
Comparing Static Semantics
Specifications for the IceDust DSL: A

Case Study of Statix

Version of September 7, 2023

Jesse Tilro

Comparing Static Semantics
Specifications for the IceDust DSL: A

Case Study of Statix

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jesse Tilro
born in Dordrecht, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Jesse Tilro.

The source code and evaluation scripts discussed in this thesis can be obtained from:
https://github.com/jessetilro/thesis

https://github.com/jessetilro/thesis

Comparing Static Semantics
Specifications for the IceDust DSL: A

Case Study of Statix

Author: Jesse Tilro
Student id: 4368142

Abstract

Reusable tools for engineering software languages can bridge the gap between for-
mal specification and implementation, lowering the bar for engineers to design and im-
plement programming languages. Among such tools belong NaBL2 and its successor
Statix, which are meta-languages for declaratively specifying the static semantics of pro-
gramming languages and generating typecheckers accordingly.

Although Statix intends to cover the domain of static semantics specification to a
greater extent than NaBL2, less is known about how the meta-languages compare in
terms of their practical usability.

In this thesis, we perform a case study in which we apply Statix to define the seman-
tics of IceDust, an incremental computing DSL for modeling data with relations, and
compare it to a prior NaBL2 specification.

We compare the novel and prior specification in order to determine how the meta-
languages, when applied to the case of IceDust, compare in terms of high-level character-
istics: expressiveness, readability, implementation effort and runtime performance. We
perform four evaluations to this end: a qualitative in-depth comparison of the specifica-
tions, a measurement of specification sizes, an evaluation of correctness and a runtime
performance benchmark of the resulting type checkers.

Our findings suggest that although Statix has a larger coverage of possible language
definitions, in the case of IceDust it is a less expressive formalism for defining the static se-
mantics and generates a slightly less performant type checker when compared to NaBL2.
We find areas of interest for future work aiming to improve the practical usability of Statix,
namely the definition of type compatibility relations, the way data in the scope graph are
stored and retrieved and the integration with the compiler back-end.

Thesis Committee:

Chair: Dr. M. T. J. Spaan, Faculty EEMCS, TU Delft
Committee Member: Dr. B. P. Ahrens, Faculty EEMCS, TU Delft
University Supervisor: Ir. D. M. Groenewegen, Faculty EEMCS, TU Delft

J.Tilro@student.tudelft.nl

Preface

Six eventful years after starting the master’s program in Delft, writing this preface marks a
moment of great relief for me. I would like to take this opportunity to thank the people who
helped me see it through to the end.

I would like to thank my supervisor, Danny Groenewegen, who supported and advised
me for over three years. Whenever I strayed off course, he was there to set my priorities
straight and encourage me to take another step. Also, I am thankful to the members of
my committee, Benedikt Ahrens and Matthijs Spaan, for helping me improve the quality
of my work and guiding me toward the defense. My thanks go out as well to everyone at
the research group who took an interest in my project, provided me with technical support,
or shared their experiences with me. In the same spirit, I thank David Alderliesten, Floris
Doolaard, and Niels Warnars, with whom I graduated for the bachelor’s program and stayed
in touch ever since. They inspired me to finish the work on my thesis as they set an example
and encouraged me.

In the meantime, for the past seven years, my job has been an important anchor for me.
I would like to thank the original company founders Michel Fiege, Sem Goedknegt, Frank
Groeneveld, Martijn Reijerse, and Bas Schoenmakers for their trust in me, and their willing-
ness to adapt to my changing needs and availability during my studies. The working envi-
ronment they created and developed over time allowed me to grow professionally without
sacrificing my academic ambitions. I thank my colleagues for all the interest, feedback, and
encouragement I received from them as I progressed with my thesis.

I am grateful for the love and support of my parents, Peter and Corinne, and their part-
ners, my girlfriend, family, and friends, who helped me go through challenging times and
enabled my perseverance.

Finally, I would like to pay gratitude to the late professor Eelco Visser, who welcomed me
into the programming languages research group. His positivity, patience, and understand-
ing with me during our process of defining a thesis project that fit my personal strengths and
interests meant a great deal to me.

Jesse Tilro
Dordrecht, the Netherlands

September 7, 2023

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 5
2.1 IceDust . 5
2.2 Spoofax . 9
2.3 NaBL2 . 11
2.4 Statix . 12

3 Design differences between NaBL2 and Statix 13
3.1 Type compatibility relations . 13
3.2 Name binding patterns . 22
3.3 Declaration properties . 29
3.4 Integration with the compiler back-end . 33

4 Evaluation 35
4.1 Expressiveness . 35
4.2 Correctness . 36
4.3 Runtime performance . 42

5 Related work 45
5.1 Abstractions for type checker implementation 45

6 Conclusion 49
6.1 Future work . 50

Bibliography 53

List of Figures

2.1 Class diagram of a running example data model. Associations have roles for both
directions, and multiplicities are denoted using IceDust’s multiplicity modifiers. 6

2.2 IceDust specification defining the model depicted in figure 2.1. 7
2.3 The class diagram of figure 2.1 extended with derived relations and attributes. . 8
2.4 IceDust specification of the two derived relations in the running example. 8
2.5 IceDust specification of the derived attributes in the running example. For brevity,

the declarations of the Supply model as well as all relations have been left out of
this snippet. 8

2.6 Screenshot of the Spoofax language workbench editor window. The viewports
labelled with numbers involve: (1) a part of the syntax specification in SDF3 of
IceDust; (2) a part of the static semantics specification in NaBL2 of IceDust; (3)
a part of the dynamic semantics specification in Stratego of IceDust; (4) a part of
an example IceDust program. 10

3.1 Example program with type conversions. 14
3.2 Type compatibility relation over a set of primitive types. 14
3.3 Example of a relation declaration in NaBL2. 15
3.4 Example of declaring a relation member in a constraint generation rule in NaBL2. 15
3.5 Example of quering a relation in a constraint generation rule in NaBL2. 15
3.6 Example of applying the automatically derived least upper bound function of a

relation in a constraint generation rule in NaBL2. 16
3.7 Example of declaring a member of a relation using an axiom rule in Statix. 16
3.8 Example of declaring properties of a relation using constraint patterns in Statix. . 16
3.9 The lattice modeling the compatibilities between multiplicity and ordering com-

binations in IceDust. 17
3.10 Implementation of the multiplicity and ordering lattice of IceDust in NaBL2 . . . 18
3.11 Implementation of the multiplicity and ordering lattice of IceDust in Statix 18
3.12 The type signatures of IceDust in Statix. 19
3.13 Example of entity declarations composing an inheritance hierarchy in IceDust,

and the corresponding scope graph. 20
3.14 Implementation of the subtype compatibility relation including (dynamic) entity

types in Statix. 20
3.15 Implementation of the least upper bound function on the subtype relation includ-

ing (dynamic) entity types in Statix. 21
3.16 Example of an NaBL2 scope graph including imports. The scope graph represents

the name binding for a program expressed in an example language featuring mod-
ules. 23

viii List of Figures

3.17 Example of a Statix scope graph encoding imports using the scopes-as-types ap-
proach. 24

3.18 The Statix definition of constraints related to entity extension. The extendScope
constraint introduces edges in the scope graph that ensure that the scopes of an
entity and its extensions form a clique. The resolveEntityExtensions constraint
queries all extension scopes of an entity via scopes encapsulted in declarations.
The modelOk constraints for entity and relation declarations that rely on these con-
straints are listed for context. 26

3.19 IceDust example with inheritance. 27
3.20 Corresponding NaBL2 scope graph. The edge label I represents an import, while

label J represents a lower priority import. 27
3.21 Corresponding Statix scope graph. 27
3.22 IceDust example with a relation. 28
3.23 Corresponding NaBL2 scope graph. The edge label I represents an import, while

label J represents a lower priority import. 28
3.24 Corresponding Statix scope graph. 28
3.25 Example of an IceDust program with data section that contains a declaration of a

value for the shortcut role of an entity instance. 29
3.26 Summary of the constraints involved to determine the type of a relation instance

when supplied as value to a shortcut role, utilizing the NaBL2 support for assign-
ing arbitrary properties to scope graph declarations. Remaining constraints that
are part of the rules have been ommitted for brevity. 30

3.27 Statix abstractions for storing generic properties as scope graph datums. This
snippet is abbreviated, as actually more getter and setter constraint are featured
in the Statix specification for IceDust for values of different sorts 32

4.1 Comparison between the sizes in LoC of the NaBL2 and Statix specifications. . . 36
4.2 Example of how the completeness of the Statix specification was verified through

exhaustive comparison between corresponding constraint rules. 37
4.3 Screenshot of the results from executing the test suite on the Statix specification

displayed in the SPT Test Runner of the Spoofax IDE. 38
4.4 Distribution of the constraint rules (y-axis) over the the amount of tests covering

them (x-axis). 39
4.5 Summary of the rules not covered by the test suite for our Statix specification,

grouped by constraint. 40
4.6 Listing of the specifications written in IceDust that made up the dataset used for

the benchmark. 43
4.7 Comparison between the analysis durations of the NaBL2 and Statix specifications

applied to different example IceDust programs. 43

Chapter 1

Introduction

Programming languages are fundamental tools for developing computer software. They al-
low developers to express their intent in a structured manner that strikes a balance between
human readability on one hand, and machine processability on the other. Over the years,
extensive research has been conducted to advance programming languages and their associ-
ated tools, aiming to improve productivity, code quality, and software reliability.

Programming languages can be formalized, meaning that their syntax and semantics are
defined using particular definition formalisms, which creates the opportunity to prove that
the language has certain properties such as type safety and functional correctness. These
proofs are valuable as they ensure that these properties hold for any program written in the
language and thus provide guarantees for programmers. However, the actual implemen-
tation of programming languages involves creating various tools, including compilers and
editor services, to make the language practically usable. Maintaining separate formalizations
and implementations can be labor-intensive, as they should be kept in alignment with each
other: changes to the formal specification of a language should be correctly implemented,
and vice versa.

For this reason, bridging the gap between formal specifications and language implemen-
tations is one of the focuses in research revolving around programming language theory. It
aims to identify underlying concepts in language semantics, such as recurring patterns in
type systems and common name binding structures, to approach them more generically. By
doing so, reusable tools for language engineering can be constructed.

Reusable tools for language engineering allow for streamlining the process of design-
ing custom domain-specific languages (DSL) for specific problem domains. Such languages
equipped with the appropriate constructs and abstraction mechanisms enable programmers
to reason more effectively about their programs and domains compared to general-purpose
languages or frameworks. Moreover, domain-specific languages provide additional guar-
antees and safeties at the language level, allowing for earlier and more specific warnings to
programmers during development. Reusable tools also facilitate faster iterations in language
design and optimization.

This thesis specifically investigates Spoofax, a language workbench, and two of the meta-
languages it features for static semantics specification: NaBL2 and Statix. Statix was designed
as a successor to NaBL2. Since NaBL2 and its underlying theoretical framework have ap-
peared to be limited to modeling simple, nominal type systems, some generalizations in the
design of Statix have been made that render it applicable to a larger range of type systems
with more sophisticated patterns. These generalizations are described in more detail in Sec-
tion 2.4. The main motivation for the initial research on Statix has thus been to achieve a
greater coverage of the domain of static semantics specification than NaBL2. However, less
is known about the implications of these design differences when it comes to the practical
applicability of Statix compared to NaBL2. This formed the main motivation for this the-

2 1. Introduction

sis, in which we perform a case study with the meta-languages and compare their practical
applicability.

Our methodology for conducting this case study was based on the framework proposed
by Runeson and Höst (2009). The objective is to compare the two meta-languages in terms of
high-level characteristics that include expressiveness, readability, implementation effort and
runtime performance. We study the case of the IceDust language, as the studied meta DSLs
are applied to express the static semantics of this object language, which involves the defi-
nition of its type system and name binding structures. Our motivation for selecting IceDust
as case for static semantics specification, is that its semantics touch upon various features of
the meta DSLs and therefore it has the potential to reveal insights about them throughout
the research process.

As part of this case study, we aim to answer the following research questions:

RQ1. Can the static semantics of IceDust be expressed using Statix, such that the resulting
typechecker performs analyses to the same level of correctness as the one based on the
NaBL2 specification?

RQ2. How significantly do NaBL2 and Statix differ in expressiveness, readability and im-
plementation effort when comparing their specifications for IceDust, and which meta-
language design choices are most impactful on this?

RQ3. How do NaBL2 and Statix compare in terms of the runtime performance of their result-
ing type checkers for IceDust?

The differences in expressiveness between NaBL2 and Statix when applied to the static se-
mantics of IceDust is of main interest in this thesis. This topic is therefore covered first. Chap-
ter 3 is dedicated to describing certain parts of the specifications that comprise a non-trivial
solution to a particular challenge in declaring the semantics, and comparing them in-depth.
Then, primarily based on these comparisons, we evaluated the differences in expressiveness
between the meta-languages and answered research question RQ2, which is described in
evaluation section 4.1. In order to validate this comparison and answer research question
RQ1, we evaluated the correctness of our specification which is described in evaluation sec-
tion 4.2. Finally, to answer research question RQ3, we performed a performance benchmark
that is described in evaluation section 4.3.

The main contributions of our research are:

1. We define a specification of the static semantics of the IceDust language project imple-
mented in Statix, that covers the same semantics defined in the prior NaBL2 specifica-
tion. This allows for the evaluations performed as part of this case study, but may also
render the IceDust language applicable as object of future research.

2. We share as artifacts with this thesis the reproducible scripts used in performing our
evaluations, including a benchmark pipeline for performance comparison between NaBL2
and Statix based static analyses and a test coverage estimation of SPT tests on Statix con-
straints. These scripts are object-language parametric, and may therefore be reused or
built upon in similar studies.

3. We provide insights about four high-level language characteristics of the NaBL2 and
Statix meta DSLs for static semantics specification, namely implementation effort, read-
ability, expressiveness and performance. We present these insights categorized by
three areas: type compatibilities, scope graphs and interfaces between compiler pipeline
stages.

3

The remainder of this thesis is structured as follows. In Chapter 2 we provide background in-
formation on some of the important concepts that are involved in this thesis. Next, in Chapter
3 we describe the research that was conducted for this thesis, involving the post-facto formal-
ization of the static semantics of the IceDust language using Statix and comparing it to the
prior NaBL2 specification. We present this structured according to three areas that proved to
be most significant in answering our research questions: type compatibilities, scope graphs
and interfaces between compiler pipeline stages. Then, as part of Chapter 4, we describe
how we evaluated our work and answered our research questions through various meth-
ods of comparing our specification with the prior specification. We discuss related work in
Chapter 5. Finally, we present our conclusions in Chapter 6.

Chapter 2

Background

In this chapter we provide an introduction to several concepts that are of importance in this
study. We elaborate upon: IceDust, a DSL that serves as the case being studied; Spoofax, the
language workbench in which the studied meta-languages are integrated; NaBL2, the pre-
decessor meta-language under comparison; and Statix, the successor meta-language under
comparison.

2.1 IceDust
In this case study, the IceDust language was studied as case for static semantics specification.
IceDust is a declarative domain-specific language allowing the specification of a data model
with relations and its associated business logic (D. C. Harkes and Visser 2017) (D. C. Harkes,
Groenewegen, and Visser 2016). It solves various challenges in modeling relations using
dedicated language features, and enables the declaration of business logic associated with
the data model independent of the computational strategy used to evaluate it.

2.1.1 Modeling relations
A preliminary study leading up to the development of IceDust was done by Harkes (D.
Harkes and Visser 2014). This study analyses the design space of modeling data with re-
lations. The analysis identifies and organizes approaches to modeling relations in a matrix
along two orthogonal dimensions:

1. Modeling paradigms, concerning different approaches to modeling data: relational,
object-oriented, object-role modeling (ORM) and graph database.

2. Relation models, concerning different datastructures as representations of a relation:
edge, tuple and object.

As a result of the analysis, a novel modeling language forming the basis of IceDust is pro-
posed that unifies and generalizes features from different approaches in the design space
that contribute to desired characteristics in modeling relations. Being aligned mostly with
the ORM approach and modeling relations as objects, the language aims to integrally solve
challenges identified in dealing with multiplicities, navigation, arity and first-class citizen-
ship of relations.

Multiplicities

Encoding one-to-many/many-to-many relations as collections of values while encoding (op-
tional) one-to-one/many-to-one relations as (nullable) singleton values yields a discontinuity
in programming style. The issues associated with this discontinuity include (1) having to

6 2. Background

Product

sku: String

markup: Float

bundle ?

bundledProducts ⁎

LineItem

quantity: Int

Order

number: String

Supply

supplier: String

price: Float

inStock: Boolean

product 1 ⁎ supplies

lineItems + 1 order

lineItem ⁎

1 product

Figure 2.1: Class diagram of a running example data model. Associations have roles for both
directions, and multiplicities are denoted using IceDust’s multiplicity modifiers.

explicitly unwrap collection values and null-check nullable values; (2) accounting for con-
straints that the type system imposes on the different return types (Collection<Type> versus
Type); and (3) dealing with different call semantics. These issues can be solved by incorpo-
rating multiplicities as a native feature into the modeling language and abstracting over the
possible cardinalities of values, allowing the results of querying relations to be interacted
with uniformly. IceDust supports multiplicity modifiers expressing that fields may have ex-
actly one value (represented by 1), zero or one value (represented by ?), zero or more values
(represented by *) or one or more values (represented by +).

Navigation

In navigating relations, it is desirable that relations can be navigated bidirectionally and that
navigations in both directions can be expressed concisely. The representation of a relation as
an object introducing indirection, the ORM style of navigation using named roles, and the
support for shortcuts and inverses of the proposed language all contribute to this end.

First-class citizenship

First-class citizenship in the context of relations means according to Harkes that (1) relations
can have attributes and (2) relations can be the subject in other relations. Together with
named roles this is identified as a prerequisite for enabling n-ary relations.

Arity

By supporting n-ary relations, relationships of any arity, i.e. between an arbitrary amount of
objects, can be expressed.

As an example, consider the data model depicted in figure 2.1, representing a simplified
e-commerce retail system. The model contains products (Product) that can be recursively
aggregated in bundles. Products may be in stock and offered for varying prices by different
suppliers (Supply). Orders (Order) may consists of varying quantities of different products
(LineItem). This model can be expressed in IceDust using the code depicted in figure 2.2.

2.1.2 Business Logic
In addition to specifying a data model with relations using aforementioned language con-
structs, IceDust also allows for implementation of business logic associated to the data model.
Regarding the execution model, an IceDust program consists of a list of entities with fields,

2.1. IceDust 7

entity Product {
sku : String

}

relation Product.bundledProducts * <-> ? Product.bundle
relation Product.supplies * <-> 1 Supply.product
relation Product.lineItems * <-> 1 LineItem.product

entity Supply {
supplier : String
price : Float
inStock : Boolean

}

entity LineItem {
quantity : Int

}

entity Order {
number : String

}

relation Order.lineItems + <-> 1 LineItem.order

Figure 2.2: IceDust specification defining the model depicted in figure 2.1.

where fields can be attributes and relations. There is a distinction between base attributes
and derived attributes, the former being assigned a value through user input, and the latter
yielding a value that is the result of a calculation. Similarly, relations can also be derived.
Thus, derived fields enable a means of implementing business logic.

The calculation of derived attributes and relations can be declaratively specified as an ex-
pression in terms of literals and other fields. The language supports a reactive programming
paradigm by automatically tracking dependencies between attributes and having changes
to base attributes propagate to their dependent derived attributes. The propagations can be
transitive as derived attributes may depend other derived attributes. Subexpressions may be
abstracted and made reusable as parameterized functions which are declared in a separate
section of and IceDust program.

To exemplify these derived attributes and relations we extend our running example in
figure 2.3. We define a derived relation that relates a products with its best supply, best
being defined as being in stock and having the lowest purchase price. This relation can be
expressed as the composite derived relation shown in Figure 2.4. Our extension also includes
derived attributes for the prices of a product, line item and order, which are defined in figure
2.5.

The declarative approach to defining calculations enables a separation between the con-
cern of specifying the semantics of the calculation and specifying its implementation strat-
egy. An implementation strategy for a derived attribute calculation can be briefly declared
using a single keyword. The supported implementation strategies of calculations are: on-
demand, incremental and eventual. On-demand calculation recomputes the value of a de-
rived attribute each time it is read, analogous to a getter method implementation in an object-
oriented language. Incremental calculation recomputes the value of a derived attribute on

8 2. Background

Product

sku: String

markup: Float

bundle ?

bundledProducts ⁎

price(): Float

LineItem

quantity: Int

price(): Float

Order

number: String

price(): Float

Supply

supplier: String

price: Float

inStock: Boolean

product 1 ⁎ supplies

lineItems + 1 order

lineItem ⁎

1 product

productAsBest ? ? bestSupply

Figure 2.3: The class diagram of figure 2.1 extended with derived relations and attributes.

relation Product.inStocks * =
supplies.filter(x => x.inStock)
<-> ? Supply.productInStock

relation Product.bestSupply ? =
inStocks.find(x => x.price == (min(inStocks.price) <+ 0.0))
<-> ? Supply.productAsBest

Figure 2.4: IceDust specification of the two derived relations in the running example.

entity Product {
sku : String
markup : Float
price : Float ? = sum(bundledProducts.price)

<+ (bestSupply.price * (1.0 + (markup / 100.0)))
}

entity LineItem {
quantity : Int
price : Float ? = product.price * quantity as Float

}

entity Order {
number : String
price : Float ? = sum(lineItems.price)

}

Figure 2.5: IceDust specification of the derived attributes in the running example. For brevity,
the declarations of the Supply model as well as all relations have been left out of this snippet.

2.2. Spoofax 9

each write to a dependency. Eventual calculation dirty flags dependent derived attributes
on a write to a dependency, and has a separate thread eventually recompute their derived
values.

Calculation strategies can thus be declaratively specified on a per attribute basis with-
out any changes to the corresponding calculation expression, and can be soundly composed.
This allows tuning calculation strategies to improve non-functional quality characteristics of
the program such as performance with minimal programming effort, contrary to many other
formalisms.

2.1.3 Static Analysis

One of the main premises of the IceDust language is to provide as many static guarantees as
possible. The benefits of this include being able to warn the programmer early in the editor,
preventing unnecessary runtime errors and ensuring consistency of the runtime behavior.
This does introduce the necessary complexities in the static semantics of the language.

The variability in IceDust programs is modeled in a feature model revolving around the
main language construct, namely the field. The features of a field are orthogonal and can
therefore be independently configured. These features include for example the multiplicity
constraint, the derivation type, and the calculation strategy. However, to ensure soundness
of the specification, certain constraints are imposed on the combination of features.

These constraints translate into the type checking approach. Types in IceDust are repre-
sented by tuples of three lattice values. The lattices involve: the data type; the multiplicity
and ordering; and the calculation strategy. Checking whether for example the actual type of
an expression meets the expected type (e.g. according to the static type signature) amounts
to testing whether each value in the actual type tuple is lower in the lattice than its respec-
tive value in the expected type tuple. Determining the type tuple of a particular term may
amount to aggregating the values of the type tuples of its subterms in different ways. For
example for a particular binary operation, the resulting data type may be the least upper
bound of the data types of the operands, while the multiplicity may be derived in way that
is more specific to the semantics of that operation.

Furthermore, fields can be declared to belong to an entity in different ways. As entities
can be declared to extend one another, fields may be inherited and overridden. Also, a re-
lation declaration in fact implies that the entities involved in the relation are extended with
fields, those fields being the roles of the relation. This yields a number of non-lexical binding
patterns. On top of this, resolving references to fields is non-trivial. An expression accessing
a member of a subexpression requires the type of said subexpression to be determined before
the member reference can be resolved to the corresponding field declaration. This shows a
case where name resolution is type dependent.

This combination of complexities in the static semantics make IceDust an interesting case
for static semantics specification using Statix, and comparison with its NaBL2 counterpart.

2.2 Spoofax
Spoofax is a language designer’s workbench under active development by the Programming
Languages research group at Delft University of Technology (Visser 2010). It features range
of highly declarative meta DSLs that allow for writing definitions of various aspects of a pro-
gramming language, including its concrete and abstract syntax, and static and operational
semantics. The specifications for each of these aspects are automatically compiled to respec-
tive components of the compiler pipeline, as well as tools such as editor services. Within the
context of this case study, the most relevant DSLs in Spoofax are the following.

10 2. Background

Figure 2.6: Screenshot of the Spoofax language workbench editor window. The viewports
labelled with numbers involve: (1) a part of the syntax specification in SDF3 of IceDust; (2)
a part of the static semantics specification in NaBL2 of IceDust; (3) a part of the dynamic
semantics specification in Stratego of IceDust; (4) a part of an example IceDust program.

• SDF3, a context-free grammar formalism for specifying both the concrete and abstract
syntax of a programming language in alignment. Production rules may be declared
in template form such that not only a parser but also a pretty printer can be derived
from them. It also supports filters for disambiguating ambiguous grammars. From a
specification, a parse table is generated that is then fed to an SGLR parser generator
(Souza Amorim and Visser 2020).

• NaBL2, for specifying the static semantics of a programming language in terms of name
binding and type checking rules (Van Antwerpen, Néron, et al. 2016).

• Statix, also for specifying static semantics by means of user defined constraints, and
intended as the successor to NaBL2 (Van Antwerpen, Bach Poulsen, et al. 2018).

• Stratego, a term rewriting language used for defining program transformations. A spec-
ification consists of rewriting rules along with strategies that declare how to traverse
the AST and apply the rules. Transformations can, among others, be used to define
the operational semantics of a programming language (Visser, Benaissa, and Tolmach
1998).

• SPT, the Spoofax Testing language for declaring automated test cases for a language
project.

The workbench is built on top of the Eclipse IDE and the Eclipse Modeling Framework (EMF),
and is implemented in Java. Due to the fact that editor services are dynamically loaded and
language parametric, an object language may be developed and used side-by-side at the same
time. This allows for an iterative and incremental approach to language design, where the
language is developed in an exploratory manner and evolves inductively. This increases

2.3. NaBL2 11

the productivity of language engineers when compared to handwriting compiler pipeline
components and editor services.

2.3 NaBL2

NaBL2, which is an acronym for Name Binding Language, is a meta-DSL integrated into the
Spoofax Language Workbench. It enables declarative specification of the static semantics of a
programming language in terms of name binding and type checking rules. NaBL2 is a succes-
sor to the NaBL/TS meta-language, and its latest implementation is not directly formalized
in a publication, but rather results from a line of work in declarative static semantic analy-
sis. Early work instroduces a first iteration of the declarative meta-language and algorithm
and its integration into the Spoofax language workbench (Konat et al. 2013). This work is
extended by further development of the theoretical framework upon which NaBL2 is based,
introducing the theory of scope graphs (Neron et al. 2015). Later work integrates the theory
of scope graphs into the meta-language to practically allow building type checkers based on
them (Van Antwerpen, Néron, et al. 2016).

The NaBL2 meta-language takes a constraint-based approach to static semantics analysis
by utilizing a particular constraint language internally (Van Antwerpen, Néron, et al. 2016).
It compiles a specification to a language-dependent extractor that accepts an abstract syntax
tree and produces a set of constraints. These constraints express the requirements that should
be met in order for the program to be well-typed and well-bound. Language-independent
constraint solving and unification algorithms are then used to produce a set of name and
type assignments satisfying these constraints.

Theoretically, in static semantics formalization, there exists an interdependence between
the disciplines of name resolution, type resolution and scope graph construction. For ex-
ample, there may be cases in which name resolution is type dependent. Because of this
interdependence, all constraints in NaBL2 are expressed and solved integrally using a uni-
form mechanism. Nevertheless, for the purpose of supporting each of these disciplines, the
produced constraints are divided into three categories: scope graph constraints, resolution
constraints and typing constraints. A scope graph is an abstract representation of the name
binding structure of a program. It consists of scopes, declarations and references. A scope
describes AST nodes that behave the same in terms of name binding; a declaration describes
an identifier that introduces a name; and a reference describes an identifier that refers to a
declaration. In NaBL2, internally, a scope graph is represented directly as the solution to a
set of scope graph constraints. These constraints express which declarations and references
belong to which scope, as well as the associations between scopes. Resolution constraints
express that a particular reference must resolve to a particular declaration, or that a certain
property should hold for a name collection (e.g. the declarations belonging to a particular
scope should be unique). Typing constraints express the requirements for type consistency
(e.g. type equality).

Resolution constraints are checked against the scope graph using a resolution calculus.
The resolution calculus defines via which path through the scope graph a reference may be
resolved to a declaration, the path being a sequence of traversed edges. In NaBL2, the resolu-
tion calculus is parameterized with a global set of edge labels, scope visibility order and path
well-formedness predicate in the form of a regular expression. This way the resolution calcu-
lus can be tailored to the object language. However, the global scope of this parameterization
is a limitation, as it disallows the definition of namespace-dependent visibility policies.

12 2. Background

2.4 Statix
Statix is a constraint-based declarative meta DSL for defining the static semantics of an object
language similar to NaBL2 (Van Antwerpen, Bach Poulsen, et al. 2018). It was introduced to
the Spoofax language workbench as the successor to the NaBL2 meta DSL. Statix is based on
the same ideas as NaBL2 but introduces a few generalizations intended to enable capturing
various complexities in type systems in a more generic manner. This evolution fits some long
term research goals including the standardization of the way names are treated in program-
ming languages based on common underlying concepts, and constructing reusable tools for
language design.

One of the generalizations that Statix makes compared to NaBL2 is that it allows for user
defined constraints. In NaBL2, constraint generation rules are written. They can be named,
and passed to higher-order rules, but are limited in their possible rule patterns and applica-
tions. In Statix, generic constraints can be defined that are named and can be referenced in
the bodies of other constraints. This allows for the creation of abstract, reusable constraints
within a specification.

Another generalization of Statix is that it allows for name resolution through the use of
scope graph queries that are parameterized on a per constraint basis rather than through a
global resolution calculus as is the case in NaBL2. A query as part of a constraint body is
parameterized in a target relation (i.e. collection that declarations in a scopegraph belong
to), path welformedness predicate (i.e. a regular expression in terms of scope graph edge
labels), data wellformedness filter, label ordering relation (e.g. to express the shadowing
policy), data comparison predicate and a result pattern. This addresses the limitation men-
tioned in section 2.3, allowing for the definition of name visibility policies that are namespace-
dependent.

Finally, scope graph declarations in Statix are generalized to datums belonging to user
defined relations, the signatures of which are allowed to include scopes in addition to other
term constructors. This allows for what is dubbed the “scopes-as-types” approach to model-
ing type system features. The approach is well suited for modeling non-trivial type system
features, in particular structural record types and parameterized types in both nominal and
structural type systems. The support for this approach renders the NaBL2 feature of scope
graph imports obsolete, which was therefore left out of the design of Statix.

These design choices ultimately require some differences in one’s approach to model cer-
tain semantics when compared to NaBL2, because the feature sets of the DSLs differ such
that there is no one-to-one correspondence for all features. Particular differences are further
elaborated upon in chapter 3.

This concludes our introduction to the main topics relevant in this thesis, which include
the IceDust object language and the NaBL2 and Statix meta-languages for static semantics
specification. In the next chapter, we describe how these topics were involved in the work
that we have done, as we explore the insights we gained over the course of migrating the
static semantics of IceDust from NaBL2 to Statix.

Chapter 3

Design differences between NaBL2
and Statix

This thesis revolves around a case study of the Statix meta-language. It involved defining
the static semantics of the IceDust DSL in Statix. A prior definition of the DSL’s static se-
mantics existed in the form of an NaBL2 specification. Therefore, our approach involved
migrating the existing specification. During the migration process we were able to analyse
differences between the prior and novel specification and distill a number of key findings
that contributed toward answering our research questions. The findings are presented in
this chapter, categorized by four topics: defining type compatibility relations, defining name
binding patterns, storing declaration properties in the scope graph and defining interfaces
between compiler pipeline stages.

3.1 Type compatibility relations
In this section we look at the way the types featured in the IceDust language are related
to each other. Modeling relations between types expressively using a meta DSL requires
support of appropriate metalanguage constructs. Both NaBL2 and Statix support modeling
relations over sets of terms (i.e. the data structure used to represent types) using different
feature sets. First, in Section 3.1.1, we explain how type compatibility relations can be defined
using NaBL2 and Statix in general. Then, in Section 3.1.2, we look at examples of how we
expressed particular type compatibilities of IceDust in Statix and compare it to the NaBL2
counterpart in terms of implementation effort and readability.

3.1.1 Defining type compatibility relations using NaBL2 and Statix
We first introduce type compatibilities and their meaning for static semantics formalization,
and then explain the features of NaBL2 and Statix that can be utilized to formalize such
compatibilities.

Type compatibility in static semantics

A static semantics specification includes a definition of type compatibility. Type compatibil-
ity in the broad sense refers to the similarity of two types to each other. Defining compatibil-
ity is important for ensuring soundness of, among others, type conversions and operations.
The particular rules governing type compatibility may to some degree be specific to these
conversions and operations. Compatibility is also in part inherent to the category of a type
system. For example, nominal and structural type systems give a different meaning to sub-
typing, which plays a role in type compatibility.

14 3. Design differences between NaBL2 and Statix

In formalizing static semantics, type compatibility may be defined using the relation as
mathematical construct. Consider some examples of type conversions in figure 3.1. The
example shows a language supporting implicit type conversions. Line 2 shows a conversion
of a value of type Time to type Int, based on the idea that a datetime value may be represented
as a unix timestamp. Line 3 shows a mixed-type expression that implies a promotion of a
value of type Int to type Float.

1 Time time = 1970-01-01 00:00:21;
2 Int timestamp = time;
3 Float answer = timestamp * 2.0;

Figure 3.1: Example program with type conversions.

T =tTime, Int, Floatu

Rc =t(Time, Int), (Int, Float)

(Time, Time), (Int, Int), (Float, Float),

(Time, Float)u

Figure 3.2: Type compatibility relation over a set of primitive types.

The compatibility between the primitive types according to this example may be represented
by the relation defined in figure 3.2. Rc is defined as a binary relation over a set of types T ,
meaning Rc Ď T ˆ T . We define the relation to be reflexive, transitive and asymmetric, so
the relation includes tuples for reflexively and transitively related types as well.

Type checking the assignment statements in the program now involves testing whether
the expression type can be converted to the statically declared type. Given expression type
te and static type ts, this then amounts to asserting (te, ts) P Rc. Type checking a binary
operation (such as in line 3 of the example) with left and right operands of types tl and tr
respectively then amounts to asserting Dtx P T [(tl, tx) P Rc^(tr, tx) P Rc]. This demonstrates
that a definition of type compatibility is a prerequisite for defining the static semantics of a
language.

With the practicalities involved in implementing these relations in mind, we distinguish
between static and dynamic relations in this thesis. With static relations, we refer to relations
that are invariant, i.e. independent of the program. For example, such a relation could ex-
press which built-in type can be cast to which other type, like in the example above. By
dynamic relations, we mean relations that cannot be established until constraint time, i.e.
during the analyis on an object program. For example this could be a relation capturing the
inheritance relationships between user-defined classes.

Defining relations in NaBL2

NaBL2 features a dedicated “relation” language construct. In a separate relations section of a
module, named relations with a term signature can be declared. Using declarative modifiers,
certain properties of the relation can be defined. For example, a type compatibility relation
for subtyping may be declared as follows:

3.1. Type compatibility relations 15

reflexive, anti-symmetric, transitive sub : Type * Type

Figure 3.3: Example of a relation declaration in NaBL2.

Pairs of terms can then be added to this relation explicitly using the term <sub! term clause
as part of a constraint generation rule, like such:

init ^ () :=
TInt() <sub! TNumber().

Figure 3.4: Example of declaring a relation member in a constraint generation rule in NaBL2.

It can subsequently be asserted that a pair of terms belongs to this relation using a term
<sub? term clause as part of a constraint generation rule. For example, this could be involved
in testing whether the type of the body of a function declaration matches its expected return
type:

[[Function(id, t, exp) ^ (s)]] :=
[[t ^ (s) : expected_type]],
[[exp ^ (s) : body_type]],
body_type <sub? expected_type.

Figure 3.5: Example of quering a relation in a constraint generation rule in NaBL2.

The supported “positive” properties that can be declared on a relation allow inference of
pairs that are not explicitly added. Let R be a relation on a set of terms T . The positive
relation properties available in NaBL2 express the following inferences:

• reflexive — @x P T : xRx

• symmetric — @x, y P T : xRy ô yRx

• transitive — @x, y, z P T : xRy ^ yRz ñ xRz

The supported “negative” properties yield validations that are performed whenever a pair
is added to the relation by a constraint clause. When an added pair causes a violation of the
property, this results in an error in the program. These properties mutually exclude their
positive counterpart and include:

• irreflexive — @x, y P T : xRy ñ x ‰ y

• anti-symmetric — @x, y P T : ␣(xRy ^ yRx)

• anti-transitive — @x, y, z P T : xRy ^ yRz ñ ␣xRz

In addition to these properties, relations feature automatically derived functions that yield
the least upper bound (lub) and a greatest lower bound (glb) for a given pair of terms. For
example, the resulting type of an operation may be the least upper bound of the types of the
operands given the subtype relation.

16 3. Design differences between NaBL2 and Statix

[[BinOp(e1, e2) ^ (s) : type]] :=
[[e1 ^ (s) : e1_type]],
[[e2 ^ (s) : e2_type]],
type is sub.lub of (e1_type, e2_type).

Figure 3.6: Example of applying the automatically derived least upper bound function of a
relation in a constraint generation rule in NaBL2.

Apart from relations, NaBL2 also features a section for declaring functions. Functions allow for
the definition of a mapping from one term to another, using generic term patterns. Functions
can be used to encode further derivations of relations between terms in addition to lub and
glb.

Defining relations in Statix

In Statix, aforementioned relations and their derivations cannot be expressed using dedicated
language constructs, but are rather to be defined using constraints. These constraints can be
declared as binary predicates in the form of axiom rules. Pairs of terms can then be “added”
to the relation by declaring a rule with the terms in the rule head, like so:

sub : Type * Type
sub(TInt(), TNumber()).

Figure 3.7: Example of declaring a member of a relation using an axiom rule in Statix.

Although there are no declarative modifiers available for constraints that ensure that cer-
tain properties of the relation hold such as in NaBL2, the positive properties reflexive and
symmetric can be trivially expressed using specific rule patterns as depicted in 3.8. However,
transitivity is less trivial. One might make an attempt by declaring a rule such as shown in
Figure 3.8.

// reflexive
sub(X, X).
// symmetric
sub(X, Y) :- sub(Y, X).
// transitive
sub(X, Z) :- {Y} sub(X, Y), sub(Y, Z).

Figure 3.8: Example of declaring properties of a relation using constraint patterns in Statix.

Unfortunately, this does not have the intended result, because the unification algorithm of
Statix will ultimately not be able to find a solution for pairs that are transitively related via
more than one intermediate element using this rule. Also note that the head of this rule
is equally specific as the rule for symmetry. Due to the committed choice in rule selection,
this means a relation cannot be both symmetric and transitive at the same time using this
approach.

The most trivial solution to this problem is by enumerating all transitively related pairs
and explicitly declaring axiom rules for those as well, in addition to the directly related pairs.

3.1. Type compatibility relations 17

˚ unordered

˚ ordered + unordered

? + unordered

1

Figure 3.9: The lattice modeling the compatibilities between multiplicity and ordering com-
binations in IceDust.

As a drawback, this can quickly bloat the specification, and allows for mistakes (e.g. over-
looking a particular pair).

As for the negative properties, there is no similar way in Statix of preventing the addition
of pairs that violate such a property.

When it comes to derivations, Statix does not offer an abstraction for finding the least
upper bound and greatest lower bound of a relation similar to NaBL2. These functions are to
be explicitly defined as constraints, like other derivations. In Statix, the equivalent to NaBL2
functions would be constraints in the form of functional rules.

In the next section, we will discuss how these differences impacted our approach to mod-
eling the type compatibilities of the IceDust language.

3.1.2 Modeling the type compatibilities of IceDust

Taking into account the the ways in which NaBL2 and Statix allow for defining binary re-
lations over sets of types, in this section we give some examples of how we defined certain
type compatibilities of the IceDust language in Statix and compare these with the respective
solution in NaBL2.

Static type compatibility relations of IceDust

We look at an example of how one of the type lattices of IceDust can be declared in NaBL2 and
Statix. Consider the lattice depicted in figure 3.9. A lattice is a partially ordered set in which
each pair of elements has a unique least upper bound. The relation on such a set is a partial
order, which can be described as transitive and anti-symmetric. In this case, the partial order
is “non-strict”, meaning it is reflexive. We show the implementation of this partial order —
i.e. the declaration of the pairs of terms that belong to the relation as well as the least upper
bound function — using NaBL2 and Statix in figures 3.10 and 3.11 respectively. The examples
bring to light a notable difference in expressiveness between the metalanguages. In NaBL2,
only the directly related pairs of terms need to be declared, whereas in Statix more enumer-
ation is required. This includes the transitively related pairs and the least upper bound of
every possible combination of terms. However, the symmetry rule of the multLub constraint
allows restricting the enumeration to all combinations instead of permutations, while the
reflexive rule allows exluding all identity cases. Note that the symmetric rule can be used
here because there exists a least upper bound for all possible combinations of multiplicities.
Otherwise, the constraint might fail which would yield an infinite loop due to the recursion.

18 3. Design differences between NaBL2 and Statix

signature
relations
reflexive, anti-symmetric, transitive mulOrd : Mul * Mul

rules
init ^ () :=
TOne() <mulOrd! TZeroOrOne(),
TOne() <mulOrd! TOneOrMoreOrdered(),
TZeroOrOne() <mulOrd! TZeroOrMoreOrdered(),
TOneOrMoreOrdered() <mulOrd! TZeroOrMoreOrdered(),
TOneOrMoreOrdered() <mulOrd! TOneOrMore(),
TZeroOrMoreOrdered() <mulOrd! TZeroOrMore(),
TOneOrMore() <mulOrd! TZeroOrMore().

Figure 3.10: Implementation of the multiplicity and ordering lattice of IceDust in NaBL2

rules
mult : MULT * MULT

mult(ONE(), ZERO_ONE()).
mult(ONE(), ONE_MORE_ORD()).
mult(ZERO_ONE(), ZERO_MORE_ORD()).
mult(ONE_MORE_ORD(), ZERO_MORE_ORD()).
mult(ONE_MORE_ORD(), ONE_MORE()).
mult(ZERO_MORE_ORD(), ZERO_MORE()).
mult(ONE_MORE(), ZERO_MORE()).

// transitive
mult(ONE(), ZERO_MORE_ORD()).
mult(ONE(), ONE_MORE()).
mult(ONE(), ZERO_MORE()).
mult(ZERO_ONE(), ZERO_MORE()).
mult(ONE_MORE_ORD(), ZERO_MORE()).

// reflexive
mult(M, M).

(a) Declaration of the multiplicity relation.

rules
multLub : MULT * MULT -> MULT

multLub(X, X) = X.
multLub(X, Y) = multLub(Y, X).

multLub(ZERO_MORE(), _) = ZERO_MORE().
multLub(ZERO_MORE_ORD(), ONE_MORE()) =

ZERO_MORE().
multLub(ZERO_MORE_ORD(), ZERO_ONE()) =

ZERO_MORE_ORD().
multLub(ZERO_MORE_ORD(), ONE_MORE_ORD()) =

ZERO_MORE_ORD().
multLub(ZERO_MORE_ORD(), ONE()) =

ZERO_MORE_ORD().
multLub(ONE_MORE(), ZERO_ONE()) =

ONE_MORE().
multLub(ONE_MORE(), ONE_MORE_ORD()) =

ONE_MORE().
multLub(ONE_MORE(), ONE()) =

ONE_MORE().
multLub(ONE(), ZERO_ONE()) =

ZERO_ONE().
multLub(ONE(), ONE_MORE_ORD()) =

ONE_MORE_ORD().

(b) Declaration of the least upper bound (lub)
function on the multiplicity relation

Figure 3.11: Implementation of the multiplicity and ordering lattice of IceDust in Statix

3.1. Type compatibility relations 19

Dynamic type compatibility relations of IceDust

Some relations apply to terms that represent declarations in the program such as custom
types (e.g. classes), and are therefore established at constraint time. In NaBL2, dynamic
relations can also be modelled equivalently to static relations using the relations feature, as
pairs can be added to a relation using a term "<"relation ´ id"!" term clause that may be
included in any constraint generation rule. In Statix, however, the mutable data structures
during constraint time are limited to the AST node properties and the scope graph. Because
declarations in the program are already represented in the scope graph for name binding
purposes, it makes sense to reuse this structure for modeling relations such as type compat-
ibilities.

signature
sorts
TYPE

constructors
INT : TYPE
STRING : TYPE
FLOAT : TYPE
BOOLEAN : TYPE
DATETIME : TYPE
NOVALUE : TYPE
ENTITY : scope -> TYPE

Figure 3.12: The type signatures of IceDust in Statix.

In IceDust, entity declarations introduce new types. These were modeled in Statix using
the “scopes-as-types” approach, as displayed in figure 3.12. The scope encapsulated in the
type term represents the lexical scope of the entity declaration, containing its member dec-
larations. When resolving the type of references to the entity elsewhere in the program, a
reference to the entity scope is obtained and subsequently allows resolution of references to
members of the entity. This removes the need for import edges, as applied in the NaBL2
implementation.

When entities are declared to inherit from one another, this is modeled by an edge (la-
belled INHERIT) in the scope graph. Although these edges, like the rest of the scope graph,
are primarily used for name binding purposes, they can also be considered to represent the
subtype compatiblity relation between these types.

For example, consider the example program with inheriting entities in figure 3.13a. The
corresponding scope graph in figure 3.13b shows the edges between the scopes correspond-
ing to the entity declarations.

Adding pairs to the relation is implicitly done by declaring scope graph edges. Testing
the relation and computing derivations such as the least upper bound can now be encoded
using scope graph queries.

The implementation for testing subtype compatibility between entity types is depicted
in figure 3.14. The substypeEntity predicate includes a query that establishes whether there
is a path in the scope graph via INHERIT labelled edges from the scope of the subtype to the
scope of the supertype.

The implementation for the least upper bound function on the subtype compatibility re-
lation between entity types is a bit more involved. The Statix implementation is shown in
figure 3.15. This approach works because of the restrictions imposed on inheritance relation-

20 3. Design differences between NaBL2 and Statix

module example s0
model
entity Ancestor s1 {}

entity Parent s2 extends Ancestor {}

entity SubOne s3 extends Parent {}
entity SubTwo s4 extends Parent {}

(a) IceDust example with inheritance

s0

s1

s2

s3 s4

INHERIT

IN
HE
RI
T INHERIT

PARENT

PA
RE
NT

PARENT

PARENT

(b) Corresponding scope graph

Figure 3.13: Example of entity declarations composing an inheritance hierarchy in IceDust,
and the corresponding scope graph.

rules
subtype : TYPE * TYPE

subtype(T, T).
subtype(NOVALUE(), _).
subtype(T1@ENTITY(_), T2@ENTITY(_)) :- subtypeEntity(T1, T2).

subtypeEntity: TYPE * TYPE
subtypeEntity(ENTITY(x), ENTITY(x)).
subtypeEntity(ENTITY(s_entity), ENTITY(s_super)) :- {results}
query ()
filter INHERIT+ and true
min and true
in s_entity |-> results,

includesScope(results, s_super).

includesScope : list((path * scope)) * scope
includesScope([(_, x) | _], x).
includesScope([_ | xs], x) :- includesScope(xs, x).

Figure 3.14: Implementation of the subtype compatibility relation including (dynamic) en-
tity types in Statix.

3.1. Type compatibility relations 21

lubtype : TYPE * TYPE -> TYPE
lubtype(X, X) = X.
lubtype(NOVALUE(), INT()) = INT().
lubtype(NOVALUE(), FLOAT()) = FLOAT().
lubtype(NOVALUE(), STRING()) = STRING().
lubtype(NOVALUE(), BOOLEAN()) = BOOLEAN().
lubtype(NOVALUE(), DATETIME()) = DATETIME().
lubtype(NOVALUE(), ENTITY(X)) = ENTITY(X).
lubtype(INT(), NOVALUE()) = INT().
lubtype(FLOAT(), NOVALUE()) = FLOAT().
lubtype(STRING(), NOVALUE()) = STRING().
lubtype(BOOLEAN(), NOVALUE()) = BOOLEAN().
lubtype(DATETIME(), NOVALUE()) = DATETIME().
lubtype(ENTITY(X), NOVALUE()) = ENTITY(X).
lubtype(ENTITY(X), ENTITY(X)) = ENTITY(X).
lubtype(T1@ENTITY(s1), T2@ENTITY(s2)) = ENTITY(s3) :-
{scopes1 scopes2 shared_scopes}
scopes1 == superScopes(s1),
scopes2 == superScopes(s2),
shared_scopes == intersection(scopes1, scopes2),
[s3 | _] == shared_scopes.

superScopes: scope -> list((path * scope))
superScopes(s) = results :-
query ()
filter INHERIT+ and true
min and true
in s |-> results.

intersection: list((path * scope)) * list((path * scope)) -> list(scope)
intersection([(_, x) | xtail], [(_, x) | ytail]) =
[x | intersection(xtail, ytail)].

intersection([(_, x)], [(_, x) | tail]) = [x].
intersection([(_, x) | tail], [(_, x)]) = [x].
intersection([(_, x)], [(_, x)]) = [x].
intersection([(_, x) | tail], ys) =
concat(intersection([(_, x)], ys), intersection(tail, ys)).

intersection([(_, x)], [_ | tail]) =
intersection([(_, x)], tail).

intersection([(_, x) | tail], []) = [].
intersection([(_, x)], []) = [].
intersection([], [(_, x) | tail]) = [].
intersection([], [(_, x)]) = [].
intersection([(_, x)], [(_, y)]) = [].
intersection(_, []) = [].
intersection([], _) = [].
intersection([], []) = [].
concat: list(scope) * list(scope) -> list(scope)
concat([x | xs], ls) = [x | concat(xs, ls)].
concat(ls, []) = ls.
concat([], ls) = ls.

Figure 3.15: Implementation of the least upper bound function on the subtype relation in-
cluding (dynamic) entity types in Statix.

22 3. Design differences between NaBL2 and Statix

ships that may be declared, ensuring that inheritance hierarchies form directed rooted trees
(in-trees) in the scope graph. If the subtype relations between entities were allowed to be
less strict, such as the lattices of built-in types, then this approach would no longer be cor-
rect. Given two nodes in the tree (i.e. entity types), the algorithm (1) finds the ordered list of
ancestors of both nodes; (2) finds the intersection between these lists; and (3) takes the first
element from the intersection. This yields the lowest common ancestor, in this case equiv-
alent to the least upper bound of the subtype relation. From the extensiveness of the Statix
implementation it becomes apparent that it is non-trivial to translate this algorithm from the
imperative paradigm to the constraint logic paradigm of Statix. Encoding this relation in
Statix therefore requires more effort than encoding it in NaBL2.

3.2 Name binding patterns

In addition to simple lexical scoping, where the visibility of names declared in a program is
solely determined by their position in the source text, many programming languages support
more complicated patterns of name binding where declarations of a scope may selectively
be made available elsewhere in the program. In Section 3.2.1 we explain how NaBL2 and
Statix support definition of such name binding patterns in general. Then, in Section 3.2.2 we
describe how we applied this for the purpose of defining particular name binding cases of
IceDust in Statix, and compare it to the prior NaBL2 solution.

3.2.1 Defining name binding patterns with imports using NaBL2 and Statix

Statix generalizes NaBL2 in various aspects. One of the consequences is that the scope graph
formalism that is being employed by these meta-languages also differs.

Originally, the scope graph framework as built upon by NaBL2 included imports (Neron
et al. 2015). Using imports, non-lexical binding patterns can be expressed. By declaring an
import edge from a declaration a to a particular scopeSa, the declarations visible in that scope
can be exported via the declaration. In a scope Sx elsewhere in the scope graph, the exported
declarations can then be imported by adding an import reference a in scope Sx. Given that
declaration a is reachable from scope Sx, this implies a that all declarations reachable from
Sa are now also reachable from Sx. Due to imports, the definition of reachability thus has a
recursive nature.

Consider for example an object language featuring modules that can import from one
another. An example program in such a language along with its scope graph using imports
is depicted in figure 3.16. The scope graph is constructed according to the accompanying
NaBL2 specification. The way the scope graph is constructed can be explained by the steps
outlined in the figure.

As explained in Section 2.4, the adapted scope graph framework that Statix is built upon
no longer features dedicated import primitives, because imports can be encoded using the
scopes-as-types approach. To demonstrate this, the scope graph using the Statix framework
for the exact same example program as before is depicted in figure 3.17. Again, the scope
graph construction can be explained by an imperative analogy as outlined in the figure.

The NaBL2 and Statix approaches to modeling the name binding in this example program
shows some notable differences.

3.2. Name binding patterns 23

1 S0
2 module X1 { S1
3 import Y2
4 member a3 = b4
5 }
6 module Y5 { S2
7 member b6 = 21
8 }

(a) Example program with im-
ports.

S0

S1 S2

X1 Y5

b4 b6

Y2

a3

1

2

3

1

2

4

5

(b) Corresponding scope graph. The red edges compose the
reachability path between reference b4 and declaration b6. The
blue edges compose the reachability path between import refer-
ence Y2 and import declaration Y5, which is assumed by the red
reachability path.

3 signature
4 // ...
5 name resolution
6 // ...
7 well-formedness
8 P* I?
9 rules

10 [[Program(modules) ^ (s0)]] :=
11 Map1 [[modules ^ (s0)]].
12 [[Module(id, statements) ^ (s0)]] :=
13 new s_mod,
14 s_mod -P-> s0,
15 Modules{id} <- s0,
16 Modules{id} =I=> s_mod,
17 Map1 [[statements ^ (s_mod)]].
18
19 [[Import(id) ^ (s_mod)]] :=
20 Modules{id} <=I= s_mod.
21 [[Member(id, value) ^ (s_mod)]] :=
22 Members{id} <- s_mod,
23 [[value ^ (s_mod)]].
24
25 [[Literal(_) ^ (_)]] := true.
26 [[Reference(id) ^ (s_mod)]] :=
27 Members{id} -> s_mod,
28 Members{id} |-> _.

(c) NaBL2 specification (spec) governing the con-
struction of the above scope graph. For brevity,
the signatures (i.e. sorts, constructors and scope
graph edge labels and label order) have been left
out of this snippet, except for the global well-
formedness constraint such that it may be com-
pared to its Statix counterpart encoded in query
constraints.

1. The constraint on spec line 10 is applied
to the root AST node (Program), and is
passed the initial scope s0.

2. In accordance with the constraint on
spec line 12, the module declarations in
the program on lines 2 and 6 result in
the creation of scopes s1 and s2 respec-
tively (spec line 13). These scopes are as-
sociated with scope s0 via a parent edge
(spec line 14). The respective declara-
tions X1 and Y5 are added to the scope
graph (spec line 15) and are associated
with scopes s1 and s2 via an import edge
(spec line 16).

3. The member declarations on lines 4 and
7 result in declarations a3 and b6 as per
the constraint on spec line 21.

4. The import statement in the program on
line 3 will result in the addition of import
reference Y2 to the scope graph accord-
ing to the constraint on spec line 19.

5. Finally, the reference b4 on program line
4 is then added to the scope graph as per
the constraint on spec line 26, and a res-
olution constraint is added yielding the
resolution of reference b4 to declaration
Y5.

Figure 3.16: Example of an NaBL2 scope graph including imports. The scope graph repre-
sents the name binding for a program expressed in an example language featuring modules.

24 3. Design differences between NaBL2 and Statix

1 S0
2 module X1 { S1
3 import Y2
4 member a3 = b4
5 }
6 module Y5 { S2
7 member b6 = 21
8 }

(a) Example program with im-
ports.

S0

S1 S2

X1 : MOD(S1) Y5 : MOD(S2)

b6

a3

IMPORT

(b) Corresponding scope graph utilizing the scope graph frame-
work of Statix.

2 rules
3 programOk : Program
4 programOk(Program(modules)) :- {s0}
5 new s0,
6 modulesOk(s0, modules).
7
8 modulesOk maps moduleOk(*, list(*))
9 moduleOk : scope * Module

10 moduleOk(s0, Module(id, statements)) :-
11 {s_mod}
12 new s_mod,
13 s_mod -PARENT-> s0,
14 !modules[id, MOD(s_mod)] in s0,
15 statementsOk(s_mod, statements).
16
17 statementsOk maps statementOk(*, list(*))
18 statementOk : scope * Statement
19 statementOk(s, Import(id)) :- {s_mod}
20 query modules
21 filter PARENT* and { x' :- x' == id }
22 min $ < PARENT and true
23 in s |-> [(_, (_, MOD(s_mod)))],
24 s -IMPORT-> s_mod.
25 statementOk(s, Member(id, value)) :-
26 !members[id] in s,
27 valueOk(s, value).
28
29 valueOk : scope * Value
30 valueOk(_, Literal(_)).
31 valueOk(s, Reference(id)) :-
32 query members
33 filter IMPORT* and { x' :- x' == id }
34 min $ < IMPORT and true
35 in s |-> [(_, _)].

(c) Statix specification (spec) governing the con-
struction of the above scope graph. For brevity, the
signatures (i.e. sorts, constructors, scope graph
edge labels and relations) have been left out of this
snippet.

1. The initial constraint on spec line 4
creates scope S0 and passes it to the
modulesOk constraint.

2. The declarations of the modules on pro-
gram lines 2 and 6 will then result in the
creation of the X1 and Y5 scope graph da-
tums respectively, along with their asso-
ciated scopes S1 and S2, as per spec line
10 (moduleOk).

3. The member declarations on program
lines 4 and 7 yield the scope graph da-
tums a3 and b6 respectively as per speci-
fication line 25 (statementOk).

4. The import statement on program line 3
will, given identifier Y2, query the scope
graph datum Y5 as per specification line
19 (statementOk). An IMPORT-labelled
edge is then added to the scope graph
from S1 to S2, the latter being referenced
from the type in the queried scope graph
datum.

5. Finally, the reference b4 on program line
4 can then be resolved to declaration b6
via the IMPORT-labelled edge as per spec-
ification line 31 (valueOk).

Figure 3.17: Example of a Statix scope graph encoding imports using the scopes-as-types
approach.

3.2. Name binding patterns 25

On one hand, the Statix scope graph features fewer elements, as it misses specialized
import references and declarations. On the other hand, the rules section of the Statix specifi-
cation consists of more non-empty lines (30) than the one in the NaBL2 specification (17). In
part, this may be explained by the fact that used-defined Statix constraints require a separate
type signature to be declared, which enables certain static guarantees. Another reason for
this difference lies in the resolution constraints. In NaBL2, the resolution algorithm is param-
eterized globally by a few lines in the signature section. All introduced resolution constraints
in the rules section then require just a single line, as the global configuration applies to all of
them. In Statix, the algorithm is configured on a per-query basis. This requires inclusion of
more lengthy query constraints for each name resolution. This way, Statix circumvents the
effort of having to tailor the global parameterization to be applicable to all name resolutions
involved in the specification at the same time, at the cost of having to spend more effort on
defining each resolution.

As a general takeaway we observe that Statix makes a trade-off in the area of scope graph
manipulation when compared to NaBL2. Statix has the benefit that it simplifies the construc-
tion of the scope graph, which is restricted to fewer types of elements. It also offers more
fine grained control over how the scope graph is queried, as queries can be customized on a
per constraint basis. However, this does have the drawback that for trivial resolutions, Statix
requires more boilerplate query constraint definitions compared to NaBL2, which may be
considered less readable. In the next subsection, we will look at further implications that
these differences have on modeling particular IceDust language features.

In the next section, we look at how these ways of defining imports are applied in the
formalization of IceDust.

3.2.2 Record extension patterns of IceDust
The entity primitive of the IceDust language can be described using a common idea in type
theory referred to as a record. A record can be regarded as a collection of fields, which
associate a name with a value. The types of such records can be modelled respectively using
record types, which are a collection of associations between a name and a type.

Declarations of a record type in a program need not be final. Type systems may support
patterns of so called record extension, where some types are derived by composing other
record types in a particular way. This may involve for example merging the fields of two
record types, and having fields of one record shadow the fields of another. Record extension
can be modelled using scope graphs in a way that retains the original composition.

Record extension is one of the more complex patterns involved in the type system of
the IceDust language. It is involved in two IceDust features: inheritance and relations. We
analyze these features and compare their implementations in NaBL2 and Statix.

Entity inheritance in IceDust

The IceDust language features inheritance between entities. This means that an entity can be
declared as a subtype of another entity, and thus inherit the fields, including both attributes
and relations, of the other entity. This is modelled using record extension, where the fields
of the subtype are merged with the fields of the supertype, and the fields of the subtype
shadow the fields of the supertype. An example of a declaration of an entity inheriting from
another entity is displayed in Figure 3.19.

The corresponding scope graph as per the NaBL2 specification is depicted in Figure 3.20.
Due to the globally parameterized resolution calculus, in combination with the recursive
nature of resolving import references, a specialized scope graph construction is required to
define the inheritance. For each entity, three scopes are constructed. A root scope, a scope
for local declarations, and a scope importing declarations of the parent entity. In the pa-

26 3. Design differences between NaBL2 and Statix

modelOk(s, Entity(id, optional_parent, _, members)) :-
{ s_model s_resolve rtype }
// ... (abbreviated)
extendScopes(resolveEntityExtensions(s, id), s_model).

modelOk(s, Relation(e1, r1, m1_optional, m2_optional, e2, r2)) :-
{ s_e1 s_e2 s_r1 s_r2 m1 m2 id1 id2 s_p1 s_p2 }
// ... (abbreviated)
new s_r1,
s_r1 -EXTEND-> s_e1,
s_r1 -P-> s,
new s_r2,
s_r2 -EXTEND-> s_e2,
s_r2 -P-> s,
!entity_extension[e1, s_r1] in s,
!entity_extension[e2, s_r2] in s.

extendScopes maps extendScope(list(*), *)
extendScope : (path * (string * scope)) * scope
extendScope((_, (_, s)), s). // extension is not reflexive
extendScope((_, (_, s')), s) :- s -EXTEND-> s'.

resolveEntityExtensions : scope * ID -> list((path * (string * scope)))
resolveEntityExtensions(s, id) = ps :-
query entity_extension
filter PARENT* and { x' :- x' == (id, _) }
min and true
in s |-> ps.

Figure 3.18: The Statix definition of constraints related to entity extension. The extendScope
constraint introduces edges in the scope graph that ensure that the scopes of an entity and
its extensions form a clique. The resolveEntityExtensions constraint queries all extension
scopes of an entity via scopes encapsulted in declarations. The modelOk constraints for entity
and relation declarations that rely on these constraints are listed for context.

rameterization of the resolution calculus, two distinct edge labels are defined with different
priorities. The edge between the root scope and the local scope has a higher priority label
than the edge between the root scope and the parent scope. This means that fields declared
within the lexical scope of the entity declaration shadow any inherited fields.

The counterpart scope graph as per the Statix specification is depicted in Figure 3.21.
What stands out is that this scope graph is more concise, as it only features one scope per en-
tity, and direct edges between those scopes to express inheritance relationships. The reason
that Statix allows for this more concise scope graph is that it allows for more flexibility both
constructing scope graph, i.e. using the scopes-as-types approach, as well as querying it, i.e.
using per query resolution parameters. This eases defining a suitable scope graph construc-
tion, reasoning about it and verifying its correctness, which appears to be a clear benefit of
Statix.

3.2. Name binding patterns 27

module example s0
model
entity Number1 s1, s2, s3 {}
entity Integer2 extends Number3 s4, s5, s6 {}

Figure 3.19: IceDust example with inheritance.

s0

s1

s2 s3

s4

s5 s6

Entity{Number1} Entity{Integer2}

Entity{Number3}

I J I J

Figure 3.20: Corresponding NaBL2 scope graph. The edge label I represents an import, while
label J represents a lower priority import.

s0

s1 s4

entity{Number1} entity{Integer2}

INHERIT

Figure 3.21: Corresponding Statix scope graph.

Relations in IceDust

The IceDust language features relations between entities as first class citizens, which means
they can be declared at module level using a dedicated language primitive, and can be a
subject in other relations. In a relation declaration, role names are defined for navigating
the relation in both directions between the involved entities. This effectively means that the
entities involved in the relation are extended with fields having the according role names.
This allows reference to the relation from other fields of the entity such as derived attributes
and other relations. The fields of an entity are thus extended by a relation.

An example of a relation declaration in IceDust is depicted in Figure 3.22. The declaration
implies that the Summary entity is extended with a field numbers, while the Number entity is
extended with a field summary. Using these fields, the relation can be navigated by referencing
them in the declarations of other fields.

The corresponding scope graph resulting from the NaBL2 specification is depicted in
Figure 3.23. A relation introduces two scopes, each representing an extension of one of the
resptive entity. Fields that entities are extended with will shadow inherited fields. Therefore
extension scopes are referenced using an import reference in the local scope of the entity.

28 3. Design differences between NaBL2 and Statix

module example s0
model
entity Summary1 s1, s2, s3 {}
entity Number2 s4, s5, s6 {}

relation Summary3.numbers4 s7 * <-> 1 Number5.summary6 s8

Figure 3.22: IceDust example with a relation.

s0

s1

s2 s3

s4

s5 s6

s7 s8

Entity{Summary1}

Entity2{Summary3}

Entity{Number2}

Entity2{Number5}

Entity2{Summary1} Entity2{Number2}

Member{numbers4} Member{summary6}

I J I J

Figure 3.23: Corresponding NaBL2 scope graph. The edge label I represents an import, while
label J represents a lower priority import.

s0

s1

s7

s4

s8

entity{Summary1} entity{Number2}

entity_extension{Summary3} entity_extension{Number5}

member{numbers4} member{summary6}

EXTEND

EXTEND EXTEND

EXTEND

Figure 3.24: Corresponding Statix scope graph.

The extension scopes are accessible via an import declaration in the root scope. Using this
construction, any field from an extension is reachable from the local scope of the entity.

The equivalent scope graph resulting from the Statix specification is shown in Figure
3.24. This scope graph similarly introduces two scopes for a relation, one for each involved
entity, and ensures all fields from extensions are reachable from the entity scope. However, as
an alternative to import references, using custom constraints that find all extending scopes
for an entity via scopes-as-types, EXTEND-labelled edges are created to make sure that the

3.3. Declaration properties 29

model
entity Student{
}
entity Course{
code : String

}
relation Enrollment{
grade : Float

Student.enrollment -> student
Course.enrollment -> course

student.course <-> course.student
}

data
:Student {
course = <{ grade = 8.0 }> { code = "IN1337" }

}

Figure 3.25: Example of an IceDust program with data section that contains a declaration of
a value for the shortcut role of an entity instance.

entity scope together with the extending scopes form a clique. The constraints governing this
construction approach are listed in Figure 3.18. Then, the path wellformedness predicate of
query constraints are defined such that at most one EXTEND edge may be traversed, preventing
cycles.

One might argue that in the case of Statix, related scopes are closer together due to the
cliques rather than imports, again making it slightly easier to reason about the scope graph,
especially as they scale in size. However, the construction of the scope graph is less trivial,
as exemplified by the custom constraints that were applied for this case, so slightly more
implementation effort and ingenuity will be required in that area.

3.3 Declaration properties
In NaBL2, it is possible to assign arbitrary properties (key/value pairs) to a scope graph
occurrence. In the formalization of IceDust, this was utilized to store additional contextual
information about scope graph declarations that is not included in the declaration term itself.
This information would then be used to guide certain constraint generation rules.

An example of this can be found when declaring the value for a shortcut role of an entity
instance within the data section of an IceDust program. In Figure 3.25 we see an example
of such a program. The program features a first class relation, that like described in the pre-
vious subsections, extends the involved entities with additional fields, namely the shortcuts
defined on the relation. As per the example, entity Student will be extended with field course
resolving to type Course, and vice versa. However, when now declaring an instance of one of
the involved entities, in this case the Student entity, a value may be supplied for this shortcut
role field. This value may not only consist of an instance of the related entity, but also an
instance of the intermediate relation. As the name of the shortcut role field is defined to sim-
ply resolve to the entity, it is required to somehow also record in addition via which relation
this role is defined, in order for the declared relation instance to be bound and type checked.

30 3. Design differences between NaBL2 and Statix

rules
[[Shortcut(role1, shortcut1, role2, shortcut2) ^
(entity_scope_local, entity_scope, module_scope)]] :=
// recording the type of the relation in which
// these shortcut members were declared
// as properties into the member declarations
Member{shortcut1}.reltype := this_type,
Member{shortcut2}.reltype := this_type,
// ...
true.

[[MemberValue(member, vs) ^
(entity_instance_scope, module_scope)]] :=
// reading the relation type from the property
// of the resolved member declaration
// and storing it under a declaration in
// the implicit namespace
Member{member} |-> member_def,
member_def.reltype := relation_object_type,
Implicit{"membervalue"}.reltype := relation_object_type,
// ...
true.

[[RelationInstanceNoType(name, ms) ^
(member_value_scope, module_scope) : relation_object_type]] :=
// reading the relation type from the declaration
// in the implicit namespace and declaring it
// as type of "this" within the scope of
// the relation instance, such that members of
// the relation may be resolved
Implicit{"membervalue"} |-> member_value_def,
member_value_def : member_value_def_type,
member_value_def.reltype := relation_object_type,
Implicit{"this"} : relation_object_type,
// ...
true.

Figure 3.26: Summary of the constraints involved to determine the type of a relation instance
when supplied as value to a shortcut role, utilizing the NaBL2 support for assigning arbitrary
properties to scope graph declarations. Remaining constraints that are part of the rules have
been ommitted for brevity.

In NaBL2, this was solved by simply storing the relation type as a property on the short-
cut role member declaration that the entity is extended with, as summarized in Figure 3.26.
It shows that passing this additional contextual information through to the dependent con-
straints can be expressed rather concisely this way.

In Statix, there is no similar support for assigning additional arbitrary properties to a
scope graph datum like in NaBL2.

The most trivial solution would be to include all the derived information in the datum
itself. This would involve extending the constructor signature of the term used as datum with

3.3. Declaration properties 31

the necessary arguments. However, this may quickly bloat the signature specifications, and
disallow interaction with the datum in a sparse manner (e.g. in case some of the properties
are optional).

A more involved solution would be to encode these properties - i.e. a pair of a key and a
value - as scope graph datums themselves. In order to compose properties applying to the
same declaration, they can be assigned to the same scope. This scope can then be referenced
from the declaration datum using the scopes-as-types approach. This requires extending
constructor signatures for terms that may have properties with only one additional argu-
ment.

For IceDust, we implemented this approach. The constraints providing an abstraction for
this approach are displayed in figure 3.27. Because the set of properties for a declaration in
some cases needed to be extended in different constraint rules than where the declaration was
introduced, the property scopes need to be extensible just like the extension pattern for en-
tities presented in Section 3.2.2. This can be seen in the extendProps, resolvePropExtensions
and extendPropScope constraint definitions. Also, in order to deal with properties that are
optional, to prevent constraint failures when reading the value of these properties, we need
to wrap their values in a list. This creates additional complexity as can be seen from the
getPropOptionalType, getPropOptionalTypeFromList and getPropList constraints.

It is interesting to note that although Statix allows for storing arbitrary properties associ-
ated with scope graph datums like this, it does require boilerplate definition of constraints
manipulating the scope graph accordingly in non-trivial ways. Additionally, it requires ex-
tending the sorts and constraint rules for each new sort of term that may be stored as property
value, rendering this solution to be highly language dependent and requiring it to be actively
maintained throughout evolution of the specification. This clearly negatively impacts the
conciseness of the Statix specification compared to the NaBL2 specification for IceDust.

32 3. Design differences between NaBL2 and Statix

initProps : scope * scope -> PROPS
initProps(s_context, s_props) = PROPS(s_props) :-
extendPropScopes(resolvePropExtensions(s_context, s_props), s_props).

extendProps : scope * scope * scope
extendProps(s_context, s_props, s_extension) :-
s_extension -EXTEND-> s_props,
!prop_extension[s_props, s_extension] in s_context.

resolvePropExtensions : scope * scope -> list((path * (scope * scope)))
resolvePropExtensions(s, s_props) = ps :-
query prop_extension
filter PARENT* and { x' :- x' == (s_props, _) }

min and true
in s |-> ps.

extendPropScopes maps extendPropScope(list(*), *)
extendPropScope : (path * (scope * scope)) * scope
extendPropScope((_, (_, s)), s).
extendPropScope((_, (_, s')), s) :- s -EXTEND-> s'.

setProp: scope * string * string
setProp(s, key, value) :-
!prop[key, PROPVAL_STRING(value)] in s.

setPropType: scope * string * TYPE
setPropType(s, key, type) :-
!prop[key, PROPVAL_TYPE(type)] in s.

setPropOptionalType: scope * string * TYPE
setPropOptionalType(s, key, NOTYPE()).
setPropOptionalType(s, key, type) :- setPropType(s, key, type).

getProp: PROPS * string -> PROPVAL
getProp(PROPS(s), key) = propval :-
query prop
filter EXTEND? and { x' :- x' == key }

min and true
in s |-> [(_, (_, (propval)))].

getPropOptionalType : PROPS * string -> TYPE
getPropOptionalType(props, key) = type :- { proplist }
proplist == getPropList(props, key),
PROPVAL_TYPE(type) == getPropOptionalTypeFromList(proplist).

getPropOptionalTypeFromList : list((path * (string * (PROPVAL)))) -> PROPVAL
getPropOptionalTypeFromList([]) = PROPVAL_TYPE(NOTYPE()).
getPropOptionalTypeFromList([(_, (_, propval)) | _]) = propval.

getPropList : PROPS * STRING -> list((path * (string * (PROPVAL))))
getPropList(PROPS(s), key) = proplist :-
query prop
filter EXTEND? and { x' :- x' == key }

min and true
in s |-> proplist.

Figure 3.27: Statix abstractions for storing generic properties as scope graph datums. This
snippet is abbreviated, as actually more getter and setter constraint are featured in the Statix
specification for IceDust for values of different sorts

3.4. Integration with the compiler back-end 33

3.4 Integration with the compiler back-end
Some outcomes of the static analysis step in the front-end of the compiler pipeline may
provide valuable information for further guiding the steps in the back-end of the compiler
pipeline, such as optimization and code generation.

IceDust was modelled such that code generation is not syntax-directed but scope-graph
directed. This is rather unconventional and was done with the idea in mind to decrease the
coupling between the SDF3 grammar and the Stratego code, such that grammar changes do
not necessarily require code-generation rule changes. However, as a trade-off, this increases
the coupling between the static analysis and the code generation.

This particular design decision in the original IceDust implementation posed a number
of interesting challenges when attempting to migrate also the back-end of the existing im-
plementation, in the form of Stratego code, to the new Statix based implementation. These
challenges proved to be too big to overcome within the scope of this research, and migrating
this part of the IceDust implemenation was therefore left out of the scope. However, in ex-
ploring these challenges, we were able to learn more about the effort involved in developing
Statix specifications, as its interfaces with other pipeline stages do influence this process. In
this section, we therefore discuss the challenges we encountered and the possible solutions
we explored.

3.4.1 Constructor sharing
Sharing constructors between Statix and Stratego that were not generated from the SDF3
grammar has to be done through duplication. Whether all constructors should be part of the
grammar (even though they do not have a syntactic representation, as they never appear as
a term in the AST) can be a point of discussion.

3.4.2 Querying the scope graph
Accessing the static analysis results such as the constructed scope graph during code gener-
ation requires using the a Stratego API to the static analysis.

Due to the original decision to make the code generation specification of IceDust scope
graph directed, the back-end code is highly coupled with the Stratego API to NaBL2. Because,
at the time this case study was conducted, the Stratego API to Statix was quite different and
relatively immature when compared to the Stratego API to NaBL2, migrating this was not
practically feasible yet.

One main reason for this lies in performing resolutions on the scope graph during code
generation to obtain relevant data. In the NaBL2 API, resolutions can be performed. Given
an AST term representing a reference identifier, the occurrence that was added to the scope
graph during analysis corresponding to this identifier can be constructed. This is because
the the AST term not only holds a string value, but also an associated term index. This term
index represents the position in the AST at which the term originally occurred, allowing for
traceability. Both the NaBL2 constraint generation rule and the Stratego transformation rule
have access to this same term index, allowing for a one-to-one correspondence. A resolution
can then be performed via the API to find the matching declaration.

In Statix there is no similar notion of an occurrence that can be constructed and identified
by a unique term index. This means that, only given an AST node, there is no way to directly
obtain its corresponding reference, scope or declaration. Furthermore, the Statix API does
not allow to perform queries such as in the Statix specification. Given a scope, only the as-
sociated data and edges can be retrieved. This means resolving references to declarations
would require implementation of a custom resolution algorithm using Stratego transforma-
tion rules, traversing edges one-by-one in a correct sequence, which is non-trivial and would

34 3. Design differences between NaBL2 and Statix

defeat the purpose of Statix implementing this behaviour already. Finally, the Stratego API
to Statix does not provide direct access to the root scope of the scope graph, to bootstrap any
querying on the static analysis results. A workaround was devised during the migration pro-
cess of IceDust, where the root scope was assigned as a term attribute to the root AST node.
However, the absence of a dedicated API endpoint to retrieve the root scope can be regarded
a limitation 1.

3.4.3 Accessing code generation directives
In Section 3.2 we discussed the ability of NaBL2 of storing arbitrary key/value pairs with
scope graph declarations. We presented an abstraction that we defined in our Statix specifi-
cation to achieve a similar way of storing these properties.

In addition to storing additional contextual information during static analysis, these prop-
erties were also utilized in the NaBL2 specification of IceDust for storing information that is
aimed to guide code generation and as such is depended upon by the operational semantics.
During transformation, these properties can then be accessed via the Stratego API to NaBL2.

We modeled these code generation directives with our earlier introduced abstraction for
storing properties for scope graph datums in Statix as well. In theory, these may be retrieved
through the Stratego API to Statix if one were to migrate the compiler back-end to integrate
with the Statix specification.

As the amount of declarations requiring these properties is significant, as well as the
amount of properties per declaration, this has the drawback of bloating the scope graph with
a large amount of scopes and datums serving the purpose of storing these code generation
directives.

In conclusion, in this chapter we elaborated upon how NaBL2 and Statix differ in the way they
allow definition of type compatibility relations, scope graph manipulation and integration
with other stages of the compiler pipeline. We explained the impact of these differences on
the implementation effort and readability of the resulting specifications for IceDust. In order
to be able to draw conlusions from these observations and answer our research questions,
we describe the way we evaluated our work in the next chapter.

1https://github.com/metaborg/nabl/issues/84

Chapter 4

Evaluation

In this chapter we present our method and results for evaluating and comparing the expres-
siveness, correctness and runtime performance of the Statix and NaBL2 specifications for
IceDust.

4.1 Expressiveness

We performed evaluations to compare Statix to NaBL2 in terms of its expressiveness, given
the case of IceDust. The approach to this consisted of both a qualitative and a quantitative
evaluation method.

4.1.1 Comparing solutions to challenging semantics specification cases

We analysed and compared certain parts of the specifications that revolved around particular
use cases in static semantics definition. The details and results of these analyses are described
in Chapter 3 of this thesis.

In Section 3.1 we elaborate upon differences in the way NaBL2 and Statix facilitate the
modeling of binary relations for the purpose of defining type compatibilities. We find that
due to the omission of a dedicated language construct for modeling relations from Statix,
more effort is required to define and test relations for type compatibilities using more generic
language constructs. Different approaches are required for modeling static and dynamic
relations. The results are less concise, and require complex querying of the scope graph.

Subsequently, in Section 3.2, we look at how the construction and querying of scope
graphs differs between NaBL2 and Statix. We show that Statix, due to the “scopes-as-types”
approach it supports, allows for working with scope graphs that are easier to reason about
since they can express the same meaning while consisting of less elements. This does come
with the drawback that boilerplate query definitions are required in trivial cases of name
resolution.

In addition, in Section 3.3, we describe how we defined additional constraints for stor-
ing arbitrary properties as datum in the scope graph, and how this introduced additional
complexity to the specification.

Finally, in Section 3.4 we look at the constraints that migration from NaBL2 to Statix im-
poses on the interfaces between static analysis and the other compiler pipeline stages. Due
to significant differences between the Stratego API for NaBL2 and the Statix counterpart, in
combination with the scope graph directed approach to code generation of IceDust, integrat-
ing the Statix specification with the compiler backend appears non-trivial.

36 4. Evaluation

0 250 500 750 1000 1250 1500 1750 2000
Specification size

(LoC)

Spec size (LoC)
1195

1932

NaBL2
Statix

Figure 4.1: Comparison between the sizes in LoC of the NaBL2 and Statix specifications.

4.1.2 Comparing specification sizes
The sizes of the specifications were measured using a custom profile for the cloc tool that
excludes empty and comment lines. Figure 4.1 plots the results of the measurements. From
these results it appears that the Statix specification is less concise than the NaBL2 specifica-
tion. As far as defining the static semantics of IceDust is concerned, Statix therefore appears
to be a less expressive definition formalism than NaBL2.

4.2 Correctness
In order to allow for a comparison between the specifications as well as answering our re-
search question RQ1, the correctness of the implemented Statix specification must be eval-
uated. This correctness should be relative to the prior specification, implying a functional
equivalence between the specifications. This means that the Statix specification is correct, if
the static analysis resuls it produces are the same as those produced from the NaBL2 specifi-
cation, for any case. We approached evaluating this equivalence using a number of methods
which will be described in this section. First we describe the method we applied to ensure the
completeness of the Statix specification. Having established the completeness of the specifi-
cation, the remainder of our evaluation is then solely dedicated to verifying the correctness of
the resulting analyses. We describe the different software testing techniques that we applied
to this end.

4.2.1 Completeness verification
During the migration process from the prior to the new specification, we exhaustively visited
all the constraints listed in the prior specification while ensuring that there is a counterpart
in the new specification. This contributes to establishing the completeness of the Statix spec-
ification.

The way this comparison method was applied, is exemplified in Figure 4.2. In this rela-
tively trivial example, we compare the definition of the constraint rule that is applied to func-
tion declarations in an IceDust program between the Statix (left-hand side) and the NaBL2
(right-hand side) specification. To ease the comparison, for the purpose of this example we
reordered the constraints, provided them with comments and vertically aligned them. As
can be observed from the figure, at an abstract level all the required constraints that consti-
tute this rule are present in both specifications. In turn, this method has been applied to
the definitions of dependency constraints featured in the rule (such as declareFunction and
parametersOk). In general, the application of the method was driven by all constraint rules
in the NaBL2 specification, to ensure that for each of them there is a complete counterpart in
the Statix specification.

4.2. Correctness 37

functionOk(s, Function(f, ps, t, m, e)) :-
{ function_s props_s paramtypes type mult

richtype e_type e_mult e_strat }
// 1: introduce declaration with properties
// to the scope graph
new props_s,
setPropRichtypes(props_s, "paramtypes",

paramtypes),
declareFunction(s, f, richtype,

PROPS(props_s)),

// 2: introduce new scope to the scope graph
new function_s,
function_s -PARENT-> s,

// 3: resolve parameter types
type == typeOfAnyType(s, t),
mult == multOfMultList(m),
richtype == RICHTYPE(type, mult, e_strat),

// 4: resolve parameter types
paramtypes == parametersOk(function_s, ps),

// 5: resolve expression type
RICHTYPE(e_type, e_mult, e_strat) ==

richTypeOfExp(function_s, e),

// 6: assert expression type is compatible
// with static type signature
subtype(e_type, type) |

error $[type mismatch: ...]@e,
// 7: assert expression multiplicity is
// compatible with static multiplicity
// signature
mult(e_mult, mult) |

error $[multiplicity mismatch: ...]@e.

(a) statix

[[Function(f, ps, t, m, e) ^ (module_scope)]] :=
// 1: introduce declaration with properties
// to the scope graph
Function{f} <- module_scope,
Function{f} : TTuple(f_type, f_mult, e_strat),
Function{f}.paramtuples := ps_tuples,
Function{f}.params := ps,
Function{f}.expr := e,
Function{f}.ns := Function(),

// 2: introduce new scope to the scope graph
new f_scope,
f_scope -P-> module_scope,

// 3: resolve static type signatures
[[t ^ (module_scope) : f_type]],
[[m ^ (module_scope) : f_mult]],

// 4: resolve parameter types
Map1T [[ps ^ (f_scope) : ps_tuples]],

// 5: resolve expression type
[[e ^ (f_scope) :
TTuple(e_type, e_mult, e_strat)]],

// 6: assert expression type is compatible
// with static type signature
e_type <sub? f_type |
error $[Type error: ...]@e,

// 7: assert expression multiplicity is
// compatible with static multiplicity
// signature
e_mult <mulOrd? f_mult |
error $[Multiplicity error: ...]@e.

(b) nabl2

Figure 4.2: Example of how the completeness of the Statix specification was verified through
exhaustive comparison between corresponding constraint rules.

4.2.2 Automated testing

As mentioned in Section 2.2, the Spoofax language workbench features the SPT meta-language
for declaring automated test cases to verify the correctness of a language implementation. For
the original NaBL2-based implementation of the IceDust language, a collection of SPT test
suites was developed, including but not limited to test cases that verify the static analyses
resulting from the NaBL2 specification.

In order to evaluate whether our Statix specification results in the same analyses as the
NaBL2 specification, we migrated and applied 88 of these SPT test cases in the test suite for
the prior specification to the Statix specification and ensured they passed. A screenshot of the
results of the test execution is displayed in Figure 4.3. As can be seen in the screenshot on the
left-hand side, a test case consists of a fixture with corresponding assertions. The fixture is
expressed in the form of textual fragment that represents a program written in the language
under test. The assertions are expressed in the form of specific expectations related to an
analysis or transformation that is performed on the program as per the language definition
(e.g. parsing, static analysis, code generation).

38 4. Evaluation

Figure 4.3: Screenshot of the results from executing the test suite on the Statix specification
displayed in the SPT Test Runner of the Spoofax IDE.

The selection of the 88 test cases does not comprise the entire prior test suite, but covers
those cases that have expectations dedicated specifically to testing the static analysis, in par-
ticular the more complex cases of name resolution. It was not feasible to migrate other static
analysis related test cases due to the dependence of their expectations on the Stratego API
for NaBL2 and the limitations involved in migrating this as described in Section 3.4.

Test coverage analysis

We aimed to quantitatively evaluate how our selected test cases actually cover the constraints
in our Statix specification, in order to measure the degree to which the constraints are covered,
as well as to identify undertested constraints in order to guide our further testing efforts.
However, no prior work has been done on measuring such a notion of test coverage with
the SPT framework. In order to make this analysis feasible within the scope of our research,
we devised a method to estimate the test coverage. The procedure that we scripted for this
purpose can be outlined in the following three steps:

1. Extract for each test case in the SPT test suite all the term constructors that are featured
in its fixture.

2. Extract for each rule in our Statix specification the term constructors featured in the
pattern of the head of the rule.

3. Cross-reference the term constructors extracted from the test cases and from the Statix
rules to infer for each rule in the specification in which test cases it will be applied.

Extracting test cases Using the core Java API of the SPT testing framework, in combination
with the programmatic API of Spoofax, we were able to extract the textual program frag-

4.2. Correctness 39

0 20 40 60 80
0

10

20

30

40

Figure 4.4: Distribution of the constraint rules (y-axis) over the the amount of tests covering
them (x-axis).

ments that made up the fixtures of the test cases in our test suite. These fragments where
then parsed and transformed using the same strategy that is applied when preparing the
abstract syntax tree for the Statix analysis, which includes desugaring and explicating injec-
tions. Then, from these final pre-analysis abstract syntax trees, we were able to infer which
term constructors may be encountered when traversing the AST during analysis.

Extracting constraint rules We parsed the constraint rules from our Statix specification
and selected those that have a pattern in the rule head in terms of at least one AST term
constructor. This allows us to infer, given a term constructor occurring in the AST, which
rules in our specification may be applied to it.

Cross-referencing test cases with constraint rules Based on the extracted term construc-
tors from the test cases and constraint rules, we infered for each rule in our specification by
which test cases it was covered, and calculated various statistics as a result.

Results Ultimately, our three stage analysis outlined above resulted in the distribution of
the constraint rules over the amount of tests cases they are covered by as plotted in Figure
4.4. In total 60.4% of our Statix constraint rules are covered by at least one test case. The
remaining 39.6% percent of constraints not covered by any test case were inspected in detail
and are summarized in Table 4.5. This summary primarily indicates that our test suite does
not exhaustively cover all of the primitive data types, built-in functions and logical and math-
ematical operators featured in the language. Since many of these instances are analysed in
the same or a similar way, the absence of tests covering these particular instances does not
appear to be a siginificant shortcoming of the test suite, and we conclude that most of the
significant constraints are covered. Nonetheless, we used this information for further guid-
ing our manual testing efforts and spent extra attention to verifying the correctness of the
constraint rules not covered by the test suite.

Discussion The inference of which rules apply to which test case is based on the assump-
tion that if a term occurs in the program, any rule matching that term will actually be applied
during analysis. In general this should be the case, as most rules are defined to apply to any

40 4. Evaluation

Constraints with amount of uncovered rules
Constraints # Rules Scope of the rule application
relationInstanceOk 2 100% Instances of relations declared in the

data section of a program.
typeOfValue 1 33% Declaration of the value for a shortcut

of an entity including both a relation
instance and an entity instance in the
data section of a program.

typeOfEntityInstanceValue 1 50% Entity instance references within the
data section of a program.

richTypeOfExp 24 59% Various unary and binary operators as
well as built-in functions.

multOfMultOrd 2 66% Multiplicity declarations: OneOrMore-
Ordered and ZeroOrMoreOrdered.

zeroness 1 33% The literal integer “0”.
stratOfStrat 4 80% Calculation strategy declarations:

OnDemand, OnDemandIncremental,
Eventual, OnDemandEventual.

typeOfAnyType 1 50% Declaration of a static type signature
for an entity type that may be used in
derivation attributes and function pa-
rameters.

typeOfPrimitiveType 2 40% Static type signature declarations for:
Boolean and Datetime.

richTypeOfLitVal 4 57% Literal values: True, False, Datetime
and NoValue.

Figure 4.5: Summary of the rules not covered by the test suite for our Statix specification,
grouped by constraint.

instance of the term in the AST, and are coupled such that they are transitively applied in or-
der to traverse the entire AST in a topdown manner. However, there may be small exceptions
where a rule is only applied if a term appears within a particular context. These exceptions
may lead us to overestimate coverage. As the exceptions are limited to just a few cases, we
chose to tolerate this small overestimation.

In addition, the set of constraint rules being included in the coverage analysis only in-
cludes constraint rules that have a rule head pattern in terms of constructors that may occur
in the AST. This assumes that all other constraint rules are transitively applied. As the defi-
nition of the constraint rules is primarily syntax-directed, and constraint rules with patterns
expressed in terms of non-AST terms (e.g. types) are generally abstractions utilized in rules
with patterns expressed in terms of AST terms, we expect this assumption to hold.

Finally, whenever there are multiple rules matching on the same term constructor de-
fined for the same constraint, this created an ambiguity. We had to manually assess which
rule would be applied as it was not feasible to incorporate the actual pattern matching in this
procedure. In the cross-referencing script we incorporated an interactive prompt for manual
selection of the applicable rules that was displayed each time such an ambiguity was en-
countered. In total 120 cases were manually assessed. This mostly involved the same few
constraints for each test case.

4.2. Correctness 41

4.2.3 Manual testing

In addition to ensuring our specification passes all the selected automated tests, we also
performed manual acceptance testing of our specification. By testing on different levels and
using different approaches, we ensured that the analysis resulting from our specification
both validates correct programs and invalidates erroneous programs.

Confidence testing

Throughout the evolution of our specification we performed high-level smoke tests to build
confidence in our solution. We did this by running the static analysis resulting from our spec-
ification on a set of example IceDust programs describing real world data modeling cases that
jointly have a large coverage of the constructs and combinations thereof that are supported
by the language. These example programs include but are not limited to the programs com-
prising the benchmark dataset listed in Table 4.6. We utilize the prior implementation of
IceDust to ensure the validity of these programs to allow them to be used as ground truth.

The final implementation of our Statix specification results in static analyses that pass on
each of these programs. This tells us that for positive cases, our Statix specification results
in correct recognition of valid programs. The static analysis outcomes were further verified
by utilizing the editor services generated from the specification. This includes navigating
through references to see whether they resolve to their expected declaration, hovering over
elements in the program to validate inferred type information, and generating and inspecting
the resulting scope graphs to ensure their correctness.

However, this does not tell us anything about whether our specification also correctly
invalidates programs with any static errors. To evaluate this, we performed manual mutation
testing at a more granular level by introducing any kind of defect into a program to see if
subsequently an error is correctly raised, which is described in the next few sections.

Whitebox testing approach

We indexed all 130 constraints in our specification that have an error level message supplied
with them. These messages indicate that the constraint is expected to fail in case of a par-
ticular defect being present in the program under analysis. We manually verified that the
corresponding constraints fail when introducing a corresponding defect into a program. In
addition, we utilized the outcome of our test coverage analysis to test the specific constraints
that were not covered by our test suite. This included exhaustive testing of all operators and
built-in functions to see if they fail when applied to sub expressions with incompatible data
type, multiplicity bound or calculation strategy.

Blackbox testing approach

IceDust can be considered a configuration language for a feature model revolving around the
construct of a “field” (D. C. Harkes and Visser 2017). The features that may be selected for
a field do not support full orthogonality. In addition, when fields are composed, which can
be done by introducing references to fields into the definition of other fields and performing
operations on them, there is a definition for what it means for these compositions to be sound.
Guided by the feature model, and the restrictions imposed on the variability it supports, we
tested for a large variety of invalid feature selections and compositions. For example, for the
multiplicity bounds and calculation strategies, lattices are defined describing exactly which
compositions for these feature are valid and which are not.

42 4. Evaluation

4.2.4 Incompleteness in the prior specification
During the migration process we noted that some parts of the original NaBL2 specification
were incomplete due to the omission or commenting out of certain rules or constraints.

A notable example was the “trait” language construct, which is an element that may be
declared in an IceDust program at module level alongside entities and relations. It appears
to be intended as an abstraction mechanism for code reuse, to allow certain behaviors to be
mixed into multiple entities. However, this appeared to be an experimental feature as both
the syntax definition as well as the NaBL2 constraints were commented out.

In addition, within the constraint generation rules for particular kinds of field declara-
tions, some constraints were commented out for asserting the compatibility between the
declared and actual expression data type, multiplicity bound and/or calculation strategy.
There appears to be no clear indication as to why these constraints were left out.

Because we define our notion of correctness to be relative to the prior specification, we
also left these constraints out of our Statix specification and disregarded them for the purpose
of our evaluation.

4.3 Runtime performance
In order to answer research question RQ3, we assess if there are any significant gains or
losses in the runtime performance of the typechecker implementation that is generated by
the Statix specification described in chapter 3 compared to its NaBL2 counterpart. We do this
by measuring the duration of the analyses of these typecheckers on various example IceDust
programs.

4.3.1 Method
We perform benchmarks to gain insights in the runtime performances of the typecheckers
under review. We run macrobenchmarks assessing the complete analysis time on a number
of real-world example programs. This analysis time is representative for the response times
experienced by the end-user when interacting with the generated editor for the object lan-
guage. During the benchmark we run the full analyses based on the Statix and NaBL2 spec-
ifications. To this end, the spoofax-analysis-benchmark1 tool was implemented. This tool
is based on the Java Microbenchmark Harness (JMH). It utilizes the Spoofax programmatic
API and was made language parametric so it can be used to invoke the compiler pipelines
of both the IceDust implementations. The actual measurements isolate the analysis stage of
these pipelines. The benchmark performs 5 warmup iterations followed by 20 measurement
iterations for each example program. The result is then computed as the arithmetic mean of
the 20 measurements.

The example programs that form the benchmark datasets are identical for the bench-
marks of both specifications in order to enable a fair comparison. In total 3 programs were
developed or included for this purpose, the statistics of which are summarized in Table 4.6.

The benchmarks were executed on a desktop PC running Ubuntu 20.04.5 LTS with the
following specifications: Intel® Core™ i7-2700K CPU @ 3.50GHz; 16GiB DIMM DDR3 Syn-
chronous 1333 MHz; and a 256GB SSD (SATA 600).

4.3.2 Results
The results collected from the benchmark are summarized in Figure 4.7. The results show
that for all benchmarks, the Statix specification results in a longer analysis duration than
the NaBL2 specification, the increase of runtime ranging from 21 to 36 percent. Altogether,

1https://github.com/metaborg/spoofax-analysis-benchmark

4.3. Runtime performance 43

Benchmark Dataset
IceDust program Size (LoC)
icedust model 175
accounting 293
weblab 435

Figure 4.6: Listing of the specifications written in IceDust that made up the dataset used for
the benchmark.

icedust accounting weblab
0

1

2

3

4

5

An
al

ys
is

du
ra

tio
n

(s
)

1.189
1.442

3.163

1.543
1.748

4.31

NaBL2
Statix

Figure 4.7: Comparison between the analysis durations of the NaBL2 and Statix specifications
applied to different example IceDust programs.

we note that the Statix specification results in a slightly slower typechecker than the NaBL2
specification.

4.3.3 Discussion

We performed a benchmark of the full analysis procedures for the Statix and NaBL2 specifica-
tions. The entrypoint of this procedure is an invocation of the Stratego runtime from the Java
API, which is thus at a relatively high level of abstraction. This makes it difficult to pinpoint
the exact cause of the difference in runtime performance between the two implementations.
For example, it is not clear whether the increase in runtime can be attributed to differences in
the constraint solvers or to overhead in the analysis procedure at higher levels of abstraction.

In addition to any differences between the implementation of the NaBL2 and Statix run-
time environments, there are also differences between the way we implemented the Statix
specification of IceDust and the way the prior specification was implemented. These differ-
ence may also have affected the benchmark results. For example, with Statix we have had to
introduce a number of additional complexities at the specification level in order to account
for the lack of dedicated meta-language constructs. At specification level, these complexities
may be less optimized than at the meta-language level. The complexities include for exam-
ple the testing of certain type compatibilities by querying the scope graph as discussed in
Section 3.1.2, and the maintainance and querying of all declaration properties as datums in
the scope graph as discussed in Section 3.3. These particular solutions may cause a consid-
erable increase in the amount of scope graph queries being performed during analysis. In

44 4. Evaluation

theory, if alternative solutions to capturing these complexities in a Statix specification are
found, this could allow for further optimization of the runtime performance at specification
level. However, this is challenging due to the highly declarative nature of Statix.

Also, we note that the benchmark results are based on a small dataset. Nonetheless, the
benchmark dataset does include a number of real-world example programs. We therefore
expect these results to be representative for actual use cases of IceDust.

In summary, in this chapter we discussed the way we evaluated our work by comparing
the expressiveness, correctness and runtime performance of our Statix specification and the
prior NaBL2 specification for IceDust. The evaluation of expressiveness showed that overall,
Statix appears to be a less expressive definition formalism for the static semantics of IceDust
than NaBL2, allowing us to answer RQ2. We also evaluated the correctness of our specifica-
tion relative to the prior specification, validating our findings and showing that is possible
to express the semantics of IceDust with Statix, which answers RQ1. Finally, our benchmark
showed that the analysis resulting from our specification is slightly slower than the one from
the prior specification, which provides an answer to RQ3. The next chapter discusses work
related to this thesis, describing alternative approaches to abstractly and declaratively imple-
menting typecheckers.

Chapter 5

Related work

5.1 Abstractions for type checker implementation

In this study, the Spoofax language workbench and its meta-DSLs were employed to for-
malize the static semantics of a programming language and generate language processor
implementations accordingly. Alternative solutions enabling the declarative and iterative
development of aspects of domain-specific languages have been researched. We look at re-
lated work studying approaches to abstracting over the implementation of type checkers, as
well as - if applicable - the software language workbenches they are incorporated in.

Ott Ott is a metalanguage allowing to express the semantics of object languages in a con-
cise way (Sewell et al. 2010). It mechanizes the work involved in semantics definition, by
compiling specifications to artifacts such as code for various proof assistant back-ends and
a LATEXtypeset variant of the specification. Ott takes a more integral approach to specifying
semantics, by also including operational semantics, whereas Statix is dedicated to describing
static semantics. Nonetheless, the metalanguages are similar in their ability to define type
systems and name binding rules. Similarly to our analysis, the research on Ott also includes
case studies that test the ability of the metalanguage to post-facto formalize existing object
languages. In addition, one of the main goals driving the research on Ott is to make defini-
tions concise and easy to read and edit by minimizing syntactic overhead, with the intent of
increasing semanticist productivity. The degree to which the resulting metalanguage was
indeed “intuitively clear, concise, and easy to read and edit” was assessed by means of an in-
formal, empirical analysis based on hands-on experiences with the language, similar to ours.
However, as Ott lacks a clear predecessor, the analysis does not include any comparisons
with alternatives.

Needle and Knot KNOT is a metalanguage that allows for concisely expressing the name
binding structure of a programming language, automatically generating a corresponding
mechanized proof (Keuchel, Weirich, and Schrijvers 2016). Using the NEEDLE tool, a KNOT
specification can be compiled to code for the Coq proof assistant including necessary boiler-
plate code. The research aims to reduce boilerplate code a semanticist has to write in order to
mechanize a proof. It therefore includes an evaluation to assess the expressivity of the meta-
language by measuring the sizes of KNOT specifications in lines of code (LoC) for the name
binding of various object languages. These sizes are compared to the sizes of equivalent spec-
ifications constructed using different approaches, including both an unassisted approach as
well as alternative abstractions for mechanizing metatheory from the POPLmark benchmark.
The results show that KNOT allows for some substantial savings in specification size.

46 5. Related work

Turnstile Turnstile is a metalanguage similar to Statix with regards to its goal of bridging
the gap between semantics specification and implementation (Chang, Knauth, and Green-
man 2017). It offers a similar abstraction mechanism for specifying the static semantics of
an object language and is able to generate a type checker implementation from such a spec-
ification. It uses a macro-based approach, by reusing the binding on the underlying macro
system. Turnstile+ is a later iteration of Turnstile that introduced the support necessary to
model dependently typed languages (Chang, Ballantyne, et al. 2020). Turnstile+ is intended
to be backwards compatible with Turnstile specifications. This evolution is comparable to the
introduction of Statix as successor to NaBL2, where Statix aims to retain the same coverage
and completeness as NaBL2.

Xtext and Xsemantics The Xtext language workbench offers a framework for developing
domain-specific languages and associated tooling (Efftinge and Völter 2006). With a rich set
of features, including a concise grammar notation, automated editor generation, and inte-
grated validation and code generation, Xtext provides a comprehensive solution for creating
languages and their accompanying development environments. Furthermore, Xtext is exten-
sible as the behaviour of generated components can be customized through an API.

Xsemantics is a DSL for implementing type systems that is part of the XText language
workbench (Bettini 2016). Similar to Statix, its syntax aims to resemble a formalization of
the type system. The DSL also transforms abstract syntax trees to a Java-based type checker
implementation based on a set of rules. Their approach distinguishes between the features
of “scoping” and “validation”, which are similar to the abilities of Statix to deal with name
binding and type checking respectively. Instead of using scope graphs for name resolution
as in the case of Statix, Xsemantics allows capturing relationships between references and
declarations during grammar definition. Based on this, the parsed AST will actually become
a graph that already captures the binding structure. During static analysis, name resolution
will then be further restricted based on scopes, an abstract concept equivalent in its meaning
to scopes in Statix. Similar to Statix in Spoofax, because of its integration with XText, Xse-
mantics features extensive Eclipse IDE-based tooling, both for the purpose of implementing
specifications themselves as well as transforming such a specification into an editor for the
modeled object language featuring a type checking editor service. The DSL also has features
dedicated to “help the developer to implement type systems easily”. The study assesses the
applicability of the DSL by demonstrating its use for prototyping a number of example object
languages (including Featherweight Java and λ-calculus).

JastAdd (attribute grammars) Syntax-directed translation is an approach to implementing
a compiler in which the translation from source to target language is completely driven by
the parser. This can be formalized using a syntax-directed definition. Attribute grammars
are a formalism that allow to construct such a definition. They extend the production rules
of a context-free grammar of a language with additional rules that describe how particular
attributes (i.e. name/value pairs) should be derived for their corresponding symbols. In
the syntax-directed translation process these rules may then be used to calculate for each
node in the abstract syntax tree its corresponding attributes. The result is referred to as
an “annotated” or “decorated” syntax tree. The attributes can capture context-sensitive /
semantic information in addition to the syntactical structure. A specialization of the attribute
grammar formalism is the reference attribute grammar, which allows the values of attributes
to be references to other attributes.

JastAdd is a Java-based tool for implementing compilers (Hedin and Magnusson 2003).
It supports mixing both an imperative and an declarative programming paradigm based on
attribute grammars, which may be selected on a per subproblem basis. In comparison to the
single paradigm that Statix is committed to, the ability that JastAdd offers to escape between

5.1. Abstractions for type checker implementation 47

paradigms has a clear benefit. For example in Figure 3.15 we presented a case in which it
was challenging to express certain logic in the declarative paradigm that Statix supports, for
which an imperative approach may have been a better fit.

The declarative paradigm that JastAdd supports is based on reference attribute grammars.
It utilizes an object-oriented abstract syntax tree, in which nodes are instances of classes that
may hold references to other nodes. This allows also capturing the name binding structure
of a program within the AST, by creating references between nodes that represent identifier
use sites and nodes that represent the corresponding declarations. This is an alternative to
the approach of Statix, where static semantic information is captured in a scope graph which
is separate from the AST.

The concept of the decorated attribute grammar is a specialization of the attribute gram-
mar that combines attribute evaluation with strategic programming (Kats, Sloane, and Visser
2009). This formalism allows for the definition of attributes and their dependencies, enabling
the specification of type constraints and semantic rules. Attributes are associated with nodes
in the abstract syntax tree, and their values are computed and propagated according to at-
tribute evaluation rules. The strategic programming aspect of decorated attribute grammars
enables the specification of evaluation strategies for attribute dependencies, providing fine-
grained control over the order and conditions of attribute computation. This allows type
checkers with complex language specific analyses to be implemented based on decorated
attribute grammars.

MPS (projectional editing) Instead of editing a core definition directly, projectional edit-
ing systems hold a definition in a model and allow editing the definition through projections
of the model. This allows for editing environments that are different from textual editors, for
example in the sense that they can be more graphical. MPS is an example of a workbench that
allows the definition of software languages through projectional editing (JetBrains n.d.). It
offers an experience close to traditional text editing as the projection still resembles a textual
form. However, due to it nonetheless presenting a projectional editor rather than a textual
one, it allows for the inclusion of some more visual representations such as decision tables
and graphs. For defining the static semantics of a language, MPS allows defining type check-
ing and inference rules using a constraint logic programming paradigm similar to what Statix
offers. These rules impose constraints that are solved by the internal engine. As a generaliza-
tion of this, the more recent CodeRules feature of MPS offers abstraction mechanisms that
enable developers to express more complex type rules and constraints. This allows users to
specify language-specific constraints, such as type compatibility and inference, among oth-
ers, more precisely.

Rascal (meta-programming) The RASCAL domain-specific language allows for the im-
plementation of full compiler pipelines including analysis and transformation of programs
by means of meta-programming capabilities (Klint, Storm, and Vinju 2009). Like Spoofax,
syntactic features of RASCAL are based on SDF. By leveraging RASCAL’s expressive syn-
tax and library of built-in functions, language engineers can define static typing rules for a
given object language. RASCAL’s flexible type system allows for the specification of complex
type constraints, including type compatibility, type inference, and type coercion. Moreover,
RASCAL’s pattern matching capabilities enable the extraction of relevant information from
source code, facilitating the identification and resolution of typing errors.

Datalog and Formulog (satisfiability modulo theory) Pacak et al. propose a novel ap-
proach for deriving type checkers based Datalog, a logic programming language (Pacak,
Erdweg, and Szabó 2020). It comprises a DSL that supports writing inference rules for ex-
pressing static semantics which are then translated to Datalog rules. By leveraging the ex-

48 5. Related work

pressive power of Datalog and its ability to reason over relations and constraints, the authors
demonstrate how this can be used to automatically derive efficient type checkers. Datalog
maintains a datastructure consisting of facts, rules and queries that is referred to as a de-
ductive database. In the application of Datalog for modeling static semantics, this database
serves a similar function as the scope graph in the case of Statix. The authors performed
several case studies to assess the expressivity of the DSL, similar to our study.

Bembenek, Greenberg, and Chong propose a similar Datalog-based approach by intro-
ducing FormuLog, a declarative language for defining type systems (Bembenek, Greenberg,
and Chong 2022). FormuLog allows type checking constraints to be expressed in a more con-
cise and intuitive manner compared to directly writing Datalog rules. It aims to provide a
safe and abstract interface to the underlying SMT solver. By further abstracting the type sys-
tem definition formalism this way, a user-friendly and expressive approach to implementing
type checkers can be imagined. Case studies with FormuLog having similar objectives as our
study demonstrate that the DSL allows for natural encoding of complex static semantics and
results in satisfactory performant type checkers.

These solutions benefit from the performance and scalability of Datalog, which is well-
established and optimized for solving constraint satisfaction problems.

Chapter 6

Conclusion

In the process of this case study, we aimed to assess and compare a number of high-level
characteristics of the NaBL2 and Statix meta-languages when applied to the static semantics
of the IceDust DSL. This resulted in a number of key insights.

Firstly, when investigating the encoding of relations on user-defined types along with
their least-upper-bound and greatest-lower-bound functions in Statix and NaBL2, it appeared
that encoding such relations requires more effort in Statix when compared to NaBL2. This
is due to the fact that Statix lacks dedicated language primitives for the purpose of working
with relations, contrary to NaBL2. Therefore, in our Statix specification we devised meth-
ods and abstractions to be able to define these same semantics, at the cost of introducing
additional complexity to the specification.

In addition, when analysing the resulting scope graphs, we found that the flexibility of
Statix in terms of querying and using scopes as types allows for the construction of more con-
cise scope graphs that are easier to query, reason about and verify. However, we noted that
this increased flexibility of Statix to a degree comes at the cost of increased implementation
effort and potentially less readable specifications. This is due to the fact that more boiler-
plate query constraint definitions are required for trivial cases of name resolution, and at the
same time more complex solutions may be required for non-trivial cases, when compared
to NaBL2. In addition, since Statix lacks the ability to assign arbitrary properties to scope
graph declarations, we had to define additional constraints for storing properties as datum
in the scope graph. This introduced overhead in the size of the specification.

Furthermore, we encountered several challenges when investigating the requirements
for also migrating the remainder of the IceDust compiler pipeline to integrate with the Statix
based static semantics definition. We found that the Stratego API for Statix is not yet as
mature as the API for NaBL2, which makes integration of static analysis results in the code
generation phase not practically feasible yet, at least as far as more implementations with a
high coupling between compiler front-end and back-end such as IceDust are concerned. This
includes accessing name binding information in the scope graph, as well as arbitrary code
generation directives recorded during static analysis.

In line with these findings, our evaluation of specification size showed that the Statix
specification is significantly larger in terms of lines of code than the NaBL2 specification.
Aditionally, our evaluation of runtime performance of the analyses showed that our Statix
specification of IceDust results in a slower analysis than the prior NaBL2 specification.

With these insights we aim to answer our original research questions.

RQ1. Can the static semantics of IceDust be expressed using Statix, such that the resulting
typechecker performs analyses to the same level of correctness as the one based on the
NaBL2 specification?

We evaluated the completeness and correctness of our Statix specification relative to the

50 6. Conclusion

NaBL2 specification using a variety of automated and manual testing methods as elab-
orated upon in Section 4.2. This led us to conclude that Statix allows for the expression
of the same semantics of the IceDust language as NaBL2 does.

RQ2. How significantly do NaBL2 and Statix differ in expressiveness, readability and im-
plementation effort when comparing their specifications for IceDust, and which meta-
language design choices are most impactful on this?

The designs of NaBL2 and Statix differ in the way they allow definition of type com-
patibility relations, scope graph manipulation and integration with other stages of the
compiler pipeline. These differences appear to be most influential of the implementa-
tion effort and readability of the resulting specifications.
Looking at specific challenges in modeling the semantics of IceDust as summarized
in Section 4.1.1, Statix tends to require the implementation of more complex solutions
to overcome these challenges in the form of abstractions at specification level. This
results in parts of the specification that tend to be more verbose and less readable, due
to enumeration of cases and repetition of constraints for different sorts.
In line with these observations we also note that on a general level, the size of the Statix
specification in terms of lines of code is significantly larger than that of the NaBL2
specification, as evaluated in Section 4.1.2.
This altogether suggests that Statix is a less expressive formalism for declaring the static
semantics of the IceDust language.

RQ3. How do NaBL2 and Statix compare in terms of the runtime performance of their result-
ing type checkers for IceDust?

In our evaluation in Section 4.3 we showed that when disregarding incremental anal-
ysis, and looking at the total analysis times, Statix appeared to generate a slightly less
performant type checker for IceDust than NaBL2.

In conclusion, in this thesis we have investigated some of the key trade-offs between Statix
and NaBL2 in terms of meta-language characteristics. The advanced facilities of Statix for
manipulation of scope graphs may demand more implementation effort and potentially re-
sults in less readable code when defining boilerplate for trivial name resolutions or complex
constraints for type compatibility relations. It appeared to generate a slightly less perfor-
mant typechecker for IceDust in terms of runtime than NaBL2. These findings contribute to
a better understanding of the influence of advancements in meta-language design on their
practical applicability. This may prove useful in guiding future evolution of abstractions for
type checker implementation that aim to improve the productivity of language engineers.

6.1 Future work
Based on the insights gained from thesis, we recommend a number of directions for future
research.

First of all, as elaborated upon in Chapter 3, Statix offers less constructs dedicated to
specific aspects involved in the domain of static semantics specification than NaBL2. This
required us to implement certain abstractions at the specification level in order for these as-
pects to be defined. In our evaluation in Chapter 4 we found that these abstractions introduce
complexities into the specification that negatively impact implementation effort, readability
specification size and the runtime performance of the resulting typechecker. In future work,

6.1. Future work 51

additional or altered meta-language features can be explored that support defining these
aspects, in particular type compatibilities, more expressively and efficiently.

Additionally, in Section 3.4 we discussed our exploration of integrating our Statix speci-
fication with the existing back-end of the IceDust compiler. We noted that, due to the scope
graph-directed approach to code generation, the Stratego code is highly coupled with the
Stratego API for NaBL2. It appeared to be non-trivial to directly translate this integration
to the Stratego API for Statix in its current state. Future work could investigate if the code
generation implementation of IceDust can be migrated to work with the Stratego API for
Statix, and if necessary further develop this API. This may be beneficial for practical adop-
tion of Statix for language projects that require a complex, static analysis result driven code
generation phase such a IceDust.

Furthermore, more work can be done to measure the general gain or loss in performance
of Statix-based typecheckers relative to NaBL2. This could involve taking into account the
impact of incremental analysis when making edits to a program under analysis, and profiling
to identify specific parts of the analysis that can be further optimized.

Finally, as part of our evaluation of the correctness of our work in Section 4.2, we pre-
sented a method for approximating degree to which the constraints in our Statix specification
were covered by our SPT test suite, as well as determining which constraints were covered
and which were not. In future work, an exact method for measuring such a notion of test
coverage for SPT test suites may be developed. To this end, the method may involve instru-
mentation of some of the internals of the Statix runtime environment such that information
can be collected about which constraints were solved during the execution of a test case, while
tracing these constraints back to lines in the specification. Such a solution would circumvent
the discussed limitations of the approximation method we employed. This may prove ben-
eficial in verification of Spoofax language projects, as test coverage reports may efficiently
guide testing efforts of language engineers as well as build confidence in the correctness of
the implementation.

Bibliography

Bembenek, Aaron, Michael Greenberg, and Stephen Chong (2022). Formulog: Datalog+ SMT+
FP. In:

Bettini, Lorenzo (Aug. 2016). Implementing type systems for the IDE with Xsemantics. In:
Journal of Logical and Algebraic Methods in Programming 85.5, pp. 655–680. ISSN: 2352-2208.
DOI: 10.1016/J.JLAMP.2015.11.005.

Chang, Stephen, Michael Ballantyne, et al. (Jan. 2020). Dependent type systems as macros.
In: Proceedings of the ACM on Programming Languages 4.POPL, pp. 1–29. ISSN: 24751421. DOI:
10.1145/3371071. URL: https://dl.acm.org/doi/10.1145/3371071.

Chang, Stephen, Alex Knauth, and Ben Greenman (Jan. 2017). Type systems as macros. In:
ACM SIGPLAN Notices 52.1, pp. 694–705. ISSN: 15232867. DOI: 10.1145/3009837.3009886.
URL: https://dl.acm.org/doi/10.1145/3009837.3009886.

Efftinge, Sven and Markus Völter (2006). oAW xText: A framework for textual DSLs. In: Work-
shop on Modeling Symposium at Eclipse Summit. Vol. 32. 118.

Harkes, Daco and Eelco Visser (2014). Unifying and generalizing relations in role-based data
modeling and navigation. In: International Conference on Software Language Engineering.
Springer, pp. 241–260.

Harkes, Daco C., Danny M. Groenewegen, and Eelco Visser (July 2016). IceDust: Incremental
and eventual computation of derived values in persistent object graphs. In: vol. 56. Schloss
Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 111–1126.
ISBN: 9783959770149. DOI: 10.4230/LIPIcs.ECOOP.2016.11. URL: https://drops.dagstuhl.
de/opus/volltexte/2016/6105/.

Harkes, Daco C. and Eelco Visser (June 2017). IceDust 2: Derived bidirectional relations and
calculation strategy composition. In: vol. 74. Schloss Dagstuhl- Leibniz-Zentrum fur In-
formatik GmbH, Dagstuhl Publishing, pp. 141–1429. ISBN: 9783959770354. DOI: 10.4230/
LIPIcs.ECOOP.2017.14. URL: https://drops.dagstuhl.de/opus/volltexte/2017/7251/.

Hedin, Görel and Eva Magnusson (Apr. 2003). JastAdd—an aspect-oriented compiler con-
struction system. In: Science of Computer Programming 47.1, pp. 37–58. ISSN: 0167-6423. DOI:
10.1016/S0167-6423(02)00109-0.

JetBrains (n.d.). Meta programming system. URL: https://www.jetbrains.com/mps/.
Kats, Lennart CL, Anthony M Sloane, and Eelco Visser (2009). Decorated attribute gram-

mars: Attribute evaluation meets strategic programming. In: Compiler Construction: 18th
International Conference, CC 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings 18. Springer,
pp. 142–157.

Keuchel, Steven, Stephanie Weirich, and Tom Schrijvers (2016). Needle & Knot: Binder Boil-
erplate Tied Up. In: Programming Languages and Systems. Ed. by Peter Thiemann. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 419–445. ISBN: 978-3-662-49498-1.

https://doi.org/10.1016/J.JLAMP.2015.11.005
https://doi.org/10.1145/3371071
https://dl.acm.org/doi/10.1145/3371071
https://doi.org/10.1145/3009837.3009886
https://dl.acm.org/doi/10.1145/3009837.3009886
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://drops.dagstuhl.de/opus/volltexte/2016/6105/
https://drops.dagstuhl.de/opus/volltexte/2016/6105/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://drops.dagstuhl.de/opus/volltexte/2017/7251/
https://doi.org/10.1016/S0167-6423(02)00109-0
https://www.jetbrains.com/mps/

54 Bibliography

Klint, Paul, Tijs van der Storm, and Jurgen Vinju (2009). RASCAL: A Domain Specific Lan-
guage for Source Code Analysis and Manipulation. In: 2009Ninth IEEE InternationalWork-
ing Conference on Source Code Analysis and Manipulation, pp. 168–177. DOI: 10.1109/SCAM.
2009.28.

Konat, Gabriël et al. (2013). Declarative name binding and scope rules. In: vol. 7745 LNCS,
pp. 311–331. ISBN: 9783642360886. DOI: 10.1007/978-3-642-36089-3_18. URL: doi.org/10.
1007/978-3-642-36089-3_18.

Neron, Pierre et al. (2015). A Theory of Name Resolution. In: Springer 9032, pp. 205–231. DOI:
10.1007/978-3-662-46669-8_9. URL: https://link.springer.com/chapter/10.1007/978-3-
662-46669-8_9.

Pacak, André, Sebastian Erdweg, and Tamás Szabó (2020). A systematic approach to deriving
incremental type checkers. In: Proc. ACM Program. Lang. 4.OOPSLA, pp. 121–127.

Runeson, Per and Martin Höst (2009). Guidelines for conducting and reporting case study
research in software engineering. In: Empirical software engineering 14, pp. 131–164.

Sewell, Peter et al. (Jan. 2010). Ott: Effective tool support for the working semanticist. In: Jour-
nal of Functional Programming 20.1, pp. 71–122. ISSN: 09567968. DOI: 10.1017/S0956796809990293.

Souza Amorim, Luıś Eduardo de and Eelco Visser (2020). Multi-purpose syntax definition
with SDF3. In: Software Engineering and FormalMethods: 18th International Conference, SEFM
2020, Amsterdam, The Netherlands, September 14–18, 2020, Proceedings 18. Springer, pp. 1–23.

Van Antwerpen, Hendrik, Casper Bach Poulsen, et al. (Oct. 2018). Scopes as Types. In: Proc.
ACM Program. Lang. 2.OOPSLA. DOI: 10.1145/3276484. URL: https://doi-org.tudelft.
idm.oclc.org/10.1145/3276484.

Van Antwerpen, Hendrik, Pierre Néron, et al. (Jan. 2016). A constraint language for static
semantic analysis based on scope graphs. In: Association for Computing Machinery, Inc,
pp. 49–60. ISBN: 9781450340977. DOI: 10.1145/2847538.2847543.

Visser, Eelco (2010). The Spoofax Language Workbench Rules for Declarative Specification
of Languages and IDEs. In: dl.acm.org, pp. 444–463. DOI: 10.1145/1869459.1869497. URL:
http://www.se.ewi.tudelft.nl/.

Visser, Eelco, Zine-el-Abidine Benaissa, and Andrew Tolmach (1998). Building program op-
timizers with rewriting strategies. In: ACM Sigplan Notices 34.1, pp. 13–26.

https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-642-36089-3_18
doi.org/10.1007/978-3-642-36089-3_18
doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-662-46669-8_9
https://link.springer.com/chapter/10.1007/978-3-662-46669-8_9
https://link.springer.com/chapter/10.1007/978-3-662-46669-8_9
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/3276484
https://doi-org.tudelft.idm.oclc.org/10.1145/3276484
https://doi-org.tudelft.idm.oclc.org/10.1145/3276484
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/1869459.1869497
http://www.se.ewi.tudelft.nl/

	Preface
	Contents
	List of Figures
	Introduction
	Background
	IceDust
	Spoofax
	NaBL2
	Statix

	Design differences between NaBL2 and Statix
	Type compatibility relations
	Name binding patterns
	Declaration properties
	Integration with the compiler back-end

	Evaluation
	Expressiveness
	Correctness
	Runtime performance

	Related work
	Abstractions for type checker implementation

	Conclusion
	Future work

	Bibliography

