣∣ ‖pi −pτ‖1 < D, τ ∈ SB

}
. (60)

Here, D corresponds to the maximum shift between two orthophotos one expects
to find. In current implementation it was set empirically as D = 500, i.e. 5 meters.
Note that, contrary to how ι was defined in (11) or (54), ι may now have more
than one member. Generally speaking, however, this is not the case in the present
scenario as the spacing between different cards in the same time instance exceeds
the value of D. Consequently, in general, a card is matched to precisely one card in
orthophoto B.
The resulting matches can be processed by RANSAC, as presented previously in
(57), such that orthophoto B may be corrected by xBc = t+ RxB +w(xB).
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Figure 11: Displacement vector, or error, between white cards on orthophotos created on two
different dates. On a whole the error may be characterised by translation, a small
rotation, and possible minor local deformations.

In figure 11, the displacement vector between matched white cards is shown. In
general it was noted that the error mostly consisted of translation and some rotation,
which is clearly visible in the figure, although some minor local deformations were
found as well.

5.2 Descriptor Matching

For testing of the matching procedure, the ground-truth is used beforehand, mean-
ing that matching is tested between two orthophotos that are not misaligned. As a
consequence, a correct match i with ι should always yield ‖pi −pι‖2 equal to zero.
This property can be used to check the number of correct matches before using
RANSAC model fitting.
Let NT be the total number of matches generated by the method that satisfy (55).
Within those NT correspondences, let NC be the number of matches that is correct,
using that ‖pi −pι‖2 should equal zero. Next, letNR be the number of matches that
RANSAC designates to be an inlier according to (57) for the best t̃ and R̃. Finally,
let NRC be the number of matches that is considered both an inlier by RANSAC
and also correct by ground-truth.
For both introduced descriptors, see (35) and (38) as well as (39), the effectiveness of
the method under different parameter settings is tested by changing one parameter
at a time.
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Shape and Size Based Descriptor

Consider the shape and size based descriptor introduced in (35) and (38). Let Amin
and Amax refer to preprocessing thresholds used to discard certain identified poten-
tial crops. Let the newly introduced parameter nf be the sampling factor, used as
n = bnfLcwith n as defined in (35) and L being the average length of a crop contour
in orthophoto A. Furthermore, w refers to the number of increments between zero
and 100 % in (37). Finally, D, C1, C2, and ε are defined in (53), (55), (56), and (57),
respectively. The default parameter settings for the shape and size based descriptor
are given in table 2.

A 2019-05-21

B 2019-05-24

Amin 100 cm2

Amax 1000 cm2

nf 2

w 100

D 500 cm
C1 0.8
C2 1.0
ε 10 cm

Table 2: Default parameter settings for the proposed method using the shape and size based
descriptor.

Next, one parameter is varied at a time, keeping other parameters constant. Results
of testing are summarised in tables 3 through 12.

A 05-18 05-21 05-24 05-29 06-07 06-12

B 05-21 05-24 05-29 06-07 06-12 06-19

NT 116 789 782 4712 1157 595

NC 16 366 92 36 105 66

NR 16 361 76 86 14 14

NRC 16 347 74 0 11 11

Table 3: Effectiveness of the shape and size based descriptor while varying date, taking a step
of size one in the time-series. All other parameters are kept as indicated in table 2,
with the exception of using Amin = 15 in the first column, and Amax = 5000 in the
last three columns.

A 05-18 05-21 05-24 05-29 06-07

B 05-24 05-29 06-07 06-12 06-19

NT 20 511 2045 6285 1517

NC 6 54 7 11 12

NR 6 7 149 130 23

NRC 5 4 0 0 1

Table 4: Effectiveness of the shape and size based descriptor while varying date, taking a
step of size two in the time-series. All other parameters are kept as indicated in
table 2, with the exception of using Amax = 5000 in the last three columns.
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Amin 0 5 15 50 100 150 200 250 500

NT - - 2247 1474 789 425 249 137 7

NC - - 533 498 366 230 171 102 5

NR - - 560 512 361 201 165 103 6

NRC - - 532 486 347 201 159 102 5

Table 5: Effectiveness of the shape and size based descriptor while varying Amin. All other
parameters are kept as indicated in table 2. Note the failure of the method for
Amin 6 5 as unsuitable shapes are included such as lines.

Amax 150 300 500 750 1000 5000 10
4

10
5 ∞

NT 399 702 759 779 789 788 788 788 788

NC 64 232 339 363 366 367 367 367 367

NR 70 237 350 377 361 371 371 371 371

NRC 64 225 332 359 347 362 362 362 362

Table 6: Effectiveness of the shape and size based descriptor while varying Amax. All other
parameters are kept as indicated in table 2. Note that increasing beyond a certain
point may not change the results, while it does increase computation time.

nf 0.1 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
NT 1585 845 789 794 789 794 795 795 792

NC 197 354 357 356 366 359 360 362 357

NR 76 369 374 373 361 377 375 379 374

NRC 69 354 355 355 347 358 357 361 356

Table 7: Effectiveness of the shape and size based descriptor while varying nf. All other
parameters are kept as indicated in table 2. The setting nf = 2, along with the
parameters provided in table 2, leads to n = 97.

w 2 5 25 50 100 150 255 500 1000

NT 1365 902 790 793 789 789 782 782 780

NC 299 343 359 365 366 364 364 363 363

NR 264 358 376 382 361 381 374 380 377

NRC 263 343 357 362 347 363 356 362 359

Table 8: Effectiveness of the shape and size based descriptor while varying w. All other
parameters are kept as indicated in table 2.

D 100 200 300 400 500 800 1100 1400 1700

NT 1897 1343 1081 861 789 608 517 446 415

NC 1309 812 581 449 366 249 178 133 110

NR 1378 852 564 470 361 250 185 135 113

NRC 1306 811 561 448 347 240 178 128 107

Table 9: Effectiveness of the shape and size based descriptor while varying D. All other
parameters are kept as indicated in table 2. Note that low values of D are possible
as ground-truth was used beforehand.

C1 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95 1.0
NT 33 80 174 370 789 1146 1618 2273 3220

NC 29 64 122 216 366 452 540 637 747

NR 29 66 126 225 361 476 560 626 746

NRC 29 64 122 216 347 451 536 595 738

Table 10: Effectiveness of the shape and size based descriptor while varying C1. All other
parameters are kept as indicated in table 2.
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C1 0.8 0.85 0.9 0.95 1.0
C2 1.0 0.95 0.9 0.85 0.8
NT 789 866 864 800 723

NC 366 352 308 263 201

NR 361 368 316 274 211

NRC 347 351 304 263 201

Table 11: Effectiveness of the shape and size based descriptor while varying C1 and C2 si-
multaneously. All other parameters are kept as indicated in table 2.

ε 1 2 5 8 10 50 100 200 500

NT 789 789 789 789 789 789 789 789 789

NC 366 366 366 366 366 366 366 366 366

NR 104 242 345 364 361 394 423 483 784

NRC 102 242 344 348 347 366 366 366 366

Table 12: Effectiveness of the shape and size based descriptor while varying ε. All other
parameters are kept as indicated in table 2.

Planting Pattern Based Descriptor

Consider the planting pattern based descriptor introduced in (39). Let Amin and
Amax refer -as before- to preprocessing thresholds used to discard certain identified
potential crops. Furthermore, let n, D, C1, C2, and ε be as defined in (39), (53), (55),
(56), and (57), respectively. The default parameter settings for the planting pattern
based descriptor are given in table 13.

A 2019-05-21

B 2019-05-24

Amin 5 cm2

Amax 10
4 cm2

n 4

D 500 cm
C1 0.8
C2 1.0
ε 10 cm

Table 13: Default parameter settings for the proposed method using the planting pattern
based descriptor.

Next, one parameter is varied at a time, keeping other parameters constant. Results
of testing are summarised in tables 14 through 22.

A 05-18 05-21 05-24 05-29 06-07 06-12

B 05-21 05-24 05-29 06-07 06-12 06-19

NT 390 8412 9727 9916 4199 4355

NC 40 3538 961 104 178 232

NR 40 3721 160 20 21 41

NRC 40 3532 157 0 17 37

Table 14: Effectiveness of the planting pattern based descriptor while varying date, taking a
step of size one in the time-series. All other parameters are kept as indicated in
table 13.
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A 05-18 05-21 05-24 05-29 06-07

B 05-24 05-29 06-07 06-12 06-19

NT 353 6773 9025 10187 3961

NC 26 530 63 25 36

NR 12 68 45 81 13

NRC 10 64 0 0 0

Table 15: Effectiveness of the planting pattern based descriptor while varying date, taking a
step of size two in the time-series. All other parameters are kept as indicated in
table 13.

Amin 1 2 3 4 5 7 10 20 100

NT 8250 8607 8560 8565 8412 8258 7943 6911 1694

NC 1045 3151 3103 3619 3538 3538 3409 2782 439

NR 96 3310 3238 3759 3721 3424 3567 2932 410

NRC 90 3143 3073 3565 3532 3254 3404 2780 410

Table 16: Effectiveness of the planting pattern based descriptor while varying Amin. All other
parameters are kept as indicated in table 13.

Amax 100 500 1000 5000 104 10
5

10
6

10
7 ∞

NT 5878 8387 8408 8412 8412 8412 8412 8412 8412

NC 828 3482 3536 3538 3538 3538 3538 3538 3538

NR 670 3650 3719 3721 3721 3721 3721 3721 3721

NRC 666 3465 3530 3532 3532 3532 3532 3532 3532

Table 17: Effectiveness of the planting pattern based descriptor while varying Amax. All other
parameters are kept as indicated in table 13. Note that on later dates, the setting
Amax = 104 did prove useful.

n 1 2 3 4 6 8 10 20 100

NT 13131 9534 9293 8412 7169 6231 5846 3835 1822

NC 742 2220 3430 3538 3184 2740 2542 1512 581

NR 45 2301 3600 3721 3186 2832 2394 1599 562

NRC 33 2209 3421 3532 3167 2728 2394 1509 562

Table 18: Effectiveness of the planting pattern based descriptor while varying n. All other
parameters are kept as indicated in table 13.

D 100 200 300 400 500 800 1100 1400 1700

NT 10032 9289 8905 8655 8412 8281 8260 8243 8264

NC 5693 4833 4286 3866 3538 2914 2482 2178 1912

NR 5965 5079 4508 3630 3721 3051 2610 2272 2015

NRC 5643 4811 4208 3569 3532 2909 2481 2156 1910

Table 19: Effectiveness of the planting pattern based descriptor while varying D. All other
parameters are kept as indicated in table 13. Note that low values of D are possible
as ground-truth was used beforehand.

C1 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95 1.0
NT 2106 3353 4422 6005 8412 9548 11345 12520 14790

NC 1621 2268 2656 3087 3538 3691 3881 3945 4168

NR 1615 2355 2774 3192 3721 3492 3687 4146 4345

NRC 1535 2265 2630 3027 3532 3301 3612 3935 4140

Table 20: Effectiveness of the planting pattern based descriptor while varying C1. All other
parameters are kept as indicated in table 13.
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C1 0.8 0.85 0.9 0.95 1.0
C2 1.0 0.95 0.9 0.85 0.8
NT 8412 8020 8305 7403 7539

NC 3538 3134 2895 2396 2206

NR 3721 3301 2564 2516 2203

NRC 3532 3127 2444 2389 2104

Table 21: Effectiveness of the planting pattern based descriptor while varying C1 and C2
simultaneously. All other parameters are kept as indicated in table 13.

ε 1 2 5 8 10 50 100 200 500

NT 8412 8412 8412 8412 8412 8412 8412 8412 8412

NC 3538 3538 3538 3538 3538 3538 3538 3538 3538

NR 1142 2676 3670 3718 3721 3814 4094 4674 7230

NRC 1140 2659 3485 3530 3532 3538 3538 3538 3223

Table 22: Effectiveness of the planting pattern based descriptor while varying ε. All other
parameters are kept as indicated in table 13.

5.3 Matching and Warping

In this section the full method, that is, matching of descriptors as well as correcting
one of the orthophotos by is tested without first leveraging ground-truth. The de-
fault parameter settings are used for both methods, which are given in tables 2 and
13. After the methods are run, the error is found using RANSAC model fitting, and
orthophoto B is corrected by xBc = t+ RxB +w(xB). Now, the effectiveness of the
method is assessed by comparing the median distance ‖pi −pι‖ between M white
cards for pi in orthophoto A corresponding to pι in orthophoto Bc, which should
ideally yield zero.
The results while using the shape and size based descriptor, as given in (35) and
(38), are given in table 23. The results for the planting pattern descriptor, as in (39),
are given in table 24.

A 05-18 05-21 05-24 05-29 06-07 06-12

B 05-21 05-24 05-29 06-07 06-12 06-19

M 878 696 685 1 9 0

median(‖pi −pι‖2) 74.9 2.5 95.2 114.2 140.3 n.a.

Table 23: Effectiveness of the full method using the shape and size based descriptor, judged
by the median error in centimetres, defined as median(‖pi −pι‖2) for M pairs of
(i ↔ ι). All parameters, excluding the date, are given in table 2. Compare also
with the descriptor matching results in table 3. Note the low number of matches in
certain columns, which is presumably caused by a poor correction of Bc, hindering
the identification of (i↔ ι) pairs.

A 05-18 05-21 05-24 05-29 06-07 06-12

B 05-21 05-24 05-29 06-07 06-12 06-19

M 595 697 645 920 772 1178

median(‖pi −pι‖2) 118.4 2.4 88.2 88.6 74.1 64.3

Table 24: Effectiveness of the full method using the planting pattern based descriptor, judged
by the median error in centimetres, defined as median(‖pi −pι‖2) for M pairs of
(i ↔ ι). All parameters, excluding the date, are given in table 13. Compare also
with the descriptor matching results in table 14.
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6 discussion & conclusion
In this section some of the results will be presented and discussed. First, results that
relate to the different parameters associated with each method will be discussed.
Next, the method as a whole, as well as its effectiveness on different stages of
growth in the time-series, is discussed.

6.1 Parameter Settings

Regarding the shape and size based descriptor, the first parameter is found in nf,
defined by n = bnfLc, which governs the sampling of a contour. Based on table 7 it
can be observed that choosing nf > 1 is desirable to make optimal use of the given
resolution. For the same reason, increasing nf � 1 should not yield increased
performance. The second parameter is w, defining the number of steps in (37).
Based on table 8 a surprisingly low resolution seems to suffice, however, one may
easily choose w = 255 as this is still very computationally efficient.
Regarding the planting pattern based descriptor, the most important parameter
to set is n, as defined in (39). Based on table 18, the choice n = 4 seems to be
optimal. This may be explained by the fact that the mean distance increases while
increasing n, however, the variance increases slower in comparison. In other words,
the first so many nearest neighbours have a higher variance over mean distance,
σ/µ, presumably giving them more discriminative power, see figure 12.

Figure 12: Mean distance plus and minus one standard deviation in centimetres (d, blue) for
every nth neighbour up to n = 50, as well as the standard deviation over mean
(σ/µ, red).

Regarding the matching that is used for both methods, the most important param-
eter choice is to be made in C1, as in (55), used to assure the quality of a match.
Note that C1 provides, as it is, a trade-off between the total number of matches NT ,
and the percentage of correct matches NC/NT . This phenomenon can be observed
in figure 13 which is based on table 10. Additionally, the same trade-off is present
in table 20.
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Figure 13: Effect on the total number of matches (NT , blue) and ratio of correct matches
(NC/NT , red) of varying the C1 parameter. Based on data in table 10.

Ideally, one of course has a large number of matches with a high percentage of
correct matches, leading to the compromising choice of C1 = 0.8. Note that this
value is also used by Lowe (2004) for the scale invariant feature transform.
Additionally, a backwards quality check was presented in (56) with the addition of
C2. Using this, by setting C2 < 1, however, seems to have no positive effect on the
method, see tables 11 and 21.

6.2 Time-Series Results

In general, it is concluded that the success of matching, i.e. the chance that RANSAC
is able to select all the correct matches and no other matches, is dependent mostly
on the percentage of correct matches NC/NT . In an attempt to quantify this, it
seems that when more than 15 % of the matches is correct, the procedure succeeds.
There are, however, exceptions on both sides, for example in table 16 using Amin = 1

or in table 3 using A = 05-24 and B = 05-29.
Of course, besides the percentage of correct matches, the total number of matches
NT is crucial as well. When comparing table 23 with 3, or 24 with 14, it can also be
observed that having a low NT leads to a poor correction presumably because only
parts of the orthophoto are corrected, while in other parts a large error remains.
When considering the success of the method for different steps in the time-series in
tables 3, 14, 23, and 24, it can be observed that both methods generate good results
for 05-21 to 05-24, indicating that both methods do indeed offer time-invariance to a
certain extent. However, both methods perform rather poorly in later growth stages
as well as the very early growth stages.
The latter phenomenon may be explained by limiting resolution. Consider figure
10, on 05-18 crops have a diameter roughly between five and ten centimetres, and
thus pixels. Consequently, stable detection of the crops, as well as meaningful de-
scription of shape and size, is significantly hindered. Presumably, if resolution were
to be increased, for example by flying at a lower altitude, the methods may both be
successful in earlier growth stages.
The reason both methods perform poorly in later growth stages, however, is most
likely caused by the ‘merging’ of crop canopies. Consider again figure 10, when
going from 05-24 to 05-29 it can be observed that some crops begin to grow to a
size where -in nadir view- they start forming connected components with other
crops. Being able to identify every single crop in each orthophoto, as well as be-
ing able to find the contour as in (15) corresponding to a single crop, is crucial to
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both suggested methods. Merging of the crop canopies makes this task extremely
difficult, as the current implementation relies on dynamic image thresholding to
provide this input. Presumably, the stability may be improved by post-processing.
For example, one may attempt to split such connected components using shrinkage
and buffer operations (Davies, 2018). Another option is to account for mergers in
the growth model and descriptors. One may track distances between centroids, as
well as the radii of crops, and predict mergers, which could be accounted for in
the pattern descriptor in (39). Alternatively, input may be created via a different
method altogether using convolutional neural networks. For example, the YOLOv3
(Redmon and Farhadi, 2018) algorithm is capable of creating bounding boxes for
individual crops even if plants have overlapping leafs (E. Verhoeff, personal com-
munication, June 29, 2020). Additionally, using such algorithms may already be
desired anyways for agricultural change detection analyses.
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