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Abstract
Robots are increasingly deployed for search-and-rescue (SaR), in order to speed up rescuing the victims in the aftermath of
disasters. These robots require effective mission planning approaches to determine time and space-efficient trajectories that
steer them faster towards (moving) victims, while dealing with uncertainties. Model predictive control (MPC) is an effective
optimization-based control approach that has been used to steer robots along reference trajectories determined by higher
level controllers. Determining the trajectory of the robots directly via MPC has the advantage of optimizing multiple SaR
criteria while handling the constraints. We, thus, introduce a path planning approach based onMPC for indoor SaR robots that
allows the robot to systematically chase the moving victims, when no reference trajectory is provided. The proposed approach
combines target-oriented and coverage-oriented search, and allows for systematic handling of environmental uncertainties,
by deploying a robust tube-based version of the introduced MPC formulation. In addition, we model the movements of the
victims for MPC, by adopting an existing evacuation model. We present a case study, using Gazebo, MATLAB, and ROS,
where the performance of the proposed MPC controller is evaluated compared to four state-of-the-art methods (two target-
oriented methods based on MPC and A* and two heuristic algorithms for area coverage). The results show that, while robust
to uncertainties, our approach overall outperforms the other methods, with regards to victim detection, area coverage, and
mission time.

Keywords Model predictive control · Robot path planning · Target-oriented and coverage-oriented search-and-rescue

1 Introduction

Recently search-and-rescue (SaR) robots are increasingly
used in dangerous and complicated stages of SaR [1–4].
Robots are expendable and can access locations that are inac-
cessible to humans. By taking over dangerous tasks, robots
allow humans to contribute to other tasks, e.g., providing
medical and emotional support for victims [5, 6]. Novel con-
trol approaches are needed to enable robots to autonomously
and time-efficiently search for trapped people [7].

Model predictive control (MPC) [8] is an optimization-
based control approach that explicitly incorporates various
state and input constraints, and finds balanced trade-offs
between various objectives of SaR missions. Furthermore,
robust versions of MPC have been established (see, e.g.,
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[9–11]) that, if adopted for SaR robots, will maintain their
performance in presence of uncertainties [12–15]. While a
well-known challenge of MPC methods is the demanding
computations, a vast number of literature exists that propose
alternative approximate MPC methods to tackle this chal-
lenge (see, e.g., [16, 17]).

Although MPC has been used for SaR robotics, the
applications mainly concern tracking a reference trajectory
that is determined by another controller [18, 19]. However,
exploiting the advantages of MPC for systematic explo-
ration of SaR environments when no reference trajectory is
available or when it is desired to determine this trajectory
directly via MPC remains limited (see Section 1.1). Addi-
tionally, reference-tracking MPC is used for target-oriented
SaR, whereas optimizing the area coverage, next to moving
towards the target victims, possesses two main advantages:
First, the estimated positions for the target victims are usu-
ally prone to uncertainties. Therefore, a solely reference point
trackingmethodmay lead the robot to places without victims
and thus, the robot should include exploration to its track-
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ing task. Second, area coverage is essential for various SaR
missions, in order to find unknown victims or other impor-
tant targets (e.g., explosives). Running the area coverage and
target tracking as two separate or sequential missions will
pose additional challenges regarding real-time communica-
tion and data exchange and coordinating the robots, and will
result in increased mission time, over-populating the area
with robots, etc. Designing an MPC system that determines
on the go, according to a constrained (multi-objective) opti-
mization problem, which of the two tasks the robot should
take will eliminate those issues.

In this paper, we propose a novel formulation based on
MPC for autonomous decision making of SaR robots, when
no reference trajectories exist and the path should be planned
by MPC itself. Our main motivation for determining the tra-
jectory of the robots directly via MPC is to optimize the SaR
missionwith respect to time and the area coverage, especially
the coverage of areas that potentially include victims, and to
systematically handle the hard constraints via SaR robots.
The area coverage problem is dynamic, due to the possi-
bility of movement of the victims or obstacles. Moreover,
our main aim is to adopt MPC for systematic combined tar-
get and coverage-oriented SaR, while handling various state
and control constraints. Satisfying constraints, e.g., avoid-
ing obstacles, fire, and collision, reaching specific terminal
targets, and incorporating the limits of the actuators and the
kinematics of the robots, is crucial for SaR robots.

The proposed generalized MPC-based framework can be
adopted for mission planning of robots for various environ-
ments, targets, robots, and unmodeled disturbances in SaR
missions. This frameworkwill exploit the unique characteris-
tics of MPC for mission planning of SaR robots. Moreover,
various models for the SaR environment, dynamic targets
(e.g., victims), and robots and their actuators can be plugged
into MPC as prediction models, which significantly expands
the applicability and generalizability of our proposed frame-
work.

The main contributions of this paper include:

• A novel MPC-based formulation for mission planning
of SaR robots in dynamic environments is introduced.
While MPC for SaR robots has mainly been used for
(robust) reference tracking, which leads the robot to spe-
cific targets (target-oriented SaR), we formulate an eco-
nomic MPC problem that includes both target-oriented
and coverage-oriented objectives and constraints. This
will significantly improve the efficiency and effective-
ness of search-and-rescue, without having a reference
trajectory.

• We adopt a dynamic force-based evacuation model to
represent the movements of the targets (victims).We also
incorporate the uncertainties regarding the exact position
of the victims and the evolution of these uncertainties

into the model, which will be used by MPC as prediction
model. The proposed control approach is not limited to
this particularmodel andmay be integratedwith different
dynamic models for victim/target movement.

• We design and run a case study (implemented in MAT-
LAB, ROS, and Gazebo) to assess the performance of
the proposed MPC method with respect to four differ-
ent state-of-the-art methods, that are dedicated target-
oriented or coverage-oriented approaches. For the case
study, we adopt a robust tube-based version of the
proposed MPC formulation, in order to deal with envi-
ronmental uncertainties included in victims locations and
in the robot model.We also include the results of real-life
experiments in the lab.

The remainder of the paper is structured as the following.
Section 1.1 provides a background discussion about the con-
trol of SaR robots for various SaR objectives. In Section 2,
we describe the proposedmethodologies, including theMPC
formulation and the dynamic model for the movement of the
victims. In Section 3, we show and discuss the results of a
case study that compares our approach with four different
state-of-the-art methods for simulated indoor SaR missions.
Finally, Section 4 concludes the paper and proposes topics
for future research. Moreover, Table 1 shows the commonly
used mathematical notations.

1.1 Background

Considering the main objectives of their control systems,
SaR missions may be categorized as coverage-oriented
[20, 21] and target-oriented [13, 14]. In coverage-oriented
SaR, exploring the SaR environment and finding the vic-
tims [22–25] is the focus of the control system, whereas in
target-oriented SaR the control system aims at reaching a
specific target (e.g., an exit) [26]. The most commonly used
coverage-oriented approaches for mission planning of SaR
robots include heuristics techniques (e.g., bug algorithms
[27], potential fields methods [28], fuzzy logic control [29],
and particle swarm optimization [30]). Graph-based [31, 32]
and optimization-based control approaches, including MPC,
are often used in target-oriented SaR. An extensive literature
survey shows that the use ofMPC in coverage-orientedSaR is
rather limited (see, e.g., [33–37]). In particular, MPC is used
for reference tracking [18], i.e., when a reference path that
steers the robot to a specific known destination is available.

We first discuss some state-of-the-art coverage-oriented
approaches. Although the focus of our paper is on single
robot control, in order to properly cover various controlmeth-
ods, we consider papers with both single and multiple robot
systems. Sincemost approaches decompose the environment
into cells, a main classification of coverage-oriented meth-
ods includes exact and approximate decomposition methods.
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Table 1 Table of frequently used mathematical notation

Variable Description

MPC

Ai (k) Area that is expected to include victim i at time step k

Cp(k) Circular area representing the perception field of the SaR robot at time step k

kc Control time step

ks Simulation time step

MEvac Mapping corresponding to “Evac” crowd evacuation model

N p MPC prediction horizon

r rob(k) Position of the robot at time step k

T c Control sampling time

vrob(k) Linear velocity of the robot at time step k

ωrob(k) Angular velocity of the robot at time step k

x rob(k) Coordinate x of the robot at time step k

yrob(k) Coordinate y of the robot at time step k

θ rob(k) Orientation angle of the robot at time step k

πc Threshold used by MPC for intersection of the areas Cp(k) and Ai (k) to stop chasing victim i

Evacuation model

Fi (k) Total external force on victim i at time step k

Fs
i j (k) Social force between victims i and j at time step k

Fc
i j (k) Contact force between victims i and j at time step k

Fa
i j (k) Attraction force between victims i and j at time step k

Fs
ios (k) Social force between victim i and static obstacle os at time step k

Fc
ios (k) Contact force between victim i and static obstacle os at time step k

Fa
iod

(k) Attraction force between victim i and dynamic obstacle od at time step k

Ii Moment of inertia of victim i

mi Mass of victim i

rvi (k) Position of victim i at time step k

Ti (k) Total external torque on victim i at time step k

T s
i (k) Torque of the social force on victim i at time step k

T c
i (k) Torque of the contact force on victim i at time step k

Tm
i (k) Torque of the motive force on victim i at time step k

v0i Velocity vector field of victim i

vvi (k) Linear velocity of victim i at time step k

ηi (k) Fluctuation torque component on victim i at time step k

θvi (k) Orientation angle of victim i at time step k

ξ i (k) Fluctuation force component on victim i at time step k

τi Time relaxation parameter of victim i

Using an exact decomposition, Agarwal and Akella in [38]
consider a multi-robot system for exploring a given 2-
dimensional area, where the robots have constraints on their
flight time and battery life. The problem is transformed
into a line-coverage one, which is then solved by a graph-
based method. In [39], a coverage-oriented path planning
method based on approximate cellular decomposition is pro-
posed that is shown to reduce the coverage overlap. Their
approach, however, does not account for dynamic obstacles

and uncertainties. In [40] a bio-inspired ant colony opti-
mization algorithm is proposed, where variable velocities
are introduced for the ants, in order to find sub-optimal
paths, while reducing the overall path planning time. This
approach resulted in improved computational efficiency and
reduced repetition in covering the same areas. In [41] four
methods are proposed for discrete-space path planning of
unmanned aerial vehicles in SaRmissions.Using fuzzy logic,
a map of the search area is generated where places with
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a higher risk and a higher probability of finding the vic-
tims are specified. The four methods for path planning are
based on artificial intelligence, and thus systematic obsta-
cle avoidance and optimization of the control inputs have
not been considered. In [42] a distributed particle swarm
optimization algorithm for path planning of a multi-robot
SaR system is proposed. The robots use artificial potential
functions to avoid static obstacles in the environment and to
reach the victims. With respect to classical particle swarm
optimization methods, through the introduction of a repul-
sive force among the particles and robots, the performance
is improved considering exploration of the area and avoiding
collisions between the robots. However, uncertainties in the
SaRenvironment and dealingwithmoving obstacles have not
been considered in [42]. Other papers that have considered
heuristic control of SaR robots include [43–47], which par-
ticularly focus on reinforcement learning. A main challenge
with reinforcement-learning-based approaches, however, is
that thesemethods do not systematically incorporate the con-
straints of a SaR mission. To summarize, optimality (as a
balanced trade-off) with respect to multiple competing cri-
teria and incorporation of constraints are not systematically
handled by these approaches.

In [33] a control architecture including an MPC layer
is presented for combined target-oriented and coverage-
oriented mission planning of SaR robots. The architecture
is suitable for multi-robot systems and the main task of MPC
is coordination of the robots, rather than directly steering
them based on the solutions of a constrained multi-objective
optimization problem. The robots are steered by individual
local heuristic fuzzy logic controller towards various targets.
In summary, the common aspect of our paper and [33] is in
adoption of MPC for systematic maximization of the cov-
erage of (partially) unknown SaR environments. However,
while in [33] MPC is a supervisory layer that only acts when
local fuzzy logic controllers fail to cover the area above a
given threshold, in our paper a reformulation of the objec-
tive function and constraints of MPC is proposed for direct
steering of SaR robots. The resulting framework is generaliz-
able, as explained earlier, and exploits the unique advantages
of MPC for various SaR scenarios. Since the architecture in
[33] follows the same objective as our paper, i.e., approach-
ingmore target victims, whilemaximizing the area coverage,
we compare the performance of our approachwith that archi-
tecture.

In [34] distributed MPC is used for discrete-space and
discrete-time path planning of a cooperativemulti-drone sys-
tem that searches an outdoor environment. The objective
of MPC is to determine the speeds and roll angles of the
drones in order to maximize their reward for visiting the
cells of an environment, which is prone to changes due to the
wind flow. In [48], Carron and Zeilinger propose a coverage
control method based on nonlinear MPC for a multi-robot

system with nonlinear dynamics and state and input con-
straints. Moreover, a distributed coverage control problem
is solved in [35] via MPC. The approaches in both papers
converge to a centroidal Voronoi configuration. Our problem
differs from that in these papers, since we seek a trade-off
between systematic chasing of dynamic targets in uncertain
environments (which is not considered in [48] and [35]) and
maximizing the area coverage dynamically. In [36] and [37],
Ibrahim et al. present control approaches for path planning of
robots for area coverage, based on MPC. Compared to their
bi-level discrete-space approach, we employ only one level
of MPC for a continuous-space problem. The last two papers
introduce dynamic obstacles within the environment that the
robot should avoid. This is different from our problem where
some dynamic victims are assigned as targets for a robot and
the robot should estimate the future evolution of their move-
ment, including possible uncertainties, and chase them time
and space-efficiently.

Next, we give an overview on papers that consider target-
oriented SaR. The number of papers in this category that
use MPC for path-planning is much more vast compared to
coverage-oriented SaR. In [49], a path planning approach
based on decentralized robust MPC is proposed for coop-
erative, collision-free navigation of multiple wheeled robots
in an unknown, static, and cluttered environment towards
static targets with known positions. One MPC layer is used
to determineway-points according to nominal trajectories for
the robots, and a second MPC layer uses a robust approach
to track these trajectories despite uncertainties. Farrokhsiar
et al. develop a two-layer robust tube-based MPC controller
in [50] for motion planning of a unicycle robot that should
reach a static target with a known position in a cluttered
environment. Their results show that the robust tube-based
MPC controller stabilizes the position of the robot around
the planned nominal trajectory in dynamic cluttered envi-
ronments.

MPC is also used in [51] for mission planning of an
autonomous ground robot in an unknown environment with
static obstacles that should reach a static target with a known
position, while maintaining a safe distance from the obsta-
cles. The robot has access only to information within its
perception field, and accordingly determines intermediary
goal positions and moves towards them using an MPC con-
trollerwith two possibly competing objectives, i.e., reduction
of the mission time and the energy consumption. While the
results show good performance and constraint satisfaction
in an environment with static obstacles, dynamic obstacles
and targets, and uncertainties in the position of the target(s)
remain topics for future research. In [19] MPC is used in an
outdoor mission with an unmanned aerial vehicle for track-
ing dynamic targets with known initial positions and speeds,
considering the wind flow, in an obstacle-free environment.

In connection to the topic of our paper, we also consider
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works on search and pursuit-evasion in mobile robotics [52].
In [53], a distributed algorithm for target tracking by a group
of pursuers is presented, introducing a modified version of
the Voronoi tassellation that generates collision-free areas.
The pursuers are capable of tracking the dynamic target even
with an uncertain position. A drawback of the approach is
that the presence of a barricade of obstacles does not allow
reaching the target. In this field, there are also works that
use MPC. In fact, in [54] an MPC approach is proposed and
compared to a game-theoretic method. It is shown that MPC
can solve this problem with less information required and
with a similar performance. In more detail, in [55] the same
authors show that MPC requires less information to solve
pursuer-evasion games, where in particular the position of
the opponent is required, but its orientation and dynamics
are not. In [56] De Simone et al. introduce a pursuer-evader
problem for humanoids in presence of obstacles. Firstly, uni-
cycle models are used to generate reference velocities, and
lastly, MPC is used for tracking them for stable gait genera-
tion.

Finally, other related topics are robot exploration and
target-driven navigation. The first group include studies that
discuss and propose exploration approaches, many of which
use learning-based techniques, that can be reinforcement
learning [57] or deep learning [58]. In particular, in [59]
deep reinforcement learning is combinedwith themore tradi-
tional approach of frontier-based exploration for autonomous
exploration of unknown cluttered environments by a SaR
robot, while in [60] an approach based on reinforcement
learning is used that can leverage structural regularities of
the environment, robustness to errors in state-estimation, and
flexibility with respect to input modalities, or also in [61]
a multi-robot exploration strategy in presence of commu-
nication dropouts is presented. The second group includes
papers on navigation approaches guided by target infor-
mation, where many use reinforcement learning [62, 63],
foundation models based on deep learning [64, 65], or
solve optimization problems [66]. In more detail, [62] pro-
poses a navigation approach to reach a target only using
vision information based on two networks that respectively
explore the environment and locate the target, or in [63]
an attention-based method is proposed to learn to navigate
by leveraging an episodic memory that embeds previously-
visited states, while in [67] a frontier-based exploration
method that exploits visual information to navigate towards
unseen semantic objects is presented.

2 ProposedMethodologies

In this section,we explain our proposedmethodology, includ-
ing the problem definition, assumptions and models, and
mathematical formulations.

2.1 Problem Statement

The SaR control problem is formulated within a discrete-
time and continuous-space framework. We consider an
autonomous ground robot that follows the standard unicy-
cle model (see Section 2.2.1 for details). This robot should
explore a partially known 2-dimensional SaR environment
E , while chasing specific moving targets. Figure 1 illustrates
an example of a SaR environment and its static and dynamic
elements. More specifically, the SaR environment contains
a time-invariant set Os of sub-areas occupied by static and
closed obstacles, e.g., debris and stones with generally arbi-
trary shapes (see the dashed cyan shapes in Fig. 1; setOs also
includes a safety margin for the robot around each obstacle),
and a time-varying setOd(k) of sub-areas occupied by mov-
ing objects at time step k, e.g., victims (Od(k) includes a safe
margin that allows the robot to get as close as needed to its
target victims, without crashing into or disturbing them).

The assumptions used are given below:

A1 The robot is associated with a set V of N v mov-
ing target victims and is initially given a set A =
{A1(0), . . . , ANv(0)} of N v closed circular areas that

Fig. 1 Search-and-rescue environment at initial time step k = 0 includ-
ing the SaR robot and its perception field Cp(0) (illustrated with a
solid green circle), three victims and their approximate initial areas
A1(0), A2(0), A3(0) that represent the uncertain locations of the vic-
tims (illustratedwith dash-dotted grey circles in case of target victims, or
with dash-dotted uncolored circles in case of non-target victims), static
obstacles (illustrated with dashed cyan circles), and the exit (illustrated
by a star symbol)
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represent the approximate initial location of each target
victim (i.e., rvi (0) ∈ Ai (0), with i = 1, . . . , N v). Vic-
tim i is assumed to initially be inside area Ai (0). Before
the robot detects a target victim, it only has knowledge
about the approximate initial area Ai (0) of the victim.
Thus the robot predicts the evolution and transition of
areas Ai (k) in time according to a victims movement
model.

A2 An initial exploration phase of the environment has
already resulted in knowledge about the approximate
initial location of the victims and the position, size, and
number of the static obstacles. In realworld, the bounded
uncertainties corresponding to the areas where victims
are located may be estimated based on the likely where-
abouts of the victims (e.g., offices, canteens, bedrooms),
depending on the functionality and expected number
of inhabitants of the building, size and position of the
rooms, time of the day.

A3 From every position in the environment, where the robot
may be placed, there is a feasible path to the final target
of the robot (i.e., the exit).

A4 The robot has perfect knowledge of its own states at
every time step.

A5 The robot is equipped with a sensor with a circular
perception area Cp(k) of fixed radius rp (see the solid
green circle in Fig. 1). The center of the perception field
always coincides with the position

(
x rob(k), yrob(k)

)
of

the center of gravity of the robot. The sensor has perfect
perception.At every time step, the sensor provides amap
of the sub-area that is encountered by Cp(k), including
the shape, size, and location of the perceived obstacles1.

The robot uses a dynamic model to predict the evolu-
tion of the approximate areas A1(k), . . . , ANv(k) in time
(see Section 2.2.2 for details), which may be influenced by
a motive force field, social forces among the victims, and
repulsion forces with respect to static obstacles.

The aim of this paper is to develop a dynamic and online
mission planning control system for the robot that steers the
robot within the free space E \ (

Os ∪ Od(k)
)
towards its final

destination (an exit represented by a star symbol in Fig. 1) in
the shortest possible time, while the robot maximizes a trade-
off between its area coverage and the possibility of visiting
more target victims from the set V , continuously satisfying
the hard state and input constraints. Therefore, the SaR prob-
lem should be formulated as a combined target-oriented and

1 Sensor fusion and robustness to sensor inaccuracies are out of the
scope of this paper and are thus assumed to be provided for the robot.

coverage-oriented multi-objective MPC problem that incor-
porates all the constraints (see Section 2.2.3 for details).

2.2 MPC for Combined Dynamic Target Chasing and
Area Coverage for SaR Robots

We first explain the models used for the mobile robot and for
movement of the victims. Then we detail the MPC formula-
tion.

2.2.1 Kinematics Model for the Ground Robot

For the robot, we consider the following kinematics model,
which is a standard unicycle model:

x rob(ks + 1) = x rob(ks)+
vrob(ks) cos (θ rob(ks))T s + δx (k

s) (1a)

yrob(ks + 1) = yrob(ks)+
vrob(ks) sin (θ rob(ks))T s + δy(k

s) (1b)

where [r rob�
(ks), θ rob(ks)]� is the state vector of the robot at

simulation time step ks,with r rob(ks) = [x rob(ks), yrob(ks)]�
including the x and y coordinates corresponding to the cen-
ter of gravity of the robot and the angular position of the
robot with respect to the horizontal axis (see Fig. 2). More-
over, vrob(ks) is the linear velocity of the robot at simulation
time step ks and T s is the simulation sampling time. The
model mismatch with respect to the real robot is formulated
via bounded uncertainties δx (ks) and δy(ks); these uncertain-
ties can represent the non-smoothness of the terrain in a SaR
environment, that makes the robot real position deviate from
the nominal one. With this model, we assume that the lin-
ear and rotational motions of the robot are decoupled, i.e., at

Fig. 2 Two-wheeled ground mobile robot schematic
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the beginning of every simulation sampling time, the robot
makes a rotation according to θ rob(k) (with its maximum
possible angular speed and in a negligible time) and contin-
ues its movement according to vrob(ks). Note that the linear
velocity vrob(ks) and the angular position θ rob(ks) are control
inputs (i.e., optimization variables of the MPC).

2.2.2 Dynamic Model for Movement of the Victims

In order to model the movement of the victims and thus esti-
mate the evolution of their approximate areas, we consider
the crowd evacuation model FDS+Evac [68], which is a well
established model used, e.g., in [69–71].

Remark Our approach is independent of the selected crowd
evacuationmodel, and thus a differentmodel can be used. For
this reason, the application is not limited to SaR. However,
in order to properly use FDS+Evac model, in case moving
obstacles exist in the SaR environment, the robot should be
aware of them and should have a model of their motion.

In FDS+Evac model, the movements including the posi-
tion and orientation of humans in a disaster scene are driven
by (physical and virtual) forces and torques, such as the con-
tact forces and the gravity, aswell as the psychological forces,
based on the social force model by Helbing andMolnar [72],
that are exerted by the environment. The movement trajecto-
ries of the victims in this model are formulated in continuous
time and continuous space. The equations of motion for tar-
get victim i (i = 1, . . . , N v) are given by:

mi
d2rvi (t)

dt2
= Fi (t) + ξ i (t) (2)

Ii
d2θvi (t)

dt2
= Ti (t) + ηi (t) (3)

where mi is the mass of target victim i , rvi (t) = [xvi (t), yvi
(t)]� is the position of the target victim at time instant t with
xvi (t) and yvi (t) the x and y coordinates, Fi (t) is the total
measured external force on target victim i at time instant t ,
ξ i (t) is a random fluctuation force at time instance t , Ii is
the moment of inertia of target victim i , θvi (t) is the angular
position (i.e., heading) of the target victim at time instant t ,
Ti (t) is the totalmeasured external torque on the target victim
at time instant t , and ηi (t) is a random fluctuation torque at
time instant t . The fluctuation components ξ(t) and ηi (t) are
part of the uncertainties that affect the control system of the
robot.

The total measured external force and torque on target
victim i are given by:

Fi (t) = mi

τi
(v0i − vvi (t))+

Nv∑

j=1
j �=i

(
Fs
i j (t) + Fc

i j (t) + Fa
i j (t)

)
+

∑

os∈Os

(
Fs
ios(t) + Fc

ios(t)
)+

∑

od∈Od(t)

Fa
iod (t) (4)

Ti (t) = T s
i (t) + T c

i (t) + Tm
i (t) (5)

InEq. 4, thefirst termon the right-hand side corresponds to
the motive force on the target victimwhose intended velocity
at time instant t (i.e., the time derivative of rvi (t)) is vvi (t), and
v0i is the velocity vector field, which steers the target victim
towards an exit of the building. The relaxation time param-
eter τi is an indicative of how fast the target victim reaches
the intended speed. The second term in Eq. 4 corresponds
to the interactions among victim i and other target victims,
including social, contact, and attraction forces. The third term
corresponds to the interactions between target victim i and
static obstacles in the SaR environment, including the social
and contact forces. The last term represents other interac-
tions among the victim and the SaR environment, including
the attraction forces with respect to the moving or propagat-
ing obstacles (e.g., fire-human repulsion). In Eq. 5, the three
terms on the right-hand side are the torques corresponding
to the social, contact, and motive forces, respectively. For a
more detailed description of the force and torque components
in Eqs. 4 and 5, see [68]. In our model, the forces and torques
exerted by the other agents are instead exerted by each vic-
tim area Ai (ks), which location is indeed available for the
robot. Since our SaR problem is formulated in discrete time,
a discretized version of Eqs. 2, 3, 4 and 5 formulated as a
first-order difference equation for the state vector svi can be
used, i.e.,

svi (k
s + 1) = f v

(
svi (k

s), Ftotal
i (ks)

)
(6)

where:

svi (k
s) = [

rvi (k
s)�, ṙvi (k

s)�
]�

(7)

Ftotal
i (ks) =

[
Fi (ks)�

mi
,

ξi (ks)�
mi

]�
(8)
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and:

f v(ζ1, ζ2) = eAT
s
ζ1 + ζ2B

∫ T s

0
eAzdz (9)

with:

A =
[
0 1
0 0

]
, B =

[
0 0
1
mi

1
mi

]
(10)

and for further details, see [73].

Remark For the ease of computations, after each evolution
of Ai (ks) one may consider the convex hull of the result-
ing area. However, when the degree of non-convexity is large
(i.e., the ratio of the surface of the convex hull and the surface
of the original area is larger than a threshold), we allow the
area to separate into different sub-areas and then consider
the convex hulls of these sub-areas. This means that there
may be more than one potential area in the SaR environment
that embeds that particular victim. As soon as the victim is
detected by the robot, all these sub-areas will be removed
from the memory and prediction module of the robot. More-
over,whenever the surface of Ai (ks)∩A j (ks) for twodifferent
victims i and j is larger than a specific percentage of the
surface of the smaller area, the two victims are assumed to
approach each other to move on as a team. Therefore, their
approximate areas will be merged.

Remark In large-scale implementations, to improve the com-
putation timewheneverCp(ks)∩Ai (ks) �= ∅, but the victim is
not yet detected (see Fig. 3), the intersection will be excluded
from the approximate area Ai (ks).

Fig. 3 When the perception field of the SaR robot intersects with the
proximate area Ai (ks) of a victim, but does not detect the victim in the
intersected area, the intersection will be excluded from the modelled
approximate area for the robot to improve the computational efficiency

2.2.3 Formulation of MPC for Coverage-Oriented SaR

The main idea of robust tube-based MPC approach is to
decompose the control problem into two problems [74],
where first a deterministic nominal MPC problem (consid-
ering the nominal models and no disturbances) is solved to
determine a desired state sequence and the corresponding
control input sequence within the prediction window of the
MPC. Next, a feedback-based control problem is formulated
that determines a control input increment per control time
step in order to keep the realized state sequence as close as
possible to the desired one determined by the nominal MPC.
For the SaR problem, we formulate the nominal MPC prob-
lem (11).

min
ν̃(kc)

J nom
(
kc, r̃ rob(kc), ν̃(kc)

)
(11a)

s.t. for κ = kc, . . . , kc + N p − 1

Ai (κ + 1) = MEvac (Ai (κ)) , for i = 1, . . . , N v (11b)

if |Cp(κ) ∩ Ai (κ)| ≥ πc|Ai (κ)|, then Ai (κ̄) = ∅, for κ̄

= κ + 1, . . . , κ + N p (11c)

Cp(κ + 1) = T
(
Cp(κ),

[
cos

(
θ rob(κ)

)
,

sin
(
θ rob(κ)

)]�
vrob(κ)

)
(11d)

vrob(κ) ≤ vrob,max (11e)


vrob(κ) ≤ 
vrob,max (11f)


θ rob(κ) ≤ ωrob,maxτ,with τ 
 T c (11g)

x rob(κ) and yrob(κ) evolve according to nominal

version of kinematics model by Eq. 1 (11h)

ν(κ) = [vrob(κ), θ rob(κ)]� (11i)

r rob
�
(κ + 1) ∈ E \

(
Os ∪ Od(k)

)
(11j)

In Eq. 11, kc is the control time step, N p is the MPC
prediction horizon, and tilde is used for a variable to
indicate the sequence of that variable across the MPC
prediction horizon, e.g., r̃ rob(kc) is the sequence of the pre-
dicted nominal state variables (i.e., coordinates x rob(κ) and
yrob(κ)) of the robot within the prediction horizon, i.e.,
for κ ∈ {kc, . . . , kc + N p − 1}. Thus, we have r̃ rob(kc) ={
r rob(kc), . . . , r rob(kc + N p)

}
. The optimization variable

ν̃(kc) includes the sequence of the nominal control input
ν(κ), which is the vector of the linear velocity vrob(κ) and
the angular position θ rob(κ) of the robot, estimated across
the prediction window κ ∈ {kc, . . . , kc + N p − 1}, i.e., we
have ν̃(kc) = {[vrob(kc), θ rob(kc)], . . . , [vrob(kc + N p −
1), θ rob(kc + N p − 1)]}.
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Constraint (11b) predicts the evolution and transition of
approximate areas Ai according to the mapping MEvac,
which corresponds to the crowd evacuation model explained
in Section 2.2.2. Constraint (11c) assesses per control time
step whether or not the surface of the intersection area for
Cp and Ai has reached a specific threshold (given as a per-
centage of Ai ), with | · | giving the surface of a continuous
2-dimensional area and πc a design/tuning parameter; when-
ever this condition is satisfied, the control system assumes
that target victim i has been detected (or more precisely the
robot should not search for this victim any more) and thus
Ai is considered as a null set afterwards. Constraint (11d)
describes the time evolution of the coordinates of the per-
ception fieldCp(k) of the robot (i.e., the area that the sensors
of the robot can cover, no matter whether or not parts of the
area are obstructed by obstacles). Since the shape of the per-
ception field always remains the same (i.e., circular), T (·,λ)

is a linear mapping that transitions a 2-dimensional area (or
a set of coordinates) along the given 2-dimensional vector
λ. In our case, this vector is the linear velocity of the robot.
Constraints (11e), (11f) and (11g) account for the physical
constraints of the robot, with ωrob,max the maximum angular
velocity of the robot, 
vrob(kc) = vrob(kc) − vrob(kc − 1),
and T c the control sampling time (which, in general, is dif-
ferent from the simulation sampling time T s), and τ a fixed
constant. For the nominal controller, these constraints are
tightened compared to those of the ancillary controller (see
[74] for further information). Constraint (11h) describes the
evolution of the states of the robot according to the nominal
version of the model given by Eq. 1, i.e., when δx (κ) and
δy(κ) are excluded. Constraint (11i) formulates that the vec-
tor of nominal control input, i.e., the optimization variables
of the nominal MPC, includes the linear velocity and the
angular position of the robot. Finally, constraint (11j) allows
the robot to move in the free and safe part of the SaR environ-
ment (i.e., avoids collision with obstacles). Note thatOs and
Od(k) include safety margins between the robot and obsta-
cles and victims. If needed, constraint (11j) may be softened
(but never relaxed) by adjusting these safety margins.

The problem is guaranteed to be recursively feasible as
explained next. There are hard constraints on the states of the
robot via (11j) and on the control inputs via (11f) and (11g).
However, the initial configuration, based on Assumption A3,
provides initial feasibility for the control problem, which
implies recursive feasibility due to the following reasons:
According to (11b), targets continuously move according to
a physics-based state-space model. Thus, even if their posi-
tion temporarily obstructs the exit of the robot, the exit will
become accessible again after they move. Moreover, upper
bound limits on the control inputs (i.e., speed of the robot)
only increase the time of reaching the exit, but do not make
the problem infeasible.

The objective function in Eq. 11a is given by Eq. 12, that
is composed by Eqs. 13 and 14.

J nom
(
kc, r̃ rob(kc), ν̃(kc)

)

= J nom,target
(
kc, r̃ rob(kc), ν̃(kc)

)

+ J nom,coverage
(
kc, r̃ rob(kc), ν̃(kc)

)
(12)

J nom,target
(
kc, r̃ rob(kc), ν̃(kc)

)

=
kc+Np−1∑

κ=kc

(
w0

(
vrob(κ)

)−1+ (13a)

w1
∣
∣Cp(κ) ∩ A1(κ)

∣
∣−1 + . . . + wNv

∣
∣Cp(κ) ∩ ANv (κ)

∣
∣−1+ (13b)

wNv+1
∣∣Cp(κ) ∩ (A1(κ) ∪ . . . ∪ ANv (κ))

∣∣−1
)

+ (13c)

wNv+2
∥
∥[
x rob(kc + N p), yrob(kc +N p)

]� − [
xexit, yexit

]�∥
∥
∥

(13d)

J nom,coverage
(
kc, r̃ rob(kc), ν̃(kc)

)

=
kc+Np∑

κ=kc+1

κ−1∑

n=kc
wNv+3|Cp(κ) ∩ Cp(n)| (14)

The objective function is composed of a stage cost and a
terminal cost, wherew j for j = 0, . . . , N v+3 are weighting
factors. In Eq. 12 the nominal economic cost has been formu-
lated,which includes a target-orientedSaR term J nom,target(·)
and a coverage-oriented SaR term J nom,coverage(·). The
target-oriented objective function J nom,target(·) is expanded
in Eq. 13, where (13a)-(13c) represent the target-oriented
stage costs, and (13d) corresponds to the target-oriented ter-
minal cost. Moreover, Eq. 14 expands the formulation of
the coverage-oriented objective function. Since coverage is
a stage property, this objective function is only composed of
stage terms. In (13), the first term (13a) reduces the travel
time of the robot from its initial position at control time step
kc to its target position at the end of the prediction horizon,
i.e., at control time step kc + N p − 1. With the second term
(13b), the stage cost maximizes the intersection of the per-
ception field Cp(κ) of the robot and every area A j (κ) where
the victims are located, for j = 1, . . . , N v. The third term
of the stage cost (13c) maximizes the intersection between
Cp(κ) and the union of the areas A1(κ), . . . , ANv(κ). Finally,
the terminal cost (13d) - which should become highlighted
by adapting wNv+2 when the robot is close to the end of its
battery life - assures that the distance between the robot and
the exit is terminally minimized. The term in Eq. 14 min-
imizes the area of the intersection between Cp(κ + i) and
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Cp(κ), . . . ,Cp(κ + i − 1), for i = 1, . . . , N p, and is used to
increase the coverage of the area.

The optimization problem given by Eqs. 11-14 is in gen-
eral nonlinear and non-convex. While linearization of the
problem and deploying quadratic optimizers may be consid-
ered, we instead use a well-established nonlinear tube-based
approach [74], due to the following reasons: (1) Avoid
introducing further model mismatches that may impact the
recursive feasibility. (2) Prevent an increase in the computa-
tion time,which occurswhen the linearization is not efficient.
(3) Avoid significant decrease in the precision by oversimpli-
fying the model, where imprecision negatively impacts both
the performance and the recursive feasibility. Note that based
on Assumption A3 theMPC problem (11)-(14) is feasible by
nature.

2.2.4 Dealing with Uncertainties Via Robust Tube-Based
MPC

In order to deal with uncertainties in the environment, we
implement a robust tube-based version [75] of the nomi-
nal MPC proposed in Section 2.2.3. Consider the following
nonlinear system subject to bounded additive disturbances
w(k) ∈ W, e.g., the displacement of the robot position con-
sidered as non-smoothness of the floor (compare with (1)
where [δx (ks), δy(ks)]� is the external disturbance vector):

χ(k + 1) = f (χ(k), u(k)) + w(k) (15)

The following ancillary controller will be formulated to
obtain a feedback control law in the nonlinear case [74], thus
this is the objective function:

J anc
∗
(χ̃(k), z̃(k)) =
min
ũ(k)

J anc(χ̃(k) − z̃(k), ũ(k) − ν̃(k)) (16)

where the constraints are as in Eq. 11, and this is the control
input:

ũ∗(k) ∈ argmin
ũ(k)

J anc(χ̃(k) − z̃(k), ũ(k) − ν̃(k)) (17)

where the symbol ·̃ is used with a variable to show the
sequence of that variable within the prediction horizon and
z(k) and ν(k) correspond to the nominal system, i.e.:

z(k + 1) = f (z(k), ν(k)) (18)

The ancillary control input will be added to the nominal
input ν(k) to control system (15). In our case, the distur-
bances correspond to δx (ks) and δy(ks) in the model for

the motion of the robot, i.e., in (1). These deviations may
occur due to, e.g., the non-smooth ground on which the robot
moves.

3 Case Study

Next we explain the case study, we present the results, and
discuss them.

3.1 Setup

The models and the algorithms in this case study have been
implemented in MATLAB (R2021a version), ROS (Melodic
version) and Gazebo (9.0 version). The victims movement
model has been implemented and simulated in, respectively,
ROS and Gazebo. The robot simulated for this case study is
a TurtleBot 3 Burger [76], which has open source ROS and
Gazebo models [77]. The robust tube-based MPC controller
has been implemented inMATLAB, which was connected to
the robot model in Gazebo in order to simulate it. The PC, on
which the experiments have been simulated, had Intel Core
i7 processor with 4 cores at 1.80 GHz-2.30 GHz and 16 GB
RAM.

The environment of the robot is a partially collapsed build-
ing with obstacles (see Section 2.1 for details) that has been
simulated in Gazebo. In this scenario, we have a 12 m by
12 m square room, where there are three victims and five
static obstacles. While in the formulation we assume obsta-
cles with any shape, in this case study we consider them
to be cylinders, with cross sections of radius 0.5 m and
their centers positioned at (0.49, 0), (-5, -1), (0, 5), (5, 1)
and (2, -5) (see Fig. 4). We suppose that the victims start at
positions (-1, -3), (-2, 2) and (4, -2), while the robot only
knows an estimate initial area that each victim is positioned
in, where these areas are circles of radius 2 m centered
around the real positions of the victims. We consider a uni-
form distribution for the uncertainties about the positions
of the victims. This choice is based on [68], which intro-
duces the evacuation model we have adopted for the MPC
formulation in this paper. This choice may differ for other
implementations, by sampling the initial area Ai (0) of the
victims according to another distribution (e.g., Gaussian).
The ratio between the area of the environment and the per-
ception field of the robot is 6, therefore the area coverage is
substantially larger than the perception range of the robot.
The robot starts its mission at coordinates (−5,−5) and
ends it at the exit point with coordinates (5, 5). The bounded
uncertainties corresponding to the mismatch of the kinemat-
ics model of the robot and the reality are selected to satisfy
(δx , δy) ∈ [−0.1 m, 0.1 m] × [−0.1 m, 0.1 m] in a grid
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Fig. 4 Schematic view of the
simulations in (a) Gazebo and in
(b) MATLAB with the three
victims (shown via red, green,
and blue asterisks), the
cylindrical static obstacle
(shown via cyan circles), the
start point of the robot (shown
via a black square) and the exit
point (shown via a black star)

of 12 by 12 cells. We consider the values of the uncertain-
ties to remain constant, i.e., every cell corresponds to a fixed
uncertainty in the given range. The resulting grid may be
interpreted as the non-smoothness map of the environment
(the tables are publicly available in the 4TU. ResearchData
repository [78]).

The optimization problem given by Eqs. 11-14 for
the robot controller has been solved in MATLAB using
fmincon solver with sqp algorithm. The constrained opti-
mization problem of MPC in our (or various other) SaR
scenarios is in general non-convex. For non-convex opti-
mization problems, the risk of falling in local optima exists,
especially when a gradient-based algorithm is used to solve
the optimization problem. Moreover, while in theory global
optimizationmethods (e.g., genetic algorithm)find the global
optima, in practice due to the limited time/iterations allocated
to solving an optimization problem, such methods may also
fail to find global optima. To address this issue, multi-start
methodsmaybeused,where several candidate starting values
are considered for the optimization variables and the problem
is solved for all these starting values. This way, by a proper
choice of the starting values, the potential set of solutions is
more extensively explored.

In our case studies, we have used a gradient-based
approach to solve the optimization problem, because in
general gradient-based solvers are faster than most other
methods. Multiple starting points were considered per opti-
mization problem, and the realized values of the objective
function after solving the optimization problem for all these
starting points were compared. The solution that corre-
sponded to the least realized objective value (supposing that a
minimization problem is solved) was considered as the solu-
tion of MPC. This approach has been used extensively in
literature (see, e.g., [79, 80]).

The prediction horizon N p of the MPC controller is 10,
with a sampling time of T s = 0.2 s. We assume that
the simulation time step ks and the control time step kc

are synchronized, thus we use time step k for both. The
maximum linear and angular velocities are, respectively,
vrob,max = 0.7 m/s and ωrob,max = 2.5 rad/s. Moreover, we
have 
vrob,max = vrob,max/2 and 
θ rob = π/2+ 0.1 rad. In
our case studies, the weights (which are considered to remain
constant during the entire SaR mission) have been selected
at the beginning using a trial-and-error approach, such that
the selected values are in a meaningful range considering
the SaR scenarios that will be simulated, i.e., the candidate
initial positions of the victims, the estimated location of the
obstacles, and the coordinates of the exit point of the robot.

The trade-off parameter πc for constraint (11c) was tuned
via trial-and-error to 0.6: On the one hand, for smaller values
of this parameter, it was observed that for various cases the
robot over-trusted, based on the estimations of its prediction
model, that the target victim will be detected, whereas in
reality the robot was missing the victim. This was due to the
limited exploration in the potential areas of the target victims
by the robot due to a too small value for πc. For larger values
for parameter πc, on the other hand, the robot, based on the
estimations of its prediction model, would non-efficiently
spend extra time exploring the potential areas of the target
victims, whereas in reality the target victims were already
detected.

The weights in Eq. 14 are put to zero first, because we will
consider the influence of the additional term in the objective
function for the area coverage separately in Section 3.4.2.
The values of the other parameters used in the simulation
for forces and torques of the model for the movement of the
victims are taken from [68]. Moreover, in the case study we
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consider the following additional terminal cost in Eq. 12:

wNv+4

∥∥∥∥
[
x rob(kc + N p), yrob(kc + N p)

]� −
[
xcg1 , ycg1

]�∥∥∥ +
. . . +

w2Nv+4

∥∥∥∥
[
x rob(kc + N p), yrob(kc + N p)

]� −
[
xcgNv , ycgNv

]�∥
∥∥ +

w2Nv+5

∥∥∥∥
[
x rob(kc + N p), yrob(kc + N p)

]� −
[
xcgtot , ycgtot

]�∥∥
∥ (19)

This additional term is used to minimize the distance
between the robot and the centers of gravity

[
xcg1 , ycg1

]�
,. . .

,
[
xcgNv , ycgNv

]� of the victim shapes A1, . . . , ANv , and the

average center of gravity
[
xcgtot , ycgtot

]� of all these centers
of gravity. The reason for adding this term is the following: In
theory, with an infinite prediction horizon, for every time step
all victims will fall within the prediction horizon of the robot,
thus the robust tube-based MPC will be able to compute the
intersection with all areas A1, . . . , ANv (see the

∣∣Cp(κ) ∩
Ai (κ)

∣∣−1 term, for i = 1, . . . , N v, in Eq. 13). In practice,
however, an infinite (or large enough) prediction horizonmay
make the computations intractable. Thus the term given by
(19) is used so that we can select a reasonably small value
for N p and reduce the computation time significantly.

The weights for various terms of the objective function
were also tuned in advance and by trial and error, as it will be
explained next. For the target-oriented objective function, the
parameters w1, . . . , wNv in Eq. 13b that weigh the intersec-
tion of the area corresponding to the perception field of the
robot and the area corresponding to each target victim were
tuned to 105,whereaswNv+1 in Eq. 13c, i.e., theweight of the
term that defines the intersection of the area corresponding
to the perception field of the robot and the union of all areas
of the target victims was tuned to 108. With lower ranges for
w1, . . . , wNv , the robot was not attracted sufficiently by the
individual areas corresponding to the target victims and was
mainly moving towards the center of the union area without
detecting any individual victims. On the contrary, for much
larger ranges for w1, . . . , wNv , the robot was purely concen-
trating on individual target victims, losing the global picture
of other target victims. This could result in solutions that
were globally far from optimum.

In addition, w0 is put to 10−2, in order to give priority
to finding the victims rather than reducing the mission time,
that for the case study is already quite low. Next, wNv+2 is

put to 103, so that the robot has a reduced priority for going
to the exit while it is searching for victims, i.e., compared
to w1, . . . , wNv and wNv+1, and higher priority after these
terms are no longer relevant because the victims are already
found. Finally, for the area coverage, the weightwNv+3 is put
to 103. Even if lower compared to w1, . . . , wNv and wNv+1,
this shows a sufficiently good exploration performance when
the term is activated.

The weights of the variation of the terminal state of the
robot with respect to the individual centers of gravity in
Eq. 19, i.e.,wNv+4,…,w2Nv+4, are set to 107 and the weight
of the variation of the terminal state of the robot with respect
to the center of gravity of the union of the shapes, i.e.,
w2Nv+5, is set to 104. These values showed, within the range
of the parameters and dynamics of the case studies, that a
balanced trade-off will be achieved by the robot, to target the
individual victims, while considering not to get too far from
the rest of the victims.

3.2 Comparison

Theproposed robust tube-based approach has been compared
in simulation with four state-of-the-art methods, from which
the first (Farrokhsiar tube-basedMPC) and second (A*MPC)
are target-oriented and the third (randomized MPC) and the
fourth (boustrophedon motion A*) are coverage-oriented.

The first approach that we compare our results with is
the one given in [50]. There, a robust tube-based MPC con-
troller is used to determine a path for the robot that leads
to a specific target point. This controller, as in the approach
that we propose, is composed of a nominal and an ancillary
control, and the uncertainty in the kinematics model of the
robot is also the same. However, unlike our robust tube-based
MPC controller, the controller in [50] does not have the vic-
tims movement model in its constraints, thus the objective
function includes a term that minimizes the distance of the
robot to the initial positions of the target victims. Moreover,
there is no coverage-oriented term in the objective function.
This approach is representative of robust methods in litera-
ture based on MPC for target-oriented path planning.

The second approach is the one in [81], which uses the
A* algorithm to determine a shortest path to a specific target
point. An MPC controller is then used to track this path. In
order to account for the partial information that is available
from the environment for the robot, similarly to [51] at every
time step we define an intermediate target point on the border
of the perception field of the robot that is the closest to the
current target (i.e., a victimor the exit) of the robot.Whenever
the robot reaches this intermediate target, the A* algorithm
determines a new path, and this procedure continues until
the target is reached. This approach is representative of A*-
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based methods that are commonly found among standard
target-oriented path planning.

The third approach is the one in [82], in which a random-
ized MPC algorithm is used for path planning. In particular,
a number of random samples in the 2D space are generated,
and then an algorithm similar to a rapidly exploring random
trees (RRT) [83] is used to determine a shortest path that
extends through these random points. In this algorithm, the
targets are the random points and then the exit. If a random
point falls within the forbidden areas, it is discarded since we
constrain the algorithm from the beginning. TheMPC is used
in the planner to generate a collision-free control trajectory.
Due to the random selection of the points in the environment,
the approach increases the coverage of the area with respect
to purely target-oriented approaches. This approach is rep-
resentative of random-search-based methods, often used as
baseline for coverage-oriented path planning. In addition, as
a random search strategy, this approach is used as the lower
bound benchmark in our experiments.

The fourth approach is the method in [84]. This paper
uses the boustrophedon motion algorithm, which mimics the
back-and-forth motion of an ox when plowing a field [85],
to explore an area as in coverage path planning; when the
robot is close to obstacles and cannot continue its current
motion, the algorithm determines backtracking points in the
visited path and the robot returns to them. Finally, an A*
algorithm is used to determine a shortest path to the nearest
backtracking point with respect to the current position of the
robot; there, the robot starts a newboustrophedonmotion, and
this procedure is repeated until there are no more unvisited
backtracking points. This approach is used as a representative
of the heuristic methods that are used in standard coverage
path planning.

Finally, we also consider an upper bound benchmark, i.e.,
an ideal scenario where the robot has perfect knowledge of
the environment and the positions of the victims. We imple-
ment this benchmark by providing our proposedMPC-based
approach with the exact locations of the victims as they
appear in the Gazebo simulator.

In all the cases given above, MPC has been used to steer
the robot to track the reference path. In addition, for all cases
the simulation ends when the robot reaches the exit point.

3.3 Results

In this section, we present the results of the simulations.
Figure 5 shows the trajectories of the robot and the 3 vic-
tims in the environment, for a case study. In these figures,
the trajectory of the robot is shown in black and for the 3
victims the trajectories are shown in red, green, and blue.
The following symbols with their corresponding meanings
have been used in these figures: Small square, showing the
starting positions of the victims and the robot; Star, showing

the final position of the victims and the exit point for the
robot; Asterisk, showing the position of a victim at the time
of being detected by the robot. Whenever the robot detects a
victim, the perception field of the robot has also been illus-
trated. The corresponding videos are publicly available in the
4TU.ResearchData repository [78].

Figure 6 shows the number of victims detected by the robot
in time for all the control approaches. Figure 7 presents the
percentage of the area that is covered by the perception field
of the robot with respect to time during the entire simulation.
Figure 8 illustrates via a heat map the number of time steps
for which the robot visits the same point of the environment.

Finally, in Table 2 we show the computational cost of the
algorithm iterations for all the six approaches of the compar-
ison.

3.4 Discussion

Next, in Section 3.4.1 we discuss and compare the outcome
of the different control approaches based on the results given
in Section 3.3. After that, in Section 3.4.2 we assess and
discuss the performance of the proposed robust tube-based
MPC controller, when the objective function includes the
area coverage term given in Eq. 14, for a special scenario
that properly showcases the importance of the area cover-
age in SaR missions. Moreover, in Section 3.4.3 we describe
and discuss a simulation realized in a special scenario that
highlights the non-convexity of the space, in order to show
that our approach can be also applied to such non-convex
scenarios, despite the risk for the MPC optimization to fall
in local minima. Finally, in Section 3.4.4 we present and dis-
cuss the results of real-life experiments performed using real
robots, comparing our approach to [81] and [82], and we
include a discussion on the performance of our tube-based
MPC approach compared to two decoupled path planning
and trajectory tracking controllers.

3.4.1 Main Scenario

From Fig. 5, our proposed robust tube-based MPC approach
guarantees a safe margin in avoiding the obstacles, whereas
other control methods (except for [50] which also uses a
robustMPCmethod) result in trajectories that are prone to the
risk of collision with the obstacles. In fact, although avoid-
ing the obstacles has been formulated as a constraint for all
MPC controllers, due to the absence of a systematic robust-
ness (which is provided by the robust tube-based approach)
the robot may crash into an obstacle because of the non-
smoothness uncertainty (this occurs, e.g., in Fig. 5 (c) and
(d)).

Based on Fig. 5, we observe that there is a trade-off
between the time to complete the mission and the number
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Fig. 5 Plot of the trajectories of the robot (in black) and the three vic-
tims (in red, green, and blue) in the environment, with the obstacles
shown by small circles (in cyan): Whenever the robot detects a victim,
this is illustrated with an asterisk on the trajectory of that victim, as
well as by showing the circular perception field of the robot (in the

color of the corresponding victim) at the time of detecting the victim.
The black squares indicate the starting positions of the victims and the
robot, while the black stars illustrate the final position of the victims
and the exit point for the robot. Algorithms: (a) Our approach, (b) [50],
(c) [81], (d) [82], (e) [84], (f) our approach with perfect information

Fig. 6 The number of victims
found by the robot: our
approach (blue five-pointed
star), [50] (red diamond), [81]
(green six-pointed star), [82]
(cyan asterisk), [84] (magenta
cross), and our approach with
perfect information (yellow
circle). These markers indicate
that the victim is inside the
perception field (in Gazebo, the
robot has detected the real
location of the victim); for our
approach, the blue square
indicates that the victim is
detected by the robot (the
controller in MATLAB, through
the intersection of the areas)
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Fig. 7 The percentage of
environment area covered in
time by our approach (blue solid
line), [50] (red dotted line), [81]
(green dashed line), [82] (cyan
dash-dotted line), [84] (magenta
dashed line), and our approach
with perfect information (yellow
solid line)
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of the victims detected. In fact, the robot is able to find more
victimswith coverage-oriented approaches (see cases (d) and
(e)), compared to target-oriented ones (see cases (b) and (c)).
This is because the robot normally explores a larger area
with coverage-oriented methods in a given time, while with
target-oriented methods the mission is accomplished more

quickly, after the specific targets are approached. In addi-
tion, in the coverage-oriented approaches the trajectories of
the robot are more complex, because the robot should avoid
the obstacles and the moving victims more times during the
mission. Our proposed robust tube-based MPC method (see
case (a) in Fig. 5) performs as well as the coverage-oriented

Fig. 8 Heat maps illustrating
the intensity of the area
coverage, i.e., whenever the
robot visits a point for more
time steps, the intensity of the
heat map varies from 0 to its
maximum 1. From top left to
bottom right: Our approach, [50,
81, 82, 84], and our approach
with perfect information
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Table 2 Computational cost in seconds, for the average algorithm itera-
tion, of the approaches of the comparison: (1) Our tube-basedMPC, (2)
Farrokhsiar tube-based MPC [50], (3) A* MPC [81], (4) Randomized

MPC [82], (5) Boustrophedon motion A* [84], and (6) our approach
with perfect information

Approach 1 2 3 4 5 6

Computational cost 81.70 65.43 131.13 331.51 220.29 58.51

methods in detecting the victims, while resulting in a simpler
trajectory and finishing the mission faster. These results are
confirmed also via Fig. 6. In general, with the target-oriented
approaches (see the red and green symbols) the robot is not
able to find and reach all the victims. This is because the robot
encounters victims by chance, while moving towards their
initial positions (note that in these cases the robot does not
track the victims via their movement model). As expected,
with the coverage-oriented approaches (see the blue, cyan
and magenta symbols), the robot visits a larger percentage
of the environment, and therefore it is likely to find more
victims than with the target-oriented methods. Moreover,
with our proposed method the robot outperforms the target-
oriented approaches in victim detection (see the red, green
and blue symbols), and all target-oriented and coverage-
oriented methods in speed for finding the victims (i.e., using
our approach all victims are detected by time 183.0 s). Only
the upper-bound benchmark approach (see the yellow sym-
bol in Fig. 6) is faster than our method, since it has perfect
knowledge of the locations of the victims and therefore, can
reach them more quickly. Furthermore, in our approach the
prediction of the robust tube-based MPC about detecting the
victims is closely aligned with real detection of the victims
(compare the blue square and blue star in Fig. 6). This implies
that the trade-off parameter πc has properly been tuned.

From Fig. 7 we can compare the area coverage perfor-
mance of different control approaches. At the beginning of
the simulation, all the methods perform similarly. As it is
expected, the coverage-oriented approaches (see the cyan and
magenta curves) outperform the target-oriented approaches
(see the red and green curves) in the long run: In fact,
the target-oriented approaches reach a maximum of around
80% area coverage, whereas both coverage-oriented meth-
ods reach almost 100% coverage. In the first 400 time steps,
our method (see the blue curve) is moderately faster in cov-
ering the area compared to the target-oriented approaches.
The robot immediately moves towards the exits after detect-
ing all the target victims, thus the area coverage does not
increase afterwards. By including the additional coverage-
oriented term (see Eq. 14) in the objective function, the area
coverage will continue to increase also after detecting the
target victims. From the two coverage-oriented approaches,
the randomized MPC method [82] outperforms the bous-

trophedon motion A* method [84] regarding the mission
time. This is because the boustrophedon motion coverage
algorithm requires the robot to visit the area little by lit-
tle, whereas random points have a higher chance of falling
within the unexplored areas of the environment. In fact, the
boustrophedon motion A* approach [84] is the only one that
reaches 100% area coverage, thanks to its algorithm that is
particularly designed for systematic coverage of the area.

From Fig. 8, via coverage-oriented approaches the robot
keeps revisiting some areas of the environment (see the
two heat maps at the bottom of the figure), while in our
approach and in the target-oriented approaches the robot
visits the area once (see the three heat maps at the top of
the figure). On the one hand, the behaviour of the coverage-
oriented approaches can be preferable in presence of dynamic
obstacles or dynamic targets. On the other hand, a trade-off
between the time efficiency and the additional information
gained by revisiting the areas should be considered.

Comparing the various approaches with the performance
of the upper bound benchmark, we show that our approach
is the closest to it since it is the fastest in covering new areas
(see Fig. 7), due to the combination of target and coverage-
oriented objectives, and in detecting the victims (see Fig. 6),
since we include an accurate prediction model for the move-
ment of the victims.

For the computation times, Table 2 shows that our
approach outperforms A* method [81] and both coverage-
oriented approaches. Only Farrokhsiar tube-basedMPC [50]
and the upper-bound benchmark method are faster than our
approach, because unlike our MPC controller, they do not
consider the evolution of the 2D areas assigned to each vic-
tim in the optimization loop. Since ourmain focus is on using
MPC for optimizing competing costs and handling hard con-
straints, we analyze the MPC in comparison with the other
approaches to showcase its performance, and therefore avoid-
ing to aim for faster computations. The reported results are
impacted by the usage of laptops with limited resources that
run micro-simulations. In real life, instead, more advanced
hardware can be used and micro-simulators are not needed.
In addition, using fastMPCmethods (see, e.g., [86, 87] about
fast MPC alternative methods), the computation time could
be significantly improved. There already exists vast research
that discusses improvement of computational efficiency (see,
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e.g., [88, 89]) and analysis of feasibility of MPC (see, e.g.,
[90, 91]). Such methods may be used for the MPC formu-
lation that is proposed in this paper, in real-life applications
to combined coverage and target-oriented SaR, where fast
computation and feasibility should be guaranteed.

3.4.2 Special Scenario for Area Coverage Term

In order to assess the effect of adding the additional area cov-
erage term (i.e., putting the weights of Eq. 14 to non-zero) in
the objective function (12), we have simulated an additional
specific scenario, in which the robot has to visit three static
victims before going to the exit (see Fig. 9 where the posi-
tion of the victims are shown by colored asterisks). In this
scenario, we have a 20 m by 20 m square room, where there
are three static victims with initial positions (0, 8.3), (0, 0)
and (0,−8.3) and no obstacles. The robot starts its mission
at coordinates (−8, 8) and ends at the exit point at coordi-
nates (8,−8). This configuration has been selected because
after reaching a certain victim, the robot has additional space,
especially at the left and at the right of the victims, that it
can explore. In fact, with the additional coverage term, the
robot continues on its direction after one victim is detected, to
explore more area, until the border of the scenario is reached,
where the coverage term is deactivated and therefore the robot
goes to the following victim. In particular, from Fig. 10 we
can show that the additional term gives a gain in coverage
percentage of 29.3%. Finally, in Table 3 we show the com-

putational cost of the MPC minimizations for our approach
with and without the additional area coverage term: Without
the coverage term, the MPC is more then five times faster,
and therefore there is a trade-off in selecting computational
performance and area coverage amount. Note that the com-
putation times are not comparable with respect to those in
Table 2 because we do not employ multi-start in this opti-
mizations.

3.4.3 Special Scenario for Addressing the Non-Convexity

We have designed a scenario, where due to the configura-
tion of the obstacles (as it is shown in Fig. 11), the resulting
constrained optimization problem is obviously non-convex.
This scenario considers a 6× 6 m2 room, where two victims
are initially located at (−1, 1) and (1.5,−0.5), and various
obstacles create non-convex shapes. The robot starts its mis-
sion from position (−2.5,−2.5) and ends the mission at the
exit point located at (2.5, 2.5).

The optimization problem was run for 5 different starting
points per iteration, where one starting point is the previous
solution, while the other four starting points are selected ran-
domly. As Fig. 11 shows, despite a highly non-convex space,
the robot executes its mission by successfully detecting both
victims, and by reaching the exit afterwards, while avoiding
the obstacle traps. Moreover, Table 4 shows the realized val-
ues of the objective function for these 5 optimization starting

Fig. 9 The robot trajectory (in black) with the position of the three
victims (red, green, and blue asterisks); whenever the robot detects a
victim, the circular perception field of the robot is illustrated in the color

of the detected victim. (a) Proposed robust tube-based MPC approach
without the area coverage term. (b) Proposed robust tube-based MPC
approach with the area coverage term
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Fig. 10 Percentage of the area
covered in the special scenario:
proposed robust tube-based
MPC approach without the area
coverage term (blue solid line)
and proposed robust tube-based
MPC approach with the area
coverage term (red dashed line)
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points, for 3 randomly selected optimization iterations. The
solution corresponding to the value in bold fonts (i.e., the
least of the 5 values) is selected per iteration.

3.4.4 Real-Life Experiments

In order to show the applicability of our approach beyond
simulations, especially when real-life uncertainties, distur-
bances, and measurement noise exists, we designed and
performed experiments in real life, using the same software
(MATLAB, ROS) and laptop, as described in Section 3.1.
We used a TurtleBot 3 Burger [76] to represent a SaR robot,
and additional robots, i.e., iRobot Create 3 [92], to move
according to the victims motion model and to represent the
victims. The movements of the iRobot Create are aligned
with the movements of the victims. More specifically, the
iRobot Create first receives commands on the rotation angle,
and then on the linear velocity, where these values are corre-
sponding to those computed with the victims motion model.
The environment and the robots are shown in Fig. 12.

Three scenarios were simulated in a room of size 3.5 ×
5.2 m2, with three obstacles at locations (0, 0), (0.5, 2) and
(-0.5, -2), and a victim with a different initial position per
scenario, i.e., (1.5, -0.5) for scenario 1, (-1, 1) for scenario

2, and (1.25, 0.75) for scenario 3, with a circular uncertain
positioning area of radius 0.5 m. The robot started itsmission
at coordinates (−1.25,−2.1) and ended the mission at the
exit with coordinates (1.25, 2.1). Moreover, the perception
field of the robot had a radius of 1.5 m.

With regard to the source of uncertainties in the real-life
experiments, the drift of the odometry measurements based
on the motion of the wheels generates disturbances in com-
puting the position of the robot. In addition, another source
of uncertainties is due to the misalignment of the map of
the environment generated by the robot and the real config-
uration of the scenario. These uncertainties also affect the
localization of the robot. Finally, there may be mismatches
between the model of the TurtleBot that is used in ROS for
sending the motion commands and the actual behavior of the
robot.

We have presented the results of the experiments in
Tables 5, 6 and 7 (for scenarios 1, 2 and 3, respectively),
where the time of detecting the victim and the average com-
putation time per iteration are given. The results are presented
and compared for our approach, and for the target-oriented
and coverage-oriented approaches given in, respectively, [81]
and [82]. For all the three scenarios, our approach detects
the victim (up to 50.0% with respect to the slowest method)

Table 3 Computational cost in seconds, for the average MPC minimization, of our proposed approach with and without the additional coverage
term

Our approach without coverage term Our approach with coverage term

6.01 32.21
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Fig. 11 A highly non-convex SaR scenario: The robot trajectory is
shown in black and the real positions of the two victims that are deter-
mined via themicro-simulator are shownwith a red and a green asterisk.
Whenever the robot detects a victim, the circular perception field of the
robot has been illustrated in the same color used for illustrating the
position of the detected victim

faster. In all the 3 scenarios our approach succeeds in detect-
ing the victim, whereas each of the other 2 approaches fails
once. This is due to the fact that our approach has a vic-
tim movement model and incorporates the uncertainties in
the trajectories of these victims, which together raise the
chances of detecting the victims, in a more time-efficient
way. About the average computation time, our approach is
up to 76.1% faster than the two other approaches. This is in
accordance with Table 2 for the simulations results. Corre-
sponding videos of the experiments are publicly available via
the 4TU.ResearchData repository [78].

Wehave also performed an experiment to compare the area
coverage percentage of the three approaches, when the cov-
erage term (i.e., Eq. 14) has been activated for our approach.
In this case, a static victim is positioned at (−1, 0), and the
obstacles are removed. The starting and exit coordinates of
the robot are, respectively, (−1.25,−2.1) and (1.25,−2.1).
The results for scenario 4 are shown in Table 8, where our

Fig. 12 A view of the scenario of the experiments, with the robots (the
TurtleBot used as the SaR robot is in the middle and the iCreate3 robot
used as the victim is at the side) and the obstacles (white buckets)

approach covers, respectively, 24.7% and 13.6% more than
the approaches in [81] and [82].

We have analyzed the computation times of the approach
using both nominal and ancillary controllers (therefore, the
complete tube-basedMPC approach), and only nominal con-
troller (therefore decoupled path planning and trajectory
tracking approach). For each of the three scenarios, consider-
ing the mean computation time of all the MPC optimization
iterations, we have:

• Scenario 1: 2.5086 s (both controllers) and 2.1926 s (only
nominal controller).

• Scenario 2: 1.4663 s (both controllers) and 1.3298 s (only
nominal controller).

• Scenario 3: 2.6402 s (both controllers) and 2.7304 s (only
nominal controller).

Therefore, our combined approach is only 12, 60% slower
than the decoupled approach in the first scenario and only
9, 31% slower in the second scenario, while it is 3.30% faster
in the third. This is due to the fact that the outputs of the opti-
mizations are different in the two cases, so a trajectory may
be longer in a scenario with a certain controller, and shorter
in another one. Hence, there can be a benefit of using a com-
bined approach rather than a decoupled approach, depending
on the specific scenario.

Table 4 Values of the objective function of the MPC in the nonconvex scenario for three indicated iterations, and the points that are selected as
minima are shown in bold

Iteration number 10 20 35

Cost function values 0.0013, 0.77, 0.24, 1.15, 0.29 -0.0037, 0.98, 0.36, 1.15, 0.32 -0.0066, 0.28, 0.097, 0.58, 0.28
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Table 5 Time step when the victim is detected, as well as the average computation time per optimization iteration, for scenario 1: The results are
shown for our approach, for target-oriented A* MPC [81] and for coverage-oriented randomized MPC [82]

Our tube-based MPC A* MPC [81] Randomized MPC [82]

Time step of victim detection 10 12 −
Computational cost 12.9 s 44.0 s 45.7 s

Table 6 Time step when the victim is detected, as well as the average computation time per optimization iteration, for scenario 2: The results are
shown for our approach, for target-oriented A* MPC [81] and for coverage-oriented randomized MPC [82]

Our tube-based MPC A* MPC [81] Randomized MPC [82]

Time step of victim detection 15 − 17

Computational cost 19.9 s 53.8 s 37.4 s

Table 7 Time step when the victim is detected, as well as the average computation time per optimization iteration, for scenario 3: The results are
shown for our approach, for target-oriented A* MPC [81] and for coverage-oriented randomized MPC [82]

Our tube-based MPC A* MPC [81] Randomized MPC [82]

Time step of victim detection 13 17 26

Computational cost 14.5 s 60.6 s 30.0 s

Table 8 Area coverage percentage for scenario 4: The results are shown for our approach, A* MPC [81] and Randomized MPC [82]

Our tube-based MPC A* MPC [81] Randomized MPC [82]

Area coverage percentage 74.6 % 49.9 % 61.0 %
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4 Conclusions and Future Topics

This paper presented a combined target-oriented andcoverage-
oriented path planning approach based on robust tube-based
implementation of a novel formulation of MPC for a ground
SaR robot in a scenario with dynamic targets. The con-
troller determines an optimal path to the moving victims,
optimizing the mission time and the area coverage, while
dealing with uncertainties. In our case study, we have shown
that our method outperforms two target-oriented and two
coverage-oriented state-of-the-art methods in victim detec-
tion efficiency, area coverage, and mission completion time,
while being robust to uncertainties.

In the future, in order to addressmore indoor scenarios, we
propose to include fire in the simulations and a fire propaga-
tion model as prediction model for MPC: In particular, a fire
model basedon cellular automatawill be incorporated andwe
will study how our approach performs under different condi-
tions of fire propagation based on wind speed and direction,
structure and materials of the buildings, and different propa-
gation times from ignition points.Moreover, this work can be
expanded to a multi-robot system: We will analyze how the
proposed MPC formulation can be used in a distributed or a
decentralized architecture, where considering the exchange
of information among all the robots, among clusters of them,
or no communication; in this case, how the method will
scale with the number of robots will be studied and clarified.
Furthermore, running simulations in photorealistic environ-
ments, for example by using Gazebo environments provided
by Amazon Web Services, is recommended. We also pro-
pose to extend the case study benchmarks by considering a
state-of-the-art learning-based approach to compare against.
Another topic for future research is to implement a simpli-
fied formulation of the given MPC problem (e.g., linearized)
and compare the performance and computations time with
when nonlinear MPC is solved directly. Stability analysis
is another topic for future work. Assumption A4 (i.e., per-
fect knowledge of the states of the robot) may be relaxed
in the future by integrating of a state estimator within our
MPC approach. In addition, in view of the promising results
from the computer-based simulations and experiments with
real robots, in order to tackle the computation time for more
complex SaR cases, fast MPC methods may be adopted in
the future for the proposed approaches of this paper. Finally,
we can apply one of the techniques that are available in lit-
erature in order to deal with the fact that the decision step of
the robot takes several seconds while the victims are moving
according to their model, so that we can synchronize them.
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