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SUMMARY

Graph signal processing is a field that focuses on extracting valuable information from
data collected in networks, such as social, transportation, and brain networks. This doc-
toral thesis makes significant contributions to two important aspects of graph signal pro-
cessing: network topology identification and the convolution theorem.

The thesis begins by introducing the fundamental concepts of signal processing, such as
shifting, convolution, and filtering, in the discrete-time domain. It then extends these
concepts to a graph-based context, where classical discrete-time signal processing can
be seen as a special case of graph signal processing.

The thesis then presents novel theories and algorithms in three main areas. Specifically:

(1) Graph Topology and Filter Estimation: It proposes an algorithmic approach to
jointly learn the graph structure and filter coefficients from input-output graph-
based data. The method addresses the non-convexity of the problem using an
alternating-minimization scheme, ensuring global convergence.

(2) Time-Varying Graph Topology Inference: A new framework based on time-varying
convex optimization tools is introduced for inferring time-varying network struc-
tures from graph-based data. This framework offers flexibility to users in balancing
execution speed and algorithm accuracy through tunable parameters.

(3) Generalizing the Convolution Theorem: A generalization of the convolution the-
orem that encompasses both the graph convolution theorem and the one related
to time-varying filters is introduced. This generalization has implications for (non-
)stationarity and spectral analysis of signals and enables the casting of a graph
learning problem to infer a potential graph structure for the frequency domain.

In summary, this thesis significantly contributes to advancing graph signal processing by
addressing fundamental challenges and introducing innovative methodologies. It holds
the potential to inspire further innovation in the field and deepen our understanding of
complex network dynamics.
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SAMENVATTING

Grafische signaalverwerking is een vakgebied dat zich richt op het extraheren van waar-
devolle informatie uit gegevens verzameld in netwerken, zoals sociale, transport- en her-
sennetwerken. Dit doctoraatsproefschrift levert aanzienlijke bijdragen aan twee belang-
rijke aspecten van de grafische signaalverwerking: identificatie van netwerktopologie en
het convolutietheorema.

Het proefschrift begint met het introduceren van de fundamentele concepten van sig-
naalverwerking, zoals verschuiving, convolutie en filtering, in het discrete-tijd domein.
Vervolgens worden deze concepten uitgebreid naar een grafisch context, waarbij klas-
sieke discrete-tijd signaalverwerking kan worden gezien als een speciaal geval van grafi-
sche signaalverwerking.

Vervolgens presenteert het proefschrift nieuwe theorieën en algoritmen op drie belang-
rijke gebieden. Specifiek:

(1) Identificatie van grafiek-topologie en filterestimatie: Er wordt een algoritmische
aanpak voorgesteld om gezamenlijk de grafiekstructuur en filtercoëfficiënten te le-
ren van input-output grafiekgebaseerde gegevens. De methode behandelt de niet-
convexiteit van het probleem met een afwisselend minimalisatieschema, waarbij
wereldwijde convergentie wordt gegarandeerd.

(2) Inferentie van tijdvariërende grafiek-topologie: Een nieuw kader gebaseerd op
tijdvariërende convexe optimalisatietools wordt geïntroduceerd voor het afleiden
van tijdvariërende netwerkstructuren uit grafiekgebaseerde gegevens. Dit kader
biedt gebruikers flexibiliteit in het balanceren van uitvoeringssnelheid en algorit-
menauwkeurigheid door middel van instelbare parameters.

(3) Algemene formulering van het convolutietheorema: Er wordt een algemene for-
mulering van het convolutietheorema geïntroduceerd die zowel het grafiekcon-
volutietheorema als dat van de tijdvariërende filters omvat. Deze generalisatie
heeft implicaties voor de (niet-)stationariteit en spectrale analyse van signalen en
maakt het mogelijk om een grafiek-leerprobleem te casten om een potentiële gra-
fiekstructuur voor het frequentiedomein af te leiden.

Samengevat draagt dit proefschrift aanzienlijk bij aan de vooruitgang van de grafische
signaalverwerking door fundamentele uitdagingen aan te pakken en innovatieve me-
thodologieën te introduceren. Het heeft het potentieel om verdere innovatie in het vak-
gebied te inspireren en ons begrip van complexe netwerkdynamiek te verdiepen.
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1
HUMANS AND KNOWLEDGE

A nice book, without a nice introduction, is not a nice book.

A. Natali

S Ince our earliest years, we are fascinated by the mysteries of the world both
within and beyond us. The questions “why” and “how” are a constant of

childhood, echoing through the ages as we seek to unravel the complexities of
our existence. Our intrinsic drive for exploration compels us to ponder profound
philosophical inquiries, such as the origin of the universe and the fundamental
principles governing life itself. Ancient civilizations, driven by practical concerns
such as agricultural needs, delved into the realms of cosmology and sought partial
answers and patterns in these existential questions.

Figure 1.1: Sir Isaac
Newton

However, it was during the scientific revolution that
a profound shift took place. Mathematics, already
firmly established as a fundamental discipline, revealed its
unparalleled versatility as a language capable of encapsulating
and encoding the essence of our discoveries. Not only, it
also reveled its capability of creating new knowledge in a
mathematical form which could then be translated back into
the real physical world. It is indeed during the 16th and 17th
centuries that figures like Galileo Galilei, Johannes Kepler,
and Isaac Newton, made of matemathics a predictive tool
for a better understanding of our world and unlocking new
knowledge. The scientific revolution has begun. This pivotal
moment in the annals of science was eloquently captured by
the Armenian-American science author Aram D’Abro in his
seminal work ‘The Evolution of Scientific Knowledge’:

“But with Newton all the resources of mathematics were turned to
advantage in the solution of physical problems. Thenceforth mathematics
appeared as an instrument of discovery, the most powerful one known to
man, multiplying the power of thought just as in the mechanical domain

1
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the lever multiplied our physical action. [...] Thus problems of physics
were metamorphosed into problems of mathematics.”

He then continues:

“The mathematical physicist then enters upon the scene, assigns certain
letters of the alphabet to the physical entities involved (in the present
case electric current designated by i and magnetic intensity designated by
H) and by this means translates the numerical relationships discovered
by the experimenter into mathematical form. He thus obtains a
mathematical relationship or equation α which is assumed to constitute
the mathematical image of the concrete physical phenomenon A. His task
will now be to extract from his mathematical equation or equations α

all their necessary mathematical consequences. In this way, provided his
technique does not fail him, he may be led to new equations β. These new
equations β, when translated back from the mathematical to the physical,
will express new physical relationships B. The mathematician assumes that
just as his equations α were the necessary mathematical consequences of
his original equations, so also must the physical translation of β constitute
a physical phenomenon B, which follows as a necessary consequence of
the existence of the physical phenomenon A. If A occurs, B must ensue.”

This merits emphasis. It became clear that by identifying the entities involved in
a phenomenon of interest, we could construct mathematical models to depict the
relationships between them and validate our theories through successive, rigorous
experimentation. The hallmark of the scientific method. This breakthrough was
made possible by the adoption of new measurement instruments, a crucial element
that was notably absent in ancient times.

1.1. DATA, NETWORKS AND SIGNAL PROCESSING

1.1.1. DATA

And so, as mathematics evolved and matured day by day, we found ourselves in
need of the essential ingredients: data. And they arrived, in abundance. Suddenly,
everything we did was meticulously recorded and measured. But measuring, from
a scientific point of view, is obviously not without an end goal. It serves the grand
scope of deciphering patterns, unraveling relationships, and unearthing hidden
associations that lie beneath the surface. These are tasks that the human mind does
constantly and unconsciously, but as technology advances, we seeked to automatize
this process. Automatic cat recognition became the fundamental problem of modern
society.

How do data reach us? First, let’s clarify what we mean by "data". From a
computer’s perspective, data simply comprises collections of numbers, making them
amenable to mathematical computations. Then, what sets them apart? We can agree
that a song differs in nature from an image, which, in turn, differs from a movie.
Specifically, we can view a song as a collection of discretized numbers, where each
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number is a sampled version at a regular interval of a continuous sound; an image
can be conceived as a grid of pixels, with each pixel storing color information;
finally, a video can be thought of as an ordered sequence of images, and so, an
ordered sequence of grids of pixels storing color information. Moreover, the tasks
we wish to perform on them dictate differing processing architectures. Rather than
delve into how to execute this processing, we focus on a commonality shared by
these examples: one aspect regarding their domain and another concerning their
values (which we will call signals1).

Domain. Now, let’s consider their domain. Concerning the domain, all the
aforementioned examples exhibit a well-defined structure with a clear notion of
ordering and precedence. For instance, in the realm of sound, there exists a distinct
temporal ordering: time instant t precedes time instant t +1. Similarly, each pixel
within an image maintains a spatial relationship, such as left-right or top-bottom,
with respect to neighboring pixels. Likewise, a movie can be understood as a
sequential arrangement of images. Typically, each domain point has a consistent
number of neighbors, except for those positioned at the domain’s borders. Hence,
this property of well-ordering or locality among samples is shared across their
domains.

Figure 1.2: An illustration of different data types: a discrete-time signal (left), an
image (center), and a video (right). Each circle symbolizes an element of
the domain: for the discrete-time signal, it denotes an index t ; for the
image, it signifies an ordered pair (x, y) representing the pixel location;
and for the video, it indicates the triplet (x, y, t ) denoting the pixel
location at a specific time instant t . The color of each circle represents
the value (i.e., the signal) at the indexed domain point.

Signal. Another property pertinent to this type of data concerns their signals, that
is, the value that these types of data assume on their domain. In audio, samples at
time t and t +1 tend to be similar. Similarly, neighboring pixels in images typically
share similar colors, barring edges. In a video, successive frames have similar content
except when a change of scene is present. Hence, it is generally true, particularly
for natural signals, that adjacent samples display similar values — a characteristic

1Notice how we use a loose definition of the term signal here, since formally a signal is a function
and so it comprehends both the domain and codomain.
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leveraged in many signal processing tasks through specific architectural approaches,
such as smoothing or denoising. This structural similarity among samples effectively
informs processing architectures designed to operate on such data.

1.1.2. NETWORKS

However, we often encounter data where the concept of precedence among samples
is not immediately evident or does not exist at all. In other words, the domain
of such data is unstructured and irregular, yet it still maintains some form of
relationship. Examples of such data, as illustrated in Figure 1.3, include social
networks, cooperative autonomous agents, molecules, transportation networks, brain
networks, and local area networks. Despite their structural dissimilarity to time and
space, there may still be a necessity to conduct signal processing on such data.

Figure 1.3: Examples of networks: each network is composed by a set of entities (for
instance users, drones and atoms) and a set of relationships between
different entities (for instance friendship, communication range and
atomic bond).

For example, in a social network, we might attempt to deduce an individual’s
preferences based on the preferences of his/her "neighbors" within the network, i.e.,
individuals with whom they share a connection. Similarly, in the realm of molecules,
we might endeavor to evaluate its suitability for specific antibiotic treatments by
analyzing its atomic compositions. In all these scenarios, the data is supported by
what is known as a "network" — a mathematical abstraction utilized to depict a
system of entities with diverse types of relationships among them. In the realm of
signal processing, each entity also carries data.

These networks are typically visually represented using circles, denoted as nodes
or vertices, to represent the entities of interest, and lines connecting two entities,
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known as links or edges, to signify the presence of some form of relationship. We
purposefully maintain the term "some form" ambiguous, as it is the responsibility
of the researcher to model the network and encapsulate the relationships relevant
to the given objective. We will delve into how we can formally describe such a
concept using graph theory, but for now, we will limit our discussion to a high-level
overview. Let’s now provide some examples of networks with their relative entities
and relationships:

• social networks: each entity of the network is a user and different users can be
related based on their friendship or not. The data that we can gather are the
demographic information of users;

• transportation networks: think of air, maritime, road and logistical networks.
These systems are all made of hubs (airports, ports, junctions), and the link
represents the connection between two different hubs. The data represent for
instance the number of daily passengers in each hub;

• brain networks: each entity of the network represents a region of interest of the
brain composed of neurons performing a specific task, while the link between
each entity represents a physical “pathway” between two different regions, or
a virtual functional relationship of interest, for instance the case in which two
different regions activate together in response to a stimulus. Data in this case
can be gathered in the form of electroencephalography (EEG) measurements.

• molecules: each entity is an atom and the connections between atoms describe
the chemical bonds. The data we can gather are the atomic and mass number,
electronic configuration, spatial configuration.

Thus, we come to comprehend how data are not merely a collection of numbers:
they are objects possessing an underlying geometry, which is leveraged in processing
such data within architectures. Traditional methods developed for standard data
modalities (audio, images, videos) would fail to exploit a more general geometrical
structure. This is when graph signal processing (GSP) emerged as a tool to process
networked data, blending together notions from signal processing and graph theory.

1.1.3. GRAPH SIGNAL PROCESSING

Graphs have long served as a fundamental tool for modeling complex systems, with
entire branches of mathematics devoted to their study and their properties. One
of the earliest formal publications on this subject is credited to Leonhard Euler,
whose work on the Seven Bridges of Königsberg, published in 1736, is considered
the inaugural paper in the history of graph theory [1]. Consequently, a significant
portion of scientific inquiry has been devoted to investigating networks and their
intrinsic characteristics.

However, in the early 2000s, the field of signal processing experienced a paradigm
shift when researchers recognized the applicability of graph theory to classical signal
processing tasks such as denoising, sampling, and interpolation. In essence, it
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became apparent that the domain, previously implicitly understood when defining
operations on signals, could now be explicitly represented through a graph structure.
The instantiation of this graph, along with the corresponding architectures designed
to operate on the signals residing within it, ultimately defines the modality of the
data. For instance, the “time-domain” could be understood of as a path-graph; an
image through a grid graph; a video through a lattice graph.

Although the data typically manifests itself as a vector (or more general as a tensor),
imparting an underlying structure to this data vector can significantly impact the
efficacy of a processing architecture. In this context, the delineation between a
proficient and suboptimal processing architecture often hinges on the ability to
associate a meaningful structure with the data vector.

Figure 1.4: Three examples of graphs: (left) a line graph, where each node can
be the index of a discrete time signal; a grid graph, where each node
represents a pixel; a more general graph, for instance describing the
atomic composition of ethylene C2H4.

This marked the inception of GSP [2, 3]: harnessing the network structure to enrich
signal processing tasks on network data. Over the course of a decade, significant
strides were made in this realm, with numerous classical signal processing tasks
finally finding their graph-based counterparts. We will lay down the GSP background
in Chapter 2.

What is missing then? Not every aspect of graph-based processing seamlessly
aligns with the natural flow experienced in time and space domains; that is why
fundamental research in GSP was and still is needed. We will limit ourselves here to
only briefly mention which are the gaps that we have tried to fill within the research
thrusts of this dissertation.

RESEARCH THRUST I: GRAPH LEARNING

Graph signal processing facilitates the analysis of signals defined over networks. But
what if we possess the data without the corresponding graph structure? Is it possible
to deduce the graph solely from the data? This problem goes under the name of
graph topology inference or graph learning, and it has gained a lot of attention
in the past decade due to the increased pervasiveness of graph-based architectures
(which do need a graph structure to operate on) and due to the interpretability
given by a graph structure. We refer the interested reader to the excellent overview
papers [4, 5].

As we will see, many network processes can be effectively modeled using graph
filters, which are architectures designed to process signals defined over graphs.
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Typically, these architectures are parametric in both the filter coefficients and the
matrix representation of the graph. Thus, upon data availability, one would like
to estimate the graph filter which maps input signals to output signals. This is
tantamount to estimating its parameters. While many studies assume complete
knowledge of the graph and the strength of its connections, and focus solely on
estimating the filter coefficients, there are scenarios where only partial information
about the graph structure is available. In this case, can we simultaneously learn both
the filter coefficients and a complete description of the graph in a principled way?
This question is explored in Chapter 4.

In addition, many works miss a fundamental aspect often arising in real-world
networks: time-variability. In other words, many networks are time-varying, i.e., the
connection between the entities changes over time. Think for instance of mobile
communication networks or functional connectivity networks in the brain. How to
tackle the dynamism of such networks in a principled way? We addressed this
question in Chapter 5.

RESEARCH THRUST II: CONVOLUTION AND FREQUENCY DOMAIN

From basic system theory, we know that a convolution in one domain (be it time or
frequency) equates to pointwise multiplication in the other domain: this is perhaps
the most fundamental theorem of signal processing, i.e., the convolution theorem.
This holds true for GSP only in one direction, namely a graph convolution (defined
in the vertex domain) equates to pointwise multiplication in the frequency domain.
In the other direction, i.e., from the frequency to the vertex domain, there is a lack
of intuitiveness around this concept; what does graph convolution in the frequency
domain mean if a graph does not inherently exist within this domain? An answer to
this question has been given by [6, 7] with the introduction of a “frequency-domain
graph” which essentially captures the structure of the frequency domain; in this
case, a graph convolution in the frequency domain also equates to a pointwise
multiplication in the vertex domain.

As we will demonstrate, the graph convolution theorem (along with the classical
convolution theorem) operates under the assumption that the convolution’s
implementation architecture is shift-invariant, meaning it commutes with the shift
operation. This assumption is akin to considering the data to exhibit some
sort of “stationarity” property. However, recognizing that not all systems exhibit
shift-invariance and encompassing a broader class of operators, we illustrate how
a node-variant graph convolution in one domain can be expressed as another
node-variant convolution in the other domain. This extends the scope of the
convolution theorem, encompassing scenarios such as time-varying filters. Different
instantiations of the architecture’s coefficients and of the shift lead to different
convolution theorems. This innovative concept is discussed in Chapter 6.

1.2. OUTLINE
This section provides a description for each chapter of this dissertation, starting
from Chapter 2.
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Chapter 2 This chapter lays down the formal (graph) signal processing
background necessary to understand the following chapters. We start with the
definition of shift which is built into the definition of convolution and Fourier
analysis in the time domain. Then, we translate these concepts into the graph
domain. Finally, we outline the problem of network topology identification
from data, with illustrative examples.

Chapter 3 This chapter presents a more formal and mathematical treatment
of the research thrusts introduced in the previous section. The focus of this
chapter is not to delve deeply into the technical solution to these problems
but rather to introduce them in a manner accessible to a broader audience,
gradually transitioning towards a formalized treatment of the issues.

Chapter 4 This chapter presents a data-driven method aimed at simultaneously
estimating both the filter coefficients and the graph structure defining a graph
filter, which characterizes the dynamics observed in the data. This approach,
building on a sequential convex approximation scheme, operates under the
assumption that the sparsity pattern of the graph is known.

Chapter 5 This chapter proposes an algorithmic framework to learn time-
varying graphs from online data. The generality offered by the framework
renders it model-independent, i.e., it can be theoretically analyzed in its
abstract formulation and then instantiated under a variety of model-dependent
graph learning problems.

Chapter 6 This chapter proposes a novel convolution theorem which
encompasses the well known convolution theorem in (graph) signal processing
as well as the one related to time-varying filters. Specifically, we show how a
node-wise convolution for signals supported on a graph can be expressed as
another node-wise convolution in a frequency domain graph, different from
the original graph.

Chapter 7 This conclusive chapter summarizes the findings of the research
period and delineate possible future avenues of research.

1.3. LIST OF CONTRIBUTIONS

We conclude this chapter with an itemized list of the peer-reviewed scientific
contributions made during the Ph.D. period. Only the articles with a ∗ symbol will
be however the focus of this thesis.

JOURNALS

∗J2 Natali, Alberto and Geert Leus. “A Generalization of the Convolution Theorem
and its Connections to Non-Stationarity and the Graph Frequency Domain."
IEEE Transactions on Signal Processing 72 (2024): 3424 - 3437.
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∗J1 Natali, Alberto, Elvin Isufi, Mario Coutino, and Geert Leus. “Learning
time-varying graphs from online data." IEEE Open Journal of Signal Processing
3 (2022): 212-228.

CONFERENCES AND WORKSHOPS

C7 Van der Hoeven, Jelmer, Natali, Alberto, and Geert Leus. "Forecasting
Graph Signals with Recursive MIMO Graph Filters." 2023 31st European Signal
Processing Conference (EUSIPCO). IEEE, 2023.

C6 Natali, Alberto and Geert Leus. “Blind Polynomial Regression" In "Blind
polynomial regression." In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

C5 Natali, Alberto and Geert Leus. “A General Convolution Theorem for Graph
Data" In 2022 56th Asilomar Conference on Signals, Systems, and Computers,
pp. 48-52. IEEE, 2022.

C4 Natali, Alberto, Mario Coutino, Elvin Isufi, and Geert Leus. “Online
Time-Varying Topology Identification Via Prediction-Correction Algorithms."
In ICASSP2021: The IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp. 5400-5404. IEEE, 2021.

C3 Natali, Alberto, Elvin Isufi, Mario Coutino, and Geert Leus. “Online Graph
Learning From Time-Varying Structural Equation Models." In 2021 55th
Asilomar Conference on Signals, Systems, and Computers, pp. 1579-1585. IEEE,
2021.

∗C2 Natali, Alberto, Mario Coutino, and Geert Leus. “Topology-aware joint graph
filter and edge weight identification for network processes." In 2020 IEEE 30th
International Workshop on Machine Learning for Signal Processing (MLSP), pp.
1-6. IEEE, 2020.

C1 Natali, Alberto, Elvin Isufi, and Geert Leus. “Forecasting multi-dimensional
processes over graphs." In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5575-5579. IEEE, 2020.

1.4. CONCLUSIONS
In this chapter, we introduced the concepts of data and networks and illustrated
various scenarios where networked data are encountered. We highlighted how
the distinct characteristics of networked data, different from data supported on
traditional grid-like domains, shape the properties of the data. We then presented
graph signal processing as a valuable tool for managing and analyzing this type
of data, covering tasks ranging from interpolation and denoising to classification
and sampling. Additionally, we outlined two significant areas for further research
advancement in the field: learning time-varying networks from data and the
development of a generalized convolution theorem for shift-variant systems. Moving
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forward to Chapter 2, we will delve into the essential mathematical background
required to comprehend the problem formulations discussed in Chapter 3, which
will receive comprehensive treatment in subsequent chapters (Chapter 4, Chapter 5,
and Chapter 6).



REFERENCES

[1] J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications. Vol. 290.
Macmillan London, 1976.

[2] A. Sandryhaila and J. M. Moura. “Discrete signal processing on graphs”. In:
IEEE transactions on signal processing 61.7 (2013), pp. 1644–1656.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”. In: IEEE signal processing
magazine 30.3 (2013), pp. 83–98.

[4] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro. “Connecting the dots:
Identifying network structure via graph signal processing”. In: IEEE Signal
Processing Magazine 36.3 (2019), pp. 16–43.

[5] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. “Learning graphs from data:
A signal representation perspective”. In: IEEE Signal Processing Magazine 36.3
(2019), pp. 44–63.

[6] G. Leus, S. Segarra, A. Ribeiro, and A. G. Marques. “The dual graph shift
operator: Identifying the support of the frequency domain”. In: Journal of
Fourier Analysis and Applications 27.3 (2021), p. 49.

[7] J. Shi and J. M. Moura. “Graph signal processing: Dualizing gsp sampling in
the vertex and spectral domains”. In: IEEE Transactions on Signal Processing
70 (2022), pp. 2883–2898.

11





2
SIGNAL PROCESSING: TIME AND

GRAPHS

Learn. Teach. Repeat.

A.N.

S Ignal processing is the discipline which studies, analyzes and synthesizes signals.
For the scope of this dissertation, signals can be thought of as objects to encode

information in a mathematical form. Why do we want to encode information? And
why do we bring this information in a mathematical form and not into another one?
Possible answers to these questions can be found in the interesting readings [1].
In general, we can say that we want to encode information in order to predict,
make decisions, or learn about a phenomenon of interest. Since the information we
are concerned about is encoded in numerical values, we use mathematics as the
language to process it, as we would use English to encode verbal communication.
For classic introductory texts on signals and systems, we refer the reader to [2, 3].

In this chapter, our goal is to introduce signal processing from an “operational”
perspective, focusing on the methods by which we manipulate signals. We begin our
discussion by starting from the time domain, where readers may encounter more
recognizable concepts like convolution and filters. Subsequently, we broaden the
scope to encompass a more universal domain, represented by a graph.

2.1. SIGNAL PROCESSING IN TIME
We start our journey with a deep treatment of the most important mathematical
operation in signal processing: the convolution. The reader might have come
across this term several times, perhaps in introductory signal processing courses
or in the context of convolutional neural networks for image processing [4]. Here,
we use a pedagogic approach to build its definition, starting from basic principles.
Specifically, we start from its basic building block, the most atomic operation in
signal processing, which will be crucial for the rest of the manuscript: the shift.

13
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Consider a scalar function x(·) describing a phenomenon of interest, for instance
the temperature (in ◦C) over time of your favorite city. Without any loss of
generality and for simplicity of exposition, we assume that the domain and
codomain of the function x are not restricted to specific values (as temperature
should) but span the entire real line R. Thus, for any value t ∈ R representing
a specific time instant, we have an associated function value x(t ) ∈ R representing
the temperature at time t . Because we want to process this signal into the digital
world, we use a discretized version of the time signal x(t ) sampled at regular time
intervals, i.e., we sample x(·) at multiple time instants of a period of Ts . That
is, we sample at 0,Ts ,2Ts , . . . , (N −1)Ts , obtaining the discrete version of the signal
x(0), x(Ts ), x(2Ts ), . . . , x((N −1)Ts ). Concisely, for n = 0, . . . , N −1, we have the values
x(nTs ). We will omit the specific sampling period Ts and simply denote x(nTs )
as xn = x(nTs ). Fig. 2.1 (top) shows an example of a continuous time-signal x(t )
and its discretized version xn at the N distinct points. We conveniently collect the
points x0, . . . , xN−1 in the vector x = [x0, x1, . . . , xN−1]⊤, so as to make it amenable to
algebraic computations.

Figure 2.1: (Top) A continuous time signal x(t ) (black dotted line) is sampled at N
distinct points n = 0, . . . , N −1, yielding a discrete-time signal x0, . . . , xN−1.
(Bottom) The shifted signal x(1): each entry of the vector x is shifted one
position to the right.

Introducing a delay on a signal x involves shifting each entry of the signal one
position to the right, as represented in its transpose form. This operation results in a
new signal, denoted as x(1), where each entry is shifted by one position to the right.
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In mathematical terms, x(1) is defined as:

x(1) = [xN−1, x0, . . . , xN−2]⊤, (2.1)

where the superscript (1) indicates that one consecutive shift has been applied to the
signal. For further reference, the number l in the superscript (l ) denotes the number
of consecutive shifts applied to the signal.

Since we are dealing with finite-length vectors, we use the notion of circular shift, or
shift modulo N . In other words:

x(1)
n = x(n−1)(modN ), (2.2)

where we recall that an integer n ∈N is equal to l (modN ) if and only if l −n is an
integer multiple of N . Mathematically:

n = l (modN ) ⇐⇒ l −n = i N for some i ∈Z. (2.3)

The mapping x → x(1) can be algebraically achieved by means of an important linear
operator, the circular shift operator (or delay matrix) Sc , defined as:

Sc =



0 0 · · · 0 1
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

 (2.4)

We can then express the shifting operation (2.2) as the matrix-vector product (see
also Fig. 2.1 (bottom) for an illustration):

x(1) = Sc x. (2.5)

Consecutive applications, say l , of the matrix Sc to the signal x, perform l
consecutive shifts of the signal x; formally:

x(l ) = Sl
c x = Sc (Sl−1

c x) = Sc x(l−1) (2.6)

with x(0) initialized as x(0) = x.

The recursive implementation offered in (2.6) can be appreciated by noticing that Sc

is a sparse matrix. This, from a computational standpoint, reduces the computational
workload significantly during matrix-vector product operations; from a conceptual
standpoint, its sparsity pattern reveals that any signal value x(l )

n for a given entry n
only requires the knowledge of the value at the preceding time instant n−1, denoted
as x(l−1)

n−1 . This notion of locality, as we will see, extends to more general domains,
beyond time, which will be modeled as graphs. We can then say that the structure
of Sc captures dependencies among various signal values. Thus, Sc not only acts as
an operator that transforms signals to their shifted versions but can also be viewed
as a matrix representing the domain on which these signals are defined. In essence,
we can consider Sc as a potential representation of the time domain.
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2.1.1. CIRCULAR CONVOLUTION

Matrix Sc belongs to an important class of matrices called circulant matrices, i.e.,
matrices in which all columns (and rows) are composed of the same elements, and
each column (row) is a shifted/delayed version of the previous one. As we now will
illustrate, this class of matrices is pivotal in describing the convolution operation
among two signals, and to introduce the notion of frequency from a purely algebraic
approach. Although many different types of convolution do exist in different contexts
and for different scopes, we focus here on the circular convolution.

Given a signal x = [x0, . . . , xN−1]⊤, often referred to as input, and another signal
with the same length p = [p0, . . . , pN−1]⊤, often called filter1 or kernel, the circular
convolution between p and x, denoted as p⋆x, is the operation resulting in the
output signal y = [y0, . . . , yN−1]⊤ with:

yn = p0xn +p1x(1)
n + . . .+pN−1x(N−1)

n =
N−1∑
l=0

pl x(n−l )(modN ) (2.7)

That is, the (circular) convolution represents, for each output value yn , the weighted
average of the entries of the input signal x, where the weights are specified by
the filter coefficients p. Rearranging (2.7) for all n = 0, . . . , N −1, we obtain the
convolution y = p⋆x in matrix-vector form:


y0

y1

y2
...

yN−1


︸ ︷︷ ︸

y

=



p0 pN−1 pN−2
. . . p2 p1

p1 p0 pN−1
. . . p3 p2

p2 p1 p0
. . .

. . . p3

. . .
. . .

. . .
. . .

. . .
. . .

pN−1 pN−2
. . .

. . . p1 p0


︸ ︷︷ ︸

H(p)


x0

x1

x2
...

xN−1


︸ ︷︷ ︸

x

(2.8)

where we denoted with H(p) the matrix implementing the convolution operation,
thus responsible to map x to y. We can then state the following: the convolution
between two signals p and x can be implemented as a matrix-vector product, where
the matrix H(p) is circulant and fully specified by the filter response p2.

An important observation here, which will be crucial for understanding the
ensuing chapters, is the relationship between the circular shift Sc and the
matrix representation of the filter H(p). Specifically, each column is obtained
from the preceding one when pre-multiplied by the circular shift Sc , i.e.,
H(p) = [p,Sc p, . . . ,SN−1

c p]. This suggests a functional dependence of H(p) not only on
the vector p but also on the matrix Sc . It is easy to show that H(p) can be written as:

H(p,Sc ) =
N−1∑
l=0

pl Sl
c . (2.9)

1The vector p is called filter impulse response, since it describes the output of the filter when excited
with a unit impulse.

2Since convolution respects the associative property, it holds y = x⋆p = H(x)p
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In other words, the circulant matrix H(p) can be expressed as a matrix polynomial
involving the circulant shift matrix Sc , where the entries of p are the coefficients
of such polynomial. In (2.9), we explicitly treat Sc as an argument of the matrix
H(·) to underscore its significant role as a parameter of the matrix; this will come
handy when we will introduce filters in a graph context. A crucial observation is
that any circulant matrix can be represented by a matrix polynomial in terms of
Sc . This observation carries implications for defining a frequency domain and its
corresponding transforms. More specifically, variations in shifts result in distinct
frequency concepts, diverse filter shapes, and varied transforms[5].

By substituting the filter parameterization (2.9) into the expression of H(p,Sc )
in (2.8), we get the convolution operation in matrix-vector form (which is the
vector-counterpart of (2.7)):

y =
N−1∑
l=0

pl Sl
c x = p0x+p1x(1) + . . .+pN−1x(N−1), (2.10)

which shows once again, this time in vector form, how the output y is a linear
combination of shifted (delayed) versions of the input signal x, where each shifted
signal x(l ) is scaled by the filter tap pl . Filters of this type are referred to as
time-invariant, because for any yn , the filter coefficients p0, . . . , pN−1 do not change,
i.e., they are independent from the time instant n. We will see how this type of
filters simplifies the analysis of signals.

2.1.2. THE FREQUENCY DOMAIN

We now gradually move to the notion of frequency, a central concept in signal
processing, as it provides an alternative representation for (processing) signals, and
for the architectures operating on them. To define it, we rely on an algebraic
approach. We start by recalling what it means for a matrix to be diagonalizable.

Definition 2.1.1. A square matrix A is said to be diagonalizable if there exists an
invertible matrix V and a diagonal matrix Λa such that:

V−1AV =Λa (2.11)

In other words, matrix A is diagonalizable if we can identify a change of basis matrix
V such that A, when expressed in terms of V, becomes diagonal. The resulting
diagonal matrix, denoted as Λa , represents the linear transformation A in this newly
defined basis. Working with Λa in the new basis streamlines computations compared
to operating with A in the original basis.

For example, matrix-vector multiplication simplifies to a straightforward element-wise
multiplication of the diagonal elements of Λa and the corresponding entries of the
vector. Consequently, this operation essentially represents a stretching operation on
the vector. Additionally, understanding powers of a diagonal matrix becomes intuitive
as it involves simply raising each individual diagonal element to the desired power.
Notice that an alternative but equivalent condition to (2.11) is given by stating that
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A admits an eigenvalue decomposition (EVD), represented as A = VΛa V−1, where V
denotes the matrix of eigenvectors and Λa the matrix of eigenvalues.

An important question arises: does there exist a set of matrices M such that they
can all be diagonalized by the same change of basis matrix V? This leads to another
definition.

Definition 2.1.2. A set M of matrices is called simultaneous diagonalizable if there
exists a unique invertible matrix V, such that for every matrix M ∈M , the matrix:

V−1MV is diagonal, (2.12)

that is, if matrix V is a matrix of eigenvectors for any M ∈M .

But how can we know whether a given set M of matrices is simultaneously
diagonalizable? It can be shown that a set of matrices M is simultaneously
diagonalizable if and only if they all mutually commute, that is, if M1M2 =
M2M1∀ M1,M2 ∈ M , and at least one of the matrices has simple (non-repeated)
eigenvalues.

The importance of the preceding statement resides in the fact that upon the
identification of a matrix with simple eigenvalues belonging to the set M , finding its
eigenvector matrix V implies finding the eigenvector matrix for all the other matrices
of the set at no additional cost.

It is easy to show that the set of circulant matrices is simultaneously diagonalizable,
i.e., taken any two circulant matrices, they commute. Therefore, upon identifying
a circulant matrix with simple eigenvalues, its eigenvectors serve to diagonalize
the entire collection of circulant matrices simultaneously. Given that any circulant
matrix can be expressed as a matrix polynomial of Sc (and thus, they commute), the
circular shift operator Sc emerges as a promising candidate for such an exploration.
Without delving into the mathematical proof, we can state that Sc is diagonalized
by the inverse discrete Fourier transform (DFT) matrix, thereby implying that any
circulant matrix is likewise diagonalized by the inverse DFT matrix. Let us now
revisit the definition of the DFT matrix.

Consider the N th primitive root of unity, i.e., ω= e− j 2π/N , where j is the imaginary
unit with j 2 =−1. The DFT matrix is the N ×N Vandermonde matrix F having in the
(i ,k)th entry the value Fi k =ω(i−1)(k−1), for i ,k = 1, . . . , N , i.e.,:

F =



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


. (2.13)

Its inverse, F−1 represents the eigenvector matrix of Sc , a change of basis matrix

under which Sc becomes a diagonal operator.
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To show this, first notice that F−1 is given by:

F−1 = 1

N
F∗, (2.14)

where F∗ is the complex conjugate of F. Denoting with f∗l the l th column (starting
from index 0) of F∗, we have:

Sc f∗l =ωl f∗l , l = 0, . . . , N −1, (2.15)

that is, f∗l is an eigenvector of Sc with eigenvalue equal to ωl ; in matrix form:

Sc = F−1 Diag(f1)F (2.16)

= 1

N
F∗ Diag(f1)F (2.17)

= (
1p
N

F∗)Diag(f1)(
1p
N

F). (2.18)

We present three diagonalizations of Sc for clarity and to highlight various aspects of
the decomposition. The first one, represented by (2.16), corresponds to the standard
EVD, further extended in (2.17), where we explicitly substitute the inverse F−1 as
in (2.14). Lastly, (2.18) illustrates the DFT and its inverse symmetrically, with the
eigenvector matrix being unitary, unlike (2.16) and (2.17). We will opt for (2.16) due
to its concise representation, while acknowledging its lack of unitarity.

The eigenvectors {f∗l }l carry a notion of variation. To see this, remember that

e jθ = cos(θ)+ j sin(θ), i.e., each eigenvector f∗l is a sampled version of a sinusoidal-like
wave with frequency 2πl/N ; thus they are often called oscillating or resonant modes.
Specifically, f∗0 is the constant mode (often referred to as the DC mode), and
{f∗l }N−1

l=1 is a set of waves with increasing frequency for increasing l (up to (N −1)/2),

represented by its associated eigenvalue ωl = e−2πl/N .

DISCRETE FOURIER TRANSFORM

The application of matrix F to a signal x to obtain a new signal x̂, i.e., x̂ := Fx,
performs the so-called discrete Fourier transform (DFT) of the signal. It provides an
alternative representation for the signal x (a change of basis) over which properties
and information of the signal are exposed. Indeed, since F−1 = F∗/N , we can see
that the signal x can be expressed through the inverse DFT (iDFT) as:

x = 1

N
F∗x̂ = 1

N

N−1∑
n=0

x̂n f∗n (2.19)

This expression illustrates that x can be reconstructed as a combination of oscillating
modes, each characterized by distinct weights determined by the entries of x̂.
Through a straightforward examination of these weights, one can discern whether
the signal behaves akin to a low-pass or high-pass signal.

Perhaps in a subtle way we have discovered an important fact: the eigenvectors of
the shift matrix Sc provide a transformation from the space of discrete-time signals to
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the space of frequency-domain signals. While in an N -dimensional Euclidean space,
the vector x and its frequency-domain counterpart x̂ remain identical (only their
coefficients in their respective bases vary), our focus typically lies in analyzing their
coefficients along a real number line. Specifically, we consider the original domain of
our signal x to be the set of natural numbers, while the domain of the transformed
DFT signal x̂ to be the eigenvalues of the shift matrix, corresponding to the complex
exponentials, or essentially, the frequencies. Fig. 2.2 illustrates this concept. We

Figure 2.2: Representation of a signal x ∈ R3. Such vector can be described
by the vector x collecting the weighting coefficients of the canonical
basis {e0,e1,e2} or by its frequency representation x̂, which collects
the weighting coefficients of the “frequency basis” of resonant modes
{f0, f1, f2}.

shall not forget why we computed the eigenvectors of Sc in the first place. This
stemmed from its property of commuting with circulant matrices. Consequently,
by determining its eigenvector matrix, we effectively obtain the eigenvectors for all
circulant matrices without additional effort. As a result, we can assert that the set of
circulant matrices can be simultaneously diagonalized using the iDFT matrix (2.14).

What about the eigenvalues of this set of matrices? Remember that we can generate
the set of circulant matrices by means of the filter H(p,Sc ) [cf. (2.9)], for different p.
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We can then substitute the EVD (2.16) of Sc in the filter definition (2.9), obtaining:

H(p,Sc ) =
N−1∑
l=0

pl
(
F−1 Diag(f1)F

)l
(2.20)

= F−1

(
N−1∑
l=0

pl Diag(f1)l

)
F

= F−1

(
N−1∑
l=0

pl Diag(fl )

)
F

= F−1 Diag(Fp)F

= F−1 Diag(p̂)F (2.21)

where we defined p̂ as p̂ := Fp, i.e., the DFT of the filter p. We have then found the
following: given a circulant matrix parametrized by the vector p, its eigenvalues are
given by p̂, the DFT of p. This, leads us to the renowned convolution theorem, which
is the central tenet of signal processing; but first, let us summarize our findings.

We started with the definition of circular convolution between two signals: an
operation respecting the scale-shift-sum principle, where the shift can be captured
by the circular shift Sc and the scaling by the filter coefficients p. We have also
seen how it can be implemented as a matrix-vector product, where the matrix
representation of the filter H(p,Sc ) is circulant; as such it can be written as a
polynomial of Sc , where the coefficients of the polynomial are given by the entries
of the vector p. Since Sc and H(p,Sc ) commute, they share the same eigenvectors,
which coincide with the inverse DFT matrix F−1. In terms of eigenvalues, we have
found that the eigenvalues of the shift Sc are the N primitive roots of unity, while
for H(p,Sc ) they are given by the DFT of the parameter p; more in general the
eigenvalues of any circulant matrix are given by the DFT of its first column3.

2.1.3. THE CONVOLUTION THEOREM

From the diagonalizability of the filter H(p,Sc ) the convolution theorem emerges:
computing the DFT of the output y in (2.10), and incorporating equation (2.20) into
the filter representation H(p,Sc ), we obtain:

ŷ = Fy = FF−1 Diag(p̂)Fx = (2.22)

= Diag(p̂)x̂ (2.23)

= p̂⊙ x̂. (2.24)

In other words, the DFT of the output signal y can be computed as a pointwise
multiplication between p̂ and x̂, that is, between the DFT of the filter impulse
response p and the DFT of the input signal x; this is illustrated in Fig. 2.3. We
conclude this section with the following observations:

3Indeed notice that since Sc is itself circulant, its eigenvalues are equal to the DFT of its first column,
i.e., the DFT of the canonical vector [0,1,0, . . . ,0]⊤, which essentially selects the second column of
the DFT matrix containing the N th primitive roots of unity.
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• In the frequency domain, a convolution is given by a pointwise multiplication
between p̂ and x̂, that is, between the frequency representations of the filter
impulse response p and of the signal x;

• In the frequency domain, the filter H(p,Sc ) can be represented as a diagonal
operator Diag(p̂). As a result, its operation on a frequency signal x̂ does
not involve intermixing the signal’s frequency components. This characteristic
facilitates the efficient application of spectral processing techniques such as
filtering, windowing, and spectral estimation. The vector p̂, which corresponds
to the eigenvalues of H(p,Sc ), is obtained as the DFT of the filter impulse
response p̂.

Figure 2.3: Convolution Theorem: a convolution in the discrete time domain is
equivalent to a pointwise multiplication in the frequency domain. The
filter coefficients p̂ in the frequency domain are given by the DFT of the
impulse response p.
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2.2. SIGNAL PROCESSING ON GRAPHS
In the preceding section, we delved into concepts like shifting, convolution, and
Fourier analysis concerning signals in the (discrete-)time domain. Although not
explicitly emphasized, these definitions and their functional representations are
inherently shaped by the structure of the signal domain, in the case of discrete-time
coinciding with the natural numbers N. To be more concrete, a notion of “order”
and “precedence” is evident between successive samples xi and xi+1, where i and
i +1 correspond to tangible time intervals, underscoring the physical interpretation
associated with them.

However, we frequently come across signals that are defined in a less uniform
domain. Take, for example, the high-speed rail system depicted in Fig. 2.4,
illustrating a potential configuration of a railway network linking major European
cities. This data type presents significant complexity. Suppose we can calculate

Figure 2.4: The European high-speed rail network plan, as envisioned in [6].

pertinent statistics, such as the number of passengers passing through a specific
station on any given day of the year, for each station in the network (represented
by circles in the figure). We might then gather these values into a vector x ∈ RN ,
where N denotes the total number of stations. This prompts a question: in what
sequence should we arrange these stations (and thus, which entry corresponds to
which station)? Should we start to number stations from left to right, top to bottom
in the map?

Evidently, there are countless potential ways to order these values. However, by doing
so, we overlook another crucial aspect of the data—its underlying geometry or the
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inherent relationships between stations, which could be described as “connected to”
relationships. Furthermore, these relationships themselves might contain numerical
information, such as the distance or length between the interconnected stations. By
focusing solely on the vector x we risk losing this geometric context. Undoubtedly,
the number of passengers at a given station is influenced by its neighboring stations.
This underscores the necessity for a framework that captures the intricacies of this
networked data domain. We address this need by employing the concept of graphs.
In what comes next, we explore how to expand the concepts of signals, filters, and
transformations discussed in the preceding section, to accommodate signals defined
within a networked structure.

2.2.1. GRAPHS

We represent the network of interest using a graph denoted as G = (V ,E ,ω). Here
V = {1, . . . , N } constitutes the set of N nodes (or vertices), which symbolize the
entities or objects under scrutiny; E ⊆ V ×V represents the set of M edges, where
each edge is characterized by a tuple ei j = (i , j ), capturing the connection between
nodes i and j 4; lastly ω : E → R serves as a weight function that assigns a real
number to each edge. A greater edge weight implies a more pronounced similarity or
interdependency between the vertices linked by that specific edge. The categorization
of a graph as directed or undirected depends on the characteristics of ω. Specifically,
a graph is deemed undirected if ω(i , j ) =ω( j , i ) ∀i , j ∈ V . This implies that the weight
associated with the edge (i , j ) is identical to that of edge ( j , i ). Conceptually, even
though these edges are formally distinct, they are often viewed as a single, unique
edge due to their identical weights. Differently, a graph is said to be directed when
there exists a notion of orientation or directionality among the nodes i and j , and
ω(i , j ) ̸=ω( j , i ) for some i , j ∈ V . This directional aspect is evident in systems like
water and road networks, where there’s a distinct concept of information or flow
moving from one node to another. Fig. 2.5 illustrate an undirected and a directed
graph.

GRAPH SIGNALS

To comprehensively study and manipulate data associated with networks, it is
essential to establish a rigorous mathematical framework. We introduce the concept
of a graph signal: a vector x associated to a graph G , with each node i ∈ V having
an associated value xi ∈ C; that is, xi : V → R. This formalism is adaptable even
when nodes hold vectors rather than individual scalar values. Even tough it would
be more accurate to formally represent x as xG , to underscore its reliance on and
connection to the particular network domain at hand, we will use x for ease of
notation, while keeping in mind its essential connection to the underlying network
structure. Fig. 2.6 shows an example of a graph signal.

4We adopt a “to-from” notation, indicating that the first node is the endpoint of the edge, while the
second node serves as its origin.
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Figure 2.5: An undirected (left) and directed (right) graph composed of 5 nodes.

Figure 2.6: A graph signal on a graph composed of 5 nodes. For illustrative purposes,
the length of the bars above each node i indicates the magnitude of
the associated value xi , while its color denotes the sign, red for positive
numbers and blue for negative ones.

GRAPH REPRESENTATION

Having introduced what constitutes a graph, we now want to formally encode it
in computational friendly form. The algebraic realm seems to be a good venue
for this purpose; thus, we encode a graph by means of matrix representations.
While numerous matrices can represent a graph, we will focus here on those most
frequently employed in the literature, namely the adjacency matrix and the Laplacian
matrix. Given a graph G with N nodes, the weighted adjacency matrix associated
to the graph is the square N ×N matrix W with entry Wi j = ω(ei j ) if (i , j ) ∈ E ,
otherwise Wi j = 0. In the case each edge of the graph merely indicates the presence
or absence of a connection between nodes, without carrying any specific value, the
matrix simplifies to the binary adjacency matrix A, with A ∈ {0,1}N×N . Here, the
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entry Ai j = 1 signifies the existence of an edge originating from j and ending in
i , which corresponds to having a constant weight function ω : E → 1. In reference
to Fig. 2.5, if A is the binary adjacency matrix of the undirected graph, we have
that A32 = A23 = 1, indicating the presence of the edges (2,3) and (3,2); in general
for an undirected graph we have A = A⊤. For the directed graph we have A32 = 1
andA23 = 0, since we only have an edge starting from node 2 and ending at node 3.
For directed graphs the adjacency matrix is, in general, not symmetric.

Now, let us assume to have a graph whose binary adjacency matrix A is given by
A = Sc , i.e., it coincides with the circular shift matrix [cf. (2.4)]. This graph would
be as the one in Fig. 2.7. That is, the shift operator used to model the circular

1 2 N‐1 N

Figure 2.7: The domain of a discrete time signal can be thought as a (directed) cyclic
graph.

convolution in discrete-time signal processing can be viewed as a (circular) graph
capturing the relationship “precedes” between different nodes, each one representing
consecutive time instants. We informally say that Sc “models the time domain”.
Under these considerations, we can view Sc both as an operator acting on signals
(to perform the shifting operation), and as the domain of such signals (to model the
underlying network domain).

Another related graph matrix representation is the Laplacian matrix, which is defined
for undirected graphs as:

L = D−W, (2.25)

where D := Diag([d0, . . . ,dN−1]) is the degree matrix of the graph, a diagonal matrix
where each element di is given by the sum of the edge weights incident to node
i . When the graph is unweighted, so that W coincides with the binary adjacency
matrix A, di simply counts the number of neighbors of node i .

As we will see soon, the Laplacian matrix plays a very important role in graph
theory and for the Fourier analysis of graph signals; but before delving into that, we
conclude this section by introducing two other matrices matrices often encountered
in literature to represent graphs. These are:

• the normalized adjacency matrix W̃ = D−1/2WD−1/2, whose eigenvalues are
located in the interval [−1,1];

• the normalized Laplacian matrix L̃ = D−1/2LD−1/2 whose eigenvalues are located
in the interval [0,2].

They are frequently favored over other matrix representations because raising them
to powers does not result in exploding eigenvalues.
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THE GRAPH SHIFT OPERATOR

We’ve explored various matrix representations for encoding a graph. But which
one should we use? The answer to this question is, perhaps unfortunately, not
unique. The choice of matrix representation depends on the specific application
– a somewhat nuanced decision. While there exists a one-to-one correspondence
between a graph’s description and each one of its matrix representations, these
matrices, despite conveying the same fundamental structural information, are
distinct algebraic entities. Consequently, they operate as fundamentally different
linear operators; indeed, in the next section, we will observe that these matrices not
only serve as descriptive tools for the graph but can also be interpreted as linear
operators acting on the graph signals defined on them.

To create a layer of abstraction, without particularizing our discussion to one single
matrix representation, we will denote with S the matrix representation of the graph
under analysis, which can be any of the introduced matrices. We will call this matrix
the graph shift operator (GSO), since it assumes a similar role as the circular shift
operator Sc ; that is, it defines the notion of locality and shift on the graph context.
Formally, given a graph G = (V ,E ,ω), the GSO is any matrix S such that Si j = 0 for
i ̸= j if ei j ∉ E . As such, matrix S captures the sparsity pattern of the network [7, 8].

A NOTION OF FREQUENCY

Frequency analysis stands as a foundational principle in signal processing, providing
the ability to break down a signal into constituent components with distinct rates
of variation, as exemplified in (2.19) for discrete scenarios. In that context, we
briefly explored the merits of this signal representation, emphasizing its utility in
comprehending signal behavior and executing filtering operations. The components
employed in that context were the eigenvectors of the circular shift Sc , oscillating
modes representing a discretized form of complex exponentials. Was the selection
of this basis a pure coincidence, or does it hold unique properties that make it
particularly advantageous among an infinite array of possible bases for expressing
signals? A possible answer resides on the study of one of the most important
mathematical objects in physics and partial differential equations: the Laplace
operator or Laplacian.

Laplacian The Laplace operator ∆ on RN is a differential operator defined as the
divergence of the gradient of a scalar function; that is, given a twice-differentiable
function f :RN →R, the Laplacian of f (·) is the real-valued function:

∆ f (x) = Ç2 f (x)

Çx2
1

+ Ç2 f (x)

Çx2
2

+·· ·+ Ç2 f (x)

Çx2
N

(2.26)

for x ∈ dom f . That is, it is given by the sum of second partial derivatives of the
function f (·) with respect to each independent variable evaluated at x; equivalently,
it corresponds to the trace of the Hessian matrix of f at x. Thus, it quantifies the
local spatial variation or curvature of a function around a specific point x.
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The significance of the Laplace operator lies in its relationships with the domain
where it is defined. Notably, it commutes with all the isometries of its domain,
such as translation and rotation. Formally we say that it exhibits equivariance under
such isometries5. Intriguingly, it can be demonstrated that all differential operators
that commute with Euclidean isometries are essentially polynomials in the Laplace
operator ∆. This implies that the algebra of differential operators with constant
coefficients, which commute with all Euclidean isometries, is isomorphic to the
polynomial algebra generated by the Laplace operator [9]. A detour on abstract
algebra here might help, but it is not the scope of this introduction, and we refer
the interested reader to [10].

This commutation property and the polynomial term should ring a bell. We have
previously seen how a special class of filters of interest, linear shift invariant filters,
can be represented as circulant matrices. We have also seen how any circulant
matrix can be written as a polynomial of the circular shift operator Sc . The shift Sc

generates the commutative algebra of LTI filters, which is a polynomial algebra [11].
Thus, the Laplace operator and the shift seem to have something in common. The
shift can be seen as an approximation of the Laplace operator in Euclidean domains.
Indeed, it turns out that the eigendecomposition of the Laplace operator also leads
to sinusoidal functions (in the continuous domain this time). For instance, for the
one-dimensional Laplace operator it holds:

−∆e j 2πξx =−Ç
2e j 2πξx

Çx2 = (2πξ)2e j 2πξx . (2.27)

In other words, the complex exponentials are eigenfunctions of the Laplace operator
with associated eigenvalue (2πξ)2. In classical Fourier analysis, the term (2πξ)2

carries the notion of frequency: for ξ close to zero (low frequency), the associated
eigenfunction e j 2πξx is smooth, i.e., it exhibits a low-oscillating behavior; increasing
ξ renders such eigenfunctions increasingly oscillating. Using these eigenfunctions
(or a discretization thereof) as a basis to express signals constitutes the pillar of
frequency-based signal processing.

Does the Laplacian matrix introduced for representing graphs incorporate a concept
of frequency analogous to that of the Laplace operator? In other words, do
the eigenvectors of the Laplacian matrix constitute a basis that exhibits a notion
of variation analogous to that of the Laplace operator in continuous (Euclidean)
domains? If that is the case, we might use this basis to represent signals on
graphs, and we would have a signal decomposition similar to that of classical signal
processing. The answer is affirmative as we will show now.

First, notice that L is a symmetric matrix, and as such, for the spectral theorem, it
admits the eigenvalue decomposition:

L = VΛV⊤ (2.28)

where V = [v0, . . . ,vN−1] is a square matrix of orthogonal eigenvectors, i.e.,
V⊤V = VV⊤ = IN and Λ = Diag(λ) is the diagonal matrix of real eigenvalues
λ= [λ0,λ1, . . . ,λN−1]⊤; specifically we have 0 =λ0 ≤λ1 ≤ . . . ≤λN−1.

5This property is in many texts confusingly called as invariance.
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We show now that different eigenvectors of the Laplacian showcase diverse levels
of variation across their respective domains. What does the variation mean in the
context of graphs? It is pertinent to recall that the Laplace operator ∆ [cf. (2.26)]
acting on a function f evaluated at point x captures the smoothness of f around
that point. In the context of graph signals, applying the Laplacian L to a signal x
yields a new graph signal y, where the i th component yi at the i th node is given by:

yi = di xi −
∑

j∈N (i )
Wi j x j (2.29)

where we recall that di represents the degree of node i . This represents a
quantification of the "curvature" in the vicinity of node i . It is important to note that
a yi value of 0 does not necessarily imply xi = x j for all j . Furthermore, our interest
typically extends to evaluating the overall smoothness of the graph signal. Therefore,
a metric for assessing this global smoothness is provided by the Laplacian quadratic
form, which, for a given graph signal x and a given Laplacian L, is defined as:

LQ(x,L) := x⊤Lx = ∑
(i , j )∈E

Wi j (xi −x j )2 (2.30)

It measures the squared value difference among adjacent nodes of the graph. It
is clear how LQ(x,L) = 0 if and only if xi = x j∀i , j ∈ V , i.e., if the graph signal is a
constant vector. The higher the weight Wi j connecting nodes i and j , the bigger the
impact of the difference between the node values.

Notice that the eigenvectors {vi }N−1
i=0 can be viewed as signals defined over the graph

Laplacian. Thus, we can assess their level of variation according to (2.30). It is easy
to show that:

LQ(vi ,L) := v⊤i Lvi =λi v⊤i vi =λi (2.31)

that is, each eigenvector vi exhibits a graph variation equal to its associated
eigenvalue λi . Because we have λi ≤ λ j for i < j it follows that eigenvectors
with smaller eigenvalues are smoother with respect to the underlying domain than
eigenvectors associated to higher eigenvalues. Fig. 2.8 show the 1st, the 2nd and the
20th eigenvectors of the Laplacian associated to the Minnesota road graph; we can
see how the first eigenvector is the constant signal (associated to λ0 = 0), while the
2nd and the 20th exhibit higher variability on the graph, equal to their associated
eigenvalues, in this case λ1 = 8.4×10−4 and λ19 = 1.8×10−2, respectively. It does not
seem then too exotic to start thinking about a Fourier-like theory for data defined
on graphs, and to think about the eigenvalues as graph frequencies. We will talk
more about this in the next section, but first, we spend two more words on some
Laplacian properties.

From the definition of L [cf. (2.25)], we have that each row (and column) of L sums
to 0, i.e., L1 = 0. This means that any constant vector is always an eigenvector of L
with associated eigenvalue 0. This makes sense: a constant vector is a signal which
does not exhibit any variation on the graph, and as such LQ(·,L) = 0. Moreover,
it can be shown that the multiplicity of the eigenvalue 0, that is, the number of
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Figure 2.8: Minnesota road graph: 1st, 2nd and 20th eigenvectors of the graph
Laplacian as color-coded signals: darker colors indicate lower values.

eigenvectors with associated eigenvalue equal to 0, reveals the number of connected
components of the graph; thus by simple inspection of the EVD we can determine
whether the graph is connected or not.

2.3. SPECTRAL ANALYSIS AND GRAPH FILTERING
We have observed how the eigenvectors of the Laplacian matrix carry a concept
of variation akin to that of the Laplace operator and circular shift. Eigenvectors
corresponding to higher eigenvalues exhibit greater variability when interpreted as
signals on the graph. Similar to the circulant shift Sc , which could be interpreted as
the adjacency matrix of a graph, it is possible to show that also the eigenvectors of
W can be understood as frequency modes. Without any loss of generality, for the
rest of the chapter, we consider a general GSO S, where we assume it admits the
eigenvalue decomposition:

S = VΛV−1 (2.32)

where V is the square N ×N matrix whose i th column is the eigenvector vi of S, and
Λ= Diag(λ) is the diagonal matrix containing the eigenvalues λ= [λ0, . . . ,λN−1]⊤. For
undirected graphs, since S is real symmetric, we can choose the eigenvectors to be
real and orthonormal, such that V−1 = V⊤.

Definition 2.3.1. The projection of a graph signal x onto the the eigenvectors V of the
GSO S, denoted with x̂, is called graph Fourier Transform (GFT). Mathematically, it is
obtained with the following operation:

x̂ = V−1x. (2.33)

We will often refer to x̂ as the GFT signal, which represents the spectral representation
of the graph signal x when expressed in the basis V. Since V is invertible, x can be
synthesized by means of the inverse GFT (iGFT), defined as:

x = Vx̂ =
N−1∑
n=0

x̂n vn . (2.34)

That is, a graph signal is expressed as the linear combination of the GSO eigenvectors
vi , where the weight is given by the spectral coefficient x̂i of the signal at that
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particular eigenvalue λi . The inverse DFT in (2.19) can be seen as a particular case
of (2.34) when S is a circulant matrix. Fig. 2.9(left) shows a graph signal x which
is given by the linear combination of the first 400 eigenvectors; the weights of such
linear combination are shown in 2.9(right). As we can notice, many of the GFT
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Figure 2.9: (Left) A graph signal x and (right) its GFT representation x̂. The signal x
is given by a linear combination of the first 400 eigenvectors of the GSO
S, thus making it a low-pass signal.

coefficients are zeros: in this case we say that the graph signal x is sparse in the
frequency domain. Sparse signals find use in numerous applications, such as data
compression and signal denoising.

In section 2.1.1, we discussed how the set of shift-invariant filters, responsible for
performing convolution operations, is determined by polynomials involving shifts;
that is, every element H(p,Sc ) of the set can be generated by varying the polynomial
coefficients collected in p. As expected, this concept also applies within the context
of graphs for a general S. We will reach this conclusion through a different path,
notably stemming from the frequency domain and then returning to the vertex
domain. We exemplify this with a practical demonstration. Keep in mind that since
S is (in general) not circulant, also the matrix representation of the filter will not be
circulant.

SPECTRAL FILTERING

Let us assume that the graph signal x of Fig. 2.9 undergoes some noisy process,
i.e., x = x0 +n, where x0 is the “clean” component of the signal and n ∈RN is noise
(so x0 is essentially the x of Fig. 2.9; this for notational simplicity). Fig. 2.10 shows
the GFT x̂ for the noisy graph signal x. We can directly observe how the noise
is responsible for the spectral content in the middle band, i.e., with frequency
components 2.7 ≤ λ≤ 4. We would like to process such signal to obtain its clean
version x0 back.
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If we have prior knowledge that the clean signal x0 is low-pass, we might create a
spectral filter p̂ acting on the GFT signal x̂ such that only the low-spectral content of
the signal is maintained. Let us call ŷ the filtered version of x̂; then we can perform
this spectral filtering as:

ŷ = p̂⊙ x̂ = Diag(p̂)x̂ (2.35)

where Diag(p̂) is the matrix representation of the filter in the frequency domain and
p̂ is called graph filter frequency response; we will soon see how we can make p̂
parametric. Fig. 2.10 shows, together with the noisy GFT signal x̂, a low-pass graph
frequency response p̂ which removes the noise spectral content.
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Figure 2.10: GFT x̂ of a noisy graph signal x and graph frequency response p̂.

In other words, (2.35) shows how spectral filtering is a frequency-wise multiplication
of each graph signal coefficient x̂i and the associated graph filter response p̂i which
attenuates or amplifies x̂i .

How does this spectral operation translate in the vertex domain? By simply
computing the iGFT of ŷ, we have:

y = Vŷ = VDiag(p̂)V−1x = Hx (2.36)

where H := VDiag(p̂)V−1 is a so-called graph filter (GF), a linear operator acting on
the graph signal x in the vertex domain. The filtering operation (2.36) in the vertex
domain can then be seen as three consecutive operations acting on the signal x:
first i) the GFT x̂ of x is obtained as x̂ = V−1x; then ii) a pointwise multiplication
between x̂ and the filter frequency response p̂ is performed, obtaining a new GFT
signal ŷ; and finally iii) the new GFT signal ŷ is brought back to the vertex domain
by means of the iGFT to get y, that is, y = Vŷ. The design of the graph frequency
response p̂ is application-dependent and an entire branch of literature is devoted
to it; for a thorough discussion on graph filter design and applications, we refer
the reader to [12]. As a concluding note, the matrix-vector multiplication in (2.36)
requires O (N 2) operations, since matrix H is full in general; we will see how this cost
can be lowered by exploiting the graph structure in the next section.
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2.3.1. GRAPH CONVOLUTION

Consider again (2.36). It is visible how H is diagonalized by V, i.e., by the
eigenvectors of the GSO S. Thus the graph filter H(p) commutes with the GSO S:

HS = SH. (2.37)

Graph filters with this property are termed shift-invariant (or node-invariant in this
context) and they are the graph counterpart to the time-invariant filters defined in
Section (2.1.1), where the distinctive feature there was that the matrix representation
of the filter was circulant. This is not the case for a graph filter H, in general.

We have also seen how, upon the definition of a shift, the class of shift invariant
filters is given by matrix polynomials in the shift. Thus it seems natural to
parametrize the class of shift-invariant graph filters as polynomials of the GSO S
similar to (2.9); formally, a graph filter of order L−1 is the matrix polynomial:

H(p,S) =
L−1∑
l−0

pl Sl (2.38)

where p := [p0, . . . , pL−1]⊤ collects the L graph filter coefficients, also called graph
filter taps. Notice once again how in (2.38) we made explicit the dependence of H in
the filter taps p and S.

The application of H(p,S) to a graph signal x as in (2.36), is often called graph
convolution, as it respects the scale-shift-sum principle of the classical convolution.
To see this, it suffices to expand the terms of the sum in (2.38) to rewrite:

y = H(p,S)x = p0x+p1Sx+ . . .+pL−1SL−1x (2.39)

= p0x+p1x(1) + . . .+pL−1x(L−1) (2.40)

where we remind that x(l ) indicates the l -shifted version of the signal x. See
also Fig. 2.11 for a visualization of the graph convolution as a shift-register. This
time, due to the sparsity pattern of S, the computational complexity of the filtering
operation reduces to O (L|E |), differently from (2.36) which was O (N 2).

Figure 2.11: Graph convolution as a shift register: each shifted version x(l ) of the
signal x is multiplied with a scalar filter coefficient pl and then added
together.
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Under the parameterization (2.38), it is natural to ask: how is the graph filter
frequency response p̂ related to p? It easy to show:

H(p,S) =
L−1∑
l−0

pl Sl = V(
L−1∑
l−0

plΛ
l )V−1V(

L−1∑
l−0

plΛ
l )V−1 (2.41)

= VDiag(
L−1∑
l−0

plλ
l ))V−1 (2.42)

= VDiag(Ψp)V−1 (2.43)

where we defined Ψ as the N ×L Vandermonde matrix:

Ψ=


1 λ0 λ2

0 · · · λL−1
0

1 λ1 λ2
1 · · · λL−1

1
...

...
...

...
1 λN−1 λ2

N−1 · · · λL−1
N−1

 . (2.44)

In other words, the graph filter frequency response p̂ of a shift-invariant filter can be
expressed as a polynomial in the eigenvalues λ; explicitly:

p̂(λ0)
p̂(λ1)

...
p̂(λN−1)


︸ ︷︷ ︸

p̂

=


1 λ0 λ2

0 · · · λL−1
0

1 λ1 λ2
1 · · · λL−1

1
...

... · · · ...
1 λN−1 λ2

N−1 · · · λL−1
N−1


︸ ︷︷ ︸

Ψ


p0

p1
...

pL−1


︸ ︷︷ ︸

p

(2.45)

Graph Filter Design. The system of equations in (2.45) is fundamental in the
realm of graph filter design, as discussed in [12]. The primary objective of this
design approach is to address the following inquiry: given a desired filter frequency
response p̂ and a GSO S with eigenvalues λ, can we identify a polynomial in λ

that effectively interpolates the set of points {(λn , p̂n)}N−1
n=0 ? Under the assumption

that λi ̸= λ j ;∀i , j ∈ V , implying that all GSO eigenvalues are distinct, a polynomial
of degree at most N −1 can precisely interpolate these N points. Algebraically
speaking, achieving a perfect fit is feasible as long as p̂ ∈ C (Ψ), meaning that the
graph frequency response p̂ lies within the column space of Ψ. The dimension of
this space determines the minimum filter order required for a perfect interpolation.

GRAPH CONVOLUTION THEOREM

The findings of the previous section are diagrammatically summarized in Fig. 2.12,
representing the graph convolution theorem. It is the counterpart of the convolution
theorem for time signals introduced in Section 2.1.3; also in this case the theorem
emerges as a consequence of the joint diagonalization of the (graph) filter and the
(graph) shift operator S.

We can thus draw the following observations:
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Figure 2.12: Graph Convolution Theorem: a graph convolution in the vertex domain
is equivalent to a pointwise multiplication in the frequency domain. The
filter coefficients in the frequency domain are expressed as a polynomial
of the eigenvalues of the vertex domain.

• In the frequency domain, a graph convolution is given by a pointwise
multiplication of the GF frequency response p̂ and the GFT x̂ of the graph
signal x;

• In the frequency domain, the filter H(p,S) is a diagonal operator which
operates without mixing the signal frequency components; the elements of
such diagonal matrix, which also are the eigenvalues of H(p,S), are given by
the product of the Vandermonde matrix of eigenvalues Ψ and the graph filter
taps p. In the case of a circulant matrix, this boils down to the DFT of the
filter taps p.

Let us then compare these observations with the ones related to the standard
convolution theorem at the end of Section 2.1.3. Although there are many similarities
between the convolution theorem for time signals and graph signals, there are also
striking differences. For time signals, the matrix responsible to transform the signal
x and the filter taps p into their frequency domain representation, to obtain x̂
and p̂ respectively, is the same, namely the DFT matrix F. This is what makes
somehow the DFT matrix special: it is an eigenvector matrix made of the eigenvalues
associated to such eigenvectors. This property does not hold anymore for a general
graph domain. In this case, the matrix responsible to transform the signal x to the
frequency domain representation is the GFT matrix V−1, given by the eigenvectors
of the GSO S, while the matrix responsible to transform p to the frequency domain
representation p̂ is the Vandermonde matrix Ψ of eigenvalues [cf. (2.45)].

2.3.2. NODE-VARIANT GRAPH FILTERING

We wrap up this section by introducing a category of graph filters that will play a
pivotal role in Chapter 6, specifically the category of shift-variant filters. This category
enables a node-specific weighting scheme, thus often denoted as node-variant graph
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filters (NV-GFs) [13], representing an expansion of time-variant filters from classical
signal processing to the realm of graphs. Within the realm of NV-GFs, we discern
two variants, namely type-I and type-II, each defined in the context of a given graph
S and a fixed order L−1, as follows:

HI (P,S) =
L−1∑
l=0

Diag(pl )Sl , (2.46)

HI I (P,S) =
L−1∑
l=0

Sl Diag(pl ), (2.47)

where P ∈ CN×L collects the filter coefficients P = [p0, . . . ,pL−1] with pl :=
[pl1, . . . , pl N ]⊤ ∈ CN the l -th hop filter tap vector. The application of a NV-
GF on a signal x to obtain a new signal y will be referred to as node-variant graph
convolution.

Even though NV-GFs can implement a broader class of linear operators, they have
drawbacks. Perhaps the most important one, is that they do not commute with the
GSO S (in general), and as such are not jointly diagonalizable. Thus, the spectral
analysis of graph signals, and the graph convolution theorem, fundamental for
node-invariant GFs, are lost. At least, in the form we have seen so far. Chapter 6 will
spark new lights on it.
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2.4. LEARNING GRAPHS FROM DATA
The remainder of this chapter serves as a gentle introduction to the problem
of learning graphs from data, commonly referred to as graph topology inference,
network topology identification, or graph learning; we will use these three terms
interchangeably. While the roots of this problem can be traced back to statistical
literature, particularly in the context of hypothesis testing, it has recently garnered
renewed attention, due to the rich and explainable structure provided by network
configurations, as well as the proliferation of graph architectures such as graph
filters [14] and graph neural networks [15], which necessitate a graph for their
operations.

For a traditional introduction to network topology identification from a statistical
viewpoint, we recommend the book [16]; while from the perspective of graph signal
processing, we suggest exploring the detailed overview papers [17–19]. Within this
chapter, after illustrating and formally introducing the graph learning problem, we
present three common learning problems to provide a concrete understanding of
their implications, since they will also appear in Chapter 4.

Figure 2.13: A network process f (·) generates a series of vectors x1, . . . ,xT . The goal
is to learn the graph topology encoded by S through the knowledge of
the data {xt } and prior information on the generating process f (·).

GRAPH TOPOLOGY INFERENCE
Consider the following scenario: we have a collection of T N -dimensional vectors,
denoted as x1, . . . ,xT , generated by a graph-dependent process f (G ), where the
underlying graph G = (V ,E ,S) is unknown. Here, the term “unknown” signifies that
the edge set E is not observed, while the vertex set V is known. In this context, each
vector {xt }T

t=1 can be regarded as a graph signal on the underlying latent graph G .

Let us redirect our focus to the function f (·): what does it mean for it to be
graph-dependent? It signifies that the network’s structure, captured by the GSO
S, influences the potential interactions among the entities and, consequently, the
observed values within each graph signal xt . For example, f (·) could represent the
function "the value at a node equals the average value of its neighbors". Alternatively,
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in a more practical scenario, the function might model the dynamics of disease
transmission within a social network, where individuals with close connections are
more susceptible to infection, particularly if they share strong social ties.

The issue arises from the fact that while we may have some insight into how f (·)
operates on the graph G , the structure of G is unknown. The idea is to leverage
the observed data to infer such structure. Thus, a loose formulation for the graph
learning problem could be as follows:

Given a collection of graph signals X = [x1, . . . ,xT ] and prior information on
f (G ), learn a graph G .

This statement prompts several questions. What criteria render one graph superior
to another for interpreting the observed data? Also, should we learn a graph G

or the graph G ? The statement lacks indications of optimality or suggestions for
assessing quality. This is where mathematical modeling, the traditional approach
in signal processing, together with an empirical risk minimization formulation,
proves invaluable. The essence lies in making assumptions about the nature of
f (·), typically employing a parametric approach, and the objective is to infer the
underlying parameters. In this context, the primary parameter of interest is the
graph G , or equivalently, the shift operator S, along with other parameters θ that
potentially govern the dynamics generating the data. That is, we make the (signal)
modeling assumption:

X ∼ f (S;θ) (2.48)

where θ captures any additional parameters of f (·) which are not encoded in
the graph itself. Different functions f (·), and hence different hypotheses on the
graph-data coupling, lead to different graph learning problems.

In this view, a more formal graph learning problem would read as:

Given a collection of graph signals X = [x1, . . . ,xT ], infer a graph G , and hence
a GSO S, such that the discrepancy between f (S;θ) and X is minimized.

With some concrete examples, this formulation will be clearer. For this reason, we
now specialize f (·) to three different models, namely the Gaussian graphical model
(GGM) [20], the structural equation model (SEM), and the smoothness-based model
(SBM), which will reappear in Chapter 5.

2.4.1. GAUSSIAN GRAPHICAL MODEL

Graphical models represent a class of statistical models which make use of graphs
to encode the relationships between random variables [21, 22]. Consider a random
vector x ∈ RN following a multivariate Gaussian distribution with mean µ ∈ RN and
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covariance Σ ∈SN++, i.e.,:

p(x |µ,Σ) = 1√
(2π)N |Σ|

exp

{
−1

2
(x−µ)⊤Σ−1(x−µ)

}
. (2.49)

It can be shown that the inverse covariance matrix Σ−1, called precision matrix,
carries an important probabilistic interpretation. Specifically, it can be shown
that [23]:

Σ−1
i j = 0 ⇔ p(xi , x j | xV \{i , j }) = p(xi | xV \{i , j })p(x j | xV \{i , j }) (2.50)

that is, a zero entry in the precision matrix encodes the conditional independence
between the two random variables indexed by such entry, where the conditioning is
with respect to all the other variables. How does this relates to graphs? Given an
undirected graph G = (V ,E ,S), a random vector x is said to satisfy the undirected
Gaussian graphical model with graph G if x is distributed according to (2.49), with:

Σ−1
i j = 0 ⇔ (i , j ) ∉ E . (2.51)

In other words, the sparsity pattern of the precision matrix Σ−1, which reveals the
conditional independence between different variables, also captures the structure
of the graph G . Thus, function f (·) in (2.48) could be thought as the function
that samples vectors from the distribution in (2.49), where its precision matrix Σ−1

encodes the sparsity pattern of the graph, that is S =Σ−1. An interesting problem
is then to learn G from vectors which are (assumed to be) sampled from such
distribution, a GGM hypothesis.

Because we are into the realm of probability, when x in (2.49) is fixed, the probability
density function p(·) only depends on the parameters of the distribution µ and Σ.
We can then define the new function l (µ,Σ;x) := p(x |µ,Σ) where x is known: under
these lenses, function l (·) is called likelihood function6 as it represents how likely it
is for the observed x to have been drawn from a multivariate Gaussian distribution
for different µ and Σ. Finding the best parameters µ and Σ which maximize
such function, the so-called maximum-likelihood estimation (MLE), is a concept of
paramount importance in signal processing and machine learning, as it enables to
fit a probability distribution to observed data.

By maximizing the logarithm of the likelihood function7 and acknowledging the
one-to-one correspondence between the covariance matrix Σ and its inverse Σ−1, we
can maximize the log-likelihood function in terms of Σ−1, namely:

Σ−1
MLE = argmax

Σ−1
log

(|Σ−1|−1)− 1

2
(x−µMLE )⊤Σ−1(x−µMLE ), (2.52)

where µMLE is the maximum (log-)likelihood estimator of the mean µ.

6Notice that the likelihood function is not a probability density function
7The logarithm is a monotone increasing function and as such the maximizer of the function to

which it is applied does not change.



2

40 2. SIGNAL PROCESSING: TIME AND GRAPHS

Consider now the observation matrix X = [x1, . . . ,xT ], where each xi is assumed to be
distributed according to (2.49) while satisfying the GGM hypothesis (2.51). Under
the assumptions that x1, · · · ,xT are independent and identically distributed (i.i.d), we
have:

l (µ,Σ;X) = p(x1 |µ,Σ) · · ·p(xT |µ,Σ). (2.53)

In this case µMLE = 1
T

∑T
t=1 xt , and because S :=Σ−1, we can cast the graph learning

problem as:

argmin
S

− logdet(S)+ tr(SΣ̂) (2.54)

s. t. S ∈SN
++

where Σ̂ = 1
T

∑T
t=1(xt −µMLE)(xt −µMLE)⊤ is the empirical covariance matrix. This

problem is convex in S and thus yielding a unique minimum.

2.4.2. STRUCTURAL EQUATION MODEL

Structural equation modeling (SEM) refers to a general statistical modeling technique
for multivariate data which is widely adopted in several different disciplines, such as
in social sciences [24], psychology [25] and genetics [26]. The popularity of SEM is
mainly due to its ease of use and the ability to capture the influence of exogenous
factors as well as causal effects for the variable of interest [27] (although we should
point out that the latter interpretation has been a cause of concern [28]).

Given an observation vector x ∈ RN , SEM poses a linear dependence between the
signal value xi and two other sets of variables: the signal values {x j } j ̸=i , representing
endogenous variables, and exogenous variables {ui }N

i=1. Formally:

xi =
∑
j ̸=i

Wi j x j +Bi i ui +ei , (2.55)

where Wi j weights the influence that node j exerts on node i , Bi i encodes the
influence of the exogenous variable for node i , and ei captures the unmodeled
disturbances.

Because Wi i = 0 and because Wi j captures the relationship between variables i and
j , it seems natural to interpret the overall matrix of weights W, with the (i , j )th entry
equal to Wi j , as a weighted adjacency matrix of an interaction graph. Thus (2.55)
endows a notion of “neighborhood regression”. By considering the matrix W to be
the GSO S, i.e., S = W, the matrix-vector form of (2.55) becomes:

x = Sx+Bu+ e (2.56)

where B = Diag([B00, . . . ,B(N−1)(N−1)]). This formulation corresponds to f (S;θ)
in (2.48) for SEM.

Upon availability of multiple observation vectors X = [x1, . . . ,xT ], viewed as graph
signals residing over a latent graph described by the GSO S which obey a SEM model
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as in (2.56) yet without exogenous variables, a graph topology identification problem
can be casted as the following least squares problem:

argmin
S

∥X−SX∥2
F + g (S) (2.57)

s. t. S ∈S

where S = {S|Diag(S) = 0,Si j = S j i , i ̸= j }, i.e., it is the set of hollow symmetric
matrices, and g (S) is a regularizing term enforcing S to have desired properties, such
as sparsity.

2.4.3. SMOOTHNESS-BASED MODEL

In Chapter 2 we have seen what it means for a graph signal x to be smooth on top
of a graph with a given Laplacian L; namely the Laplacian quadratic form LQ(x,L)
has a small value [cf. (2.30)]. Although this concept of variation can be explained
in deterministic terms, it can also be casted as a probabilistic model under the lens
of factor analysis. Given a vector x ∈ RN , factor analysis expresses each variable xi

as the combination of K < N unobserved common factors x̂0, . . . , x̂K−1, which are the
same for all i = 0, . . . , N ; in matrix-vector form:

x = Vx̂+µ+e (2.58)

where V ∈RN×K is the matrix of factor loadings, µ ∈RN is the mean vector of x, i.e.,
µ = E[x], and e is the vector of so-called specific factors, which we assume to be
white noise with isotropic variance σ2, i.e., e ∼N (0,σ2I). Essentially (2.58) can be
seen as a collection of N multiple regression analysis for each variable xi , each one
having as regression coefficients the K values collected in the i th row of matrix V,
and the (common) predictors given by x̂. The term µ can be considered to collect
the intercept of each regression, and e to collect the associated noise. With modeling
assumptions on the terms in (2.58), we now see how this can be interpreted in a
GSP framework.

Assume to have a graph described by the Laplacian L and that the matrix V
in (2.58) is the eigenvector matrix of L, which admits the eigendecomposition
L = VΛV⊤. Moreover, suppose that we model the common factors x̂ to follow a
zero-mean multivariate Gaussian distribution, with covariance matrix equal to the
pseudoinverse of Λ, i.e.,:

x̂ ∼N (0,Λ†). (2.59)

Then, it follows that:

x ∼N (µ,L† +σ2I), (2.60)

x | x̂ ∼N (Vx̂+µ,σ2I), (2.61)

It is easy to see how the energy of the signal x is mainly gathered in the
low-frequency components. Indeed, from (2.59), we observe that the factor x̂i has
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a variance equal to 1/λi : since for the Laplacian L holds λi ≤ λi+1, we have that
on average the energy of x̂i is higher than the energy of x̂i+1; thus because lower
eigenvalues are associated to smoother eigenvectors, such a signal model promotes
the smoothness of the graph signal x. An alternative view of seeing this is given by
observing that a signal x obeying (2.60) can be generated as filtering white Gaussian
noise n ∼N (0,I) with a low-pass filter:

x = (VΛ†V⊤)n+e (2.62)

where the graph filter has non-increasing values along the diagonal, i.e.,
ĥ(λi ) = 1/

√
λi . This represents the modeling formulation f (S;θ) of (2.48).

Nevertheless, we have yet to observe any term indicative of the LQ, i.e., LQ(x,L),
which characterizes the inverse problem.

Given an observation x and the prior on the common factors x̂, the maximum a
posteriori (MAP) estimation of x̂ reads as:

x̂MAP(x) := argmax
x̂

p(x̂ | x) (2.63)

= argmax
x̂

p(x | x̂)p(x̂) (2.64)

= argmin
x̂

− log p(x | x̂)− log p(x̂) (2.65)

By substituting (2.59) and (2.61) into (2.65), we reach:

x̂MAP(x) = argmin
x̂

∥x−Vx̂∥2
2 +κx̂⊤Λx̂ (2.66)

where κ endows a constant parameter for notational simplicity. While the first term
in (2.66) is a data fidelity term trying to minimize the noise e, the second encodes
smoothness properties. To see this, we use the change of variable y = Vx̂; then,
solving (2.66) is equivalent to solving:

yMAP = argmin
y

∥x−y∥2
2 +κy⊤Ly (2.67)

where we finally get the MAP estimate as x̂MAP(x) = V⊤yMAP. Problem (2.67) can then
be seen as the one which tries to find a noise-free version of the observed signal x
which is also smooth on the graph L; the smoothness measure is encoded by the
second term of (2.67).

In the context of graph topology inference, we are given multiple observation vectors
X = [x1, . . . ,xT ] and the goal is to learn a graph encoded by the GSO S = L such
that the observed signals are as smooth as possible. Thus, graph learning under a
smoothness prior can be casted as:

argmin
S

1

T
tr(X⊤SX)+ g (S) (2.68)

s. t. S ∈S

where the term g (S) accommodates for additional topological properties (e.g.,
sparsity) and also helps avoiding the trivial solution S = 0. The set S represents, in
this case, the set of Laplacian matrices.
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2.5. CONCLUSIONS
This chapter provided the foundational mathematical knowledge necessary for
comprehending the subsequent chapters. Initially, we introduced fundamental
concepts such as shift, convolution, and (shift-invariant) filters within the time-
domain. Exploring the definition of the shift operator, we observed how the class
of shift-invariant filters can be expressed as a polynomial of this operator, thereby
demonstrating its commutative property with the shift. When considering the
circulant shift (represented by the lower delay matrix), we noted that its eigenvalues
correspond to the N complex roots of unity, defining the concept of frequency.
Furthermore, we identified that the eigenvectors coincide with the inverse DFT
matrix. Building upon this insight, we derived the convolution theorem, where the
multiplication of a circulant matrix and a vector implements the DFT of the vectors,
facilitating a pointwise multiplication in the frequency domain. Subsequently, we
formally introduced graph concepts, including their representation matrices and the
formal definition of a signal on a graph. Similar to the time domain, when we
select a graph shift operator (GSO), we observe that the entire class of shift-invariant
graph filters can be expressed as a polynomial of this GSO. In this case as well, the
eigenvalue decomposition of the shift reveals a notion of frequency, leading to a
graph Fourier transform and a graph convolution theorem. Viewing standard signal
processing through these lenses, we can see it as a specific case of graph signal
processing when the shift operator is a circulant matrix. Moving on to the second
part of the chapter, we illustrated the problem of (static) graph topology inference.
This problem aims to learn the edge connectivity of the graph from the available
nodal data. We concretely discussed three different inference problems commonly
encountered in the literature, namely the Gaussian graphical model, the structural
equation model, and the smoothness-based model, which differ on the hypothesis
behind the graph-dependent generative process of the data.

With this groundwork laid, we are now prepared to formally introduce the problems
studied in this dissertation, along with the corresponding technical contributions
aimed at addressing these challenges.
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3
ADVANCES IN GRAPH SIGNAL

PROCESSING

This chapter serves as a gentle introduction to the contributions offered by this
Ph.D. dissertation. Rather than delving deeply into the mathematical intricacies, the
objective of this chapter is to offer the reader a broad overview of the problem, along
with a concise explanation of the approach or innovative ideas proposed to address
it. Our aim is to ensure that each contribution is accessible to a diverse audience,
irrespective of their background knowledge. Each contribution is further explored
in its respective dedicated chapter, providing a more thorough examination. For
the convenience of the reader, each section commences with an illustrative image
capturing the essence of the research challenge addressed in the upcoming chapter,
accompanied by a descriptive caption outlining the problem.

3.1. GRAPH TOPOLOGY AND FILTER TAP ESTIMATION

Figure 3.1: The learning problem: given input-output graph signal pairs {(xt ,yt )}T
t=1

learn the filter taps p and the GSO S which parameterize the graph filter
H(p,S), with the prior knowledge of the sparsity pattern of S.

In Chapter 2, we introduced the concept of graph convolution, implemented by
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a graph filter. Specifically, a graph filter of order L −1 is represented by the matrix
polynomial:

H(p,S) =
L−1∑
l=0

pl Sl , (3.1)

where p = [p0, . . . , pL−1]⊤ denotes the filter taps. For a fixed S, the number of free
parameters in H(p,S) is equal to L, the length of the filter. This makes graph
filters an attractive model to capture network dynamics in graph-based scenarios,
especially when dealing with input-output data. Despite their limitation in terms of
potential linear mappings compared to a general linear operator of dimension N 2,
graph filters introduce an inductive bias, requiring less data to fit the model. Thus,
in scenarios where the graph is known, individuals often adopt a supervised learning
approach to learn the filter taps using such input and output data. Consequently,
upon the arrival of new input data, predictions can be made for the associated
output data.

However, there are instances where only the support of the graph is known, meaning
only the binary adjacency matrix specifying which nodes are connected (and not
their strength), is known. This is frequently encountered in brain networks where
only a structural connectome is available, or in hydraulic networks where only
the connections between pipes are known but not their capacities. Additionally,
different GSOs possess distinct spectral properties and interpretations, presenting
an intriguing challenge to determine the most suitable GSO that aligns with the
available data.

PROPOSED APPROACH

Hence, our objective is as follows: given input-output graph signal pairs {(xt ,yt )}T
t=1,

we aim to capture the network dynamics using a graph filter H(p,S); precisely,
our aim is to simultaneously estimate the filter taps p and the GSO S that most
accurately represent these network dynamics, with only the sparsity pattern of the
graph at our disposal. A possible optimization problem would then read as:

p,S = argmin
p,S

T∑
t=1

l
(
ỹ,yt

)
(3.2)

s.t. S ∈S

supp(S) ⊆A

where l (·, ·) represents a loss function capturing the discrepancy between the
predicted output signal ỹ = H(p,S)xt and the true output signal yt , S represents the
set of valid GSOs and A denotes the set with the known support of S.

In Chapter 4, after recognizing the non-convexity of the problem, we propose an
iterative alternating minimization (AM) scheme, where the non-convex portion of the
problem is solved through a sequential convex approximation (SCA) approach [1].
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Figure 3.2: The time-varying graph topology identification problem: a network
process f (·) generates a series of vectors x1,x2, . . .. The goal is to
learn the time-varying graph topology encoded by the sequence S1,S2, . . .
through the knowledge of the data {xi } and prior information on the data
generating process f (St ,θ) [cf. (2.48)].

3.2. TIME-VARYING GRAPH TOPOLOGY INFERENCE
In Section 2.4 of Chapter 2, we explored the significance of learning graphs
in network science and how we can systematically address this challenge using
mathematical optimization techniques. Specifically, we investigated how different
assumptions about the data, such as Gaussianity or smoothness, give rise to distinct
optimization problems, each tailored to specific applications. A common thread
among these approaches is that, despite the possibility of observing different vectors
x1, . . . ,xT over a temporal horizon, the underlying graph S is presumed to remain
constant. In other words, the graph topology is considered static, and the overall
learning framework is referred to as static graph topology identification.

However there are plenty of real-world scenarios where such immutability property
does not hold. Examples include:

• Functional connectivity networks: the graph models the functional connectivity
between different brain regions, such as the prefrontal cortex, the amygdala or
the hippocampus. This connectivity is time-varying, since the brain networks
responds differently to different stimuli or tasks. If the time horizon is long
enough, such changes are also due to brain development and aging, or due to
neuropsychiatric disorders.

• Correlation networks, which represent random variables of interest as vertices,
with connections between them determined by the correlation coefficient
of those variables. This is exemplified in graphs depicting stock market
correlations among various assets, which are notably impacted by geopolitical
events and consequently evolve over time.

• Mobile networks, where each node is designated as either a base station or a
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mobile user, and the edges symbolize the signal strength between a user and
their respective assigned base station. Due to user mobility, the signal strength
fluctuates, and in certain instances, a user switches to a new base station, thus
creating a new edge.

In all these examples the graph topology changes over time. The class of problems
and the associated techniques concerning the identification of a time-varying network
structure (from data) are known as time-varying graph topology identification.

One potential approach to tackle this problem involves considering each graph
signal xt as associated with an unknown graph Gt = {V ,Et ,St }, , where t ∈N+ serves
as a discrete time index, as depicted in Fig. 3.2. This is akin to having a sequence
of latent graphs {Gt = {V ,Et ,St }}∞t=1 generating the graph signals {xt }∞t=1 according to
some graph- and time-dependent process, i.e., :

xt = f (St ;θ) (3.3)

with θ capturing model-dependent parameters. This modeling approach also
encompasses the scenario where the graph remains constant across multiple time
instants.

We consider an additional challenge: the signals arrive in an online (or streaming)
fashion. That is, we need to process the data on-the-fly, thus avoiding a
batch-strategy. This requires an algorithm capable of digesting information in a
timely manner.

PROPOSED APPROACH

Mathematically, our goal is to solve the sequence of time-invariant problems:

S⋆t := argmin
S

F (S; t ) t = 1,2, . . . (3.4)

where function F (·; t ) is a time-varying cost function that depends on the data
model, i.e., the assumption that we make on the generative process of the data [cf.
Section 2.4], and the index t makes the dependence on time explicit, which is due
to the arrival of new data. In relation to the models explored in Chapter 2, the
optimization problem (3.4) could be the time-varying counterpart of (2.54), (2.57)
and (2.68), aiming to (informally) revert the data generating process f (·;θ).

Solving (3.4) exactly for any t not only might be computationally expensive, since
it involves running a solver multiple times, but it might also be unnecessary.
Indeed, the sequence of solutions is time-varying and so we are more interested in
following the general graph dynamics. Moreover, we are not taking into account that
consecutive solutions are, in general, also similar. This is why we adopt an iterative
scheme to solve (3.4) for each t which approximates the optimal solution, which
is based on novel time-varying convex optimization tools taking into account the
time-dependence of the cost function [2]. We provide an in-depth treatment of this
problem and the relative solution in Chapter 5.
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Figure 3.3: A generalization of the convolution theorem: a type-I NV-GF HI (P,S)
in the vertex domain is equivalent to a type-II NV-GF HI I (P̂,S f ) in the
frequency domain.

3.3. A GENERALIZATION OF THE CONVOLUTION THEOREM

In Chapter 2 we have seen the convolution theorem, which could be informally
stated as:

“A convolution in one domain is equivalent to a pointwise
multiplication in the other domain”

This theorem applies in both classical signal processing and graph signal processing.
Indeed, we have observed how classical signal processing can be viewed as a
particular instance of graph signal processing when the graph shift operator S takes
the form of a circular shift Sc (or any other circulant matrix).

However, under what conditions does the theorem hold? For a given shift
operator S, the convolution theorem holds true when the filter H and the shift S
commute, meaning HS = SH, a property known as "shift-invariance". This condition
is equivalent to having S and H jointly diagonalizable, indicating they share the
same eigenvectors. Additionally, we have explored how H can be expressed as a
polynomial of S, with the coefficients of such polynomials representing the filter
taps. These filters are considered "isotropic": in the temporal domain, this implies
time-invariance where the filter remains constant when applied at different time
instants; on a graph, this translates to node-invariance, meaning each node assigns
weights to nodes in different hops using the same coefficient as any other node.

Although these modeling choices are appealing from an analytical perspective,
due to an intuitive frequency interpretation, they pose restrictions or may even
present infeasible solutions for certain real-world systems. This is particularly
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evident in scenarios such as underwater communications or high-mobility systems,
where the channel between input and output signals exhibits significant time
variation. Consequently, assuming a static filter response would result in suboptimal
signal processing designs. In such cases, time-varying filters are often employed,
representing a broader class of operators that also encompasses time-invariant filters.

The graph-based counterpart to time-varying filters are node-varying graph filters
(NV-GFs) [see Section 2.3.2], wherein each node of the graph applies a distinct
coefficient to weigh the values of its neighbors during the shifting operation. Due to
the lack of joint diagonalizability with the GSO S, the elegant spectral interpretation
provided by the graph convolution is lost. Nevertheless, in Chapter 6 we are able
to propose a new convolution theorem which generalizes the classical one, and that
can be informally stated as:

“A node-variant graph convolution in one domain is equivalent to
another node-variant graph convolution in the other domain.”

This statement should however raise a question: what does it mean to have a graph
convolution in the frequency domain if we do not have a graph in frequency? Indeed
remember from Section 2.3 that the support of the frequency domain is given by the
eigenvalues λ of the GSO S, which are a mere discretization of the real line R or
complex plane C; see Fig 3.4 for a GFT signal supported on λ.

Figure 3.4: A GFT signal residing on a discretization of the real line.

A recent line of work [3, 4] posits the existence of a graph, termed dual graph
and denoted with S f , capturing the structure of the frequency domain (see also
Fig. 3.5). The motivation behind this line of research relies on the fact that
classical signal processing tasks usually performed in the frequency domain, such as
frequency-shifting, do not have their counterpart in GSP. Furthermore, given that
a graph signal is inherently associated with a graph structure, it is desirable to
establish a corresponding Fourier representation that is also inherently linked to a
graph structure.

We make use of this notion to generalize the convolution theorem as we informally
stated above, where a node-variant graph convolution in the primal domain with
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Figure 3.5: Illustrative example of primal GSO S and dual GSO S f , which capture the
structure of the vertex and frequency domain, respectively.

a type-I NV-GF HI (P,S) is equivalent to a node-variant graph convolution in the
dual domain with a type-II NV-GF HI I (P̂,S f ), under a specific parametrization of
the filter coefficients P. We show how the classical convolution theorem in (graph)
signal processing and the one related to time-varying filters are specific cases of
this general convolution theorem. After discussing its implications in terms of
non-stationarity, we propose a data-driven graph learning approach to learn a dual
graph S f from data such that it respects the introduced convolution theorem. We
provide an in-depth treatment of this in Chapter 5.

3.4. CONCLUSIONS
In this chapter, we provided an introductory overview of the problems object of
discussion in this dissertation and the proposed algorithmic solutions. Without
further extending our discussion, in Chapter 4 we will devise a data-driven
methodology to jointly estimate the filter taps and the GSO weights (the constituents
of a graph filter), from input-output data. Following that, in Chapter 5, we will study
the challenge of learning time-varying graphs from online data and propose an
algorithmic approach to solve it. Lastly, in Chapter 6 we will study the convolution
theorem and propose its extension to shift-variant filters.
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4
TOPOLOGY-AWARE JOINT GRAPH

FILTER AND EDGE WEIGHT

IDENTIFICATION FOR NETWORK

PROCESSES

Data defined over a network have been successfully modelled by means of graph filters.
However, although in many scenarios the connectivity of the network is known, e.g.,
smart grids, social networks, etc., the lack of well-defined interaction weights hinders
the ability to model the observed networked data using graph filters. Therefore, in
this paper, we focus on the joint identification of coefficients and graph weights
defining the graph filter that best models the observed input/output network data.
While these two problems have been mostly addressed separately, we here propose
an iterative method that exploits the knowledge of the support of the graph for the
joint identification of graph filter coefficients and edge weights. We further show that
our iterative scheme guarantees a non-increasing cost at every iteration, ensuring a
globally-convergent behavior. Numerical experiments confirm the applicability of our
proposed approach.

4.1. INTRODUCTION
The increasing amount of networked data, also conceptualized as graph signals

within the graph signal processing (GSP) field [2, 3], has gained a lot of attention
in the scientific community. Due to this, many signal processing tasks have been
adapted towards their networked counterpart, as extensively detailed in [4].

In the graph setting, it is common to parameterize network processes through
graph filters, due to their versatility and their natural distributed implementation
[5] [6]. They play an important role within GSP, with applications ranging from

Parts of this chapter have been published in the International Workshop on Machine Learning for
Signal Processing (2020) [1].
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reconstruction [7] [8] [9], denoising [10] and classification [11], to forecasting [12]
[13] and (graph-)convolutional neural networks [14]. Notable recent advances in such
structures are [15], which generalizes state-of-the-art graph filters to filters where
every node weights the signal of its neighbors with different values, and [16], which
extends the classical problem of blind system identification or blind de-convolution
to the graph setting.

Given the structure of the graph, encoded by the so-called graph shift operator (GSO)
[3], and assuming a process modelled by a graph filter, identifying an underlying
network process from input/output networked data amounts to estimate the graph
filter coefficients, thus alleviating the estimation workload [3] [17]. A key assumption
in graph filtering is the knowledge of the GSO, which can be obtained from some
other field of research or can be estimated from historical data. The latter relates to
network topology inference or graph learning which, in recent years, has experienced
an exponentially-increasing scientific interest, see, e.g., [18–20].

Related to the scenario we are going to consider, there are also works that model
the observed signal as the output of an unknown graph filter over an unknown
graph. In [21], a two-step GSO identification approach is taken, where first the
GSO’s eigenvectors are identified from the diffused (stationary) graph signals and
then the GSO’s eigenvalues are estimated based on some general properties of the
GSO. In [22], the work of [21] is extended to non-stationary graph signals, entailing
the solution of a system of quadratic matrix equations. Using the same approach,
the problem of directed network topology identification is investigated in [23]. Note,
though, that none of these above works focuses on estimating the related graph
filter. More similar to our work, is the approach of [24], where not only the GSO but
also the filter taps are learned. Although the context of [24] is different, in that work,
a general linear filter operator is estimated from the data and then both the GSO
and the filter taps are estimated from it.

All the previous approaches rely on a multi-step algorithm and only exploit some
general properties of the GSO, e.g., sparsity. In addition, in many practical networks
such as social and supply networks, the support of the graph is a priori known, that
is, the connections between different entities of the network are already known, yet
their importance might be unknown. And this information is not directly handled
by the above algorithms.

Motivated by the above reasons, this work aims to jointly estimate the graph filter
coefficients and the weights of the network topology. This joint approach leads to
an optimization problem that is non-convex. We tackle the non-convexity of the
problem by building on sequential convex programming (SCP), a local optimization
tool for non-convex problems that leverages the convex optimization machinery.
We show that an alternating minimization between the filter coefficients and the
GSO guarantees that the objective function value at each iteration is non-increasing,
obtaining a globally convergent method.
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4.2. PRELIMINARIES
In this section, we introduce the GSP background material necessary for the rest of
the paper, including the formal definition of graph signals and the core concepts of
graph filtering and topology identification.

Graph Signal Processing We consider the case in which the data of interest live
in a non-Euclidean domain, described by the undirected graph G = (V ,E ,S), where
V = {1, . . . , N } is the set of nodes (or vertices), E ⊆ V ×V is the set of edges, and S is a
symmetric N ×N matrix that represents the graph structure. The matrix S is called
the graph shift operator (GSO) [3], whose entries [S]i j for i ̸= j are different from
zero only if nodes i and j are connected by an edge. Typical choices of the GSO
include the (weighted) adjacency matrix W [3] and the graph Laplacian L [2].

This allows us to define a graph signal, denoted by the vector x ∈RN , as a mapping
from the node set to the set of real vectors; that is, x : V → RN . In this way, xi ∈ R
is a scalar that represents the signal value at node i . Because S reflects the local
connectivity of G , the operation Sx performs at each node a local computation
enabling us to introduce the concept of filtering in the graph setting.

Graph Filters We can process a graph signal x by means of a so-called graph filter
[3] as:

y = H(h,S)x =
K∑

k=0
hk Sk x, (4.1)

where K is the order of the filter, H(h,S) is a polynomial matrix on S and
h := [h0, . . . ,hK ]⊤ is the vector that contains the filter taps. Due the locality of
S, graph filters represent linear transformations that can be implemented in a
distributed setting [21]. More formally, the output entry yi of y at node i is a linear
combination of K +1 terms: the first term is the signal value xi of node i ; the kth
term (k = 1,2, . . . ,K ) combines signal values x j from the k-hop neighbors of node i .

Topology Identification When the connections of the network cannot be directly
observed or the network is just a conceptual model of pair-wise relationships among
entities, a fundamental question is how to learn its structure from the graph signals.
Formally, consider the matrix X = [x1, . . . ,xT ] ∈RN×T that stacks column-wise T graph
signals xt residing over the network G = (V ,E ,S). The goal is to infer the latent
underlying network topology encoded in the GSO S under some optimality criterion.

This problem has been addressed in the past by means of statistical approaches,
mostly based on correlation analysis and its connections to covariance selection
and high-dimensional regression for learning Gaussian graphical models. Only
more recently, GSP postulated the network topology inference problem under the
assumption that the observed signals exhibit certain properties over the graph, such
as smoothness, stationarity or band-limitedness. The reader interested in this topic
is referred to [18] [19] [20].

Differently from the traditional topology identification setting, instead of estimating
S from X, we rely on model (4.1) and focus on a problem where given input and
output data, the values of the nonzero entries of S, i.e., the edge weights, and the
filter taps h of a graph filter H(h,S) have to be jointly identified. In Section 4.3, we
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rigorously formulate this problem and, in Section 4.4, we propose a way to efficiently
tackle it.

4.3. JOINT GRAPH FILTER AND TOPOLOGY ESTIMATION
Suppose there is an unknown network process that can be accurately modelled by a
graph filter H(h,S) where, in response to an input xt , we observe a corresponding
output yt . Such dynamics can be found for instance in social networks, where as a
result of an advertisement campaign, we may expect to observe a response of the
network’s users; or in epidemics, where the nodes of the network are cities and we
monitor the evolution of a spreading disease from one time instant to the next.

Let us assume that there are T input-output pairs available, and that we stack them
column-wise in the matrices X = [x1, . . . ,xT ] and Y = [

y1, . . . ,yT
]
, respectively. Let the

unknown filter H(h,S) be of the form in (4.1). At this point, we are ready to formally
state the problem we are going to address.

Problem Statement Given the input-output data {xt ,yt }T
t=1 and the support, A , of

the graph G , the goal is to identify the filter coefficients h and the GSO S embodied in
the graph filter H(h,S), that maps xt into yt as accurately as possible.

The above problem can be mathematically defined with a least-squares formulation
as:

argmin
h,S

∥Y−∑K
k=0 hk Sk X∥2

F

s.t. S ∈S

supp(S) ⊆A

(4.2)

where S represents the set of valid GSOs, A denotes the set with the support of G ,
and ∥ · ∥F denotes the Frobenius matrix norm. Note the (relaxed) constraint on the
support: as the sparsity pattern of the GSO might have been overestimated, we leave
it to the algorithm to optimize it, eventually shrinking to zero some unnecessary
edges. That is, we constrain only the entries of the GSO to be zero in correspondence
to the zeros of the support, leaving the other entries unconstrained (both zero and
non-zero values are admitted).

From (4.2), we can deduce that the problem is not convex. Indeed, the objective
function is made up of cross-products between the entries of S and the filter
coefficients hk , and by the power terms Sk . The overall optimization problem is
hence not convex and traditional tools of convex optimization cannot be used.

Although not directly handling the fixed-support case, the works referenced in
Section 4.1 address the estimation problem using multi-step approaches to find
S and/or h. For instance, in [24] each realization is modeled through a graph
filter-based vector auto-regressive (VAR) model, and this structure is leveraged to
first recover the graph filters Hi (h,S) representing the matrix filter taps of the VAR,
and only then to recover the shift S and the coefficients h from them. Other
approaches, such as [21] [22] are only interested in learning the shift S, while others,
such as [16], only in the filter coefficients h.

Differently from the method in [24], in the following, we introduce a globally
convergent SCP-based method to directly find both the filter taps h and the GSO S.
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To the best of our knowledge, this is the first work that jointly learns the filter taps
and the graph topology from observations.

4.4. ALTERNATING MINIMIZATION
To tackle the non-convexity of the problem and to bypass the limited flexibility of
other methods, we resort to the alternating minimization (AM) approach, acting
iteratively on h and S. The general AM pseudo-code, adapted to our case, is
reported in Algorithm 3. Notice that due to steps 3 and 4 in Algorithm 3, the cost is
guaranteed to be a non-increasing function of the iteration number. In the following,
we show how to perform step 3 and 4 of the proposed algorithm.

Given the estimate of the GSO S at the (n−1)th iteration, i.e., S(n−1), the estimation
problem at the nth iteration for the filter taps vector h, i.e., h(n), reads as:

h(n) = argmin
h

∥Y−
K∑

k=0
hk

(
S(n−1))k X∥2

F. (4.3)

Problem (4.3) is convex and boils down to the traditional linear least squares (LLS)
problem.

The solution of (4.3) is then used in the next step, i.e., step 4, to minimize the
function with respect to the constrained GSO S; that is

S(n) = argmin
S

{ f (S) := ∥Y−∑K
k=0 h(n)

k Sk X∥2
F}

s.t. S ∈S

supp(S) ⊆A

(4.4)

As problem (4.4) is not convex, we employ SCP [25], a heuristic and local
optimization method for non-convex problems that leverages convex optimization,
where the non-convex portion of the problem is modeled by convex functions that
are (at least locally) accurate.

Given the non-convex function f (S), the idea in SCP is to maintain a solution
estimate S[l ] and a respective convex trust region T [l ] ⊆RN×N over which we “trust”
our solution to reside1. Then, using a convex approximation f̂ of f , around S[l ], the
next solution estimate, S[l+1], is computed using the optimizer of f̂ in T [l ]. Typical
trust regions include ℓ2-norm balls or bounded regions.

For our case, we define as trust region the box:

T [l ] =


S ∈S ,

supp(S) ⊆A

|[S]i j − [S[l ]]i j | ≤ ρi j (l ), if (i , j ) ∈ E ̸= 0, ∀i , j ∈ V ,

(4.5)

where ρi j :Z+ →R++ is a mapping from the iteration number to the breadth of the
search for the (i , j )th entry.

1We use the superscript with square brackets to indicate the SCP iterations.
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Algorithm 1 Joint GF & GSO Identification

Require: Feasible S(0), ε> 0, A , S

1: n ← 1
2: while not converged do
3: h(n) ← argminh f

(
h,S(n−1)

)
[See Eq. (4.3)]

4: S(n) ← argminS f
(
h(n),S

)
(SCP) [See Alg. 2]

5: Check convergence (h(n),S(n),ε)
6: n ← n +1
7: end while
8: return S(n),h(n)

For the convex approximation of the function, we linearize the function f (S)
around the previous estimate S[l ] using its first-order Taylor approximation2:

f̂ [l ](S) := f (S[l ])+ tr
[
∇S f (S[l ])⊤(S−S[l ])

]
. (4.6)

We then find a feasible intermediate iterate by solving the problem:

Ŝ = argmin
S∈T [l ]

f̂ [l ](S). (4.7)

Due to the non-convexity of the cost function f (S), its value at the (feasible) point Ŝ
is not guaranteed to be lower than the one at S[l ]. Hence, to find the “best” feasible
solution S at the (l +1)th iteration, we first resort to a line search to find the optimal
scaling step size parameter αl toward the feasible descent direction ∆l := Ŝ−S[l ]; that
is,

α∗
l = argminαl∈[0,1] f (S[l ] +αl∆l ). (4.8)

Then, we compute our next solution estimate S[l+1] through

S[l+1] = S[l ] +α∗
l ∆l , (4.9)

which is feasible for the original problem as long as the set S is convex, i.e., the
update in (4.9) is a convex combination of feasible points. The specialized SCP
procedure for our problem is summarized in Algorithm 2. Note that steps 7-9
guarantee, at each iteration, the feasibility of the iterate and a non-increasing cost
function value, leading to the global convergence of Algorithm 3.

Due to the non-convexity of the cost function, the global optimality of the
solution is not guaranteed, thus the results are dependent on the initial starting
point(s) as they might lead to different local minima. Despite that in these cases
multi-start is recommended, we have found in our numerical experiments that both
the unweighted adjacency matrix, A, and the respective combinatorial Laplacian
matrix, L, are good initial iterates, i.e., S(0), for the proposed approach; they are
straightforward choices and can be computed using the support of the graph. To

2The computation of ∇S f (S[l ]) is reported in the Appendix.
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Algorithm 2 SCP

Require: S(n), h(n), {ρi j }(i , j )∈E , ε> 0
1: l ← 1
2: S[0] ← S(n)

3: while not converged do
4: Compute {ρi j (l −1)}(i , j )∈E

5: Construct f̂ [l−1](S) as in (4.6)
6: Define T [l−1] as in (4.5)
7: Ŝ ← argmin

S∈T [l−1]

f̂ [l−1](S)

8: α∗
l−1 ← argminαl−1∈[0,1] f (S[l−1] +αl−1(Ŝ−S[l−1]))

9: S[l ] ← S[l−1] +α∗
l−1(Ŝ−S[l−1]))

10: Check convergence (h(n),S[l ],ε)
11: l ← l +1
12: end while
13: return S[l ]

validate this claim, in our experiments, we generate initial GSO iterates S(0)
i , through

a method reported in the Appendix, and show their performance in the next section,
along with those of A and L.

Figure 4.1: NMSE for different settings of the true GSO type Sg and the hypothesis
GSO type Sh . The legend in each plot contains the considered GSOs for
initializing the algorithm.

4.5. NUMERICAL RESULTS
In this section, we show some numerical results obtained for identifying different
graph filters and GSOs S. In these experiments, we consider cases where the GSOs
to identify are the weighted adjacency matrix and the Laplacian. To evaluate the
correctness of our method, we first generate a random graph composed of N = 30
nodes with the GSP Toolbox [26] and construct from the graph the respective GSO S
involved in the graph filter that generates the output data. We then generate T = 500
input graph signals {xt }T

t=1 drawn from a standard normal distribution. By fixing
the order of the graph filter to K = 5, we generate graph filter taps h following a
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Gaussian distribution with zero mean and σ= 3. Finally, the output graph signals
{yt }T

t=1 are generated following (4.1).

In our experiments, we analyze two main aspects of the proposed method: i)
the convergence of the algorithm, regardless the initial starting point; and ii) the
similarity in terms of edge weights between the groundtruth GSO S and the identified
one Ŝ. To provide a fair comparison, we assume we do not know in advance the
type of GSO that generate the network process, i.e., S is not completely known a
priori. For this, we provide a guess of GSO type as input to Algorithm 1, and hope
that a proper guess leads to a good fitting. In the sequel, we denote with Sg the type
of GSO used to generate the data, and with Sh the type of GSO hypothesized. Both
types of GSOs can assume the values W and L, indicating respectively the (weighted)
adjacency matrix and the Laplacian matrix3.

As performance metric for the error evaluation, we consider the normalized MSE
(NMSE), defined as:

NMSE =
∑T

t=1

∥∥ŷt −yt
∥∥2

2∑T
t=1

∥∥yt
∥∥2

2

(4.10)

where ŷt is the predicted graph signal relative to the input xt .

Figure 4.1(a) shows the NMSE as function of the “cumulative” iteration number4,
for Sg = Sh = L. Regardless of the starting point, we observe the non-increasing
behavior of the NMSE, corroborating the global convergence of the algorithm. For
this particular (Sg ,Sh) combination, L and A are the best performing starting points
in terms of final NMSE, with L reaching convergence in just a few iterations. The
sharp steps downwards, especially noticeable in the case of A are due to the update
of the graph filter coefficients h. In this case, the other initial points are not better
that the straightforward initial guesses. Similar observations can be made from
Fig. 4.1(b). A case of GSO mismatch is shown in Fig. 4.1(c), where the data are
generated using the weighted adjacency matrix, but the algorithm is running based
on the Laplacian hypothesis. As expected, the A matrix is the best starting point.
Comparing Fig. 4.1(b) and Fig. 4.1(c), where the curves starting at A and L achieve
the same NMSE, we note how in case of matched hypotheses, the GSOs generated
through the generation procedure yield a lower error with respect to the mismatched
counterpart.

As a quantitative measure of similarity between the groundtruth and the inferred
weights, we report their Spearman correlation coefficient rs , which is a non
parametric measure of rank correlation. In particular, it answers the following
question: do edges with higher weight in the groundtruth GSO tend to have a higher
weight in the inferred one? A perfect Spearman correlation of +1 or −1 occurs
when each of the variables is a perfect monotone function of the other. In our
setting, rs = 0.74 thus confirming a strong positive correlation of the two vectors.

3Note how we don’t use here the bold notation, because both Sg and Sh are (textual) parameters of
the algorithm, in contrast to the considered GSOs starting points that are effectively matrices.

4We count all the iterations of the algorithm up to its convergence. We sum in a cumulative manner
the outer and the inner iterations of Algorithm 1.
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Moreover, as depicted in the Q-Q plot of Fig. 4.2, the quantiles of the two vectors
lie almost entirely on the straight line, allowing us to state that the weights of the
two GSOs come approximately from the same distribution. For a qualitative and
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Figure 4.2: Q-Q plot of the weights of the groundtruth GSO and the weights of the
inferred Laplacian for the case Sg = L, Sh = L

visual assessment of the method, in Fig. 4.3a and Fig. 4.3b we show, respectively,
the graphs and the weighted sparsity pattern of the groundtruth and the learned
Laplacian matrix (for Sg = Sh = L). We observe how, up to a scaling factor, the
algorithm is able to give a larger weight to those edges that are also “important” in
the original graph. All these considerations make us optimistic in the continuation
of the development and the study of the proposed approach, driving us toward its
application in more complex real-world scenarios.

4.6. CONCLUSION

In this work, we formulated and studied the problem of jointly estimating the
filter coefficients and the graph shift operator (GSO) defining a graph filter that
models the dynamics of signals defined over a network. In particular, motivated by
practical scenarios, we exploited the a priori knowledge of the sparsity pattern of the
network. We proposed an alternating-minimization approach, whose non-convex
subproblem is handled through sequential convex programming methods. As shown
in the numerical results, the proposed method is globally convergent and is able to
identify the type of GSO used to generate the data. Quantitative statistical measures
and qualitative graphics demonstrated the efficacy of the algorithm to assign higher
values to those weights that are prominent in the real graph.
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(a) Left: groundtruth graph. Right: inferred graph. The initial condition for the inferred
graph was L. The darker the edge in the graph, the higher its value.
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(b) Left: groundtruth Laplacian. Right: inferred Laplacian

Figure 4.3: (a) Graphs and (b) Laplacian matrix heatmaps for the case Sg = Sh =L
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4.7. APPENDIX
To compute the derivative ∇S f (S), let us first expand the function f (S)5:

f (S) = tr
[
(Y−H(h,S)X)(Y−H(h,S)X)⊤

]
= tr

(
YY⊤)−2tr

(
HXY⊤)+ tr

[
H⊤HXX⊤]

= tr
[
YY⊤]−2

K∑
k=0

hk tr
[

Sk XY⊤
]

+
K∑
k1

K∑
k2

hk1 hk2 tr
(
Sk1+k2 XX⊤

)
Then

∇S f (S) =−2
K∑

k=0
hk∇Str

[
Sk XY⊤

]
+

K∑
k1

K∑
k2

hk1 hk2∇Str
(
Sk1+k2 XX⊤

)
Because S is symmetric, we have to take into account its structure for the

computation of the derivative of f (S). Indeed, due to the matrix symmetry, the
overall gradient can be decomposed in:

∇S f (S) =
[
Ç f (S)

ÇS

]
+

[
Ç f (S)

ÇS

]⊤
−diag

[
Ç f (S)

ÇS

]
.

Finally, because Ç
ÇS Tr

(
Sk

) = k
(
Sk−1

)⊤
and Ç

ÇS Tr
(
BSk

) = ∑k−1
r=0

(
Sr BSk−r−1

)⊤
, we have

that the component
[
Ç f (S)/ÇS

]
of the gradient is :

Ç f (S)

ÇS
=−2

K∑
k=0

hk∇Str
[

Sk XY⊤
]
+

K∑
k1

K∑
k2

hk1 hk2∇Str
(
Sk1+k2 XX⊤

)
=−2

K∑
k=1

hk

[
k−1∑
r=0

(Sr XY⊤Sk−r−1)⊤
]
+

K∑
k1

K∑
k2

hk1 hk2

k1+k2−1∑
r=0

(Sr XX⊤Sk1+k2−r−1)⊤

4.7.1. GSO CANDIDATE GENERATION

Let the model be y = H(h,S)x for some order K of the filter. Then, a K = 1
approximation for the overall problem (4.2) is given by

y ≈ (ĥ(1)
0 I+ Ŝ1)x, (4.11)

where ĥ(1)
0 is the constant filter tap estimate related to the first order approximation,

and Ŝ1 ∈S is the respective estimate for the GSO. We assume ĥ(1)
1 = 1 to avoid the

scalar ambiguity that would otherwise arise in the term ĥ1Ŝ1. This also decouples
the filter parameters from the GSO, both of which can be estimated by LLS. This
way, a first GSO candidate S(0)

1 for the algorithm is found. Next, we consider a
second order approximation of the model

5We set h(n) to h, and H(h,S) to H, for the rest of the proof.
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y ≈ (ĥ(2)
0 I+ Ŝ2 + ĥ(2)

2 S(0)2
1 )x, (4.12)

where the variables are now ĥ(2)
0 , ĥ(2)

2 and Ŝ2, and we still assume the first filter tap

ĥ(2)
1 is equal to one. This again leads to a LLS problem which generates a second

GSO candidate S(0)
2 . We iterate this procedure by increasing the order of the filter at

each step, and maintaining the term that is linear in the GSO variable S. At the end,
we have K initial GSO candidates S(0)

1 ,S(0)
2 , . . . ,S(0)

K , which can be given as input to
Algorithm 1.
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5
LEARNING TIME-VARYING GRAPHS

FROM ONLINE DATA

This work proposes an algorithmic framework to learn time-varying graphs from
online data. The generality offered by the framework renders it model-independent,
i.e., it can be theoretically analyzed in its abstract formulation and then instantiated
under a variety of model-dependent graph learning problems. This is possible
by phrasing (time-varying) graph learning as a composite optimization problem,
where different functions regulate different desiderata, e.g., data fidelity, sparsity or
smoothness. Instrumental for the findings is recognizing that the dependence of the
majority (if not all) data-driven graph learning algorithms on the data is exerted
through the empirical covariance matrix, representing a sufficient statistic for the
estimation problem. Its user-defined recursive update enables the framework to
work in non-stationary environments, while iterative algorithms building on novel
time-varying optimization tools explicitly take into account the temporal dynamics,
speeding up convergence and implicitly including a temporal-regularization of the
solution. We specialize the framework to three well-known graph learning models,
namely, the Gaussian graphical model (GGM), the structural equation model (SEM),
and the smoothness-based model (SBM), where we also introduce ad-hoc vectorization
schemes for structured matrices (symmetric, hollows, etc.) which are crucial to perform
correct gradient computations, other than enabling to work in low-dimensional
vector spaces and hence easing storage requirements. After discussing the theoretical
guarantees of the proposed framework, we corroborate it with extensive numerical
tests in synthetic and real data.

5.1. INTRODUCTION

L EARNING network topologies from data is very appealing. On the interpretable
side, the structure of a network reveals important descriptors of the network

Parts of this chapter have been published in the IEEE International Conference on Acoustics, Speech
and Signal Processing (2021) [1] and in the IEEE Open Journal of Signal Processing (2022) [2].
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itself, providing to humans a prompt and explainable decision support system; on
the operative side, it is a requirement for processing and learning architectures
operating on graph data, such as graph filters [3]. When this structure is not readily
available from the application, a fundamental question is how to learn it from data.
The class of problems and the associated techniques concerning the identification
of a network structure (from data) are known as graph topology identification (GTI),
graph learning, or network topology inference [4, 5].

While up to recent years the GTI problem has been focused on learning static
networks, i.e., networks which do not change their structure over time, the
pervasiveness of networks with a time-varying component has quickly demanded
new learning paradigms. This is the case for biological networks [6], subject to
changes due to genetic and environmental factors, or financial markets [7], subject to
changes due to political factors, among others. In these scenarios, a static approach
would fail in accounting for the temporal variability of the underlying structure,
which is strategic to, e.g., detect anomalies or discover new emerging communities.

In addition, prior (full) data availability should not be considered as a given. In
real time applications, data need to be processed on-the-fly with low latency to, e.g.,
identify and block cyber-attacks in a communication infrastructure, or fraudulent
transactions in a financial network. Thus, another learning component to take into
account, is the modality of data acquisition. Here, we consider the extreme case in
which data are processed on-the-fly, i.e., a fully online scenario.

It is then clear how the necessity of having algorithms to learn time-varying
topologies from online data is motivated by physical scenarios. For clarity, we
elaborate on the three keywords - identification, time-varying and online - which
constitute, other than the title of the present work, also its main pillars.

• Identification/learning: it refers to the (optimization) process of learning the
graph topology.

• Time-Varying/dynamic: it refers to the temporal variability of the graph in its
edges, in opposition to the static case.

• Online/streaming: it refers to the modality in which the data arrive and/or are
processed, in opposition to a batch approach which makes use of the entire
bulk of data.

This emphasis on the terminology is important to understand the differences
between the different existing works, presented next.

5.1.1. RELATED WORKS

Static GTI has been originally addressed from a statistical viewpoint and only in the
past decade under a graph signal processing (GSP) framework [8], in which different
assumptions are made on how the data are coupled with the unknown topology; see
[4, 5] for a tutorial. Only recently, dynamic versions of the static counterparts have
been proposed. For instance, [9, 10] learn a sequence of graphs by enforcing a prior
(smoothness or sparsity) on the edges of consecutive graphs; similarly, the work in
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[11] extends the graphical Lasso [12] to account for the temporal variability, i.e., by
estimating a sparse time-varying precision matrix. In addition to these works, the
inference of causal relationships in the network structure, i.e., directed edges, has
been considered in [13, 14]. See [15] for a review of dynamic topology inference
approaches.

The mentioned approaches tackle the dynamic graph learning problem by means
of a two-step approach: i) first, all the samples are collected and split into possibly
overlapping windows; ii) only then the topology associated to each window is
inferred from the data, possibly constrained to be similar to the adjacent ones.
This modus-operandi fails to address the online (data-streaming) setting, where data
have to be processed on-the-fly either due to architectural (memory, processing)
limitations or (low latency) application requirements, such as real-time decision
making.

This line of work has been freshly investigated by [16], which considers signals
evolving according to a heat diffusion process, and by [17], which assumes the
data are graph stationary [18]. In [19], the authors consider a vector autoregressive
model to learn causality graphs by exploiting the temporal dependencies, while [20]
proposes an online task-dependent (classification) graph learning algorithm, in
which class-specific graphs are learned from labeled signals (training phase) and
then used to classify new unseen data.

Differently from these works, our goal here is to provide a general (model-
independent) algorithmic framework for time-varying GTI from online data that can
be specialized to a variety of static graph learning problems. In particular, the
generalization given by the framework enables us to render a static graph learning
problem into its time-varying counterpart and to solve it via novel time-varying
optimization techniques [21], providing a trade off between the solution accuracy
and the velocity of execution. We introduce ad-hoc vectorization schemes for
structured matrices to solve graph learning problems in the context of the Gaussian
graphical model, the structural equation model, and the smoothness based model.
All in all, a mature time-varying GTI framework for online data is yet to be conceived.
This is our attempt to pave the way for a unified and general view of the problem,
together with solutions to solve it.

5.1.2. CONTRIBUTIONS

This paper proposes a general-purpose algorithmic blueprint which unifies the
theory of learning time-varying graphs from online data. The specific contributions
of this general framework are:

a) it is model-independent, i.e., it can be analyzed in its abstract form and then
specialized under different graph learning models. We show how to instantiate
three such models, namely, the Gaussian graphical model (GGM), the structural
equation model (SEM) and the smoothness-based model (SBM);

b) it operates in non-stationary environments, i.e., when the data statistics change
over time. This is possible by expressing the considered models in terms
of the sample covariance matrix, which can be then updated recursively for
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each new streaming sample with a user-defined function, which discards past
information.

c) it is accelerated through a prediction-correction strategy, which takes into
account the time-dimension. Its iterative nature enables a trade-off between
following the optimal solution (accuracy) and an approximate solution
(velocity). It also exhibits an implicit regularization of the cost function due
to the limited iteration budget at each time-instant, i.e., similar solutions at
closed time instants are obtained.

Notation: we use x(i ) and X (i , j ) to denote the i -th entry of the column vector x
and the i j -th entry of the matrix X, respectively. Superscripts ⊤ and † denote the
transpose and the pseudoinverse of a matrix, respectively, while operators tr(·) and
vec(·) denote the matrix trace and matrix vectorization, respectively. The vectors 0
and 1, and the matrix I, denote the all-zeros vector, the all-ones vector, and the
identity matrix, with dimension clarified in the context. The operators ⊗, ⊙, ⊘ and ◦
stand for Kronecker product, Hadamard (entry-wise) product, Hadamard (entry-wise)
division and Hadamard (entry-wise) power, respectively. We have [ · ]+ = max(0, ·),
where the maximum operates in an entry-wise fashion. Also, ιX (·) is the indicator
function for the convex set X , for which holds ιX (x) = 0 if x ∈X and +∞ otherwise.
Given two functions f (·) and g (·), f ◦ g (·) denotes their composition. A function f (·)
with argument x ∈ RN , which is parametrized by the time t , is denoted by f (x; t ).
The gradient of the function f (x; t ) with respect to x at the point (x; t ) is denoted
with ∇x f (x; t ), while ∇xx f (x; t ) denotes the Hessian evaluated at the same point. The
time derivative of the gradient, denoted with ∇tx f (x; t ), is the partial derivative of
∇x f (x; t ) with respect to the time t , i.e., the mixed first-order partial derivative vector
of the objective. Finally, ∥ · ∥p denotes the ℓp norm of a vector or, for a matrix, the
ℓp norm of its vectorization. The Frobenius norm of a matrix is denoted with ∥ · ∥F .
Without any subscript, the norm ∥ ·∥ indicates the spectral norm.

5.2. PROBLEM FORMULATION
In this section, we formalize the problem of learning graphs from data. In
Section 5.2.1, we introduce the static graph topology inference problem, where we
also recall three well-known models from the literature. Then, in Section 5.2.2 we
formulate the (online) dynamic graph topology inference problem.

5.2.1. GRAPH TOPOLOGY IDENTIFICATION

We consider data living in a non-Euclidean domain described by a graph G = {V ,E ,S},
where V = {1, . . . , N } is the vertex set, E ⊆ V ×V is the edge set, and S is an N ×N
matrix encoding the topology of the graph. The matrix S is referred to as the graph
shift operator (GSO) and typical instantiations include the (weighted) adjacency
matrix W [8] and the graph Laplacian L [22]. By associating to each node i ∈ V a
scalar value x(i ), we define x = [x(1), . . . , x(N )]⊤ ∈RN as a graph signal mapping the
node set to the set of real numbers.
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Consider now the matrix X = [x1, . . . ,xT ] that stacks over the columns T graph
signals generated from an unknown graph-dependent process F (·); i.e., X = F (S).
Then, a GTI algorithm aims to learn the graph topology, i.e., to solve the “inverse”
problem (not always well defined):

S =F−1(X). (5.1)

The function F (·) basically describes how the data are coupled with the graph and
its knowledge is crucial. The data and the graph alone are insufficient to cast a
meaningful graph learning problem. On one side, we need to know how the data
depends on the graph from which they are generated. On the other side, we have to
enforce some prior knowledge on the graph we want to learn.

Graph-data models. The choice of a data model is the forerunner of any GTI
technique and, together with the graph-data coupling priors (e.g., smoothness,
bandlimitedness) differentiates the different approaches. Due to their relevance
for this work, we recall three widely used topology identification methods, namely
the Gaussian graphical model [23], the structural equation model [24], and the
smoothness-based model [25].

Gaussian graphical model (GGM) assumes each graph signal xt is drawn from
a multivariate Gaussian distribution N (µ,Σ) with mean µ and positive-definite
covariance matrix Σ. By setting the graph shift operator to be the precision matrix
S =Σ−1, graph learning in a GGM amounts to precision matrix estimation, which in
a maximum likelihood (MLE) sense can be formulated as:

minimize
S

− logdet(S)+ tr(SΣ̂)

s. t. S ∈SN++
(5.2)

where Σ̂ = 1
T XX⊤ is the sample covariance matrix and SN++ is the convex cone

of positive-definite matrices. In this context, matrix S can be interpreted as the
adjacency matrix (with self loops), although the problem can also be solved under
some additional constraints forcing S to be a Laplacian [26].

Structural equation model (SEM) neglecting possible external inputs, and assuming
an undirected graph, the SEM poses a linear dependence between the signal value
xt (i ) at node i and the signal values at some other nodes {xt ( j )} j ̸=i , representing the
endogenous variables, i.e.,:

xt (i ) = ∑
j ̸=i

S(i , j )xt ( j )+et (i ), t = 1, . . . ,T (5.3)

where S(i , j ) weights the influence that node j exerts on node i , and et (i ) represents
unmodeled effects. In this view, with S encoding the graph connectivity, model (5.3)
considers each node to be influenced only by its one-hop neighbors. In vector form,
we can write (5.3) as:

xt = Sxt +et , t = 1, . . . ,T, (5.4)
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with S(i , i ) = 0, for i = 1,2, . . . , N . Also, we consider et white noise with standard
deviation σe . Graph learning under a SEM implies estimating matrix S by solving:

minimize
S

1
2T ∥X−SX∥2

F + g (S),

s. t. S ∈S
(5.5)

where S = {S|diag(S) = 0,S(i , j ) = S( j , i ), i ̸= j }, and g (S) is a regularizer enforcing S to
have specific properties; e.g., sparsity. In this context, matrix S is usually interpreted
as the adjacency matrix of the network (without self loops). The first term of (5.5)
can be equivalently rewritten as:

f (S)= 1

2T
∥X−SX∥2

F = 1

2
[tr(S2Σ̂)−2tr(SΣ̂)+tr(Σ̂)]. (5.6)

which highlights its dependence on Σ̂.

Smoothness-based model (SBM) assumes each graph signal xt to be smooth over
the graph G , where the notion of graph-smoothness is formally captured by the
Laplacian quadratic form:

LQG (xt ) := x⊤t Lxt =
∑
i ̸= j

W (i , j )(xt (i )−xt ( j ))2. (5.7)

A low value of LQG (xt ) suggests that adjacent nodes i and j have similar values xt (i )
and xt ( j ) when the edge weight W (i , j ) is high.

Thus, the quantity:

LQG (X) = 1

T

T∑
t=1

LQG (xt ) = 1

T
tr(X⊤LX) = tr(LΣ̂) (5.8)

represents the average signal smoothness on top of G , which can be rewritten as the
graph-dependent function:

f (S) = tr(Diag(S1)Σ̂)− tr(SΣ̂) (5.9)

with S = W. Building upon this quantity, graph learning under a graph smoothness
prior can be casted as:

minimize
S

f (S)+ g (S)

s. t. S ∈S
(5.10)

where the term g (S) accommodates for additional topological properties
(e.g., sparsity) and also helps avoiding the trivial solution S = 0. The set
S = {S|diag(S) = 0,S(i , j ) = S( j , i ) ≥ 0, i ̸= j } encodes the topological structure, which
coincides with the set of hollow symmetric matrices (i.e., with zeros on the diagonal)
with positive entries.

Remark 1. In [25], the authors express the smoothness quantity (5.8) in terms of
the weighted adjacency matrix W and a matrix Z ∈ RN×N+ representing the row-wise
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(squared) Euclidean distance matrix of X; i.e., tr(X⊤LX) = 1
2 tr(WZ) = 1

2∥W⊙Z∥1. This
formulation mainly brings the intuition that adding explicitly a sparsity term to the
objective function would simply add a constant term to Z. We favour (5.9) as a
measure of graph signal smoothness since it fits within our framework, as will be
clear soon. We emphasize however how the two formulations are equivalent, since Σ̂
can be directly expressed as a function of Z.

5.2.2. ONLINE TIME-VARYING TOPOLOGY IDENTIFICATION

When the graph topology changes over time, the changing interactions are
represented by the sequence of graphs {Gt = {V ,Et ,St }}∞t=1, where t ∈N+ is a discrete
time index. This sequence of graphs, which is discrete in nature, can be interpreted
as the sampling of some "virtual" continuous time-varying graph using the sampling
period h = 1. To relate our expressions to existing literature, we will make the
parameter h explicit in the formulas, yet it is important to remember that h = 1.
Together with the graph sequence {Gt }∞t=1, we consider also streaming graph signals
{xt }∞t=1, such that signal xt is associated to graph Gt . At this point, we are ready to
formalize the time-varying graph topology identification (TV-GTI) problem.

Problem statement. Given an online sequence of graph signals {xt }∞t=1 arising from
an unknown time-varying network, the goal is to identify the time-varying graph
topology {Gt }∞t=1; i.e., to learn the graph shift operator sequence {St }∞t=1 from {xt }∞t=1.
On top of this, to highlight the trade-off between accuracy and low-latency of the
algorithm’s solution.

Mathematically, our goal is to solve the sequence of time-invariant problems:

S⋆t := argmin
S

F (S; t ) t = 1,2, . . . (5.11)

where function F (·; t ) is a time-varying cost function that depends on the data
model [cf. Section 5.2.1], and the index t makes the dependence on time explicit,
which is due to the arrival of new data. Although we can solve problem (5.11) for
each t separately with (static) convex optimization tools, the need of a low-latency
stream of solutions makes this strategy unappealing. This approach also fails to
capture the inherent temporal structure of the problem, i.e, it does not exploit the
prior time-dependent structure of the graph, which is necessary in time-critical
applications.

To exploit also this temporal information, we build on recent advances of
time-varying optimization [21, 27] and propose a general framework for TV-GTI
suitable for non-stationary environments. The proposed approach operates on-the-fly
and updates the solution as a new signal xt becomes available. The generality of
this formulation enables us to define a template for the TV-GTI problem, which can
be specialized to a variety of static GTI methods. The only information required is
the first-order (gradient) and possibly second-order (Hessian) terms of the function.
In the next section, we lay down the mathematics of the proposed approach.
The central idea is to follow the optimal time-varying solution of problem (5.11)
with lightweight proximal operations [28], which can be additionally accelerated
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with a prediction-correction strategy. This strategy, differently from other adaptive
optimization strategies such as least mean squares and recursive least squares,
uses an evolution model to predict the solution, and observes new data to correct
the predictions. The considerations of Section 5.3 will be then specialized to the
different data models of Section 5.2.1 in Section 5.4, further analyzed theoretically in
Section 5.5, and finally validated experimentally in Section 5.6.

5.3. ONLINE DYNAMIC GRAPH LEARNING
To maintain our discussion general, we consider the composite time-varying function:

F (S; t ) := f (S; t )+λg (S; t ) (5.12)

where f : RN×N ×N+ → R is a smooth1 strongly convex function [29] encoding a
fidelity measure and g : RN×N ×N+ → R is a closed convex and proper function,
potentially non differentiable, representing possible regularization terms. For
instance, function f (·) can be the GGM objective function of (5.2), the SEM
least-squares term of (5.5), or the SBM smoothness measure in (5.8).

Solving a time-varying optimization problem implies solving the template problem:

S⋆t := argmin
S

f (S; t )+λg (S; t ) for t = 1,2, . . . (5.13)

In other words, the goal is to find the sequence of optimal solutions {S⋆t }∞t=1 of (5.13),
which we will also call the optimal trajectory. However, solving exactly problem (5.13)
in real time is infeasible because of the computational and time constraints. The
exact solution may also be unnecessary since by itself it still approximates the true
underlying time-varying graph. Under these considerations, an online algorithm that
updates the approximate solution Ŝt+1 of (5.13) at time t +1, based on the former
(approximate) solution Ŝt is highly desirable for low complexity and fast execution2.

5.3.1. REDUCTION

Instrumental for the upcoming analysis is to observe that the number of independent
variables of the graph representation matrix plays an important role in terms of
storage requirements, processing complexity and, most importantly, in the correct
computations of function derivatives with respect to those variables. Thus, when
considering structured matrices, such as symmetric, hollow or diagonal, we need to
take into account their structure. We achieve this by ad-hoc vectorization schemes
through duplication and elimination matrices, inspired by [30].

Consider a matrix S ∈ RN×N and its corresponding “standard” vectorization

vec(S) ∈ RN 2
. Depending on the specific structure of S, different reduction and

vectorization schemes can be adopted, leading to a lift from a matrix space to a
vector space. The following spaces are of interest.

1We use the term smoothness for functions and the term graph-smoothness for graph signals.
2Problem (5.13) also endows the constrained case, in which the function g (·) comprises indicator

functions associated to each constraint.
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h-space. If S is symmetric, the number of independent variables is k = N (N +1)/2,
i.e., the variables in its diagonal and its lower (equivalently, upper) triangular part.
We can isolate these variables by representing matrix S with its half-vectorization
form, which we denote as s = vech(S) ∈Rk . This isolation is possible by introducing

the elimination matrix E ∈ Rk×N 2
and the duplication matrix D ∈ RN 2×k which

respectively selects the independent entries of S, i.e., Evec(S) = s, and duplicates the
entries of s, i.e, Ds = vec(S). We call this vector space as the half-vectorization space
(h-space).

hh-space. If S is symmetric and hollow, the number of independent variables is
l = N (N −1)/2, i.e., the variables on its strictly lower (equivalently, upper) triangular
part. In this case, we can represent matrix S in its hollow half-vectorization form,
which we denote as s = vechh(S) ∈ Rl . This reduction is achieved by applying the

hollow elimination and duplication matrices Eh ∈Rl×N 2
and Dh ∈RN 2×l , respectively,

to the vectorization of S. In particular, Eh extracts the variables of the strictly lower
triangular part of the matrix, i.e., s = Eh vec(S), while Dh duplicates the values and
fills in zeros in the correct positions, i.e., vec(S) = Dh s. We refer to the associated
vector space as the hollow half-vectorization space (hh-space).

With the above discussion in place, we can now illustrate the general framework
in terms of vector-dependent functions f (s) for a vector s, in contrast to
matrix-dependent functions f (S), simplifying exposition and notation. However, we
underline that the information embodied in S and s is the same.

5.3.2. FRAMEWORK

We develop a prediction-correction strategy for problem (5.13) that starts from an
estimate ŝt at time instant t , and predicts how this solution will change in the next
time step t +1. This predicted topology is then corrected after a new datum xt+1 is
available at time t +1. More specifically, the scheme has the following two steps:

(1) Prediction: at time t , an approximate function F̂ (s; t +1) of the true yet unobserved
function F (s; t +1) is formed, using only information available at time t . Then,
using this approximated cost, we derive an estimate s⋆t+1|t , of how the topology
will be at time t +1, using only the information up to time t . This estimate is
found by solving:

s⋆t+1|t := argmin
s

F̂ (s; t +1). (5.14)

To avoid solving (5.14) for each t , we find an estimate ŝt+1|t by applying
P iterations of a problem-specific descent operator T̂ (e.g., gradient descent,
proximal gradient) for which s⋆t+1|t = T̂ s⋆t+1|t , i.e., s⋆t+1|t is a fixed point of T̂ . See

Appendix 5.7 for possible instances of T̂ .

In other words, problem (5.14) is solved recursively as:

ŝp+1 = T̂ ŝp , p = 0,1, . . . ,P −1 (5.15)
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with ŝ0 = ŝt . Once P steps are performed, the predicted topology is set to
ŝt+1|t = ŝP , which approximates the solution of (5.14) and, in turn, will be close to
s⋆t+1 at time t +1.

For our framework, we consider a Taylor-expansion based prediction to
approximate the first term of F (·; t +1), i.e., f (·; t +1) [cf. (5.12)], leading to the
following quadratic function:

f̂ (s; t +1) = 1

2
s⊤∇ss f (ŝt ; t )s+ [∇s f (ŝt ; t )+

+h∇ts f (ŝt ; t )−∇ss f (ŝt ; t ) ŝt
]⊤s (5.16)

where ∇ss f (·) ∈ RN×N is the Hessian matrix of f (·) with respect to s and
∇ts f (·) ∈RN is the partial derivative of the gradient of f (·) w.r.t. time t .

To approximate the second term of F (·; t +1), i.e., g (·; t +1) [cf. (5.12)], we use
a one step-back prediction, i.e., ĝ (s; t +1) = g (s; t ). This implies that ĝ (·) does
not depend on t , which in turn makes the constraint set and the regularization
term independent of time, an assumption usually met in state-of-the-art topology
identification [4]. Henceforth, we will omit this time dependency.

(2) Correction: at time t +1 the new data xt+1 and hence the cost function F (s; t +1)
becomes available. Thus, we correct the prediction ŝt+1|t by solving the correction
problem:

s⋆t+1 := argmin
s

F (s; t +1). (5.17)

Also in this case, we solve (5.17) with iterative methods to obtain an approximate
solution ŝt+1 by applying C iterations of an operator T . In other words, the
correction problem (5.17) is addressed through the recursion:

ŝc+1 =T ŝc , c = 0,1, . . . ,C −1 (5.18)

with ŝ0 = ŝt+1|t . Once the C steps are performed, the correction graph ŝt+1 is set
to ŝt+1 = ŝC , which will approximate the solution s⋆t+1 of (5.17).

Algorithm 3 shows the pseudocode for the general online TV-GTI framework.

Remark 2. We point out that the framework can adopt different approximation
schemes, such as extrapolation-based techniques, and can also include time-varying
constraint sets. The choice of approximation-scheme depends on the properties of the
problem itself along with the required prediction accuracy. For an in-depth theoretical
discussion regarding different prediction approaches and relative convergence results,
refer to [31].

5.4. NETWORK MODELS AND ALGORITHMS
In this section, we specialize the proposed framework to the three static topology
inference models discussed in Section 5.2.1. Notice that the data dependency of
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Algorithm 3 Online Time-Varying Graph Topology Inference

Require: Feasible Ŝ0, f (S; t0), P , C , operators T̂ and T

1: ŝ0 ←− ad-hoc vectorization of Ŝ0

2: for t = 0,1, . . . do
3: // Prediction
4: Initialize the predicted variable ŝ0 = ŝt

5: for p = 0,1, . . . ,P −1 do
Predict ŝp+1 with (5.15)

6: end for
Set the predicted variable ŝt+1|t = ŝP .

7: // Correction - time t +1: new data arrive
8: Initialize the corrected variable ŝ0 = ŝt+1|t
9: for c = 0,1, . . . ,C −1 do

Predict ŝc+1 with (5.18)
10: end for

Set the corrected variable ŝt+1 = ŝC

11: end for

data-driven graph learning algorithms is exerted via the empirical covariance matrix
Σ̂ of the graph signals; we have already shown this for the three considered models
of Section 5.2.1. In other words, graph-dependent objective functions of the form
F (S) could be explicitly expressed through their parametrized version F (S;Σ̂). This
rather intuitive, yet crucial observation, is central to render the proposed framework
model-independent and adaptive, as explained next.
Non-stationarity. Relying on the explicit dependence of function F (·) on Σ̂ and
envisioning non-stationary environments, we let the algorithm be adaptive by
discarding past information. That is, function F (S; t ) in (5.12) can be written as
F (S;Σ̂t ), with Σ̂t the empirical covariance matrix, up to time t , with past data
gradually discarded. This makes the framework adaptive and model-independent.
The adaptive behavior can be shaped by, e.g., the exponentially-weighted moving
average (EWMA) of the covariance matrix:

Σ̂t = γΣ̂t−1 + (1−γ)xt x⊤t t = 1,2. . . (5.19)

where the forgetting factor γ ∈ (0,1) downweighs (for γ→ 0) or upweighs (for
γ→ 1) past data contributions. For stationary environments, an option is the
infinite-memory matrix covariance update Σ̂t = t−1

t Σ̂t−1 + 1
t xt x⊤t .

5.4.1. TIME-VARYING GAUSSIAN GRAPHICAL MODEL

The GGM problem (5.2), adapted to a time-varying setting following template (5.13)
leads to:

f (S; t ) =− logdet(S)+ tr(SΣ̂t ) (5.20a)

g (S; t ) = ιS (S) (5.20b)
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where S = SN++. In this case g (·) encodes the constraint set of positive definite
matrices and the regularization parameter is λ= 1.

Since S is symmetric, we use the half-vectorization s = vech(S) ∈Rk to reduce the
number of independent variables from N 2 to k = N (N +1)/2. Then, the gradient and
the Hessian of the function f (·) in the h-space are respectively:

∇s f (s; t ) = D⊤ vec(Σ̂t −S−1) (5.21a)

∇ss f (s; t ) = D⊤(S⊗S)−1D. (5.21b)

Likewise, the discrete-time derivative of the gradient is given by the partial
mixed-order derivative [27]:

∇ts f (s; t ) = D⊤ vec(Σ̂t − Σ̂t−1). (5.22)

Note the Hessian term (5.21b) is time-independent, while the time-derivative of the
gradient (5.22) is graph-independent.

Now, by defining ŝt := vech(Ŝt) ∈Rk , we can particularize Algorithm 3 to:

• Prediction: with ŝ0 initialized as ŝ0 = ŝt , the prediction update is :

ŝp+1 =PS [ŝp −2αt (∇s f (ŝt ; t )+
+∇ss f (ŝt ; t )

(
ŝp − ŝt

)+h∇ts f (ŝt ; t ))] (5.23)

for p = 0,1, . . . ,P −1, where αt is a (time-varying) step size. Equation (5.23)
entails a descent step along the approximate function f̂ (·; t +1) in (5.16),
followed by the projection onto the convex set S ; see Appendix 5.7 for the
definition of PS (·). Then, the prediction ŝt+1|t is set to ŝt+1|t = ŝP .

• Correction: by setting ŝ0= ŝt+1|t , the correction update is:

ŝc+1 =PS

[
ŝc −βt∇ f (ŝc ; t +1)

]
(5.24)

for c = 0,1, . . . ,C −1, where βt is a (time-varying) step size. Equation (5.24)
entails a descent step along the true function f (·; t +1), followed by the
projection onto the set S . The correction ŝt+1 is finally set to ŝt+1 = ŝC .

The prediction step (5.23) instantiates (5.15) to T̂ =PS ◦ (I −αt∇s f̂ )(·), where I (·) is
the identity function I (s) = s. Similarly, the correction step (5.24) instantiates (5.18)
to T =PS ◦ (I −βt∇s f )(·). The overall computational complexity of one PC iteration
is dominated by the matrix inversion and matrix multiplication, incurring a cost of
O (N 3). A correction-only algorithm would also incur a cost of O (N 3) per iteration.
See Appendix 5.9 for details.

5.4.2. TIME-VARYING STRUCTURAL EQUATION MODEL

The SEM problem (5.5), adapted to a time-varying setting with sparsity-promoting
regularizer, leads to [cf. (5.13)]:

f (S; t ) = 1

2
[tr(S2Σ̂t )−2tr(SΣ̂t )+ tr(Σ̂t )] (5.25a)

g (S; t ) = ∥S∥1 + ιS (S) (5.25b)
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where S = {S ∈ SN |diag(S) = 0,S(i , j ) = S( j , i ), i ̸= j } is the set of hollow symmetric
matrices, and ∥S∥1 = ∥vec(S)∥1. Since S is symmetric and hollow, we operate on the
hh-space to make the problem unconstrained and reduce the number of independent
variables from N 2 to l = N (N −1)/2, through its hollow half-vectorization form
s = vechh(S) ∈Rl . In the hh-space, equations (5.25a) and (5.25b) become:

f (s; t ) = 1

2
s⊤Qt s−2s⊤σ̂t + 1

2
σ̂t (5.26a)

g (s; t ) = 2∥s∥1 (5.26b)

where Qt := D⊤
h (Σ̂t ⊗ I)Dh with ⊗ denoting the Kronecker product, σ̂t = vechh(Σ̂t ),

and σ̂t = tr(Σ̂t ). Since Qt ⪰ 0, (5.26a) is convex.
To solve the time-varying SEM (TV-SEM) problem, we derive the gradient and the

Hessian of function f (·) in the hh-space as:

∇s f (s; t ) = Qt s−2σ̂t (5.27a)

∇ss f (s; t ) = Qt (5.27b)

Notice here how the Hessian is time-varying and independent on s, differently from
the GGM case. The time derivative of the gradient is given by the partial mixed-order
derivative:

∇ts f (s; t ) = 1

h
[(Qt −Qt−1)s−2(σ̂t − σ̂t−1)] (5.28)

Now, by defining ŝt := vechh(Ŝt ) ∈Rl , we can particularize Algorithm 3 to:

• Prediction: set ŝ0 = ŝt . Then, the prediction is the proximal-gradient update:

up = ŝp −αt [∇s f (ŝt ; t )+
+∇ss f (ŝt ; t )

(
ŝp − ŝt

)+h∇ts f (ŝt ; t )] (5.29a)

ŝp+1 = sign(up )⊙ [|up |−2αtλ1]+ (5.29b)

for p = 0, . . . ,P . Equation (5.29a) entails a descent step along the approximate
function f̂ (·; t +1) in (5.16), followed by the non-negative soft-thresholding
operator in (5.29b), which sets to zero all the (negative) edge weights of the
graph obtained after the gradient descent in (5.29a). See Appendix 5.7 for the
formal definition of proximal operator, leading to (5.29a) and (5.29b). The final
prediction ŝt+1|t is set to ŝt+1|t = ŝP .

• Correction: set ŝ0 = ŝt+1|t . Then, the correction is the proximal-gradient
update:

uc = ŝc −βt∇ f (ŝc ; t +1) (5.30a)

ŝc+1 = sign(uc )⊙ [|uc |−2βtλ1]+ (5.30b)

for c = 0, . . . ,C −1. Equation (5.30a) entails a descent step along the true
function f (·; t +1), followed by the non-negative soft-thresholding operator
in (5.30b). Finally, ŝt+1 = ŝC .
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The prediction step (5.29) instantiates (5.15) to T̂ = proxλg ,αt
◦(I −αt∇s f̂ )(·). Similarly,

the correction step (5.30) instantiates (5.18) to T = proxλg ,βt
◦ (I −βt∇s f )(·). The

overall computational complexity of one PC iteration is dominated by the
computation of matrix Qt , incurring a cost of O (N 3). A correction-only algorithm
would also incur a cost of O (N 3) per iteration. See Appendix 5.9 for details.

5.4.3. TIME-VARYING SMOOTHNESS-BASED MODEL

The SBM model (5.10) adapted to a time-varying setting is:

f (S; t ) = tr(Diag(S1)Σ̂t )− tr(SΣ̂t ) (5.31a)

g (S; t ) = λ1

4
∥S∥2

F −λ21⊤ log(S1)+ ιS (S) (5.31b)

where S = {S ∈SN |diag(s) = 0,S(i , j )=S( j , i ) ≥ 0, i ̸= j } is the set of hollow symmetric
matrices. The log barrier term log(S1) is applied entry-wise and forces the nodes
degree vector d = S1 to be positive while avoiding the trivial solution. The Frobenius
norm term ∥S∥2

F controls the sparsity of the graph.
By operating in the hh-space, equations (5.31a) and (5.31b) become3:

f (s; t )= s⊤(K⊤σ̂d−2σ̂t )−λ21⊤ log(Ks)+λ1

2
∥s∥2 (5.32a)

g (s; t ) = ιR+ (s) (5.32b)

where K ∈ {0,1}N×l is the binary matrix such that d = S1 = Ks, σ̂d = diag(Σ̂t ) and
σ̂t = vechh(Σ̂t ).

To apply the proposed framework to solve the time-varying SBM (TV-SBM)
problem, we derive the gradient and the Hessian of function f (·) in the hh-space as
follows:

∇s f (s; t ) =λ1s−λ2K⊤(1⊘Ks)+zt (5.33a)

∇ss f (s; t ) =λ1I+λ2K⊤ Diag(1⊘ (Ks)◦2)K (5.33b)

where ⊘ and ◦ represent the Hadamard division and power, respectively. The time
derivative of the gradient is given by the partial mixed-order derivative:

∇ts f (s; t ) = 1

h
(zt −zt−1) (5.34)

where zt = K⊤σ̂d −2σ̂t . Now, by defining ŝt := vechh(Ŝt ) ∈ Rl , we can particularize
Algorithm 3 to:

• Prediction: with ŝ0 initialized as ŝ0 = ŝt , the prediction update is:

ŝp+1 =Ps⪰0[ŝp −2αt (∇s f (ŝt ; t )+
+∇ss f (ŝt ; t )

(
ŝp − ŝt

)+h∇ts f (ŝt ; t ))] (5.35)

3We move the log-barrier and Frobenius norm terms of g (·) function (5.31b) into the f (·) function to
fit the structure of the general template.
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for p = 0,1, . . . ,P − 1. Equation (5.35) entails a descent step along the
approximate function f̂ (·; t +1) in (5.16), followed by the projection onto the
non-negative orthant. Then, the prediction ŝt+1|t is set to ŝt+1|t = ŝP .

• Correction: by setting ŝ0 = ŝt+1|t , the correction update is:

ŝc+1 =Ps⪰0
[
ŝc −βt∇ f (ŝc ; t +1)

]
, (5.36)

for c = 0,1, . . . ,C −1. Equation (5.36) entails a descent step along the true
function f (·; t +1), followed by the projection onto the non-negative orthant.
Finally, ŝt+1 = ŝC .

The prediction step (5.35) instantiates (5.15) to T̂ = Ps⪰0 ◦ (I −αt∇s f̂ )(·). Similarly,
the correction step (5.36) instantiates (5.18) to T = Ps⪰0 ◦ (I −βt∇s f )(·). The overall
computational complexity per iteration is dominated by the computation of the
gradient ∇s f (s; t ) (or the Hessian if P > 1), incurring a cost of O (N 2) (or O (N 3) if
P > 1). See Appendix 5.9 for details.

5.5. CONVERGENCE ANALYSIS
In this section, we first discuss the convergence of Algorithm 3 and the
associated error bounds. As solver we consider the proximal gradient
T̂ = T = proxg ,ρ ◦(I −ρ∇s f )(·) [32, 33]. Then, we show how the parameters
of the three introduced models are involved in the bounds. To ease notation, we use
s ∈Rp to indicate the vectorization of matrix variable S ∈RN×N [cf. Section 5.3.1].

For this analysis, we need the following mild assumptions.

Assumption 1. The function f : Rp ×N+ → R is m-strongly convex and L-smooth
uniformly in t , i.e., mI ⪯∇ss f (s; t ) ⪯ LI, ∀ s, t , while the function g :Rp×N+ →R∪{+∞}
is closed convex and proper, or g (·; t ) = 0, for all t ∈N+.

This guarantees that problem (5.13) admits a unique solution for each time instant,
which in turn guarantees uniqueness of the solution trajectory {s⋆t }∞t=1.

Assumption 2. The gradient of function f (·) has bounded time derivative, i.e. ∃C0 > 0
such that ∥∇ts f (s; t )∥ ≤C0 ∀ s ∈Rp , t ∈N+.

This guarantees that the solution trajectory is Lipschitz in time.

Assumption 3. The predicted function f̂ (·; t +1) is m-strongly convex and L-smooth
uniformly in t ; and ĝ (·; t +1) is closed, convex and proper.

This implies that the prediction problem (5.14) belongs to the same class as the
original problem, i.e., the functions of the two problems share the same strong
convexity and Lipschitz constants m and L. Therefore, the same solver can be
applied for the prediction and correction steps, i.e., T̂ =T .

Assumption 4. The matrix S of (5.12) has finite entries, i.e., −∞< S(i , j )<+∞, for all
i , j .
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This guarantees ∥S∥ <+∞, i.e., S is a bounded operator, and it holds in practical
scenarios. In particular, it is known that (finite) weighted graphs exhibit bounded
eigenvalues, see [34][35]. Notably, if S is a normalized Laplacian, then ∥S∥=2.

Similarly, assumptions 1-3 are mild and hold for the considered models, as we show
next.

Proposition 1. The three considered models of Section 5.4 can be m-strongly convex
and L-smooth uniformly in t , for some scalar m and L, as supported by the following
claims.

Claim 1. Denote with ξ > 0 and 0 < χ < ∞ the minimum and maximum
admissible eigenvalues of the precision matrix S, respectively; i.e., consider the set
S = {S ∈SN++|ξI⪯S⪯χI}. Then, for the TV-GGM function f (·; t ) in (5.20a), it holds:

m = 1/χ L = 2/ξ. (5.37)

Claim 2. Denote with λmin and λmax the smallest and highest eigenvalues for the set
of empirical covariance matrices obtained with graph signals obeying (5.4). Then, for
the TV-SEM function f (·; t ) in (5.26a), it holds:

m =λmin L = 2λmax. (5.38)

Claim 3. Consider the TV-SBM function f (·; t ) in (5.32a), and recall that the
log-barrier term avoids isolated vertices, i.e., d ≻ 0. Denote with dmin > 0 the minimum
degree of the GSO search space. Under these assumptions, it holds:

m = 2λ1 L = 2λ2(N −1)d−2
min. (5.39)

See Appendix 5.8 for a proof of Claim 1-3.

Thus, Assumption 1 holds since the Hessian of f (·; t ) is bounded over time and
g (·; t ) is closed, convex and proper by problem construction; Assumption 2 holds
since ∇ts f (s; t ) is the difference between bounded vectors which involve covariance
matrices not too different from each other (one is the rank-one update of the other),
which is finite as long as the graph signals are bounded, see (5.19) and, e.g., (5.34).
Assumption 3 holds since f̂ (·; t +1) is a quadratic approximation of f (·; t ) [cf. (5.16)]
and ĝ (·; t +1) = g (·; t ), thus inheriting the properties of f (·; t ) and g (·; t ), which satisfy
Assumption 1.

With this in place, we are now ready to show two different error bounds incurred
during the prediction and correction steps performed by Algorithm 3, describing its
sub-optimality as function of the model and algorithm’s parameters. First, we show
the error bound between the optimal prediction solution s⋆t+1|t and the associated

optimal correction s⋆t+1, which solve problems (5.14) and (5.17), respectively.

Proposition 2. Let Assumptions 1-3 hold. Consider also the Taylor expansion based
prediction (5.16) for f (·; t ) and the one-step back prediction for g (·; t ). Then, the
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distance between the optimal prediction solution s⋆t+1|t , solving problem (5.14), and

the associated optimal correction s⋆t+1, solving problem (5.17), is upper bounded by:

∥s⋆t+1|t −s⋆t+1∥ ≤
2L

m
∥ŝt −s⋆t ∥+

2C0h

m
(1+ L

m
) (5.40)

where ŝt is the approximate solution of the correction problem (5.17) at time t .

Proof. Follows from [31, Lemma 4.2] in which constant D0 = 0 by considering a static
function g (·). ■

This bound enables us to measure how far the prediction is from the true
corrected topology at time t +1. It depends on the estimation error ŝt − s⋆t achieved
at time t , the ratio L/m and the variability of the function gradient ∇ts f (s; t ). The
bound suggests that a small gap can be achieved if i) the ratio L/m is small, which
for the three considered models translates in having a small condition number
for the involved covariance matrices or GSOs; and ii) the time-gradient ∇ts f (s; t )
at consecutive time steps does not change significantly, which holds when the
considered models have similar covariance matrices at adjacent time instants, i.e.,
the data statistics do not change too rapidly (see e.g. (5.22) and (5.28)).

Finally, we bound the error sequence {∥ŝt −s⋆t ∥2, t = 1,2, . . .} achieved by Algorithm 3
by means of the following non-asymptotic performance guarantee, which is an
adaptation of [31, Proposition 5.1].

Theorem 4. Let Assumptions 1 and 3 hold, and consider two scalars {dt ,φt } ∈ R+
such that:

∥s⋆t+1 −s⋆t ∥ ≤ dt and ∥s⋆t+1|t −s⋆t+1∥ ≤φt (5.41)

for any t ∈N+. Let also the prediction and correction steps use the same step-sizes
ρt = αt = βt . Then, by employing P prediction and C correction steps with the
proximal gradient operator T = proxg ,ρt

◦(I −ρt∇s f )(·), the sequence of iterates {ŝt }
generated by Algorithm 3 satisfies:

∥ŝt+1−s⋆t+1∥2≤qC
t (qP

t ∥ŝt −s⋆t ∥+qP
t dt+(1+qP

t )φt ) (5.42)

where qt = max{|1−ρt mt |, |1−ρt Lt |} ∈ (0,1) is the contraction coefficient [36].

Proof. Follows from [31, Proposition 5.1] and [31, Lemma 2.5], with variables λ= qt

and χ=β= 1. ■

Theorem (5.42) states that the sequence of estimated graphs {st }t∈N+ hovers around
the optimal trajectory {s⋆t }t∈N+ with a distance depending on: i) the numbers P and
C of iterations; ii) the estimation error achieved at the previous time instant ∥ŝt −s⋆t ∥;
and iii) the quantities dt and φt . Moreover, (5.42) is a contraction (i.e., qC+P

t < 1)
when ρt < 2/Lt ; in this case the initial starting point ŝ0 does not influence the error
ŝt+1−s⋆t+1 asymptotically, since the first term in (5.42) vanishes. However, the terms
dt and φt keep impacting the error also asymptotically, as long as the problem is
time-varying; if the problem becomes static, i.e., the solution stops varying, then
dt =φt = 0, and the overall error asymptotically goes to zero.
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5.6. NUMERICAL RESULTS

In this section, we show with numerical results how Algorithm 3, specialized to
the three models (TV-GGM, TV-SEM, TV-SBM), can track the offline solution (5.13)
obtained by the respective instantiations. For all the experiments, we initialize the
empirical covariance matrix Σ̂0 with some samples acquired prior to the analysis. We
consider P = 1 prediction steps and C = 1 correction steps, which is the challenging
setting of having the minimum iteration budget for streaming scenarios. We measure
the convergence of Algorithm 3 via the normalized squared error (NSE) between the
algorithm’s estimate ŝt and the optimal (offline) solution s⋆t :

NSE(ŝt ,s⋆t ) = ∥ŝt −s⋆t ∥2
2

∥s⋆t ∥2
2

. (5.43)

We use CVX [37] as solver for the offline computations, and report the required
computational time in seconds achieved by Algorithm 3 and CVX.

(a) TV-GGM. N =18,
α=β=10−2, γ=99.9×10−2
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(b) TV-SEM. N =28,
α=β=0.1×10−2,
λ=0.5, γ=99×10−2
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(c) TV-SBM. N =28,
α=β=0.1×10−2,

λ1=10, λ2=10, γ=99×10−2
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(d) TV-GGM. N =18,
α=β=0.1×10−2,

γ=99.9×10−2
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(e) TV-SEM. N =28,
α=β=0.5×10−2, λ=5e−2,

γ=99×10−2
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(f) TV-SBM. N = 28,
α=β=0.1×10−2, λ1 = 1,
λ2 = 10, γ=99×10−2

Figure 5.1: Normalized squared error (NSE) for the piecewise-constant (top row) and
smooth (bottom row) synthetic scenarios between our online solution ŝt

(or the other variants reported in the legend) with respect to the offline
solution s⋆t obtained with CVX. For the piecewise-constant scenario, it is
also illustrated the NSE between the PC solution and the batch solution
(green curve). Stochastic implementations are available for a subset of
methods due to numerical instabilities caused by the rank-one matrix
operations involved.
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5.6.1. SYNTHETIC DATA

We generate a synthetic (seed) random graph S0 of N nodes using the GSP
toolbox [38]. Then, edges abide two different temporal evolution patterns: i)
piecewise constant; and ii) smooth temporal variation. Finally, we generate the
stream of data according to the three considered models [cf. Section 5.4] for T time
instants.

Piecewise. For the piecewise constant scenario, we randomly select ⌈N /2⌉ nodes of
the initial graph S0 and double the weight of their edges, after T /2 samples. Then,
for t = {1, . . . ,T } we generate each graph signal xt according to the three models: 1)
for the TV-GGM, we use xt ∼ N (0,Σt ), where Σt = S−1

t ; 2) for the TV-SEM we use
xt = (I−St )−1et [cf. (5.4)], with noise variance σ2

e = 0.5; and 3) for the TV-SBM we use
xt ∼N (0,L†

t +σ2
e IN ) as in [39] with σ2

e = 0.5.

Smooth. For the smooth scenario, starting from the initial graph S0, the
evolution pattern follows an edge-dependent behavior, St (i , j ) = S0(i , j )(1+ e−0.01i j t )
for t = {1, . . . ,T }. This means that each edge follows an exponential decaying behavior,
with the decaying factor depending on the edge itself. The data are generated as in
the piecewise constant scenario.
For the results, we will compare the following methods:

• Prediction-correction (PC) red curve: this is the proposed Algorithm 3
specialized to one of the three models, with P =C = 1.

• Correction-only (CO) cyan curve: this is a prediction-free algorithm which
only considers the original problem (5.17) and applies C = 1 iteration of the
recursion (5.18). It is equivalent to Algorithm 3 with P = 0,C = 1. We consider
this algorithm to study the benefits of the prediction step performed by PC.

• Correction-correction (CC) blue curve: this is a prediction-free algorithm
which only considers the original problem (5.17) and applies C = 2 iterations
of the recursion (5.18). It is equivalent to Algorithm 3 with P = 0,C = 2. This is
a more fair comparison than CO, since the number of iterations is the same as
the one of PC.

• Stochastic gradient descent (SGD) ochre curve: this is a prediction-free and
memory-less version of the algorithm which only considers the last acquired
graph signal. That is, the empirical covariance matrix Σ̂t = xt x⊤t in (5.19) is just
a rank-one update, achieved by setting γ= 0. We consider this to show how
much the temporal variability of the function, captured by the time-derivative
of the gradient in PC, affects the algorithm’s convergence.

• Prediction-correction rank-one (PC-1) purple curve: this is a rank-one
(stochastic) implementation of the PC algorithm; i.e., Σ̂t = xt x⊤t for the update
in (5.19), and P = C = 1. Notice that, differently from SGD, it also uses the
time-derivative of the gradient, which in this case is the difference between
two rank-one covariance matrices (thus the length of the memory is equal to
one). We consider this algorithm to check the impact of the prediction step in
a stochastic implementation of PC;
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• Correction-correction rank-one (CC-1) orange curve: this is a rank-one
(stochastic) implementation of the CC algorithm; i.e., it considers Σ̂t = xt x⊤t for
the update in (5.19), and P = 0,C = 2. It can be seen as a two-step SGD, and
we consider it to study whether the prediction step of PC-1 is beneficial for
stochastic implementations.

In addition, for the piecewise constant scenario, we also report (green curve) the
NSE between the PC solution and the batch solution obtained having all the relevant
data in advance, i.e., the solution that would be obtained with a static graph
learning algorithm on the intervals where the graph remains constant. In general, a
fair comparison can be made within the rank-one implementations (SGD, PC-1 and
CC-1) and within the memory-aware ones (PC, CO, CC).

Results. The NSE achieved by Algorithm 3 for the three models is shown in
Fig. 5.1, for both the piecewise constant (top row) and smooth (bottom row)
scenarios. We use fixed step sizes for all the experiments. Notice that the only
effect of the functions’ hyperparameters is to shape the batch solution s⋆t (and
hence the time-varying trajectory ŝt at convergence). Thus, we run Algorithm 3 with
different hyperparameters4 and manually select them by ensuring that the trivial and
complete graphs are excluded; the selected ones are displayed, together with the
other algorithm’s parameters, in the captions of Fig. 5.1.

GGM. Fig. 5.1a and Fig. 5.1d show the results for the piecewise constant and smooth
scenarios, respectively. In both scenarios, the PC solution converges to the optimal
offline counterpart and, for the piecewise constant, also to the batch solution(s).
This demonstrates the adaptive nature of Algorithm 3 to react to changes in the
data statistics. While for the piecewise constant scenario PC and CC offer the same
convergence speed (which is expected, as explained in “Does prediction help?”), for
the smooth scenario, the PC algorithm exhibits a faster convergence with respect to
the prediction-free competitors CO and CC. This is because the temporal variability
of the function (and of its gradient) is captured by the prediction step and exploited
to fasten the convergence.

SEM. Similar considerations hold for the TV-SEM, whose results are illustrated in
Fig. 5.1b and Fig. 5.1e. In both scenarios, PC and CC offer the same convergence
rate (which also converge to the batch solution for the constant scenario), faster
than a CO and SGD implementation. Interestingly, after the triggering event at
T /2, SGD can track the optimal solution faster than CO with performances similar
to PC and CC. A possible justification may be the memory-less nature of SGD, i.e.,
it only considers the last sample for the gradient evaluation, thus discarding past
data. This renders the SGD more reactive to adapt to sudden changes of the data
statistics compared to the memory-aware alternatives, which however exhibit similar
performances thanks to the extra iteration they can benefit.

SBM. Finally, the TV-SBM results are shown in Fig. 5.1c and Fig. 5.1f. Also in this case,
the PC solution converges to the offline counterpart for the two scenarios and faster

4The search space intervals for the hyperparameters are the following: α,β ∈ (0.01,1)× 10−2,
λ ∈ (0.005,5), λ1,λ2 ∈ (1,10) , γ ∈ {97,99,99.9}×10−2.
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than the prediction-free versions of the algorithm CC and CO. In particular, while
in the piecewise constant scenario PC converges faster than CC and the rank-one
implementations, in the smooth scenario the rank-one implementations exhibit
faster convergent behavior with respect to the non-stochastic implementations.
Similar to what has been said for the TV-SEM results, a possible reason can be
the memory-aware characteristics of the non-stochastic methods; that is, while
the information present in past data can be beneficial in the static scenario and
thus help PC and CC to have a more reliable estimate of the true underlying
(static) covariance matrix (and of the gradient), it may slow down the process in
non-stationary environments with time-varying covariance matrices as in the smooth
scenario.

Required time. An important metric to consider in time-sensitive applications is the
average time per iteration. We report this information in Table 5.1, for the PC step
and CVX, relative to the three considered models and settings in the top row of
Fig. 5.1. Combining the information of the table and that of the plots in Fig. 5.1, it
is clear how trading off the knowledge of the optimal solution for savings in terms
of time seems an excellent compromise. Each prediction-correction step requires
indeed around three orders of magnitude less time than the CVX counterpart,
leading to a NSE at least smaller than 10e −1.

Does prediction help? Notice how in the piecewise constant scenario, the PC strategy
does not seem to offer a major advantage with respect the CC strategy. Although
this behavior could be hypothesized (since the setting is static), it is here empirically
confirmed. To gain more insights we look at the structure of the prediction step
(e.g., (5.23)), where the components playing a role in the descent direction are:
the gradient ∇s f (·); the Hessian ∇ss f (·); and the time-derivative of the gradient
∇ts f (·). Since we use P = 1, i.e., only one prediction step, the term (ŝp − ŝt = 0)
that multiplies the Hessian does not contribute to the descent step. The added
value of the prediction step with respect to a general (correction) descent method,
in this case, would be only provided by the time-gradient ∇ts f (·) (since the gradient
∇s f (·) is common to either the prediction and the correction step). In the piecewise
constant scenario, however, the underlying (true) covariance matrix is time-invariant
within the two stationary intervals, leading to a zero time-derivative of the gradient
(cf. (5.22)). This means that in static scenarios, with P = 1, the prediction step boils
down to a correction step. Differently, for P = 2, the contribution of the second-order
information may speed up the convergence, as illustrated in Fig. 5.2a for TV-GGM,
with respect to a correction-only algorithm using C = 3.

In the smooth scenario, the temporal variability of the gradient captured by the
time-derivative of the gradient ∇ts f (·), plays a role in the prediction step, which can
improve the convergence speed of the algorithm. The (bounded) norm of this vector
over time is illustrated in Fig. 5.2b for the TV-GGM smooth scenario of Fig. 5.1d;
this norm is linked to the constant C0 introduced in Assumption 2 and the error in
(5.40).

All in all, the results indicate the convergence of Algorithm 3 to the optimal offline
counterpart and its capability to track it in non-stationary environments. The
algorithm also converges to the batch solutions of the two stationary intervals,
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Table 5.1: Average time (expressed in seconds) required to compute the PC and the
CVX solution at each time instant.

PC CVX
TV-GGM 0.110×10−2 3.6
TV-SEM 0.824×10−2 2.0
TV-SBM 0.023×10−2 3.6
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Figure 5.2: (a): NSE of PC with P = 2 and C = 1, CO with C = 1 and CC with C = 3 for
the piecewise constant scenario; (b) Norm of the time-derivative of the
gradient as a function of the iteration index for the smooth scenario.

obtained with all the relevant data. A defining characteristic of Algorithm 3 is its
ability to naturally enforce similar solutions at each iteration, achieved with an early
stopping of the descent steps, governed by the parameters P and C . That is, the
algorithm adds an implicit temporal regularization to the problem which needs to
be explicitly added when working with the entire batch of data.

Given these results and insights, we can outline a few principles that can be adopted
when considering Algorithm 3 for learning problems:

• The prediction step with P = 1 can be beneficial when the underlying data
statistics change over time, so that the time-variability of the gradient can
be exploited. Otherwise, in a complete static scenario, it coincides with a
correction step.

• Increasing P can improve the convergence speed when the approximated cost
function is a good surrogate of the cost function in the next time instant.

• Memory-less (stochastic) variants of the algorithm can be suitable in fast-
changing environments, due to their ability to discard past information and
react quickly to changes in data statistics.

Being confident on the convergence of the algorithm, we now corroborate its
performance with real data.
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5.6.2. REAL DATA

We now test the three considered algorithms on real data. Among other indicators
employed in the simulations to assess the performance of the algorithm, we use the
graph temporal deviation TD(t ) := ∥ŝt − ŝt−1∥2, which measures the global variability
on the edges of the graph for different time instants. To gain further insights on
the network evolution over time, we consider additional metrics (such as number of
edges and temporal gradient norm) and visual analysis tools which will be introduced
in the application-specific scenario at hand. In this case, the hyperparameters of
each function are chosen in such a way that the inferred graphs are neither trivial
nor complete, and interpretable patterns consistent with real events are visible from
the plots of the employed metrics.

TV-GGM for Stock Price Data Analysis.
Data description: we collect historical stock (closing) prices relative to the S&P500

Index for seven pharmaceutical companies over the time period August 12th 2019
to August 10th 2021 using [40]. The collected data include the economic crisis
related to the COVID-19 pandemic, followed by the vaccination campaign. The
companies of interest are Pfizer (PFE), Astrazeneca (AZN), Johnson & Johnson (JNJ),
GlaxoSmithKline (GSK), Moderna (MRNA), Novavax (NVAX) and Sanofi (SNY). Our
goal is to leverage the TV-GGM in order to explore the relationships among these
companies over time and observe the possible structural changes due to market
instabilities.
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Figure 5.3: (a) Standardized time series for the period August 12th 2019 - August 10th
2021; (b) graph temporal deviation for the stock market graph inferred
with TV-GGM. The sharp peaks around March 2020 and after January
2021 happen consistently with real events; (c) inferred topologies at four
different dates of interest. The absence of an edge between two nodes
indicates their conditional independence.

Results: We consider T = 504 measurements (working days in August 2019 - August
2021) as graph signals {xt } for the N = 7 quantities of interest, which are further
standardized, i.e., each variable is centered and divided by its empirical standard
deviation; see Fig. 5.3a for a plot of the standardized time series. We run the
TV-GGM algorithm for different values of the forgetting factor γ, and monitor the
evolution of the metrics earlier introduced. The value γ= 0.75 yielded results most
consistent with the data behavior.

It is clear from Fig. 5.3a and the TD indicator in Fig. 5.3b that around March 2020
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and after January 2021 the market has changed significantly, due to the instability
generated by the pandemic and by the follow-up starting vaccination campaign.
The sharp peaks in Fig. 5.3b around around the same period are a consequence of
the dynamic inter-relationships among the companies; the inferred graph changes
substantially in the two periods of interest and TD captures the market variability.

To really enjoy the visualization potential offered by graphs as a tool, we show
in Fig. 5.3c snapshots of the inferred time-varying graph at four different dates of
interest. Common among the four graphs is the presence of the edge connecting
MRNA and NVAX, and the edge connecting AZN and SNY. The pharmaceutical
companies associated to the endpoints of each of these two edges also show a
similar trend in Fig. 5.3a. Notice moreover that since the sparsity pattern of the
precision matrix reveals conditional independence among the variables indexed by
its zero entries, these graphs enable us to visually inspect such independence over
time. Although the information endowed in these graphs may carry a financial
significance, we leave this possible knowledge-discovery task out of this manuscript,
to avoid misleading or erroneous interpretations.

TV-SEM for Temperature Monitoring.
Data description: for this experiment we consider the publicly available weather

dataset5 provided by the Irish Meteorological Service, which contains hourly
temperature (in ◦C) data from 25 stations across Ireland. We monitor the
temperature evolution over the sensor network for the period January 2016 to May
2020, and leverage the TV-SEM to infer the time-varying features of the graph
learned by the algorithm.

Results: for the analysis we consider T = 38713 measurements as graph signals {xt }
for the N = 25 stations under consideration, standardizing the data as done in the
previous experiment; Fig. 5.4a depicts the standardized time series. It is interesting
to notice the sinusoidal-like behavior of the aggregate time-series, due to higher
(lower) temperature during the summer (winter) period, resulting in a smooth signal
profile.

Fig. 5.4b illustrates the sparsity pattern of the time-varying graph and the
importance of the weights at every time instant. This learn-and-show feature offered
by Algorithm 3 gives us the ability to visualize the learning behavior of the algorithm
on-the-fly, a strength of low-cost iterative algorithms w.r.t. batch counterparts.
From the figure (and the observed almost zero graph temporal deviation, which is
not illustrated here) a consistent temporal homogeneity is visible, i.e., the graph
does not change significantly over adjacent time instants. In other words, nodes
influencing each other in a particular time instant, are likely to influence each other
in other time instants. A reasonable explanation is given by the smooth and regular
pattern exhibited by the time-series of Fig. 5.4a, which is a consequence of the
meteorological similarity over time, and by their high correlation coefficient.

An interesting trend arises when observing the number of edges of the graph inferred
over time, shown in Fig. 5.5a. Although in adjacent time instants the number
does not change abruptly, a pattern can be identified over a longer time span. In

5Data available at https://www.met.ie/climate/available-data/historical-data
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Figure 5.4: (a) Standardized time series for the 25 Irish weather stations and (b)
evolution of each edge weight over time.

particular, during winter and summer there is a sharp increment in the number of
edges, with respect to autumn and spring where there is a significant reduction.
To ease the visualization, the vertical red lines are placed in correspondence of
the winter period of every year, while blue lines in correspondence of the autumn
period. A possible reason for this phenomenon is given by the reduced variability
of the temperature among the stations during summer and winter, and a higher
variability during spring and autumn, leading to different graphs.
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Figure 5.5: Ireland temperature dataset. (a) Number of edges of the inferred graph
over time. The red vertical lines correspond to January 15 of each year
(winter), while the blue vertical line correspond to October 15 (autumn);
snapshot of the inferred time-varying graph during (b) October 2016
(autumn graph) and (c) January 2017 (winter graph). Notice how stations
close in space tend to be connected.

For the sake of visualization, we also report the inferred graphs for October 2016
(autumn) and January 2017 (winter). In line with our previous comments regarding
Fig. 5.5a, a lower number of edges is visible in the autumn graph with respect to
the winter graph; in particular, edges present in the autumn graph are also present
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in the winter one. Finally, notice how stations close in space tend to be connected,
thus showing how stations close to each other have a greater influence with respect
to stations farther away in space.

TV-SBM for Epileptic Seizure Analysis.
Data description: we use electrocorticography (ECoG) time series collected during

an epilepsy study at the University of California, San Francisco (UCSF) Epilepsy
Center, where an 8 × 8 grid of electrodes was implanted on the cortical brain’s surface
of a 39-year-old woman with medically refractory complex partial seizure [41]. The
grid was supplemented by two strips of six electrodes: one deeper implanted over
the left suborbital frontal lobe and the other over the left hippocampal region, thus
forming a network of 76 electrodes, all measuring the voltage level in proximity of
the electrode, which is an evidence of the local brain activity. The sampling rate is
400 Hz and the measured time series contains the 10 seconds interval preceding the
seizure (pre-ictal interval) and the 10 seconds interval after the start of the seizure
(ictal interval). Our goal is to leverage the TV-SBM in order to explore the dynamics
among different brain areas at the seizure onset.

Results: for our analysis we consider T = 3200 time instants as graphs signals {xt }
for the N = 76 electrodes, which are further filtered (over the temporal dimension)
at {60,180}Hz to remove the spurious power line frequencies, and standardized as
explained in the previous experiments.

Fig. 5.6 shows the graph temporal deviation, where we observe an increasing and
protracted variability of the TD shortly after the seizure onset (red vertical line),
proving TD to serve as an indicator of network alteration suitable for time-varying
scenarios. To visualize the on-the-fly learning behavior of the algorithm, in Fig. 5.7a
we show the evolution of (a fraction6 of) the edge weights over time. In the first half
of the time-horizon, we notice the presence of stronger edges with respect to the
second half, where the graph is sparser. We show two snapshots of the time-varying
graph in Fig. 5.7b, for the time instants 1500 (pre-ictal) and 1800 (ictal), where we
also report the closeness centrality of each node, which expresses how “close” a
node is to all other nodes in the network (calculated as the average of the shortest
path length from the node to every other node in the network). During the ictal
interval, the graph tends to be more disconnected and its nodes to have a lower
closeness centrality value, especially in the lower part of the graph. In addition, we
observe how the number of (strong) edges and the closeness centrality value drop
in the ictal graph, especially in the lower part of the graph. This is consistent with
the findings in [41] and indicates that, on average, signals in the pre-ictal interval
behave more similar to each other as opposed to the signals in the ictal interval.

5.7. CONCLUSION
In this manuscript, we proposed an algorithmic template to learn time-varying
graphs from streaming data. The abstract time-varying graph learning problem,
where the data influence is expressed through the empirical covariance matrix, is

6For visualization, we show 500 random edges, since we recall that the number of total edges in an
undirected graph of N nodes is N (N −1)/2.
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Figure 5.6: Graph temporal deviation for the epilepsy study. The red line indicates the
seizure onset. During the ictal interval, a higher temporal deviation can
be observed, indicating that the inferred graph is changing substantially.
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Figure 5.7: Epilepsy dataset. (a) evolution of each edge weight over time; (b)
snapshots of the inferred time-varying graph at time instant 1500 and
1800. The color of an edge indicates its weight, with darker colors
indicating higher weights, while the color of a node indicates the
closeness centrality of such node, with brighter colors indicating higher
values of closeness centrality.

casted as a composite optimization problem, with different terms regulating different
desiderata. The framework, which works in non-stationary environments, lies upon
novel iterative time-varying optimization algorithms, which on one side exhibit an
implicit temporal regularization of the solution(s), and on the other side accelerate
the convergence speed by taking into account the time variability. We specialize
the framework to the Gaussian graphical model, the structural equation model, and
the smoothness-based model, and we propose ad-hoc vectorization schemes for
structured matrices central for the gradient computations which also ease storage
requirements. The proposed approach is accompanied by theoretical performance
guarantees to track the optimal time-varying solution, and is further validated with
synthetic numerical results. Finally, we learn time-varying graphs in the context of
stock market, temperature monitoring, and epileptic seizures analysis. The current
line of work can be enriched by specializing the framework to other static graph
learning methods present in literature, possibly considering directed graphs, by
implementing distributed versions of the optimization algorithms, and by applying
the developed models in other real-world applications.
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APPENDIX
Consider the multi-valued function T :RN →RN , which we will refer to as operator.
Here, we briefly review some operator theory concepts used in this manuscript; see
[42].
Projection operator. Given a point x ∈RN , we define projection of x onto the convex
set C ⊆RN as:

PC (x) := argmin
z∈C

1

2
∥z−x∥2 (5.44)

Proximal operator. Consider the convex function g :RN →R. We define the proximal
operator of g (·), with penalty parameter ρ > 0, as:

proxg ,ρ(x) := argmin
z

{g (z)+ 1

2ρ
∥z−x∥2

2} (5.45)

For some functions, the proximal operator admits a closed form solution [36, Ch. 6].
In particular:

• if g (x) = ιC (x) then proxg (x) = PC (x), i.e., it is the projection of x onto the
convex set C .

• if g (x) =λ∥x∥1 then proxg (x) = sign(x)⊙ [x−λ1]+, i.e., it is the soft-thresholding
operator.

Consider the convex minimization problem:

min
x

f (x)+ g (x) (5.46)

with f , g : RN → R convex. It can be shown that problem (5.46) admits at least one
solution [43], which can be found by the fixed point equation:

x = proxg ,ρ(x−ρ∇ f (x)) (5.47)

5.8.
Proof of Claim 1: TV-GGM. Recall the expression of the Hessian in (5.21b), i.e.,
H(S) = D⊤(S ⊗ S)−1D and that matrix S ∈ S is the precision matrix, with
S = {S ∈SN++|ξI ⪯ S ⪯χI}.

For the strong convexity, notice that since S ≻ 0, then also H(S) ≻ 0. Indeed, by
exploiting the semi-orthogonality of matrix D/

p
2, we have:

λmin(H(S)) = min
∥x∥=1

x⊤D⊤(S⊗S)−1Dx (5.48)

≥ min
∥x∥=1

x⊤
D⊤
p

2
(S⊗S)−1 Dp

2
x = min

∥y∥=1
y⊤(S⊗S)−1y

= min
∥z∥=1

N∑
i=1

N∑
j=1

zi z j

λi (S)λ j (S)
≥ 1

λ2
max(S)

= 1/χ2
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For the Lipschitz continuity of the gradient, we have

∥D⊤(S⊗S)−1D∥ ≤ ∥D∥2∥(S⊗S)−1∥ (5.49)

= 2∥(S⊗S)−1∥ = 2∥S−1 ⊗S−1∥
= 2

√
λmin(S)−2 = 2/ξ

■

Proof of Claim 2: TV-SEM. Denote with λmin and λmax the smallest and highest
eigenvalues for the set of empirical covariance matrices obeying the SEM
model. Recall the expression of the Hessian in (5.27b), i.e. H(S; t ) = Qt , where
Qt := D⊤

h (Σ̂t ⊗ I)Dh . Since Dh/
p

2 is a semi-orthogonal matrix, we have:

λmin(H(S)) = min
∥x∥=1

x⊤D⊤
h (Σ̂t ⊗ I)Dhx (5.50)

≥ min
∥y∥=1

y⊤(Σ̂t ⊗ I)y = min
∥z∥=1

N∑
i=1

λi (Σ̂t )z2
i ≥λmin

where λmin is the smallest eigenvalue of Σ̂t .
For the Lipschitz continuity of the gradient, we have:

∥D⊤
h (Σ̂t ⊗ I)Dh∥ ≤ 2∥Σ̂t ⊗ I∥ = 2λmax (5.51)

■

Proof of Claim 3: TV-SBM. For the strong convexity it suffices to notice that for
m > 0, f (s; t )− m

2 ∥s∥2 = s⊤zt −λ21⊤ log(Ks)+ (λ1 − m
2 )∥s∥2 is convex. In turn, this

implies that strong convexity of f (·; t ) is guaranteed for 0 < m ≤ 2λ1.
For the Lipschitz continuity of the gradient, recall that nodal degree vector d ≻ 0.

Denote with dmin the minimum degree of the GSO search space. Also, recall the
expression of the Hessian H = K⊤ Diag(1⊘ (Ks)◦2)K. Then:

∥K⊤ Diag(1⊘ (Ks)◦2)K∥≤∥K∥2 max(1⊘ (Ks)◦2)) (5.52)

= ∥K∥2d−2
min = 2(N −1)d−2

min,

where we made use of [20, Lemma 1] for the bound of K. ■

5.9.
The computational (arithmetic) complexity per iteration of Algorithm 3 is dominated
by the rank-one covariance matrix update in O (N 2) and by the method-specific
gradient computations involved in the prediction and correction steps (and eventually
Hessian, if P > 1 [cf. Section 5.6 “Does prediction help?” ]). Such method-specific
computational complexities are shown next, together with a discussion on the costs
for the offline counterparts.
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TV-GGM. The worst case scenario computational complexity of the gradient ∇s f (s; t )
in (5.21a) is O (N 3), which is due to the matrix inversion. This cost might be lowered
exploiting the sparsity pattern of the sparse triangular factor of S or, in our case,
exploiting the fact that it is a small perturbation with respect to the previous iterate.

The multiplication with matrix D⊤ has a cost of O (N 2), since D ∈ RN 2×N (N+1)/2 has
at most two 1’s in each column and exactly one 1 in each row.

The worst case scenario computational complexity of the Hessian ∇ss f (s; t )
in (5.21b) would be O (N 3). However, because the Hessian is used in a matrix-vector
multiplication [cf. (5.23)], its factorization leads to a cost for the prediction step
of O (N 3). Indeed, exploiting the Kronecker product, the Hessian can be written as
D⊤(S−1 ⊗ IN )(IN ⊗S−1)D; then, the multiplication of the Hessian for a vector simply
entails the succession of four sparse matrix-vector multiplications all with a cost of
O (N 3).

The term ∇ts f (s; t ) in (5.22) has a computational complexity of O (N 2). Thus the
overall computational complexity per iteration is O (N 3).

TV-SEM. The overall cost is dominated by the computation of Qt = D⊤
h (Σ̂t ⊗ I)Dh ,

which is present in the gradients and the Hessian. The matrix-matrix multiplication(s)

have a cost of O (N 3), since Dh ∈ RN 2×N (N−1)/2 has at most two 1’s in each column
and exactly one 1 in each row. Thus the overall computational complexity per
iteration is O (N 3).

TV-SBM. Each column of K has exactly two non-zero entries (and each row has N −1
non-zero entries), thus Ks has a computational cost of 2|E |, with |E | the number of
edges of the graph represented by S (in other words, ∥s∥0). The operation K⊤(1⊘Ks)
has a cost of O (N 2). The computational complexity of the Hessian is O (N 3), since it
is the weighted sum of N outer products of vectors which are (N −1)-sparse in the
same positions.

Thus the overall computational complexity per iteration is O (N 2) if P = 0,1 and
O (N 3) if P > 1.

Offline. The computational complexity for each time instant t incurred by an
offline solver to solve instances of problem (5.13) depends by its algorithm-specific
implementation closely related to the problem structure. The three problems we
consider are (converted into) semidefinite programs (SDPs) and solved, in our
case, by SDPT3, a Matlab implementation of infeasible primal-dual path-following
algorithms, which involves the computation of second-order information. Since
these computations are continuously repeated, for a fixed time instant t , till the
algorithm convergence (say I iterations), a trivial lower bound for computing the
offline solution for the three considered problems is Ω(I N 3). To this cost must be
also added the cost of other solver-specific steps which we do not explicitly consider
here.
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6
A GENERALIZATION OF THE

CONVOLUTION THEOREM AND ITS

CONNECTIONS TO

NON-STATIONARITY AND THE

GRAPH FREQUENCY DOMAIN

In this paper, we present a novel convolution theorem which encompasses the well
known convolution theorem in (graph) signal processing as well as the one related to
time-varying filters. Specifically, we show how a node-wise convolution for signals
supported on a graph can be expressed as another node-wise convolution in a
frequency domain graph, different from the original graph. This is achieved through
a parameterization of the filter coefficients following a basis expansion model. After
showing how the presented theorem is consistent with the already existing body of
literature, we discuss its implications in terms of non-stationarity. Finally, we propose
a data-driven algorithm based on subspace fitting to learn the frequency domain
graph, which is then corroborated by experimental results on synthetic and real data.

6.1. INTRODUCTION

C ONVOLUTION is the core operation in signal processing and machine learning
systems. Its use is at the heart of digital filters [4] for audio applications and

time series prediction [5], as well as for convolutional neural networks in deep
learning [6], enabling scalable architectures and endowing a notion of locality among
samples, properties exploited in, e.g., object recognition[7].

Parts of this chapter have been published in the Asilomar Conference on Signals, Systems, and
Computers (2022) [1], in the IEEE International Conference on Acoustics, Speech and Signal
Processing (2023) [2] in the IEEE Transactions on Signal Processing (2024) [3].
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The three key operations defining a convolution are the shift, the scale and the
sum. The shift is responsible to capture the underlying signal domain and brings
the notion of locality and proximity among samples: in time, for instance, successive
applications of the shift (in that case corresponding to a delay) give previous time
samples. The scale defines how the shifted samples are weighted before summing
them, and different weighting schemes lead to different structural properties (such
as invariants) of the architecture implementing the convolution. The notion of
regularity in time and in space, which are two very well structured domains, is
reflected in the definition of their frequency domain. Specifically, a signal in these
domains can be decomposed into elementary building blocks (such as sine waves)
which endow a physical interpretation with a well understood meaning of variability.
In a less structured domain modeled by a graph, this definition is not tight and
multiple interpretations are possible.

Graph signal processing (GSP) [8] extends the convolution principle to data residing
on graphs by means of graph filters (GFs) [9, 10], architectures which are parametric
on the mathematical structure defining the shift operation. While in temporal signal
processing this shift operator is mathematically represented by the (lower) shift/delay
matrix, in GSP the graph shift operator (GSO) depends on the underlying network
domain. The eigendecomposition of the GSO reveals its respective frequencies:
specifically, the eigenvalues of the shift are the frequencies. In temporal signal
processing these frequencies are the well-known complex roots of unity which obey
a natural ordering, and the associated (normalized) eigenvectors are the Fourier
modes (remember that the delay matrix is a particular case of a circulant matrix).
In GSP, however, different shifts have different eigenvalues and hence different
frequencies. In this case, an ordering purely based on their numeric value might not
be meaningful and a more structured domain, for instance captured by a graph,
might convey more information. This is the recent line of work explored in [11, 12],
which we exploit here.

By relying on the novel notion of dual graph [11], which models the support of
the frequency domain as a graph, in this work we introduce a new convolution
theorem which generalizes the (graph) convolution theorem and the one related
to time-varying filters. To do this, we adopt so-called node-varying graph filters
(NV-GFs) [9] and we show how a node-varying convolution in one domain (captured
by the primal graph) can be expressed as a node-variant convolution in the
other domain (captured by the dual graph), while remaining consistent with the
pre-existing body of literature. Based on the proposed theorem, we outline models
for non-stationary graph signals. Finally, we propose an algorithmic approach to
learn the dual graph from data with a subspace fitting approach [13] resorting to
sequential convex programming [14] to tackle the non-convexity of the problem. The
validity of this approach is finally corroborated by simulations on synthetic and real
data.
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6.1.1. RELATED WORKS

Although this work is novel in its genre, many of the concepts it relies on have
been recently introduced. Modeling the frequency domain through a graph has
been proposed in [11, 12], and similar efforts to interpret such a domain differently
from ordering the eigenvalues of the GSO is given by means of embeddings in [15,
16]. Node-variant graph filters as a way to extend classical time-varying filters
to the graph setting have been introduced in [9], while graph signal stationarity
arguments and their implications have been studied in [17, 18]. Non-stationarity of
random graph signals has been exploited in [19] in the context of network topology
identification.

6.1.2. CONTRIBUTIONS

We summarize the specific contributions of this work as follows:

1. We propose a convolution theorem which encompasses the (graph) convolution
theorem and the one related to time-varying filters; we show how the latter are
specific instantiations of the proposed theorem for particular choices of the
GSO and the scaling scheme;

2. We introduce novel non-stationary graph signal models;

3. We devise an algorithmic procedure to learn the dual graph from input-output
data. The problem formulation can be casted as a blind polynomial
regression, as such also applicable to graph-agnostic tasks, such as polynomial
interpolations and jitter correction in communication applications. The
solution approach relies on a subspace fitting method and it is accompanied
by a theoretical study of the ambiguities present in the problem.

4. We showcase the validity of our findings on synthetic and real data with
numerical simulations.

6.2. PRELIMINARIES
Graphs and Graph Signals. We consider data residing on a non-Euclidean domain,
which we formally model by a graph G = (V ,E ,S), where V = {1, . . . , N } is the set
of nodes (or vertices), E ⊆ V ×V is the set of edges, and S is an N ×N matrix
that represents the graph structure. The matrix S is called the graph shift operator
(GSO), since it plays a role akin to the delay operator in temporal signal processing.
Specifically, its entries [S]i j ∈C for i ̸= j are different from zero only if nodes i and
j are connected by an edge; typical examples of such a matrix are the (weighted)
adjacency matrix W [20] and the graph Laplacian L [8]. A graph signal is then the
vector x ∈CN , where xi : V →C is the value collected at node i .

In this manuscript, for the sake of simplicity, we consider the shift operator S to
admit an eigenvalue decomposition (EVD) written as S = VΛV−1, with V an invertible
matrix collecting the eigenvectors and Λ= Diag(λ) a diagonal matrix collecting the
eigenvalues λ of S. A fundamental assumption in GSP is that the matrix V provides a
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basis for expressing signals living on S, and with favorable discrete Fourier transform
(DFT)-like properties providing a notion of frequency similar to the one in temporal
signal processing. For this reason, the matrix V−1 is often referred to as the graph
Fourier transform (GFT) and the projection of x onto this basis, i.e., x̂ = V−1x as the
GFT signal.

Filtering on Graphs. Given a graph S, a classical graph filter (C-GF) of order L−1 is
the matrix polynomial:

H(p,S) =
L−1∑
l=0

pl Sl , (6.1)

where p = [p0, . . . , pL−1]⊤ ∈ CL collects the graph filter coefficients (taps). The
application of the filter H(p,S) on a signal x to obtain a new signal y, i.e.,
y = H(p,S)x, is often referred to as graph filtering or graph convolution, as it respects
the scale-sum-shift principle of convolution. With a few simple calculations, it is
easy to show that in the (graph) frequency domain, a graph convolution is expressed
as a pointwise multiplication; this is the (graph) convolution theorem, which can be
expressed as follows:

y =
L−1∑
l=0

pl Sl x ŷ =
L−1∑
l=0

plΛ
l x̂ (6.2)

with ŷ = V−1y the GFT of y. Notice that such filter is isotropic, meaning that for each
l = 0, . . . ,L −1, the filter coefficient pl is shared among all the nodes of the shifted
signal Sl x; for this reason a C-GF is an example of a node-invariant graph filter.

A more versatile and flexible version of (6.1) is the so-called node-variant graph
filter [9], which allows a per-node weighting scheme of each shifted version of the
input signal. Due to its relevance in this work, we distinguish among two flavours of
a NV-GF, henceforth referred to as type-I and type-II, defined, for a given a graph S
and fixed order L−1, respectively as:

HI (P,S) =
L−1∑
l=0

Diag(pl )Sl , (6.3)

HI I (P,S) =
L−1∑
l=0

Sl Diag(pl ), (6.4)

where P ∈ CN×L collects the filter coefficients P = [p0, . . . ,pL−1] with pl :=
[pl1, . . . , pl N ]⊤ ∈ CN the l-th hop filter tap vector. As a short-hand notation,
we will use HI and HI I to refer to the NV-GF in (6.3) and (6.4), respectively; when
convenient for clarity of exposition, we will explicitly write HI (P,S) or HI I (P,S)
concordantly. The application of a NV-GF on a signal x to obtain a new signal
y will be referred to as node-variant graph convolution. From a theoretical point
of view, both NV-GF types have the same expressive behavior, yet the order of
shifting and weighing is reversed. Specifically, in type-I, each node performs a linear
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combination of the (shifted) signal values of neighboring nodes, where the weights
of the linear combination are neighbor-specific; in type-II, each node performs a
linear combination of the (shifted) signal values of neighboring nodes, which have
been already scaled by such nodes. Nonetheless, both can be implemented with the
same complexity and in a distributed manner [9].

Dual Graph. Although often not explicitly stated in the academic literature,
the support of the GFT signal x̂ is described by the eigenvalues λ of S, which
correspond to a discretization/sampling of a continuous domain, either the real line
R or the complex plane C. This is consistent with the discrete signal processing
notion of frequency domain: when S represents a cycle graph, possibly capturing
the time domain, its eigenvector matrix V−1 coincides with the (normalized) DFT
matrix, and its eigenvalues λ with the complex frequencies on the unit circle, i.e.,
λ = [1,e− j 2π/N , . . . ,e− j 2π(N−1)/N ]. However, a modern line of research attempts to
model the (graph) frequency domain by means of a graph [11]. The motivation
behind this line of research relies on the fact that classical signal processing tasks
usually performed in the frequency domain, such as frequency-shifting, do not
have their counterpart in GSP. Furthermore, given that a graph signal is inherently
associated with a graph structure, it is desirable to establish a corresponding Fourier
representation that is also inherently linked to a graph structure. This leads to the
notion of a dual graph1 S f = V f Λ f V−1

f , which represents the support for the GFT

signal x̂. Because we want the GFT V−1
f associated to the dual graph to map x̂ back

to the signal x, i.e., x = V−1
f x̂, and we know that x = Vx̂, we must have V f = V−1.

Thus, the primal graph provides spectral templates for the graph frequency domain,
i.e., the eigenvectors V f for the dual graph S f are known once we know those of
S. The only unknown is then the eigenvalue matrix Λ f := Diag(λ f ), which can be
found, for instance, with an axiomatic or an optimization approach [11], or in a
data-driven manner as we will show in Section 6.4. Although [12] proposes λ f =λ⋆,
we do not see this as a favorable definition, since in our view it only holds when
specified to the “temporal” graph; in all the other cases, especially for undirected
graphs, it would implies that primal and dual eigenvalues always coincide. Such an
interpretation would be inconsistent with the desirable properties highlighted in [11,
Axioms (1-3)].

6.3. AN ENCOMPASSING CONVOLUTION THEOREM
In this section we propose a convolution theorem which encompasses the graph
convolution theorem [cf. (6.2)] introduced in Section 6.2 and the convolution
theorem related to time-varying filters, which will be introduced later on to highlight
similarities and differences. This generalization is made possible by using the
node-variant graph filters (6.3) and (6.4) with an appropriate parametrization of the
filter coefficients. Specifically, we show how a limited order NV-GF in the primal
domain can be expressed as a limited order NV-GF in the dual domain. This is

1Not to be confused with the dual graph notion in graph theory, as the graph which has a vertex for
each face of the original graph.



6

112
6. A GENERALIZATION OF THE CONVOLUTION THEOREM AND ITS CONNECTIONS TO

NON-STATIONARITY AND THE GRAPH FREQUENCY DOMAIN

formally stated in the following theorem.

Theorem 5 (Node-variant convolution theorem). Consider a type-I NV-GF HI defined
over the graph S with filter taps {pl }L−1

l=0 , i.e., HI (P,S), and assume that a dual graph
S f with dual graph frequencies λ f describing the dual domain is given. Assume also
that each filter tap vector pl can be expressed as a polynomial of order K −1 in λ f .
Then, there exists a set of coefficients {p̂k }K−1

k=0 for which the type-I NV-GF HI (P,S) in
the primal domain corresponds to a type-II NV-GF HI I on the dual graph S f with
filter taps {p̂k }K−1

k=0 , i.e., HI I (P̂,S f ).

Proof. By multiplying both sides of (6.3) with the GFT matrix V−1, we have:

ŷ = V−1
L−1∑
l=0

Diag(pl )Sl x = V−1
L−1∑
l=0

Diag(pl )VΛl x̂. (6.5)

Next, we use a basis expansion model (BEM) [21] to express the NV filter coefficients
{pl }L−1

l=0 as a linear combination of a dual graph dependent basis. Specifically, we
express each pl through powers of the dual eigenvalues λ f , representing our basis
expansion; that is:

pl =
K−1∑
k=0

clkλ
k
f =Ψ f cl (6.6)

with Ψ f := [1, λ f , . . . ,λK−1
f ] the Vandermonde matrix of dual eigenvalues and

cl := [cl 0, . . . ,cl (K−1)]
⊤ the expansion coefficients for the l -th primal filter tap vector

pl . With this choice, substituting (6.6) in (6.5), we have:

ŷ = V−1
L−1∑
l=0

Diag(
K−1∑
k=0

clkλ
k
f )VΛl x̂

=
K−1∑
k=0

V−1 Diag(λk
f )VDiag(

L−1∑
l=0

clkλ
l )x̂

=
K−1∑
k=0

Sk
f Diag(p̂k )x̂ (6.7)

where p̂k := ∑L−1
l=0 clkλ

l = Ψĉk is the k-th hop filter tap vector on the dual

graph, with Ψ := [1,λ, . . . ,λL−1] the Vandermonde matrix of primal eigenvalues,
and ĉk := [c0k , . . . ,c(L−1)k ]⊤ the expansion coefficients for the k-th dual filter tap
vector p̂k . So in the frequency domain, we also obtain a NV-GF denoted as
HI I = ∑K−1

k=0 Sk
f diag(p̂k ) . Whenever the dependency on the dual filter coefficients

and shift operator is necessary, we use HI I (P̂,S f ), where P̂ is the N ×K matrix of
coefficients P̂ = [p̂0, . . . , p̂K−1]. ■

This theorem allows us to delineate a general convolution theorem encompassing (6.2)
as a special case, which relies on node-variant graph filtering and pictorially described
in Fig. 6.1, as follows:
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y=
L−1∑
l=0

Diag(pl )Sl x ŷ=
K−1∑
k=0

Sk
f Diag(p̂k )x̂ (6.8)

pl =Ψ f cl p̂k =Ψĉk (6.9)

The connection between the primal and the dual node-variant graph filters defined
in (6.8) is given by the K ×L expansion coefficients conveniently stored in the
matrix C = [c0, . . . ,cL−1] = [ĉ0, . . . , ĉK−1]⊤. This enables also to concisely express the
node-variant coefficients in the primal and dual domain as P =Ψ f C and P̂ =ΨC⊤,
respectively.

Remark 3. The same type of theorem construction can be obtained by reversing the
types of filters adopted in the primal and dual domain; that is, applying a type-II
NV-GF in the primal domain is equivalent to applying a type-I NV-GF in the dual
domain, with the graph filter coefficients following the parametrization in (6.9).

Corollary 1. Given a graph signal x, the application of a node-variant graph filter
HI (P,S) in the primal domain followed by the GFT V−1 is equivalent to the application
of the GFT followed by a node-variant graph filter HI I (P̂,S f ) in the dual domain. In
other words, it holds (see also Fig. 6.1):

V−1HI (P,S) = HI I (P̂,S f )V−1. (6.10)

In temporal signal processing, the frequency representation of windowing in the
time domain is the convolution between the spectra of the signal and the window.
Because a node-variant convolution of order L−1 is nothing else than the application
of L windows on shifted versions of the input graph signal x, a similar result can be
derived in the graph setting; the following corollary expresses this.

Corollary 2. Given an input graph signal x and a type-I NV-GF HI (P,S), with each
{pl }L−1

l=0 parametrized as in (6.9), a node-variant graph convolution of order L −1 in
the primal domain is equivalent to the sum of L classical graph convolutions in the
dual domain, each one with as input a (modulated) version of x̂; that is:

ŷ =
L−1∑
l=0

H(cl ,S f )(λl ⊙ x̂) (6.11)

= H(c0,S f )x̂+ . . .+H(cL−1,S f )(λL−1 ⊙ x̂) (6.12)

Proof. From the first equality of (6.7), we have:

ŷ =
L−1∑
l=0

K−1∑
k=0

clk V−1 Diag(λk
f )VΛl x̂

=
L−1∑
l=0

(
K−1∑
k=0

clk Sk
f

)
Λl x̂

=
L−1∑
l=0

H(cl ,S f )(λl ⊙ x̂) (6.13)
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Figure 6.1: General convolution theorem. A node-variant graph convolution in the
primal domain is equivalent to a node-variant graph convolution in the
dual domain.

Notice how the filter coefficients in (6.13) are the expansion coefficients cl associated
to the primal filter coefficients pl . ■

An important consequence of Corollary 2 is that windowing in the primal domain is
equivalent to a C-GF in the dual domain; we will rely upon this when introducing
non-stationary signal models in Section 6.3.3.

6.3.1. CONSISTENCY WITH THE GRAPH CONVOLUTION THEOREM

Because a C-GF is a NV-GF with constant filter taps, we expect that our introduced
theory encompasses the existing one. Indeed, we can formally show that the graph
convolution theorem (6.2) falls within the introduced theory. To see this, consider
pl = pl 1, ∀ l , i.e., the case in which each vector of filter taps pl is constant over
the nodes, thus corresponding to the C-GF as in (6.1). The column space of P is
then one-dimensional, specifically spanned by the all-one vector. By construction,
the first column of the Vandermonde matrix is the all-one vector. Thus any λ f can
be used as it will be zeroed-out by the matrix C. As we will see later on, this also
means that we cannot learn any dual graph from stationary graph signals, since any
λ f would suffice. Specifically, from (6.9), we have that cl necessarily needs to be
cl = [pl ,0⊤]⊤, and overall:

[p11, . . . , pL−11]=


1 · · · λK−1

0, f
...

. . .
...

1 · · · λ(K−1)
f ,N−1




p1 · · · pL−1

0 · · · 0
...

. . .
...

0 · · · 0

 (6.14)
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meaning that only the first row ĉ0 of C is different from zero. In particular, from the
right equation in (6.9) this implies that:

ŷ = S0
f Diag(p̂0)x̂ = Diag(Ψp)x̂. (6.15)

This shows how the proposed theory fits within the principle that a classical graph
convolution (node-invariant GF) is a pointwise multiplication in the frequency
domain.

Likewise, one can similarly show that if p̂k = p̂k 1, ∀ k, i.e., the case in which
each vector of filter taps p̂k in the frequency domain is constant over the nodes
(frequencies), then only c0 = p̂ := [p̂0, . . . , p̂K−1]⊤ is different from zero. This leads to
a pointwise multiplication (windowing) [cf. (6.9) left] in the primal domain:

y = Diag(p0)S0x = Diag(Ψ f p̂)x, (6.16)

which also complies with Corollary 2.

Another interesting relation arises when considering a NV-GF with pl i = pi for all
l ; i.e., the case in which each node i uses the same weight pi (possibly different
from p j of node j ) for the diffused sequence {x,Sx, . . . ,SL−1x}. In this case, multiple
λ f and C satisfy the theorem; for instance we can choose λ f = [p1, . . . , pN ]⊤ and
cl = [0,1,0⊤]⊤, i.e.,:

 p11⊤
...

pN 1⊤

=


1 p1 · · · pK−1

1
...

...
...

1 pN · · · p(K−1)
N




0 · · · 0
1 · · · 1
... · · · ...
0 · · · 0

 (6.17)

This implies that:

ŷ = S f Diag(p̂1)x̂ = S f Diag(Ψ1)x̂, (6.18)

so that each x̂i is multiplied with p̂1i = [1,λi , . . . ,λL−1
i ]1.

6.3.2. RELATIONSHIP WITH TIME-VARYING CHANNEL PROPAGATION

The proposed theory also generalizes, to the graph setting, concepts which are
familiar in the context of time-varying channel propagation [22], arising for instance
in mobile communication scenarios. In that case, the received signal y at time n,
i.e., y[n]2, is modeled as:

y[n] =
L−1∑
l=0

p[n, l ]x[n − l ], (6.19)

where p[n, l ] denotes the channel impulse response of the l -th path at the n-th time
instant, and x[n− l ] is the transmitted signal at the (n− l )-th time instant. The gains

2We use square brackets to indicate that the argument is a time index and not a graph node.
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associated to the different paths are assumed to be time-varying and approximated
by a basis expansion model [21]; specifically:

pl =
K−1∑
k=0

clk bk , (6.20)

where pl = [p[0, l ], . . . , p[N −1, l ]]⊤ stores the evolution of the filter impulse response
over the N time instants, bk ∈RN is the k-th basis function, and clk is the coefficient
associated to the l -th path and the k-th basis function. This alleviates the effort
of having to deal with N L channel coefficients (usually a very high number), and
converts the model into a simpler one with only LK BEM coefficients.

It is easy to show that we can write (6.19) in matrix-vector form, by taking into
account (6.20), as:

y =
K−1∑
k=0

Diag(bk )

(
L−1∑
l=0

clk Dl

)
x (6.21)

where x = [x[0], . . . , x[N −1]]⊤ and D is the N ×N lower delay matrix; notice how the
matrix

∑L−1
l=0 clk Dl implements a standard convolutional filter in time and observe its

similarities with the left equation in (6.8). Next, denote with F ∈CN×N the normalized
DFT matrix, and with fk its kth column; the classical complex exponential BEM uses
the Fourier basis as basis functions in (6.20), i.e., bk =p

N fk . As such the gains
pl associated to the l -th path [cf. (6.20)] are modelled as smoothly-varying over
time and hence expressed with a small number K of Fourier basis. Increasing K
accommodates for faster changes.

With this choice, (6.21) can be expressed in the frequency domain as:

ŷ = Fy =
K−1∑
k=0

FDiag(
p

N fk )
L−1∑
l=0

clk FH Diag(
p

N fl )Fx

=
L−1∑
l=0

(
K−1∑
k=0

cl k Dk

)
Diag(

p
N fl )x̂. (6.22)

While in (6.21) the matrix D shifts in the time domain, in (6.22) it shifts in the
frequency domain; however, such shift matrix is the same in both domains. This is
different when looking at the graph counterpart in (6.7), where the two shift matrices
might be different.

Remark 4. It is worthwhile to point out that the notion of smoothness for signals
and filter coefficients is different in temporal and graph signal processing. In the
time domain the basis to express smoothness for signals and filter coefficients is the
same, both coinciding with the normalized DFT matrix. In GSP, the basis to express
smoothness of graph signals and graph filter coefficients is different. Our theory shows
that smoothness of graph signals is determined by the eigenvectors of the primal
graph, while smoothness of the filter coefficients is determined by the Vandermonde
matrix containing the dual graph frequencies.

All in all (6.22) is the time domain counterpart of (6.7), by choosing the primal
eigenvector matrix V to be V = FH and the basis functions λk

f to be λk
f =

p
N fk .
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6.3.3. NON-STATIONARITY

In this section we study how and where (non-)stationarity of graph signals stands
within the introduced theory. From [17], a process y is said to be weakly stationary
on a GSO S if the covariance matrix Cy := E[yyH ] commutes with S or, equivalently,
if y can be written as the output of a C-GF H [cf. (6.1)] when excited with a white
input x, i.e., y = Hx. As a consequence, the covariance matrix Cŷ of the GFT process
ŷ is diagonal, revealing the power spectral density of the process y on its diagonal.

While [17] offers conditions to identify and model stationary graph signals, it does
not explore non-stationary signal models; this is our first attempt in that direction.
Worth to mention is the work of [19], where a network topology identification
approach is put forth to learn the GSO S given a set of realizations of a non-stationary
graph signal y modelled with a classical graph convolution (6.2). There, however,
non-stationarity is only considered with respect to node-invariant GFs, thus
restricting the non-stationarity model taxonomy. Indeed, the (non-)stationarity of
a random graph signal y obtained as y = Hx for a generic graph filter H and an
excitation input x, depends either on the type of graph filter or the properties of
the input x. Precisely a non-stationary graph signal y can be either modelled as
the output of a shift-invariant graph filter with a non-stationary input or as the
output of a node-variant graph filter when excited with a white input. The following
property and propositions formally describe these claims.

Property 1. Given input x and output y = HI (P,S)x, it holds:

Cy = HI (P,S)Cx HI (P,S)H (6.23)

with Cx := E[xxH ]. Moreover:

Cŷ = V−1Cy V. (6.24)

Depending on the structure of the graph filter HI (P,S) and the input signal x, the
ensuing propositions can be derived. Unless explicitly stated differently, we assume
that the graph filter coefficient matrix P respects the parametrization in (6.9), i.e.,
P =Ψ f C, for some order L,K .

Proposition 1. If x is a white graph signal, then [cf. Corollary 1]:

Cy = HI (P,S)HI (P,S)H (6.25)

Cŷ = HI I (P̂,S f )HI I (P̂,S f )H . (6.26)

In general, this means that y is non-stationary on S and ŷ is non-stationary on S f .

Proposition 2. If L = 1 and x is a white signal (stationary by definition), then ŷ is
stationary on S f .

From (6.24), we can see that if Cy is diagonal, then S f commutes with Cŷ and as
such ŷ is stationary on S f , with a power spectral density (in the primal domain)
equal to the eigenvalues of Cŷ . This can happen only if L = 1 and x is a white signal,
where the convolution simply becomes y = Diag(p0)x, i.e., a windowing in the primal
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domain. The covariance matrix Cy is then Cy = Diag(p0)2 and the cross correlation
in y is zero. In this case the covariance matrix Cŷ of the process ŷ in the dual
domain is not diagonal in general, since it reads as:

Cŷ = V−1 Diag(p0)2V. (6.27)

From (6.27), we can then conclude that y is non-stationary on S and, more
importantly, S f Cŷ = Cŷ S f , i.e., S f commutes with Cŷ . This implies that ŷ can be
expressed as the output of a node-invariant graph filter in the dual domain when
excited with white input, i.e., ŷ = H(p̂,S f )x̂ for some limited order filter coefficients p̂,
rendering the estimation of the dual graph (see Section 6.4) a node-invariant graph
filter estimation problem [9, 23]. This extends the classical notion of windowing
in time domain (for instance used in power spectral density estimation), which
corresponds to a frequency-invariant convolution in the frequency domain. A
generalization of this is given for L > 1 and a general signal x, for which Corollary 2
applies.

Proposition 3. If L = 1 and x is a non-white yet stationary graph signal with
covariance Cx = VΛx VH , then ŷ is not stationary on S f since:

Cŷ = H(c;S f )Λx H(c;S f )H (6.28)

for some coefficients c ∈RK , does not commute with S f .

Proposition 4. If pl = pl 1, ∀ l , and x is not stationary on S, then y is not stationary
on S and ŷ is not stationary on S f . Indeed we have that the covariance matrix of y:

Cy = H(p;S)Cx H(p;S)H (6.29)

does not commute with S; likewise S f does not commute with Cŷ = V−1CyV.

In other words, a node-invariant graph convolution of a non-stationary process x
results in a non-stationary process y on S (and non-stationary GFT ŷ on S f ). While
this result is not novel, we include it here to ensure a comprehensive coverage.

The introduced propositions provide a way to artificially generate non-stationary
graph signals on a given GSO S by filtering white noise, as explained next.

Generating non-stationary graph signals. Remember that Cŷ = V−1CyV has to be
diagonal for y to be stationary on S. Thus, non-stationary graph signals on S can
be generated as long as Cy is not diagonalizable by V (which would render Cŷ

diagonal). In particular, if we want our GFT random process ŷ to have a specific
covariance matrix equal to Cŷ = V−1CyV, for some positive semidefinite (PSD) Cy we
can generate random samples ŷ as:

ŷ = V−1RVx̂ (6.30)

where R is a matrix such that Cy = RRH and x̂ is a white input; equivalently, in the
primal domain:

y = Rx. (6.31)



6.4. DUAL GRAPH IDENTIFICATION

6

119

A simple example of such generation process is given by setting Cy = Diag(p)
for some p ≽ 0, so that (6.31) is a windowing operation in the primal domain,
corresponding to a node-invariant graph convolution [cf. (6.30)] in the dual domain.
With this choice, however, ŷ is stationary on S f [cf. Proposition 2]. If this is not
sought-after, a general non diagonal PSD Cy should be used.

6.4. DUAL GRAPH IDENTIFICATION
So far we have assumed the knowledge of S f . In this section, we put forth a
data-driven procedure to learn the dual graph eigenvalues λ f in such a way that
the resulting graph S f respects the theory developed in Section 6.3. For simplicity,
we restrict our attention to the case of an undirected primal graph with real-valued
GSO S and real-valued graph signals and filter coefficients. The problem setting is
the following: consider T graph signals Y = [y1, . . . ,yT ] which can be modelled as
non-stationary on the graph S as the result of filtering T (possibly unknown) input
graph signals X = [x1, . . . ,xT ] with a NV-GF HI (P,S), i.e., Y = HI (P,S)X. In particular,
similar to temporal signal processing, we assume that the orders K and L are much
smaller than N . Then the problem of identifying the dual graph can be formalized
as follows:

Given Y (and possibly X), find a dual graph S f which is consistent with
Theorem 5. In other words, find the dual eigenvalues λ f such that a NV-GF
HI on S with L ≪ N can be expressed as a NV-GF HI I on S f with K ≪ N .

To tackle this problem, we adopt a two-step approach: in step i) we learn the filter
taps P of the NV-GF HI (P,S) which best fit the available data, developing two distinct
approaches for the input-output and output-only scenarios; in the second step ii)
we find the dual eigenvalues λ f by exploiting (6.9), i.e., we fit the model P =Ψ f C,
which is a specific structured matrix factorization with a Vandermonde factor. We
solve this problem by following the recently proposed approach in [2] relying on a
subspace method followed by successive convex programming.

6.4.1. GRAPH FILTER ESTIMATION WITH INPUT-OUTPUT DATA

The goal of this section is to estimate the graph filter coefficients P from a set of
data pairs D = {(xt ,yt )| t = 1, . . . ,T }, all obtained using the same node-varying graph
filter. By vectorizing the expression Y = HI (P,S)X we obtain:

y =
L−1∑
l=0

vec(Diag(pl )Sl X)

=
L−1∑
l=0

((Sl X)⊤ ◦ IN )pl

= [X⊤ ◦ IN · · · (SL−1X)⊤ ◦ IN ]vec(P)

= Avec(P) (6.32)
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where y = [y1, . . . ,yT ]⊤, A = [X⊤ ◦ IN · · · (SL−1X)⊤ ◦ IN ] and ◦ denotes the Khatri-Rao
product. An estimate of P can then be obtained as:

P = unvec(A†y), (6.33)

where A† = (AH A)−1AH is the pseudo-inverse of A.

6.4.2. GRAPH FILTER ESTIMATION WITH OUTPUT-ONLY DATA

The goal of this section is to estimate the graph filter coefficients P with the
only knowledge of the output graph signals Y ∈ RN×T . We assume that each yt

can be modelled as the output of a NV-GF when excited with a white input
xt ∼ N (0,I), which is not directly observable. A viable approach is then to fit the
(empirical) second order information of the process which, together with the filter
parametrization (6.3), leads to the following optimization problem:

min
P

∥Ĉy −HI (P,S)HI (P,S)⊤∥2
F (6.34)

where Ĉy = (1/T )YY⊤ is the sample covariance matrix (Y is already centered).
Problem (6.34) is non-convex in P; thus, to alleviate the non-convexity, we consider

instead the simpler (yet, again non-convex) problem:

min
P,U

∥R−HI (P,S)U∥2
F s.t. U⊤U = I (6.35)

where R is a square matrix such that Ĉy = RR⊤, and U is an N ×N orthogonal matrix.
By exploiting the SVD of the matrix Y, i.e., Y = UyΛy V⊤

y , possible choices for R are

R = (1/
p

T )UyΛy U⊤
y and R = (1/

p
T )UyΛy . Notice that if (6.34) has a solution, then

(6.35) has a solution.

Despite the fact that (6.35) is not jointly convex in P and U, it is convex in P for a
fixed U; moreover, for a fixed P, it reduces to the well-studied orthogonal Procrustes
problem [24], for which a closed form solution exists albeit its non-convexity. Thus,
an alternating minimization over P and U can be put forth, as follows: a) first, given
the estimate of U at the (n−1)th iteration, i.e., U(n−1), the estimation problem at the
nth iteration for the filter taps matrix P reads as:

P(n) = argmin
P

∥R−HI (P,S)U(n−1)∥2
F , (36a)

which can be solved in closed form by considering Y = R and X = U(n−1) in (6.32).
The solution of (36a) is then b) used in the next step to refine the estimate of the
unitary matrix U, i.e.,:

U(n) = argmin
U

∥R−HI (P(n),S)U∥2
F

s.t. U⊤U = I (36b)

for which the closed form solution is U(n) = Vp U⊤
p , where Up and Vp are the left

and right singular vector matrices, respectively, of the matrix product R⊤HI (P(n),S),
that is, R⊤HI (P(n),S) = UpΛp V⊤

p , with Λp the matrix of singular values. The solution
of (36b) is then fed again into (36a), unless a predefined number of iterations or
stopping criterion is reached.
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6.4.3. DUAL GRAPH FREQUENCY ESTIMATION

The next step is to learn the dual graph frequencies λ f , which are the only
unknowns of the dual GSO S f . In order to do this, consider again the matrix form
of (6.6):

P =Ψ f (λ f )C (6.36)

where we explicitly wrote Ψ f as a function of λ f to highlight the fact that the matrix
is entirely determined by its second column λ f , representing our unknown. Then,
the problem we aim to solve can be formally stated as follows:

Given the matrix P ∈RN×L , recover the input vector λ f ∈RN and the coefficient
matrix C ∈RK×L such that (6.36) holds as accurately as possible.

Although the problem can be approached from a pure algebraic point of view as
a structured matrix factorization, a pleasing geometrical interpretation of (6.36) is
given by interpreting the vectors p0, . . . ,pL−1 as function values obtained by sampling
L distinct polynomials p0(λ f ), . . . , pL−1(λ f ), all with degree K −1, in the same N
unknown locations λ f ,0, . . . ,λ f ,N−1. The goal is to recover the original locations (and
polynomial coefficients) from the available sampled function values. The only side
information we have about these sampling points is i) which function they belong
to and ii) that they are ordered in such a way that the related sampling points are
aligned. See [2] and the Supplemental Material for an illustration.

Subspace Fitting. Assume we start by considering the following optimization
problem to estimate λ f and C:

min
λ f ,C

1

2
∥P−Ψ f (λ f )C∥2

F , (6.37)

which can be solved, for instance, with an alternating minimization approach,
without guarantee of convergence to a global optimum.

An alternative subspace method can be devised when L ≥ K . We then consider the
economy-size SVD of matrix P, i.e., P = UΣZ⊤, where U ∈RN×K and Z ∈RL×K are the
left and right singular vectors, respectively, and Σ ∈ RK×K is the diagonal matrix of
singular values. Since both Ψ f (λ f ) and U represent a basis for the column space
of P, there exists a non-singular matrix Q ∈RK×K such that Ψ f = UQ. The subspace
fitting [13] problem reads then as:

min
λ f ,Q

1

2
∥Ψ f (λ f )−UQ∥2

F , (6.38)

which, upon substituting the pseudoinverse solution Q = U†Ψ f into (6.38), can be
casted as the following equivalent problem:

min
λ f

{ f (λ f ) := 1

2
∥ΠΨ f (λ f )∥2

F }, (6.39)
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with Π := IN −UU† the orthogonal projection matrix onto the orthogonal complement
of U. In other words, problem (6.39) aims to find a vector λ f such that
the Vandermonde matrix Ψ f (λ f ) is orthogonal to the subspace spanned by the
orthogonal complement of U. Notice that we require L ≥ K , so that the matrix P can
have rank K revealing the subspace of the Vandermonde matrix Ψ f (λ f ) we want to
estimate.

Problem (6.38) is not convex in λ f due to the polynomial degree K (unless K = 2,
i.e., the model in (6.36) is linear in λ f ). To tackle the non-convexity of the problem,
we resort to sequential convex programming (SCP) [14], a local optimization method
that leverages convex optimization, where the non-convex portion of the problem
is modeled by convex functions that are (at least locally) accurate. As in any
non-convex problem, the initial starting point plays a big role; thus, if no prior
information on the variable is given, a multi-starting point approach is advisable.
The SCP formulation can be found in [2] and in the Supplemental Material (and
potentially in the final version of this manuscript).

Remark 5. The nature of the problem and the formulation (6.39) share similarities
with the MUSIC algorithm [25]. There, however, the problem considers Ψ⊤

f instead of

Ψ f and N independent 1-dimensional searches can be carried out to find λ f (which
would be contained in the second row of Ψ⊤). In our case, each column contains all
the N variables and an N -dimensional search is needed, rendering a “scanning” of
the vector variable λ f infeasible, unless N is very small.

6.4.4. AMBIGUITIES

Notice that (6.36) is not free of model ambiguities, since different pairs (λ f ,C) may
lead to the same observation matrix P. Because we assume that P has rank K , if
Ψ f and C are the true matrix factors satisfying (6.36), then for any K ×K invertible
matrix T, it holds:

P =Ψ f TT−1C =Ψ′
f C′. (6.40)

However, Ψ′
f needs to be Vandermonde in order for (6.40) to respect the model

structure in (6.36). As we proved in [2, Theorem 2], matrix T needs in general to
be a Pascal matrix. The consequence of such theorem is that without any added
constraint on Ψ f or C in (6.36), every shifted and scaled version of the groundtruth
parameter λ f (for an appropriate C), perfectly fits the observation model and is a
valid solution for (6.39). This is satisfactory for our purpose: a shift and scale of
the graph eigenvalues maintains the same topological structure of the original graph
(removing the self loops caused by the shift); we will illustrate this in Section 6.5.

6.5. NUMERICAL EXPERIMENTS
In this section we perform numerical experiments relying on the theory outlined in
Section 6.4. Specifically, we first test our learning algorithm on synthetic data to
assess the validity of the approach and its drawbacks; finally, we use it on real data.
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6.5.1. SYNTHETIC DATA

The goal of this section is to validate the approach outlined in Section 6.4, by
assuming the knowledge of the dual eigenvalues λ f , which however is not used
during the training phase but only used to compute the performance metrics. We
have the following generation and learning phases (also depicted in the Supplemental
Material for visual clarity):

1) Generation.

(a) Dual eigenvalues λ f : in order to have control over the spacing between different
eigenvalues, we generate them with the following strategy. First, we uniformly
sample the eigenvalue domain leading to the grid u := [u0,u1, . . . ,uN−1]⊤,
where the distance among two samples P := un −un−1 is constant for all
n. Then, the actual eigenvalues λ f are generated as λ f ,n = un + jn where
jn ∼T N (0, (δP/2)2), with T N (0,σ2

j ) a Gaussian distribution with zero mean

and standard deviation σ j , yet truncated at σ j . The (jitter) parameter δ> 0
specifies the randomness of the eigenvalues. If δ< 1 the eigenvalues maintain
the same ranking order as the uniform samples, while if δ ≥ 1 they can
overlap to the adjacent ones. Notice that in this synthetic setup we are not
interested in creating a “meaningful” dual graph, but rather assessing whether
our algorithmic routine is able to identify such dual graph.

(b) Filter taps P: we generate the primal node-varying filter taps P ∈ RN×L as
P =Ψ f C, with Ψ f the Vandermonde matrix associated to λ f generated in step
(a), and C ∈ CK×L a random expansion coefficient matrix [cf. (6.9)] generated
as vec(C) ∼N (0,IK L). To increase the curvature of the considered polynomials
(thus avoiding to have almost flat curves in the domain of interest), we perform
an extra weighting scheme by increasing the weight of higher order monomials;
that is, we multiply the matrix C with a mask matrix as C ← [1,21, . . . ,K 1]⊤⊙C,
where the i th column of the mask matrix is the constant vector containing in
all its entries the value i .

(c) Input-Output Data X,Y: we generate T input graph signals xt ∼ N (0,IN )
and stack them in the matrix X = [x1, . . . ,xT ]. Then, we filter X with
the type-I NV-GF HI (P,S) to obtain T new (possibly noisy) graph signals
Y = [y1, . . . ,yT ] = HI (P,S)X+ [n1, . . . ,nT ], with nt ∼N (0,σ2IN ) the measurement
noise.

2) Learning. The goal in this phase is to recover the original λ f of step 1(a) from the
input-output data {X,Y}. This is achieved with the algorithmic routine introduced in
Section 6.4.1 and Section 6.4.3; namely:

(a) Filter Taps P̃: we find an estimate P̃ of the filter taps P through (6.33);

(b) Dual eigenvalues λ̃ f : we find an estimate λ̃ f of λ f with the procedure
outlined in Section 6.4.3, namely, casting the problem as a subspace fitting
problem and solving it with SCP. During this step, we also estimate the
coefficient matrix C of the expansion model leading to C̃.
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Figure 6.2: PNE (in dB) as a function of δ with σ= 0 (left) and σ= 50 (center), for
different values of L,K ; and PNE (in dB) as a function of σ for δ= 1000
(right).

Metrics. To assess the validity of the proposed approach, we consider two different
performance metrics, one relative to the estimation of the filter coefficients P and
one relative to the estimation of the dual eigenvalues λ f . For the filter coefficients,
we consider the normalized squared error (NSE), computed as:

NSE(P̃,P) = ∥P̃−P∥2
F

∥P∥2
F

. (6.41)

For the dual eigenvalues, recall that we can recover the solution of problem (6.39) up
to a shift and scaling of the true positions [cf. Section 6.4.4]. Thus, as performance
metric, we use the normalized error modulo Pascal (PNE), defined as:

PNE(λ̃ f ,λ f ) = min
t0,t1

∥λ f − (t01+ t1λ̃ f )∥2
2

∥λ f ∥2
2

(6.42)

which measures how far the true eigenvalues are from a linear transformation of the
recovered estimates. Clearly (6.42) is zero whenever λ̃ f is a solution for (6.39).

Results. We generate our primal graph S as a random sensor network with N = 40
nodes, and set u0 =−1 and uN−1 =+1 [cf. 1(a)]. We run the algorithm for different
parameter configurations, specifically: the order of the filter in the primal domain
L ∈ {2, . . . ,9}, which is also the polynomial degree of the primal eigenvalues (cf. (6.7));
the order of the filter in the dual domain K ∈ {2, . . . ,9}, with K ≤ L, which is also the
polynomial degree of the dual eigenvalues; the jitter parameter δ ∈ {1,10,100,1000};
and the noise standard deviation σ ∈ {0,0.5,5,50}. The number of input (and output)
graph signals is set to T = 3000. Due to the non-convexity of the cost function (6.39),
we run the algorithm with 5 different starting points λ0

f , one of which is the uniform

grid u; this, together with the jitter parameter δ [cf. Generation (a)] helps us also
understanding the “magnitude” of the objective function’s non-convex landscape: if
the objective function is highly non-convex, even an initial starting point λ0

f close

to the real λ f (meaning a small δ) might incur a very high objective value and likely
end-up in a local minimum. In such a case, a random starting point might be
beneficial. The magnitude of non convexity of the objective function increases by
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increasing K . Finally, we compute the performance metrics relative to the solution
associated to the different starting points.

In Fig. 6.2 we show the PNE (in dB) as a function of δ for different L = K 3, in
the noiseless case (left figure) and noisy case (middle figure); in addition, we show
(right) how the PNE varies as a function of the noise σ for fixed δ = 1000. We
can make the following observations: as expected, for low-degree polynomials, the
algorithm performs better, since the non-convexity of the problem increases with
increasing polynomial order. This is visible from the left and middle figure: for a
small perturbation δ, also high orders yield a good performance; which degrades
by increasing δ. However, when noise is present in the observations, a random
initial starting points (i.e. higher δ) seems to be beneficial. Moreover, noise in
the measurement (right figure) has obviously a negative impact in the learning
performance, which however enables us to reconstruct the graph as we can see next.
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Figure 6.3: (Noiseless case σ = 0) Results for L = K = 3 (top row) and L = K = 9
(bottom row) with δ = 1×104. (Left Column) True eigenvalues (green
circles), inferred eigenvalues (red crosses) and initial starting point of
the algorithm (blue diamonds); (Center Column) Inferred dual GSO with
ambiguity-correction; (Right Column) True dual GSO S f .

To visually assess the algorithm’s performance, in Fig. 6.3 we show, for the noiseless
case, the ambiguity-corrected estimated eigenvalues λ̃c

f (red crosses), together with

the original eigenvalues λ f (green circles) and the initial starting point of the
algorithm λ0

f (blue diamonds) for L=K =3 (top row) and L=K =9 (bottom row),

3For all the plots we set L = K for visualization clarity. To reproduce the experiments with different
parameter settings, we make available the source code: https://github.com/albertonat/genConv

https://github.com/albertonat/genConv
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both with δ= 1×104, which corresponds to a completely random configuration of the
eigenvalues. The ambiguity correction is explicitly performed as:

λ̃c
f = [1 λ̃ f ][1 λ̃ f ]†λ f , (6.43)

which is the closest point to λ f up to a linear transformation dictated by the optimal
t0 and t1 minimizing (6.42).

In the L = K = 3 case, the NSE is NSE(P̃,P) = 2.41× 10−29 and the PNE is
PNE(λ̃ f ,λ f ) = 3.34×10−25; in the L = K = 9 case the NSE is NSE(P̃,P) = 9.20×10−23

and the PNE is PNE(λ̃ f ,λ f ) = 1.03×10−1. In both cases the inferred dual GSO,
shown in the middle column of Fig. 6.3, correctly reveals the structure of the
true dual GSO S f , shown in the right column; this even though the eigenvalue
reconstruction (left column) is perfect only in the first case. In other words, even
with an inexact (but not random) reconstruction of the eigenvalues, the algorithm
seems to adequately capture the connections present in the true GSO S f . The
reason behind the difference in error estimation among the two cases is mainly due
to the high polynomial degree K , which on the analytic side renders the objective
function (6.39) highly non-convex (and hence easier for the algorithm to end up
in a local minimum); on the algebraic side it increases the numerical instability of
performing the pseudoinverse of the matrix A required for a correct estimation of
the filter parameter matrix P. Hence, even a perfect dual graph frequency estimation
step fitting perfectly the estimated P, might fail to perfectly reconstruct the true
eigenvalues λ f . For δ = 10, the algorithm improves the PNE by two orders of
magnitude and the inferred eigenvalues λ̃ f nearly overlap the true ones λ f .

For the noisy scenario, in Fig. 6.4 we show the results obtained by considering the
two cases described above (i.e. L = K = 3 and L = K = 9 with δ= 1000), but with a
measurement noise having σ= 50. In this case the NSE is 8.88×10−6 and the PNE is
8.72×10−5, while for the latter the NSE is 9.74×10−16 and the PNE is 2.00×10−1.
The eigenvalues and graph reconstruction is successful despite the fact that the
reconstruction of the filter taps is not perfect as in the noiseless case, which gives us
hope for the robustness of the algorithm when measuring noisy data.

Overall we can state that from an algorithmic point of view, the algorithm is robust
in presence of a considerable eigenvalue perturbation δ and noise σ, especially
for low polynomial degree. In instances where the polynomial degree is high, the
inherent non-convex nature of the problem introduces substantial complexity into
the optimization process, which however leads to a dual graph resembling the
original one. the In addition, we observe that when the NSE is high, meaning that P
has not been properly reconstructed, the PNE is also usually high, which is somehow
expected since we rely on P to estimate the dual eigenvalues λ f .

6.5.2. REAL DATA

In this section we exploit the theory developed in Section 6.3 and Section 6.4 to infer
a dual graph from real data. To evaluate the stationarity level of the given data Y for
a given GSO S, we use the proxy-measure ρ = ∥diag(V−1Cy V)∥2

2/∥V−1Cy V∥2
F , which
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Figure 6.4: (Noisy case σ = 50) Results for L = K = 3 (top row) and L = K = 9
(bottom row) with δ = 1×103. (Left Column) True eigenvalues (green
circles), inferred eigenvalues (red crosses) and initial starting point of
the algorithm (blue diamonds; (Center Column) Inferred dual GSO with
ambiguity-correction; (Right Column) True dual GSO S f .

measures the “diagonal dominance" of the spectral covariance matrix; a value of 1
indicates that the data are stationary.

As performance metrics we monitor two errors: i) the NSE(Y,HI (P̃,S)X) for the
input-output case [cf. 6.4.1] or the NSE(R,HI (P̃,S)Ũ) for the output-only case
[cf. 6.4.2] (recall the definition of the NSE in (6.41)); and ii) the “corollary error” [cf.
Corollary 1 in (6.10)]:

εc =
∥V−1HI (P̃,S)−HI I ( ˜̂P,S f )V−1∥2

F

∥V−1HI (P̃,S)∥2
F

(6.44)

which assesses whether the inferred S f is a “valid” dual graph consistent with our
theorem, i.e., how much the upper and lower branches of Fig. 6.1 diverge from each
other. To make things more clear, the P̃ refers to the estimation of the primal filter

tap matrix P either following (6.33) or (36a), while ˜̂P refers to the estimation of the

dual filter tap matrix P̂, which is here computed as ˜̂P =Ψ†C̃⊤, with C̃ =Ψ f (λ̃ f )†P̃,
where λ̃ f is the estimation of the dual eigenvalues λ f solving (6.39). All in all, error
i) concerns the graph filter estimation, while ii) concerns the dual graph estimation.
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TRAFFIC VOLUME

we consider a subsampled version of the open dataset in [26] which contains
T = 1259 traffic volume measurements at intervals of 15 minutes at N = 13 sensor
locations along two major highways in Northern Virginia/Washington, D.C.; in
addition, the physical (road) network is available, see Fig. 6.5(left). We denote with
S the adjacency matrix representing the given road network, and with Y ∈RN×T the
(centered) graph signals corresponding to the traffic volume measurements. These
signals exhibit a non-stationary behavior captured by ρ = 0.54.
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Figure 6.5: (Left): primal graph of the road network; (Right) dual graph of the road
network, where each node represents a graph frequency. Red (blue) nodes
are the standard low (high) frequencies.

In our experiment, we explore both input-output and output-only scenarios. In
the former scenario, we define the input matrix X by aligning it with Y, shifting
each column two positions to the left; consequently, the learning task revolves
around forecasting the traffic volume 30 minutes ahead. We initialize the parameters
with L = K = 3 and execute the algorithm. Notice that our data was deliberately
not partitioned into training, validation, and test sets, since our primary focus is
optimizing the fitting of our graph filter to the provided data, rather than evaluating
its forecasting performance.

First, we learn the filter coefficients P for both scenarios, yielding a NSE equal to
8×10−2 for both. Subsequently, we use the inferred P̃ to learn the dual eigenvalues
λ f by solving (6.39). The associated dual GSO S f = V−1 Diag(λ̃ f )V, achieving a
corollary error [cf. (6.44)] εc = 1×10−1 for scenario 1 and εc = 3×10−1 for scenario
2, is shown in Fig. 6.5(right), where we only display the 50% biggest edges (in
absolute values) to ease the visualization. We color with blue the first half of the
nodes, representing what are usually considered “high pass” frequencies, and with
red the second half of the nodes, representing what are usually considered the “low
pass” frequencies (remember that S is the adjacency matrix). Adjacent nodes in the
graph are not necessarily among consecutive graph frequencies, as it is commonly
assumed in GSP. This shows that the frequency ordering that is commonly assumed
does not fit our theory and we might obtain a more expressive way to embed the
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different graph frequencies.

MNIST DATASET

We consider the MNIST dataset of gray-scale handwritten digits from 0 to 9, focusing
on the digit 54 containing T = 5949 images of size 18×18. We model each pixel
of the image as a node of the primal graph S and its pixel intensity as the graph
signal value at that node. As a preprocessing step, we remove the mean from each
pixel and vectorize the images, thus obtaining a graph signal matrix Y ∈RN×T , with
N = 324. As GSO S, we consider the normalized Laplacian matrix of the 18×18 grid
graph, for which the 5 exhibits a non-stationary behavior, since ρ = 0.4.

We assume that each yt is the output of a NV-GF HI (P,S) when excited with a
white input xt ∼N (0,I); our goal is then to learn the filter taps P and subsequently
the dual eigenvalues λ f from the available data Y. In this particular scenario, it
is important to highlight that our access is limited to the output data Y, since the
corresponding noise input X is not available. Consequently, the sole viable approach
becomes the output-only procedure [cf. Section 6.4.2]. Nevertheless, to navigate this
limitation and to be also able to use the input-output approach of Section 6.4.1, we
can employ the ensuing rationale to derive pairs (xt ,yt ):

(a) compute the covariance matrix Cy = YY⊤/T and decompose it as Cy = RR⊤;

(b) filter a white input signal xt to generate a new signal yt as yt = Rxt .

It follows that the yt vector generated in this way follow the same distribution of the
original Y and still represent the digit 5 (up to a sign ambiguity). This time, however,
we have the associated input X. We run the proposed algorithm for different orders
L and K , with and without input X.

In Fig. 6.6(left) we show the inferred filter taps P̃, for L = 4, corresponding to the
solution of problem (6.35) and yielding a NSE = 3×10−2; each filter tap {pl }3

l=0 has
been reshaped to have the same size of the input image and stacked in a row-wise
fashion. It is interesting to notice how each pl has a digit-shape look, with a
decreasing pixel intensity for increasing filter tap order L; this indicates pixel-locality
as an important factor for the creation of the final pixel intensity. Since each
(reshaped) filter tap image in Fig 6.6 pointwise-multiplies a shifted white input
(noise) image of same size (to be finally aggregated), it is visible how the most
influential filter content gathers around the digit shape for the digit-formation, and
decreases its importance for higher shifts, meaning that the process is local on the
pixel and there are no long term-influences. The same NSE and P-profile is obtained
with the input-output approach.

Once we have the filter tap matrix P̃, we then learn the dual eigenvalues λ f by
solving (6.39). The associated dual GSO S f = V−1 Diag(λ̃ f )V, achieving a corollary
error [cf. (6.44)] εc = 9×10−2, is shown in Fig. 6.6(right), where we only display 2% of
the most significant edges in absolute values5. The node label i indicates the index

4Similar results can be obtained with the other digits, see https://github.com/albertonat/genConv
5For a graph with N = 324 nodes there would be more than 50k edges possible.

https://github.com/albertonat/genConv
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Figure 6.6: (Left) Illustration of each filter tap {pl }3
l=0, following a row-wise stacking,

reshaped to have the same shape of the input image. Increasing l renders
the entries of pl less influential for the construction of the final digit;
(Right) Dual Graph of the 5-digit. The label indicates the index of the
eigenvalues λi , and the node color indicates whether it is part of the first
half (blue) or the second half (red), commonly associated to the low and
high pass bands, respectively. Notice that the graph is connected but due
to the edge thresholding (only for the visualization) it is split in two.

associated to λi . As in the previous experiment, we color the first half of the nodes
(representing now the “low frequency” eigenvalues) with blue, and the other half
with red. Similar results and conclusions can be made by following the input-output
approach, where we obtain εc = 3×10−2 and the graph is similarly structured as the
one in Fig. 6.6 (see Supplementary Material).

Together with the previous experiment, the following observations can be made:

• The connections between the eigenvalues do not follow the linear ordering
as assumed by the traditional real-line interpretation (in that case, we would
only have red-red and blue-blue connections without interactions); this has
consequences when designing graph filters based solely on the value of the λi ,
since now the concept of “bands” needs also to account for the topology.

• Because the dual graph represents the support of the GFT signals, we can
now inspect which neighborhood is influential for a particular frequency
during a convolution on S f ; this was not possible with the standard
real-line interpretation, as the convolution operation was a simple pointwise
multiplication.

All in all, these results confirm the commutative nature of the two branches of
Fig. 6.1, thus rendering the dual convolution a preferred approach when K < L, or
when S f and/or the GFT signals exhibit sparsity, in addition to delivering an elegant
theoretical framework.
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6.6. CONCLUSIONS
In this work we proposed a convolution theorem which extends the classical
convolution theorem in (graph) signal processing and the one related to time-varying
filters. More precisely, we illustrate how a convolution in the primal graph domain
can be redefined as a distinct convolution in the dual graph (frequency) domain,
given a suitable filter parametrization. After illustrating the implications of such
theorem in terms of non-stationarity of signals, and generative models thereof,
we devise an algorithmic approach based on subspace fitting and non-convex
programming techniques to learn the dual graph from data when this is not a priori
known. We evaluated the proposed theory and algorithms on synthetic data, as well
as on real data.

While our current theoretical framework holds promise for practical applications in
the future, there are notable challenges that merit further exploration. A significant
gap lies in the absence of a one-shot procedure to construct the dual GSO directly
from a primal GSO, along with potential graph signals associated with it. This
limitation curtails the broader applicability of the proposed theoretical insights.
Nonetheless, multiple extensions of this work are possible. From an algebraic point
of view, an interesting line of research would involve exploring the connections
between Vandermonde and Hankel matrices, as well as with Krylov subspaces,
potentially unveiling new algorithmic solutions to learn the dual eigenvalues. From
a modeling point of view, an interesting extension of this work would include
the node-varying graph filter coefficients also to be time-varying; holding promise
for utilization in graph autoregressive models. In such cases, leveraging the basis
expansion model technique across the temporal dimension becomes a potential
avenue for further investigation. From an optimization point of view, the use
of orthogonal polynomials might alleviate the ill-conditioning of the Vandermonde
matrix.

Our hope is that in the coming years, further exploration and refinement of this
research direction will reveal new insights and methodologies to process signals
defined on graphs in a way previously unfeasible.
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7
CONCLUSION

In this concluding chapter, we summarize our contributions in the field of (graph) signal
processing (GSP) and their potential impact in societal applications. We then outline
research avenues which we consider have been under explored while holding a huge
potential for the field.

7.1. SUMMARY OF THE CONTRIBUTIONS

In this manuscript, our focus has been on addressing two fundamental concepts in (graph)
signal processing: graph topology identification and the study of shift-variant systems.
Let us here briefly lay down the contributions of each chapter.

In Chapter 2, we delved into the fundamentals of GSP, beginning with the foundational
principles. Specifically, we started by defining the concept of shift and convolution in
the (discrete-)time domain. We then explored how we could capture the time domain
(or more formally, its shifting operation) by a graph with a graph shift operator (GSO) S
coinciding with the circular shift Sc [cf. (2.4)]. Building upon this insight, we found that
(almost) all classical signal processing concepts, such as filters and spectral analysis, can
be easily extended in a graph setting as long as the GSO S is diagonalizable, leading to
new definitions of frequency, transforms, and shift-invariant filters. In the last part of
the chapter, we introduced the problem of network topology identification from data
and illustrated it through three examples: the Gaussian graphical model, the structural
equation model and the smoothness based model.

Having delved into the world of graph filters and their capability to capture network
dynamics like diffusive phenomena, we have come across a common type known as
shift-invariant filters. These filters, prevalent in the literature, possess a unique prop-
erty—they commute with the GSO S. Now, traditionally, these filters are parametric in
two variables: the GSO S and the filter coefficients p. While much of the previous re-
search has concentrated on learning the filter coefficients for a fixed GSO S, in Chapter 3,
we asked ourselves the following question::
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RQ-1

“Given the availability of input-output networked data and partial
information about the graph, is it possible to jointly learn the optimal
filter coefficients p and the GSO S that effectively capture the network
dynamics?”

We answered this question in Chapter 4. After formulating a constrained least-squares
problem and recognizing its non-convexity, we proposed an algorithmic routine based
on alternating minimization of p and S. We tackled the non-convexity of the problem
by building on sequential convex programming (SCP), a local optimization tool for non-
convex problems that leverages the convex optimization machinery. We show that our
approach guarantees that the objective function value at each iteration is non-increasing,
obtaining a globally convergent method.

However, there are instances in which the graph’s structure is entirely unknown, yet its
understanding is vital. This could be either because the graph represents the primary
object of interest or because it serves as an essential component of graph-based archi-
tectures, such as graph filters. Therefore, learning such structure, potentially from avail-
able data, often becomes a fundamental challenge. Additionally, networks frequently
demonstrate temporal variability, with connections between entities evolving over time.
Furthermore, the data we observe often arrive in an online streaming fashion, where
storing them might be impractical. Consequently, in Chapter 3, we raised the question:

RQ-2

“How can we systematically learn time-varying graphs on-the-fly
from online data?”

This question became the focal point of our exploration in Chapter 5. Initially, we es-
tablished a premise: for meaningful exploration, it is imperative to impose constraints
on the interplay between the graph topology and the observed data. Consequently, we
provided a succinct overview of prevalent graph-data models and the static optimiza-
tion problems that emerge when these models are assumed. Subsequently, we extended
these algorithms into their time-evolving counterparts and integrated them within a co-
herent framework. This framework, agnostic to specific models, enabled analysis in its
abstract form adaptable to various graph learning paradigms; we particularized it to the
Gaussian graphical model, the structural equation model and the smoothness-based
model, by showing a theoretical analysis and numerical experiments. Our approach har-
nessed innovative methodologies derived from time-varying convex optimization [1].

We then moved to another fundamental concept in (graph) signal processing, that of
convolution. When the operator H implementing the convolution (a.k.a. the filter) com-
mutes with the shift operator S, implying their jointly diagonalizability, we say that the
filter is shift-invariant. This property is often assumed in signal processing architec-
tures due to its favourable spectral properties. However, many real-world systems are
not shift-invariant. This topic has been researched for what concerns time-based sys-
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tems, e.g. in underwater communications and mobility networks, but in the context of
graphs it was missing. Thus, in Chapter 3 we asked the question:

RQ-3

“How can we extend the convolution theorem to encompass shift-
variant systems operating on graphs, and is there a correlation with
non-stationarity?”

We addressed this question in Chapter 6, where we leveraged the concept of the dual
graph S f [2], which serves to depict the structure of the frequency domain. Through
our exploration, we illustrated how a shift-variant system in one domain can be equated
to another shift-variant system in the alternate domain. This novel theorem not only
broadens the scope of the graph convolution theorem but also encompasses its counter-
part for time-varying systems, which can be viewed as specific cases within this overar-
ching theorem. Furthermore, we elucidated the interplay between shift-variant systems
in both domains and their influence on the stationarity of graph signals within each do-
main.

The dual graph S f remains somewhat enigmatic to date, typically uncovered through
either an axiomatic or an optimization approach. However, with the introduction of the
general convolution theorem, a connection emerged between the filter coefficients in
the primary domain and the eigenvalues of the dual graph shift operator (GSO) S f . This
revelation spurred yet another question:

RQ-4

“Is it possible to acquire knowledge of the dual graph S f through a
data-driven methodology exploiting the proposed convolution theo-
rem?”

To address this inquiry, once again in Chapter 6, we proposed a data-driven method-
ology aimed at learning the eigenvalues of the dual graph S f , given that they represent
the sole unknowns when the primal graph shift operator (GSO) S is known. The resul-
tant optimization problem leads to a structured matrix factorization, wherein one of the
factors resembles a Vandermonde matrix, presenting similarities with a MUSIC-type ap-
proach, albeit more intricate to resolve. This problem was investigated in detail in [3]
and solved with a subspace-based approach, revealing that despite encountering ambi-
guities related to scaling and translation, they do not significantly impede the process of
graph learning.

7.2. OPEN RESEARCH AVENUES
In this concluding section, we highlight research paths that we consider crucial for the
advancement of the signal processing on graphs community. While we acknowledge
the existence of numerous potential minor research directions, we focus on avenues we
consider of significant importance.
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A fundamental research endeavor lies in comprehending the existence of an optimal
GSO S. Currently, various GSOs yield entirely distinct spectral interpretations. It remains
intriguing to investigate whether a universally optimal GSO exists, irrespective of specific
applications. We foresee that theory on differential geometry and algebraic topology
will be essential in addressing this inquiry. This would help in solving issues about the
missing of bijectivity between the set of graphs and the set of matrix representations. We
have seen indeed how in the context of the dual graph, the eigenvectors of the primal
GSO S also constitute the eigenvectors of the dual S, and that having a Laplacian in one
domain basically excludes having a Laplacian in the other domain. Thus formally:

ORQ-1

“Does there exist an optimal matrix representation to encode graph
properties which is application-independent?”

Another important research avenue with great potential is the inference of time-varying
directed graphs. Although research has been (and still is) carried out to process signals
on directed graphs (see [4] for a tutorial on the subject), the time-varying topology infer-
ence problem has received little attention. Since many real world networks exhibit direc-
tionality in their associations, it is natural to ask whether a principled framework, similar
to the one proposed in Chapter 5, can be offered for directed graphs. This prompts the
research question:

ORQ-2

“Can we learn time-varying directed graphs in a principled way?”

In closing, we see enormous potential for a profound synergy between the signal pro-
cessing and computer science communities. The practical, results-oriented mindset
prevalent in computer science stands to gain immensely from the profound theoretical
insights embedded within signal processing methodologies. Likewise, signal process-
ing experts should occasionally break away from the confines of theoretical modeling
assumptions and engage in practical coding. This approach allows for the scrutiny of
theoretical assumptions in light of real-world scenarios, fostering a more robust and em-
pirically grounded understanding of signal processing principles.



BIBLIOGRAPHY

[1] A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis. “Time-
Varying Convex Optimization: Time-Structured Algorithms and Applications”. In:
Proceedings of the IEEE (2020).

[2] G. Leus, S. Segarra, A. Ribeiro, and A. G. Marques. “The dual graph shift operator:
Identifying the support of the frequency domain”. In: Journal of Fourier Analysis
and Applications 27.3 (2021), p. 49.

[3] A. Natali and G. Leus. “Blind polynomial regression”. In: ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2023, pp. 1–5.

[4] A. G. Marques, S. Segarra, and G. Mateos. “Signal processing on directed graphs:
The role of edge directionality when processing and learning from network data”.
In: IEEE Signal Processing Magazine 37.6 (2020), pp. 99–116.

139





CURRICULUM VITÆ

Alberto NATALI

07-02-1994 Born in Umbertide, Italy.

EDUCATION
2009-2013 Liceo Scientifico Tecnologico

ITIS Leopoldo e Alice Franchetti, Città di Castello

2013–2016 B.Sc. in Computer Science & Electronic Engineering
Università degli Studi di Perugia

2016-2019 M.Sc. in Computer Engineering & Robotics
Università degli Studi di Perugia

2024 PhD. Electrical Engineering
Delft University of Technology
Thesis: Signal Processing and Optimization on Graphs:

Learning Time-Varying Structures and Generalizing
Convolution Principles

Promotor: Prof. dr. ir. G.J.T. Leus

141


	Contents
	Summary
	Samenvatting
	Preface
	Humans and Knowledge
	Data, Networks and Signal Processing
	Data
	Networks
	Graph Signal Processing

	Outline
	List of Contributions
	Conclusions

	Signal Processing: Time and Graphs
	Signal Processing in time
	Circular Convolution
	The Frequency Domain
	The Convolution Theorem

	Signal Processing on Graphs
	Graphs

	Spectral Analysis and Graph Filtering
	Graph Convolution
	Node-Variant Graph Filtering

	Learning Graphs from Data
	Gaussian Graphical Model
	Structural Equation Model
	Smoothness-Based Model

	Conclusions

	Advances in Graph Signal Processing
	Graph Topology and Filter Tap Estimation
	Time-Varying Graph Topology Inference
	A Generalization of the Convolution Theorem
	Conclusions

	Topology-Aware Joint Graph Filter and Edge Weight Identification for Network Processes
	Introduction
	Preliminaries
	Joint graph filter and topology estimation
	Alternating Minimization
	Numerical Results
	Conclusion
	Appendix
	GSO Candidate Generation


	Learning Time-Varying Graphs from Online Data
	Introduction
	Related Works
	Contributions

	Problem Formulation
	Graph Topology Identification
	Online Time-Varying Topology Identification

	Online Dynamic Graph Learning
	Reduction
	Framework

	Network Models and Algorithms
	Time-Varying Gaussian Graphical Model
	Time-Varying Structural Equation Model
	Time-Varying Smoothness-based Model

	Convergence Analysis
	Numerical Results
	Synthetic Data
	Real Data

	Conclusion

	A Generalization of the Convolution Theorem and its Connections to Non-Stationarity and the Graph Frequency Domain
	Introduction
	Related Works
	Contributions

	Preliminaries
	An Encompassing Convolution Theorem
	Consistency with the graph convolution theorem
	Relationship with time-varying channel propagation
	Non-stationarity

	Dual Graph Identification
	Graph Filter Estimation with Input-Output Data
	Graph Filter Estimation with Output-only Data
	Dual Graph Frequency Estimation
	Ambiguities

	Numerical Experiments
	Synthetic Data
	Real Data

	Conclusions

	Conclusion
	Summary of the Contributions
	Open Research Avenues

	Curriculum Vitæ

