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A B S T R A C T

The deployment of voltage source converters (VSC) to facilitate flexible interconnections between the AC
grid, renewable energy system (RES) and Multi-terminal DC (MTDC) grid is on the rise. However, significant
challenges exist in exploiting coordinated operations for such AC/VSC-MTDC hybrid power systems. One of the
most critical issues is how to achieve the optimal operation of such wide-area systems involving several power
entities with as minimal communication burden as possible. To address this issue, an enhanced AC/DC optimal
power flow (OPF) is specifically proposed. Firstly, a mixed-integer convex AC/DC OPF model is explicitly
formulated to describe the optimal operation of such hybrid power systems. Subsequently, a nested distributed
optimization method with double iteration loops is developed to offer optimal system-wide decision-making
through a more ‘‘thorough’’ distributed communication architecture. In the outer iteration, the original AC/DC
OPF problem is decomposed into several slave problems (SPs) associated with systems (including the AC grid
and RESs) and one master problem (MP) associated with the integrated VSC-MTDC grid. Generalized Benders
decomposition (GBD) serves to solve the master and slave problems iteratively. Techniques such as multi-cut
generation and asynchronous updating are utilized to upgrade the GBD performance of computation efficiency
and address communication delays. In the inner iteration, the master problem is continuously decomposed into
multiple sub-MPs associated with individual VSCs. The alternating direction method of multipliers (ADMM)
is employed to solve these sub-MPs iteratively. Proximal terms and heuristic approaches are embedded to
enable parallel computation and handling of integer variables. Numerical experiment results finally validate
the effectiveness of the proposed enhanced AC/DC OPF. The constructed AC/DC OPF model exhibits acceptable
accuracy in terms of power flow calculation, and the developed nested distributed optimization method
showcases decent convergence rate and solution optimality performances.
1. Introduction

1.1. Background

Renewable energy systems (RESs) have experienced significant
growth over the past decades. With notable developments in RESs, an
increasing number of high-voltage direct current (HVDC) transmission
grids have been constructed and put into operation worldwide for re-
mote power delivery from sending-end RESs to receive-ending alternat-
ing current (AC) power grids. HVDC transmission outperforms HVAC
transmission grids much in terms of long-distance power capacity [1].
In the preceding period, the application of HVDC transmission was lim-
ited because line-commutated converters (LCCs) were predominantly
used for interconnection. The most notable drawbacks of LCC-HVDC
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Netherlands.
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include the inability to control active and reactive power independently
and the risk of commutation failure [2]. Fortunately, voltage source
converter (VSC)-based HVDC transmission has emerged and addressed
the issues mentioned in LCC-HVDC, gradually becoming an alternative
HVDC transmission solution. VSCs facilitate seamless interconnection
between AC and DC sides, thereby forming a multi-terminal DC (MTDC)
transmission network. These networks offer distinct advantages in
flexibility and reliability for power transmission [3,4].

Optimal power flow (OPF) serves as a powerful tool in power system
analysis, providing a popular approach for achieving optimal operation
in such AC/VSC-MTDC hybrid power systems. Compared to the conven-
tional OPF in purely AC power systems, the complexity of the AC/DC
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Nomenclature

Abbreviation

ADMM Alternating direction method of multipli-
ers.

GBD Generalized Benders decomposition.
MTDC Multi-terminal DC.
OPF Optimal power flow.
RES Renewable energy system.
SOCP Second-order cone programming.
VSC Voltage source converter.
Indices and Sets
(∙̂) The determined optimization variables.
(∙)∕(∙) The upper/lower bound of the correspond-

ing optimization variables.
(∙)(𝑠) The optimization variables at the sth inner

iteration loop.
(∙)[𝑣] The optimization variables at the vth outer

iteration loop.
N∕L The node/branch set.
𝑥 The total number of elements in the set that

x belongs to.
(∗)𝐴𝐶 The parameters and variables related to the

AC grid.
(∗)𝑀 𝑇 𝐷 𝐶 The parameters and variables related to the

MTDC grid.
(∗)𝑅𝐸 𝑆 The parameters and variables related to the

RES.
(∗)𝑉 𝑆 𝐶 The parameters and variables related to the

VSC.
Parameters and Variables Related to the AC Grid
𝜃𝐴𝐶𝑖𝑗 The phase different along branch 𝑖𝑗 of the

AC grid.
𝑔𝐴𝐶𝑖𝑗 ∕𝑏𝐴𝐶𝑖𝑗 The conductance/susceptance in branch 𝑖𝑗

of the AC grid.
𝑝𝐴𝐶𝑖,𝐴2𝑉 ∕𝑞

𝐴𝐶
𝑖,𝐴2𝑉 The active/reactive power transmission

from the AC grid to the VSC at the node
𝑖.

𝑝𝑖,𝐷∕𝑞𝑖,𝐷 The active/reactive power demand at node
𝑖 of the AC grid.

𝑝𝑖,𝐺∕𝑞𝑖,𝐺 The active/reactive power generation at
node 𝑖 of the AC grid.

𝑝𝐴𝐶𝑖𝑗 ∕𝑞𝐴𝐶𝑖𝑗 The active/reactive power flow in branch
𝑖𝑗 of the AC grid.

𝑝𝐴𝐶𝑖 ∕𝑞𝐴𝐶𝑖 The active/reactive power injection at node
𝑖 of the AC grid.

𝑠𝐴𝐶𝑖,𝐺 The apparent power output of the genera-
tor at node 𝑖 of the AC grid.

OPF problem for AC/VSC-MTDC hybrid power systems is increased in
he following aspects.

• The nonlinearity regarding the VSC model increases the consid-
erable nonconvexity in the OPF modeling, adding extra compu-
tational burden. The capacity constraint of the VSC depicts a
nonconvex region. Converter loss, which contributes significantly
to the total system losses, is a quadratic polynomial function of
the VSC phase current [5,6]. The local control associated with the
VSC also introduces nonlinearity when the control parameters are
2 
𝑠𝐴𝐶𝑖𝑗 The apparent power in branch 𝑖𝑗 of the AC
grid.

𝑢𝐴𝐶𝑖 The square of nodal voltage amplitude at
node 𝑖 of the AC grid.

𝑣𝐴𝐶𝑖 The nodal voltage at node 𝑖 of the AC grid.

Parameters and Variables Related to the RES
𝑝𝑅𝐸 𝑆𝑟,𝑅2𝑉 ∕𝑞

𝑅𝐸 𝑆
𝑟,𝑅2𝑉 The active/reactive power transmission

from the RES 𝑟 to the VSC.
𝑝𝑅𝐸 𝑆𝑟 ∕𝑞𝑅𝐸 𝑆𝑟 The active/reactive power output of the

RES 𝑟.
𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 The var compensation of the RES 𝑟.
𝑠𝑅𝐸 𝑆𝑟 The apparent power output of the RES 𝑟.
𝑢𝑅𝐸 𝑆𝑟 The square of output voltage amplitude of

the RES 𝑟.
𝑣𝑅𝐸 𝑆𝑟 The output voltage of the RES 𝑟.

Parameters and Variables Related to the MTDC Grid
𝑙𝑀 𝑇 𝐷 𝐶
𝑗 ℎ The squared current flow in branch jh of the

MTDC grid.
𝑝𝑀 𝑇 𝐷 𝐶
𝑗 The active power injection at node j of the

MTDC grid.
𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ,𝐷2𝑉 The active power transmission from the

MTDC grid to the VSC at the node j.
𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ℎ The active power flow in branch jh of the

MTDC grid.
𝑟𝑀 𝑇 𝐷 𝐶
𝑗 ℎ ∕𝑦𝑀 𝑇 𝐷 𝐶

𝑗 ℎ The resistance/conductance in branch jh of
the MTDC grid.

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 The square of nodal voltage amplitude at

node j of the MTDC grid.
𝑣𝑀 𝑇 𝐷 𝐶
𝑗 The nodal voltage at node j of the MTDC

grid.
Parameters and Variables Related to the VSC
𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 The PWM modulation ratio of the VSC.
𝜃𝑉 𝑆 𝐶𝑖𝑗 The phase different along branch 𝑖𝑗 on the

AC side of the VSC.
𝐺𝑉 𝑆 𝐶
𝑖𝑗 ∕𝐵𝑉 𝑆 𝐶

𝑖𝑗 The (𝑖, 𝑗) element in the real/imaginary part
of the nodal admittance matrix on the AC
side of the VSC.

𝑖𝑉 𝑆 𝐶𝑐 The phase current of the VSC.
𝑘𝑉 𝑆 𝐶𝑗 ,𝑑 𝑟𝑝 The droop coefficient of the VSC DC droop

control.
𝑙𝑉 𝑆 𝐶𝑐 The square of phase current amplitude of

the VSC.
𝑝𝑉 𝑆 𝐶𝑖 ∕𝑞𝑉 𝑆 𝐶𝑖 The active/reactive power injection at node

i on the AC side of the VSC.
𝑝𝑉 𝑆 𝐶𝑗 ,𝑟𝑒𝑓 The active power reference of the VSC DC

droop control.
𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 The converter loss inside the VSC.
𝑢𝑉 𝑆 𝐶𝑖 The square of nodal voltage amplitude at

node 𝑖 on the AC side of the VSC.
𝑢𝑉 𝑆 𝐶𝑗 ,𝑟𝑒𝑓 The squared voltage amplitude reference of

the VSC DC droop control.
𝑣𝑉 𝑆 𝐶𝑖 The nodal voltage at node 𝑖 on the AC side

of the VSC.
𝑣𝑉 𝑆 𝐶𝑠,𝑟𝑒𝑓 The voltage amplitude reference of the VSC

AC voltage control.

optimized [7]. Additionally, the voltage magnitude and reactive
power on the AC side must be considered, as the operating
conditions of the VSCs strongly depend on these parameters.
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• Unlike purely AC power systems, which are usually treated as
an entirety, the AC/VSC-MTDC hybrid power system is a typical
wide-area and multi-entity system. Widely used centralized and
all-in-one optimization approaches can impose a considerable
communication burden, and the power entities in the hybrid
power system also encounter the challenge of excessive data
sharing [8]. Developing an optimization method that minimizes
centralized communication dependence as much as possible to
coordinate the operation of such a hybrid power system is crucial.

To address the challenges mentioned above, we have carried out
argeted work regarding enhanced AC/DC OPF : An explicit mixed-
nteger convex AC/DC OPF model for AC/VSC-MTDC hybrid power
ystem is applied. Notably, considering the structural characteristics of
he AC/VSC-MTDC hybrid power system and the problem features of
he AC/DC OPF model, a novel nested distributed optimization method
s developed. This method incorporates improved generalized Benders
ecomposition (GBD) [9] and improved alternating direction method of
ultipliers (ADMM) [10] to enable the distributed problem solving and
rovide the coordinated decision making for the AC/VSC-MTDC hybrid

power system, based on a more ‘‘thorough’’ system decomposition.

1.2. Literature review

AC/DC OPF is a promising technique for scheduling optimal oper-
ation of AC and DC interconnected power systems. In terms of power
flow accuracy, there is no doubt that the nonconvex OPF model with
well-known nonlinear AC and DC power flow is the most favored. [11]
mploys the model-free evolutionary algorithm to solve such a noncon-
ex AC/DC OPF model. The essence of this solving approach lies in an
xhaustive approach, where searching an optimal population requires
epeatedly executing a large number of AC/DC power flow calculations,
endering the entire solving process computationally intensive. The
nterior-point method (IPM) can be another option [12]. Compared to
volutionary algorithms, IPM offers a distinct advantage in terms of

computational speed and the ability to achieve higher-quality optimiza-
tion solutions. However, IPM is unable to handle optimization problems
with integer variables.

Therefore, in order to achieve efficient problem solving, many
scholars study various convex relaxations and linear approximations
in different variable spaces for AC and DC power flows. [13] pro-
oses the linearized AC power flow model by first-order Taylor series
xpansion. [14,15] demonstrate that 𝑣2 is better than 𝑣 as the indepen-
ent variable and modifies the linearized AC power flow model. [16]
ses Laurent series expansion to achieve linearization of DC power
low. [17] considers that ±5% voltage deviation is normally allowed
nd proposes a linearized DC power flow that reduces the voltage esti-

mation errors with maximum and minimum voltage weighting factors.
or most power flow linearization approaches, the guarantee of calcula-
ion accuracy greatly depends on the well-defined initial power points.
onvex relaxations can be an alternative option to handle the power

low nonlinearities, as they have a more generalized formulation. [18]
roposes a semi-definite programming (SDP) technique to relax AC
ower flow equations. However, convergence failure, numerical accu-
acy warnings, and memory run-out problems are also reported in OPF

with SDP relaxation [19]. Many studies have shifted to the second-
rder cone programming (SOCP) technique. [20] proposes the SOCP
elaxation of AC power flow, where the nonconvexities in AC power

flow equations are handled using rotated second-order cone and arct-
ngent function constraints with respect to nodal voltage angles. [21]
roposes the SOCP relaxation of the DC power flow, where the non-

convexities in DC power flow equations are handled by imposing the
branch power constraints into rotated second-order cone constraints.
A systematic work on AC/DC OPF modeling is carried out in [22]. A
ariety of formulations, from nonlinear to convexified and linearized,

are developed. Thanks to these significant progresses, the nonlinear
3 
power flow issue of AC/VSC-MTDC hybrid power systems can be ef-
fectively addressed. Besides power flow, VSC operation also introduces
onlinearities, such as the expression of power loss is nonlinear with
he squared phase current term and the VSC droop control function has
he bilinear term regarding DC voltage and droop coefficient. Piecewise
onvex techniques can be appropriately employed to realize the tight
elaxation of the mentioned nonlinear terms [23,24].

In addition to AC/DC OPF modeling, solving AC/DC OPF problems
presents another critical challenge. The AC/VSC-MTDC hybrid power
system is a typically multi-area interconnected system, making widely
used centralized and all-in-one solving approaches unsuitable. On one
side, centralized solving needs to rely on the point-to-point central-
zed communication network that covers the entire system area. The

AC/VSC-MTDC hybrid power system features a wide-area system, so
centralized solving would impose a significant communication burden.
On the other side, the AC/VSC-MTDC hybrid power system involves
multiple power entities, including the AC grid, RES, and VSC-MTDC
grid. In reality, these power entities are managed by different operators,
and their operational data can only be shared to a limited extent.

Hence, the distributed-solving approach has attracted much more
ttention than the centralized-solving approach. As previously men-
ioned, the well-known nonconvex OPF model is the best option con-
idering the power flow accuracy. However, distributed nonconvex
PF suffers more challenges than (mixed-integer)convex distributed
PF, especially in convergence rate. Some powerful distributed opti-
ization, such as ADMM [10], analytical target cascading (ATC) [25],

primal–dual method of multipliers (PDMM) [26], and GBD [9], which
erform well in (mixed-integer)convex optimization problems, cannot
trictly guarantee convergence when solving nonconvex optimization
roblems. In recent times, a groundbreaking work was laid in [27].

The augmented Lagrangian based alternating direction inexact Newton
(ALADIN), specifically designed for nonconvex optimization problems,
is applied to solve the general AC OPF problems. Subsequently, [28,
29] extend the application of ALADIN to the nonconvex AC/DC OPF
problems. Although ALADIN excels in distributedly solving nonconvex
optimization problems, its scalability is relatively limited as it cannot
handle integer variables. In some cases, the introduction of integer vari-
ables is unavoidable, such as additionally considering the optimal unit
commitment in the AC side and the optimal topology reconfiguration
in the VSC-MTDC side [30–32].

From this perspective, developing distributed OPF based on (mixed-
nteger)convex optimization models would be a better option. In recent
evelopments, [33] uses the Lagrangian relaxation method to achieve

the distributed state estimation for the AC/VSC-MTDC hybrid power
system. [34] develops an ADMM-based optimization method for the
AC/VSC-MTDC hybrid power system to determine smooth operation
points. [35] proposes an accelerated ADMM with a predictor–corrector
strategy to solve the distributed AC/DC OPF problem with chance
constraints. [36] suggests the PDMM method based on a distributed
approach for the AC/VSC-MTDC hybrid network to reach a consensual
point for the energy negotiation between the AC and DC networks. [32]
employed the GBD to solve the AC/DC OPF model considering MTDC
etwork cognizance. [37,38] treat the AC/VSC-MTDC hybrid power

system as a hierarchical system, and ATC method is employed to
provide flexible system decomposition and coordinate the system oper-
ation. Owing to these proposed approaches, the communication costs
associated with managing AC/VSC-MTDC hybrid power systems can be
effectively reduced. Additionally, only a small amount of data needs
to be exchanged between the various power entities at the bound-
aries. However, in the aforementioned studies, although the AC system
(includes the AC grid and RES) are decomposed into independent
subsystems, the DC system is still treated as an entirety. In practice,
the VSC-MTDC grid, as the transmission segment, can span hundreds
of kilometers. Hence, managing the entire VSC-MTDC grid in an all-
in-one way still encounters considerable communication challenges.
Even though [37,38] continue to decompose the VSC-MTDC grid into
VSC and MTDC components, the communicated burden suffered by
VSC-MTDC grid is not alleviated adequately.
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1.3. Main contributions

According to the literature review, a critical research gap regarding
he current studies on AC/DC OPF for AC/VSC-MTDC hybrid power
ystems is concluded: Most studies have focused on the distributed
PF between the AC systems and VSC-MTDC grid, while little studies

consider distributed OPF inside VSC-MTDC grid, which is significant
or further reducing communication burdens.

Therefore, distributed solving approaches for AC/DC OPF still have
room for improvement to achieve better-coordinated operation of
AC/VSC-MTDC hybrid power systems. This paper proposes the en-
hanced AC/DC OPF for AC/VSC-MTDC hybrid power systems and ex-
plores the potential of using a nested distributed optimization method,
which has lower communication requirements compared to many exist-
ing distributed optimization methods [32–38]. Our work has threefold

ain contributions:
• A mixed-integer convex AC/DC OPF model is explicitly formu-

lated in this paper. The conventional, highly nonlinear AC and
DC power flow in the AC/VSC-MTDC hybrid power system is
appropriately handled by convex relaxations and linear approxi-
mations. Piecewise relaxation techniques are applied in handling
VSC’s nonlinear operational constraints and squared current term
in converter losses. Particularly, the successive linear approxima-
tion [14] is utilized to enhance the accuracy of the system-wide
power flow calculations in our constructed AC/DC OPF model.

• Based on the characteristics of the constructed AC/DC OPF model,
the nested distributed optimization framework is accordingly pro-
posed. Instead of following the rules of most distributed-solving
approaches for decomposing the AC/VSC-MTDC hybrid power
system, a more ‘‘thorough’’ decomposition is applied. In addition
to decomposing the integrated AC/VSC-MTDC system into the
AC system and VSC-MTDC grid, the VSC-MTDC grid is further
decomposed into multiple VSC areas. A specific nested distributed
optimization method with inner and outer iteration loops is de-
veloped for coordinated operation between the AC systems and
VSC-MTDC grid, as well as among multiple VSC areas within the
VSC-MTDC grid.

• In the outer iteration, GBD, as the classic method for addressing
mixed-integer programming problems, is selected. GBD serves to
iteratively solve the master problem (related to the VSC-MTDC
grid) and slave problems (related to AC systems). Multi-cut gener-
ation and asynchronous updating techniques are taken to upgrade
the GBD performances on computation efficiency and responses to
communication delays. In the inner iteration, the master problem
is further decomposed into multiple sub-master problems (asso-
ciated with VSC areas). ADMM is employed to iteratively solve
the multiple sub-master problems. Proximal terms and heuris-
tic approaches are embedded into ADMM, for achieving paral-
lel distributed sub-master problem-solving and handling integer
variables.

This paper begins with the mathematical formulation of a mixed-
nteger convex AC/DC OPF model in Section 2. Subsequently, the de-
omposed OPF model and the nested distributed optimization method
re illustrated in Section 3. Finally, numerical results are presented and
iscussed in Section 4, followed by conclusions in Section 5.

2. Mixed-integer convex AC/DC OPF model

In this section, the well-known nonlinear AC/DC OPF formulation is
transformed into the mixed-integer convex one. The original nonlinear
formulation is introduced first, and then the mixed-integer convex
formulation with the specific handling approaches is presented.
4 
2.1. AC grid constraints

The well-known nonlinear power flow of the AC grid is formulated
below:

𝑝𝐴𝐶𝑖𝑗 = 𝑔𝐴𝐶𝑖𝑗 |𝑣𝐴𝐶𝑖 |

2 − |𝑣𝐴𝐶𝑖 ∥ 𝑣𝐴𝐶𝑗 |(𝑔𝐴𝐶𝑖𝑗 cos 𝜃𝐴𝐶𝑖𝑗 + 𝑏𝐴𝐶𝑖𝑗 sin 𝜃𝐴𝐶𝑖𝑗 ), (1a)
𝐴𝐶
𝑖𝑗 = −𝑏𝐴𝐶𝑖𝑗 |𝑣𝐴𝐶𝑖 |

2 + |𝑣𝐴𝐶𝑖 ∥ 𝑣𝐴𝐶𝑗 |(𝑏𝐴𝐶𝑖𝑗 cos 𝜃𝐴𝐶𝑖𝑗 − 𝑔𝐴𝐶𝑖𝑗 sin 𝜃𝐴𝐶𝑖𝑗 ), (1b)

∀ 𝑖, 𝑗 ∈ N𝐴𝐶 , ∀(𝑖, 𝑗) ∈ L𝐴𝐶

where Eq. (1) represents the AC branch flow model. Eqs. (1a) and (1b)
makes the branch flow model nonlinear, considering |𝑣𝐴𝐶𝑖 |, |𝑣𝐴𝐶𝑗 |, 𝜃𝐴𝐶𝑖𝑗
that are regarded as the variables. We use the successive linearization
technique proposed in [14] to handle them, such that:

𝑝𝐴𝐶𝑖𝑗 = 𝑔𝐴𝐶𝑖𝑗 𝑢𝐴𝐶𝑖 − 𝑔𝑃 ,𝑖𝑛𝑖𝑡𝑖𝑗

𝑢𝐴𝐶𝑖 + 𝑢𝐴𝐶𝑗
2

− 𝑏𝑃 ,𝑖𝑛𝑖𝑡𝑖𝑗

(

𝜃𝐴𝐶𝑖𝑗 − 𝜃𝑖𝑛𝑖𝑡𝑖𝑗

)

+ 𝑔𝑃 ,𝑖𝑛𝑖𝑡𝑖𝑗

𝑣𝐿,𝑖𝑛𝑖𝑡𝑖𝑗

2
, (2a)

𝑞𝐴𝐶𝑖𝑗 = −𝑏𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗

𝑢𝐴𝐶𝑖 + 𝑢𝐴𝐶𝑗
2

− 𝑏𝐴𝐶𝑖𝑗 𝑢𝐴𝐶𝑖 − 𝑔𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗

(

𝜃𝐴𝐶𝑖𝑗 − 𝜃𝑖𝑛𝑖𝑡𝑖𝑗

)

+ 𝑏𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗

𝑣𝐿,𝑖𝑛𝑖𝑡𝑖𝑗

2
, (2b)

where Eqs. (2a) and (2b) constitute the linear constraints, involving
𝑢𝐴𝐶𝑖 , 𝑢𝐴𝐶𝑗 , 𝜃𝐴𝐶𝑖𝑗 as the variables. 𝑔𝑃 ,𝑖𝑛𝑖𝑡𝑖𝑗 , 𝑏𝑄,𝑖𝑛𝑖𝑡

𝑖𝑗 , 𝑔𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗 , 𝑏𝑄,𝑖𝑛𝑖𝑡

𝑖𝑗 , 𝑣𝑖𝑛𝑖𝑡𝑖𝑗 are the
constants, which are related to the initial AC power flow points. Their
specific formulation can be found in Appendix A.

The active and reactive power injections for the AC grid can be
specifically formulated as:

𝑝𝐴𝐶𝑖 =
∑

(𝑖,𝑗)
𝑝𝐴𝐶𝑖𝑗 , 𝑞𝐴𝐶𝑖 =

∑

(𝑖,𝑗)
𝑞𝐴𝐶𝑖𝑗 , (3a)

𝑝𝐴𝐶𝑖 = 𝑝𝐴𝐶𝑖,𝐺 − 𝑝𝐴𝐶𝑖,𝐷 − 𝑝𝐴𝐶𝑖,𝐴2𝑉 , 𝑞𝐴𝐶𝑖 = 𝑞𝐴𝐶𝑖,𝐺 − 𝑞𝐴𝐶𝑖,𝐷 − 𝑞𝐴𝐶𝑖,𝐴2𝑉 , (3b)

∀ 𝑖 ∈ N𝐴𝐶

where Eq. (3) indicates that for the AC grid node, the nodal active (resp.
reactive) power injection 𝑝𝐴𝐶𝑖 (resp. 𝑞𝐴𝐶𝑖 ) is contributed by the active
power generation of the generator 𝑝𝐴𝐶𝑖,𝐺 (resp. 𝑞𝐴𝐶𝑖,𝐺 ), the active (resp.
reactive) power demand of the load 𝑝𝐴𝐶𝑖,𝐷 (resp. 𝑞𝐴𝐶𝑖,𝐷 ), and the active
(resp. reactive) power transmission 𝑝𝐴𝐶𝑖,𝐴2𝑉 (resp. 𝑞𝐴𝐶𝑖,𝐴2𝑉 ). For the AC grid
node, if there is no connection to the generator (resp. the VSC station),
then 𝑝𝐴𝐶𝑖,𝐺 = 0, 𝑞𝐴𝐶𝑖,𝐺 = 0 (resp. 𝑝𝐴𝐶𝑖,𝐴2𝑉 = 0, 𝑞𝐴𝐶𝑖,𝐴2𝑉 = 0).

Additionally, some operational constraints need to be considered,
such that:

(𝑝𝐴𝐶𝑖,𝐺 )2 + (𝑞𝐴𝐶𝑖,𝐺 )2 ≤ (𝑠𝐴𝐶𝑖,𝐺 )
2

(4)

(𝑝𝐴𝐶𝑖𝑗 )2 + (𝑞𝐴𝐶𝑖𝑗 )2 ≤ (𝑠𝐴𝐶𝑖𝑗 )
2

(5)

|𝑣𝐴𝐶𝑖 | ≤ |𝑣𝐴𝐶𝑖 | ≤ |𝑣𝐴𝐶𝑖 | (6)

∀ 𝑖, 𝑗 ∈ N𝐴𝐶 , ∀(𝑖, 𝑗) ∈ L𝐴𝐶

where Eq. (4) regulates the allowable range for 𝑝𝐴𝐶𝑖,𝐺 , 𝑞𝐴𝐶𝑖,𝐺 , which are
constrained by the generator rated capacity 𝑠𝐴𝐶𝑖,𝐺 . Eq. (5) indicates the
apacity constraint of the branch flow 𝑝𝐴𝐶𝑖𝑗 , 𝑞𝐴𝐶𝑖𝑗 , which are constrained
y the branch rated capacity 𝑠𝐴𝐶𝑖𝑗 . Eq. (6) indicates the nodal voltage

amplitude range of |𝑣𝐴𝐶𝑖 |. We can observe that Eqs. (4) and (5) are the
onlinear circular constraints, given 𝑝𝐴𝐶𝑖,𝐺 , 𝑞𝐴𝐶𝑖,𝐺 and 𝑝𝐴𝐶𝑖𝑗 , 𝑞𝐴𝐶𝑖𝑗 respectively

regarded as optimization variables. To handle them, we use n-polygon
to approximate the circular constraint [39,40], such that:

− 𝑠𝐴𝐶𝑖,𝐺 ≤ cos
(

𝑛𝜋
𝑛

)

𝑝𝐴𝐶𝑖,𝐺 + sin
(

𝑛𝜋
𝑛

)

𝑞𝐴𝐶𝑖,𝐺 ≤ 𝑠𝐴𝐶𝑖,𝐺 , (7a)

− 𝑠𝐴𝐶 ≤ cos
(

𝑛𝜋
)

𝑝𝐴𝐶 + sin
(

𝑛𝜋
)

𝑞𝐴𝐶 ≤ 𝑠𝐴𝐶 , (7b)
𝑖𝑗 𝑛
𝑖𝑗 𝑛

𝑖𝑗 𝑖𝑗
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∀ 𝑛 ∈ {1, 2,… ,𝑛}

Besides, to match the squared voltage terms 𝑢𝐴𝐶𝑖 , 𝑢𝐴𝐶𝑗 in Eq. (2), Eq. (6)
s transformed into the squared version, such that:

𝑢𝐴𝐶𝑖 ≤ 𝑢𝐴𝐶𝑖 ≤ 𝑢𝐴𝐶𝑖 . (8)

Eventually, Eqs. (2), (3), (7) and (8) constitute the linear constraints
to formulate the AC grid operation.

2.2. RES constraints

The RES, e.g., the wind farm or solar station, is considered a PQ-type
ode. Its internal electrical layout is neglected,1 with only the point of

common coupling (PCC) being reserved. Accordingly, we list simplified
fundamental operational constraints, such that:

0 ≤ 𝑝𝑅𝐸 𝑆𝑟 ≤ 𝑝𝑅𝐸 𝑆𝑟 , (9)

(𝑝𝑅𝐸 𝑆𝑟 )2 + (𝑞𝑅𝐸 𝑆𝑟 )2 ≤ (𝑠𝑅𝐸 𝑆𝑟 )
2
, (10)

|𝑣𝑅𝐸 𝑆𝑟 | ≤ |𝑣𝑅𝐸 𝑆𝑟 | ≤ |𝑣𝑅𝐸 𝑆𝑟 |, (11)

∀ 𝑟 ∈ {1, 2,… ,𝑟},

where Eq. (9) regulates the range of the RES active power output
𝑅𝐸 𝑆
𝑟 . The upper bound 𝑝𝑅𝐸 𝑆𝑟 is determined by the maximum power
oint tracking value. RES power outputs 𝑝𝑅𝐸 𝑆𝑟 , 𝑞𝑅𝐸 𝑆𝑟 satisfy the capacity
onstraint Eq. (10). The upper bound 𝑠𝑅𝐸 𝑆𝑟 is determined by the RES
ated capacity. Eq. (11) regulates the amplitude range of RES output

voltage 𝑣𝑅𝐸 𝑆𝑟 . Similar to Eqs. (4) and (5), Eq. (10) is approximated to
 set of linear constraints, such that:

− 𝑠𝑅𝐸 𝑆𝑟 ≤ cos
(

𝑛𝜋
𝑛

)

𝑝𝑅𝐸 𝑆𝑟 + sin
(

𝑛𝜋
𝑛

)

𝑞𝑅𝐸 𝑆𝑟 ≤ 𝑠𝑅𝐸 𝑆𝑟 , (12)

∀ 𝑛 ∈ {1, 2, ⋯ , 𝑛}

Eq. (11) also needs to be transformed into the squared version (the
eason will be explained later in Section 2.4), such that:

𝑢𝑅𝐸 𝑆𝑟 ≤ 𝑢𝑅𝐸 𝑆𝑟 ≤ 𝑢𝑅𝐸 𝑆𝑟 . (13)

Additionally, the RES is the sending-end system for the AC/MTDC
hybrid power system. It is usually equipped with var compensation
devices such as STATCOM, which contribute reactive power 𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 to
support the PCC voltage [43], thus 𝑝𝑅𝐸 𝑆𝑟 , 𝑞𝑅𝐸 𝑆𝑟 , and 𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 can be
pecified as below:

𝑝𝑅𝐸 𝑆𝑟 = 𝑝𝑅𝐸 𝑆𝑟,𝑅2𝑉 , 𝑞𝑅𝐸 𝑆𝑟 + 𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 = 𝑞𝑅𝐸 𝑆𝑟,𝑅2𝑉 , (14a)
𝑅𝐸 𝑆
𝑟,𝑣𝑎𝑟 ≤ 𝑞𝑅𝐸 𝑆𝑟,var ≤ 𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 , (14b)

∀ 𝑟 ∈ {1, 2, ⋯ , 𝑟}

Eventually, Eqs. (9), (12), (13), and (14) constitute the linear con-
straints to formulate the RES operation.

2.3. MTDC grid constraints

The well-known nonlinear DC grid power flow is formulated below:

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 = 𝑣𝑀 𝑇 𝐷 𝐶

𝑗

∑

(𝑗 ,ℎ)

{(

𝑣𝑀 𝑇 𝐷 𝐶
𝑗 − 𝑣𝑀 𝑇 𝐷 𝐶

ℎ

)

𝑦𝑀 𝑇 𝐷 𝐶
𝑗 ℎ

}

, (15)

∀ 𝑗 , ℎ ∈ N𝑀 𝑇 𝐷 𝐶 , ∀(𝑗 , ℎ) ∈ L𝑀 𝑇 𝐷 𝐶

1 Actually, the large-scale RES features a power collecting system with spe-
ific operational constraints involving feeders, renewable energy generators,
nd other components [41,42]. However, discussing these details is beyond

the scope of our work.
 d

5 
where Eq. (15) represents the DC grid bus flow model. It can be seen
hat Eq. (15) is nonlinear, given 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 , 𝑣𝑀 𝑇 𝐷 𝐶
𝑗 , 𝑣𝑀 𝑇 𝐷 𝐶

ℎ regarded as the
ptimization variables. We use the SOCP-relaxed DC grid power flow

proposed in [21] to handle it, such that:

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 =

∑

(𝑗 ,ℎ)
𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ℎ , (16a)

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ℎ + 𝑝𝑀 𝑇 𝐷 𝐶

ℎ𝑗 = 𝑟𝑀 𝑇 𝐷 𝐶
𝑗 ℎ 𝑙𝑀 𝑇 𝐷 𝐶

𝑗 ℎ , (16b)

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 − 𝑢𝑀 𝑇 𝐷 𝐶

ℎ = 𝑟𝑀 𝑇 𝐷 𝐶
𝑗 ℎ

(

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ℎ − 𝑝𝑀 𝑇 𝐷 𝐶

ℎ𝑗

)

, (16c)

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ℎ ≤ 𝑙𝑀 𝑇 𝐷 𝐶

𝑗 ℎ 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 , (16d)

where Eq. (16) forms the SOCP-relaxed DC grid power flow by relaxing
he inherent equality equation that 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 ℎ = 𝑙𝑀 𝑇 𝐷 𝐶
𝑗 ℎ 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 .
The operational constraints regarding nodal voltage for the MTDC

grid is formulated below:

𝑣𝑀 𝑇 𝐷 𝐶
𝑗 ≤ 𝑣𝑀 𝑇 𝐷 𝐶

𝑗 ≤ 𝑣𝑀 𝑇 𝐷 𝐶
𝑗 . (17)

∀ 𝑗 ∈ N𝑀 𝑇 𝐷 𝐶

To match the squared voltage terms 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 , 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 in Eqs. (16), (17)
is transformed into :
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ≤ 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ≤ 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 . (18)

Particularly, for the MTDC grid, its each node is connected to one VSC
station. Thus, the nodal active power injection 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 can be specified
s:

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 = −𝑝𝑀 𝑇 𝐷 𝐶

𝑗 ,𝐷2𝑉 . (19)

∀ 𝑗 ∈ N𝑀 𝑇 𝐷 𝐶

Eventually, Eqs. (16), (18), and (19) constitute the SOCP-relaxed
constraints to formulate the MTDC grid operation.

2.4. VSC constraints

As depicted in Fig. 1, the AC side of the VSC refers to the circuit
from PCC bus 𝑠 to the AC terminal bus 𝑐, which is formulated below:

𝑝𝑉 𝑆 𝐶𝑖 = |𝑣𝑉 𝑆 𝐶𝑖 |

∑

𝑗
|𝑣𝑉 𝑆 𝐶𝑗 |

(

𝐺𝑉 𝑆 𝐶
𝑖𝑗 cos 𝜃𝑉 𝑆 𝐶𝑖𝑗 + 𝐵𝑉 𝑆 𝐶

𝑖𝑗 sin 𝜃𝑉 𝑆 𝐶𝑖𝑗

)

, (20a)

𝑞𝑉 𝑆 𝐶𝑖 = |𝑣𝑉 𝑆 𝐶𝑖 |

∑

𝑗
|𝑣𝑉 𝑆 𝐶𝑗 |

(

𝐺𝑉 𝑆 𝐶
𝑖𝑗 sin 𝜃𝑉 𝑆 𝐶𝑖𝑗 − 𝐵𝑉 𝑆 𝐶

𝑖𝑗 cos 𝜃𝑉 𝑆 𝐶𝑖𝑗

)

, (20b)

∀ 𝑖, 𝑗 ∈ N𝑉 𝑆 𝐶

where Eq. (20) represents the AC bus flow model. It is nonlinear, given
|𝑣𝑉 𝑆 𝐶𝑖 |, |𝑣𝑉 𝑆 𝐶𝑗 | and 𝜃𝑉 𝑆 𝐶𝑖𝑗 as the optimization variables. We use the
SOCP-relaxed AC grid power flow proposed in [20] to handle them,2
such that:

𝑝𝑉 𝑆 𝐶𝑖 =
∑

𝑗

(

𝑐𝑉 𝑆 𝐶𝑖𝑖 𝐺𝑉 𝑆 𝐶
𝑖𝑗 − 𝑠𝑉 𝑆 𝐶𝑖𝑗 𝐵𝑉 𝑆 𝐶

𝑖𝑗

)

, (21a)

𝑞𝑉 𝑆 𝐶𝑖 = −
∑

𝑗

(

𝑐𝑉 𝑆 𝐶𝑖𝑖 𝐵𝑉 𝑆 𝐶
𝑖𝑗 + 𝑠𝑉 𝑆 𝐶𝑖𝑗 𝐺𝑉 𝑆 𝐶

𝑖𝑗

)

, (21b)

𝑐𝑉 𝑆 𝐶𝑖𝑗 = 𝑐𝑉 𝑆 𝐶𝑗 𝑖 , 𝑠𝑉 𝑆 𝐶𝑖𝑗 = −𝑠𝑉 𝑆 𝐶𝑗 𝑖 , (21c)

(𝑐𝑉 𝑆 𝐶𝑖𝑗 )2 + (𝑠𝑉 𝑆 𝐶𝑖𝑗 )2 ≤ 𝑐𝑉 𝑆 𝐶𝑖𝑖 𝑐𝑉 𝑆 𝐶𝑗 𝑗 , (21d)

2 SOCP-relaxed AC grid power flow can also be an option to handle
Eq. (1). However, commonly used off-the-shelf optimizers might fail
to return high-fidelity Lagrangian duals in solving SOCP problems
(https://support.gurobi.com/hc/en-us/community/posts/21957674501265-
Warning-failed-to-compute-QCP-dual-solution-due-to-inaccurate-barrier-
solution), which would affect the application of our developed nested
istributed optimization method.

https://support.gurobi.com/hc/en-us/community/posts/21957674501265-Warning-failed-to-compute-QCP-dual-solution-due-to-inaccurate-barrier-solution
https://support.gurobi.com/hc/en-us/community/posts/21957674501265-Warning-failed-to-compute-QCP-dual-solution-due-to-inaccurate-barrier-solution
https://support.gurobi.com/hc/en-us/community/posts/21957674501265-Warning-failed-to-compute-QCP-dual-solution-due-to-inaccurate-barrier-solution
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Fig. 1. Equivalent impedance circuit model of the VSC. The circuit covers from the PCC bus to the AC terminal bus.
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where Eq. (21) forms the SOCP-relaxed constraints. 𝑐𝑉 𝑆 𝐶𝑖𝑖 , 𝑐𝑉 𝑆 𝐶𝑖𝑗 , 𝑠𝑉 𝑆 𝐶𝑖𝑗
re as the optimization variables, which have links with the nodal
oltage amplitude |𝑣𝑉 𝑆 𝐶𝑖 |. Given that 𝑒𝑉 𝑆 𝐶𝑖 ∶= ℜ(𝑣𝑉 𝑆 𝐶𝑖 ) and 𝑓𝑉 𝑆 𝐶

𝑖 ∶=
(𝑣𝑉 𝑆 𝐶𝑖 ), then the aforementioned optimization variables can be inter-
reted as 𝑐𝑉 𝑆 𝐶𝑖𝑖 ∶ =(𝑒𝑉 𝑆 𝐶𝑖 )2 + (𝑓𝑉 𝑆 𝐶

𝑖 )2, 𝑐𝑉 𝑆 𝐶𝑖𝑗 ∶ =𝑒𝑉 𝑆 𝐶𝑖 𝑒𝑉 𝑆 𝐶𝑗 + 𝑓𝑉 𝑆 𝐶
𝑖 𝑓𝑉 𝑆 𝐶

𝑗 ,
nd 𝑠𝑉 𝑆 𝐶𝑖𝑗 ∶ =𝑒𝑉 𝑆 𝐶𝑖 𝑓𝑉 𝑆 𝐶

𝑗 +𝑒𝑉 𝑆 𝐶𝑗 𝑓𝑉 𝑆 𝐶
𝑖 . SOCP-relaxed AC grid power flow

is achieved by relaxing the inherent equality equation that (𝑐𝑉 𝑆 𝐶𝑖𝑗 )2 +
(𝑠𝑉 𝑆 𝐶𝑖𝑗 )2 = 𝑐𝑉 𝑆 𝐶𝑖𝑖 𝑐𝑉 𝑆 𝐶𝑗 𝑗 .

As depicted in Fig. 1, 𝑠 is as the boundary node between the AC
ystem (includes the AC grid and RES) and the VSC. Its nodal voltage

and power injections can be specifically expressed as:

𝑝𝑉 𝑆 𝐶𝑠 = 𝑝𝐴𝐶𝑖,𝐴2𝑉 ∨ 𝑝𝑅𝐸 𝑆𝑟,𝑅2𝑉 , 𝑞𝑉 𝑆 𝐶𝑠 = 𝑞𝐴𝐶𝑖,𝐴2𝑉 ∨ 𝑞𝑅𝐸 𝑆𝑟,𝑅2𝑉 , 𝑐𝑉 𝑆 𝐶𝑠𝑠 = 𝑢𝐴𝐶𝑖 ∨ 𝑢𝑅𝐸 𝑆𝑟 ,

(22)

∀ 𝑠 ∈ N𝑉 𝑆 𝐶 , ∀ 𝑖 ∈ N𝐴𝐶 , ∀ 𝑟 ∈ {1, 2, ⋯ , 𝑟}

where Eq. (22) means that if the VSC is connected with the AC grid
(resp. the RES), then 𝑝𝑉 𝑆 𝐶𝑠 = 𝑝𝐴𝐶𝑖,𝐴2𝑉 , 𝑞𝑉 𝑆 𝐶𝑠 = 𝑞𝐴𝐶𝑖,𝐴2𝑉 , 𝑐𝑉 𝑆 𝐶𝑠𝑠 = 𝑢𝐴𝐶𝑖
(resp. 𝑝𝑉 𝑆 𝐶𝑠 = 𝑝𝑅𝐸 𝑆𝑟,𝑅2𝑉 , 𝑞𝑉 𝑆 𝐶𝑠 = 𝑞𝑅𝐸 𝑆𝑟,𝑅2𝑉 , 𝑐𝑉 𝑆 𝐶𝑠𝑠 = 𝑢𝑅𝐸 𝑆𝑟 ). Eq. (22) also
ddresses the previously mentioned question of why Eq. (11) needs to
e reformulated as Eq. (13).

A set of constraints are included to characterize the couplings
between the VSC’s AC terminal and DC terminal, such that:

|𝑣𝑉 𝑆 𝐶𝑐 | = 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀𝑣𝑀 𝑇 𝐷 𝐶
𝑗 , 0 ≤ 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 ≤ 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 , (23a)

𝑝𝑉 𝑆 𝐶𝑐 = 𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ,𝐷2𝑉 − 𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 , (23b)

𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 = 𝑎𝑙 𝑜𝑠𝑠,2|𝑖𝑉 𝑆 𝐶𝑐 |

2 + 𝑎𝑙 𝑜𝑠𝑠,1|𝑖𝑉 𝑆 𝐶𝑐 | + 𝑎𝑙 𝑜𝑠𝑠,0, (23c)

|𝑖𝑉 𝑆 𝐶𝑐 𝑣𝑉 𝑆 𝐶𝑐 |

2 = (𝑝𝑉 𝑆 𝐶𝑐 )2 + (𝑞𝑉 𝑆 𝐶𝑐 )2, 0 ≤ |𝑖𝑉 𝑆 𝐶𝑐 | ≤ |𝑖𝑉 𝑆 𝐶𝑐 |, (23d)

where Eq. (23) describes the voltage and active power couplings be-
tween the VSC’s AC terminal and DC terminal. As indicated in Eq. (23a),
the PWM modulation factor 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 determines the specific voltage
coupling. Eq. (23b) represents the active power couplings. The con-
verter loss 𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 is generated during the AC/DC power conversion. As
ndicated in Eq. (23c), the converter loss is a quadratic function with

respect to the current amplitude |𝑖𝑉 𝑆 𝐶𝑐 |. 𝑎𝑙 𝑜𝑠𝑠,2, 𝑎𝑙 𝑜𝑠𝑠,1, and 𝑎𝑙 𝑜𝑠𝑠,0 are
the corresponding converter loss coefficients. |𝑖𝑉 𝑆 𝐶𝑐 | can be calculated
through Eq. (23d).

Eq. (23) is nonlinear due to: (a) The bilinear term 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀𝑣𝑀 𝑇 𝐷 𝐶
𝑗

n Eq. (23a). (b) The quadratic term |𝑖𝑉 𝑆 𝐶𝑐 |

2 in Eq. (23c). (c) The
onlinear equation |𝑖𝑉 𝑆 𝐶𝑐 𝑣𝑉 𝑆 𝐶𝑐 |

2 = (𝑝𝑉 𝑆 𝐶𝑐 )2 + (𝑞𝑉 𝑆 𝐶𝑐 )2 in Eq. (23d). We
ake three key steps to handle the nonlinearities in Eq. (23): (i) The
ilinear term 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀𝑣𝑀 𝑇 𝐷 𝐶

𝑗 is relaxed into a linear term by eliminating
he optimization variable 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 , which can be treated as a redundant

variable. Besides, to match the squared voltage term 𝑐𝑉 𝑆 𝐶𝑖𝑖 in Eq. (21),
𝑣𝑉 𝑆 𝐶𝑐 in (23a) is replaced by 𝑐𝑉 𝑆 𝐶𝑐 𝑐 . Similarly, to match the squared
voltage term 𝑢𝑀 𝑇 𝐷 𝐶 in Eq. (16c), 𝑣𝑀 𝑇 𝐷 𝐶 in Eq. (23a) is replaced
𝑗 𝑗
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by 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 . (ii) Let 𝑙𝑉 𝑆 𝐶𝑐 = |𝑖𝑉 𝑆 𝐶𝑐 |

2, and it is handled by the bivariate
piecewise quadratic relaxation [24]. (iii) Second-order cone relaxation
is taken to handle |𝑖𝑉 𝑆 𝐶𝑐 𝑣𝑉 𝑆 𝐶𝑐 |

2 = (𝑝𝑉 𝑆 𝐶𝑐 )2 + (𝑞𝑉 𝑆 𝐶𝑐 )2. Consequently,
q. (23) can be transformed into the following mixed-integer convex

constraints:

𝑐𝑉 𝑆 𝐶𝑐 𝑐 ≤ (𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 )2𝑢𝑀 𝑇 𝐷 𝐶
𝑗 , (24a)

𝑝𝑉 𝑆 𝐶𝑐 = 𝑝𝑀 𝑇 𝐷 𝐶
𝑗 ,𝐷2𝑉 − 𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 , (24b)

𝑝𝑉 𝑆 𝐶𝑙 𝑜𝑠𝑠 = 𝑎𝑙 𝑜𝑠𝑠,2𝑙𝑉 𝑆 𝐶𝑐 + 𝑎𝑙 𝑜𝑠𝑠,1|𝑖𝑉 𝑆 𝐶𝑐 | + 𝑎𝑙 𝑜𝑠𝑠,0, (24c)
(

𝑝𝑉 𝑆 𝐶𝑐
)2 +

(

𝑞𝑉 𝑆 𝐶𝑐
)2 ≤ 𝑙𝑉 𝑆 𝐶𝑐 𝑐𝑉 𝑆 𝐶𝑐 𝑐 , 0 ≤ |𝑖𝑉 𝑆 𝐶𝑐 | ≤ |𝑖𝑉 𝑆 𝐶𝑐 |, (24d)

𝑙𝑉 𝑆 𝐶𝑐 ≥
∑

𝑘
|𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 |

2, (24e)

𝑙𝑉 𝑆 𝐶𝑐 ≤
∑

𝑘

{

|𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 ||𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 | + |𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 ||𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 | − |𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 ||𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 |𝑏𝑘

}

, (24f)

∑

𝑘
𝑏𝑘 = 1,

∑

𝑘

|

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

= |

|

|

𝑖𝑉 𝑆 𝐶𝑐
|

|

|

, |

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

𝑏𝑘 ≤ |

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

≤ |

|

𝑖𝑐 ,𝑘||𝑏𝑘, (24g)

|

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

=
|𝑖𝑉 𝑆 𝐶𝑐 | (𝑘 − 1)

𝑘
, |

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

=
|𝑖𝑉 𝑆 𝐶𝑐 |𝑘
𝑘

, (24h)

∀ 𝑘 ∈ {1, 2 ⋯ ,𝑘}

where Eq. (24a) is formed by relaxing Eq. (23a), considering that
𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 ≥ 0 and 𝑣𝑀 𝑇 𝐷 𝐶

𝑗 ≥ 0. Eq. (24b) keeps consistent with Eq. (23b).
q. (24c) is reformulated from Eq. (23c), with 𝑙𝑉 𝑆 𝐶𝑐 taking the place of

|𝑖𝑉 𝑆 𝐶𝑐 |

2. Eq. (24d) is reformulated from Eq. (23d), by relaxing the in-
herent formula that |𝑖𝑉 𝑆 𝐶𝑐 𝑣𝑉 𝑆 𝐶𝑐 |

2 = (𝑝𝑉 𝑆 𝐶𝑐 )2 + (𝑞𝑉 𝑆 𝐶𝑐 )2. Eqs. (24e)–(24h)
forms the bivariate quadratic envelope to approximate 𝑙𝑉 𝑆 𝐶𝑐 ∶ =|𝑖𝑉 𝑆 𝐶𝑐 |

2.
|𝑖𝑉 𝑆 𝐶𝑐 ,𝑘 | denotes the optimization variable within the subrange
|

|

|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

, ||
|

𝑖𝑉 𝑆 𝐶𝑐 ,𝑘
|

|

|

]

, and the binary variable 𝑏𝑘 is used to denote the
tatus of each subrange, whether it is enabled (binary-1) or disabled
binary-0).

Furthermore, we consider the impact of VSC vector control on deci-
ion making in AC/DC OPF. As shown in Fig. 2, the VSC vector control
elies on both outer and inner controllers. The outer controllers include

the active and reactive channels. The active channels are responsible for
regulating the active power and the DC bus voltage, while the reactive
channels are responsible for the reactive power and PCC voltage. For
the active channels, droop voltage control is employed for a flexible
real-time volt-power response. Specifically, 𝑉 2 − 𝑃 droop control is
considered here [44]. The reactive channels use constant AC voltage
control benefits in maintaining the output voltage, mainly for RES
ide [45]. Hence, we have the operational constraints below:

𝑐𝑉 𝑆 𝐶𝑠𝑠 = (𝑣𝑉 𝑆 𝐶𝑠,𝑟𝑒𝑓 )
2, (25)

𝑝𝑀 𝑇 𝐷 𝐶 = 𝑘𝑀 𝑇 𝐷 𝐶 (

𝑢𝑀 𝑇 𝐷 𝐶 − 𝑢𝑀 𝑇 𝐷 𝐶) + 𝑝𝑀 𝑇 𝐷 𝐶 , (26a)
𝑗 𝑗 ,𝑑 𝑟𝑝 𝑗 𝑗 ,𝑟𝑒𝑓 𝑗 ,𝑟𝑒𝑓
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Fig. 2. General architecture of VSC vector control. The outer controllers manage the active and reactive power channels, which are responsible for controlling the AC and DC
sides of the VSC, respectively.
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𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 ≤ 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 ≤ 0, 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ≤ 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 ≤ 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 , (26b)

𝑠 ∈ N𝑉 𝑆 𝐶 , ∀ 𝑗 ∈ N𝑀 𝑇 𝐷 𝐶

where Eq. (25) indicates that the AC voltage amplitude at the PCC bus is
imposed to be the reference value 𝑣𝑉 𝑆 𝐶𝑠,𝑟𝑒𝑓 . Eq. (26) formulates the 𝑉 2−𝑃
droop control function with respect to the power and voltage references
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 , 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 .
To improve droop control performance, the droop control param-

eters 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 , 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 , 𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 are regarded as the optimization vari-

ables. In this way, bilinear terms 𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 and 𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓
exist. We handle them using piecewise McCormick envelope [23],
e.g., 𝑈𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 ∶ = 𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 can be approximated as:

𝑈𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ≥ 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 +

∑

𝑘
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 𝛥𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝,𝑘 , (27a)

𝑈𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ≥

∑

𝑘
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘

(

𝛥𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝,𝑘 + 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 𝑑𝑘

)

, (27b)

𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ≤ 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 +

∑

𝑘
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 𝛥𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝,𝑘 , (27c)

𝑈𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ≤

∑

𝑘
𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘

(

𝛥𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝,𝑘 + 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 𝑑𝑘

)

, (27d)

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 = 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 +

(

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 − 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓
)

(𝑘 − 1)

𝑘
, (27e)

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 = 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 +

(

𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 − 𝑢𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓
)

𝑘

𝑘
, (27f)

∑

𝑘
𝑑𝑘 = 1, 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 = 𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝 +

∑

𝑘
𝛥𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝,𝑘 , (27g)

∀ 𝑘 ∈ {1, 2 ⋯ ,𝑘}

where the binary variable 𝑑𝑘 is enabled (binary-1) for the segment
here 𝑈𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 is located at 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 ≤ 𝑈𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 ≤ 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 and is otherwise

disabled (binary-0). Eqs. (27a)–(27d) provide a tighter McCormick
nvelope. Eqs. (27e) and (27f) respectively denote the sub-lower bound

and sub-upper bound for 𝑢𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑟𝑒𝑓 ,𝑘 . Eq. (27g) enforces only one binary

ariable is active. The continuous switch 𝛥𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝,𝑘 takes on any pos-

tive value between 0 and −𝑘𝑀 𝑇 𝐷 𝐶
𝑗 ,𝑑 𝑟𝑝,𝑘 when 𝑑𝑘 is enabled at the kth

egment. Besides, 𝑈𝑀 𝑇 𝐷 𝐶 ∶ =𝑘𝑀 𝑇 𝐷 𝐶𝑢𝑀 𝑇 𝐷 𝐶 can be approximated with
𝑗 𝑗 ,𝑑 𝑟𝑝 𝑗 o

7 
a set of mixed-integer constraints that are similar to Eqs. (27a)–(27g).
ccordingly, Eq. (26a) can be rewritten as a linear equation, such that:

𝑝𝑀 𝑇 𝐷 𝐶
𝑗 − 𝑝𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 = 𝑈𝑀 𝑇 𝐷 𝐶
𝑗 − 𝑈𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑟𝑒𝑓 . (28)

Eventually, Eqs. (21), (22), (24), (25), (27), and (28) compose the
ixed-integer convex constraints to formulate the VSC operation.

2.5. Optimization objective for the AC/MTDC hybrid grid

Regarding the optimization objective, minimizing the generation
costs and the total power losses (including power losses on lines and in-
side the VSC station) is considered as the overall optimization objective
for the AC/MTDC hybrid power system, such that:

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖

(

𝑐𝑖,2
(

𝑝𝐴𝐶𝑖,𝐺
)2

+ 𝑐𝑖,1𝑝
𝐴𝐶
𝑖,𝐺 + 𝑐𝑖,0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
generation costs

+
∑

𝑖

(

𝑝𝐴𝐶𝑖,𝐺 − 𝑝𝐴𝐶𝑖,𝐿
)

+
∑

𝑟
𝑝𝑅𝐸 𝑆𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
total power losses

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(29)

∀𝑖 ∈ N𝐴𝐶 , ∀𝑟 ∈ {1, 2,… ,𝑟}

where the generation costs is a quadratic function with the coefficients
𝑐𝑖,2, 𝑐𝑖,1, and 𝑐𝑖,0. Total power losses include the AC and DC line losses
and converter losses, which can be calculated by subtracting the total
load demands from the total power generation.

Hence, the enhanced AC/DC OPF model is ultimately formulated as
a mixed-integer convex programming problem, specifically, a mixed-
integer quadratic programming problem with linear and second-order
cone constraints.

3. Nested distributed optimization

The proposed mixed-integer convex AC/DC OPF model is desirable
o be solved via a distributed optimization approach, considering com-
unication burdens and privacy protection. In this section, a novel
ested distributed optimization framework and the specific distributed
ptimization methods will be introduced.
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Fig. 3. A schematic of ‘‘thorough’’ system decomposition of the AC/VSC-MTDC hybrid power system. The initial split decomposes the AC system and the VSC-MTDC grid. The
subsequent split decomposes the multiple VSC areas inside the VSC-MTDC grid.
Fig. 4. Illustration regarding the synchronous updating and asynchronous updating. Synchronous updating requires that all SPs must be solved every iteration, while asynchronous
updating only requires that a part of SPs must be solved every iteration.
3.1. ‘‘Thorough’’ system decomposition

As shown in Fig. 3, the so-called ‘‘thorough’’ system decomposition
involves two stages: The initial split and the subsequent split. Due
to data privacy and communication burdens, we deem that different
operators govern the AC grid, RES, and MTDC grid separately. The
initial split is implemented to address the distributed coordination
between the AC system (includes the AC grid and RES system) and
VSC-MTDC grid by duplicating the virtual PCC bus and resulting in the
additional boundary coupling constraint between the AC systems and
the VSC-MTDC grid, such that:

𝑝𝑉 𝑆 𝐶𝑠 = 𝑝′𝑉 𝑆 𝐶𝑠 , 𝑞𝑉 𝑆 𝐶𝑠 = 𝑞′𝑉 𝑆 𝐶𝑠 , 𝑐𝑉 𝑆 𝐶𝑠𝑠 = 𝑐′𝑉 𝑆 𝐶𝑠𝑠 , (30)

where 𝑝′𝑉 𝑆 𝐶𝑠 , 𝑞′𝑉 𝑆 𝐶𝑠 , and 𝑐𝑉 𝑆 𝐶′𝑠𝑠 are the duplicated variables at the virtual
PCC buses. 𝑐𝑉 𝑆 𝐶 = 𝑐′𝑉 𝑆 𝐶 in Eq. (30) is taken replace of the original
𝑠𝑠 𝑠𝑠

8 
boundary voltage coupling that |𝑣𝑉 𝑆 𝐶𝑠 | = |𝑣′𝑉 𝑆 𝐶𝑠 | to maintain consistent
with the squared voltage term in Eq. (21).

Additionally, we consider that the VSC-MTDC grid serves long-
distance power transmission, and it usually covers a large geographical
area. In the real world, it is highly challenging to establish a global
centralized communication network that covers the entire VSC-MTDC
grid. Consequently, after the initial split, the VSC-MTDC grid continues
to experience subsequent split. Distributed decision making is still
needed inside the VSC-MTDC. VSCs connected to an AC grid or a RES
system belong to the same VSC area. VSCs located in the same VSC
area are geographically closer to each other and are expected to be
centrally governed, and distributed coordination is required between
the adjacent VSC areas.

The MTDC grid typically exhibits a loop structure, with DC buses
numbered clockwise. For the DC bus 𝑖, the adjacent buses are the
preceding DC bus ℎ and the succeeding bus 𝑗. The subsequent split
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occurs at the DC bus 𝑖 by duplicating the virtual DC bus 𝑖, resulting
n the additional boundary coupling constraint between the DC bus 𝑖
nd DC bus 𝑗, such that:

𝑝𝑀 𝑇 𝐷 𝐶
𝑖𝑗 = 𝑝′𝑀 𝑇 𝐷 𝐶

𝑖𝑗 , 𝑢𝑀 𝑇 𝐷 𝐶
𝑖 = 𝑢′𝑀 𝑇 𝐷 𝐶

𝑖 , (31)

where 𝑝′𝑀 𝑇 𝐷 𝐶
𝑖𝑗 and 𝑢′𝑀 𝑇 𝐷 𝐶

𝑖 are the duplicated variables at the virtual
C bus 𝑖. 𝑢𝑀 𝑇 𝐷 𝐶

𝑖 = 𝑢′𝑀 𝑇 𝐷 𝐶
𝑖 is taken the place of the original boundary

oltage coupling that 𝑣𝑀 𝑇 𝐷 𝐶
𝑖 = 𝑣′𝑀 𝑇 𝐷 𝐶

𝑖 to maintain consistent with
he squared voltage term in Eq. (16). Note that there is no boundary

coupling generated between the DC bus 𝑖 and ℎ because the VSCs
connected to them belong to the same VSC area. Similarly, if from the
perspective of the DC bus ℎ, there are additional coupling constraints
that:

𝑝′𝑀 𝑇 𝐷 𝐶
𝑔 ℎ = 𝑝𝑀 𝑇 𝐷 𝐶

𝑔 ℎ , 𝑢′𝑀 𝑇 𝐷 𝐶
ℎ = 𝑢𝑀 𝑇 𝐷 𝐶

ℎ . (32)

Based on such ‘‘thorough’’ system decomposition, a set of coupling
constraints between the AC systems and the VSC-MTDC grid is gener-
ated as the initial split occurs, and a set of coupling constraints between
the adjacent VSC areas is generated as the subsequent split occurs.

3.2. Improved GBD in the outer loop with multi-cut generation and asyn-
hronous updating

The constructed AC/DC OPF model is a mixed-integer convex pro-
gramming problem. Utilizing GBD to achieve distributed optimization
between the AC systems and VSC-MTDC grid is highly desirable. The
constructed AC/DC OPF model can be formulated in the blow compact
formulation:

min
𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ,𝐗𝑆 𝑃

𝑚 ,𝐙𝑆 𝑃
𝑚

∑

𝑚
𝑆 𝑃
𝑚 (𝐗𝑆 𝑃

𝑚 ,𝐙𝑆 𝑃
𝑚 ),

s.t. 𝑀 𝑃 (𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) ≤ 0, 𝑀 𝑃 (𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) = 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

independent constraints in MP

,

𝑆 𝑃
𝑚 (𝐗𝑆 𝑃

𝑚 ,𝐙𝑆 𝑃
𝑚 ) ≤ 0, 𝑆 𝑃

𝑚 (𝐗𝑆 𝑃
𝑚 ,𝐙𝑆 𝑃

𝑚 ) = 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

independent constraints in SP 𝑚

,

𝐶 𝑃
𝑚 (𝐙𝑀 𝑃 ,𝐙𝑆 𝑃

𝑚 ) = 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

coupling constraints between MP and SP 𝑚

,

(33)

∀𝑚 ∈ {1, 2, ⋯ , 𝑚}

where the constructed AC/DC OPF model is decomposed into one mas-
er problem (MP) and multiple slave problems (SPs). MP is associated

with the VSC-MTDC grid, whereas SPs are associated with the AC
systems. 𝐗𝑀 𝑃 and 𝐗𝑆 𝑃

𝑚 respectively denote the independent variable
vectors only exists in MP and SPs. 𝐙𝑀 𝑃 and 𝐙𝑆 𝑃

𝑚 respectively the cou-
pling variable vectors associated with MP and SPs. More specifically,
MP constraint vectors 𝑀 𝑃 and 𝑀 𝑃 include Eqs. (16), (18), (19), (21),
(22), (24), (25), (27), and (28). SP constraint vectors 𝑆 𝑃

𝑚 and 𝑆 𝑃
𝑚

nclude Eqs. (2), (3), (4), (7), (8), (9), (12), (13), and (14). Coupling
onstraint vectors 𝐶 𝑃

𝑚 include Eq. (30). Particularly, we have that:

𝐙𝑀 𝑃 ∶=
[

𝑝𝑉 𝑆 𝐶𝑠,1 , 𝑞𝑉 𝑆 𝐶𝑠,1 , 𝑐𝑉 𝑆 𝐶𝑠𝑠,1 ,… , 𝑝𝑉 𝑆 𝐶
𝑠,𝑚

, 𝑞𝑉 𝑆 𝐶
𝑠,𝑚

, 𝑐𝑉 𝑆 𝐶
𝑠𝑠,𝑚

]⊤
,

𝐙𝑆 𝑃
𝑚 ∶=

[

𝑝′𝑉 𝑆 𝐶𝑠,𝑚 , 𝑞′𝑉 𝑆 𝐶𝑠,𝑚 , 𝑐′𝑉 𝑆 𝐶𝑠𝑠,𝑚

]⊤
,

. (34)

where (∗)𝑉 𝑆 𝐶𝑠,𝑚 is utilized to denote the variables at PCC node s as-
ociated with the VSC m. We would like to address that 𝑀 𝑃 , the

optimization objective of MP, should have appeared in Eq. (33). How-
ever, reviewing Eq. (29), it can be observed that for our proposed

C/DC OPF model, the optimization objective does not involve the
ptimization variables in MP associated with the VSC-MTDC grid,
.e., 𝑀 𝑃 (𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) ∶= ∅.

GBD offers an iterative approach to solve MP and SPs in a dis-
ributed manner. Firstly, the SP is formulated as:
 m

9 
Original SP ≜ min
𝐗𝑆 𝑃
𝑚 ,𝐙𝑆 𝑃

𝑚

𝑆 𝑃
𝑚

(

𝐗𝑆 𝑃
𝑚 , 𝐙𝑆 𝑃

𝑚
)

,

.t. 𝑆 𝑃
𝑚

(

𝐗𝑆 𝑃
𝑚 , 𝐙𝑆 𝑃

𝑚
)

≤ 0, 𝑆 𝑃
𝑚

(

𝐗𝑆 𝑃
𝑚 , 𝐙𝑆 𝑃

𝑚
)

= 0,
𝐶 𝑃

𝑚

(

𝐙̂𝑀 𝑃 [𝑣], 𝐙𝑆 𝑃
𝑚

)

= 0 |

|

|

𝝀𝑚,

(35)

𝑣 ∈ {1, 2, ⋯ , 𝑣}

where Eq. (35) defines the original SP. 𝝀𝑚 is the dual multiplier vector
corresponding to the coupling constraint vector that 𝐶 𝑃

𝑚 = 0. Note that
̂𝑀 𝑃 [𝑣] represents the determined boundary variable vector from MP at
he vth GBD iteration. The upper bound (UB) of Eq. (33) is calculated

by solving Eq. (35). However, Eq. (35) may have no feasible solutions
at a certain iteration. In this case, the relaxed SP taking the place of
Eq. (35) is formed:

Relaxed SP ≜ min
𝐗𝑆 𝑃
𝑚 ,𝐙𝑆 𝑃

𝑚

{

‖

‖

𝜺𝑚‖‖1 + ‖

‖

𝝈𝑚
‖

‖1
}

,

s.t. 𝑆 𝑃
𝑚

(

𝐗𝑆 𝑃
𝑚 , 𝐙𝑆 𝑃

𝑚
)

≤ 0, 𝑆 𝑃
𝑚

(

𝐗𝑆 𝑃
𝑚 , 𝐙𝑆 𝑃

𝑚
)

= 0,
𝐶 𝑃

𝑚

(

𝐙̂𝑀 𝑃 [𝑣], 𝐙𝑆 𝑃
𝑚

)

− 𝜺𝑚 ≤ 0 |

|

|

𝝁𝜀
𝑚,

−𝐶 𝑃
𝑚

(

𝐙̂𝑀 𝑃 [𝑣], 𝐙𝑆 𝑃
𝑚

)

− 𝝈𝑚 ≤ 0 |

|

|

𝝁𝜎
𝑚,

𝜺𝑚 ≽ 0, 𝝈𝑚 ≽ 0,

(36)

𝑣 ∈ {1, 2, ⋯ , 𝑣}

where Eq. (36) define the relaxed SP. 𝜺𝑚 and 𝝈𝑚 are auxiliary vec-
tors composed of small positive real numbers for relaxing the quality
constraint vector that 𝐶 𝑃

𝑚 = 0. 𝝁𝜀
𝑚 and 𝝁𝜎

𝑚 are respectively the dual
multiplier vectors corresponding to 𝐶 𝑃

𝑚 − 𝜺𝑚 ≤ 0 and −𝐶 𝑃
𝑚 − 𝝈𝑚 ≤ 0.

Regarding MP formulation, the archival GBD procedure follows the
principle of uni-cut generation, such that:

Uni-Cut MP ≜ min
𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 𝜂 ,

s.t. 𝑀 𝑃 (

𝐗𝑀 𝑃 , 𝐙𝑀 𝑃 ) ≤ 𝟎, 𝑀 𝑃 (

𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) = 𝟎,
𝑜𝑝𝑡[𝑣] ⊕ 𝑓 𝑒𝑎𝑠[𝑣],
𝑜𝑝𝑡[𝑣] ∶= 𝜂 ≥ ̂[𝑣] + ∇⊤

(

𝐙̂𝑀 𝑃 [𝑣]) (
𝐙𝑀 𝑃 − 𝐙̂𝑀 𝑃 [𝑣]) ,

𝑓 𝑒𝑎𝑠[𝑣] ∶= 0 ≥ ̂ [𝑣] + ∇⊤
(

𝐙̂𝑀 𝑃 [𝑣]) (
𝐙𝑀 𝑃 − 𝐙̂𝑀 𝑃 [𝑣]) ,

 ∶= 𝟏⊤𝑆 𝑃 + 𝝀⊤𝐶 𝑃 ,
 ∶= 𝝁𝜀⊤𝐶 𝑃 − 𝝁𝜎 ⊤𝐶 𝑃 ,

𝐶 𝑃 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶 𝑃
1

𝐶 𝑃
2

⋮

𝐶 𝑃
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐶 𝑃 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶 𝑃
1

𝐶 𝑃
2

⋮

𝐶 𝑃
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝝀 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝀1
𝝀2
⋮

𝝀𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝁𝜀 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝁𝜀
1

𝝁𝜀
2

⋮

𝝁𝜀
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝁𝜎 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝁𝜎
1

𝝁𝜎
2

⋮

𝝁𝜎
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(37)

𝑣 ∈ {1, 2, ⋯ , 𝑣}

where Eq. (37) forms the uni-cut MP. At the 𝑣th iteration, if all SPs
ave feasible solutions, one integrated linear Benders cut 𝑜𝑝𝑡[𝑣] will be

returned, which is named Benders optimality cut. Otherwise, as long as
arbitrary SP is infeasible, another integrated linear Benders cut 𝑓 𝑒𝑎𝑠[𝑣]
will be returned, which is named Benders feasibility cut. In this case,
each SP cannot be independently handled. It means that, in practice,
an additional centralized coordinator is required.

To address the above issue and inspired by [46], we utilize the
ulti-cut generation technique to improve the GBD iteration procedure,
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which is formulated below:
Multi-Cut MP ≜ min

𝐗𝑀 𝑃 ,𝐙𝑀 𝑃
∑

𝑚
𝜂𝑚,

s.t. 𝑀 𝑃 (

𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) ≤ 𝟎, 𝑀 𝑃 (

𝐗𝑀 𝑃 ,𝐙𝑀 𝑃 ) = 𝟎,
𝑜𝑝𝑡[𝑣]
𝑚 ⊕ 𝑓 𝑒𝑎𝑠[𝑣]

𝑚 ,

𝑜𝑝𝑡[𝑣]
𝑚 ∶= 𝜂𝑚 ≥ ̂[𝑣]

𝑚 + ∇⊤𝑚
(

𝐙𝑀 𝑃 − 𝐙̂𝑀 𝑃 [𝑣]) ,

𝑓 𝑒𝑎𝑠[𝑣]
𝑚 ∶= 0 ≥ ̂ [𝑣]

𝑚 + ∇⊤𝑚

(

𝐙𝑀 𝑃 − 𝐙̂𝑀 𝑃 [𝑣]) ,

𝑚 ∶= 𝑆 𝑃
𝑚 + 𝝀⊤𝑚

𝐶 𝑃
𝑚 ,

𝑚 ∶= 𝝁𝜀⊤
𝑚 𝐶 𝑃

𝑚 − 𝝁𝜎 ⊤
𝑚 𝐶 𝑃

𝑚 ,

(38)

∀𝑣 ∈ {1, 2, ⋯ , 𝑣}, ∀𝑚 ∈ {1, 2, ⋯ , 𝑚}

where Eq. (38) forms the multi-cut MP. At the 𝑣th iteration, each SP 𝑚
would independently return a linear Benders optimality cut 𝑜𝑝𝑡[𝑣]

𝑚 or a
inear Benders feasibility cut 𝑓 𝑒𝑎𝑠[𝑣]

𝑚 . Consequently, multiple Benders
cuts are generated every iteration, and SPs can be solved in parallel

ithout the requirement of a centralized coordinator. The lower bound
LB) of Eq. (33) is calculated by solving Eq. (38).

Additionally, communication delays are likely to occur during the
parallel solving of SPs. As shown in Fig. 4, affected by different com-
munication delays, the MP is unable to receive all returned Benders
cut from the SPs simultaneously. In this case, two kinds of approaches,
synchronous updating and asynchronous updating, can be selected to
address this issue. The synchronous updating requires waiting for all
SPs to return Benders cuts. In this way, the total computation time de-
pends on the ‘‘slowest’’ SP being solved. In contrast, the asynchronous
updating only needs at least 𝑚 ≥ 1 SPs to finish returning Benders
cut. To ensure sufficient freshness, every SP must finish updating at
least once every 𝑣 ≥ 1 iteration. Regarding the asynchronous updating
teps in multi-cut GBD, we denote the set of SPs that finish returning
enders cuts at the 𝑣th iteration as [𝑣] and the remaining ones as [𝑣].
ccordingly, [𝑣] ∩ [𝑣] = ∅, [𝑣] ∪ [𝑣] = {1,… ,𝑚}. Details about the
synchronous updating in multi-cut GBD are specifically presented in
lgorithm 1.

Algorithm 1: Asynchronous updating of multi-cut GBD (A-MGBD)

Initialize: 𝑣 ← 0, 𝐙̂𝑀 𝑃 [0], 𝐿𝐵[0], 𝑈 𝐵[0]

Repeat
/* SPs Solving */
for 𝑚 ∈ {1, 2, ⋯ , 𝑚} do in parallel

if 𝑚 ∈ [𝑣] then
𝐙̂𝑀 𝑃 [𝑣] keeps unchanged;

if Eq. (35) is feasible then
Obtain 𝐗̂𝑆 𝑃 [𝑣]

𝑚 , 𝐙̂𝑆 𝑃 [𝑣]
𝑚 by solving Eq. (35);

Generate 𝑜𝑝𝑡[𝑣]
𝑚 to MP and update 𝑆 𝑃 [𝑣]

𝑚 ;
else

Obtain 𝐗̂𝑆 𝑃 [𝑣]
𝑚 , 𝐙̂𝑆 𝑃 [𝑣]

𝑚 by solving Eq. (36);
Generate 𝑓 𝑒𝑎𝑠[𝑣]

𝑚 to MP and keep ̂𝑆 𝑃 [𝑣]
𝑚 ← ̂𝑆 𝑃 [𝑣−1]

𝑚 ;

𝑈 𝐵[𝑣] =
∑

𝑚 ̂𝑆 𝑃 [𝑣]
𝑚 ;

/* MP Solving */
while 𝑚 ∈ [𝑣] finish returning Benders cuts do

Add 𝑜𝑝𝑡[𝑣]
𝑚 and 𝑓 𝑒𝑎𝑠[𝑣]

𝑚 according to Eq. (38);
Obtain 𝐙̂𝑀 𝑃 [𝑣+1] by solving Eq. (38) and update 𝜂[𝑣]𝑚 ;

𝐿𝐵[𝑣] =
∑

𝑚 𝜂[𝑣]𝑚 ;
𝑣 + 1 ← 𝑣;

Until Gap between 𝐿𝐵 and 𝑈 𝐵 is small enough;

3.3. Proximal ADMM in the inner loop with heuristic approaches to handle
nteger variables

As depicted in Fig. 3, the VSC-MTDC grid can be regarded as the
nterconnection of several VSC areas. Therefore, the MP related to the
10 
VSC-MTDC grid described in Eq. (38), is desirable to be continuously
decomposed into several sub-MPs. ADMM is preferable to be employed
to offer distributed problem solving. We assume that the sub-MP 𝑙 is
coupled with the SP 𝑚. In this case, the augmented Lagrangian function
of sub-MP 𝑙 can be expressed as:

min
𝐗̃𝑀 𝑃
𝑙 ,𝐘𝑀 𝑃+

𝑙 ,𝐘𝑀 𝑃−
𝑙 ,𝐙𝑀 𝑃

𝑙

𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 ∶= 𝜂𝑚 + 𝜁𝜁𝜁 (𝑠)⊤𝑙∕𝑙+1

(

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃−(𝑠+1)

𝑙+1

)

+

𝜌
2
‖

‖

‖

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃−(𝑠+1)

𝑙+1
‖

‖

‖

2
+ 𝜁𝜁𝜁 (𝑠)⊤𝑙∕𝑙−1

(

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1

)

+
𝜌
2
‖

‖

‖

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1
‖

‖

‖

2
,

s.t. 𝑀 𝑃
𝑙

(

𝐗̃𝑀 𝑃
𝑙 ,𝐘𝑀 𝑃

𝑙 ,𝐙𝑀 𝑃
𝑙

)

≤ 𝟎, 𝑀 𝑃
𝑙

(

𝐗̃𝑀 𝑃
𝑙 ,𝐘𝑀 𝑃

𝑙 ,𝐙𝑀 𝑃
𝑙

)

= 𝟎,

𝑜𝑝𝑡[𝑣]
𝑚 ⊕ feas [𝑣]

𝑚 ,

𝑜𝑝𝑡[𝑣]
𝑚 ∶= 𝜂𝑚 ≥ ̂[𝑣]

𝑚 + ∇⊤𝑚
(

𝐙𝑀 𝑃
𝑙 − 𝐙̂𝑀 𝑃 [𝑣]

𝑙

)

,

𝑓 𝑒𝑎𝑠[𝑣]
𝑚 ∶= 0 ≥ ̂ [𝑣]

𝑚 + ∇⊤𝑚

(

𝐙𝑀 𝑃
𝑙 − 𝐙̂𝑀 𝑃 [𝑣]

𝑙

)

,

𝑚 ∶= 𝐶 𝑃
𝑚 + 𝜆𝜆𝜆⊤𝑚

𝐶 𝑃
𝑚 ,

𝑚 ∶= 𝝁𝜀⊤
𝑚 𝐶 𝑃

𝑚 − 𝝁𝜎 ⊤
𝑚 𝐶 𝑃

𝑚 ,

𝐗𝑀 𝑃
𝑙 ∶=

[

𝐗̃𝑀 𝑃
𝑙

𝐘𝑀 𝑃
𝑙

]

, 𝐘𝑀 𝑃
𝑙 ∶=

[

𝐘𝑀 𝑃+
𝑙

𝐘𝑀 𝑃−
𝑙

]

,

𝑀 𝑃 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑀 𝑃
1

𝑀 𝑃
2

⋮

𝑀 𝑃
𝑙

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑀 𝑃 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑀 𝑃
1

𝑀 𝑃
2

⋮

𝑀 𝑃
𝑙

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(39)∀𝑣 ∈ {1, 2, ⋯ , 𝑣}, ∀𝑚 ∈ {1, 2, ⋯ , 𝑚} ∀𝑙 ∈ {1, 2, ⋯ , 𝑙}

where (∗)𝑀 𝑃
𝑙 is utilized to denote the variables related to sub-MP l.

𝐘𝑀 𝑃
𝑙 is the part from 𝐗𝑀 𝑃

𝑙 , which denotes the coupling variables at the
boundaries between the adjacent VSC areas. 𝐗̃𝑀 𝑃

𝑙 denotes the remain-
ing variables in 𝐗𝑀 𝑃

𝑙 , which are completely independent. Particularly,
due to the typical ring topology of the VSC-MTDC grid, each VSC
area is adjacent to two other VSC areas. Hence, 𝐘𝑀 𝑃

𝑙 can be split
into two parts. One set of variables is 𝐘𝑀 𝑃+

𝑙 , which represents the
coupling variables associated with the preceding VSC area. The other
set is 𝐘𝑀 𝑃+

𝑙 , which represents the coupling variables associated with
the subsequent VSC area (with the clockwise direction being considered
positive).

After MP decomposition, each sub-MP has two additional coupling
onstraints, as described by Eqs. (31) and (32). Eq. (31) corresponds to

the general formulation as 𝐘𝑀 𝑃+
𝑙 −𝐘𝑀 𝑃−

𝑙+1 = 0 and Eq. (32) corresponds
to the general formulation as 𝐘𝑀 𝑃−

𝑙 − 𝐘𝑀 𝑃+
𝑙−1 = 0. These two addi-

ional coupling constraints are relaxed into the optimization objective,
orming the augmented Lagrangian function 𝑀 𝑃

𝑚,𝑙 . 𝜁𝜁𝜁 𝑙∕𝑙+1 and 𝜁𝜁𝜁 𝑙∕𝑙−1 are
espectively the dual multipliers corresponding to 𝐘𝑀 𝑃+

𝑙 − 𝐘𝑀 𝑃−
𝑙+1 = 0

and 𝐘𝑀 𝑃−
𝑙 −𝐘𝑀 𝑃+

𝑙−1 = 0. 𝜌 is utilized to control the weight of the penalty
terms ‖

‖

‖

𝐘𝑀 𝑃−
𝑙 − 𝐘𝑀 𝑃+

𝑙−1
‖

‖

‖

2
and ‖

‖

‖

𝐘𝑀 𝑃+
𝑙 − 𝐘𝑀 𝑃−

𝑙+1
‖

‖

‖

2
. Note that 𝐘̂𝑀 𝑃−(𝑠+1)

𝑙+1
represents the determined boundary variables from the preceding VSC
area at the s + 1th ADMM iteration and 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1 represents the de-
termined boundary variable vectors from the subsequent VSC area at
the sth ADMM iteration. 𝜁𝜁𝜁 (𝑠)𝑙∕𝑙+1 and 𝜁𝜁𝜁 (𝑠)𝑙∕𝑙−1 represents the dual multiplier
vectors at the sth ADMM iteration.

Eq. (39) implies that the standard ADMM follows Gauss–Seidel way
or problem solving. This procedure is described below:
Standard ADMM ≜
̂𝑀 𝑃+(𝑠+1)
𝑙 , 𝐘̂𝑀 𝑃−(𝑠+1)

𝑙 ⇐ ar g min𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙

×
(

𝐘̂𝑀 𝑃−(𝑠+1)
𝑙+1 ,𝐘𝑀 𝑃+

𝑙 ,𝐘𝑀 𝑃−
𝑙 , 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1 , 𝜻̂ (𝑠)𝑙∕𝑙+1, 𝜻̂
(𝑠)
𝑙∕𝑙−1

)

,

̂ (𝑠+1)
𝑙∕𝑙+1 ⇐ 𝜻̂ (𝑠)𝑙∕𝑙+1 + 𝜌

(

𝐘𝑀 𝑃 (𝑠+1)+
𝑙 − 𝐘𝑀 𝑃 (𝑠+1)−

𝑙+1

)

,

̂ (𝑠+1)
𝑙∕𝑙−1 ⇐ 𝜻̂ (𝑠)𝑙∕𝑙−1 + 𝜌

(

𝐘𝑀 𝑃 (𝑠+1)+
𝑙 − 𝐘𝑀 𝑃 (𝑠+1)−

𝑙+1

)

,

(40)
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∀𝑣 ∈ {1, 2, ⋯ , 𝑣}, ∀𝑚 ∈ {1, 2, ⋯ , 𝑚}

∀𝑙 ∈ {1, 2, ⋯ , 𝑙}, ∀𝑠 ∈ {1, 2, ⋯ , 𝑠}

As indicated in Eq. (40), solving 𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 needs 𝐘̂𝑀 𝑃+(𝑠+1)

𝑙 , which can
only be obtained after the former 𝑀 𝑃 [𝑣](𝑠)

𝑚,𝑙−1 has been solved. Similarly,
solving the latter 𝑀 𝑃 [𝑣](𝑠)

𝑚,𝑙+1 needs 𝐘̂𝑀 𝑃−(𝑠+1)
𝑙 , which can only be obtained

after 𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 has been solved. Apparently, it is not an appropriate

distributed problem-solving way in terms of computation costs.
To address this issue, the proximal term [47] can be added, and into

𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 in Eq. (39), then we have that:

min
𝐗̃𝑀 𝑃
𝑙 ,𝐘𝑀 𝑃+

𝑙 ,𝐘𝑀 𝑃−
𝑙 ,𝐙𝑀 𝑃

𝑙

𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 ∶= 𝜂𝑚 + 𝜁𝜁𝜁 (𝑠)⊤𝑙∕𝑙+1

(

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃−(𝑠)

𝑙+1

)

+

𝜌
2
‖

‖

‖

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃−(𝑠)

𝑙+1
‖

‖

‖

2
+ 𝜁𝜁𝜁 (𝑠)⊤𝑙∕𝑙−1

(

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1

)

+
𝜌
2
‖

‖

‖

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1
‖

‖

‖

2
+

𝛽
2
‖

‖

‖

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃+(𝑠)

𝑙
‖

‖

‖

2
+

𝛽
2
‖

‖

‖

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃−(𝑠)

𝑙
‖

‖

‖

2
,

(41)

where ‖

‖

‖

𝐘𝑀 𝑃+
𝑙 − 𝐘̂𝑀 𝑃+

𝑙
‖

‖

‖

2
and ‖

‖

‖

𝐘𝑀 𝑃−
𝑙 − 𝐘̂𝑀 𝑃−

𝑙
‖

‖

‖

2
are as the proximal

terms. Similarly to 𝜌, 𝛽 is the penalty coefficient to adjust the weight
f proximal terms. As a result, the serial distributed solving manner

described in Eq. (40) is modified to the parallel distributed solving
anner, such that:

Proximal ADMM ≜

𝐘̂𝑀 𝑃+(𝑠+1)
𝑙 , 𝐘̂𝑀 𝑃−(𝑠+1)

𝑙 ⇐ ar g min𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙

×
(

𝐘̂𝑀 𝑃−(𝑠)
𝑙+1 , 𝐘̂𝑀 𝑃+(𝑠)

𝑙 ,𝐘𝑀 𝑃+
𝑙 , 𝐘𝑀 𝑃−

𝑙 , 𝐘̂𝑀 𝑃−𝑠
𝑙 , 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1 , 𝜁𝜁𝜁
(𝑠)
𝑙∕𝑙+1, 𝜁𝜁𝜁

(𝑠)
𝑙∕𝑙−1

)

,

̂ (𝑠)
𝑙∕𝑙+1 ⇐ 𝜻̂ (𝑠)𝑙∕𝑙+1 + 𝜌

(

𝐘𝑀 𝑃 (𝑠)+
𝑙 − 𝐘𝑀 𝑃 (𝑠)−

𝑙+1

)

,

̂ (𝑠+1)
𝑙∕𝑙−1 ⇐ 𝜻̂ (𝑠)𝑙∕𝑙−1 + 𝜌

(

𝐘𝑀 𝑃 (𝑠+1)+
𝑙 − 𝐘𝑀 𝑃 (𝑠+1)−

𝑙+1

)

,

(42)

∀𝑣 ∈ {1, 2, ⋯ , 𝑣}, ∀𝑚 ∈ {1, 2, ⋯ , 𝑚}

∀𝑙 ∈ {1, 2, ⋯ , 𝑙}, ∀𝑠 ∈ {1, 2, ⋯ , 𝑠}

where Eq. (42) implies that all 𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 can be solved in parallel.

Additionally, there is still an issue that needs to be addressed when
applying proximal ADMM to solve Sub-MPs, namely, the involvement
of integer variables. Although ADMM has been applied in solving vari-
ous mixed-integer convex problems [48], its performances are affected
o some extent. To tackle this issue, two heuristic approaches [49,50]
re considered to be embedded.
Approach I-Alternating Optimization Procedure : [49] proposed

an alternating optimization procedure (AOP) to enhance the ADMM
performances on handling integer variables. Briefly, AOP relaxes in-
teger variables into continuous variables and reconstructs them in an
terative way, in conjunction with ADMM to achieve distributed opti-
ization. The procedure of solving sub-MPs described in Eq. (42) using
roximal-ADMM in combination with AOP is described in Algorithm 2.
Approach II-Penalty Coefficient Changing: [50] indicated that

increasing penalty coefficients would force the convergence and fea-
sibility of ADMM. The ADMM with penalty coefficient changing can be
interpreted as a greedy algorithm that first steers to the (sub)optimal
solutions depending on the dual multipliers and then steers towards
feasibility by increasing penalty coefficients. The procedure of solv-
ing sub-MPs described in Eq. (42) using proximal-ADMM considering
enalty coefficient changing is described in Algorithm 3.

3.4. Remarks

• As indicated in Eq. (42), 𝑀 𝑃 [𝑣](𝑠)
𝑚,𝑙 is related to both the outer GBD

iteration marked by [𝑣] and the inner ADMM iteration marked
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Algorithm 2: AOP embedded proximal-ADMM (AE-PADMM)

Initialize: 𝑠 ← 0, 𝐘̂𝑀 𝑃 (0)
𝑙+1 , 𝐘̂𝑀 𝑃 (0)

𝑙−1 , 𝜻
(0)
𝑙∕𝑙+1, 𝜻

(0)
𝑙∕𝑙−1

Relax binary variables 𝑏𝑘 in Eq. (24) and 𝑑𝑘 in Eq. (27) into
continuous;
/* Step I: solve 𝑏𝑘, 𝑑𝑘 -relaxed problem */
Repeat

for 𝑙 ∈ {1,… ,𝑙} do in parallel
Solve Eq. (42) and obtain 𝐘̂𝑀 𝑃+(𝑠)

𝑙 , 𝐘̂𝑀 𝑃−(𝑠)
𝑙 ;

Update 𝜻̂ (𝑠)𝑙∕𝑙+1, 𝜻̂
(𝑠)
𝑙∕𝑙−1 based on Eq. (42);

𝑠 ← 𝑠 + 1;
Until Residuals is small enough;
𝐘̂𝑀 𝑃−∗
𝑙+1 ← 𝐘̂𝑀 𝑃−(𝑠)

𝑙+1 , 𝐘̂𝑀 𝑃+∗
𝑙−1 ← 𝐘̂𝑀 𝑃+(𝑠)

𝑙−1 ,
𝜻∗𝑙∕𝑙+1 ← 𝜻 (𝑠)𝑙∕𝑙+1, 𝜻

∗
𝑙∕𝑙+1 ← 𝜻 (𝑠)𝑙∕𝑙+1 ;

/* Step II: solve 𝐘̂𝑀 𝑃−∗
𝑙+1 , 𝐘̂𝑀 𝑃+∗

𝑙−1 , 𝜻∗𝑙∕𝑙+1, 𝜻∗𝑙∕𝑙−1-fixed
problem */
DO

for 𝑙 ∈ {1,… ,𝑙} do in parallel
Solve Eq. (42) and obtain 𝐘̂𝑀 𝑃+(𝑠)

𝑙 , 𝐘̂𝑀 𝑃−(𝑠)
𝑙 ;

Update 𝜻̂ (𝑠)𝑙∕𝑙+1, 𝜻̂
(𝑠)
𝑙∕𝑙−1 based on Eq. (42);

if 𝑏𝑘, 𝑑𝑘 unchanged then
Break;

𝑏̂∗𝑘 ← 𝑏̂(𝑠)𝑘 , 𝑑∗𝑘 ← 𝑑(𝑠)𝑘 ;

/* Step III: solve 𝑏̂∗𝑘, 𝑑
∗
𝑘 -fixed problem */

Repeat
for 𝑙 ∈ {1,… ,𝑙} do in parallel

Solve Eq. (42) and obtain 𝐘̂𝑀 𝑃+(𝑠)
𝑙 , 𝐘̂𝑀 𝑃−(𝑠)

𝑙 ;

Update 𝜻̂ (𝑠)𝑙∕𝑙+1, 𝜻̂
(𝑠)
𝑙∕𝑙−1 based on Eq. (42);

𝑠 ← 𝑠 + 1;
Until Residuals is small enough;
Goto Step II ;

Algorithm 3: Penalty coefficient changing proximal-ADMM (PC-
PADMM)

Initialize: 𝑠 ← 0, 𝐘̂𝑀 𝑃 (0)
𝑙+1 , 𝐘̂𝑀 𝑃 (0)

𝑙−1 , 𝜻
(0)
𝑙∕𝑙+1, 𝜻

(0)
𝑙∕𝑙−1

Repeat
for 𝑙 ∈ {1,… ,𝑙} do in parallel

Solve Eq. (42) and obtain 𝐘̂𝑀 𝑃+(𝑠)
𝑙 , 𝐘̂𝑀 𝑃−(𝑠)

𝑙 ;

Update 𝜻̂ (𝑠)𝑙∕𝑙+1, 𝜻̂
(𝑠)
𝑙∕𝑙−1 based on Eq. (42);

𝜌 ← 𝛼 𝜌; /* Increase penalty coefficients */
𝑠 ← 𝑠 + 1;

Until Residuals is small enough;

by (𝑠). Specifically, the outer GBD proceeds to the next iteration
only when the inner ADMM converges. Therefore, based on the
iterative characteristics of the proposed distributed optimization
approach, we describe it as ‘‘Nested’’ and we illustrate this kind
of approach in Fig. 5.

• The stopping criteria for the outer GBD iteration loop is that
the upper and lower bounds of the optimization objective tend
to be consistent, which is formulated as Eq. (43). The stopping
criteria for the inner ADMM iteration loop is set as the residuals
of boundary couplings are sufficiently small, which is formulated
as Eq. (44). Besides, if the inner iteration number exceeds the
maximum number, the inner iteration loop will also terminate.
|

|

|

|

𝐿𝐵[𝑣] − 𝑈 𝐵[𝑣]

𝑈 𝐵[𝑣]

|

|

|

|

≤ 𝑡ℎ𝑟. (43)
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Fig. 5. Illustration regarding the nested distributed optimization. The outer iteration loop is related to the improved GBD and the inner iteration loop is related to the improved
ADMM. There are three AC systems including one AC grid and two RESs. Accordingly, the VSC-MTDC area with four terminals needs to be decomposed into three VSC areas
according to the number of AC systems.
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𝑙

‖

‖

‖

‖

‖

‖2

≤ 𝑡ℎ𝑟. (44)

• As indicated Eq. (42), a total of 𝑚 Benders cuts would be
generated in each outer iteration loop, and a total of 𝑙 sub-MPs
would be formulated in each inner iteration loop. Thanks to the
system decompose principle illustrated in Section 3.1, we have
that 𝑚 = 𝑙, which allows multiple Benders cuts to be evenly
assigned to each sub-MP. More subtly, the optimization variables
contained in one Benders cut exist only in the sub-MP to which
they are assigned, but not in any other sub-MPs.

• The accuracy of the linearized AC power flow constraint formu-
lated in Eq. (2) is influenced by the selection of the initial AC
power flow points. Furthermore, we deem that the accuracy of
the system-wide power flow model for the entire AC/VSC-MTDC
hybrid grid is also affected by it. To improve the accuracy of
AC/DC power flow, the initial AC power flow points need to be
updated appropriately. We extend the power flow point update
technique in AC OPF proposed in [14] to our proposed mixed-
integer convex AC/DC OPF model for improving the initial AC
power flow point setting. The corresponding flow chart is shown
in Fig. 6, and the stopping criteria are calculated by the blow
normalized errors:

𝛥𝑝 = max

(

|

|

|

|

|

𝑝𝑘+1𝑛 − 𝑝𝑘𝑛
𝑝𝑘𝑛

|

|

|

|

|

)

, 𝛥𝑞 = max

(

|

|

|

|

|

𝑞𝑘+1𝑛 − 𝑞𝑘𝑛
𝑞𝑘𝑛

|

|

|

|

|

)

(45)

∀𝑛 ∈ N𝐴𝐶

where 𝑝𝑘𝑛 (resp. 𝑞𝑘𝑛 ) denotes the nodal active (resp. reactive) power
injection value of the AC grid at the 𝑘th update.

• There are other combinations for inner and outer distributed opti-
mization methods, such as applying ADMM for the outer iteration
12 
loop or GBD for the inner iteration loop, which are also potential
options. If ADMM is applied in the outer iteration, it means that
ADMM must solve a mixed-integer convex optimization problem
in the outer iteration loop. Although some heuristic approaches,
such as approaches I and II [49,50] can be used to enhance
the performance of ADMM in handling integer variables, a wiser
approach is to directly employ optimization algorithms, like GBD,
that are designed to solve mixed-integer programming problems.
If GBD is applied in the inner iteration, the MP formulated in
Eq. (38) needs to be distributedly solved via GBD. However, if
we attempt to further decompose the MP into the sub-MP and
sub-SPs, we can find that the presence of integer variables in
the sub-SPs is unavoidable. In this case, the duals in the sub-SPs
cannot be extracted, making GBD inapplicable.

4. Numerical experiment

In this section, we mainly analyze and discuss the accuracy of the
constructed mixed-integer convex AC/DC OPF model, the convergence
rate of the developed nested distributed optimization method, and the
solution optimality regarding the obtained optimization results.

4.1. Simulation setups

We use the test system shown in Fig. 7 as the basic case to validate
our constructed mixed-integer convex AC/DC OPF model and the devel-
oped nested distributed optimization. The system-wide power flow and
voltage are calculated using per-unit value. The voltage bounds in the
constructed OPF model are set as 𝑣𝑖 ∶= 0.955p.u., 𝑣𝑖 ∶= 1.045p.u.,∀𝑖 ∈
N𝐴𝐶 ∪ N𝑉 𝑆 𝐶 ∪ N𝑀 𝑇 𝐷 𝐶 . Considering the potential voltage calculation
errors, this voltage bound is more conservative than the normal allow-
able deviation range of ±0.05p.u.. The default settings for other key
boundaries and parameters are: 𝑠𝐴𝐶𝑖,𝐺 ∶= 1p.u. in Eq. (4), 𝑠𝐴𝐶𝑖𝑗 ∶= 1.1p.u.
in Eq. (5), 𝑛 ∶= 16 in Eqs. (7a) and (7b), 𝑝𝑅𝐸 𝑆𝑟 ∶= 0.5p.u in Eq. (10),
 ∶= 16 in Eq. (12), 𝑞𝑅𝐸 𝑆 ∶= 0.1p.u, 𝑞𝑅𝐸 𝑆 ∶= −0.1p.u in Eq. (14b),
𝑛 𝑟,𝑣𝑎𝑟 𝑟,𝑣𝑎𝑟
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Fig. 6. Flow chart of the successive update regarding the initial AC power flow points in our constructed mixed-integer convex AC/DC OPF model. The update of the initial power
flow point begins with the flat start and then changes to the warm start. The AC/DC OPF results should first be checked to see if they satisfy the stopping criteria (formulated in
Eq. (45)), which reflects how close the results are to stability. Following that, the AC/DC OPF results are checked for feasibility as the actual AC/DC power flow solutions.
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𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 ∶= 1.05 in Eq. (23a), 𝑖𝑉 𝑆 𝐶𝑐 ∶= 1p.u. in Eq. (24d), 𝑘 ∶= 6 in
q. (24h), 𝑐𝑉 𝑆 𝐶𝑠𝑠 ∶= 1p.u. in Eq. (25), 𝑘𝑀 𝑇 𝐷 𝐶

𝑗 ,𝑑 𝑟𝑝 ∶= −1 in Eqs. (27a) and
27c), 𝑘 ∶= 2 in Eqs. (27e) and (27f).

The case study is coded on the Matlab platform. Yalmip toolbox
s utilized for the OPF mathematical modeling. During the nested
istributed optimization procedure, the Gurobi solver is invoked to
olve the constructed mixed-integer convex AC/DC OPF problem. To
ecover the actual AC/DC power flow, the Ipopt solver is invoked to

solve the original nonlinear AC/DC OPF problem and calculate the
actual AC/DC power flow solutions. The numerical experiments use a
aptop equipped with 12th Gen Intel Core i9 12900HK 2.5 GHz
PU/32 GB RAM.

4.2. Validation of the constructed AC/DC OPF model

To illustrate the effectiveness of our constructed AC/DC OPF model,
e need to validate whether our constructed mixed-integer convex

optimization model exhibits acceptable accuracy in AC/DC power flow
alculation. We solve our constructed mixed-integer convex AC/DC

OPF model and obtain the optimal decision-making regarding 𝑝𝐴𝐶𝑖,𝐺 ,
𝑞𝐴𝐶𝑖,𝐺 , 𝑞𝐴𝐶𝑖,𝐺 , 𝑝𝑅𝐸 𝑆𝑟 , 𝑞𝑅𝐸 𝑆𝑟 , 𝑞𝑅𝐸 𝑆𝑟,𝑣𝑎𝑟 , 𝛿𝑉 𝑆 𝐶𝑃 𝑊 𝑀 .3 Then, we take them into the
original nonlinear AC/DC OPF model to obtain the actual system-wide
power flow results, which serve as the benchmark. To improve decision
quality, we adopted the strategy shown in Fig. 6 to update the initial

3 Here, the constructed mixed-integer convex AC/DC OPF model is solved
via centralized optimization instead of the nested distributed optimization.
This is because we currently focus on validating the model’s accuracy rather
than the solution’s. The interference caused by errors from nested distributed
ptimization needs to be avoided.
13 
AC power flow points, and the stop condition is set as max(𝛥𝑝, 𝛥𝑞) <
1 × 10−3.

Fig. 8 presents the update process regarding the initial AC power
flow points. For the AC grid, its initial AC power flow points are influ-
enced by the injected power at node2 and node5. It can be observed
that after 5 updates, the power injections at node2 and node5 converge.
During the first and second iterations, the power injections at node2
and node5 have significant fluctuations, indicating that the current
power flow points are relatively distant from the initial power flow
points. The accuracy of the linear power flow approximation diminishes
as the current power flow points further away from the initial power
flow points. Fortunately, during the subsequent third to fifth update,
the power injection changes become slight, indicating that the current
power flow points are close to the initial power flow point, thereby
avoiding unacceptable power flow calculation errors.

Fig. 9 further compares the approximated system-wide power flow
esults from our proposed mixed-integer convex AC/DC OPF model and
he actual system-wide power flow results from the well-known nonlin-
ar power flow. It can be found that the maximum absolute value of

the relative error in the nodal voltage is less than 0.18%. The errors are
acceptable due to the permissible voltage fluctuation of ±0.05 p.u.. On
the AC side, the maximum absolute errors of active power and reactive
power are about 3.3 MW and 1.8 MVar, respectively. On the DC side,
the maximum absolute error of DC power is about 3.2 MW. These errors
re acceptable considering the total power demand(apparent) at 100
VA level.

Moreover, to further validate the acceptability of the proposed
PF model in terms of power flow calculation accuracy and com-
are the optimization gap between the proposed OPF model and the
riginal nonlinear OPF model, we provide additional numerical exper-
ments based on larger-scale systems. More details can be found in

Appendices B and C.
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Fig. 7. Schematic diagram of the basic test system, which is composed of one AC grid, two RESs, and four VSCs. The base power and voltage are set to 100 MW and 345 kV.
he power marked with (∙)∗ represents the rated power capacity.
Fig. 8. Update process regarding the AC power flow points, which are influenced by the power injections at node2 and node5 of the AC grid. (a) shows the changes in the active
power injection. (b) shows the changes in the reactive power injection.
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4.3. Validation of the improved GBD in the outer iteration loop

To illustrate the effectiveness of the improved GBD that involves
multi-cut generation and asynchronous updating in the outer iteration
loop, we need to validate its convergence rate and solution optimality.
When we focus on evaluating the performances regarding distributed
problem solving in the outer iteration loop, distributed problem solving
 k

14 
in the inner iteration loop would not involved, which means that the
P associated with the VSC-MTDC grid is solved via the centralized
ay. The threshold in the outer iteration loop is set to 1 × 10−3. The
bjective solved via centralized optimization is used as the benchmark.

We first investigate the influence of the multi-cut generation tech-
nique on GBD performance. In particular, we set GBD with three
inds of cut generation. Uni1-GBD corresponds to the archival GBD
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Fig. 9. Comparison of the system-wide approximated and actual power flows. The approximated power flow is based on the proposed mixed-integer convex AC/DC OPF model.
The actual power flow is based on the well-known nonlinear AC/DC OPF model. (a) presents the comparison of the nodal voltage calculation. (b) presents the comparison of the
DC branch power calculation. (c) and (d) respectively present the comparison of the AC branch active and reactive power calculations.
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procedure, and only a single cut is generated per iteration. Multi2-
GBD corresponds to the multi-cut GBD procedure, and double cuts are
generated per iteration. Specifically, SP linked with AC grid generates
ne cut, SPs linked with RES#1 and RES#2 generate one cut. Multi3-
BD also corresponds to the multi-cut GBD procedure, and triple cuts
re generated per iteration. Specifically, SPs linked with AC grid,

RES#1, and RES#2 generate one cut individually. As presented in
Table 1, the objectives in Uni1-GBD, Multi2-GBD, and Multi3-GBD
re fairly close to the benchmark and exhibit decent performance in

terms of solution optimality. Multi3-GBD outperforms Uni1-GBD and
ulti2-GBD in terms of convergence rate. The details regarding the

GBD cut generation process are provided in Fig. 10.
We further investigate the influence of the asynchronous updating

echnology on GBD performance (here, the cut generation approach
s applied in Multi3-GBD). Particularly, we set four communication
cenarios. Scnr.I scenario has the perfect communication condition.
he standard synchronous updating is adopted. In every iteration,
ll SPs must have already been solved and returned Benders cuts to
P. Scnr.II, Scnr.III, Scnr.IV, and Scnr.VI scenarios have the com-
unication delay conditions. The asynchronous updating described in
lgorithm 1 is adopted. For Scnr.II, at least two SPs must have already

been solved and returned Benders cuts to MP per iteration. The time
costs for solving SPs associated with the RES#1, RES#2, and AC grid
are assumed to be 2:1:1. For Scnr.III, at least two SPs must have already
been solved and returned Benders cuts to MP per iteration. The time
costs for solving SPs associated with the RES#1, RES#2, and AC grid
are assumed to be 3:2:1. For Scnr.IV, at least one SP must has already
been solved and returned Benders cuts to MP per iteration. The time
costs for solving SPs associated with the RES#1, RES#2, and AC grid
are assumed to be 3:2:1. For Scnr.V, at least two SPs must have already
been solved and returned Benders cuts to MP per iteration. The time
costs for solving SPs associated with the RES#1, RES#2, and AC grid
are assumed to be 4:2:1. For Scnr.VI, at least one SP has already been
solved and returned Benders cuts to MP per iteration. The time costs
for solving SPs associated with the RES#1, RES#2, and AC grid are
assumed to be 4:2:1.

Fig. 11 presents the GBD iteration process under the above commu-
ication scenarios. In general, compared with synchronous updating,
synchronous updating needs more iterations to converge. This is log-

ical because, under asynchronous updating, MP only accepts partial
enders cuts in each iteration. Therefore, more iterations are needed to
eceive enough Benders cuts. Table 2 compares the time costs between

asynchronous updating and synchronous updating. For most communi-
ation scenarios, asynchronous updating is more time-saving because
ach iteration consumes less time. However, due to the increased

number of iterations, the time consumed by asynchronous updating
lso might be greater than synchronous updating, as seen in Scnr.V.

Moreover, the converged optimization objectives under all scenarios
 a
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Table 1
Comparison of GBD with different cut generation.

Description Iter. Obj. Relative Err.

Cen. – 1.7198 –
Uni1-GBD 17 1.7200 0.0116%
Multi2-GBD 16 1.7201 0.0174%
Multi3-GBD 9 1.7201 0.0174%

Table 2
Comparison of time costs between asynchronous updating and synchronous updating.

Communication scenarios Time costs (Asyn.:Syn.)

II 0.8333
III 0.7407
IV 0.5926
V 1.7222
VI 0.5556

are still fairly close to the benchmark, which indicates that the im-
proved GBD with multi-cut generation and asynchronous updating still
excels in achieving solution optimality.

4.4. Validation of the improved ADMM in the inner iteration loop

To illustrate the effectiveness of the improved ADMM in the outer
teration loop, we need to validate its convergence rate and solution
ptimality. When we focus on evaluating the performances regarding
istributed problem solving in the inner iteration loop, distributed
roblem solving in the outer iteration loop would not involved, which
eans the boundary variables of SPs associated with the AC grid,
ES#1, and RES#2 are assumed to be constants. In the inner iteration

oop, the threshold is set to 1 × 10−3 and the maximum iteration number
s set to 250. The objective solved via centralized optimization is used
s the benchmark.

We mainly investigate how proximal terms and heuristic approaches
nfluence the ADMM performance on distributed problem solving. We

compare the standard ADMM (SADMM), ADMM with proximal terms
(PADMM), AE-PADMM (as described in Algorithm 2), and PC-PADMM
(as described in Algorithm 3). For a fair comparison, the voltage and
power terms in the duplicated primary variables are respectively set to
1 p.u. and 0 p.u. Lagrangian duals start from 2, and penalty coefficients
are set to 3. The mentioned settings are consistent across all types
of ADMM. Particularly, we select the iteration process corresponding
to the 6th and 8th outer iteration to present. From Tables 3 and
4, we can see that SADMM needs the least iterations to converge.
However, the archival iteration procedure in SADMM is in serial,
which affects the computation efficiency heavily in practice. We can
ssume that the computation time for each distributed agent equals
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Fig. 10. Details regarding GBD cut generation process. (a) corresponds to Uni1-GBD and only single cut is generated per iteration. (b) and (c) respectively correspond to Multi2-GBD
and Multi3-GBD, and multiple cuts are generated per iteration for the both.

Fig. 11. GBD iteration process under the different communication scenarios. (a) corresponds to the scenario with perfect communication, and synchronous updating is taken.
(b)–(e) correspond to the scenario with communication delay, and asynchronous updating is taken.

Fig. 12. Inner iteration process at the last outer iteration. PC-PADMM is utilized for problem solving and converge successfully.
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Fig. 13. Changes of boundary power at the PCC bus of VSC, during the outer and inner iteration loops. (a) shows the change during the outer iteration loop. (b), (c), and (d)
how the changes during the inner iteration loops, at the 6th, 7th, and 8th outer iteration, respectively.
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Table 3
Comparison of different types of ADMM (in the 6th outer iteration).

Description Iter. Obj. Abs. Relative Err.

Cen. – 1.1316 –
SADMM 154 1.1301 0.1326%
PADMM 208 1.1375 0.5214%
AE-PADMM 429 1.1338 0.1944%
PC-ADMM 225 1.1363 0.4153%

Table 4
Comparison of different types of ADMM (in the 8th outer iteration).

Description Iter. Obj. Abs. Relative Err.

Cen. – 1.7182 –
SADMM 90 1.7243 0.3550%
PADMM 205 1.7262 0.4656%
AE-PADMM 430 1.7160 0.1280%
PC-ADMM 227 1.7133 0.2852%

 . According to the results in Table 3, the total computation time
for AE-PADMM with the most iterations would be 429 , but the
total computation time for SADMM with the least iterations would
be 616 (154 × 4 ). PADMM has fewer iterations compared with AE-
PADMM and PC-PADMM, but its relative error is relatively larger
because of lacking heuristic approaches to handle integer optimization
variables. AE-PADMM has a decent performance on solution optimal-
ity, but it is evidently computationally consuming due to the more
complex iteration procedure involved. PC-PADMM balances the con-
vergence rate and solution optimality well and has the best general
performance.

4.5. Validation of the proposed nested distributed optimization

Sections 4.3 and 4.4 have respectively validated the distributed
problem solving in the outer and inner iteration loops. We currently
combine the improved GBD and ADMM to form the nested distributed
 ‘
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optimization method. Particularly, for the outer iteration loop, we con-
sider that the distributed agent of the RES#1 encounters the communi-
cation delay and this condition is consistent with Scnr.II mentioned in
Section 4.3, and A-MGBD is employed (as described in Algorithm 1).
or the inner iteration, according to the comparison results presented

in Section 4.4, we select PC-PADMM (as described in Algorithm 3)
considering it has the best general performance.

We define: (1) DM: Our developed nested distributed optimization
ethod, which has the nested iteration loop. (2) CM: GBD with multi-

ut generation, which has the single iteration loop, as the compared
ethod, in Table 5. We would like to address that the iteration proce-

dure in CM can be regarded as the benchmark for DM. This is because
the outer iteration loop in DM is the same as CM. As the presented
results in Table 5, it can be observed that DM has one more iteration
compared with CM. Reviewing Tables 3 and 4, we can deduce that in
each outer iteration, the distributed problem solving in MP has errors
aused by PC-PADMM. Therefore, the iterations in DM and CM are
nconsistent. Besides, the solution optimality is affected to some extent.
owever, DM is still competitive. The most prominent advantage of DM

s the savings in communication costs. DM is considered to have lower
ommunication costs compared to CM. This is because MP in DM is
olved by distributed optimization instead of centralized optimization.
he cumulative neighbor communication in distributed optimization
ften results in lower overall communication costs than the one-time
ut extensive communication required in centralized optimization. Be-
ides, the sacrifice in the convergence rate and the solution optimality
f DM is acceptable, considering just only one additional iteration and
he increased absolute relative error of less than 0.20%. Particularly,

Fig. 12 presents the inner iteration process at the last outer iteration. It
an be seen that as the inner iterations increase, the residuals gradually
ecrease, and the augmented Lagrangian function of the inner PC-
ADMM converges to a stable numerical value. This value serves as
he LB of the optimization objective in the outer GBD as it converges.

We use Fig. 13 to illustrate the changes of boundary power at
he PCC bus of VSC, which helps to better demonstrate the so-called
‘Nested’’ distributed optimization process. We can observe that each
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Table 5
Comparison of distributed problem solving.

Description Structure Iter. Obj. Abs. Relative Err.

Cen. – – 1.7198 –
CM Single loop 15 1.7201 0.0174%
DM Outer & Inner loop 16 (Outer) 1.7231 0.1919%

iteration in the outer iteration loop contains a number of inner itera-
tions. Specifically, the boundary power value observed during an outer
iteration is the result of over a hundred inner iterations.

In addition, we conduct further numerical experiments based on
larger-scale systems to comprehensively evaluate the performance of
the proposed nested distributed optimization method. The detailed
numerical results are provided in Appendix D. The obtained results
demonstrate that the nested distributed optimization methods have the
decent performances on the convergence rate and solution optimality.
It can be concluded that the proposed nested distributed optimization
method exhibits good scalability.

5. Conclusion

This paper introduces an enhanced AC/DC OPF via the nested
istributed optimization, for achieving the coordinated operation for
C/VSC-MTDC hybrid power systems, fully relying on distributed com-

munication. Through theoretical analysis and numerical experiments,
we draw the following main conclusions.

• A series of linear approximation and convex relaxation techniques
have been used to transform the original nonlinear AC/DC OPF
model into the mixed-integer convex one. The resulting AC/DC
OPF model has acceptable accuracy in terms of AC/DC power
flow calculation and is compatible with the developed nested
distributed optimization method, allowing for feasible decision
making that adheres to the system-wide operational constraints.

• The inner iteration loop of the nested distributed optimization
serves to coordinate the operation of AC systems and VSC-MTDC
grid. The improved GBD, with multi-cut generation and asyn-
chronous updating, shows good performance in solving the outer
distributed problem. On one hand, it has a faster convergence
rate compared to the standard GBD and can handle multiple SPs
associated with the AC systems simultaneously without the need
for a central coordinator. On the other hand, it also addresses the
communication delay issues encountered during the cut-returning
procedure.

• The outer iteration loop of the nested distributed optimization
serves to coordinate the operation of multiple VSC areas within
the VSC-MTDC grid. The improved ADMM, incorporating proxi-
mal terms and heuristic approaches, performs well in achieving
parallel computation among sub-MPs associated with the VSC
areas and handling the involved integer variables. Additionally,
both the AOP procedure and penalty updating can be selected to
handle the integer variables. Penalty updating is recommended,
as it has the best general performance in terms of convergence
rate and solution optimality.

It is acknowledged that there are certainly more advanced algorithm
combinations that can exhibit better convergence rate and solution
optimality. We will explore a more efficient nested distributed op-
imization method in future work. Furthermore, this work does not

address the uncertainties from RESs, which would affect the decision
making regarding the operation of AC/VSC-MTDC hybrid power sys-
tems. In future work, we will consider extending the enhance AC/DC
OPF to incorporate distributionally robust optimization technique.
 t
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Appendix A. Details regarding 𝒈𝑷 ,𝒊𝒏𝒊𝒕𝒊𝒋 , 𝒃𝑸,𝒊𝒏𝒊𝒕
𝒊𝒋 , 𝒈𝑸,𝒊𝒏𝒊𝒕

𝒊𝒋 , 𝒃𝑸,𝒊𝒏𝒊𝒕
𝒊𝒋 , 𝒗𝑳,𝒊𝒏𝒊𝒕𝒊𝒋

The specific formulations are listed below.

𝑔𝑃 ,𝑖𝑛𝑖𝑡𝑖𝑗 =
(

𝑔𝑖𝑗𝑐
0,𝑖𝑛𝑖𝑡
𝑖𝑗 + 𝑏𝑖𝑗𝑠

0,𝑖𝑛𝑖𝑡
𝑖𝑗

)

+
(

𝑔𝑖𝑗𝑐
1,𝑖𝑛𝑖𝑡
𝑖𝑗 + 𝑏𝑖𝑗𝑠

1,𝑖𝑛𝑖𝑡
𝑖𝑗

)

𝜃𝑖𝑛𝑖𝑡𝑖𝑗 , (A.1a)
𝑃 ,𝑖𝑛𝑖𝑡
𝑖𝑗 =

(

𝑔𝑖𝑗𝑐
1,𝑖𝑛𝑖𝑡
𝑖𝑗 + 𝑏𝑖𝑗𝑠

1,𝑖𝑛𝑖𝑡
𝑖𝑗

)

𝑣𝑖𝑛𝑖𝑡𝑖 𝑣𝑖𝑛𝑖𝑡𝑗 , (A.1b)
𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗 =

(

−𝑔𝑖𝑗𝑠
0,𝑖𝑛𝑖𝑡
𝑖𝑗 + 𝑏𝑖𝑗𝑐

0,𝑖𝑛𝑖𝑡
𝑖𝑗

)

−
(

𝑔𝑖𝑗𝑠
1,𝑖𝑛𝑖𝑡
𝑖𝑗 − 𝑏𝑖𝑗𝑐

1,𝑖𝑛𝑖𝑡
𝑖𝑗

)

𝜃𝑖𝑛𝑖𝑡𝑖𝑗 , (A.1c)
𝑄,𝑖𝑛𝑖𝑡
𝑖𝑗 =

(

𝑔𝑖𝑗𝑠
1,𝑖𝑛𝑖𝑡
𝑖𝑗 − 𝑏𝑖𝑗𝑐

1,𝑖𝑛𝑖𝑡
𝑖𝑗

)

𝑣𝑖𝑛𝑖𝑡𝑖 𝑣𝑖𝑛𝑖𝑡𝑗 , (A.1d)

where

𝑠1,𝑖𝑛𝑖𝑡𝑖𝑗 = cos 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 , 𝑠0,𝑖𝑛𝑖𝑡𝑖𝑗 = sin 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 − 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 cos 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 , (A.2a)

𝑐1,𝑖𝑛𝑖𝑡𝑖𝑗 = − sin 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 , 𝑐0,𝑖𝑛𝑖𝑡𝑖𝑗 = cos 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 sin 𝜃𝑖𝑛𝑖𝑡𝑖𝑗 . (A.2b)

Appendix B. Additional numerical experiments regarding the op-
imization gap

The numerical experiments are done using the additional test sys-
tems shown in Fig. B.14. The AC grid is expanded to the larger scales, to
30 nodes, 57 nodes, and 89 nodes, respectively. The scale of the VSC-
MTDC grid remains unchanged as a 4-terminal network, considering
that in reality, VSC-MTDC systems typically have 3 to 5 terminals.

Simulation setups: The key parameters of VSC-MTDC grid and
RESs are marked in Fig. B.14. The AC grid parameters originate
from Matpower formats "case_ieee30", "case_57", and "case_89
pegase". In "case_ieee30" and "case_57", the default param-
eter setting of branches does not include power capacity limits. In
"case_89pegase", the default parameter setting of a part of branches
does not include power capacity limits. Due to this reason, the branch
power capacity constraint formulated by Eq. (5) is not considered in
these additional test systems. The allowable deviation range of system-
wide voltage is considered to be ±10% in additional test systems,
and voltage bounds in the proposed mixed-integer convex AC/DC
OPF model is set as 𝑣𝑖 ∶= 0.91 p.u., 𝑣𝑖 ∶= 1.09 p.u., ∀𝑖 ∈ N𝐴𝐶 ∪
N𝑉 𝑆 𝐶 ∪ N𝑀 𝑇 𝐷 𝐶 . Additionally, the generator power output constraint
formulated by Eq. (5) in the main text is modified to Eq. (B.1) below,
considering in "case_ieee30", "case_ieee57", and "case_89
pegase", the generator active and reactive power limits are given
separately. Specifically, we are concerned about the possibility of no
feasible power flow solutions. Therefore, the reactive power limits of
generators in "case_ieee30", "case_57", and "case_89pegase"
ave been increased to 10 times of their original values. This means
hat the feasible region of the constructed AC/DC OPF problem has

https://cresym.eu/harmony/
https://cresym.eu/harmony/
https://cresym.eu/harmony/
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Fig. B.14. Schematic diagram of the additional test systems. The AC grids have three system scales, varying from 30 nodes to 89 nodes. The MTDC grid is a fixed 4-terminal
etwork, with two nodes connected to the AC grid and the remaining two nodes connected to RESs. Case System I, II, and III refer to the AC/VSC-MTDC hybrid power system
ith 30-node AC grid, 57-node AC grid, and 89-node AC grid, respectively.
p

o
o
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been expanded, and a feasible solution is more likely to exist. The
remaining key settings are consistent with those in Section 4.1.

𝑝𝐴𝐶𝑖,𝐺 ≤ 𝑝𝐴𝐶𝑖,𝐺 ≤ 𝑝𝐴𝐶𝑖,𝐺 , 𝑞𝐴𝐶𝑖,𝐺 ≤ 𝑞𝐴𝐶𝑖,𝐺 ≤ 𝑞𝐴𝐶𝑖,𝐺 . (B.1)

Comparison regarding the optimality gaps under different values
of the adjustable parameters is made. For the proposed mixed-integer
convex AC/DC OPF models, the adjustable parameters that influence
linearization approximation and convex relaxation include: 𝑛 in
Eq. (12), 𝑘 in Eq. (13), and 𝑘 in Eq. (27). Their default values are
set to 𝑛 ∶= 16, 𝑘 ∶= 6, and 𝑘 ∶= 2. When performing sensitivity
analysis on one of the mentioned adjustable parameters, the remaining
parameters are kept at their default values. The optimization objectives
of the proposed mixed-integer convex AC/DC OPF model under differ-
ent values of adjustable parameters are shown in Tables B.6 to B.14. For
he proposed OPF model, the optimization objectives are related to the
nitial AC power flow points. For a fair comparison, 5 updates regarding
he initial AC power flow points are performed for each situation. The
ptimization objectives obtained from the original nonlinear AC/DC
PF model are regarded as the benchmark values. In the following
iscussion, we will use ‘‘approximated optimization objectives’’ to
efer to the results obtained from the proposed OPF model, and ‘‘real
ptimization objectives’’ to refer to the benchmark values.

It can be found that as the number of updates increases, the approx-
imated optimization objective gradually converges to a stable value,
closely approaching the real optimization objective. In terms of opti-
mality, the proposed OPF model has a decent performance. Also, we
notice that the selected values of the adjustable parameters do not
significantly impact the converged optimization objective, based solely
on the numerical results from the test systems. Moreover, due to the
adoption of various convex relaxation techniques in the proposed OPF
model, the feasible region of the OPF solution is expanded, and the
approximated optimization objective should be less than the real opti-
mization objective. However, influenced by the successive linearization
echnique applied in the AC grid, along with more conservative voltage

bound settings (0.91 ∼ 1.09 p.u.), the feasible region does not neces-
sarily be expanded. As a consequence, the approximated optimization
objectives are slightly greater than the real optimization objectives for
all case systems.
19 
Appendix C. Additional numerical experiments regarding the
ower flow calculation

We use the additional test systems in Fig. B.14 to verify the accuracy
f the proposed OPF model in power flow calculations. As a result, we
btain the results regarding the accuracy of power flow solutions as
hown in Tables C.15 to C.17 (has gone through 5 updates of the AC

initial power flow points). We can see that under the default parameters
ettings, the proposed mixed-integer convex AC/DC OPF model exhibits

acceptable accuracy in terms of power flow solutions. The maximum
calculation error in node voltage is much smaller than 0.01 p.u. and the
maximum calculation error in power flow(active) is also much smaller
than 2% of the total power demands(active). As 𝑛 increases, it is
intuitive that the approximation of the nonlinear RES power output
constraints using Eq. (12) improves. As 𝑘 increases, it is intuitive that
the convex envelopes formed by Eq. (24) and (27) tightens. However,
this does not necessarily lead to an increase in the accuracy of the
system-wide power flow calculations. This is because the selection of
𝑛 in Eq. (12), 𝑘 in Eq. (24), and 𝑘 in Eq. (27), will lead to different
initial AC power flow points, which also significantly influence the
ccuracy of power flow calculations.

We can conclude that for the proposed OPF model, the sensitivities
of power flow calculation accuracy to the mentioned adjustable param-
eters are relatively weak. Moreover, based on the default parameter
settings, the accuracy of power flow calculations for all test systems is
acceptable.

Appendix D. Additional numerical experiments regarding the
nested distributed optimization

We use the additional test systems with larger scales to further
validate the scalability of the proposed nested distributed optimization
method. We would like to note that the threshold in the outer iteration
loop is relaxed to 5 × 10−3 to account the increase in optimization
problem size, which is likely to lead the slower reduction in the gap
between 𝑈 𝐵 and 𝐿𝐵. A relatively relaxed threshold can achieve a
better trade-off between convergence rate and solution optimality. The
threshold and maximum iteration number in the inner iteration loop
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Table B.6
Optimization objectives with different 𝑛 in Eq. (12) for Case System I.
𝑛 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

8 5.0918 5.5027 5.5066 5.5066 5.5066

5.503616 5.0918 5.5028 5.5066 5.5066 5.5066
32 5.0918 5.5028 5.5066 5.5066 5.5066
40 5.0918 5.5026 5.5066 5.5066 5.5066
Table B.7
Optimization objectives with different 𝑘 in Eq. (24) for Case System I.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

4 5.0914 5.5026 5.5065 5.5065 5.5064

5.50366 5.0918 5.5028 5.5066 5.5066 5.5066
8 5.0918 5.5028 5.5066 5.5066 5.5066
10 5.0918 5.5027 5.5029 5.5066 5.5066
Table B.8
Optimization objectives with different 𝑘 in Eq. (27) for Case System I.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

1 5.0917 5.5027 5.5066 5.5066 5.5066

5.50362 5.0918 5.5028 5.5066 5.5066 5.5066
3 5.0918 5.5028 5.5066 5.5066 5.5065
5 5.0918 5.5028 5.5063 5.5066 5.5066
Table B.9
Optimization objectives with different 𝑛 in Eq. (12) for Case System II.
𝑛 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

8 47.1329 47.7196 47.7198 47.7198 47.7198

47.693616 47.1329 47.7196 47.7198 47.7198 47.7197
32 47.1329 47.7197 47.7197 47.7197 47.7198
40 47.1329 47.7197 47.7197 47.7197 47.7198
Table B.10
Optimization objectives with different 𝑘 in Eq. (24) for Case System II.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

4 47.1325 47.7192 47.7195 47.7193 47.7195

47.69366 47.1329 47.7196 47.7198 47.7198 47.7197
8 47.1331 47.7198 47.7200 47.7199 47.7200
10 47.1332 47.7199 47.7201 47.7201 47.7199
Table B.11
Optimization objectives with different 𝑘 in Eq. (27) for Case System II.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

1 47.1329 47.7198 47.7198 47.7199 47.7198

47.69362 47.1329 47.7196 47.7198 47.7198 47.7197
3 47.1329 47.7197 47.7198 47.7198 47.7199
5 47.1329 47.7198 47.7199 47.7197 47.7197
d

remain unchanged, as 1 × 10−3 and 250, respectively. Communication
delay scenario Scnr.II is still taken into account.

The obtained problem-solving results are shown in Table D.18.
We can see that the outer iteration number of the proposed nested
istributed optimization method (represented by DM) is still close to
he iteration number of MGBD (represented by CM). Additionally, the

converged optimization objectives closely approach those of the cen-

ralized optimization. Hence, we can conclude that the proposed nested i

20 
distributed optimization method still has the decent performances on
convergence rate and solution optimality when applied to larger-scale
systems, demonstrating good scalability.

In particular, we present the nested iteration optimization proce-
ure in Case System II. Fig. D.15 illustrates the corresponding nested

distributed optimization process from the perspective of LB, which
s obtained by solving MP, hence, changes in both outer and inner
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Table B.12
Optimization objectives with different 𝑛 in Eq. (12) for Case System III.
𝑛 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

8 537.7070 524.5826 524.0986 524.0961 524.1187

524.059616 537.7070 524.5828 524.0993 524.0959 524.0968
32 537.7072 524.5825 524.0982 524.0954 524.0965
40 537.7072 524.5824 524.0986 524.0964 524.0960
Table B.13
Optimization objectives with different 𝑘 in Eq. (24) for Case System III.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

4 537.7065 524.0950 524.0955 524.0956 524.0956

524.05966 537.7070 524.5828 524.0993 524.0959 524.0968
8 537.7070 524.5826 524.0981 524.0951 524.0955
10 537.7073 524.5832 524.0993 524.0956 524.0955
Table B.14
Optimization objectives with different 𝑘 in Eq. (27) for Case System III.
𝑘 Obj. in the proposed mixed-integer convex OPF model [–] Obj. in the nonlinear OPF model [–]

1st updates 2nd updates 3rd updates 4th updates 5th updates

1 537.7064 524.5828 524.0982 524.0950 524.0961

524.05962 537.7070 524.5828 524.0993 524.0959 524.0968
3 537.7070 524.5836 524.0986 524.0957 524.0951
5 537.7078 524.5825 524.0981 524.0957 524.0952
Table C.15
Accuracy of power flow solutions with different 𝑛 in Eq. (12).
𝑛 Calculation errors in Case System I Calculation errors in Case System II Calculation errors in Case System III

Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW]
Max./Ave. Max./Ave. Max./Ave. Max./Ave. Max./Ave. Max./Ave.

8 1.1226E−3/2.6454E−4 3.3612/0.5072 6.9768E−4/1.6893E−4 1.0547/0.1028 2.5886E−3/7.7907E−5 10.3462/0.2707
16 1.2078E−3/2.7384E−4 3.3694/0.5087 6.9670E−4/1.6913E−4 0.9149/0.0897 3.3374E−3/1.5098E−4 7.5107/0.2002
32 1.111E−3/2.6534E−4 3.3083/0.4992 6.8729E−4/1.6683E−4 0.9270/0.0908 1.5488E−3/8.8714E−5 7.4806/0.1947
40 1.0792E−3/2.6144E−4 3.2895/0.4962 6.9461E−4/1.6913E−4 0.9063/0.0888 8.9449E−4/3.3032E−5 1.0404/0.0273
Table C.16
Accuracy of power flow solutions with different 𝑘 in Eq. (24).
𝑘 Calculation errors in Case System I Calculation errors in Case System II Calculation errors in Case System III

Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW]
Max./Ave Max./Ave. Max./Ave. Max./Ave. Max./Ave. Max./Ave.

4 1.0267E−3/2.5620E−4 3.2772/0.4944 6.9448E−4/1.6896E−4 0.9084/0.0892 2.1623E−3/1.5723E−4 6.5653/0.2196
6 1.2078E−3/2.7384E−4 3.3694/0.5087 6.9670E−4/1.6913E−4 0.9149/0.0897 3.3374E−3/1.5098E−4 7.5107/0.2002
8 1.111E−3/2.7277E−4 3.2914/0.4969 6.9186E−4/1.6785E−4 0.9071/0.0889 1.4972E−3/1.0514E−4 4.1368/0.1153
10 1.0278E−3/2.4231E−4 3.2807/0.4938 8.6504E−4/2.0809E−4 1.0981/0.1078 3.4758E−4/1.5458E−4 10.3099/0.2748
Table C.17
Accuracy of power flow solutions with different 𝑘 in Eq. (27).
𝑘 Calculation errors in Case System I Calculation errors in Case System II Calculation errors in Case System III

Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW] Node voltage [p.u.] Power flow [MW]
Max./Ave Max./Ave Max./Ave Max./Ave. Max./Ave. Max./Ave.

1 1.0721E−3/2.6052E−4 3.3060/0.4988 7.2105E−4/1.7441E−4 0.9742/0.0954 3.1200E−3/1.2117E−4 7.2766/0.1927
2 1.2078E−3/2.7384E−4 3.3694/0.5087 6.9670E−4/1.6913E−4 0.9149/0.0897 3.3374E−3/1.5098E−4 7.5107/0.2002
3 1.0692E−3/2.6063E−4 3.2868/0.4966 6.9204E−4/1.6807E−4 0.9040/0.0886 2.8239E−3/1.3656E−4 4.5111/0.1210
5 1.0741E−3/2.6053E−4 3.2746/0.4940 6.7896E−4/1.6518E−4 0.9071/0.0888 3.2887E−4/1.4093E−4 7.7870/0.2072
21 
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Fig. D.15. Changes of LB during the outer and inner iteration loops. (a) shows the change of LB during the outer iteration loop. (b) shows the change of LB during the inner
iteration loop.
Table D.18
Comparison of distributed problem solving in additional case systems.

Case System CM DM Cen.

Iter. Obj. Outer Iter. Obj. Obj.

I 21 5.5002 23 5.5087 5.5066
II 23 47.6687 25 47.6888 47.7197
III 14 524.3872 14 524.3014 524.0954

iterations. It can be observed that LB converges successfully in both
inner and outer iteration loops.

Data availability

Data will be made available on request.
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