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A B S T R A C T   

Sub-seasonal drought forecasting is crucial for early warning in estimating agricultural production and opti-
mizing irrigation management, as forecasting skills are relatively weak during this period. Soil moisture exhibits 
stronger persistence compared to other climate system quantities, which makes it especially influential in 
shaping land-atmosphere feedback, thus supplying a unique insight into drought forecasting. Relying on the soil 
moisture memory, this study investigates the combination of multiple deep-learning modules for sub-seasonal 
drought indices hindcast in the Huai River basin of China, using long-term ERA5-Land soil moisture records 
with a noise-assisted data analysis tool. The inter-compared deep-learning models include a hybrid model and a 
committee machine framework. The results show that the performance of the committee machine framework can 
be improved with the help of series decomposition and the forecasting skill is not impaired with the lead time 
increases. Overall, this study highlights the potential of combining deep-learning models with soil moisture 
memory analysis to improve sub-seasonal drought forecasting.   

1. Introduction 

Droughts significantly damage both nature and human society, 
especially in agriculture which relies heavily on water resources and soil 
moisture throughout crop growth, and even more so in developed 
countries than in developing ones (Lesk et al., 2016; Narasimhan and 
Srinivasan, 2005). Given the deep impact of droughts on crop security, 
forecasting it constitutes a major challenge in the fields of water re-
sources and environmental engineering. The chaotic nature of weather 
patterns and the time needed to take action contrasts with the need to 
continuously analyze different components of the system (Araghinejad 
et al., 2017). The most damaging droughts are those that evolve quickly, 
leaving little time for stakeholders to implement proactive measures. For 
example, the drought in US Midwest during the summer of 2012 rapidly 

depleted soil moisture in the root zone, leading to severe soil drought 
within just two months. In many areas, the drought severity increased by 
three levels within one month, meaning a rapid transition from a normal 
state at the beginning of the month to a severe drought by month-end 
(Hoerling et al., 2014). An analysis by Gou et al. (2022) on 
sudden-onset droughts in the Huaibei Plain, a major grain-producing 
region in China, found that these events occurred most frequently in 
the northeastern and western regions of the plain. Across the area, the 
average occurrence frequency is 18 events per 19 years, with an average 
duration of about 31 days. Importantly, in situations of rapid and 
widespread sudden-onset drought changes, obtaining timely warnings 
using existing drought forecast products becomes challenging, but the 
products often focus on a seasonal scale and may be updated only on a 
monthly basis (Otkin et al., 2015). Therefore, there is an urgent need for 
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a sub-seasonal, frequently updated drought early warning system (Lor-
enz et al., 2018). 

Changes in soil moisture reflect the combined effects of climate, 
vegetation, and soil processes (Esit et al., 2021). Previous studies have 
found that the persistence of soil moisture is closely related to the 
climate system. This is because soil moisture affects the distribution of 
surface latent heat flux and sensible heat flux, thereby influencing 
near-surface atmospheric conditions, boundary layer stability, and 
precipitation (Ford et al., 2015; Seneviratne et al., 2010). Chatterjee 
et al. (2022) demonstrated the leading role of soil moisture in control-
ling ecosystem dryness and confirming “drought memory”, possibly due 
to the soil moisture memory in the land-atmosphere coupling, which sets 
prerequisites for the predictability of soil moisture. Top-layer soil re-
sponds fast to meteorological anomalies and serves as a sensitive 
drought indicator (Dorigo et al., 2012). Soil moisture anomaly per-
centage index (SMAPI), which is based exclusively on soil moisture with 
minimum complexity in a calculation, reflects the degree of saturation 
or dryness of the soil compared to normal conditions and is qualified to 
evaluate the effect of recent moisture conditions on crops (Bergman 
et al., 1988). SMAPI is highly beneficial in quantifying agricultural 
drought conditions over the regional and global long-term soil moisture 
information (Liu et al., 2019, 2021; Mao et al., 2017). 

The prediction of soil moisture has long been hindered by insufficient 
observations. In recent years, with the increase in the deployment of 
ground stations, such as the International Soil Moisture Observation 
Network (Dorigo et al., 2021), and the surge in earth observation data, 
researchers have shown a great interest in adopting data-driven tech-
niques. Data-driven techniques offer the advantage of directly extracting 
information from large-scale observational data and learning complex 
patterns. In contrast to traditional physical models, data-driven ap-
proaches do not require extensive prior knowledge but instead derive 
implicit patterns from the data itself. The deep learning (DL) methods 
sourced by Artificial Neural Networks (ANN) have good performance in 
dealing with nonlinear problems and pave the way for multidiscipline 
with great success. Typically, a single DL architecture is defined as a solo 
DL, while the model is called a hybrid DL model when two DL models are 
connected or cascaded (Meng et al., 2020). The hybrid models tend to 
show more stable and superior performance than solo DL models (Jena 
et al., 2021). In soil moisture and its derived drought forecasting, re-
searchers tend to use multiple inputs, such as atmospheric factors and 
surface parameters (including soil information), for modeling. 
Commonly used solo forecasting frameworks include LSTM (Li et al., 
2022b), extreme learning machine (ELM) (Prasad et al., 2018), Random 
Forest (Prasad et al., 2019b), Artificial Neural Network, Support Vector 
Machine (SVM) (Dubois et al., 2021)and so on, As for hybrid forecasting 
models, the models coupling CNN with other solo models are prevalent 
(Ahmed et al., 2021; Koné et al., 2023; Yu et al., 2021). Moreover, it is 
essential to note the CNN-LSTM hybrid model architecture, as it has 
recently demonstrated its effectiveness in meteorological drought fore-
casting (Adikari et al., 2021; Danandeh Mehr et al., 2022; Dikshit et al., 
2022). Nevertheless, a limitation of both solo DL and the hybrid model is 
that only the best network is selected and the rest are discarded, 
potentially wasting networks with generalizations (Bullinaria, 2004). In 
response to this problem, committee machines were proposed when the 
individual members have low bias and are decorrelated (Hu and Hwang, 
2002), and its own parallelism comes at little extra cost (Joksas et al., 
2020). Specifically, the committee model requires partitioning data in 
relation to such processes using the available domain knowledge or 
expert judgment, then developing independent models for each process 
in parallel, and integrating them into a modular model (Corzo and 
Solomatine, 2007). 

It should be considered that the input series to the data-driven model 
are often non-stationary, hence data decomposition has become an 
effective pre-processing method to extract trends and harmonics and 
remove noise from non-stationary time series (Wu et al., 2010), e.g., 
principal component analysis (PCA), singular spectrum analysis (SSA), 

wavelet analysis (WA), Gamma test (GT), etc. Such pre-processing ap-
proaches strengthen the forecasting skill in predicting nonlinear issues. 
Ensemble Empirical Mode Decomposition (EEMD) proposed by Wu and 
Huang (2009) is a new and promising approach for decomposing time 
series data. It is an empirical, intuitive, and self-adaptive method with 
few parameters to set and has the ability to work locally in both physical 
and frequency space. Especially when EEMD is combined with com-
mittee models, the accuracy of related soil moisture-related forecasts is 
significantly improved, e.g., Prasad et al. (2019a) proposed a multi-
variate sequential EEMD scheme to address naturally embedded 
non-stationary features within multivariate hydro-meteorological pre-
dictor inputs in forecasting weekly soil moisture in the selected 4 sites in 
New South Wales, Australia. Similarly, Prasad et al. (2018) integrated an 
ELM with EEMD to successfully forecast upper (0.2 m) and lower soil 
moisture (0.2–1.5 m) at the same four sites. 

However, current forecasting models primarily operate at the point 
scale, relying heavily on extensive meteorological and land surface data. 
This limitation not only restricts their ability to capture large-scale 
spatial variations in soil moisture but also poses challenges in 
applying them to data-poor regions, limiting their generalization to 
diverse locations and larger basin scale. Moreover, the temporal reso-
lution of relevant forecasting products is mostly at a monthly scale, 
limiting the detailed observation of soil moisture changes, especially in 
scenarios requiring timely decision-making for rapidly evolving drought 
events. Additionally, compared to other meteorological or hydrological 
variables, data-driven techniques have not yet been fully exploited in the 
field of soil moisture prediction in general. 

Inspired from the foundational understanding of soil moisture 
memory and the significant role of series decomposition in short-term 
soil moisture forecasting, this study explores the possibility of sub- 
seasonal drought index hindcasting using multi-DL frameworks and 
exclusively relying on soil moisture records. This is achieved by 
employing a multi-year ERA5-Land hourly soil moisture dataset under 
various DL frameworks. To avoid underfitting or overfitting issues in a 
solo or hybrid DL model, an ensemble committee framework is intro-
duced, together with a hybrid model-CNN-LSTM, which delivers 
outstanding skills in meteorological drought works, which we select as a 
comparison. The process begins with pre-processing the weekly soil 
moisture anomaly index (SMAI) transformed by ERA5-Land soil mois-
ture records using the EEMD technique. Then, both the committee 
model and the hybrid CNN-LSTM model are applied in parallel for 
forecasting the next 1–4 weeks of subcomponents. Finally, we evaluate 
the integrated datasets with sorted lead times against the SMAI series 
derived from ERA5-Land using continuous and categorial validation. 

2. Study area and materials 

2.1. Study area 

The testing area named the Huai River basin (HRB, Fig. 1) is located 
in middle eastern China with an area of 270,000 km2 and a population of 
165 million inhabitants with great socio-economic potential (He et al., 
2015). It generally has a humid and sub-humid warm-temperature 
monsoon climate (Zheng et al., 2021). The average annual temperature 
in the HRB is between 11 and 16 ◦C, and the actual evaporation there is 
between, 900–1500 mm. The average annual precipitation is charac-
terized by a distinctive spatio-temporal distribution increasing from the 
northwest (600 mm) to the southeast (1000 mm) - with a basin average 
of 888 mm (Pan et al., 2018). 

Besides, the HRB takes up 20 percent of the total agricultural pro-
duction with 10 percent of the total cropland of China, feeding 20.4 
percent of the total rural population (Sun et al., 2017). Approximately 
80 percent of the land is heavily cultivated (statistic from the 
C3S-LC-L4-LCCS-Map-300 m-P1Y-2020-v2.1.1 land cover map), and 
one-third of the HRB requires irrigation (Wang et al., 2021). As a 
representative region prone to drought, frequent droughts in the HRB 
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have substantial negative impacts on local agricultural production 
(Zhang et al., 2012, 2019). 

2.2. Materials 

2.2.1. ERA5-Land hourly volumetric soil moisture data 
The ERA5-Land, released by the European Centre for Medium-Range 

Weather Forecasts (ECMWF), is producing an enhanced global dataset 
for the land component of the fifth generation of European ReAnalysis 
(ERA5) (Muñoz-Sabater et al., 2021). In contrast to ERA5, the devel-
opment of ERA5-Land is not coupled to the atmospheric module of the 
ECMWF Integrated Forecast System (IFS) and therefore can be updated 
quickly without data assimilation (Wu et al., 2021). The ERA5-Land soil 
moisture datasets have proven to be effective and reliable in delivering 
precise soil moisture information, as demonstrated by a comparison 
with in-situ measurements (Zheng et al., 2022). In particular, a recent 
assessment in Jiangsu Province within the HRB found that ERA5-Land 
outperforms other main land surface model outputs and active/passive 
remote sensing observations in terms of accuracy (Fan et al., 2022). 

This research selected the volumetric soil water layer 1 (0–7 cm) 
with 0.1◦ × 0.1◦ grids spacing of ERA5-Land as the real weather proxy, 
and the collection period is from 1979 to 2020 with a reduced temporal 
resolution of natural week processed by averaging hourly data. 

2.2.2. Soil Moisture of China by in situ data, version 1.0 (SMCI1.0) 
SMCI1.0 is a multi-layer (10 layers with 10-centimeter intervals from 

10 to 100 cm) long-term (2000–2020) seamless daily dataset with high 

resolution and minimal errors (Li and Zhang, 2023; Li et al., 2022a). This 
dataset was constructed through a designed Random Forest model 
trained on 1789 in-situ soil moisture measurements operated by China 
Meteorology Agency. After underwent rigorous assessment through a 
station-to-station evaluation against in-situ soil moisture data, SMCI1.0 
exhibited ubRMSE (0.045–0.051 m3/m3), MAE (0.035 m3/m3), R 
(0.866–0.893), and R2 (0.749–0.798). Meanwhile, a 9 km resolution 
iteration version, which can be accessed on National Tibetan Plateau 
Data Center (Shangguan, 2023), was generated by aggregating 
higher-resolution predictor variables, catering to the needs of large-scale 
research requiring coarser soil moisture. Overall, SMCI1.0 generally 
demonstrates advantages over other gridded soil moisture products in 
China, including ERA5-Land, SMAP-L4, and SoMo.ml. SMCI has also 
applied in gridded soil moisture inter-comparison (Zhao et al., 2023) 
and a series of applications related with soil moisture (Li and Zhang, 
2023; Yu et al., 2023; Zhao et al., 2023) 

Before initiating the modeling process, we assess the surface soil 
moisture records of ERA5-Land at daily scale using the 9 km resolution 
SMCI1.0 first-layer soil moisture data (0–10 cm) as the reference data-
set, spanning from 2000 to 2020. 

2.2.3. ECMWF land cover classification gridded map 
Since the HRB is a cropland-dominated area, the land cover map 

helps the study find the prediction performance in cropland. Out of the 
consistency of the data, the land cover map used here is derived from 
ECMWF Copernicus Climate Data Store. The land cover maps for 
2016–2020 are based on satellite observations including Project for On- 

Fig. 1. The elevation information of the HRB (a), its position in China (b), and the land cover map over the HRB (c).  
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Board Autonomy-Vegetation and Sentinel 3 - Ocean Land Color Instru-
ment (OSCI) satellites and are consistent with the existing Climate 
Change Initiative global annual LC maps from 1992 to 2015. The related 
maps have a resolution of 300 m for 2016–2020 (version 2.1). The Co-
ordinate Reference System used for the global land cover database is a 
geographic coordinate system (GCS) based on the World Geodetic Sys-
tem 84 (WGS84) reference ellipsoid. 

3. Methods 

This section describes the details about the methods embedded in the 
forecasting framework in this study. 

3.1. Soil Moisture Anomaly Index (SMAI) 

SMAPI is used to define drought severity through a measurement of 
the relative departure of soil moisture from the normal climate at a 
specific grid (Wu et al., 2011). SMAI is a simplified form of SMAPI that 
ignores the percentage component in the calculation, referred to Eq. 1: 

SMAI =
(θ − θ̄)

θ̄
(1)  

Where θ and θ̄ represent the weekly soil moisture and its climatology 
(multi-year average) separately at each grid. Referred to the defined 
criteria of SMAI classification, agricultural drought is indicated by a soil 
water content anomaly when SMAI is less than − 0.05. The drought 
severity can be referred the Table 1 below. 

In this study, the weekly average soil moisture records from ERA5- 
Land are first converted into weekly SMAI signals (denoted as ERA5L- 
SMAI), thus serving as the next step in mode decomposition. 

3.2. Ensemble empirical mode decomposition 

The EEMD technique proposed by (Wu and Huang, 2009) is a data 
analysis technique that decomposes complex signals into a set of 
intrinsic mode functions (IMFs) and residuals by adding white noise to 
the data series. The aim of using EEMD is to improve the robustness of 
the limited decomposed signal by averaging the results from a large 
number of trials. The process of EEMD implementation involves adding 
white noise to the data series, then decomposing the signal into a fixed 
number of IMFs and residuals. In this study, for each grid (out of the 
2597 grids included), the EEMD process is set to 100 trials and the 
resulting decomposed signals are fixed to 6 IMFs and 1 residual.  

1) Add white noise to the original signal x(t) and set the noise width 
dynamically in line with the standard deviation of the original 
sequence, Gaussian noise.  

2) Set the number of parallel trails and start sequence decomposition by 
confirming the local maximum and minimum values.  

3) Connect all local maxima and local minima separately and use spline 
interpolation to obtain upper and lower envelopes (emax(t) and 
emin(t)).  

4) Calculate the mean of the upper and lower envelopes.  
5) Computes the difference diff(t) between the original series x(t) and 

the mean envelope ē(t).  

6) Determine whether diff(t) satisfies the two conditions of the above 
IMF, if so, continue to step 7, otherwise, diff(t) will be assigned to x 
(t), and repeat steps 2–6.  

7) Save diff(t) to the IMF set, and then update the data sequence in step 
1 to the remainder r(t) = x(t) − diff(t), repeat steps 1–6 until r(t) is a 
monotonic function or has at most one local extremum point, then 
stop the decomposition process and save r(t) as a separate residue 
term. 

8) The mean of the IMFs and residuals decomposed under parallel ex-
periments is calculated as the final result.  

9) After obtaining all n mean IMFs and their residues, the original data 
sequence x(t) can be expressed as the Eq. 2: 

SMAI(t) =
∑n

i=1
IMFi(t) + r(t) (2)  

Where IMFi(t) is the ith IMF obtained from EEMD, and r(t) represents the 
mean of the total corresponding residues at t moment. 

3.3. DL-based committee forecasting tool 

The committee machine used in this study is amalgamating K-par-
allel recurrent neural networks (KRNN), convolutional neural networks 
(CNN), graph convolutional networks (GCN), and multi-layer percep-
tron (MLP). Such submodules are combined, designed as three inde-
pendent composite models running autonomously, respectively are 
KRNN, MLP, and a “Sandwich” model. The forecasting stage discards 
any models with a validation loss higher than the sum of the minimum 
and standard deviation of all submodules’ validation losses, while the 
predictions of the remaining submodules are averaged to obtain the final 
forecasts. This integrated model is encapsulated in Pytorch-based the 
Forecasting Open Source Tool (FOST), developed by Microsoft Research 
Asia and available on GitHub [https://github.com/microsoft/FOST]. 
The process is illustrated in Fig. 2a. 

The three key modules of the design run independently before the 
output results, and their structures are as follows. The KRNN allows 
multiple parallel-operated RNN models to encode inputs to capture long- 
term correlations. These RNN encoders are equipped with an attention 
mechanism to ensure a weighted average for each node, capturing local 
and long-term correlations at the node level. Spatial weights between 
training targets (grids) are pre-loaded into the model during configu-
ration to assist KRNN in capturing data features. The MLP component is 
a fully connected multi-layer neural network with residual connections 
with processing input data to obtain predictions iteratively. The "sand-
wich" model in FOST sequentially connects mixed models, incorporating 
a mixed CNN-KRNN model, a GCN model (GATNet), and another CNN- 
KRNN for updated features, allowing selective transmission of spatial 
weight information in each sub-model. Like KRNN, the "sandwich" 
model allows selective transmission of spatial weight information in 
each sub-model, sharing weight matrices with KRNN. 

In operations, normalization is applied to the original (for the naive 
model) and the EEMD-decomposed sequences. Training data spans 
January 1980 to February 2019 (2043 weeks), with a testing period 
from March 2019 to December 2020 (97 weeks). Training sets have 
internal training and validation set ratios of 3:1, 5:1, and 7:1, using 
mean square error (MSE) as the loss function. Spatial weights for KRNN 
and the sandwich model are assigned using a simple method based on 
the surrounding weight matrix of the central pixel. Taking a grid 
needing allocation as an example (Eq. 3), the surrounding weight matrix 
of the central pixel can be computed, where sc is the center value and si 
denotes the pixel value (gridded SMAI). 

Table 1 
Drought classification for SMAI.  

Drought level SMAI 

Drought-free > 0.05 
Mild drought - 0.15 ~ 0.05 
Moderate drought - 0.3 ~ − 0.15 
Severe drought < − 0.3  
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wmatrix =

⎛
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0
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

/
∑9

i=1

1
|sc − si|

(3) 

In detail, the weekly SMAI data, decomposed into 7 quantities (6 
IMFs and 1 residue) with a 21-week lag series, is input separately into 
FOST. Simultaneously, the weekly SMAI drives its own FOST tool with 
parameters configured as per Fig. 2a. Following the inverse normalizing 
each output, predicted IMFs and residue are obtained by summing them 
up (labeled as FOST-EEMD), while the naive model directly produces 
future weekly SMAI forecasts (FOST-naive). Finally, the recurrent pre-
dictions of the future 97 weeks of SMAI are collected and compared with 
the SMAI dataset converted by ERA5-Land. 

3.4. The hybrid CNN-LSTM model 

The proposed hybrid CNN-LSTM model (Fig. 2b) is constructed using 
the Keras library and runs on the TensorFlow backend (Géron, 2022). 
This model mainly consists of Convolutional Neural Network (CNN) and 

Long Short-Term Memory (LSTM) layers. CNN is adept at handling data 
with a distinct grid-like topological structure, while LSTM excels at 
identifying long and short-term dependencies in data across the tem-
poral dimension, hence the integration of CNN and LSTM aims to 
effectively leverage the strengths of each algorithm. 

The CNN layer performs convolution operations between input data 
and kernels to generate new feature values, extracting spatial and 
temporal dependencies. Compared to other networks using matrix 
multiplication, the convolutional layer’s reduced parameters and weight 
reusability are advantageous for processing image inputs. With regards 
to LSTM, it is fundamentally a type of RNN that overcomes the issues of 
gradient vanishing and exploding in traditional RNNs by "preserving 
memory." LSTM consists of three gates: the Input gate, the Forget gate, 
and the Output gate. The Input gate controls the flow of new informa-
tion, the Forget gate determines how much old information to discard, 
and the Output gate determines the weight of retaining information in 
the memory cell, with values close to 1 indicating high importance and 
values close to 0 indicating high forgetfulness. These gates control in-
formation flow, determining old information discard, and deciding on 
retaining information in the memory cell. 

The specific structure of drought the forecasting framework is 
depicted in Fig. 2b. Two convolutional layers are first added to extract 

Fig. 2. Flowcharts of FOST-related framework (a) and CNN-LSTM-related model (b).  
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data features, followed by flattening after the max-pooling operation. 
The goal is to connect to the one-dimensional LSTM layer, and finally, 
two consecutive fully connected layers are used to map the normalized 
LSTM output to the desired matrix size. Dropout layers are embedded 
between various layers (dropout rate fixed at 0.2, meaning 20% of the 
output will be discarded) to avoid overfitting during the training pro-
cess. In the determination of specific hyperparameters, to ensure effi-
cient learning and performance, the optimization of hyperparameters 
covered by the CNN-LSTM model (such as filter size and kernel size for 
CNN layers, and units for LSTM) is executed using the Hyperband tool 
based on continuous halving search expansion (Li et al., 2017). 

This framework also predicts the next four weeks of SMAI with a lag 
period of 21 weeks. After preprocessing the data as in FOST, normalized 
training samples (SMAI or individual IMF/residual) are divided into an 
80% internal training set and a 20% validation set. The hyperparameter 
configuration is determined using Hyperband, and all separated samples 
are aggregated for model input with the determined parameters. Similar 
to FOST’s nomenclature, integrated SMAI results from EEMD decom-
position are labeled as "hybrid-EEMD," while directly predicted SMAI 
results are labeled as “hybrid-naive”. 

3.5. Performance evaluation 

This study considers continuous and categorical statistical indicators 
to evaluate the reliability of experimental materials and the accuracy of 
prediction results. 

3.5.1. Continuous metrics 
The continuous metrics, including the correlation coefficient (R), 

root-mean-square error (RMSE), and relative bias (Rbias), are employed 
to pre-validate the performance of ERA5-Land records by comparing to 
SMCI1.0. Similarly, the forecasted SMAI undergoes verifications against 
the benchmark SMAI (denoted as EAR5L-SMAI) converted by ERA5- 
Land during the same forecasting period (March 2019 - December 
2020, 97 weeks in total). The equations are as Table 2 below:where x 
represents the EAR5L-SMAI, y represents the forecasted-SMAI, and the 
overline denotes the mean values along the temporal dimension. The 
evaluation of the performance of each model in comparison to ERA5L- 
SMAI is conducted using a Taylor diagram (Taylor, 2001). This dia-
gram provides a graphical representation of the bench and estimated 
data, which helps to demonstrate the relationship between the predicted 
and actual values. The diagram considers three statistical parameters - R, 
standard deviation (SD), and RMSE - to illustrate the similarity between 
the model predictions and the observations. The closer the points on the 
x-axis are to the observations, the better the agreement between the 
model and observations (indicating high correlation and low RMSE). 
Additionally, the closer the ratio of standard deviations to 1, the more 
consistent the model predictions are with the observations. Hence, the 
closer the model prediction is to the reference point in the diagram, the 
higher its predictive performance (Khosravi et al., 2018). 

3.5.2. Categorical metrics 
Recognizing that categorizing drought levels may better align with 

the requirements of early warning systems, therefore the categorical 

validation has been executed due to grading the drought (Table 1). This 
part introduces confusion matrix analysis to distinguish the overall 
agreement between the forecasts and benchmark classification. The 
confusion matrix consists of two dimensions: one indexed by the actual 
class and the other indexed by the class predicted by the classifier (in this 
instance, determined by the regressor). In the context of one specific 
drought classification, the matrix includes four key parts: True Positives 
(TP) values, signifying accurate predictions of drought occurrences; 
False Positives (FP) values, indicating instances where the drought onset 
is misidentified; True Negative (TN), representing correct predictions of 
the absence of drought; and False Negatives (FN), indicating instances 
where the model failed to identify the occurrence of drought. 

The confusion matrix further serves to derive probability of detection 
(POD), false alarm rate (FAR), and critical success index (CSI). POD 
quantifies the likelihood that a system accurately identifies the presence 
of a signal or target when it exists. Conversely, FAR measures the 
probability of the system erroneously indicating the presence of a signal 
in the absence of one. Additionally, CSI serves as an encompassing 
metric, considering TP, FP, and FN to provide an overall assessment of 
classification accuracy, with a higher CSI value indicating a more suc-
cessful classification performance. the equations of each metric can be 
computed as follow: 

POD =
TP

TP + FN

FAR =
FP

TP + FP

CSI =
TP

TP + FN + FP

(4) 

In addition to using binary classification evaluation, this study also 
uses multi-classification evaluation to more intuitively represent the 
accuracy of different prediction models for the classification of drought 
degree. We achieve this by counting the area under the receiver oper-
ating curve (AUC-ROC) (Dikshit et al., 2021). ROC is created by plotting 
sensitivity (i.e., the ratio of drought levels that are correctly predicted) 
and on the y-axis against 1-specificity (i.e., the fractional predicted area) 
on the x-axis in a Cartesian coordinate system (Chen and Jin, 2022). 
Then a multiclass micro-averaged AUC can be directly called using the 
scikit-learn library on Python (Pedregosa et al., 2011), which considers 
the high imbalance under multi-classification conditions, for comparing 
the classification performance of all models. The value of AUC can be 
used as a basis for determining the accuracy of the classification model. 
The closer it is to 1, the more it means that the classification model is 
close to perfect, and an AUC of 0.5 means that the model fulfills only 
random classification. 

4. Results 

The consistent forecasting steps from 1 to 4 weeks are for all built 
models, and we took subsets (16 groups in total) according to the 
distinct lead times for comprehensive evaluation, including forecast 
distribution comparison, drought events detection, and continuous and 
categorial validation. 

4.1. Reliability evaluation of ERA5-Land soil moisture 

Before initiating the assessment of the forecasting product, a pre-
liminary comparison is conducted between the model-driven ERA5- 
Land soil moisture product and the SMCI1.0 data, both at their original 
spatiotemporal resolution of 0.1◦/day. 

Fig. 3 illustrates the spatial variations of continuous metrics and 
daily means across the study area from 2000 to 2020. The analysis re-
veals that ERA5-Land data exhibits notably high correlations with 
SMCI1.0, as indicated by R-values exceeding 0.8 over the majority of the 
HRB area (where the R2 calculated by their daily means is equal to 0.83). 

Table 2 
Continuous performance equations.  

Statistical metrics Equation Perfect value 

R ∑n
i=1(x − x̄)(y − ȳ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(x − x̄)2
√

∑n
i=1(y − ȳ)2  

1 

Rbias 
∑n

i=1(y − x)
∑n

i=1(x)
× 100%  

0 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(y − x)2

n

√ 0  
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The RMSE-values map overall indicates minor spatial variability, except 
for relatively lower values observed in the southern part of the basin, 
while ERA5-Land tends to exhibit mild overestimates of SMCI soil 
moisture. This pre-comparison suggests that ERA5-Land closely ap-
proximates the performance of SMCI1.0, making it a viable 

experimental material for a long-term proxy study of soil moisture 
states. 

Fig. 3. Temporal R, RMSE, and Rbias distributions (a-c) over the HRB and daily basin-mean values (d) between ERA5-Land and SMCI1.0 from 2000 to 2020.  

Fig. 4. PDF curves of the involved forecasting models under different lead times.  
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4.2. SMAI distribution and drought identification 

The signature based on the soil moisture’s probability density func-
tion (PDF), captures the shape of the values distribution instead of its 
temporal patterns (Branger and McMillan, 2020). The probability den-
sity function (PDF) of the forecasts/ERA5L-SMAI (Fig. 4) is used in this 
signature to describe their distribution shape, without any temporal 
patterns. No significant disparity among the given lead times is found, 
and for the same lead time, the distribution of FOST-EEMD keeps the 
best fit with ERA5L-SMAI, followed by hybrid-naive and hybrid-EEMD, 
while hybrid-naive has the worst fit. Nevertheless, a narrow-predicted 
interval can be detected in FOST-naive, which indicates its limited 
ability to predict extreme events (extreme drought or wetness). 

As for the main land cover type in the study area, we extract all the 
grid points under the cropland mask to investigate the identification 
ability of different models for drought events. Fig. 5 shows the weekly 
series of the percentage of drought occurrences grids (SMAI < − 0.05) for 
each model, again differentiating the lead times. FOST-EEMD follows 
the tendency of ERA5L-SMAI the most for all lead times, and its iden-
tification is very restrained (hardly overestimation). By contrast, other 
models could report much more drought events, especially during the 
flood season (May-September). 

4.3. Continuous and categorical performance validation 

4.3.1. Continuous validation statistics 
The relationship between the multi-model outputs and ERA5L-SMAI 

is further analyzed by comparing the weekly spatial correlation and 
RMSE distributions. Those are displayed through a combination of 
spatial metrics distribution and boxplots that provide a clear depiction 
of the quartiles (see Figs. 6 and 7). Fig. 6 shows that the R-values for all 
models decline slightly with increasing lead times, with the exception of 
the sudden drop in FOST-naive after one-week forecasting. This drop is 
indicated by the steeper PDF curves and the more conservative forecast 
as the lead time increases. 

Overall, the FOST-EEMD model obtains the best agreement with the 
baseline data throughout the basin with a median R and RMSE around 
0.8 and 0.15 respectively. The results for the hybrid-related models are 
very similar, with slightly poorer correlations close to the edge for the 
naive model. The hybrid-EEMD model shows the largest RMSE values in 
the northern area compared to other models, which suggests that the 
EEMD technique does not significantly improve the hybrid model. A 
common phenomenon can be seen in all results, where the pixels labeled 
with a dark blue (indicating a correlation and RMSE of 0) are concen-
trated in the dense water system and lake areas. This is because the 
original ERA5 records note such pixels as constant values. 

To enhance the readability of multiple statistical metrics, Taylor 
diagrams are utilized in this study to evaluate the performance of 
different models. As seen in Fig. 8, the Taylor diagrams are divided into 
two rows (groups), representing the grid scale and basin scale pre-
dictions, respectively. 

Moving from the left to the right column, the products for 1-week 
forecasting periods to 4-week forecasting periods are sequentially indi-
cated. According to the Taylor diagram interpretation, the closer the 

Fig. 5. Time series of area frequency defined as drought events over cropland.  
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model is to the black square, the better the consistency. The Taylor di-
agrams demonstrate that the FOST-EEMD model exhibits the best pre-
diction capability at both grid and basin scales, unaffected by the 
increase in the forecasting period. This further underscores the effec-
tiveness of the Committee model combined with EEMD in forecasting 
drought indices. hybrid-naive, also utilizing EEMD decomposition, 
maintains consistent performance regardless of spatial scale conversion, 
although all performance metrics at the watershed scale show a slight 
decrease compared to the grid scale. However, the FOST-naive and the 
hybrid-naive models are positioned farthest from the reference value in 
the Taylor diagram, implying that both models exhibit poor prediction. 

Typically, such metrics at the basin scale tend to degrade compared 
to the grid scale due to the high spatial variability in predictive per-
formance, as seen in Figs. 6 and 7, which demonstrate this significant 
variability and its impact on the poorer performance of the averaging 
process at the basin scale. The above results indicate that the EEMD 
decomposition-driven hybrid and FOST-based models provide more 
stable and accurate results compared to the naive models, with the 
FOST-EEMD model showing the most superior performance. 

4.3.2. Categorical validation statistics 
We evaluate the performance of the models in terms of grading 

drought classifications assigned to each forecasting set based on specific 
criteria (as seen in Table 1). For this purpose, three categorical statistics 
(POD, FAR, and CSI) corresponding with different lead times are 
counted between the forecasted and benchmark (ERA5L_SMAI) binary 
classification. In Fig. 9, the performance results are presented based on 
categorical statistics. Generally, all four models showed good 

performance in detecting the drought-free scenario at different lead 
times (POD ranging from 0.64 to 0.83 and CSI between 0.49 and 0.72). 
As expected, classification metrics generally decreased with increasing 
lead times, reflecting the inherent challenge of predicting indices as the 
temporal gap widens. However, the hybrid-naive model defied this trend 
in terms of POD, showcasing an improvement from 0.76 to 0.83. 

In addition, the two EEMD-based models discriminated well between 
drought-free and severe drought scenarios for both POD (around 0.8 and 
0.7) and CSI (around 0.7 and 0.5). In contrast, the very low POD-values 
and FAR-values of FOST-naive forecasting products indicate little skill in 
severe drought discrimination. Nonetheless, it is important to note the 
lackluster detection ability of these forecast models for mild and mod-
erate drought scenarios, with the exception of FOST-EEMD, which is in 
slightly better condition, and the other forecast products basically have a 
POD of less than 0.3 and a CSI of less than 0.2. This may be related to the 
fact that the corresponding data are not sufficiently characterized in the 
overall distribution, leading to poor model performance in these 
scenarios. 

The aforementioned independent statistical validation based on bi-
nary classification is insufficient to quantify the comprehensive classi-
fication ability of the forecasting system. Therefore, the ROC-AUC is 
introduced here to score all individual forecast products across different 
lead times, providing an intuitive display of the distinctive features of 
each model’s ability to discriminate. 

The micro-averaged AUC-ROC for each result is presented in Fig. 10, 
which includes all grids in the analysis. The FOST-EEMD model results 
in an AUC of 0.78, 0.77, 0.76, and 0.75 for the lead time from 1 week to 
4 weeks, respectively. On the other hand, the AUC-values for other 

Fig. 6. Temporal R over the HRB calculated by all models with different lead times against ERA5L-SMAI over the validation period. Subfigures q-t are the boxplots of 
spatial indicators for each column. 
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models range from 0.61 to 0.68, with the best performance seen in the 1- 
week lead results. Although the AUC values are slightly lower due to the 
proximity along the borderline of the drought category (Dikshit et al., 
2022), all involved models reveal good classification mechanisms 
against the given criteria, with FOST-EEMD performing the best. 

Understanding how model performance varies during transitions 
between dry and wet states is vital in both agricultural and environ-
mental contexts. The "2019 China Flood and Drought Disaster Preven-
tion Bulletin " (http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/202104/t20 
210409_1513262.html, access date: 11–25–2023) highlights a signifi-
cant drought in the Jianghuai region (which includes the HRB) from 
August to November 2019, characterized as a typical summer drought. 
In the eastern Jianghuai region, the average precipitation is 80 mm, 
indicating a 70% reduction from historical norms, with some areas 
experiencing an exceeding 80% reduction. Given the absence of detailed 
quantitative descriptions of the drought’s evolution and intensity in the 
annual report, we classify grid cells with SMAI values greater than or 
equal to 1 as undergoing drought, while others are designated as 
"drought-free." 

Fig. 11 shows the binary classification results for the extracted SMAI 
sequences of all products during the ongoing 15-week drought period 
(labeled with ’Dry’), along with the equivalent periods (3 weeks) before 
(labeled with ’Pre-dry’) and after the drought (labeled with ’Post-Dry’), 
signifying their complete evolution of the transition between dry and 
wet conditions. Throughout the entire evolution, the FOST-EEMD model 
consistently exhibits remarkable stability, reflected in the lowest slope 

and nearly optimal performance with POD exceeding 0.8. In contrast, 
other models only demonstrate relatively uniform performance during 
the drought occurrence but showcase significant disparities in their "Pre- 
dry" and "Post-dry" performance. Notably, despite the initial struggles of 
hybrid-naive in effectively identifying the "Pre-dry" stage, its forecasting 
accuracy shows a significant upward trend with the evolving drought 
levels, particularly in "Post-dry" identification. Regarding the lead time, 
the performance of almost all models except the FOST-naive model 
tends to degrade to varying degrees as lead time increases, but the 
consistent evolution trends of metrics among each model are roughly 
kept across different lead times. 

5. Discussion 

The above work demonstrates that the framework integrated by the 
sequence decomposition and the committee model is a promising way of 
driving soil moisture for drought index forecasting. It highlights the 
significance of considering the specific features and operational meth-
odologies of each module, as well as the EEMD-based enhancement in 
capturing and retaining historical drought information. Their combi-
nation contributes to realizing reliable and stable forecasting perfor-
mance during critical phases of agricultural practice. The positive results 
towards FOST-EEMD validation are in varying degrees consistent with 
previous studies (Chatterjee et al., 2022; Esit et al., 2021; Liang and 
Yuan, 2021; Seo et al., 2019) demonstrating the potential of soil mois-
ture memory in drought forecasting. In contrast, the hybrid model may 

Fig. 7. Temporal RMSE over the HRB calculated by all models with different lead times against ERA5L-SMAI over the validation period. Subfigures q-t are the 
boxplots of spatial indicators for each column. 
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Fig. 8. Taylor diagrams for all forecasting datasets at grid scale (first row) and basin scale (second row).  

Fig. 9. Binary classification results of all forecasting datasets with different lead times under four kinds of drought conditions, columns from left to right indicate 
POD, FAR, and CSI, respectively. 
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not leverage these memory-enhancing features as prominently. This is 
related to the fact that the FOST model could discard underperforming 
networks during the training process based on built-in rules, while the 
hybrid model often has to passively accept components processed 
through EEMD. 

Although EEMD takes a simple basic principle, it offers deep insights 
into the characteristics towards the required time series (Wang et al., 
2015). Theoretically, a complete sifting process for EEMD stops when 
the obtained residue is characterized by a monotonic function, hence 
this characteristic of the method leaves an area for future research on 
determining the number of the decomposed series once served for a 
unified framework. Unrestricted decomposition can also be a waste of 
computing resources, normally it is set as Log2N where N is the length of 
the total data series (Lei and Zuo, 2009) in operation, but it still gen-
erates time-consuming issues in dealing with long series over space. In 
stark contrast with the substantial gains observed in the committee 
model upon incorporating EEMD, the impact of EEMD on the hybrid 

model appears to be rather limited, and in fact, it may exhibit adverse 
effects in classification metric validations. This phenomenon could be 
attributed to several potential factors. First, the features extracted by 
EEMD may not align well with the expected input format of the hybrid 
model, hindering effective information transfer and integration. Second, 
the introduction of EEMD might introduce additional noise or 
complexity to the data, making the hybrid model less adaptable to such 
uncertainty and potentially affecting overall performance. Additionally, 
the hybrid model may already possess effective mechanisms for 
modeling time-series complexity, and the supplementary information 
from EEMD may not result in substantial gains, possibly introducing 
redundant complexity. 

According to the results of binary classification validation, it is 
intriguing that the hybrid-naive model exhibits an enhanced detection 
capability for the drought-free scenario with increasing lead time. This 
phenomenon can be primarily attributed to the model’s structural fea-
tures, enabling it to capture and adapt to underlying long-term patterns 
and incorporate historical information. Subsequent research endeavors 
may explore the potential of combining this discovery with FOST-EEMD, 
which maintains stable performance, to mitigate the latter’s perfor-
mance decline in long lead time predictions. For multiclassification re-
sults, the ROC-AUC comparisons between the different prediction 
models show no significant differences (Fig. 8). This may be explained 
that SMAI values above 0.05 have wider observation intervals relative to 
the other categories, thus increasing the contribution to the multi- 
classification results. In other words, the micro-average ROC-AUC 
calculation aggregates the contributions of all categories to calculate the 
average metric (Grandini et al., 2020), while the "drought-free" category 
accounts for a larger number (meaning easier to classify accurately) so 
that contributes a larger weight than other categories, thus blurring the 
classification results. As drought classification is much more emphasized 
in effective mitigation and resource management strategies, future de-
velopments in this area may involve building sophisticated 
classification-based forecasting models. These models can leverage the 
unique strengths identified in the hybrid-naive model, particularly its 
improved detection capability for drought-free scenarios with extended 

Fig. 10. AUC-ROC values of 4 classifications (drought-free condition, mild 
drought, moderate drought, and severe drought) among four models (FOST- 
EEMD, FOST-naive, hybrid-EEMD, and hybrid-naive). 

Fig. 11. Binary classification analysis of all forecasting datasets with different lead times under drought-free and drought categories. The rows represent POD/FAR/ 
CSI, and columns represent lead times from 1 to 4 week. 
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lead times. Similarly, the future scope requires attention to operating 
models with a longer lead time and determining the point at which the 
skill would degrade to the level of climatology or random forecasts. 

Moreover, the reason for the observed poor performance in the areas 
surrounding the HRB (top and bottom) for hybrid-EEMD and hybrid- 
naive models could be the presence of forests and urban areas (as 
shown in Fig. 1c), which leads to a change in the intensity of agricultural 
drought memory compared to a scenario dominated by croplands 
(AghaKouchak, 2014). Conversely, the committee model exhibits 
greater robustness in dealing with various land covers, partially due to 
the use of committees, which improve the robustness by dividing into 3 
internal training and validation sets, adding spatial weights, and 
selecting the best model. However, this may also make it more difficult 
to interpret the results compared to a solo model (Khaledian and Miller, 
2020). 

Finally, the selection of the spatial weights matrix affects the 
regression results and accurate estimations significantly (Abdo et al., 
2020). The FOST used in the study merely applied the same set of 
SMAI-based weighted assignments in each component from EEMD, 
whereas future practice should consider the respective spatial weights in 
a way of both grid values and distances. Moreover, other soil 
moisture-based indices, e.g. Soil Moisture Index (Hunt et al., 2009), soil 
moisture anomaly (Bartsch et al., 2009), and Empirical Standardized 
Soil Moisture Index (Carrão et al., 2016), should be involved in such 
frameworks to test their applicability with extending lead times. Also, 
the next step will calibrate the forecasts by coupling them with 
long-range weather forecast information (Calanca et al., 2011) and 
improve the temporal resolution (up to a day) of the forecasts. 

6. Conclusion 

In this study, we compare the performance of the committee model 
and the hybrid CNN-LSTM model using EEMD to demonstrate the po-
tential of soil moisture records in forecasting the soil moisture index up 
to 4 weeks in advance. The results show that the committee model with 
FOST improves significantly with EEMD and exhibits stable positive 
skills for all lead times. However, this improvement is not as evident in 
the hybrid model. The positive results of FOST-EEMD highlight the 
importance of soil moisture memory in sub-seasonal drought forecasting 
during a crucial phase for agricultural production. As the ERA5-Land 
mission continues to improve, this combination could serve as a valu-
able tool for making agricultural drought decisions and provide a 
reference for numerical weather prediction model results. 
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