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Abstract
This research addresses the operational challenges faced by the Sophia Children’s Hospital through
a comprehensive analysis of its current state, literature review, and mathematical modeling. A model
is created that produces a master surgery schedule, allowing for the allocation of patients to specific
specialties, operating rooms, and days. Our aim is to maximize the utilization of the OR while also
striving for a leveled bed occupancy and a balanced relative OR assignment for the specialties.

To address the uncertainty of future patient characteristics, we consider the surgery durations and
the downstream to the nursing wards in a probabilistic manner. For the latter, we follow the approach
of Schneider et al. (2020). For the first aspect, we devised a column generation based approach
in which, assuming that individual surgery durations follow a log-normal distribution, we employ the
Fenton-Wilkinson method to estimate the distribution of the total sum of individual surgery durations.
When this distribution is known, it becomes feasible to identify pairs of specialties with corresponding
surgery counts that can be scheduled within our overtime restriction. The resulting model that includes
this incorporation is referred to as the Log-normal Column model.

For our research, we use historical data provided by the Sophia Children’s Hospital. The data in-
cluded properties about the patients’ surgeries and bed assignments. Due to the presence of errors
in the data, we conducted preprocessing before utilizing it as input in our modeling. Additionally, we
conducted goodness of fit tests to assess whether adopting the log-normal distribution for surgery du-
ration was genuinely superior to the normal distribution. Our analysis revealed that, for the majority of
instances, the log-normal distribution outperformed the normal distribution. This was the case for in-
dividual surgeries, as well as the Fenton-Wilkinson approximation for the duration of multiple surgeries.

We compared the performance of our Log-normal Columnmodel to two other models which assume
normality for the surgery durations. One is, similar to the Log-normal Column model, created with
the column generation based approach, while the other is the model described by Schneider et al.
(2020). The two column generation based approach models performed significantly better than the
model proposed by Schneider et al. (2020). Furthermore, we compared our Log-normal Column model
to the real-life situation with the help of a simulation.
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1
Introduction

Operation management has becomemore and more important in hospitals, due to an aging population,
increasingly scarce resources and a shortage in personnel (Berden et al., 2016). One of the most
significant expenses in the hospital is the operation room resources. As the surgical waiting lists at
hospitals have only increased during the COVID-19 pandemic, the question of how to make optimal
use of the hospital resources has only become more prominent. At the Sophia Children’s Hospital,
it is expected that optimizing the assignment of operating rooms to the surgical specialties based on
historical patient data could be an option to reduce the number of patients on the waiting list while
keeping the bed occupancy as leveled as possible. In this thesis, we investigate whether this is indeed
the case and study the effect of the proposed schedule.

1.1. Context
The Sophia Children’s Hospital (or in short: Sophia) is the first and largest children’s hospital in the
Netherlands, located in Rotterdam. It is part of the Erasmus Medical Center, the biggest Dutch aca-
demic teaching hospital. Sophia is one of the eight hospitals in the Netherlands that specializes in
child health care. Due to their specialization, complicated pediatric cases from the area are referred to
Sophia. Hence, the patients are typically children with complex or rare disorders.

1.2. Problem description
In order to schedule children’s surgeries, each quarter of the year a ‘Master Surgery Schedule’ (MSS)
is determined. The MSS states when and which operating room (OR) is assigned to a certain specialty.
For convenience, the MSS is an OR schedule with a repetition for every four weeks within the quarter.
Based on the MSS, patients are scheduled in the OR time belonging to the specialty of their surgeon.

In theory, the MSS can be changed each quarter to suit the situation. However, this is quite dif-
ficult as many factors have to be taken into account. First of all, many surgeons have requirements
outside the OR and are hence not available on each day. They have appointments at the outpatient
clinic or they could partly work at other locations besides Sophia. Secondly, there are only a limited
number of beds for patients to stay in after their surgery. Certain specialties also share a ward and
assigning those specialties’ ORs around the same time may create an impossible situation to handle
downstream. Thirdly, some ORs are specially equipped for certain surgeries and are thus reserved for
specific (sub)specialties.

In this research, we disregard the first two constraints presented above and investigate what the
best MSS would be. Instead of having a limitation on the number of beds for surgical patients, we want
to predict the number of beds that are needed at the medium care and intensive care for surgical pa-
tients. As the medium care and intensive care are not used exclusively for surgical patients, taking into
account the number of beds in the objective function of our model instead of in a constraint prevents
the overestimation of the number of beds for non-surgical patients.
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2 1. Introduction

From historical patient data, predictions can be made about the number of elective and non-elective
surgeries each specialty can expect to carry out within one quarter and about the duration of a surgery.
Also, the type of nursing ward and the length of stay at a nursing ward after a surgery of a certain
specialty can be predicted. These features are represented as probability distributions and are taken
into account as input variables for our model.

There are many objectives we can optimize for. At Sophia, they recognize the availability of beds at
the nursing wards as a major bottleneck for processing the waiting list. As the MSS has a direct effect
on the downstream departments (Vanberkel et al., 2011), taking the downstream resources into account
when creating an MSS can prevent undesired consequences such as large variations in the number of
used beds. In our research, the goal is to make an MSS that leads to a leveled bed occupancy at each
nursing ward, without compromising the OR utilization and the OR assignment of specialties.

In this thesis, we developed a model which takes all three objectives into account. We assume
both the surgery duration and the length of stay are given by log-normal distributions. In contrast to
the normal distribution, the log-normal distribution does not have a fixed form for its sum. To address
this challenge, we explored other research fields for suitable approximation methods and developed a
model based on column generation. As the log-normal distribution can be a better fit for surgery dura-
tions due to their skewness and positive valued nature, our model could give a better result regarding
overtime.

1.3. Thesis outline
This thesis is structured in the following way. We start by providing an overview of the current situation in
the Sophia Children’s Hospital in Chapter 2. Here we give some specific information about the Hospital
by detailing various components and processes within the hospital. Among other things, we describe
the various surgical specialties and departments in the hospital and explain the MSS in more detail.
Furthermore, we give a description of the patients’ pathways and identify the most prominent pathways.

Next, Chapter 3 gives a summary of pertinent literature in surgery planning. We look at research
with a focus on scheduling specialties or patient groups and optimizing bed occupancy levels. We fur-
ther concentrate on research considering patient characteristics in a stochastic manner.

In Chapter 4, a mathematical model is presented, which is inspired by the preceding chapter’s lit-
erature. This model has two non-linear components: a non-linear overtime constraint and a non-linear
sub-objective concerning the bed variation. Chapter 5 presents solution approaches for the model of
Chapter 4. We present two possible linearizations for the overtime constraint: one for the assumption
that surgery durations are log-normally distributed and one for the assumption that they are normally
distributed. We developed the linearization for log-normally distributed surgery durations ourselves.
Moreover, we also give a linearization of the objective function.

For our model, we use data provided by the Sophia Children’s Hospital. In Chapter 6, this data is
described and preprocessed. Additionally, we conducted goodness of fit tests to assess whether the
surgery durations are more likely to follow the log-normal distribution compared to the normal distribu-
tion. The results of our model are thereafter described in Chapter 7 where we compare its performance
to other models. This thesis is concluded with the conclusion and recommendations in Chapter 8.



2
Situational analysis

As this thesis features a case study at the Sophia Children’s Hospital, some specific information from
the hospital is required. In this chapter, we describe various components and processes. Firstly, the
surgical specialties and hospital departments are listed in Sections 2.1 and 2.2, respectively. Thereafter,
a description of the pathway of a surgical patient is given in Section 2.3. In Section 2.4, we give a brief
explanation of healthcare planning and conclude the chapter with a description of the master surgery
schedule in Section 2.5.

2.1. Surgical specialties
In an MSS of the Sophia Children’s Hospital, the specialties mentioned in Table 2.1 are scheduled.

Table 2.1: Abbreviation of surgical specialties.

Abbreviation Specialty
FLEX Flex program (non-elective)
GYN Gynaecology
NSP Pediatric neurology
PDC Pediatric cardiology
PDD Pediatric dermatology
PDE Pediatric dentistry
PDO Pediatric otolaryngology
PG Pediatric gastroenterology
PMFS Pediatric maxillofacial surgery
PNS Pediatric neurological surgery
PDP Pediatric pulmonology
PDR Pediatric radiology
PDS Pediatric (general) surgery
PO Pediatric ophthalmology
PORS Pediatric orthopaedic surgery
PPS Pediatric plastic surgery
PU Pediatric urology

The odd one out of this table is PDR, as this does not involve a surgical procedure. However, as
the patients at Sophia are generally children, they have their scans while anesthetized. Furthermore,
the procedures for the specialties PPS and PORS can be split naturally into two categories and these
two specialties are hence divided into two subspecialties in the MSS we generate. For PPS, the sub-
specialties are craniofacial surgery (FPS) and hand surgery (HPS). For PORS, we make a distinction
between open spine surgery (PORS2) and other orthopedic surgical procedures (PORS).

3



4 2. Situational analysis

2.2. Hospital departments
Hospitals have different departments with each their own function. In this subsection, we describe the
departments that a surgical patient typically visits during their treatment(s).

Outpatient clinic: In the outpatient clinic, patients are treated who do not require a bed during their
hospital visit. A patient typically visits the outpatient clinic to talk to a specialist for a consultation or to
have a small examination or treatment.

Operating rooms: At Sophia, there are eleven ORs available. One of these ORs is located apart
from the others in the Obstetrics department. As this OR is not provided with sufficient airflow quality
for most surgeries, it is exclusively used for cesarean sections and is not taken into account in our
research.

Due to the requirement for children to remain still during an MRI, patients undergoing this proce-
dure are also administered anesthesia. Consequently, the MRI room is considered and treated as an
operating room within the MSS.

For elective surgeries, the ORs are open from 8.00-15.30 on weekdays. Some ORs are provided
with special medical equipment and are thus reserved for specific procedures or (sub)specialties. In
Table 2.2, the ORs reservations can be found and they are included as constraints in our model.

Table 2.2: ORs reserved for special usage.

OR Specialty Additional information
OR1 GYN Reserved for emergency cesarean section
OR2 PDP, PDO Available bronchoscopy
OR 8 e.g. PNS, PORS Better ventilation for sterility
OR 9 PDC Reserved for cardiac catheterization
OR 10 e.g. PNS, PORS Better ventilation for sterility

Recovery unit: After a surgery, the patient stays at the recovery unit. Here, the patient is closely mon-
itored while the patient recovers from the anesthesia. Afterwards, the patient is transferred to one of
the nursing wards. If the patient was assigned beforehand to the intensive care (IC) nursing ward, the
patient is taken to the IC immediately after the surgery without visiting the recovery unit. The duration a
patient spends at the recovery is approximately 30 minutes. At Sophia, there are eight places available
for patients. As it rarely happens that the bed occupancy at the recovery becomes a threshold for the
downstream of patients, we do not take the recovery unit into account in our research.

Nursing wards: After a patient’s stay in the recovery room, the patient is moved to a bed at a nursing
ward. At Sophia, there are 3 different types of wards:

• day care (DC),
• medium care (MC),
• intensive care (IC).

At the day care, there are ten to fifteen beds available for surgical patients to stay. The patients are
assigned to the DC when they are expected to be discharged on the same day as their surgery. The
DC is open on Monday till Friday from 7.30 to 18.00.

The medium care is divided into five sections, which we denote by MC1, MC2, MC3, MC4 and MC5.
Multiple specialties share the first four sections. Not all patients at the MC have to undergo surgery
to stay at the MC. Most children that stay in the first three sections of the MC are surgical patients,
while the patients of MC4 are not. Table 2.3 provides an overview of the medium care sections and
their associated specialties. The layout presented is not strictly binding and can be subject to variations.
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Children in intensive care are treated with (acute) life-threatening conditions requiring intensive
monitoring and care. Similar to the patients in the medium care, these children did not have to undergo
surgery in order to stay at the IC. Children who had surgery, skip the recovery unit and go straight
to the IC. Each day, three beds are available for elective surgical patients and it is desired to always
set aside at least 1 bed for emergencies at the IC. There are eight intensive care units: four neonatal
intensive care units (NIC1, NIC2, NIC3, NIC4) and four ‘normal’ intensive care units (IC1, IC2, IC3,
IC4). Each intensive care unit comprises a hall housing six beds and a nursing station. IC1 is typically
allocated to patients who need a bit more care than an MC can provide and is hence nicknamed MC+.
IC2 is used primarily for patients with cardiac and pulmonary conditions, while IC3 is used primarily for
neurology patients. IC4 is considered a high care unit: while patients in this unit require less intensive
care compared to those in IC2 and IC3, they still require close monitoring.

The non-elective patients who had their surgeries during the FLEX are moved to the nursing unit
corresponding to the specialty of their surgeon and hence, FLEX is not included in Table 2.3. For our
research, we look at the FLEX as a separate specialty and allocate their patients to the wards similarly
as found in the historical data.

Table 2.3: Medium care sections and their specialties.

MC1 MC2 MC3 MC4 MC 5
NSP PDS PDC PG GYN
PDO PU PDP
PMFS PORS PDD
PNS
PPS
PDE
PO

2.3. Pathway of a surgical patient
There are three ways for a (surgical) patient to get into the Sophia Children’s Hospital for the first time:

• during the patient’s birth,
• for a visit to the outpatient clinic due to health problems (possibly by referral of an external pedi-
atrician),

• as an emergency patient.

A surgical elective patient is first seen by a physician at the outpatient clinic for consultation. Gen-
erally, this physician is also the surgeon who performs the patient’s surgery or a surgeon of the same
specialty as the performing surgeon. During the consultation(s), the physician makes a diagnosis and
a plan of action for the treatment of the patient. When the physician decides that the patient needs
surgery, the patient is put on the waiting list with an indication of the latest date for performing the
surgery. Before the surgery, the patient is seen by an anesthetist one last time at the outpatient clinic
for a preoperative screening.

On the day of the surgery, the patient is prepared for the surgery (changed in suitable clothes and
small checks are executed) before the patient is taken to the OR. One parent of the patient is allowed
to accompany the patient to the OR and can stay until the patient has fallen asleep from the anesthesia.

After the surgery, the patient is moved to either the recovery unit or the IC depending on their con-
dition. Once the anesthesia wears off, patients at the recovery unit are moved to their corresponding
nursing ward which is the DC or the MC. Due to unforeseen circumstances, a patient at the DC may
need to stay longer than expected and is hence moved to the MC. Similarly, patients may be moved
from the MC to the IC if a patient’s condition worsens, or from the IC to the MC if a patient’s condition
improves. However, for patients going to the DC after their surgery, almost all are discharged without
being transferred to another nursing ward. Hence, we assume that there is no displacement between
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the DC and other nursing wards. Figure 2.1 gives a visualization of the described pathway.

Figure 2.1: General path of a surgical patient.

On rare occasions, for example when complications occur, the patient’s route differs from the pos-
sible pathways shown in Figure 2.1. To simplify our problem, we only look at the pathways that are
most common at Sophia and only take these in account when making our model.

From the data, we see that 89% of the patients go to only one nursing ward during their hospitaliza-
tion. The percentages for the DC, MC and IC are 57%, 31% and 1%, respectively. When patients move
between the MC and IC, this most often happens in the pattern MC - IC - MC, followed by the iterations
MC - IC and IC - MC. These patterns make up respectively 5%, 2% and 1% of the total patterns. The
six mentioned pathways are the only ones we consider. They can be generalized by just three paths
based on the starting nursing wards, i.e., DC, IC-MC, MC-IC-MC. When a patient is discharged halfway
through one of the two latter paths, we let the length of stay at the remaining wards in the path be equal
to zero days. However, in addition to the fact that staying solely at the MC before getting discharged
is much more common than MC-IC and MC-IC-MC, patients are more likely to stay longer at the MC if
they do not get transferred. Hence, we decided to make a distinction between going solely to the MC
and the other two paths starting at the MC. The resulting paths are depicted in Figure 2.2.

2.4. Healthcare planning
In management, there are various levels of planning: strategic, tactical and operational. Of the three
levels, the strategic one is the highest planning level. On a strategic level, ultimate goals and long-
term directions are set. Meanwhile, on an operational level, short-term plans for the implementation
of specific processes are made. The tactical level is located between the strategic and operational
levels. To support and achieve the goals described at the strategic level, intermediate-term plans of
the operational level are made on a tactical level (Hans et al., 2012).

As our research concerns the allocation of the ORs to the surgical specialties in the form of a master
surgery scheduling, our problem belongs to the tactical planning level. Based on the MSS, surgeries
are scheduled during the OR session of the corresponding specialty. The scheduling of the surgeries
happens on the operational level.
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Figure 2.2: Considered patient pathways from OR to discharge.

2.5. Master surgery schedule
The master surgery schedule is an OR schedule for a quarter of a year, which states when and which
OR is assigned to a certain specialty. For convenience, the MSS at the Sophia has a repetition every
four weeks within the quarter. Based on the MSS, patients are scheduled in the OR time appointed to
the specialty of their surgeon. ORs are scheduled between 8.00 and 15.30 from Monday till Friday. In
Table 2.4, the assignments for one week of the current MSS at the Sophia Children’s Hospital can be
found. The MSS also provides the time intervals the OR is available for the assigned specialty. This
usually spans a duration ranging from 1.5 hours to 7.5 hours.

Table 2.4: OR assignment for the first week of the current MSS.

Day OR1 OR2 OR3 OR4 OR5 OR6 OR7 OR8 OR9 OR10 MRI
Monday GYN PDP PDS PU PPS PORS PDC PNS PDR

FLEX PU PPS PORS PDC PNS PDR
Tuesday GYN PDO PG PDO PDS PORS PPS PDR

PDO FLEX NSP PDO PDS PORS PPS PDR
Wednesday GYN PDO PU PMFS PDS PORS PDC PPS

PDO PU PMFS PDS PORS PDC PPS
Thursday GYN PDP PDS PU PPS PDS PORS PNS

FLEX PORS PU PPS PDS PORS PNS
Friday GYN PDO PO PU PDS PDS PORS PORS PDR

PDO PO PU FLEX PDS PORS PORS PDR





3
Literature review

Extensive research has been conducted regarding OR planning. Section 3.1 provides an overview of
previous studies focusing on scheduling specialties or patient groups and optimizing bed occupancy
levels. Section 3.2 is dedicated to studies with a specific focus on considering patient characteristics
in a stochastic manner.

3.1. OR scheduling regarding downstream resources
As mentioned previously, a lot of research has been dedicated to operating room scheduling. Many
studies have focused on creating MSS’s by arranging specialties or patient groups with similar prop-
erties. Although we do not consider distinct patient groups within a specialty, it is still worthwhile to
consider these research findings, as the solution methods proposed can potentially be adapted for
scheduling various specialties.

In their literature review, Wang et al. (2021) identify publications regarding operation room schedul-
ing and its effect on the downstream resources. They make a distinction between patients who leave
the hospital on the same day and patients that stay overnight. The former are referred to as outpatients,
while the latter are referred to as inpatients. In our research, we aim to incorporate both considerations,
specifically focusing on inpatient cases. In this chapter, we have chosen some relevant articles from
Wang et al. (2021) to elaborate on.

Beliën and Demeulemeester (2007) were one of the first to propose models for developing cyclic
master surgery schedule that take the bed occupancy into account. In a master surgery schedule, they
planned fixed blocks of surgeries of the same type. They had three different objectives regarding the
bed leveling: they looked at minimizing the highest expected number of beds, minimizing the high-
est variance in bed occupancy and a combination of the two. Furthermore, they assumed the length
of stay to be following a multinomial distribution and the number of surgical patients per block to be
deterministic. Beliën and Demeulemeester (2007) considered only two types of constraints: surgery
demand constraints and OR capacity constraints. They recognized that for real-life applications extra
restrictions may be needed.

Beliën et al. (2009) made an extension of their work in Beliën and Demeulemeester (2007). They
assumed that both the number of surgical patients per OR block and the length of stay followed multi-
nomial distributions. Furthermore, they also took into account multiple wards and assigned the OR
blocks to individual surgeons instead of surgeon groups. Instead of fixed OR blocks, they allowed the
blocks to have varying sizes. The model not only aims to level the bed occupancy, but also aims to
share ORs as little as possible between specialties and make the master surgery schedule as simple
and repetitive as possible. All these objectives are relatable for the Sophia Children’s Hospital as well.
For our research, we have not explicitly taken into account the sharing of ORs between specialties.
Instead, we take it into account implicitly by requiring extra cleaning time on the day when different
specialties are sharing an OR.

9
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As the operating rooms have a direct effect on the workload in the wards, Vanberkel et al. (2011)
investigated how to calculate the expected workload so that nursing ward managers could use this as a
decision support tool. Vanberkel et al. (2011) describe an exact approach to calculate the distributions
for the bed occupancy, patient admission and discharge.

Ma and Demeulemeester (2013) propose a three-stage integrative approach. In the first stage,
they looked from a financial standpoint of the hospital and propose a model where the patient set was
found that brings the maximum total financial contribution within the specified resource capacity. In the
second stage, they build a cyclic master surgery schedule in which the total expected bed shortage is
minimized and the length of stay is described by a discrete probability distribution. In the last stage,
the performance of the model is evaluated through a simulation analysis.

Schneider et al. (2020) developed a model for scheduling surgery groups with the aim of optimizing
operating room (OR) capacity while minimizing variations in bed occupancy across different wards.
The researchers made the assumption that patients can follow only two distinct paths through various
ward types. To calculate the expected number of beds, Schneider et al. (2020) relied on the methodol-
ogy used in Vanberkel et al. (2011) and Fügener (2015) in their integrated approach. The researchers
employed two different strategies: a global approach utilizing mixed integer linear programming and a
simulated annealing approach. Simulated annealing is a probabilistic optimization algorithm inspired
by the annealing process in metallurgy. Upon comparing the performance of these two approaches in
a real-life setting, the study found that the global approach outperformed the simulated annealing ap-
proach. This suggests that the global approach was more effective in achieving the desired objectives
of optimizing OR capacity and minimizing variation in bed occupancy.

3.2. Stochastic master surgery scheduling
In their literature review, Wang et al. (2021) also give special attention to articles that incorporate the
uncertainty in future patient characteristics and how they do so. They found that the log-normal distri-
bution was utilized in most studies to represent the surgery duration. 46 out of 67 studies that consider
the surgery duration in a stochastic manner do this by using the log-normal distribution. This happens
because it is widely recognized that durations display a strong adherence to the log-normal distribution
(see, e.g. Stepaniak et al. (2009), Kayış et al. (2015), Sagnol et al. (2018)).

Jebali and Diabat (2015) andM’Hallah and Visintin (2019) both propose stochastic models to sched-
ule surgery groups within a given MSS. They take into account surgery durations and length of stay
stochastically and assume that both types are log-normally distributed. However, the setting Jebali and
Diabat (2015) consider is simpler and they focus on minimizing the costs while M’Hallah and Visintin
(2019) focus on maximizing the number of scheduled patients. The model of M’Hallah and Visintin
(2019) consists of two stages. The first stage optimizes the expected number of elective surgical pa-
tients for each specialty. When a solution (i.e., a scenario with a certain number of patients for each
specialty) is found in the first stage, they determine how many surgeries would actually be carried out
for different samples of the surgery durations and length of stays. Afterwards, they take the average
of each sample to get an approximation for the expected number of elective surgical patients for each
specialty. We could also make such a two-stage stochastic program for the assignment of specialties
to ORs. The downside of using stochastic programming would, however, be that we would typically
get a set of scenarios or the average of the set, instead of one concrete MSS.
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While Schneider et al. (2020) model the length of stay for patients by their discrete empirical distribu-
tions, they do consider the surgery durations by probability distributions. They mention that Stepaniak
et al. (2009) had shown that when fitting the normal distribution and log-normal distributions, the log-
normal distribution performed better. However, they decided to utilize the normal distribution for the
duration of surgeries, as it allowed for an exact expression when considering the distribution of the
overall sum of surgeries. This was used in their constraint to restrict the allowed overtime. In order to
linearize this constraint, the constraint was rewritten and the square root that appeared was approxi-
mated by a piecewise linear function. In Section 5.2, we elaborate on this further.





4
Mathematical model

In this chapter, we describe the model constructed for our research. In the first section, the constraints
of our model are formulated. In the next section, we describe an analytical model for determining the
bed occupancy. Lastly, in Section 4.3, the objective function of our model is given. In Appendix A, a
summary of all parameters and variables considered in this chapter is given.

4.1. Model restrictions
Let 𝑆 be the set of specialties and 𝑂 the set of ORs. The elements in set 𝑆 are ordered by their index
within the set. The index of specialty 𝑠 ∈ 𝑆 is indicated by �̂�. Define 𝑆𝑜 ⊂ 𝑆 as the set of specialties that
can operate in OR 𝑜 ∈ 𝑂. Let 𝑄 be the number of days the MSS covers including the days the elective
surgeries are not scheduled (in our case: the weekends) and let 𝐾 denote the set of days that the ORs
are open.

We use three types of variables:

• 𝑍𝑜𝑘𝑠: an integer decision variable representing the number of surgeries planned in OR 𝑜 ∈ 𝑂 for
specialty 𝑠 ∈ 𝑆𝑜 on day 𝑘 ∈ 𝐾,

• 𝑌𝑜𝑘𝑠: a binary auxiliary variable denoting for OR 𝑜 ∈ 𝑂 which specialty 𝑠 ∈ 𝑆𝑜 is assigned
on day 𝑘 ∈ 𝐾,

• 𝑋𝑜𝑘: a binary variable denoting whether OR 𝑜 ∈ 𝑂 is open on day 𝑘 ∈ 𝐾.
These variables are connected with each other by the following constraints:

𝑍𝑜𝑘𝑠 ≤ 𝑀𝑠 ⋅ 𝑌𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 , (4.1)

where𝑀𝑠 denotes the maximum number of patients specialty 𝑠 ∈ 𝑆 can schedule on one day in one OR.

Moreover, OR 𝑜 ∈ 𝑂 can only be assigned to at most two specialties from 𝑆𝑜 on day 𝑘 ∈ 𝐾 when it
is open on day 𝑘 ∈ 𝐾. We only permit this when two specialties can be ‘combined’ in one OR. Let sets
𝐼𝑠, for each 𝑠 ∈ 𝑆, be the set of specialties 𝑠2 such that �̂�2 < �̂� and 𝑠2 can be combined with 𝑠 ∈ 𝑆. This
is established with the following constraints:

∑
𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 2 ⋅ 𝑋𝑜𝑘 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (4.2)

𝑌𝑜𝑘𝑠2 + 𝑌𝑜𝑘𝑠 ≤ 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 , ∀𝑠2 ∉ 𝐼𝑠 . (4.3)

Besides this, we want that on each day 𝑘 ∈ 𝐾 at most 𝜒𝑘 ORs are used in order to keep some rooms
and staff in reserve in case of emergency. Let �̄�𝑘 ⊂ 𝑂 be the subset of ORs that cannot be closed on
day 𝑘. Then, the following constraint needs to be satisfied:

∑
𝑜∈𝑂⧵�̄�𝑘

𝑋𝑜𝑘 ≤ 𝜒𝑘 − |�̄�𝑘| , ∀𝑘 ∈ 𝐾. (4.4)

13
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Each specialty has a different number of available surgeons. We have to restrict the number of
ORs a specialty gets assigned on a day by the number of surgeons they have. Denoting the number
of surgeons available for specialty 𝑠 ∈ 𝑆 as 𝐶𝑠, we construct the following constraint:

∑
𝑜∈𝑂∶𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 𝐶𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾. (4.5)

Furthermore, we wish to ensure that our MSS has a cycle of 𝑇 days. The following constraints are
added to ensure this:

𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇},
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+2𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇},

⋮
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+⌊𝑄𝑇 ⌋⋅𝑇)𝑠,

∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., (𝑄 mod 𝑇)}.

(4.6)

The cyclic property only has to hold for the assignment of specialties to ORs, i.e., for the variables 𝑌𝑜𝑘𝑠,
and not for 𝑍𝑜𝑘𝑠. Hence, the number of surgeries that a specialty schedules on their assigned OR day
can fluctuate.

When planning the surgeries in an OR, there is a possibility that the total surgery duration takes
longer than planned. While overtime can happen, it is not desirable for it to happen too often. Let 𝑔𝑜𝑘
denote the probability distribution of the total surgery duration that is scheduled in OR 𝑜 ∈ 𝑂 on day
𝑘 ∈ 𝐾 and let 𝛽𝑜𝑘 denote the duration that OR 𝑜 ∈ 𝑂 was planned to be open on day 𝑘 ∈ 𝐾. However,
after each surgery we would like to reserve some time of length 𝜅 for cleaning and an additional time
of length 𝜅 if there is a change in specialty in the OR. For this, we introduce the following auxiliary
variables:

• 𝑅𝑜𝑘𝑠: a binary variable indicating whether in OR 𝑜 ∈ 𝑂 specialty 𝑠 ∈ 𝑆𝑜 has at least one surgery
on day 𝑘 ∈ 𝐾,

• 𝑊𝑜𝑘: a binary variable indicating whether in OR 𝑜 ∈ 𝑂 exactly two specialties in 𝑆𝑜 had surgeries
planned on day 𝑘 ∈ 𝐾.

The following constraints ensure that 𝑅𝑜𝑘𝑠 can only be equal to one if 𝑍𝑜𝑘𝑠 is greater or equal to
one:

𝑅𝑜𝑘𝑠 ≥
𝑍𝑜𝑘𝑠
𝑀𝑠 + 1

, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 , (4.7)

Furthermore, the variables 𝑅𝑜𝑘𝑠 and𝑊𝑜𝑘 are connected with each other by the following constraints:

𝑊𝑜𝑘 ≥ ∑
𝑠∈𝑆𝑜

𝑅𝑜𝑘𝑠 − 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾. (4.8)

Now, we can use the newly introduced variables𝑊𝑜𝑘 to indicate if extra time should be reserved for
the change in specialty in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾. Let g𝑜𝑘 be the corresponding stochastic variable of
𝑔𝑜𝑘. Then, the following constraint guarantees that the probability of overtime is less than 𝛼.

ℙ(g𝑜𝑘 ≥ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘)) ≤ 𝛼, ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾. (4.9)

Note that Constraint (4.9) is not a linear constraint. In Section 5.1, it is shown how the constraint
can be linearized.

Now, let 𝑆𝐶𝑜 ⊂ 𝑆𝑜 be the subset of specialties that can only have surgeries planned in OR 𝑜 ∈ 𝑂 in
combination with another specialty. Then, the following constraints ensure that surgeries of specialties
𝑠 ∈ 𝑆𝐶𝑜 are not planned alone in an OR:

∑
𝑠2∈𝑆𝑜 , 𝑠2≠𝑠

𝑅𝑜𝑘𝑠2 ≥ 𝑅𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝐶𝑜 . (4.10)
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Lastly, it is unfavorable for surgeons to have to go to an OR for just a short amount of time. Hence,
a constraint is added that for specialty 𝑠 ∈ 𝑆 the number of scheduled surgeries is at least 𝑚𝑠. Thus,

𝑍𝑜𝑘𝑠 ≥ 𝑚𝑠 ⋅ 𝑅𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 . (4.11)

4.2. Post-operative length of stay distribution
In this section, a model is described to compute the distribution of the number of post-surgical patients
in the nursing wards for a given MSS. To calculate the post-surgical patient distribution over the nursing
wards, we follow the approach described by Schneider et al. (2020) with two main differences. The
approach of Schneider et al. (2020) consists of 3 steps. In the first step, the patient distribution for the
nursing wards after one OR session is calculated for each specialty. This step is expanded in our case
to include more patient pathways. Thereafter, the patient distribution of one OR session within the MSS
is calculated for each specialty. In this step, the fact that a patient can be discharged in a later cycle
than the cycle of their surgery is taken into account. Contrary to Schneider et al. (2020), we do not
appoint surgeries to only one cycle within the MSS but to all cycles of the MSS. Hence, this step would
not be necessary. However, we are going to assume that our schedule of 𝑄 days is also repeated in
order to investigate the bed occupancy during a steady state. Lastly, the patient distributions of the
specialties are combined in order to compute the total bed occupancy of the nursing wards.

Let 𝐼 be the set of ICs, 𝑊 the set of MC wards and let 𝐷 denote the daycare department. Let 𝑃
represent the set of considered post-surgical patient subpaths through the nursing ward departments.
As introduced in Section 2.3, we consider six different paths for patients to follow after their surgery
up until their discharge. In this section, we use ‘path’ if the nursing department itinerary can only be
followed by discharge and ‘subpath’ if the patient can still be transferred. We consider every possible
subpath emanating from the OR and denote these subpaths by the abbreviations presented in Table
4.1. Generally, the individual letters represent the departments the patient has visited after their surgery
(𝑆) and the last letter represents the current nursing ward. As we consider the patients who have stayed
at a ward of 𝑊 and are discharged afterwards separately from the ones who are transferred to an IC
of 𝐼 after their stay in𝑊, we define their subpath abbreviations as 𝑆𝑊1 and 𝑆𝑊2, respectively. 𝑆𝑊2 is
therefore the subpath which always preceeds subpath 𝑆𝑊𝐼.

Table 4.1: Subpaths.

Subpaths 𝑝 ∈ 𝑃 Description
𝑆𝐼 Subpath in which a patient is transferred to an IC in 𝐼 after surgery
𝑆𝑊𝐼 Subpath in which a patient is transferred to an IC in 𝐼

after spending time at some ward in𝑊 after surgery
𝑆𝑊1 Path in which the patient is transferred to a ward in𝑊 after surgery

and will be discharged after the stay
𝑆𝑊2 Subpath in which the patient is transferred to a ward in𝑊 after surgery

and will be transferred to the IC after the stay
𝑆𝐼𝑊 Path in which the patient is transferred to a ward in𝑊

after spending time at the IC after surgery
𝑆𝑊𝐼𝑊 Path in which the patient is transferred to a ward in𝑊

after spending first time at a ward in𝑊, followed by the IC after surgery
𝑆𝐷 Path in which a patient goes to 𝐷 after surgery

Define the partition of 𝑃 by sets 𝑃𝐼, 𝑃𝑊 and 𝑃𝐷, where the superscript denotes the last nursing ward
department of the subpath. In other words, 𝑃𝐼 = {𝑆𝐼, 𝑆𝑊𝐼} and 𝑃𝑊 = {𝑆𝑊1, 𝑆𝑊2, 𝑆𝐼𝑊, 𝑆𝑊𝐼𝑊} and
𝑃𝐷 = {𝑆𝐷}.We now define the probabilities for the transferal to another nursing ward type. We do this
for each subpath of Table 4.1. This results in Figure 4.1, which is an extension of Figure 2.2. Followed
by the figure, an explanation of the parameters is given.
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Figure 4.1: Considered patient pathways from OR to discharge with their probabilities.

Parameters 𝑎𝑝𝑖𝑠 represent the probability of a patient of specialty 𝑠 ∈ 𝑆 being transferred to IC 𝑖 ∈ 𝐼
as the last nursing ward of subpath 𝑝 ∈ 𝑃𝐼.

• 𝑎(𝑆𝐼)𝑖𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to IC 𝑖 ∈ 𝐼 after surgery.
• 𝑎(𝑆𝑊𝐼)𝑖𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to IC 𝑖 ∈ 𝐼 after spending time
at some nursing ward of𝑊 after surgery, i.e., after having followed subpath 𝑆𝑊2.

Similarly, parameters 𝑏𝑝𝑤𝑠 represent the probability of a patient of specialty 𝑠 ∈ 𝑆 being transferred
to ward 𝑤 ∈ 𝑊 as the last nursing ward of subpath 𝑝 ∈ 𝑃𝑊.

• 𝑏(𝑆𝑊1)𝑤𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to ward 𝑤 ∈ 𝑊 after surgery
and will be discharged after the stay at ward 𝑤 ∈ 𝑊.

• 𝑏(𝑆𝑊2)𝑤𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to ward 𝑤 ∈ 𝑊 after surgery
and will be transferred to the IC after the stay at ward 𝑤 ∈ 𝑊.

• 𝑏(𝑆𝐼𝑊)𝑤𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to ward 𝑤 ∈ 𝑊 after spending
time at the IC after surgery, i.e., after having followed subpath 𝑆𝐼.

• 𝑏(𝑆𝑊𝐼𝑊)𝑤𝑠: probability that a patient of specialty 𝑠 ∈ 𝑆 is transferred to ward 𝑤 ∈ 𝑊 after spending
the first time at a ward in 𝑊 followed by the IC after surgery, i.e., after having followed subpath
𝑆𝑊𝐼.

We can find the probability of a patient of specialty 𝑠 ∈ 𝑆 being transferred to 𝐷 after surgery, i.e.
following the only path 𝑝 ∈ 𝑃𝐷, by calculating

1 −∑
𝑖∈𝐼
𝑎(𝑆𝐼)𝑖𝑠 − ∑

𝑤∈𝑊
𝑏(𝑆𝑊1)𝑤𝑠 − ∑

𝑤∈𝑊
𝑏(𝑆𝑊2)𝑤𝑠 .

Define 𝑆𝑤 ⊂ 𝑆 as the subset of specialties that can be transferred to ward 𝑤 ∈ 𝑊. Similarly, define
𝑆𝑖 ⊂ 𝑆 as the subset of specialties that are transferred to IC 𝑖 ∈ 𝐼. Parameters 𝑎𝑝𝑖𝑠 and 𝑏𝑝𝑤𝑠 are equal
to zero for 𝑠 ∉ 𝑆𝑖 and 𝑠 ∉ 𝑆𝑤, respectively.

For the duration of a patient occupying a bed in the nursing ward, we use the data of the hospital and
perform log-normal distribution fittings to find the probabilities 𝑐𝑝𝑠𝑛 that a patient of specialty 𝑠 ∈ 𝑆 stays
𝑛 days in the last nursing ward of subpath 𝑝 ∈ 𝑃. This choice of the log-normal distribution accounts
for the positive valuedness and skewness usually observed in the length of stay data. In models seen
in our literature review, the empirical distribution was used for the length of stay (Fügener et al., 2014;
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Schneider et al., 2020). This has the advantage of potentially being more accurate. We, however,
wanted to use a standard distribution for the length of stay for its simplicity. In their paper, Faddy et al.
(2009) fitted the length of stay with the log-normal distribution, the gamma distribution and a phase-
type distribution. They found that although the log-normal was inferior to the phase-type, it performed
significantly better than the gamma distribution and the estimates obtained with the log-normal were
relatively close to that of the phase-type.

As the log-normal is a continuous probability distribution while we wish 𝑐𝑝𝑠𝑛 to be discrete, we
approximate 𝑐𝑝𝑠𝑛 by integrating the probability density function 𝑓 over the domain [𝑛, 𝑛 + 1):

𝑐𝑝𝑠𝑛 = ∫
𝑛+1

𝑛
𝑓(𝑥) 𝑑𝑥. (4.12)

Notice that no distinction between wards 𝑤 ∈ 𝑊 are made as well as between ICs 𝑖 ∈ 𝐼 for the
parameters 𝑐𝑝𝑠𝑛. We assume that the length of stay at a nursing ward only depends on the specialty
𝑠 ∈ 𝑆 and the general ward department order.

Starting from Subsection 4.2.1, we only take into account the patients that go to wards in𝑊 and 𝐼,
i.e. subpaths in 𝑃𝐼 and 𝑃𝑊. As the patients in 𝐷 are discharged on the same day as their surgery, we
only consider those patients on the day of their surgery. We estimate the bed occupancy in 𝐷 for each
day 𝑘 ∈ 𝐾 by summing all respective lengths of stay expectations of the patients in 𝐷 on day 𝑘 ∈ 𝐾 and
dividing the total sum by the total opening duration of 𝐷 on day 𝑘 ∈ 𝐾.

4.2.1. Step 1: Specialty specific distribution for one planned surgery
Assume that the surgery takes place on day 1. From the parameters 𝑐𝑝𝑠𝑛, we use conditional probabil-
ity to calculate the probabilities 𝑑𝑝𝑠(𝑛+1) that a patient, after they have stayed 𝑛 days in the last ward,
is discharged from the last ward of their subpath 𝑝 ∈ 𝑃 on day 𝑛+1. Using the definition of conditional
probability we obtain that 𝑑𝑝𝑠(𝑛+1) = ℙ(𝐴|𝐵) =

ℙ(𝐴∩𝐵)
ℙ(𝐵) . In our case, 𝐴 equals the event that a patient

stays exactly 𝑛 days in their ward, i.e., ℙ(𝐴) = 𝑐𝑝𝑠𝑛, while 𝐵 corresponds to the event that the patient
has already stayed 𝑛 days in the ward and hence, is surely discharged after exactly 𝑛 days or more,
i.e., ℙ(𝐵) = 1 − ∑𝑛−1𝑘=1 𝑐𝑝𝑠𝑘.

Let 𝑁𝑝𝑠 denote the maximum length of stay for a patient of specialty 𝑠 ∈ 𝑆 in the latest ward in the
subpath 𝑝 ∈ 𝑃. These are taken as a certain high percentile of the fitted log-normal distribution as used
for the probabilities 𝑐𝑝𝑠𝑛. Then ℙ(𝐵) = 1 − ∑

𝑛−1
𝑘=1 𝑐𝑝𝑠𝑘 ≈ ∑

𝑁𝑝𝑠
𝑘=𝑛 𝑐𝑝𝑠𝑘. Using the above, we find:

𝑑𝑝𝑠(𝑛+1) =
𝑐𝑝𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐𝑝𝑠𝑘
≈

𝑐𝑝𝑠𝑛
∑𝑁𝑝𝑠𝑘=𝑛 𝑐𝑝𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0, … , 𝑁𝑝𝑠}. (4.13)

Now using 𝑑𝑝𝑠(𝑛+1), we compute 𝑒𝑝𝑠𝑛 representing the probabilities that a patient of specialty 𝑠 ∈ 𝑆
is in the last ward of the subpath 𝑝 ∈ 𝑃 on day 𝑛. When the patient has been in one different ward
before, we add parameter 𝑚 as the number of days stayed in the former ward resulting in probabilities
𝑒𝑝𝑠𝑛𝑚. In the case of two former wards, we define probabilities 𝑒𝑝𝑠𝑛𝑚1𝑚2 in a similar manner in which
parameter 𝑚1 denotes the number of days stayed in the first ward in path 𝑝 ∈ 𝑃 whilst 𝑚2 represents
this for the second ward in path 𝑝 ∈ 𝑃. Contrary to Schneider et al. (2020), we do not assume that a
patient has to stay at least one day when they are transferred.

We compute the probabilities 𝑒𝑝𝑠𝑛 in a recursive manner. For the subpaths 𝑝 ∈ 𝑃 which only contain
one ward, the probability for 𝑛 = 1 is equal to the probability to be transferred respectively to an IC or
a ward after surgery. For 𝑛 ∈ {2,… ,𝑁𝑝𝑠 + 1}, 𝑒𝑝𝑠𝑛 is equal to the probability that the patient was there
the day before times the probability that the patient is not transferred on day 𝑛, i.e., 𝑛−1 days after the
surgery.
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In case 𝑝 = 𝑆𝐼, this results in:

𝑒(𝑆𝐼)𝑠𝑛 = {
∑𝑖∈𝐼 𝑎(𝑆𝐼)𝑖𝑠 for 𝑛 = 1
(1 − 𝑑(𝑆𝐼)𝑠(𝑛−1)) 𝑒(𝑆𝐼)𝑠(𝑛−1) for 𝑛 ∈ {2,… ,𝑁(𝑆𝐼)𝑠 + 1}
0 otherwise.

(4.14)

In case 𝑝 = 𝑆𝑊1, 𝑆𝑊2:

𝑒𝑝𝑠𝑛 = {
∑𝑤∈𝑊 𝑏𝑝𝑤𝑠 for 𝑛 = 1
(1 − 𝑑𝑝𝑠(𝑛−1)) 𝑒𝑝𝑠(𝑛−1) for 𝑛 ∈ {2,… ,𝑁𝑝𝑠 + 1}
0 otherwise.

(4.15)

When the subpath contains multiple wards, we again start by considering the probability that the
patient is in the ward on the same day as their arrival at the ward, i.e., 𝑛 = 𝑚 or 𝑛 = 𝑚2. Let �̃� denote
the preceding subpath of 𝑝 by excluding the last nursing department, and define �̂� as the preceding
subpath of �̃� in case 𝑝 = 𝑆𝑊𝐼𝑊. For instance, for 𝑝 = 𝑆𝑊𝐼𝑊, �̃� = 𝑆𝑊𝐼 and �̂� = 𝑆𝑊2. This probability
is equal to the probability that the patient is not discharged or transferred on the first day in their current
ward (1−𝑑𝑝𝑠1), multiplied by the probabilities of staying𝑚 or𝑚2 days and being discharged after𝑚 or
𝑚2 days in the preceding subpath �̃� ∈ 𝑃. For 𝑛 > 𝑚,𝑚2, the probability is computed in a similar fashion
as before, by multiplying the probability that the patient was there the day before with the probability
that the patient is not transferred on day 𝑛, i.e., 𝑛 − 1 days after the surgery.

In the case that the patient visits two nursing wards:

𝑒𝑝𝑠𝑛𝑚 = {
(1 − 𝑑𝑝𝑠1) 𝑒�̃�𝑠𝑚𝑑�̃�𝑠𝑚 for 𝑚 ∈ {1,… ,𝑁�̃�𝑠 + 1}, 𝑛 = 𝑚
(1 − 𝑑𝑝𝑠(𝑛−𝑚+1)) 𝑒𝑝𝑠(𝑛−1)𝑚 for 𝑚 ∈ {1,… ,𝑁�̃�𝑠 + 1}, 𝑛 ∈ {𝑚 + 1,… ,𝑚 + 𝑁𝑝𝑠}
0 otherwise.

(4.16)

In the case that the patient visits three nursing wards:

𝑒𝑝𝑠𝑛𝑚1𝑚2 =
⎧⎪
⎨⎪⎩

(1 − 𝑑𝑝𝑠1) 𝑒�̃�𝑠𝑚2𝑚1𝑑�̃�𝑠(𝑚2−𝑚1+1) for 𝑚1 ∈ {1,… ,𝑁�̂�𝑠 + 1},𝑚2 ∈ {𝑚1, … ,𝑚1 + 𝑁�̃�𝑠}, 𝑛 = 𝑚2
(1 − 𝑑𝑝𝑠(𝑛−𝑚2+1)) 𝑒𝑝𝑠(𝑛−1)𝑚1𝑚2 for 𝑚1 ∈ {1,… ,𝑁�̂�𝑠 + 1},𝑚2 ∈ {𝑚1, … ,𝑚1 + 𝑁�̃�𝑠},

𝑛 ∈ {𝑚2 + 1,… ,𝑚2 + 𝑁𝑝𝑠}
0 otherwise.

(4.17)
Let 𝑓𝑖𝑠𝑛 be the probability distributions that a patient of specialty 𝑠 ∈ 𝑆 is in IC 𝑖 ∈ 𝐼 on day 𝑛. Sup-

pose that f𝑖𝑠𝑛 are the corresponding discrete stochastic variables and define 𝑁𝐼𝑠 as the total maximal
length of stay for the whole subpath of subpaths in 𝑃𝐼, i.e., 𝑁𝐼𝑠 = max{𝑁(𝑆𝐼)𝑠 , 𝑁(𝑆𝑊2)𝑠 + 𝑁(𝑆𝑊𝐼)𝑠}. The
probability that a patient of specialty 𝑠 ∈ 𝑆 is in IC 𝑖 ∈ 𝐼 on day 𝑛, ℙ(f𝑖𝑠𝑛 = 1), is given by the sum of the
probabilities that a patient of specialty 𝑠 ∈ 𝑆 is in IC 𝑖 ∈ 𝐼 on day 𝑛 given their subpath 𝑝 ∈ 𝑃𝐼 multiplied
by the probability of subpath 𝑝 ∈ 𝑃𝐼. The probability of the opposite event, ℙ(f𝑖𝑠𝑛 = 0), is calculated as
1 − ℙ(f𝑖𝑠𝑛 = 1).

ℙ (f𝑖𝑠𝑛 = 1) = ∑
𝑝∈𝑃𝐼

ℙ(𝑝 ∧ last ward is 𝑖) ⋅ ℙ(f𝑖𝑠𝑛 = 1|𝑝 ∧ last ward is 𝑖) for 𝑛 ∈ {1,… ,𝑁𝐼𝑠 + 1}

=
𝑎(𝑆𝐼)𝑖𝑠

∑𝑖∈𝐼 𝑎(𝑆𝐼)𝑖𝑠
𝑒(𝑆𝐼)𝑠𝑛 +

𝑎(𝑆𝑊𝐼)𝑖𝑠
∑𝑖∈𝐼 𝑎(𝑆𝑊𝐼)𝑖𝑠

𝑛−1

∑
𝑚=1

𝑒(𝑆𝑊𝐼)𝑠𝑛𝑚 for 𝑛 ∈ {1,… ,𝑁𝐼𝑠 + 1}

=
𝑎(𝑆𝐼)𝑖𝑠

∑𝑖∈𝐼 𝑎(𝑆𝐼)𝑖𝑠
𝑒(𝑆𝐼)𝑠𝑛 + 𝑎(𝑆𝑊𝐼)𝑖𝑠

𝑛−1

∑
𝑚=1

𝑒(𝑆𝑊𝐼)𝑠𝑛𝑚 for 𝑛 ∈ {1,… ,𝑁𝐼𝑠 + 1}.

(4.18)

Note that ∑𝑖∈𝐼 𝑎(𝑆𝑊𝐼)𝑖𝑠 = 1 as subpath 𝑆𝑊𝐼 is always followed by the patients that followed its preceding
subpath 𝑆𝑊2. Furthermore, remark that ℙ(f𝑖𝑠𝑛 = 1|𝑝 ∧ last ward is 𝑖) = ℙ(f𝑖𝑠𝑛 = 1|𝑝) as the length of
stay in a ward is only dependent on the ward type.
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Similarly, the probability that a patient of specialty 𝑠 ∈ 𝑆 is in ward 𝑤 ∈ 𝑊 on day 𝑛 is given
by the sum of the probabilities that a patient of specialty 𝑠 ∈ 𝑆 is in ward 𝑤 ∈ 𝑊 on day 𝑛 given their
subpath 𝑝 ∈ 𝑃𝑊 multiplied by the probability of subpath 𝑝 ∈ 𝑃𝑊. Let 𝑓𝑤𝑠𝑛 be the probability distributions
that a patient of specialty 𝑠 ∈ 𝑆 is ward 𝑤 ∈ 𝑊 on day 𝑛. Suppose that f𝑤𝑠𝑛 are the corresponding
discrete stochastic variables. The probability of the opposite event, ℙ(f𝑤𝑠𝑛 = 0), is calculated as
1 − ℙ(f𝑤𝑠𝑛 = 1). Let 𝑁𝑊𝑠 denote the total maximal length of stay for the whole subpath of subpaths
in 𝑃𝑊, i.e., 𝑁𝑊𝑠 = max{𝑁(𝑆𝑊1)𝑠 , 𝑁(𝑆𝑊2)𝑠 , 𝑁(𝑆𝐼)𝑠 + 𝑁(𝑆𝐼𝑊)𝑠 , 𝑁(𝑆𝑊2)𝑠 + 𝑁(𝑆𝑊𝐼)𝑠 + 𝑁(𝑆𝑊𝐼𝑊)𝑠}. Then, we can
calculate ℙ(f𝑤𝑠𝑛 = 1) as follows:

ℙ(f𝑤𝑠𝑛 = 1) = ∑
𝑝∈𝑃𝑊

ℙ(𝑝 ∧ last ward is 𝑤) ⋅ ℙ(f𝑤𝑠𝑛 = 1|𝑝 ∧ last ward is 𝑤) for 𝑛 ∈ {1,… ,𝑁𝑊𝑠 + 1}

=
𝑏(𝑆𝑊1)𝑤𝑠

∑𝑤∈𝑊 𝑏(𝑆𝑊1)𝑤𝑠
𝑒(𝑆𝑊1)𝑠𝑛 +

𝑏(𝑆𝑊2)𝑤𝑠
∑𝑤∈𝑊 𝑏(𝑆𝑊2)𝑤𝑠

𝑒(𝑆𝑊2)𝑠𝑛 +
𝑏(𝑆𝐼𝑊)𝑤𝑠

∑𝑤∈𝑊 𝑏(𝑆𝐼𝑊)𝑤𝑠

𝑛

∑
𝑚=1

𝑒(𝑆𝐼𝑊)𝑠𝑛𝑚

+
𝑏(𝑆𝑊𝐼𝑊)𝑤𝑠

∑𝑤∈𝑊 𝑏(𝑆𝑊𝐼𝑊)𝑤𝑠

𝑛

∑
𝑚2=1

𝑚2
∑
𝑚1=1

𝑒(𝑆𝑊𝐼𝑊)𝑠𝑛𝑚1𝑚2 for 𝑛 ∈ {1,… ,𝑁𝑊𝑠 + 1}.

(4.19)

4.2.2. Step 2: Specialty specific distribution for one surgical patient within the
MSS

In this subsection, we take into account the fact that the length of stay of a patient can exceed the time
period that one MSS covers. We assume that the schedule that is produced, is the only MSS used in
order to look at the bed occupancy during a steady state.

Depending on the maximum length of stay and the day of arrival, it is possible for patients to occupy
a bed in a later MSS time period of 𝑄 days than the MSS time period of their surgery. Hence, when
determining the bed occupancy of a certain day, the patients staying at the ward from previous MSS
time periods have to be taken into account as well. The number of 𝑄-length periods that have to be
taken into account for a specialty 𝑠 ∈ 𝑆 is dependent on the maximal length of stay at the IC given by 𝑁𝐼𝑠
or the maximal length of stay at the MC given by 𝑁𝑊𝑠 . For a day 𝑞 in the 𝑄-length period (𝑞 ∈ {1,… , 𝑄})
and assuming the patient’s surgery was scheduled on the first day of the time period, the number of
MSS time periods to take into account is:

⌊𝑁
𝐼
𝑠 − 𝑞
𝑄 ⌋ + 1 for the IC, (4.20)

⌊𝑁
𝑊
𝑠 − 𝑞
𝑄 ⌋ + 1 for the MC. (4.21)

Let 𝐹𝐼𝑖𝑠𝑞 denote the distribution for the number of patients of specialty 𝑠 ∈ 𝑆 occupying a bed in IC
𝑖 ∈ 𝐼 on the 𝑞th day of a 𝑄-length period, assuming that the surgery of specialty 𝑠 ∈ 𝑆 was scheduled on
the first day of the time period. Then, 𝐹𝐼𝑖𝑠𝑞 is equal to the convolution of the probabilities that a patient

is in the IC on the 𝑞th day, resulting from all ⌊𝑁
𝐼𝑠−𝑞
𝑄 ⌋ + 1 past 𝑄-length periods. The distribution 𝐹𝑊𝑤𝑠𝑞 for

the number of patients of specialty 𝑠 ∈ 𝑆 occupying a bed in ward 𝑤 ∈ 𝑊 on the 𝑞th day of a 𝑄-length
period, assuming that the surgery of specialty 𝑠 ∈ 𝑆 was scheduled on the first day of the time period,
can be constructed similarly. This results in the following equations:

𝐹𝐼𝑖𝑠𝑞 = 𝑓𝐼𝑖𝑠𝑞 ∗ 𝑓𝐼𝑖𝑠(𝑞+𝑄) ∗ ⋯ ∗ 𝑓𝐼
𝑖𝑠(𝑞+(⌊𝑁

𝐼𝑠−𝑞
𝑄 ⌋)⋅𝑄)

𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑞 ∈ {1, … , 𝑄}, (4.22)

𝐹𝑊𝑤𝑠𝑞 = 𝑓𝑊𝑤𝑠𝑞 ∗ 𝑓𝑊𝑤𝑠(𝑞+𝑄) ∗ ⋯ ∗ 𝑓𝑊
𝑤𝑠(𝑞+(⌊𝑁

𝑊𝑠 −𝑞
𝑄 ⌋)⋅𝑄)

𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆, 𝑞 ∈ {1, … , 𝑄}. (4.23)



20 4. Mathematical model

4.2.3. Step 3: Distribution bed occupancy
Now, we calculate the bed occupancy in the nursing wards for the resulting MSS. For each day 𝑘 ∈ 𝐾,
the created schedule gives us integer values for the variables 𝑍𝑜𝑘𝑠 which represent the number of
surgeries of specialty 𝑠 ∈ 𝑆 scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾. The distribution of the bed occupancy
in IC 𝑖 ∈ 𝐼 or ward 𝑤 ∈ 𝑊 on day 𝑞 of the MSS when a surgery of specialty 𝑠 ∈ 𝑆 is scheduled on day
𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂 is represented by 𝐺𝐼𝑖𝑜𝑘𝑠𝑞 and 𝐺𝑊𝑤𝑜𝑘𝑠𝑞, respectively. For this, the distributions 𝐹𝐼𝑖𝑠𝑞 and
𝐹𝑊𝑤𝑠𝑞 are shifted to correspond with the correct length of stay. For 𝑞 ≥ 𝑘, the smallest number of days
a patient who had surgery on day 𝑘 could have stayed in the hospital is 𝑞 − 𝑘 + 1 as we assume the
surgery takes place on day 1. For the days preceding 𝑘, i.e. 𝑞 < 𝑘, the patient distribution can only be
dependent on the patients from preceding MSS schedules. Hence, we shift by an additional 𝑄 days.
This results in the following equations:

𝐺𝐼𝑖𝑜𝑘𝑠𝑞 = {
𝐹𝐼𝑖𝑠(𝑞−𝑘+1)𝟙𝑍𝑜𝑘𝑠>0, 𝑞 ≥ 𝑘
𝐹𝐼𝑖𝑠(𝑞−𝑘+1+𝑄)𝟙𝑍𝑜𝑘𝑠>0, otherwise

𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑞 ∈ {1,… , 𝑄}, 𝑠 ∈ 𝑆𝑖 , (4.24)

𝐺𝑊𝑤𝑜𝑘𝑠𝑞 = {
𝐹𝑊𝑤𝑠(𝑞−𝑘+1)𝟙𝑍𝑜𝑘𝑠>0, 𝑞 ≥ 𝑘
𝐹𝑊𝑤𝑠(𝑞−𝑘+1+𝑄)𝟙𝑍𝑜𝑘𝑠>0, otherwise

𝑤 ∈ 𝑊, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑞 ∈ {1,… , 𝑄}, 𝑠 ∈ 𝑆𝑤 . (4.25)

Note that we have not taken into account the actual number of surgical patients yet. In order to
take this into account, we have to apply convolution on the corresponding distribution 𝐺𝐼𝑖𝑜𝑘𝑠𝑞 or 𝐺𝑊𝑤𝑜𝑘𝑠𝑞
𝑍𝑜𝑘𝑠 times. We introduce the following notations that we use in the remainder of the section. For some
functions ℎ, ℎ1, … , ℎ𝑚 and positive integer 𝑚:

ℎ ∗ ℎ ∗ ⋯ ∗ ℎ⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑚

= ℎ∗𝑚 , ℎ∗0 = 𝛿0,

ℎ1 ∗ ⋯ ∗ ℎ𝑚 =
𝑚
⊛
𝑖=1

ℎ𝑖 ,
(4.26)

where 𝛿0 denotes the Dirac delta distribution.

So we can calculate the total patient distribution �̂�𝐼𝑖𝑜𝑘𝑠𝑞 and �̂�𝑊𝑤𝑜𝑘𝑠𝑞 for IC 𝑖 ∈ 𝐼 and ward 𝑤 ∈ 𝑊,
respectively, on day 𝑞 of the MSS resulting from specialty 𝑠 ∈ 𝑆 being assigned to OR 𝑜 ∈ 𝑂 on day
𝑘 ∈ 𝐾 as follows:

�̂�𝐼𝑖𝑜𝑘𝑠𝑞 = (𝐺𝐼𝑖𝑜𝑘𝑠𝑞)
∗𝑍𝑜𝑘𝑠

𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆𝑖 , 𝑞 ∈ {1, … , 𝑄}, (4.27)

�̂�𝑊𝑤𝑜𝑘𝑠𝑞 = (𝐺𝑊𝑤𝑜𝑘𝑠𝑞)
∗𝑍𝑜𝑘𝑠

𝑤 ∈ 𝑊, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆𝑤 , 𝑞 ∈ {1, … , 𝑄}. (4.28)

To estimate the distribution for the bed occupancy at IC 𝑖 ∈ 𝐼 or ward 𝑤 ∈ 𝑊 on day 𝑞 resulting
from all surgeries of OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾, we have to convolve over �̂�𝐼𝑖𝑜𝑘𝑠𝑞 or �̂�𝑊𝑤𝑜𝑘𝑠𝑞, respectively,
for all specialties 𝑠 ∈ 𝑆. Define these distributions as 𝐻𝐼𝑖𝑜𝑘𝑞 and 𝐻𝑊𝑤𝑜𝑘𝑞, respectively. This results in the
following equations:

𝐻𝐼𝑖𝑜𝑘𝑞 =⊛
𝑠∈𝑆𝑖

�̂�𝐼𝑖𝑜𝑘𝑠𝑞 𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑞 ∈ {1,… , 𝑄}, (4.29)

𝐻𝑊𝑤𝑜𝑘𝑞 = ⊛
𝑠∈𝑆𝑤

�̂�𝑊𝑤𝑜𝑘𝑠𝑞 𝑤 ∈ 𝑊, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑞 ∈ {1,… , 𝑄}. (4.30)

In order to calculate the bed occupancy for the whole MSS, we still need to convolve over every
OR-day 𝑘 ∈ 𝐾 and over every OR 𝑜 ∈ 𝑂. Suppose �̂�𝐼𝑖𝑞 and �̂�𝑊𝑤𝑞 represent the distribution of occupied
beds on day 𝑞 of the MSS for IC 𝑖 ∈ 𝐼 and ward𝑤 ∈ 𝑊, respectively. �̂�𝐼𝑖𝑞 and �̂�𝑊𝑤𝑞 can thus be calculated
in the following way:
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�̂�𝐼𝑖𝑞 = ⊛
𝑜∈𝑂,𝑘∈𝐾

𝐻𝐼𝑖𝑜𝑘𝑞 𝑖 ∈ 𝐼, 𝑞 ∈ {1, … , 𝑄}, (4.31)

�̂�𝑊𝑤𝑞 = ⊛
𝑜∈𝑂,𝑘∈𝐾

𝐻𝑊𝑤𝑜𝑘𝑞 𝑤 ∈ 𝑊, 𝑞 ∈ {1, … , 𝑄}. (4.32)

Similarly as Schneider et al. (2020), we define �̂�𝐼𝑖𝑞[𝑛] and �̂�𝑊𝑤𝑞[𝑛] to be the probabilities of having 𝑛
patients in IC 𝑖 ∈ 𝐼 and ward𝑤 ∈ 𝑊, respectively. Let𝜓 represent the givenMSS schedule. Now, define
𝛾𝑖𝑞(𝜓) as the number such that the number of occupied beds on day 𝑞 ∈ 𝐾 in IC 𝑖 ∈ 𝐼 for schedule 𝜓
is at most 𝛾𝑖𝑞(𝜓) with probability at least 1 − 𝜖. This leads to the following formula for 𝛾𝑖𝑞(𝜓):

𝛾𝑖𝑞(𝜓) =min{𝑛|
𝑛

∑
𝑚=0

�̂�𝐼𝑖𝑞[𝑚] ≥ 1 − 𝜖} . (4.33)

Similarly, we define 𝛾𝑤𝑞(𝜓) as the number such that the number of beds on day 𝑞 ∈ 𝐾 in ward
𝑤 ∈ 𝑊 for schedule 𝜓 is at most 𝛾𝑤𝑞(𝜓) with probability at least 1 − 𝜖. So,

𝛾𝑤𝑞(𝜓) =min{𝑛|
𝑛

∑
𝑚=0

�̂�𝑊𝑖𝑞 [𝑚] ≥ 1 − 𝜖} . (4.34)

In our research, we are interested in calculating the variation in bed occupancy. For an IC 𝑖 ∈ 𝐼
and ward 𝑤 ∈ 𝑊, we calculate the variation 𝛾𝑖 and 𝛾𝑤 as the difference between the maximum and
minimum number of beds needed during the MSS. On days 𝑞 ∈ {1,… , 𝑄} ⧵ 𝐾, the number of beds for
elective patients can only decrease as no elective surgeries are scheduled on these days. Hence, we
neglect these days when calculating the variation:

𝛾𝑖(𝜓) =max
𝑞∈𝐾

𝛾𝑖𝑞(𝜓) −min
𝑞∈𝐾

𝛾𝑖𝑞(𝜓), (4.35)

𝛾𝑤(𝜓) =max
𝑞∈𝐾

𝛾𝑤𝑞(𝜓) −min
𝑞∈𝐾

𝛾𝑤𝑞(𝜓). (4.36)

As the minimum and maximum operators in the above equations are non-linear operators, we re-
solve this by a linearisation in the next chapter.

4.3. Objective function
For our model, we wish to obtain two main things. First of all, we would like to schedule each spe-
cialty with equal relative frequency. This is done by comparing the number of surgeries a specialty has
scheduled to the average number of surgeries carried out by the specialty during a 𝑄-length period.
Besides this, we want to minimize the variation in bed occupancy during the 𝑄-length period. However,
this should not be at the expense of the OR utilization. Hence, our last goal is to maximize the OR
utilization.

So, firstly, it is desirable that every specialty has relatively the same time in the OR with respect to
the OR time they were expected to utilize. For this, we look at the number of surgeries the specialties
on average carry out within a 𝑄-length period. Let 𝐿𝑠 denote the average number of surgeries for
specialty 𝑠 ∈ 𝑆. Then, we introduce auxiliary variables 𝑉𝑠 to represent the percentage of less scheduled
surgeries with respect to the expected number of surgeries for specialty 𝑠 ∈ 𝑆:

𝑉𝑠 =
𝐿𝑠 − ∑𝑜∈𝑂,𝑘∈𝐾 𝑍𝑜𝑘𝑠

𝐿𝑠
= 1 − 1

𝐿𝑠
∑

𝑜∈𝑂,𝑘∈𝐾
𝑍𝑜𝑘𝑠 , ∀𝑠 ∈ 𝑆. (4.37)

In order to give every specialty relatively the same time, we would like to have the largest and
smallest 𝑉𝑠 close to each other. For this, we add auxiliary variables 𝑉max and 𝑉min, as well as the
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constraints:

𝑉max ≥ 𝑉𝑠 , ∀𝑠 ∈ 𝑆, (4.38)
𝑉min ≤ 𝑉𝑠 , ∀𝑠 ∈ 𝑆. (4.39)

Hence, the first sub-objective becomes:

min𝑉max − 𝑉min, (4.40)

which is equivalent to
max−(𝑉max − 𝑉min) . (4.41)

Secondly, we wish to utilize the OR capacity as much as possible. In order to do this, we estimate
each surgery duration by its expected value. Let the expected duration of a surgery from specialty 𝑠 ∈ 𝑆
be denoted by 𝔼[𝐷𝑆𝑠]. Then we get the following sub-objective:

max ∑
𝑜∈𝑂,𝑘∈𝐾,𝑠∈𝑆𝑜

𝔼[𝐷𝑆𝑠] ⋅ 𝑍𝑜𝑘𝑠 . (4.42)

Lastly, we wish to minimize the variation in bed occupancy for each IC 𝑖 ∈ 𝐼 and ward 𝑤 ∈ 𝑊. Thus,
we want to minimize each 𝛾𝑖 and 𝛾𝑤 for the given MSS schedule 𝜓. Equivalently to this is maximizing
each −𝛾𝑖 and −𝛾𝑤 for the given MSS schedule 𝜓.

As each objective is of different importance and different order of magnitude, we include non-
negative weights 𝜃 when combining the sub-objectives in the objective function. The resulting objective
function is then given by:

max−𝜃𝑉 ⋅ (𝑉max − 𝑉min) + 𝜃𝑍 ⋅ ∑
𝑜∈𝑂,𝑞∈𝑄,𝑠∈𝑆𝑜

𝔼[𝐷𝑆𝑠] ⋅ 𝑍𝑜𝑞𝑠 −∑
𝑖∈𝐼
𝜃𝑖 ⋅ 𝛾𝑖(𝜓) − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ 𝛾𝑤(𝜓). (4.43)



5
Solution methods

This chapter introduces linearization techniques for both the overtime constraint (Constraint (4.9)) and
the objective function (4.43) from the previous chapter. The initial two sections are dedicated to the
linearization of the overtime constraint. The first section outlines a method for linearizing the overtime
constraint under the assumption that surgery durations follow log-normal distributions, while the subse-
quent section presents a linearization procedure based on the assumption that surgery durations follow
normal distributions. Subsequently, we provide the linearization approach for the objective function.
To conclude the chapter, we describe the two resulting linear problems (under log-normality, as well as
normality).

5.1. Linearization overtime constraint under a log-normal distribu-
tion

In this subsection, we describe an approach to linearize Constraint (4.9), where we assume that the
surgery durations follow log-normal distributions. This constraint was introduced to take into account
overtime in our model. The constraint is given as follows:

ℙ(g𝑜𝑘 ≥ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘)) ≤ 𝛼, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾.

in which

• g𝑜𝑘 is the stochastic variable corresponding to the probability distribution 𝑔𝑜𝑘 of the cumulative
surgery duration in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾,

• 𝛽𝑜𝑘 denotes the duration that OR 𝑜 ∈ 𝑂 was planned to be open on day 𝑘 ∈ 𝐾,
• 𝜅 is the time length reserved for cleaning between the surgeries and for the change in specialty
in an OR,

• ∑𝑠∈𝑆𝑜 𝑍𝑜𝑘𝑠 is the total number of surgeries scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾,
• 𝑊𝑜𝑘 is the variable that indicates whether there are two specialties having surgeries in OR 𝑜 ∈ 𝑂
on day 𝑘 ∈ 𝐾 or not,

• 𝛼 is the desired upper bound for the probability of overtime.

The probability distribution 𝑔𝑜𝑘 is dependent on the individual durations of the planned surgeries
on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂. In the review of Wang et al. (2021), it is found that the most recurring
distribution to fit the surgery duration is the log-normal as previous research has shown that surgery
durations appear to be best described by a log-normal distribution (Stepaniak et al., 2009; Kayış et al.,
2015). Unfortunately, up to now, there has not been a closed form solution for the sum of independent
log-normal random variables (RVs) (Mehta et al., 2007). In fields such as telecommunication and stock
pricing, various approximations are used to approximate the sum of log-normal RVs by one log-normal
RV, e.g., the Fenton-Wilkinson (FW) (Fenton, 1960) and Schwartz-Yeh (SY) approximations (Schwartz
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and Yeh, 1982). As these approximations are not linear methods, we use inspiration from the column
generation method by generating all possible combinations for the number of surgeries for each pair
of specialties that certainly satisfy Constraint (4.9). This is further explained in Subsection 5.1.5.

As these approximation methods are generally used in a telecommunication setting, it is not clear
how accurate the methods are for our use. Therefore, we have chosen three approximation methods
to investigate: the FW method, the SY method and the method described in Mehta et al. (2007) which
we refer to as the ‘Mehta approximation’. All three approximations attempt to estimate the sum of in-
dependent log-normal random variables by one log-normal random variable. If a method seems like
an applicable candidate for our use, we compare the performance to simulations and choose the most
fitting method for our approximation. First, the three mentioned methods are briefly explained.

5.1.1. Fenton-Wilkinson method
The Fenton-Wilkinson method approximates the sum of independent log-normal random variables by
one log-normal random variable bymatching the first and secondmoments about zero. Let 𝑋1, … , 𝑋𝑅 de-
note 𝑅 independent two-parameter log-normal RVs with parameters (𝜇1, 𝜎1), … , (𝜇𝑅 , 𝜎𝑅), respectively.
In other words, 𝑋𝑖 = exp(𝑊𝑖) where 𝑊𝑖 is normally distributed with mean 𝜇𝑖 and standard deviation
𝜎𝑖 for every 𝑖 ∈ {1, … , 𝑅}. Assume that 𝑝𝑋𝑖 denotes the probability distribution function for RV 𝑋𝑖 for
𝑖 ∈ {1, … , 𝑅}. Now, let 𝑋 denote the log-normal RV that the FW method uses to approximate ∑𝑅𝑖=1 𝑋𝑖.
The approximation method determines the parameters 𝜇𝑋 and 𝜎𝑋 of RV 𝑋 as follows.

The Fenton-Wilkinson method finds 𝜇𝑋 and 𝜎2𝑋 by matching the first and second moments of 𝑋 about
the origin to those of ∑𝑅𝑖=1 𝑋𝑖. So,

𝔼[𝑋] = ∫
∞

0
𝑥𝑝𝑋(𝑥)𝑑𝑥 =

𝑅

∑
𝑖=1
∫
∞

0
𝑥𝑝𝑋𝑖(𝑥)𝑑𝑥, (5.1)

𝔼[𝑋2] = ∫
∞

0
𝑥2𝑝𝑋(𝑥)𝑑𝑥 =

𝑅

∑
𝑖=1
∫
∞

0
𝑥2𝑝𝑋𝑖(𝑥)𝑑𝑥. (5.2)

Note that Equation (5.1) is equivalent to 𝔼[𝑋] = ∑𝑅𝑖=1 𝔼[𝑋𝑖]. Furthermore, as the variance is related to
the second moment by 𝔼[(𝑋 − 𝔼[𝑋])2] = 𝔼[𝑋2] − 𝔼[𝑋]2, instead of Equation (5.2) one can also match
the variance of 𝑋 to the variance of ∑𝑅𝑖=1 𝑋𝑖. This results in

Var(𝑋) = ∫
∞

0
(𝑥 − 𝜇𝑋)2𝑝𝑋(𝑥)𝑑𝑥 =

𝑅

∑
𝑖=1
∫
∞

0
(𝑥 − 𝜇𝑋𝑖)2𝑝𝑋𝑖(𝑥)𝑑𝑥. (5.3)

When the expectation and variance of 𝑋 are known, its parameters 𝜇𝑥 and 𝜎2𝑋 can be calculated
in the following way. We start with the expression of the expectation and variance for a log-normal
random variable.

𝔼[𝑋] = exp(𝜇𝑋 +
𝜎2𝑋
2 ) (5.4)

Var(𝑋) = (exp(𝜎2𝑋) − 1) exp(2𝜇𝑋 + 𝜎2𝑋) = (exp(𝜎2𝑋) − 1)(𝔼[𝑋])2 (5.5)

Now, it is easy to see that 𝜎2𝑋 is equal to log (Var(𝑋)𝔼[𝑋]2 + 1) and 𝜇𝑋 = log(𝔼[𝑋]) − 𝜎2𝑋
2 .

5.1.2. Schwartz-Yeh method
Similarly to the FW method, the Schwarts-Yeh method tries to find one suitable log-normal variable
for the sum of log-normals by matching the first and second moments. Let again 𝑋1, … , 𝑋𝑅 denote 𝑅
independent two-parameter log-normal RVs with parameters (𝜇1, 𝜎1), … , (𝜇𝑅 , 𝜎𝑅), respectively. Let 𝑝𝑋𝑖
denote the probability distribution function for RV 𝑋𝑖 for 𝑖 ∈ {1, … , 𝑅} and let 𝑋 denote the log-normal
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RV that we use to approximate ∑𝑅𝑖=1 𝑋𝑖. However, in contrast to the FW method, the SY approximation
does not use the moments of 𝑋 and 𝑋𝑖 but rather those of ln𝑋 and ln (∑𝑅𝑖=1 𝑋𝑖).

This results in the following two equations:

∫
∞

0
ln(𝑥)𝑝𝑋(𝑥)𝑑𝑥 = ∫

∞

0
ln(𝑥)𝑝∑𝑖 𝑋𝑖(𝑥)𝑑𝑥, (5.6)

∫
∞

0
(ln(𝑥) − 𝜇𝑋)

2 𝑝𝑋(𝑥)𝑑𝑥 = ∫
∞

0
(ln(𝑥) − 𝜇∑𝑖 𝑋𝑖)

2
𝑝∑𝑖 𝑋𝑖(𝑥)𝑑𝑥. (5.7)

In the above equations, 𝑝∑𝑖 𝑋𝑖 denotes⊛𝑅
𝑖=1 𝑝𝑋𝑖 . Instead of working with these convolutions, we

find an approximation for 𝑝∑𝑖 𝑋𝑖 (although it is exact for 𝑅 = 2). For 𝑅 > 2, 𝑝∑𝑖 𝑋𝑖 is determined in a
nested fashion. In the first iteration, the 𝑝𝑌 is determined where 𝑌 = 𝑋1 +𝑋2. Next, 𝑝𝑌+𝑋3 is calculated
in a similar way, continuing this until the convolution of the desired sum is approximated. We continue
by giving the idea behind one iteration. For the exact details, we refer to Schwartz and Yeh (1982).

Assume that 𝑌, 𝑋1 and 𝑋2 are log-normal random variables for which the parameters of 𝑌 are
unknown and the parameters of 𝑋𝑖 are 𝜇𝑖 and 𝜎𝑖 for 𝑖 ∈ {1, 2}. Suppose that the associated normal RVs
are𝑊,𝑊1 and𝑊2, respectively. Then,

𝑊 = ln (𝑋1 + 𝑋2) (5.8)
= ln (exp(𝑊1) + exp(𝑊2)) (5.9)

𝜇𝑋 = 𝔼[𝑊] (5.10)
= 𝔼[ln (exp(𝑊1) + exp(𝑊2))] (5.11)
= 𝔼[ln (exp(𝑊1)(1 + exp(𝑊2 −𝑊1)))] (5.12)
= 𝔼[𝑊1] + 𝔼[ln(1 + exp(𝑊2 −𝑊1))] (5.13)

As𝑊1 and𝑊2 are normally distributed, their difference �̃� = 𝑊2 −𝑊1 is again normally distributed with
mean 𝜇�̃� = 𝜇2−𝜇1 and variance 𝜎2�̃� = 𝜎21 +𝜎22 . Hence, the last term of Equation (5.13) can be rewritten
as:

𝔼[ln(1 + exp(�̃�))] = ∫
∞

−∞
[ln(1 + exp(𝑥))]𝑝�̃�(𝑥)𝑑𝑥. (5.14)

We can now expand the logarithm term with the power series expansion

ln(1 + 𝑥) =
∞

∑
𝑗=1
𝐶𝑗𝑥𝑗 , where 𝐶𝑗 =

(−1)𝑗+1
𝑗 . (5.15)

This expansion’s radius of convergence is |𝑥| < 1 and is hence valid when 𝑥 < 0 for exp(𝑥). Hence, if
we split the integral of Equation (5.14) as follows, we can use the power series expansion on the left
integral.

∫
∞

−∞
[ln(1 + exp(𝑥))]𝑝�̃�(𝑥)𝑑𝑥 = ∫

0

−∞
[ln(1 + exp(𝑥))]𝑝�̃�(𝑥)𝑑𝑥 +∫

∞

0
[ln(1 + exp(𝑥))]𝑝�̃�(𝑥)𝑑𝑥. (5.16)

To use the expansion on the whole integral of Equation (5.14), we rewrite the integral on the positive
domain as follows:

∫
∞

0
[ln (1 + exp(𝑥))] 𝑝�̃�(𝑥)𝑑𝑥 = ∫

∞

0
[ln (exp(𝑥) ⋅ exp(−𝑥) + exp(𝑥))] 𝑝�̃�(𝑥)𝑑𝑥, (5.17)

= ∫
∞

0
[ln(exp(𝑥)) + ln(exp(−𝑥) + 1)]𝑝�̃�(𝑥)𝑑𝑥, (5.18)

= ∫
∞

0
[𝑥 + ln(exp(−𝑥) + 1)]𝑝�̃�(𝑥)𝑑𝑥. (5.19)
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Using the expansion, 𝔼[ln(1 + exp(�̃�))] can be denoted as a function 𝐺𝑎(𝜇�̃� , 𝜎�̃�). So, substituting
this into Equation (5.13) gives

𝜇𝑋 = 𝜇1 + 𝐺𝑎(𝜇�̃� , 𝜎�̃�). (5.20)

Something similar can be done for the second moment, where functions 𝐺𝑏(𝜇�̃� , 𝜎�̃�) and 𝐺𝑐(𝜇�̃� , 𝜎�̃�)
are introduced. Then, 𝜎2𝑋 can be represented by

𝜎2𝑋 = 𝜎21 − 𝐺2𝑎(𝜇�̃� , 𝜎�̃�) − 2(−
𝜎1
𝜎�̃�
)
2
𝐺𝑐(𝜇�̃� , 𝜎�̃�) + 𝐺𝑏(𝜇�̃� , 𝜎�̃�). (5.21)

In favor of the computational performance, the functions 𝐺𝑖 with 𝑖 ∈ {𝑎, 𝑏, 𝑐} are approximated by
low-order polynomials using a least-square fit, which are used instead in Equations (5.20) and (5.21).

In the end, we refrain from using the SY method for our simulation tests. According to Mehta et al.
(2007), the SY method approximates the tail of the cumulative distribution less accurately than the
other methods. As we choose 𝛼 in Constraint (4.9) to be small, we favor a good approximation method
for the tail part of the cumulative distribution. Not only is the SY method less accurate, it is also quite
complicated which is also unfavorable.

5.1.3. Mehta approximation
Mehta et al. (2007) have another opinion on how to find a suitable log-normal RV to approximate the
sum of log-normal RVs. Mehta et al. (2007) explain in their article that both FW and SY methods can be
seen as weighted integrals of probability density functions (PDF). Due to the difference in the weights
of the integrals (in Equations (5.1), (5.2), (5.6), (5.7)), the FW method would be better in approximating
the tail of the PDF while the SY method gives a better estimation of the head of the PDF. Mehta et al.
(2007) have thought of a method that can both approximate the head and tail of the PDF by choosing
different variables. While the FW and SY methods compare the first and second moments of 𝑋 and
∑𝑖 𝑋𝑖, Mehta et al. (2007) compare the moment generating functions (MGF) for two different values.
These values are dependent on what area of the PDF we are interested in.

Another thing they do differently is that they do not assume an exponential relation with base 𝑒
between the log-normal RV and its normal RV. Instead they assume that 𝑋𝑖 = 10

1
10𝑊𝑖 , where 𝑊𝑖 is a

normal random variable with mean 𝜇𝑖 and standard deviation 𝜎𝑖.

The MGF of an RV 𝑋 is given as

Ψ𝑋(𝑡) = ∫
∞

0
exp(−𝑡𝑥)𝑝𝑋(𝑥)𝑑𝑥, (Re(𝑡) ≥ 0). (5.22)

The MGF of a sum of independent RVs has the useful property that it is equivalent to the product
of the MGFs of the original RVs:

Ψ(∑𝑅𝑖=1 𝑋𝑖)(𝑡) =
𝑅

∏
𝑖=1

Ψ𝑋𝑖(𝑡), (Re(𝑡) ≥ 0). (5.23)

Again, these can be seen as weighted functions of the PDF. By using different values for 𝑡, more
weight can be put on either the head or tail portion depending on the area of interest. For our research,
we are interested in large percentiles of the cumulative distribution function of the sum and hence, the
tail portion is more important for us. The appropriate two values for 𝑡 that Mehta et al. (2007) propose
are (𝑡1, 𝑡2) = (0.001, 0.005). Note that we solve two equalities to be able to estimate two unknown
values.

We now give a more elaborate description of the Mehta approximation. Note that when 𝑋 = exp(�̃�)
with �̃� ∼ 𝒩(�̃�, �̃�2), 𝑝𝑋(𝑥) =

1
𝑥�̃�√2𝜋 exp (−

(ln(𝑥)−�̃�)2
2�̃�2 ).



5.1. Linearization overtime constraint under a log-normal distribution 27

If 𝑋 = 10
1
10𝑊 = exp ( ln(10)10 𝑊) with𝑊 ∼ 𝒩(𝜇, 𝜎2). Let 𝜉 = 10

ln(10) . Then

𝑝𝑋(𝑥) =
1

𝑥 𝜎𝜉√2𝜋
exp(−

(ln(𝑥) − 𝜇
𝜉 )
2

2 (𝜎𝜉 )
2 ) (5.24)

= 𝜉
𝑥𝜎√2𝜋

exp⎛

⎝

−
𝜉2 (ln(𝑥) − 𝜇

𝜉 )
2

2𝜎2
⎞

⎠

(5.25)

= 𝜉
𝑥𝜎√2𝜋

exp(−(𝜉 ln(𝑥) − 𝜇)
2

2𝜎2 ) . (5.26)

This we can substitute in the MGF:

Ψ𝑋(𝑡) = ∫
∞

0
exp(−𝑡𝑥)𝑝𝑋(𝑥)𝑑𝑥 (5.27)

= ∫
∞

0
exp(−𝑡𝑥) 𝜉

𝑥𝜎√2𝜋
exp(−(𝜉 ln(𝑥) − 𝜇)

2

2𝜎2 )𝑑𝑥. (5.28)

Now substitute 𝑥 = exp (√2𝜎𝑧+𝜇𝜉 ), i.e., interchange 𝑥 with 𝑧 = 𝜉 ln(𝑥)−𝜇
√2𝜎 in the integral above, result-

ing in:

Ψ𝑋(𝑡) = ∫
∞

0
exp(−𝑡𝑥) 𝜉

𝑥𝜎√2𝜋
exp(−(𝜉 ln(𝑥) − 𝜇)

2

2𝜎2 )𝑑𝑥 (5.29)

= ∫
∞

−∞

1
√𝜋

exp [−𝑡 exp(√2𝜎𝑧 + 𝜇𝜉 )] exp(−𝑧2)𝑑𝑧 (5.30)

We now use the Gauss-Hermite series expansion. It approximates the value of integrals of certain
forms in the following way:

∫
∞

−∞
exp(−𝑥2)𝑓(𝑥)𝑑𝑥 ≈

𝑁

∑
𝑛=1

𝑤𝑛𝑓(𝑎𝑛), (5.31)

where 𝑁 is the integration order, 𝑎𝑛 are the roots of the Hermite polynomial 𝐻𝑁(𝑥) and 𝑤𝑛 are the
weights given by 2𝑁−1𝑁!√𝜋

𝑛2[𝐻𝑁−1(𝑎𝑖)]2
. Mehta et al. (2007) found that with an integration order of 𝑁 = 12, the

MGF was approximated accurately. The values for 𝑎𝑛 and 𝑤𝑛 for 𝑁 = 12 can be found in Abramowitz
and Stegun (1972).

Thus,

Ψ𝑋(𝑡) ≈
𝑁

∑
𝑛=1

𝑤𝑛
√𝜋

exp [−𝑡 exp(√2𝜎𝑎𝑛 + 𝜇𝜉 )] . (5.32)

So, if 𝑋 is the log-normal RV corresponding to the approximated sum and the 𝑋𝑖 ’s are the original
log-normal RVs, we want to find 𝜇𝑋 and 𝜎𝑋 such that:

𝑁

∑
𝑛=1

𝑤𝑛
√𝜋

exp [−𝑡𝑚 exp(√2𝜎𝑋𝑎𝑛 + 𝜇𝑋𝜉 )] =

𝑅

∏
𝑖=1

𝑁

∑
𝑛=1

𝑤𝑛
√𝜋

exp [−𝑡𝑚 exp(
√2𝜎𝑋𝑖𝑎𝑛 + 𝜇𝑋𝑖

𝜉 )] , for 𝑚 = 1, 2.

(5.33)

These equations are solved by using a nonlinear equations solver like numpy.optimize.fsolve to find
the root of the difference between the left-handside and right-handside of Equation (5.33).
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5.1.4. Method selection
As previously stated, both the FW method and the Mehta approximation are techniques commonly
used in the field of telecommunication. Hence, it is uncertain whether they are applicable for our spe-
cific data. In this subsection, we inspect if the two methods give reasonable results when applied to our
data. Should a method demonstrate satisfactory results, it will be selected for subsequent use in our
log-normal-based model. In Subsection 6.4.2, we employ goodness of fit tests on the chosen method
to further assess its suitability.

As explained in Section 4.1, only two specialties can be ‘combined’ in one OR. Furthermore, for
each specialty 𝑠 ∈ 𝑆, we know its maximum number of patients 𝑀𝑠. Now, suppose that 𝑋𝑠 denotes the
log-normal RV with parameters 𝜇𝑠 and 𝜎𝑠 for the surgery duration of specialty 𝑠 ∈ 𝑆. For two distinct
specialties 𝑠1 and 𝑠2, we may use the approximation methods to find suitable log-normal distributions
for 𝑛1𝑋𝑠1 + 𝑛2𝑋𝑠2 for 𝑛1 ∈ {1,… ,𝑀𝑠1} and 𝑛2 ∈ {1,… ,𝑀𝑠2}. Starting from this point forward, the various
potential values of 𝑛1 and 𝑛2 for all the compositions of 𝑠1 with 𝑠2 are referred to as ’combinations.’

Upon examination, it seems that the FW method provides a reasonable approximation for all com-
binations. To exemplify this, let us consider the combination with two PDP surgeries and three FLEX
surgeries. We generated a sample consisting of 10000 total surgery durations based on the fitted log-
normal distributions of individual surgery durations. In Figure 5.1, the sample’s duration is visualized
through a histogram, along with the approximated distribution derived from the FW method. As the
curves from the approximated distribution follow the histograms quite well and as this is the case for all
combinations, we conclude that the FW method works well.

(a) Probability density function. (b) Cumulative distribution function.

Figure 5.1: Histogram depicting the total surgery duration across 10000 samples along with the corresponding FW method
approximation, in a scenario where two surgeries of PDP and three surgeries of FLEX are scheduled.

We can perform a similar analysis for the Mehta approximation. However, the outcomes for the
Mehta approximation were unsatisfactory. The ranges of both the domain and codomain of the Mehta
approximations did not align with the scale we anticipated. In Figure 5.2, we have exclusively illustrated
the Mehta approximation for the scenario involving two PDP surgeries and three FLEX surgeries. Com-
bining this with a generated sample leads to plots with unreadable representations due to significant
scale differences.

As mentioned before, it is hard to predict beforehand how the approximation methods would per-
form on our data. It could be that the Mehta approximation performs better with other 𝑡-values. In
order to check if the proposed 𝑡1 and 𝑡2 are ill-suited for our data, we solve Equation (5.33) with the
approximation of 𝜎𝑋 and 𝜇𝑋 resulting from the FW method in the hope to find suitable values for 𝑡1 and
𝑡2. Using all possible combinations for the surgery appointment on one OR day, we find that 90% of
the values for 𝑡1 lie between (0.114, 2.01) and for 𝑡2 between (0.323, 5.755).
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(a) Probability density function.
(b) Cumulative distribution function.

Figure 5.2: Plots resulting from the Mehta approximation with (𝑡1 , 𝑡2) = (0.001, 0.005), in a scenario where two surgeries of
PDP and three surgeries of FLEX are scheduled.

If we set (𝑡1, 𝑡2) = (1.014, 1.825), this gives a much better approximation. In Figure 5.3, a visual-
ization is again given for the combination where two surgeries of PDP and three surgeries of FLEX are
scheduled.

(a) Probability density function. (b) Cumulative distribution function.

Figure 5.3: Histogram depicting the total surgery duration across 10000 samples along with the corresponding Mehta method
approximation with (𝑡1 , 𝑡2) = (1.014, 1.825), in a scenario where two surgeries of PDP and three surgeries of FLEX are

scheduled.

Unfortunately, this method does not prove effective for all combinations. In instances where the
combinations involve the PDO specialty, the Mehta approximation could not be computed due to an
exponential overflow. Experimenting with various 𝑡-values yielded similar unfavorable outcomes for at
least one specialty. Since we could not identify any (𝑡1, 𝑡2)-pair that functioned for all our combinations
and given the more consistent performance of the more simple FW method, we resolved to exclusively
employ the FW method moving forward.

In summary, our selection for the sum of log-normals approximation method is the FWmethod. With
this approximation technique in place, we can now determine the combinations of surgeries that satisfy
the overtime constraint. While generating the viable combinations, it became apparent that no suitable
arrangement could be identified for the specialty PORS2 for our selected 𝛼 value in the context of the
overtime constraint. Consequently, we had to make an exemption for this specific specialty, allowing
it to have a single surgery in an operating room on one day. It is noteworthy that this exemption was
extended to all models explored in Chapter 7 for the same reason.



30 5. Solution methods

5.1.5. Column generation based approach
Using the Fenton-Wilkinson approximation, we can find a good log-normal fit for the sum of surgery
durations. As the Fenton-Wilkinson method is not linear, we generate all the possible combinations of
surgeries from at most two specialties in one OR on one day such that Constraint (4.9) is satisfied. To
model this, we introduce sets 𝐽𝑜𝑘 as the set of feasible combinations on day 𝑘 ∈ 𝐾 for OR 𝑜 ∈ 𝑂. We
introduce binary variables 𝑈𝑗𝑜𝑘 which are one when combination 𝑗 ∈ 𝐽𝑜𝑘 is scheduled in OR 𝑜 ∈ 𝑂 on
day 𝑘 ∈ 𝐾 and zero otherwise. We also introduce parameters 𝜐𝑗𝑠 that give the number of surgeries of
specialty 𝑠 ∈ 𝑆 included in combination 𝑗 ∈ 𝐽𝑜𝑘. Our new approach is to choose one combination 𝑈𝑗𝑜𝑘
with 𝑗 ∈ 𝐽𝑜𝑘 for each day 𝑘 ∈ 𝐾 and for each OR 𝑜 ∈ 𝑂. Now, decision variables 𝑍𝑜𝑘𝑠 can be replaced
by ∑𝑗∈𝐽𝑜𝑘 𝑈𝑗𝑜𝑘 ⋅ 𝜐𝑗𝑠.

The sets 𝐽𝑜𝑘 can be partitioned into two types of subsets: the subsets 𝐽𝑜𝑘𝑠 for each 𝑠 ∈ 𝑆, which
contain the combinations that only schedule surgeries of specialty 𝑠 ∈ 𝑆 in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾, and
the subsets 𝐽𝑜𝑘𝑠1𝑠2 for 𝑠1, 𝑠2 ∈ 𝑆 and �̂�1 < �̂�2, which contain the combinations of surgeries of specialties
𝑠1 and 𝑠2 ∈ 𝑆 in OR 𝑜 ∈ 𝑂 for day 𝑘 ∈ 𝐾.

When two specialties 𝑠1 and 𝑠2 ∈ 𝑆 are scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾, indicated by binary
variables 𝑌𝑜𝑘𝑠, only surgeries of these specialties can be scheduled in that OR on that day. So, only
one combination of 𝐽𝑜𝑘𝑠1𝑠2 can be picked, resulting in the following constraints:

∑
𝑗∈𝐽𝑜𝑘𝑠1𝑠2

𝑈𝑗𝑜𝑘 ≤
1
2 (𝑌𝑜𝑘𝑠1 + 𝑌𝑜𝑘𝑠2) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠1, 𝑠2 ∈ 𝑆 and �̂�1 < �̂�2. (5.34)

It is also possible that only one specialty 𝑠 ∈ 𝑆 is scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾. Then, a
combination from subset 𝐽𝑜𝑘𝑠 has to be picked. This results in the following constraints:

∑
𝑗∈𝐽𝑜𝑘𝑠

𝑈𝑗𝑜𝑘 ≤ 𝑌𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆. (5.35)

Furthermore, only one combination of 𝐽 can be picked for each OR day. Hence, Constraints (5.36)
are added.

∑
𝑗∈𝐽𝑜𝑘

𝑈𝑗𝑜𝑘 ≤ 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾. (5.36)

Using this column generation based approach in our model, we can neglect some constraints from
our original model, as these constraints are inherently implied by the combinations. Hence, we can
disregard Constraints (4.7) through (4.11).

5.2. Linearization overtime constraint under a normal distribution
In this subsection, we describe an approach to linearize Constraint (4.9) where we assume that the
surgery durations follow normal distributions. This approach is similar to the one of Schneider et al.
(2020). Again we look at Equation (4.9), which is given by:

ℙ(g𝑜𝑘 ≥ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘)) ≤ 𝛼, ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾.

in which

• g𝑜𝑘 is the stochastic variable corresponding to the probability distribution 𝑔𝑜𝑘 of the cumulative
surgery duration in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾,

• 𝛽𝑜𝑘 denotes the duration that OR 𝑜 ∈ 𝑂 was planned to be open on day 𝑘 ∈ 𝐾,
• 𝜅 is the time length reserved for cleaning between the surgeries and for the change in specialty
in an OR,

• ∑𝑠∈𝑆𝑜 𝑍𝑜𝑘𝑠 is the total number of surgeries scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾,
• 𝑊𝑜𝑘 is the variable that indicates whether there are two specialties having surgeries in OR 𝑜 ∈ 𝑂
on day 𝑘 ∈ 𝐾 or not,
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• 𝛼 is the probability of overtime.

Suppose that the individual surgery duration of specialty 𝑠 ∈ 𝑆 follows the normal distribution with
mean 𝜇𝑠 and variance 𝜎2𝑠 . Then, g𝑜𝑘 is normally distributed with mean 𝜇𝑜𝑘 = ∑𝑠∈𝑆 𝜇𝑠 ⋅𝑍𝑜𝑘𝑠 and variance
𝜎2𝑜𝑘 = ∑𝑠∈𝑆 𝜎2𝑠 ⋅ 𝑍𝑜𝑘𝑠.

We can rewrite the overtime constraint to the standard normal distribution form:

ℙ(g𝑜𝑘 − 𝜇𝑜𝑘𝜎𝑜𝑘
≤
𝛽𝑜𝑘 − 𝜅 ⋅ (∑𝑠∈𝑆𝑜 𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) − 𝜇𝑜𝑘

𝜎𝑜𝑘
) = Φ(

𝛽𝑜𝑘 − 𝜅 ⋅ (∑𝑠∈𝑆𝑜 𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) − 𝜇𝑜𝑘
𝜎𝑜𝑘

) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾,

(5.37)
where Φ denotes the cumulative distribution function of the standard normal distribution.

So, we have rewritten the constraint to Φ(𝛽𝑜𝑘−𝜅⋅(
∑𝑠∈𝑆𝑜 𝑍𝑜𝑘𝑠+𝑊𝑜𝑘)−𝜇𝑜𝑘

𝜎𝑜𝑘
) ≥ 1 − 𝛼, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾.

Now, using Φ−1 and the sum versions of 𝜇𝑠 and 𝜎𝑠,

𝜇𝑜𝑘 +Φ−1 (1 − 𝛼) ⋅ 𝜎𝑜𝑘 ≤ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.38)

(∑
𝑠∈𝑆
𝜇𝑠 ⋅ 𝑍𝑜𝑘𝑠) +Φ−1 (1 − 𝛼) ⋅ √∑

𝑠∈𝑆
𝜎2𝑠 ⋅ 𝑍𝑜𝑘𝑠 ≤ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑

𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾. (5.39)

The only part in Equation (5.39) that is not yet linear, is the square root. To linearly approximate the
square root function 𝑓(𝑥) = √𝑥, we approximate the square root by piece-wise linear functions. We
now briefly describe the piece-wise linear functions. For the exact details, we refer to Bosch (2011).

First, determine the interval [𝑥min, 𝑥max] for which we want to estimate 𝑓(𝑥). In our case, we
try to find suitable lower and upper bounds for ∑𝑠∈𝑆 𝜎2𝑠 ⋅ 𝑍𝑜𝑘𝑠. Hence, we choose 𝑥min = 0 and
𝑥max = max

𝑠∈𝑆
{𝜎2𝑠 } ⋅max

𝑠∈𝑆
{𝑀𝑠}. The interval [𝑥min, 𝑥max] is split by 𝑁 + 1 breakpoints. The breakpoints

are denoted by 𝑥0, 𝑥1, … , 𝑥𝑁 where 𝑥0 = 𝑥min and 𝑥𝑁 = 𝑥max. The sub-intervals between each pair of
successive breakpoints are the intervals for the piece-wise linear function. Each linear approximation
function between interval [𝑥𝑛−1, 𝑥𝑛] can be written as ℎ𝑛(𝑥) = 𝑎𝑛 + 𝑏𝑛 ⋅ 𝑥 for 𝑛 ∈ {1,… ,𝑁}.

In each interval [𝑥𝑛−1, 𝑥𝑛], there exists a point 𝑡𝑛 such that ℎ𝑛(𝑥) is exactly the tangent line in 𝑥 = 𝑡𝑛.
Hence, √𝑡𝑛 = 𝑎𝑛 +𝑏𝑛 ⋅ 𝑡𝑛 and 𝑏𝑛 = (√𝑡𝑛)′ =

1
2√

1
𝑡𝑛
. Consequently, 𝑎𝑛 =

1
2√𝑡𝑛 and we get the following

expression for ℎ𝑛:

ℎ𝑛(𝑥) =
1
2√𝑡𝑛 +

1
2√

1
𝑡𝑛
⋅ 𝑥. (5.40)

For each breakpoint 𝑥𝑛 with 𝑛 ∈ {1,… ,𝑁}, let 𝑦𝑛 be its corresponding function value (i.e., 𝑦𝑛 = ℎ𝑛(𝑥𝑛))
and let 𝑦0 = ℎ1(𝑥0). After identifying the breakpoints, we can employ the 𝜆-formulation, a widely used
technique for modeling piece-wise linear functions, as described in Bisschop (2006). This tells us that
the function value of any point between two breakpoints is equal to the weighted sum of the function
values at these two breakpoints. Let 𝜆𝑛 denote the nonnegative weights corresponding to breakpoint
𝑥𝑛. The expression for the piecewise linear approximation of the square root function is as follows:
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𝑁

∑
𝑛=0

𝜆𝑛𝑦𝑛 = ℎ𝑛(𝑥), (5.41)

𝑁

∑
𝑛=0

𝜆𝑛𝑥𝑛 = 𝑥, (5.42)

𝑁

∑
𝑛=0

𝜆𝑛 = 1. (5.43)

Additionally to the characteristic described in Equation (5.43), at most two consecutive 𝜆𝑛 can obtain
positive values. For this, we introduce binary variables 𝛿𝑛 and the following constraints:

𝑁−1

∑
𝑛=0

𝛿𝑛 = 1, (5.44)

𝜆0 ≤ 𝛿0, (5.45)
𝜆𝑁 ≤ 𝛿𝑁−1, (5.46)
𝜆𝑛 ≤ 𝛿𝑛−1 + 𝛿𝑛 , ∀𝑛 ∈ {1, … , 𝑁 − 1}. (5.47)

Going back now to our overtime constraint, Equation (5.39) is given for each OR 𝑜 ∈ 𝑂 and for each
day 𝑘 ∈ 𝐾. In order to linearize each constraint, we introduce decision variables 𝜆𝑜𝑘𝑛 and 𝛿𝑜𝑘𝑛 instead
of 𝜆𝑛 and 𝛿𝑛 in the described square root linearization. Then, our overtime constraint and its additional
constraint are given by:

(∑
𝑠∈𝑆
𝜇𝑠 ⋅ 𝑍𝑜𝑘𝑠) +Φ−1 (1 − 𝛼) ⋅

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛𝑦𝑛 ≤ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.48)

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛𝑥𝑛 =∑
𝑠∈𝑆
𝜎2𝑠 ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.49)

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛 = 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾. (5.50)

𝑁−1

∑
𝑛=0

𝛿𝑜𝑘𝑛 = 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.51)

𝜆𝑜𝑘0 ≤ 𝛿𝑜𝑘0, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.52)
𝜆𝑜𝑘𝑁 ≤ 𝛿𝑜𝑘(𝑁−1), ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, (5.53)
𝜆𝑜𝑘𝑛 ≤ 𝛿𝑜𝑘(𝑛−1) + 𝛿𝑜𝑘𝑛 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ {1,… , 𝑁 − 1}. (5.54)

However, as the piece-wise linear approximation is always an overestimation (due to the concavity
of the square root), we have that

𝑦0 = ℎ1(𝑥0) =
1
2√𝑡𝑛 > 0. (5.55)

This causes a problem when OR 𝑜 ∈ 𝑂 is closed. Then, both 𝛽𝑜𝑘 and 𝑍𝑜𝑘𝑠 are equal to zero, while
𝜆𝑜𝑘0 = 1. This results in the following form for Equation 5.48:

Φ−1 (1 − 𝛼) ⋅ 𝑦0 ≤ 0. (5.56)

For 𝛼 < 1
2 , Φ

−1 (1 − 𝛼) > 0 and the constraint is not fulfilled. To address this issue, we introduce an
extra breakpoint between the existing breakpoints 𝑥0 and 𝑥1. Subsequently, we assign the value of
ℎ1(𝑥0) as the 𝑦-value of the new breakpoint and set 𝑦0 = 0.
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5.3. Linearization objective function
To linearize the objective function, we use the same method as Schneider et al. (2020). As mentioned
in Section 4.2, the minimum and maximum operators are non-linear operators. Rather than using 𝛾𝑖
and 𝛾𝑤, we use the expected value of the number of beds at ward 𝑤 ∈ 𝑊 and IC 𝑖 ∈ 𝐼 on day 𝑞 ∈ 𝐾
which we denote by �̄�𝑤𝑞 and �̄�𝑖𝑞, respectively. In this section, we recall distributions from Subsections
4.2.2 and 4.2.3 and define corresponding stochastic variables for these distributions. The stochastic
variables have the same variable name, but they are presented in bold.

�̄�𝑖𝑞 is computed by taking the expected value of the random variables Ĥ𝐼𝑖𝑞 associated with the dis-
tributions for the bed occupancy �̂�𝐼𝑖𝑞 for IC 𝑖 ∈ 𝐼 on day 𝑞 ∈ 𝐾. Let H𝐼𝑖𝑜𝑘𝑞 represent the stochastic
variables associated with the distributions 𝐻𝐼𝑖𝑜𝑘𝑞 for bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 ∈ 𝐾. These
variables result from the surgeries performed in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾.

Similarly, we define Ĝ𝐼𝑖𝑜𝑘𝑠𝑞 as the stochastic variables associated with the distribution �̂�𝐼𝑖𝑜𝑘𝑠𝑞 for the
bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 ∈ 𝐾, arising from the surgeries of specialty 𝑠 ∈ 𝑆 scheduled on day
𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂.

Additionally, let the stochastic variables G𝐼𝑖𝑜𝑘𝑠𝑞 be associated with the distributions 𝐺𝐼𝑖𝑜𝑘𝑠𝑞. These
variables represent the bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 ∈ 𝐾, resulting from one surgery of specialty
𝑠 ∈ 𝑆 scheduled on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂.

Lastly, we define F𝐼𝑖𝑠𝑞 as the stochastic variables associated with the distributions 𝐹𝐼𝑖𝑠𝑞 for the num-
ber of recovering patients of specialty 𝑠 ∈ 𝑆 occupying a bed in IC 𝑖 ∈ 𝐼 on the 𝑞th day. This is when
the surgery occurred on the first day of the 𝑄-length period for the MSS.

Using the fact that the expected value of a convolution of density functions is equal to the sum of
the expected value of the individual density functions, we can rewrite �̄�𝑖𝑞 as follows:

�̄�𝑖𝑞 =𝔼 [Ĥ𝐼𝑖𝑞] (5.57)

=𝔼 [∑
𝑜∈𝑂

∑
𝑘∈𝐾

H𝐼𝑖𝑜𝑘𝑞] (5.58)

=∑
𝑜∈𝑂

∑
𝑘∈𝐾

𝔼 [H𝐼𝑖𝑜𝑘𝑞] (5.59)

=∑
𝑜∈𝑂

∑
𝑘∈𝐾

∑
𝑠∈𝑆𝐼

𝔼 [Ĝ𝐼𝑖𝑜𝑘𝑠𝑞] (5.60)

=∑
𝑜∈𝑂

∑
𝑘∈𝐾

∑
𝑠∈𝑆𝐼

𝔼 [G𝐼𝑖𝑜𝑘𝑠𝑞] ⋅ 𝑍𝑜𝑘𝑠 (5.61)

=∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠 +∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 (5.62)

(5.63)

Similarly, let F𝑊𝑤𝑠𝑞 be the stochastic variables associated with the distributions 𝐹𝑊𝑤𝑠𝑞 for the number
of recovering patients of specialty 𝑠 ∈ 𝑆 occupying a bed in ward 𝑤 ∈ 𝑊 on the 𝑞th day when the
surgery occurred on the first day of the 𝑄-length period for the MSS. Then, the following equation can
be found for �̄�𝑤𝑞:

�̄�𝑤𝑞 =∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠 +∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 . (5.64)

As we are interested in the variation in bed occupancy, we want to calculate the difference between
the maximum and minimum number of beds for each ward and IC. Hence, we introduce variables �̂�𝑖
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for the variation in IC 𝑖 ∈ 𝐼 and �̂�𝑤 for the variation in ward 𝑤 ∈ 𝑊 as:

�̂�𝑖 = �̄�max
𝑖 − �̄�min

𝑖 , ∀𝑖 ∈ 𝐼, (5.65)
�̂�𝑤 = �̄�max

𝑤 − �̄�min
𝑤 , ∀𝑤 ∈ 𝑊, (5.66)

and add the following constraints for �̄�max
𝑖𝑞 , �̄�max

𝑤𝑞 , �̄�min
𝑖𝑞 and �̄�min

𝑤𝑞 :

�̄�max
𝑖 ≥ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾, (5.67)
�̄�max
𝑤 ≥ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾, (5.68)
�̄�min
𝑖 ≤ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾, (5.69)
�̄�min
𝑤 ≤ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾. (5.70)

The resulting objective function is given by

max−𝜃𝑉 ⋅ (𝑉max − 𝑉min) + 𝜃𝑍 ⋅ ∑
𝑜∈𝑂,𝑞∈𝑄,𝑠∈𝑆𝑜

𝔼[𝐷𝑆𝑠] ⋅ 𝑍𝑜𝑞𝑠 −∑
𝑖∈𝐼
𝜃𝑖 ⋅ �̂�𝑖 − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ �̂�𝑤 . (5.71)

In the following two sections, we present the resulting integer linear problem models for overview.
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5.4. Resulting linear problem under log-normality
In this section, we present the resulting linear problem we obtain using the linearization of Sections 5.1
and 5.3.

maximize − 𝜃𝑉 ⋅ (𝑉max − 𝑉min) + 𝜃𝑍 ⋅ ∑
𝑜∈𝑂, 𝑞∈𝑄,
𝑠∈𝑆𝑜

exp(𝜇𝑠 +
𝜎2𝑠
2 ) ⋅ 𝑍𝑜𝑞𝑠 −∑

𝑖∈𝐼
𝜃𝑖 ⋅ �̂�𝑖 − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ �̂�𝑤

subject to 𝑍𝑜𝑘𝑠 ≤ 𝑀𝑠 ⋅ 𝑌𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜
∑
𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 2 ⋅ 𝑋𝑜𝑘 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝑌𝑜𝑘𝑠2 + 𝑌𝑜𝑘𝑠 ≤ 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 , ∀𝑠2 ∉ 𝐼𝑠
∑

𝑜∈𝑂⧵�̄�𝑘

𝑋𝑜𝑘 ≤ 𝜒𝑘 − |�̄�𝑘| , ∀𝑘 ∈ 𝐾

∑
𝑜∈𝑂∶𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 𝐶𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾

𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇}
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+2𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇}

⋮
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+⌊𝑄𝑇 ⌋⋅𝑇)𝑠,

∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., (𝑄 mod 𝑇)}

𝑍𝑜𝑘𝑠 =∑
𝑗∈𝐽
𝑈𝑗𝑜𝑘 ⋅ 𝜐𝑗𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆

∑
𝑗∈𝐽𝑠1𝑠2

𝑈𝑗𝑜𝑘 ≤
1
2 (𝑌𝑜𝑘𝑠1 + 𝑌𝑜𝑘𝑠2) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠1, 𝑠2 ∈ 𝑆 and �̂�1 < �̂�2

∑
𝑗∈𝐽𝑠

𝑈𝑗𝑜𝑘 ≤ 𝑌𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆

∑
𝑗∈𝐽
𝑈𝑗𝑜𝑘 ≤ 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

�̄�𝑖𝑞 = ∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠

+∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾

�̄�𝑤𝑞 = ∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠

+∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾

�̂�𝑖 = �̄�max
𝑖 − �̄�min

𝑖 , ∀𝑖 ∈ 𝐼
�̂�𝑤 = �̄�max

𝑤 − �̄�min
𝑤 , ∀𝑤 ∈ 𝑊

�̄�max
𝑖 ≥ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾
�̄�max
𝑤 ≥ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾
�̄�min
𝑖 ≤ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾
�̄�min
𝑤 ≤ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾
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5.5. Resulting linear problem under normality
In this section, we present the resulting linear problem we obtain using the linearization of Sections 5.2
and 5.3.

maximize − 𝜃𝑉 ⋅ (𝑉max − 𝑉min) + 𝜃𝑍 ⋅ ∑
𝑜∈𝑂, 𝑞∈𝑄,
𝑠∈𝑆𝑜

𝜇𝑠 ⋅ 𝑍𝑜𝑞𝑠 −∑
𝑖∈𝐼
𝜃𝑖 ⋅ �̂�𝑖 − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ �̂�𝑤

subject to 𝑍𝑜𝑘𝑠 ≤ 𝑀𝑠 ⋅ 𝑌𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜
∑
𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 2 ⋅ 𝑋𝑜𝑘 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝑌𝑜𝑘𝑠2 + 𝑌𝑜𝑘𝑠 ≤ 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜 , ∀𝑠2 ∉ 𝐼𝑠
∑

𝑜∈𝑂⧵�̄�𝑘

𝑋𝑜𝑘 ≤ 𝜒𝑘 − |�̄�𝑘| , ∀𝑘 ∈ 𝐾

∑
𝑜∈𝑂∶𝑠∈𝑆𝑜

𝑌𝑜𝑘𝑠 ≤ 𝐶𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑘 ∈ 𝐾

𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇}
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+2𝑇)𝑠, ∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., 𝑇}

⋮
𝑌𝑜𝑘𝑠 = 𝑌𝑜(𝑘+⌊𝑄𝑇 ⌋⋅𝑇)𝑠,

∀𝑜 ∈ 𝑂, ∀𝑠 ∈ 𝑆𝑜 , 𝑘 ∈ {1, ..., (𝑄 mod 𝑇)}

𝑅𝑜𝑘𝑠 ≥
𝑍𝑜𝑘𝑠
𝑀𝑠 + 1

, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜

𝑊𝑜𝑘 ≥ ∑
𝑠∈𝑆𝑜

𝑅𝑜𝑘𝑠 − 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

∑
𝑠2∈𝑆𝑜 , 𝑠2≠𝑠

𝑅𝑜𝑘𝑠2 ≥ 𝑅𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝐶𝑜

𝑍𝑜𝑘𝑠 ≥ 𝑚𝑠 ⋅ 𝑅𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆𝑜

(∑
𝑠∈𝑆
𝜇𝑠 ⋅ 𝑍𝑜𝑘𝑠) +Φ−1 (1 − 𝛼) ⋅

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛𝑦𝑛 ≤ 𝛽𝑜𝑘 − 𝜅 ⋅ (∑
𝑠∈𝑆𝑜

𝑍𝑜𝑘𝑠 +𝑊𝑜𝑘) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛𝑥𝑛 =∑
𝑠∈𝑆
𝜎2𝑠 ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝑁

∑
𝑛=0

𝜆𝑜𝑘𝑛 = 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝑁−1

∑
𝑛=0

𝛿𝑜𝑘𝑛 = 1, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾

𝜆𝑜𝑘0 ≤ 𝛿𝑜𝑘0, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾
𝜆𝑜𝑘𝑁 ≤ 𝛿𝑜𝑘(𝑁−1), ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾
𝜆𝑜𝑘𝑛 ≤ 𝛿𝑜𝑘(𝑛−1) + 𝛿𝑜𝑘𝑛 , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ {1,… , 𝑁 − 1}

�̄�𝑖𝑞 = ∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠

+∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝐼

𝔼 [F𝐼𝑖𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾

�̄�𝑤𝑞 = ∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞≥𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1)] ⋅ 𝑍𝑜𝑘𝑠

+∑
𝑜∈𝑂

∑
𝑘∈𝐾,𝑞<𝑘

∑
𝑠∈𝑆𝑊

𝔼 [F𝑊𝑤𝑠(𝑞−𝑘+1+𝑄)] ⋅ 𝑍𝑜𝑘𝑠 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾

�̂�𝑖 = �̄�max
𝑖 − �̄�min

𝑖 , ∀𝑖 ∈ 𝐼
�̂�𝑤 = �̄�max

𝑤 − �̄�min
𝑤 , ∀𝑤 ∈ 𝑊

�̄�max
𝑖 ≥ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾
�̄�max
𝑤 ≥ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾
�̄�min
𝑖 ≤ �̄�𝑖𝑞 , ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ 𝐾
�̄�min
𝑤 ≤ �̄�𝑤𝑞 , ∀𝑤 ∈ 𝑊,∀𝑞 ∈ 𝐾



6
Data analysis

This chapter provides a description of the two datasets provided by the Sophia Children’s Hospital, as
well as the preprocessing of these. The first section is dedicated to the description, while the second and
third segments delve into the preprocessing of the surgery properties dataset and the bed assignment
dataset, respectively. As mentioned in Subsection 5.1.4, we performed goodness of fit tests to assess
the adequacy of our log-normal distribution approximation in contrast to the normal distribution fit in the
last section.

6.1. Data description
For our research, we use data provided by the Sophia Children’s Hospital. Interconnected by the pa-
tient’s admission number, the patient information encompasses two datasets. The first dataset is a
comprehensive list of surgeries conducted during a specific time period, providing detailed information
on each procedure. This includes properties such as the treating specialty, start and end times of the
surgeries. The second dataset, on the other hand, comprises a list of bed assignments that occurred
within the same time frame.

Below, examples can be found of the two datasets.

Table 6.1: Example surgery properties dataset.

Admission number Specialty Start time of surgery End time of surgery
1 PDS 2018-01-04 12:12 2018-01-04 13:20
2 PDO 2018-01-05 9:18 2018-01-05 11:03

Table 6.2: Example bed assignment dataset.

Admission number Ward Start date End date
1 MC2 2018-01-04 2018-01-04
1 IC1 2018-01-04 2018-01-06
1 MC2 2018-01-06 2018-01-10
2 MC1 2018-01-05 2018-01-06

In total, the dataset provided by Sophia Children’s Hospital encompasses information about 20364
surgical procedures, of which 13775 were elective surgeries. These surgeries were conducted be-
tween the years 2019 and 2021. Furthermore, the data concerning patients’ bed assignments includes
a record of 36902 bed-switches for surgical patients.
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From the surgery properties dataset, we collected the following characteristics:

• admission number,
• specialty code,
• whether the surgery was elective or not,
• surgeon,
• type of surgery (for the division in subspecialties as explained in Section 2.1),
• start time of the surgery,
• start time of the induction,
• start time of the surgeon,
• end time of the surgeon,
• end time of the surgery,
• arrival time at the recovery.

From the bed assignment dataset, we collected the characteristics

• admission number,
• type of hospitalization (corresponding to the type of ward),
• ward of the bed assignment,
• start date of the bed assignment,
• end date of the bed assignment.

6.2. Preprocessing surgery durations
During a surgery, there are some significant moments for which the time can be measured. Given in
chronological order, these moments are:

• start time of the surgery,
• start time of the induction,
• start time of the surgeon,
• end time of surgeon,
• end time of surgery,
• arrival time at the recovery.

For the calculation of a surgery duration, we look at the difference between the start and end time of
a surgery. However, it can happen that one of the two times is missing or that the end time is before the
start time. To get the largest reliable data set of our model, we make some adjustments when there are
inconsistencies. The inconsistencies that we adjust for, are described in this section. We want to note
that in our data, not all time moments are registered. The adjustments are only made if the moments
that are needed for the adjustments are available. The adjustments detailed in this section were made
in collaboration with experts from the Sophia Children’s Hospital.

As mentioned before, the start time of a surgery can be missing. However, if the start time of the
induction is known, the start time of the surgery is set to five minutes prior the start time of the induction.
If the start time of the induction is not known, we cannot give a good estimation for the surgery start
and do not take into account this data input.

If the end time of a surgery is missing, we proceed in the following way. If the arrival time at the
recovery is known, we set the end time of the surgery five minutes prior to this arrival time. If this is not
the case, we again do not take into account this data input.

It can occur that the end time of a surgery appears to have taken place before the start time of
the surgery. We first look at the case where also the dates of the start and end time of the surgery
differ. If the start time of the induction is available and it occurs before the end time of the surgery,
then we change the date of the start time of the surgery to the date of the induction start. If the start
time of the induction is missing, we try to do the same thing but instead use the start time of the surgeon.

While ending the surgery before starting the surgery indicates a clear error in at least one of the
two times, it can also happen that the date of one of the two times is incorrect but not indicated by the
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order. These mistakes can for example happen when the surgery started before midnight and ended
after midnight. This can lead to unrealistic long surgery durations. We fix this inconsistency with the
following three steps if the dates for the start and end of the surgery differ but their order is correct:

• In case the start time of the induction differs more than two hours from the start time of the surgery,
we proceed in one of the following two ways. Firstly, if the date of the start time of the induction
differs from the date of the start time of the surgery and changing the date of the start time of the
surgery into the date of the induction start results in a positive surgery duration, we match the
date of the start of the surgery to the date of the start of the induction. However, if this would have
resulted in a negative surgery duration, we look at whether changing the date of the surgery start
to one day before the date of the induction results in a positive surgery duration.

• In case the start time of the surgeon differs more than four hours from the start time of the surgery,
we proceed in one of the following two ways. Firstly, if the date of the start time of the surgeon
differs from the date of the start time of the surgery and changing the date of the start time of the
surgery into the date of the surgeon’s start results in a positive surgery duration, we match the
date of the start of the surgery to the date of the start of the surgeon. However, if this would have
resulted in a negative surgery duration, we look at whether changing the date of the surgery start
to one day before the date of the start of the surgeon results in a positive surgery duration.

• In case the end time of the surgeon and the end time of the surgery differ more than three hours,
we proceed in one of the following two ways: Firstly, if the date of the end time of the surgeon
differs from the date of the end time of the surgery and changing the date of the end time of the
surgery into the date of the surgeon’s end results in a positive surgery duration, we match the
date of the end of the surgery to the date of the end of the surgeon. However, if this would have
resulted in a negative surgery duration, we look at whether changing the date of the surgery end-
ing to one day after the date of the end of the surgeon results in a positive surgery duration.

Prior, we have looked at the cases when the dates of the start and end time of a surgery differ. Now,
we tackle the inconsistency when the dates are the same but the order is incorrect. For this, we have
two possible fixes.

• When the start time of the surgery is before the arrival time at the recovery, we change the end
time of the surgery to five minutes prior the arrival time at the recovery if this results in a positive
surgery duration.

• When the end time of the surgery is after the start time of the induction, we change the start time
of the surgery to five minutes prior the start time of the induction if this results in a positive surgery
duration.

Next, we examine small order differences. In practice, the end time of the surgery should fall after
the end time of the surgeon and before the patient’s arrival at the recovery. If this condition is not
met, it might suggest that the recorded surgery duration is inaccurate due to an error while noting the
surgery’s end time. To address this, we first want to eliminate the possibility that the error in surgery
duration could be linked to the start time of the surgery. As a first step, we assess if the difference
between the start time of the surgery and the start time of the induction is reasonable. At Sophia, they
consider a difference of down to negative five minutes between these times as acceptable (i.e., start
time of induction - start time of surgery > −5 minutes), accounting for potential mistakes of up to five
minutes. Now, there are two ways the placement of the end time of the surgery can be wrong compared
to the end time of the surgeon and the patient’s arrival at the recovery, where the order of the latter two
moments are correct:
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• The end time of the surgery could be after both moments. Again, we take into account potential
mistakes of up to five minutes. If (arrival time at the recovery - end time of surgery < −5minutes)
and (end time of surgery - end time of surgeon > −5 minutes), we change the end time of the
surgery to five minutes before the arrival time at the recovery if this results in a positive surgery
duration.

• The end time of the surgery could be before both moments. If (arrival time at the recovery - end
time of surgery > −5 minutes) and (end time of surgery - end time of surgeon < −5 minutes), we
change the end time of the surgery to five minutes before the arrival time at the recovery if this
results in a positive surgery duration.

Following the completion of all adjustments, each entry in the dataset should represent a realistic
surgery. If an entry does not meet this criterion, it indicates that we are unable to retrieve representative
data from the available information. Specifically, surgeries that have a duration of over twenty hours are
considered unrealistic and are subsequently removed from the dataset. Additionally, entries lacking an
admission number or specialty code are also deleted. This is necessary to ensure that surgeries can
be appropriately linked to patient information on the ward or specialty. To ensure a focused analysis,
we only consider patients whose complete treatment paths can be found in the dataset.

6.3. Preprocessing bed assignment
Following the surgery, patients undergo recovery in a designated ward. In our dataset, each patient is
assigned a bed in this ward. The bed assignment should occur either on the day of the surgery or prior
to it. Additionally, the last day of the bed assignments should be on or after the day when the surgery
concluded. Unfortunately, these conditions are not consistently met within our dataset.

For some patients, the date of the earliest surgery is after their last bed assignment. When this
happens, we shift the bed data assignments so that the first bed assignment has the same date as the
first surgery.

Furthermore, within our dataset, certain patients were observed to have undergone their final surgery
after the last recorded end date of their bed assignments. By once again adjusting the bed assignment
data to align the initial bed assignment date with the date of the first surgery, we resolved most of these
inconsistencies.

6.4. Fitting surgery durations
In this section, we first test if the individual surgery durations from the data are fitted best by a log-
normal or normal distribution. In the second subsection, we test if the simulated total duration of the
combinations in 𝐽 are fitted well by the proposed log-normal distribution of the FW method or the sum
of the estimated normal distribution.

We use the following goodness of fit tests for this:
• the Kolmogorov-Smirnov test (KS test),
• the Cramer-Von Mises test (CvM test),
• the Anderson-Darling test (AD test).
The above tests work as follows. Let the hypothesized cumulative distribution be denoted by 𝐹 and

the empirical distribution function by 𝐹𝑛.

Thus,

𝐹𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖=1
𝟙(∞,𝑥](𝑋𝑖), (6.1)

where 𝑋𝑖, 𝑖 ∈ {1, … , 𝑛}, are 𝑛 independent and identically distributed ordered observations.

The KS test looks for the largest difference between 𝐹 and 𝐹𝑛. Its test statistic is given by:

𝑇 = sup
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥)|. (6.2)
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The CvM test looks at the square difference between the two cumulative distributions:

𝑇 = 𝑛∫
∞

−∞
(𝐹𝑛(𝑥) − 𝐹(𝑥))

2 𝑑𝐹(𝑥). (6.3)

The AD test is similar to the CvM test but has an additional weighting function (𝐹(𝑥)(1 − 𝐹(𝑥)))−1.
By adding this factor, the CvM test takes into account the fact that the tails are estimated more precisely
as a sample estimate near 0 or 1 has a lower variance than one near 0.5. One can intuitively think about
this as follows. The value 𝐹(0) is the smallest value and hence, 𝐹𝑛(0)−𝐹(0) can only be non-negative.
Similarly, 𝐹(1) attains the maximum value and hence, 𝐹𝑛(1) − 𝐹(1) can only be non-positive, while
there is no such restriction for the values of 𝐹𝑛(𝑥) − 𝐹(𝑥) when 𝑥 approaches 0.5.

The AD test is given by:

𝑇 = 𝑛∫
∞

−∞

(𝐹𝑛(𝑥) − 𝐹(𝑥))
2

𝐹(𝑥) (1 − 𝐹(𝑥))𝑑𝐹(𝑥). (6.4)

These tests evaluate the following hypotheses:
𝐻0 ∶ the cumulative distribution of 𝑋𝑖, 𝑖 ∈ {1, … , 𝑛} is distribution 𝐹
𝐻1 ∶ the cumulative distribution of 𝑋𝑖, 𝑖 ∈ {1, … , 𝑛} is not distribution 𝐹.

For any of the test statistics, we reject the null hypothesis when the value of the test is large. Usually,
the null hypothesis is rejected by comparing the p-values to some chosen significance level. Suppose
we obtained the value 𝑡 for the test statistic 𝑇. Then, the p-value is equal to 2min{ℙ(𝑇 ≥ 𝑡|𝐻0), ℙ(𝑇 ≤
𝑡|𝐻0)}.

6.4.1. One surgery
In this subsection, we check if the surgery durations from our data are more likely to be fitted better by
the log-normal distribution than by the normal distribution, as described in the literature. This is done
with the test statistics provided above. Table 6.3 shows the obtained test statistics of the individual
surgery duration of a specific specialty for log-normality and normality, while Table 6.4 provides the
corresponding p-values.

Table 6.3: Goodness of fit statistics for the distribution of one surgery.

Specialty # observations KS test CvM test AD test
log-normal normal log-normal normal log-normal normal

FLEX 901 0.02035 0.13748 0.03955 6.60245 0.29112 38.41107
FPS 1181 0.03167 0.10955 0.27706 4.66944 1.90910 28.37696
GYN 843 0.06566 0.11335 0.84787 3.36769 5.34450 18.99519
HPS 151 0.06727 0.15253 0.11616 0.88965 0.62134 4.94314
NSP 134 0.08335 0.10992 0.15598 0.38620 0.86520 2.37873
PDC 494 0.03428 0.09060 0.06463 1.38486 0.50663 8.42488
PDD 71 0.12286 0.21259 0.20597 0.94122 1.28068 5.18531
PDE 76 0.05123 0.104251 0.03581 0.19212 0.36810 1.56269
PDO 2008 0.04780 0.19982 1.54986 31.12626 11.48949 173.99654
PG 510 0.07702 0.15393 0.47930 3.77578 2.54998 Inf
PMFS 419 0.04209 0.09962 0.07283 1.34141 0.43425 8.46222
PNS 134 0.08335 0.10992 0.15598 0.38620 0.86520 2.37873
PDP 227 0.06999 0.13589 0.22844 1.37098 1.34670 8.08425
PDR 1806 0.10465 0.13155 4.72898 10.59022 28.65940 Inf
PDS 2025 0.08187 0.19434 3.39050 26.68019 18.18100 143.86595
PO 241 0.09390 0.050647 0.55703 0.09993 3.48845 0.82681
PORS 1205 0.03065 0.11436 0.14824 5.95037 1.44353 Inf
PORS2 228 0.14083 0.08472 1.49652 0.50482 8.76845 3.16163
PU 1569 0.03049 0.11260 0.26498 6.70828 1.83199 41.80685
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From Table 6.4, we see that for 15 out of 19 specialties, the p-values are greater for the log-normal
distributions than for the normal distributions for all three goodness of fit tests. This would imply that
it is more likely for those specialties to be log-normal distributed. For specialties PO and PORS2, the
normal distribution seems more likely. For the remaining specialties PDR and PDS, both fits were very
unlikely and there was not one more favorable.

Table 6.4: Goodness of fit p-values for distribution of one surgery.

Specialty KS test CvM test AD test
log-normal normal log-normal normal log-normal normal

FLEX 0.84963 0.00000 0.93557 0.00000 0.94466 0.00000
FPS 0.18693 0.00000 0.15709 0.00000 0.10312 0.00000
GYN 0.00139 0.00000 0.00561 0.00000 0.00197 0.00000
HPS 0.50147 0.00178 0.51180 0.00440 0.62778 0.00306
NSP 0.30960 0.07846 0.37219 0.07846 0.43609 0.05748
PDC 0.60715 6e-04 0.78509 0.00031 0.73997 7e-05
PDD 0.23417 0.00327 0.25649 0.00325 0.23864 0.00236
PDE 0.98845 0.38067 0.95443 0.28361 0.87933 0.16226
PDO 0.00021 0.00000 0.00013 0.00000 0.00000 0.00000
PG 0.00472 0.00000 0.04493 0.00000 0.04666 0.00000
PMFS 0.44788 0.00049 0.73457 0.00039 0.81413 7e-05
PNS 0.30960 0.07846 0.37219 0.07846 0.43609 0.05748
PDP 0.21609 0.00046 0.21857 0.00033 0.21762 1e-04
PDR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
PDS 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
PO 0.02854 0.56681 0.02853 0.58561 0.01560 0.46197
PORS 0.20765 0.00000 0.39502 0.00000 0.19055 0.00000
PORS2 0.00024 0.07577 0.00017 0.03863 5e-05 0.02271
PU 0.10819 0.00000 0.17026 0.00000 0.11385 0.00000

6.4.2. Multiple surgeries
In this subsection, we do the same as in the previous subsection but for multiple surgeries. In the prior
chapter, we have seen two methods:

• approximating the sum of log-normals by one log-normal with the FW method,

• fitting the individual surgery durations by normal distributions and use the normal distribution
corresponding to the sum.

For each combination of 𝑗 ∈ ⋃
𝑜∈𝑂,𝑘∈𝐾

𝐽𝑜𝑘, we create a sample of size 100000 for the total surgery

durations of the combination. Subsequently, we calculate the p-values for the approximation methods
of both techniques. To enhance clarity, rather than presenting an extensive table of values, we present
the values using boxplots in Figure 6.1. Outliers have been omitted from the boxplots for improved
readability. The p-values of the log-normal approximation appear to be generally greater than the
p-values for the normal approximation, indicating that the first method is more likely to give a better
approximation.
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Figure 6.1: Boxplots of the p-values for KS test, CvM test and AD test for all possible combinations.





7
Results

In this chapter, we present our results when using the data from the previous chapter in the models
described in Sections 5.4 and 5.5. We additionally define a model similar to the one from Section 5.4,
but assume that the individual surgery durations are normally distributed. In the first section, we inves-
tigate how the models perform under different objective weights. After this investigation, we decided to
investigate the log-normal model from Section 5.4 further and compare its performance with the help
of a simulation and historical data. We conclude this chapter with results from an adjusted model that
better reflects the wishes of the Sophia Children’s Hospital.

All the models were implemented in Python with Gurobi Optimizer as solver. We additionally make
use of the Delft High Performance Computing Centre to run our models.

7.1. Performance under different objective weights
In this section, we look at the results we get when choosing different objective weights for the objective
function (4.43). Table 7.1 presents the different investigated sets of objective weights. Note that when
the entire objective function is scaled, the same relation between the sub-objectives is given and hence,
the optimization direction is the same. Therefore, we decided to fix objective weight 𝜃𝑍 to 1. Thus, our
objective function now looks as follows:

max ∑
𝑜∈𝑂,𝑞∈𝑄,𝑠∈𝑆𝑜

𝔼[𝐷𝑆𝑠] ⋅ 𝑍𝑜𝑞𝑠 − 𝜃𝑉 ⋅ (𝑉max − 𝑉min) −∑
𝑖∈𝐼
𝜃𝑖 ⋅ �̂�𝑖 − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ �̂�𝑤 . (7.1)

In this chapter, we refer to the parts of the objective function in the following way:

• ∑
𝑜∈𝑂,𝑞∈𝑄,𝑠∈𝑆𝑜

𝔼[𝐷𝑆𝑠] ⋅ 𝑍𝑜𝑞𝑠 is referred to as sub-objective 1,

• −𝜃𝑉 ⋅ (𝑉max − 𝑉min) is referred to as sub-objective 2,
• −∑

𝑖∈𝐼
𝜃𝑖 ⋅ �̂�𝑖 − ∑

𝑤∈𝑊
𝜃𝑤 ⋅ �̂�𝑤 is referred to as sub-objective 3.

Table 7.1: Table with the different objective weight sets.

Set number 𝜃𝑉 𝜃𝑖 𝜃𝑤
0 0 0 0
1 50000 0 0
2 500000 0 0
3 50000 100 100
4 500000 100 100

We test on three different models. The first model uses the linearization described in Section 5.4
and is referred to as the Log-normal Column Model. The second model is similar to the Log-normal
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Column Model, but instead of taking into account the surgery duration distribution as a log-normal, the
normal distribution is used. We refer to this model as the Normal Column Model. The last model we
consider is the model where the overtime constraint is solved in the same way as in Schneider et al.
(2020). This model is referred to as the Schneider Normal Model and is described in Section 5.5. All
models use the linearization of the objective function as described in Section 5.3.

To evaluate the suitability of the sets presented in Table 7.1, we examine the performance of the
three models using the specified objective weights after running for a duration of twelve hours (note
that the optimal value for all three models was attained within the runtime for weight sets 0 and 2).
In this analysis, we assess the resulting expected OR utility, 𝑉max and 𝑉min values, and bed occu-
pancy variation. The expected OR utility is expressed as a percentage, representing that achieving
100% utility would necessitate the complete occupation of all available ORs throughout their operat-
ing hours for each day 𝑘 ∈ 𝐾. Furthermore, we delve into the values related to the three sub-objectives.

The first weight set, with set number 0, only considers the OR utilization. We expect that for this
weight set, each model tries to schedule specialties with on average short surgeries, consequently
resulting in 𝑉max = 100% and an extremely negative 𝑉min. This is indeed the case, see Table 7.2. As
the second and third sub-objectives were assigned a weight value equal to 0, the first sub-objective is
equal to the objective function value. For weight set 0, all three models performed very similarly.

Table 7.2: Results weight set 0.

Model Obj. function OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%] Runtime [sec]
Log-normal Column 177199.79 68.24 100.00 -4300.00 0.00 160.5
Normal Column 176118.63 67.82 100.00 -4300.00 0.00 144.5
Schneider Normal 176118.63 67.82 100.00 -4275.19 0.00 2828.4

In weight sets 1 and 2, we incorporate a positive weight for 𝜃𝑉, while still not factoring in the beds
in the objective function (𝜃𝑖 = 0 and 𝜃𝑤 = 0). The performance of the models with these weight sets
can be found in Tables 7.3 and 7.4.

Table 7.3: Results weight set 1.

Model Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3 Runtime [hr]
Log-normal Column 126904.66 134482.37 -7577.71 0.00 12.0
Normal Column 126928.62 134502.57 -7573.95 0.00 12.0
Schneider Normal 125108.47 132637.04 -7528.58 0.00 12.0

Model OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
Log-normal Column 51.79 0.56 -14.59 0.49
Normal Column 51.80 0.56 -14.58 0.49
Schneider Normal 44.32 0.56 -14.49 13.04

Table 7.4: Results weight set 2.

Model Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3 Runtime [sec]
Log-normal Column 101604.80 120981.64 -19375.84 0.00 121.7
Normal Column 101794.40 121170.24 -19375.84 0.00 44.6
Schneider Normal 101794.40 121170.24 -19375.84 0.00 2752.2

Model OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
Log-normal Column 46.59 0.56 -3.31 0.00
Normal Column 46.66 0.56 -3.31 0.00
Schneider Normal 46.66 0.56 -3.31 0.00
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For both weight sets 1 and 2, the objective function and sub-objective function values are quite sim-
ilar for the models. We observe that for weight set 2, which has a greater 𝜃𝑉, the difference between
𝑉max and 𝑉min gets smaller as expected. However, when doing so, the OR utilization decreases, which
is unfavorable. Furthermore, we observe that while the Schneider Normal model yields comparable
outcomes when it attains the optimal value (for weight sets 0 and 2), its execution time is significantly
longer. In contrast, the runtimes of the other two models are relatively comparable. The extended
runtime of the Log-normal Column model can be attributed to the slightly larger size of the combination
sets 𝐽𝑜𝑘, contributing to the increased complexity of the model.

In weight sets 3 and 4, we additionally give the weights 𝜃𝑖 and 𝜃𝑤 a positive value. This increases
the complexity of our models. Hence, we expect the optimality gaps of our models to increase. The
optimality gap represents the difference between the best known solution and the bound for the best
possible solution. The performance of the models with these weight sets can be found in Tables 7.5
and 7.6.

Table 7.5: Results weight set 3.

Model Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3 Runtime [hr]
Log-normal Column 123613.81 133179.00 -7577.77 -1987.42 12.0
Normal Column 124684.99 134604.91 -8124.88 -1795.04 12.0
Schneider Normal 19795.84 71697.88 -50045.79 -1856.26 12.0

Model OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
Log-normal Column 51.29 0.56 -14.59 9.13
Normal Column 51.83 0.56 -15.69 6.66
Schneider Normal 27.61 100.00 -0.09 630.93

Table 7.6: Results weight set 4.

Model Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3 Runtime [hr]
Log-normal Column 55978.18 132934.58 -74982.33 -1974.07 12.0
Normal Column 100226.81 121170.24 -19375.84 -1567.59 12.0
Schneider Normal -370869.21 80645.61 -449556.54 -1958.28 12.0

Model OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
Log-normal Column 51.19 0.56 -14.43 82.21
Normal Column 46.66 0.56 -3.31 1.80
Schneider Normal 33.06 89.91 -0.00 128.01

Introducing weights for sub-objective 3 should result in a more leveled bed occupancy. This can
also be seen in Figure 7.1 and Figure 7.2. In these figures, the expected bed assignments for ward
MC2 are visualized. For Figure 7.2, the days in the x-axis are numbered. Mondays are presented by
integers that are congruent to 1 ( mod 7), Tuesdays by integers that are congruent to 2 ( mod 7),
etc. We observe that the graphs obtained for each model with weight set 3 exhibit a shallower slope
compared to those at weight set 1, which is as expected. Moreover, the outcome of the Schneider
Normal model for weight set 3 can also be rationalized by its subpar performance after a runtime of
twelve hours, indicated by the substantial optimality gap observed.



48 7. Results

(a) Expected bed assignment for weight set 1. (b) Expected bed assignment for weight set 3.

Figure 7.1: Expected bed assignment for the three models in MC2 with or without weights associated with the bed leveling (i.e.,
sub-objective 3) when looking at two weeks within the period.

(a) Expected bed assignment for weight set 1. (b) Expected bed assignment for weight set 3.

Figure 7.2: Expected bed assignment for the three models in MC2 with or without weights associated with the bed leveling (i.e.,
sub-objective 3) when looking at the total period.

It is indeed noticeable that the optimality gap expands for each model in comparison to their perfor-
mance with the preceding two weight sets. The Schneider Normal model consistently exhibits inferior
performance in contrast to the column models. Concerning both column models, the increased value
for 𝜃𝑉 does contribute to narrowing the gap between 𝑉max and 𝑉min. However, the value of 𝑉max
remains unaffected, and since this metric carries greater significance by indicating the proportion of
surgical patients that certain specialties might be unable to schedule, a higher 𝜃𝑉 than that of weight
sets 1 and 3 does not appear necessary. Furthermore, a more negative 𝑉min, and thus, a greater differ-
ence between 𝑉max and 𝑉min, may even be more favorable as the OR utilization is likely to benefit from
this. For the Log-normal Column, it also seems to increase the complexity resulting in an optimality
gap more comparable to the Schneider Normal model.

It might still be interesting to look at what happens when we personalize 𝜃𝑤 and 𝜃𝑖 for the wards
and ICs. For this, we introduce parameters 𝐵𝑖 and 𝐵𝑤 for the maximum number of beds in our received
dataset for 𝑖 ∈ 𝐼 and 𝑤 ∈ 𝑊, respectively. To investigate this, we have tested the Log-normal Column
model with the weight sets 5 and 6 that can be found in the following table.

Table 7.7: Table with the special 𝜃𝑤 and 𝜃𝑖 objective weight sets.

Set number 𝜃𝑉 𝜃𝑖 𝜃𝑤
5 50000 100/𝐵𝑖 100/𝐵𝑤
6 50000 500/𝐵𝑖 500/𝐵𝑤
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Table 7.8: Results Log-normal Column model with weight set 3, 5 and 6.

Model Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3 Runtime [hr]
Log-normal Column 3 123613.81 133179.00 -7577.77 -1987.42 12.0
Log-normal Column 5 126103.71 133793.46 -7528.58 -2124.80 12.0
Log-normal Column 6 125711.13 134043.49 -7577.77 -10212.40 12.0

Model OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
Log-normal Column 3 51.29 0.56 -14.59 9.13
Log-normal Column 5 51.52 0.56 -14.50 7.42
Log-normal Column 6 51.62 0.56 -14.59 7.37

Upon examining bed occupancy alongside the ̂𝛾𝑤 and ̂𝛾𝑖 values of sub-objective 3, no evident dis-
tinction emerged. Consequently, we proceeded to investigate a unified 𝜃𝑤 and 𝜃𝑖 value.

At this point, we are confident that if we choose one model to investigate further, it will not be
the Schneider Normal due to its consistently worse performance compared to the other two models.
Although the Normal Column performed slightly better for weight set 3 and significantly better for weight
set 4 than the Log-normal Column, we believe that the Log-normal Column is still more favorable for
the following reasons:

• In Section 6.4, it has been demonstrated that the approach employed for generating combinations
in 𝐽𝑜𝑘 for the Log-normal Column model holds a higher likelihood of accuracy than that of the
Normal Column model.

• As previously mentioned, an increased 𝜃𝑉 does not appear to align more favorably with our
scheduling objectives. Consequently, a detailed consideration of the performances for weight
sets 2 and 4 may not be necessary.

Furthermore, as mentioned before, the underperformance of the Log-normal Column model can be
attributed to the larger size of the combination sets 𝐽𝑜𝑘, contributing to the increased complexity of the
model.

Finally, it is important to discuss the relatively modest OR utility percentage. This can be attributed
to the approach of grouping surgeries of the same specialty together, instead of making clusters. While
maintaining compliance with the overtime constraint for longer surgeries is a necessity, even if they
are less frequent, our models naturally lean towards a more cautious approach in terms of scheduling
surgeries. This tendency is influenced by the need to ensure that the overtime constraint remains
satisfied.

7.2. Conversion to time schedule
Up till now, our resulting schedule has been the assignment of specialties to ORs on days in a period,
accompanied by the number of surgeries the specialty could perform on that specific day. However,
as explained in Chapter 2, an MSS gives the time a surgical specialty is allowed to perform surgeries
on that day rather than the number of surgeries it can perform. In this section, we explain how we can
assign a time duration to a specialty instead.

Again, we make use of the FW method. Suppose an OR is used on a day by specialties 𝑠1, 𝑠2 ∈ 𝑆
and our schedule lets 𝑠1 perform 𝑛1 surgeries and 𝑠2 gets to perform 𝑛2 surgeries. Then, by using the
FW method we can approximate both the total surgery duration distribution for 𝑠1 with 𝑛1 surgeries, as
for 𝑠2 when it has 𝑛2 surgeries. By using the inverse cumulative distribution, we can determine a time
duration which the total surgery time does not exceed 𝜑 percent of the cases. Furthermore, when we
add the cleaning times, we can assign the resulting duration as the assigned duration for that specific
specialty in that specific operating room on that particular day.
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Generally, it is undesirable for a specialty to exceed its designated OR time, particularly if it leads to
delays for other specialties. As a consequence, 𝜑 is usually selected to be relatively high. Moreover,
for the sake of convenience, we round the assigned durations up to intervals of fifteen minutes.

7.3. Performance of Log-normal Column model
Within this section, we delve deeper into the Log-normal Column model’s performance. This investi-
gation involves a comparison of its outcomes with both the provided historical data and a simulation.
For this section, we use the Log-normal Column model with weight set 3 from Section 7.1.

With a simulation, we schedule surgeries, as they emerge in historical data, into the MSS resulting
from our model. We also take the bed assignments and lengths of stay from the data itself. In order to
make a good evaluation, we asked the Sophia Children’s Hospital for patient data that we had not used
when developing the model. By using data that the model has not seen before, we can assess how
well the model generalizes to new, unseen examples. If the same data was used for the simulation, the
model’s performance could be overly optimistic. Sophia provided us with additional patient data of the
year 2022. This data is preprocessed in the same way as described in Chapter 6. For the simulation,
we use the data from the first quarter of 2022.

For simplicity, we assume that each patient only has one surgery. This is true for 97.5% of the
elective surgical patients from 2019 to 2022. In instances where a patient has multiple surgeries, we
create a new virtual patient for each subsequent surgery. The bed assignments for the first surgery
(and hence, associated with the original patient number) are the first bed assignments till the date of
the next surgery. The corresponding bed assignments for the ‘new patients’ are the bed assignments
starting on the date of the surgery till the date of what would have been the next surgery. In case of
the last surgery, the date that the patient went home. In our simulation, we schedule the patients in the
same order as in the data.

Firstly, we compare the number of patients that are scheduled by our model and that were sched-
uled in the data for the first quarter of 2022. In Table 7.9, these numbers are given. Consistent with
the anticipated value of 𝑉max = 0.56 presented in Table 7.5, the patient count our model schedules
aligns with or surpasses the average number of patients in the dataset. When we contrast the model’s
numbers with the initial quarter’s scheduled appointments and assess the percentage of shortfall, we
notice that the specialty PDE experiences the highest relative loss. However, it is worth noting that
given PDE’s overall lower patient count, even minor fluctuations can lead to a high relative loss.

Using the time schedule conversion from the previous section, we can now assign a certain time
duration for each OR assignment of a specialty. After scheduling patients in our simulation, we can
compare the total duration with the assigned duration. For our conversion, we have chosen 𝜑 = 90%.
On average, compared to the given time, the utilization percentage is 57.12%. This is lower than what
they have at the Sophia Children’s Hospital, which is 67.29%. The utilization percentages for each
specialty’s operating room usage can be found in Table 7.10. In our study, we opted to examine the
entire range of surgery durations within a single specialty at a given time. Hence, when given the time
schedule, a duration is given that is satisfied 90% of the time. This should hold for a specialty’s longer
surgeries as well as its smaller surgeries. Hence, the model tends to schedule more slack, resulting to
a lower OR utilization.

Next, we investigate the extent of overtime that occurred in our simulation. When generating our
schedule, we used an 𝛼 = 0.1 for the overtime constraint. Hence, we allow overtime for less than 10%
of the time. On average, in contrast to the duration we allocated to a specialty following the time sched-
ule conversion explained in the preceding section, we encountered overtime in 6.5% of instances. In
comparison, from the data, we concluded that at the Sophia Children’s Hospital, an overtime rate of
14.3% can be found.
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Table 7.9: Table with the number of patients that are scheduled in by our model and in the data.

Specialty Average in data In first quarter of 2022 In model and simulation
FLEX 69.38 68 75
FPS 90.76 98 104
GYN 65.08 67 74
HPS 11.62 12 13
NSP 10.79 4 12
PDC 40.29 38 46
PDD 17.00 7 19
PDE 6.03 10 6
PDO 154.46 191 177
PG 39.56 35 40
PMFS 32.44 41 36
PNS 37.38 49 42
PDP 17.48 23 20
PDR 138.87 139 155
PDS 155.63 186 176
PO 18.80 15 20
PORS 92.61 119 105
PORS2 17.67 21 20
PU 120.58 148 138

Table 7.10: Table with the OR utilization in the simulation.

Specialty OR utilization
FLEX 52.30
GYN 57.13
NSP 34.62
PDC 61.69
PDD 68.34
PDE 75.38
PDO 49.10
PG 56.29
PMFS 69.32
PNS 13.61
PDP 62.06
PDR 69.02
PDS 60.20
PO 56.72
PORS 57.82
PORS2 62.74
FPS 53.61
HPS 48.07
PU 69.05
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Considering the relatively low overtime percentage alongside the comparatively modest utilization
of operating rooms within the assigned time, it is plausible that the chosen value of 𝜑 for the time
schedule conversion might be too large. A smaller 𝜑 could potentially be more appropriate in this con-
text. Another possibility is to let 𝜑 be specialty specific. In our simulation, we observe that among
our nineteen specialties, eight consistently avoid overtime, whereas five specialties experience over-
time more than 10% of the time, surpassing 𝛼. This might indicate that we assign specialties from
the first category excessive slack, while the latter category needs more flexibility. On the other hand,
the low overtime percentage also means that our schedule gives room for more surgeries. If used
in combination with a better planning strategy for the simulation, we could make better use of the OR
time and improve the number of scheduled patients without changing the allocated time from our model.

Lastly, we take a look at the bed occupancy for our simulation. Since we schedule the patients in
the same order, but not in the same numbers per day, we expect to do a worse job than the planners
at Sophia, who take into account the surgery type and its expected duration. In Figure 7.3, the bed
occupancy can be found for wards MC1 and MC2 resulting from our simulation and the historical data.
For ward MC1, the simulation seems to have fewer beds in use, but the variation in beds has not nec-
essarily improved. The decrease in bed use could be explained by the specialties that are typically
assigned to MC1. From Table 2.3, we have seen that specialties PDO, PMFS, PNS and PE are as-
signed to MC1. From Table 7.9, we observe that these specialties were allocated a smaller number of
patients in our simulation compared to real-life occurrences. For ward MC2, the simulation seems to
do a better job of leveling the bed occupancy for the first half of the quarter, but the difference between
the maximum and minimum bed occupancy is comparable for the simulation and the historical data.

(a) Bed occupancy for MC1.

(b) Bed occupancy for MC2.

Figure 7.3: Bed occupancy for wards MC1 and MC2 resulting from our model expectation, simulation and historical data.
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7.4. Performace of adjusted model
In this section, we look at a model more to the preference of the Sophia Children’s Hospital. For the
convenience of the surgical staff, we set the cycle length at one week (𝑇 = 7) and additionally, when-
ever a specialty is assigned, it should have at least one surgery (𝑍𝑜𝑘𝑠 > 𝑌𝑜𝑘𝑠). They also believe that a
more selected range of specialties should have the capability to share an OR on a single day. However,
it could be argued that a certain degree of flexibility is necessary for improvement. For the adjusted
model, only the subsequent specialties are eligible to share an OR with each other: PDP, FLEX, PG,
PDD, PO, NSP and PDE.

In Section 7.1, we have seen that increasing the weight for the bed occupancy (i.e., sub-objective
3) is likely to add to the complexity of our model. Adding the constraint mentioned in the previous
paragraph does so as well. Hence, we decide to use the following weights when running the adjusted
model:

Table 7.11: Table with the weight set for the adjusted model.

𝜃𝑉 𝜃𝑖 𝜃𝑤
50000 20 20

Furthermore, the runtime was set to two full days (i.e., 48 hours), and the resulting values of this
weight set can be found in Table 7.12.

Table 7.12: Results for adjusted model.

Obj. function Sub-obj. 1 Sub-obj 2 Sub-obj. 3
104421.83 132639.57 -27864.97 -352.78

OR utility [%] 𝑉max[%] 𝑉min [%] Gap [%]
51.08 2.79 -52.94 12.97

The most comparable model to our adjusted model is the Log-normal Column model with weight
set 3. In Table 7.5, we observed a smaller and more favorable 𝑉max for the Log-normal Column model,
while this model also considers bed leveling more extensively, attributed to its higher weight for sub-
objective 3. The reason for the increased 𝑉max could be the restriction in specialties that can share an
OR. In addition to the shorter cycle length, the constraint gives less room for flexibility in the assignment
of specialties to an OR.

We, furthermore, investigate if the runtime of 48 hours was too excessive in comparison to the
12 hours we used beforehand. In Figure 7.4, we plotted the objective function value and the best
bound value against the runtime in hours. We observe that the found objective function is approached
relatively fast after just a few hours. It is mostly the best bound that improves over time. Hence, we
might find an acceptable answer after 12 hours, but this would not be reflected in the optimality gap.
The optimality gap after 12 hours was equal to 27.0%.



54 7. Results

Figure 7.4: Objective function value and the best bound against the runtime in hours for the adjusted model.

The number of patients that are scheduled in the adjusted model and the OR utilization for each
specialty can be found in Table 7.13 and Table 7.14, respectively. For the number of patients, we see
the same trend as in the previous section: the numbers in the adjusted model are comparable to the
values of the average in the historical data, which served as the base for our model. However, the
patients can deviate a lot from the average, and for some specialties the actual value for 𝑉𝑠 is much
higher than expected.

Table 7.13: Table with the number of patients that are scheduled in by the adjusted model and in the data.

Specialty Average in data In first quarter of 2022 In the adjusted model
FLEX 69.38 68 78
FPS 90.76 98 91
GYN 65.08 67 99
HPS 11.62 12 14
NSP 10.79 4 13
PDC 40.29 38 52
PDD 17.00 7 26
PDE 6.03 10 8
PDO 154.46 191 152
PG 39.56 35 56
PMFS 32.44 41 42
PNS 37.38 49 39
PDP 17.48 23 25
PDR 138.87 139 135
PDS 155.63 186 158
PO 18.80 15 28
PORS 92.61 119 92
PORS2 17.67 21 27
PU 120.58 148 132
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Regarding the utilization of the operating rooms, we observe that in 6.4% of cases, the total duration
exceeded the initially assigned duration. On average, our simulation for the adjusted model gives an
OR utilization percentage of 60.31%, which is better than the percentage of the Log-normal Column
model with weight set 3. As the number of scheduled patients is different for the adjusted model, it is
plausible that specialties scheduled more frequently in the adjusted model receive more appropriate
time durations. This, in turn, contributes to improved operating room utilization during those assign-
ments.

Table 7.14: Table with the OR utilization in the simulation for the adjusted model.

Specialty OR utilization
FLEX 46.43
GYN 60.32
NSP 34.47
PDC 62.38
PDD 70.16
PDE 77.43
PDO 45.86
PG 57.09
PMFS 69.75
PNS 14.06
PDP 52.76
PDR 70.94
PDS 58.34
PO 60.74
PORS 53.77
PORS2 64.34
FPS 53.91
HPS 68.00
PU 48.82





8
Conclusion and recommendations

The objective of our research was to develop a model for the Sophia Children’s Hospital that provides
an MSS and has the objective to not only maximize operating room utilization but also to level the bed
occupancy and balance the relative OR assignment fir the specialties. To tackle the uncertainty of the
characteristics of future patients, we have taken the length of stay and surgery duration into account
in a stochastic manner. This chapter serves as the culmination of our research, presenting both our
conclusions and offering recommendations for future studies.

8.1. Conclusion
After analyzing the current situation at the Sophia Children’s Hospital in Chapter 2 and reviewing exist-
ing literature in Chapter 3, we developed a mathematical model in Chapter 4 which models the length of
stay similarly as Schneider et al. (2020). The model produces a schedule from which we can determine
the number of patients whose surgeries can be arranged for a given specialty on a specific day and in
a specific operating room.

The model had two non-linear components: a non-linear overtime constraint, as well as a non-
linear sub-objective concerning the bed variation. In order to solve the model, we provided linearization
methods for these components in Chapter 5. For the overtime constraint, we provided two methods:
a linearization under the assumption that surgery durations are normally distributed as proposed by
Schneider et al. (2020), and a linearization where the log-normal distribution is assumed for the indi-
vidual surgery durations. The latter is a creation of our own. It uses an approximation method to find
one suitable log-normal distribution for the sum of the surgery durations. In order to find a suitable
approximation method, we looked into three methods commonly used in the field of telecommunica-
tion: the Fenton-Wilkinson method, the Swartz-Yeh method and the Mehta approximation. After further
examination, we concluded that the Fenton-Wilkinson method was most suitable for our research.

Using the Fenton-Wilkinson approximation, we can calculate which pairs of specialties with cor-
responding number of surgeries, could be assigned an OR together without violation of the overtime
constraint. After generating all possible pairs, in our research referred to as combinations, we incor-
porated them into our model with a column generation based approach. Furthermore, we can utilize
the Fenton-Wilkinson approximation to transform the schedule presented by our model into a schedule
based on time duration rather than the number of surgeries a specialty can perform.

In Chapter 6, we analyzed the data that the hospital provided us. The data included properties about
the patients’ surgeries and bed assignments. Due to the presence of errors in the data, we conducted
preprocessing before utilizing it as input in our modeling. Additionally, we conducted goodness of fit
tests to assess whether adopting the log-normal distribution for surgery durations was genuinely supe-
rior to the normal distribution. Our analysis revealed that, for the majority of instances, the log-normal
distribution outperformed the normal distribution. This was the case for individual surgeries, as well as
the Fenton-Wilkinson approximation for the duration of multiple surgeries.
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As previously stated, we had two approaches to linearize the overtime constraint: one was based
on the work of Schneider et al. (2020), and the other involved a column generation approach utilizing
the Fenton-Wilkinson approximation. We refer to them as the Schneider Normal model and the Log-
normal Column model, respectively. Moreover, as the column generation based approach could be
easily adapted to accommodate normally distributed surgery durations, we also developed a Normal
Column model.

In Chapter 7, we first compared the performance of the three models under different objective
weights. The objective weight 𝜃𝑉 influenced the proportion of surgery assignments for different spe-
cialties, while 𝜃𝑤 and 𝜃𝑖 affected the variation in bed occupancy. When these objective weights were
set to zero, the models prioritized achieving a high expected OR utilization exclusively and only part of
the specialties gets scheduled. Appointing a positive value to weight 𝜃𝑉 ensures that all specialties are
assigned to an OR and that this happened relatively fair. However, appointing a very large value for 𝜃𝑉
does not necessarily increase OR assignment for the specialty that is relatively scheduled the least.

When the objective weights for the bed occupancy were added, we observed that the expected bed
occupancy variation became smaller. However, this is at the expense of the complexity of the prob-
lem. We investigated weights that were both dependent and independent for their respective wards
but could not find a significant difference.

Upon evaluating the performance of the three models, it becomes evident that in instances where
optimality was achieved, the two column-based models exhibited runtimes of up to 3 minutes. In con-
trast, the Schneider Normal model required approximately 47 minutes to converge and find the solution.
When optimality was not achieved, the Schneider Normal model underperformed in comparison to the
other models as well. For most weight sets, the two column based models performed similarly. Only
for the weight set with the largest objective weight values did the Log-normal Column model under-
perform compared to the Normal Column model. This could be attributed to the larger complexity the
Log-normal Column model due to its larger combinations sets. As the combinations of the Log-normal
Column model are likely to be more accurate than the Normal Column model, and we deemed a large
value for 𝜃𝑉 not necessary, we decided to continue with the Log-normal Column model for the model
comparison with a simulation in Section 7.3.

In a given quarter, the simulation schedules the same number of patients for a specialty into the
schedule as determined by our model. Since our model’s patient scheduling for a specialty relies on
the historical quarterly average for that specific specialty and the actual number could deviate greatly
from this, we noticed instances where certain specialties had fewer surgery assignments than what
they actually needed.

As mentioned before, we can use the Fenton-Wilkinson method to convert the schedule produced
by our model into a time schedule. This can be done by using the inverse cumulative distribution to
determine a suitable duration for which a specialty finishes its assigned surgeries in time for 𝜑 percent
of the instances. After scheduling patients in our simulation, we can determine the OR utilization by
comparing the sum of the patients’ surgery duration to the assigned duration. We had chosen 𝜑 to
be equal to 90%, which resulted in an average OR utilization percentage of 57.12% and an overtime
occurrence of 6.5% of the instances. Lastly, when looking at the bed occupancy for our simulation and
the data, no significant differences could be found.
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8.2. Recommendations
This section offers suggestions for the Sophia Children’s Hospital, along with recommendations for
potential future research.

8.2.1. Recording of data
Due to the presence of errors in the data that was provided by the Sophia Children’s Hospital, we con-
ducted preprocessing before utilizing it as input in our modeling. At the Sophia Children’s Hospital, the
program HiX is used for the registration of surgery data. The data is registered manually without any
automated checks for mistakes. To enhance future data analyses, we suggest the implementation of
automated checks. For instance, if errors occur in vital information fields leading to incorrect sequenc-
ing, a notification system could be established. It could be as simple as a change in field color or a
pop-up alert.

Another suggestion concerning data registration at the Sophia Children’s Hospital is to standardize
the various systems. For instance, there exist different abbreviations for the same specialty in the MSS
and the exported data from HiX. Additionally, data entered into HiX is labeled differently in the export
sheet. To avoid confusion, we suggest maintaining consistency across all hospital data.

8.2.2. Future research
As mentioned before, when scheduling real patients’ data in our schedule, we obtain a relatively low
OR utilization percentage while the overtime constraint is not near its bound. One possible explanation
for this could stem from our consideration of all surgeries within a given specialty. Since we do not
differentiate between types of surgeries, the duration assigned to, say, a collection of commonly short
surgeries in one specialty is treated the same as a group of typically longer surgeries within the same
specialty, as long as their group size remains comparable. If a distinction was made between surgery
types, the model could provide more accurate time duration estimations.

Another explanation could be that the chosen 𝜑 used for the conversion to a time schedule is cho-
sen too large. Opting for a smaller value, perhaps even making it dependent on the specialty, could
possibly result in a better master surgery schedule with less redundant slack. This choice would lead
to assigning shorter total durations, thereby increasing OR utilizations and permitting more controlled
overtime within the specified limit.

Additionally, a low OR utilization rate indicates the potential for accommodating more surgeries. In
our simulation, we allocate precisely the number of patients as indicated by the schedule. This allo-
cation is carried out in the order of data appearances, without employing any sophisticated scheduling
strategies. If the time schedule would be used by a planning expert in the Sophia Children’s Hospi-
tal, the performance of our schedule will most likely improve significantly. While arranging surgeries,
scheduling experts also consider the probable ward assignment for each patient. By employing a
scheduling approach that imitates the strategy employed at the Sophia Children’s Hospital, we can
observe the real impact our model has on bed occupancy.

Next to suggestions to improve the evaluation of our model, we also have some suggestions on the
model itself. The model utilizes the average patient count as a base for the number it will schedule.
However, the actual number of patients can significantly deviate from this. When the actual number is
greater than the number we schedule, the variation negatively impacts the waiting list. Therefore, it is
valuable to examine the trend in incoming patients to consider using it as the base for our model in-
stead. Another improvement might involve considering both the average and the standard deviation in
patient planning to mitigate potential patient scheduling shortfalls. Although, this can negatively impact
the OR utilization due to increased slack.

Furthermore, we have only tried the model for a selection of weight sets. It could be that a different
choice of weight set suits the needs of the hospital better.
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Model parameters and variables

Table A.1: Parameters of the model.

Parameter Description
𝑄 Number of days that the MSS covers
𝑀𝑠 Maximum number of patients specialty 𝑠 ∈ 𝑆 can schedule on one day
𝜒𝑘 Maximal number of open ORs on day 𝑘 ∈ 𝐾
𝐶𝑠 Number of surgeons from specialty 𝑠 ∈ 𝑆
𝑇 Length of a cycle in the MSS
𝜅 Cleaning time between surgeries
𝑚𝑠 Minimum number of surgeries for specialty 𝑠 ∈ 𝑆
𝑁𝑝𝑠 Maximum length of stay for a patient of specialty 𝑠 ∈ 𝑆 in the latest ward in the subpath 𝑝 ∈ 𝑃
𝑁𝐼𝑠 Maximal length of stay for the all subpaths of 𝑃𝐼
𝑁𝑊𝑠 Maximal length of stay for the all subpaths of 𝑃𝑊
𝛽𝑜𝑘 Duration OR 𝑜 ∈ 𝑂 was planned to be open on day 𝑘 ∈ 𝐾
𝛼 Allowed probability of overtime

𝛾𝑖𝑞(𝜓) number such that the number of occupied beds on day 𝑞 ∈ 𝐾 in IC 𝑖 ∈ 𝐼 for schedule 𝜓 is at
most 𝛾𝑖𝑞(𝜓) with probability at least 1 − 𝜖

𝛾𝑤𝑞(𝜓) number such that the number of occupied beds on day 𝑞 ∈ 𝐾 in ward 𝑤 ∈ 𝑊 for schedule 𝜓
is at most 𝛾𝑤𝑞(𝜓) with probability at least 1 − 𝜖

𝛾𝑖(𝜓) Variation in number of required beds on IC 𝑖 ∈ 𝐼 for a given schedule 𝜓
𝛾𝑤(𝜓) Variation in number of required beds on ward 𝑤 ∈ 𝑊 for a given schedule 𝜓
𝐿𝑠 Average number of surgeries specialty 𝑠 ∈ 𝑆 had during the past 𝑄-length periods

61



62 A. Model parameters and variables

Table A.2: Variables of the model.

Variable Description
𝑍𝑜𝑘𝑠 Integer decision variables representing the number of surgeries scheduled

on OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾 by specialty 𝑠 ∈ 𝑆𝑜
𝑌𝑜𝑘𝑠 Binary auxiliary variables indicating whether any surgeries

are scheduled in OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾 for specialty 𝑠 ∈ 𝑆𝑜
𝑋𝑜𝑘 Binary variable denoting whether OR 𝑜 ∈ 𝑂 is open on day 𝑘 ∈ 𝐾
𝑅𝑜𝑘𝑠 Binary variable indicating whether in OR 𝑜 ∈ 𝑂 specialty 𝑠 ∈ 𝑆𝑜 has at least

one surgery on day 𝑘 ∈ 𝐾
𝑊𝑜𝑘 Binary variable indicating whether in OR 𝑜 ∈ 𝑂 exactly two specialties in 𝑆𝑜

had surgeries planned on day 𝑘 ∈ 𝐾
𝑉𝑠 Auxiliary variables representing the percentage not scheduled surgeries

with respect to the expected number of surgeries of specialty 𝑠 ∈ 𝑆
𝑉max Variable associated to the largest 𝑉𝑠
𝑉min Variable associated to the smallest 𝑉𝑠

Table A.3: Sets for the post-operative patient model.

Set Description
𝑆 Specialties
𝑂 ORs
𝑆𝑜 Specialties compliant to OR 𝑜 ∈ 𝑂
𝐾 Days when the OR is open
𝐼𝑠 Specialties 𝑠2 such that �̂�2 < �̂� and 𝑠2 can be combined

with specialty 𝑠 ∈ 𝑆
�̄�𝑘 ORs that cannot be closed on day 𝑘
𝑆𝐶𝑜 Specialties that can only have surgeries planned in OR

𝑜 ∈ 𝑂 in combination with another specialty.
𝐼 Nursing wards of IC
𝑊 Nursing wards of MC
𝐷 Day care department
𝑃 Post-surgical patient subpaths through the nursing wards
𝑃𝐼 Post-surgical patient subpaths ending with an IC 𝑖 ∈ 𝐼
𝑃𝑊 Post-surgical patient subpaths ending with a ward 𝑤 ∈ 𝑊
𝑃𝐷 Post-surgical patient subpathss ending with the DC
𝑆𝑤 Specialties compliant to ward 𝑤 ∈ 𝑊
𝑆𝑖 Specialties complaint to IC 𝑖 ∈ 𝐼
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Table A.4: Probabilities for the post-operative patient model.

Notation Probability
𝑔𝑜𝑘 Probability distribution of total OR time of OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾
𝑎𝑝𝑖𝑠 Probability that a patient of specialty 𝑠 ∈ 𝑆 is being transferred to IC 𝑖 ∈ 𝐼

as the last nursing ward of subpath 𝑝 ∈ 𝑃𝐼
𝑏𝑝𝑤𝑠 Probability that a patient of specialty 𝑠 ∈ 𝑆 is being transferred to ward 𝑤 ∈ 𝑊

as the last nursing ward of subpath 𝑝 ∈ 𝑃𝑊
𝑐𝑝𝑠𝑛 Probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days

in the last nursing ward of subpath 𝑝 ∈ 𝑃
𝑑𝑝𝑠(𝑛+1) Probability that a patient of specialty 𝑠 ∈ 𝑆 is discharged after staying exactly 𝑛 days

in the last ward of subpath 𝑝 ∈ 𝑃
𝑒𝑝𝑠𝑛 Probability that a patient of specialty 𝑠 ∈ 𝑆 is in the last ward of subpath 𝑝 ∈ 𝑃 on day 𝑛

in case the patient has visited one nursing department after surgery
𝑒𝑝𝑠𝑛𝑚 Probability that a patient of specialty 𝑠 ∈ 𝑆 is in the last ward of subpath 𝑝 ∈ 𝑃 on day 𝑛

and stayed 𝑚 days in the preceding nursing department
in case of visiting 2 nursing departments

𝑒𝑝𝑠𝑛𝑚1𝑚2 Probability that a patient of specialty 𝑠 ∈ 𝑆 is in the last ward of path 𝑝 ∈ 𝑃 on day 𝑛
and stayed 𝑚1 and 𝑚2 days in the preceding nursing departments
in case of visiting 3 nursing departments

𝑓𝑖𝑠𝑛 Probability distributions that a patient of specialty 𝑠 ∈ 𝑆 is in IC 𝑖 ∈ 𝐼 on day 𝑛
𝑓𝑤𝑠𝑛 Probability distributions that a patient of specialty 𝑠 ∈ 𝑆 is in ward 𝑤 ∈ 𝑊 on day 𝑛
�̂�𝐼𝑖𝑞[𝑛] Probability of having 𝑛 patients in IC 𝑖 ∈ 𝐼
�̂�𝑊𝑤𝑞[𝑛] Probability of having 𝑛 patients in ward 𝑤 ∈ 𝑊

Table A.5: Distributions.

Notation Distribution
𝐹𝐼𝑖𝑠𝑞 Distribution of the number of recovering patient of specialty 𝑠 ∈ 𝑆 occupying

a bed in IC 𝑖 ∈ 𝐼 on the 𝑞th day when the surgery occurred on the first day
𝐹𝑊𝑤𝑠𝑞 Distribution of the number of recovering patient of specialty 𝑠 ∈ 𝑆 occupying

a bed in ward 𝑤 ∈ 𝑊 on the 𝑞th day when the surgery occurred on the first day
𝐺𝐼𝑖𝑜𝑘𝑠𝑞 Distribution of the bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 resulting from one surgery

of specialty 𝑠 ∈ 𝑆 being scheduled on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂
𝐺𝑊𝑤𝑜𝑘𝑠𝑞 Distribution of the bed occupancy in ward 𝑤 ∈ 𝑊 on day 𝑞 resulting from a surgery

of specialty 𝑠 ∈ 𝑆 being scheduled on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂
�̂�𝐼𝑖𝑜𝑘𝑠𝑞 Distribution of the bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 resulting from the surgeries

of specialty 𝑠 ∈ 𝑆 scheduled on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂
�̂�𝑊𝑤𝑜𝑘𝑠𝑞 Distribution of the bed occupancy in ward 𝑤 ∈ 𝑊 on day 𝑞 resulting from the surgeries

of specialty 𝑠 ∈ 𝑆 scheduled on day 𝑘 ∈ 𝐾 in OR 𝑜 ∈ 𝑂
𝐻𝐼𝑖𝑜𝑘𝑞 Distribution of the bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 resulting from

all surgeries of OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾
𝐻𝑊𝑤𝑜𝑘𝑞 Distribution of the bed occupancy in ward 𝑤 ∈ 𝑊 on day 𝑞 resulting from

all surgeries of OR 𝑜 ∈ 𝑂 on day 𝑘 ∈ 𝐾
�̂�𝐼𝑖𝑞 Distribution of bed occupancy in IC 𝑖 ∈ 𝐼 on day 𝑞 of the schedule
�̂�𝑊𝑤𝑞 Distribution of bed occupancy in ward 𝑤 ∈ 𝑊 on day 𝑞 of the schedule
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• 𝑐(𝑆𝐼)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days in the IC after surgery.
• 𝑐(𝑆𝑊𝐼)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days in the IC after spending time at
some nursing ward after surgery.

• 𝑐(𝑆𝑊1)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days at one of the wards in 𝑊 after
surgery and is discharged after the stay at a ward of𝑊.

• 𝑐(𝑆𝑊2)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days at one of the wards in 𝑊 after
surgery and is transferred to the IC after the stay at a ward𝑊.

• 𝑐(𝑆𝐼𝑊)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days at one of the wards in 𝑊 after
spending time at the IC after surgery.

• 𝑐(𝑆𝑊𝐼𝑊)𝑠𝑛: probability that a patient of specialty 𝑠 ∈ 𝑆 stays 𝑛 days at one of the wards in𝑊 after
spending first time at a ward in𝑊, followed by the IC after surgery.

• 𝑐(𝑆𝐷)𝑠ℎ: probability that a patient of specialty 𝑠 ∈ 𝑆 stays ℎ hours at the DC after surgery.

𝑑(𝑆𝐼)𝑠(𝑛+1) =
𝑐(𝑆𝐼)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝐼)𝑠𝑘
≈

𝑐(𝑆𝐼)𝑠𝑛
∑𝑁(𝑆𝐼)𝑠𝑘=𝑛 𝑐(𝑆𝐼)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0, … , 𝑁(𝑆𝐼)𝑠} (B.1)

𝑑(𝑆𝑊𝐼)𝑠(𝑛+1) =
𝑐(𝑆𝑊𝐼)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝑊𝐼)𝑠𝑘
≈

𝑐(𝑆𝑊𝐼)𝑠𝑛
∑𝑁(𝑆𝑊𝐼)𝑠𝑘=𝑛 𝑐(𝑆𝑊𝐼)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0,… , 𝑁(𝑆𝑊𝐼)𝑠} (B.2)

𝑑(𝑆𝑊1)𝑠(𝑛+1) =
𝑐(𝑆𝑊1)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝑊1)𝑠𝑘
≈

𝑐(𝑆𝑊1)𝑠𝑛
∑𝑁(𝑆𝑊1)𝑠𝑘=𝑛 𝑐(𝑆𝑊1)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0,… , 𝑁(𝑆𝑊1)𝑠} (B.3)

𝑑(𝑆𝑊2)𝑠(𝑛+1) =
𝑐(𝑆𝑊2)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝑊2)𝑠𝑘
≈

𝑐(𝑆𝑊2)𝑠𝑛
∑𝑁(𝑆𝑊2)𝑠𝑘=𝑛 𝑐(𝑆𝑊2)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0,… , 𝑁(𝑆𝑊2)𝑠} (B.4)

𝑑(𝑆𝐼𝑊)𝑠(𝑛+1) =
𝑐(𝑆𝐼𝑊)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝐼𝑤)𝑠𝑘
≈

𝑐(𝑆𝐼𝑊)𝑠𝑛
∑𝑁(𝑆𝐼𝑊)𝑠𝑘=𝑛 𝑐(𝑆𝐼𝑊)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0,… , 𝑁(𝑆𝐼𝑊)𝑠} (B.5)

𝑑(𝑆𝑊𝐼𝑊)𝑠(𝑛+1) =
𝑐(𝑆𝑊𝐼𝑊)𝑠𝑛

1 − ∑𝑛−1𝑘=1 𝑐(𝑆𝑊𝐼𝑤)𝑠𝑘
≈

𝑐(𝑆𝑊𝐼𝑊)𝑠𝑛
∑𝑁(𝑆𝑊𝐼𝑊)𝑠𝑘=𝑛 𝑐(𝑆𝑊𝐼𝑊)𝑠𝑘

𝑠 ∈ 𝑆, 𝑛 ∈ {0,… , 𝑁(𝑆𝑊𝐼𝑊)𝑠} (B.6)
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𝑒(𝑆𝐼)𝑠𝑛 = {
∑𝑖∈𝐼 𝑎(𝑆𝐼)𝑖,𝑠 for 𝑛 = 1
(1 − 𝑑(𝑆𝐼)𝑠(𝑛−1))𝑒(𝑆𝐼)𝑠(𝑛−1) for 𝑛 ∈ {2,… ,𝑁(𝑆𝐼)𝑠 + 1}
0 otherwise

(B.7)

𝑒(𝑆𝑊1)𝑠𝑛 = {
∑𝑤∈𝑊 𝑏(𝑆1)𝑤𝑠 for 𝑛 = 1
(1 − 𝑑(𝑆𝑊1)𝑠(𝑛−1))𝑒(𝑆𝑊1)𝑠(𝑛−1) for 𝑛 ∈ {2,… ,𝑁(𝑆𝑊1)𝑠 + 1}
0 otherwise

(B.8)

𝑒(𝑆𝑊2)𝑠𝑛 = {
∑𝑤∈𝑊 𝑏(𝑆2)𝑤𝑠 for 𝑛 = 1
(1 − 𝑑(𝑆𝑊2)𝑠(𝑛−1))𝑒(𝑆𝑊2)𝑠(𝑛−1) for 𝑛 ∈ {2,… ,𝑁(𝑆𝑊2)𝑠 + 1}
0 otherwise

(B.9)

𝑒(𝑆𝑊𝐼)𝑠𝑛𝑚 = {
(1 − 𝑑(𝑆𝑊𝐼)𝑠1)𝑒(𝑆𝑊)𝑠𝑚𝑑(𝑆𝑊)𝑠𝑚 for 𝑚 ∈ {1,… ,𝑁(𝑆𝑊)𝑠 + 1}, 𝑛 = 𝑚
(1 − 𝑑(𝑆𝑊𝐼)𝑠(𝑛−𝑚))𝑒(𝑆𝑊𝐼)𝑠(𝑛−1)𝑚 for 𝑚 ∈ {1,… ,𝑁(𝑆𝑊)𝑠 + 1}, 𝑛 ∈ {𝑚 + 1,… ,𝑚 + 𝑁(𝑆𝑊𝐼)𝑠 + 1}
0 otherwise

(B.10)

𝑒𝑆𝐼𝑊,𝑠,𝑛,𝑚 = {
(1 − 𝑑𝑆𝐼𝑊,𝑠,1)𝑒𝑆𝐼,𝑠,𝑚𝑑𝑆𝐼,𝑠,𝑚 for 𝑚 ∈ {1,… ,𝑁𝑆𝐼,𝑠 + 1}, 𝑛 = 𝑚
(1 − 𝑑𝑆𝐼𝑊,𝑠,𝑛−𝑚)𝑒𝑆𝐼𝑊,𝑠,𝑛−1,𝑚 for 𝑚 ∈ {1,… ,𝑁𝑆𝐼,𝑠 + 1}, 𝑛 ∈ {𝑚 + 1,… ,𝑚 + 𝑁𝑆𝐼𝑊,𝑠 + 1}
0 otherwise

(B.11)

𝑒(𝑆𝑊𝐼𝑊)𝑠𝑛𝑚1𝑚2 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(1 − 𝑑(𝑆𝑊𝐼𝑊)𝑠1)𝑒(𝑆𝑊𝐼)𝑠𝑚2𝑚1𝑑(𝑆𝑊𝐼)𝑠(𝑚2−𝑚1+1) for 𝑚1 ∈ {1,… ,𝑁(𝑆𝑊)𝑠 + 1},
𝑚2 ∈ {𝑚1, … ,𝑚1 + 𝑁(𝑆𝑊𝐼)𝑠}, 𝑛 = 𝑚2

(1 − 𝑑(𝑆𝑊𝐼𝑊)𝑠(𝑛−𝑚2+1))𝑒(𝑆𝑊𝐼𝑊)𝑠(𝑛−1)𝑚1𝑚2 for 𝑚1 ∈ {1,… ,𝑁(𝑆𝑊)𝑠 + 1},
𝑚2 ∈ {𝑚1, … ,𝑚1 + 𝑁(𝑆𝑊𝐼)𝑠},
𝑛 ∈ {𝑚2 + 1,… ,𝑚2 + 𝑁(𝑆𝑊𝐼𝑊)𝑠}

0 otherwise
(B.12)
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