
Inferring the residential building type from 3DBAG
Master thesis P2

Hoi-Kang Poon (Chris)
student #4355938

1st supervisor: Camilo León-Sánchez
2nd supervisor: Giorgio Agugiaro

January 18, 2023



1 | Introduction

The 17 Sustainable Development Goals are a universal call to action to end poverty, protect the planet
and improve the lives and prospects of everyone and everywhere. These goals are adopted by all 193
Member States of the United Nations as part of the 2030 Agenda for Sustainable Development (United
Nations, 2015b). From these 17 Sustainable Development Goals, Goal 11 concerns making cities and
human settlements inclusive, safe, resilient, and sustainable. And, stresses the importance of cities
and settlements to improve living standards and decrease energy consumption (United Nations, 2015a;
Ferrando et al., 2020). One of the most pressing challenges that cities face today is the levels of urban
energy consumption. Cities occupy only 3 percent of the Earth’s land but account for 60 to 80 percent of
all energy consumption. To decrease urban energy consumption, and to achieve Sustainable Development
Goal 11, energy in cities must be better managed and the cities’ design must be optimized. Many Urban
Energy Modeling methodologies and tools have been developed to do so. However, if Urban Energy
Modeling is not applied, cities may not have an accurate understanding of their energy use and may miss
opportunities for energy savings. For example, a city may not realize that a significant portion of its
energy use is coming from inefficient buildings or outdated infrastructure. This could lead to the city
continuing to invest in expensive, unsustainable energy sources rather than investing in energy-efficient
upgrades or renewable energy. Two main inputs required for these Urban Energy Modeling methodologies
and tools are first, the building stock geometry and secondly, the thermophysical properties associated
with the entities in the geometry (Ferrando et al., 2020).

The 3D BAG is an up-to-date open data set containing 3D models of the building stock of the Netherlands
at multiple levels of detail. This dataset is generated by combining two open data sets: the building data
from the Register of Buildings and Addresses (BAG) and the height data from the National Height
Model of the Netherlands (AHN) (3D geoinformation research group, 2021). However, the 3D BAG lacks
building data on thermophysical properties, which are required for Urban Energy Modelling, for example,
the construction characteristics of buildings such as materials, size, and order of construction layers.

On the other hand, the IEE project TABULA developed residential building typologies for 13 European
countries, where each national typology consists of a classification scheme to group buildings according to
their size, age, and further parameters. The TABULA WebTool then provides an online calculation of the
exemplary buildings representing the building types and displays their energy-related features (Episcope,
2012). These exemplary buildings can be used to give an estimation of the energy consumption of a
building stock by classifying its buildings into residential building typologies, substituting the need for
thermophysical properties of each building from the building stock.

Recent studies such as 3D Building Metrics or Global Building Morphology Indicators introduce metrics
calculated from building models that could potentially be used as features for a machine learning algorithm
(Labetski et al., 2022; Biljecki & Chow, 2022), for example, to classify certain building types. This master
thesis aims to infer the types of residential buildings from the building stock of the Netherlands in the
3D BAG using feature engineering and machine learning, as a way to add thermophysical properties
to the residential buildings, which can then be used in Urban Energy Modeling. This master thesis is
divided into two main parts, firstly to calculate and evaluate the accuracy assessment of the introduced
metrics from the 3D building models from the 3D BAG; secondly to implement machine learning methods
to calculate the building type of residential buildings on the IEE project TABULA residential building
typologies for the Netherlands.
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2 | Research questions

To what extent can machine learning correctly classify the building stock of the Netherlands?

• What features are needed to infer the building types of the buildings of the 3DBAG?

• What data is required?

• Which (combination of) machine learning algorithm is the most suitable to be used for the classi-
fication of the building stock of the Netherlands, with regards to the size and nature of the data
used, the availability of computational resources, the interpretability of the results and the desired
level of accuracy?

3 | Related work

In order to classify a building from the 3D BAG dataset as one of the building types of residential
buildings on the IEE project TABULA, we first have to investigate how the distinction of each building
type of residential building is made. The IEE project TABULA (2014) classifies the residential buildings
of the Netherlands into four generic building types: single-family houses, terraced houses, multi-family
houses, and apartment blocks. These generic building types can then be divided into even further
building types: detached single-family houses and semi-detached single-family houses (twee-onder-een-
kap), middle-row terraced houses (tussenwoning) and end-house terraced houses (hoekwoning), common
staircase with galleries apartment block and common staircase without galleries apartment block, and
lastly maisonettes. Each of these types is also classified into their construction year class: before 1964,
between 1965 and 1974, between 1975 and 1991, between 1992 and 2005, and after 2006. Each generic
building type and subdivision building type has its own exemplary building for each construction year
class with its energy-related features. See figure 3.1 below for the diagram of this classification made by
the IEE project TABULA.

Figure 3.1: TABULA classification diagram.
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Figure 3.2: Voorbeeldwoningen 2011 classification diagram.

Voorbeeldwoningen 2011 IEE project TABULA
Vrijstaande woning Detached
2 onder 1 kap woning Semi-detached
Rijwoning Terraced house
Maisonettewoning Maisonettes
Galerijwoning Common staircase with galleries
Portiekwoning Common staircase without galleries
(Overig) flatwoning Multi-family house

Table 3.1: Same building types between Voorbeeldwoningen and IEE project TABULA.

Additionally, the brochure Voorbeeldwoningen 2011 published by Agentschap NL (2011) describes ref-
erence dwellings with their energy-related features and the impact of refurbishment measures with the
same building types as the IEE project TABULA (see table 3.1), but with less hierarchical distinction
(see figure 3.2). For example, there are no generic building types, and the distinction between a middle
row and end house terraced house is not made, but specific building properties are given: front-back
facade and side facade. Also, for some of the building types, the number of floors is given and the floor
area for each building type is given, whereas in the TABULA the number of floors is not given and some
of the referenced floor areas are estimated (Episcope, 2013).

Furthermore, Kadaster (2015) makes somewhat the same distinction as the Voorbeeldwoningen 2011 and
IEE project TABULA. Like the IEE project TABULA, Kadaster also makes the distinction between a
middle-row and end house terraced house. But, it does not make the distinction between a multi-family
house, maisonette, common staircase with galleries apartment block, and common staircase without
galleries apartment block. Instead, these are all classified as apartments. However, the Kadaster does
elaborate on the classification process of the building types through a flowchart, this classification process
classifies a building by linking its address to an exemplary building type or reference dwelling type. This
flowchart has been expanded to include the specific classification of apartments by IEE project TABULA,
see figure 3.3, using additional information gathered from Voorbeeldwoningen 2011.

According to Kadaster (2015), using their classification process in 2014 there were less than 1 million
classified as non-residential from the 8.5 million addresses in the Netherlands. And less than 3000 ad-
dresses that were not classified. The reasons for these unclassified addresses are overlapping buildings
in the BAG dataset, (neighboring) buildings with the same addresses, and buildings that were not in
use (e.g. buildings for sale). There were also errors propagated from errors in the BAG, for example,
a building missing data on their dwelling will lead to incorrectly classifying its type, and a small space
between buildings can lead to classifying a building as an end house instead of a middle-row house or
semi-detached single-family house. On closer inspection, it seems that these errors have been corrected
in the BAG, but it is good to keep these special cases of unclassified buildings and errors in mind when
designing the classification method for this thesis.
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Figure 3.3: Flowchart of Kadaster’s classification process of residential buildings, expanded to include
the specific classifications of apartments (in blue).

Furthermore, Kadaster’s classification process groups the multi-family houses, maisonettes, common stair-
case with galleries apartment blocks, and common staircase without galleries apartment blocks into a
single type: apartments. The elimination of the subdivision of apartments is also made in the Referen-
tiewoningen nieuwbouw 2013 published by Agentschap NL (2013), a brochure giving exemplary buildings
to be used as a reference for new residential buildings, but still, they divide the apartments into gallery
buildings and apartment buildings. While admitting that the diversity within these types is big and
therefore the energy-related values given are an average of the diverse subtypes.

However, it is still important to include the subdivision of the apartments in this thesis, although the
buildings from this subdivision will not be referenced anymore, the building stock now includes these
buildings, so it is still important to classify them, to get a more precise estimation on the energy con-
sumption of a building.
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The Global Building Morphology Indicators (GBMI) (Biljecki & Chow, 2022) is a comprehensive list
of hundreds of building form multi-scale measures derived through a systematic literature review, and
also a methodology and tool for the computation of these metrics in a database suited for big data and
comparative studies. The list of these indicators at the building level for both the independent and
contextual instances can be found in figure 3.4.

At the same time, the 3D building metrics for urban morphology (3DBM) (Labetski et al., 2022) provide
a comprehensive set of 3D metrics elevating building metrics into full/true 3D, uncovering the use of
higher levels of detail, and taking into account the detailed shape of a building. These metrics are
computed per building (see figure 3.5) and are available as a software package that ingests 3D city
models and computes these metrics and stores them in a structured manner to enable data analyses.
These indicators and metrics that characterize buildings are fundamental to studying the urban form
and are used in many large-scale studies and analyses (Biljecki & Chow, 2022; Labetski et al., 2022). In
this master thesis, these indicators and metrics can be used as features together with machine learning
to classify the building stock of the Netherlands in the 3D BAG to their residential building types, but
also to classify the generalized type of apartments, defined by the Kadaster (2015), to their subdivisions
from IEE project TABULA (2014) and in the Voorbeeldwoningen brochure from Agentschap NL (2013).

Figure 3.4: List of indicators at the building level from the GBMI (Biljecki & Chow, 2022).
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Figure 3.5: Metrics, from the 3D building metrics for urban morphology (Labetski et al., 2022), computed
per building based on category.

Finally, the master thesis Inferring the number of floors of building footprint in the Netherlands by Roy
et al. (2022) has been used as inspiration and recommended by the supervisors for its clear structure
and the similarities to this master thesis. Roy et al’s (2022) master thesis focus on inferring the number
of floors of the buildings from also the 3D BAG by using supervised machine learning techniques, which
requires labeled data (data including the desired solutions). The labels, in this case, are the building
floor count and the features are the building properties. Three machine learning algorithms were used in
this thesis: Random Forest Regression, Gradient Boosting Regression, and Support Vector Regression.
And, it was identified that inferring the number of floors is a regression problem since classification would
require the training data to include all possible floor counts that exist in reality, which would be difficult
to find in practice.

However, in this master thesis, the problem is classification, since the building needs to be inferred to
discrete residential building types and the training data can include all the possible residential building
types of the Netherlands. Nonetheless, the classification counterparts of the three introduced machine
learning algorithms can be used as a basis for the research for the most suitable machine learning algo-
rithm for this master thesis, namely, Random Forest Classification, Gradient Boosting Classification, and
Support Vector Machine. But more machine learning classification algorithms will also be explored.

Furthermore, the features considered in Roy et al’s (2022) master thesis should be relevant to this master
thesis as well. The number of floors, the result of the thesis, itself can be considered a feature in inferring
the residential building type. The features can be subdivided into cadastral, geometric, and census
features. The cadastral features were obtained from the BAG. The geometric features are split into 2D
and 3D features, where the 2D features were extracted from the BAG and the 3D features from the
3D BAG. Last, the census features were obtained from the Centraal Bureau voor de Statiek (CBS), a
government agency responsible for collecting statistical information about the Netherlands. All these
features can be found in figure 3.6 through 3.9, with their details and relevance. The relevances are
described for the number of floors but should be relevant for the residential building type as well.
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Figure 3.6: Cadastral features (Roy et al., 2022).

Figure 3.7: 2D Geometric features (Roy et al., 2022).

Figure 3.8: 3D Geometric features (Roy et al., 2022).

Figure 3.9: Census features (Roy et al., 2022).
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4 | Method

The method used to address the research question of to what extent machine learning can correctly
classify the building stock of the Netherlands consists of four main stages:

1. Data collection and preparation

2. Feature extraction

3. Modeling and prediction

4. Accuracy assessment

First, the data required for the classification needs to be collected and integrated. The building stock
of the Netherlands is obtained from the 3D BAG. The data on each building’s use, its address, and the
number of dwellings in each building is obtained from the BAG. The scope will be the entirety of the
Netherlands, but a subset will be used to test the method and different models, however, the method
described here can be replicated for the whole country or different parts of the country (different subsets).
Rijssen-Holten and Energy label dataset will be used to create a basic training dataset consisting of unique
building identifiers and building types or energy labels.

Second, the data needs to be prepared for the training process. Which entails the extraction of features
that describes the properties of each building. The methodology and tools of the GBMI and the 3DBM
will be used and expanded with our own features which are needed for the classification of the residential
buildings. A number of these features can be derived from the classification process of the Kadaster,
namely the number of dwellings, the number of neighboring buildings with dwellings, and the number of
neighboring buildings of the neighboring building. The features extracted with the GBMI and the 3DBM,
which describe the shape of a building, will be used to further classify the apartment residential building
type into its subdivisions. The extracted features will then need to be analyzed and assessed to eliminate
any redundant or irrelevant features, a process known as feature selection or feature elimination. Feature
selection helps with selecting a subset of features that can provide a concise description of the training
dataset, while still generating accurate predictions (Chandrashekar & Sahin, 2014).

Third, further research on machine learning will be done to find several suitable algorithms to perform
the classification of residential buildings in the Netherlands. Before the algorithms can be trained pre-
processing the data is required. A subset of 80% of the data needs to be created for the training of
the algorithms. While the other 20% subset will be used to evaluate the model. Evaluating the model
on unseen data gives us an unbiased measure of the model’s performance. Next, the features extracted
from the data need to be converted into formats appropriate for the machine learning algorithms, for
example, converting categorical features into one-hot encoding by creating additional columns for each
possible feature value. Lastly, research will have to be done to find the most suitable error metrics and
each algorithm will be assessed and evaluated by using a combination of error metrics in the evaluation
of the resulting models. These error metrics will allow the best model per algorithm to be selected. To
further improve the performance of the resulting models, hyperparameter tuning can be performed or
even other features can be considered.

Lastly, a more in-depth analysis of model performance will be performed based on the different error
metrics used. To determine which machine learning is the most suitable to be used in the classification
of the residential buildings of the Netherlands the results of the machine learning algorithms need to
be compared to the ground truth. A confusion matrix can be used, it consists of a True Positive, True
Negative, False Positive, and False Negative and is usually presented in a tabular format (Nan, 2022),
see figure 4.1.
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Figure 4.1: Confusion matrix (Nan, 2022).

Each prediction from a model can be one of these four types with regard to performance:

• True Positive (TP), is when a sample is predicted to be positive (e.g. a building is predicted to
belong to a certain residential type) and its label is actually positive (e.g. the building actually
belongs to that residential type).

• True Negative (TN), is when a sample is predicted to be negative and its label is actually negative.

• False Positive (FP), is when a sample is predicted to be positive, but its label is actually negative.

• False Negative (FN), is when a sample is predicted to be negative, but its label is actually positive.

With these values, several performance metrics can be computed: Accuracy, Precision, Recall (Sensitivity,
True Positive Rate, Hit rate), and Specificity (True Negative Rate, Selectivity). Which can be used to
evaluate the performances of the models. Accuracy is the fraction of predictions the model predicted
correctly out of all the predictions. And is computed as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4.1)

However, Accuracy is not a great metric, especially when the data is imbalanced. Therefore, Precision,
Recall, and Specificity are usually used to overcome the limitations of Accuracy. Precision is the fraction
of actual positive predictions the model predicted correctly out of all the positive predictions:

Precision =
TP

(TP + FP )
(4.2)

While recall is the fraction of actual positives out of all positive predictions:

Recall =
TP

(TP + FN)
(4.3)

And lastly, specificity is the fraction of actual negative predictions the model predicted correctly out of
all the negative predictions:

Specificity =
TN

(FP + TN)
(4.4)

9



5 | Preliminary results

5.1 Possible features

Based on the related works, possible candidates to be used as features to infer the residential building
type has been gathered, see table 5.1 for the possible candidates for features.

# Feature Details and relevance Source

1 Construction year
Construction year might not be relevant to inferring the
residential building type, but it is relevant to determining the
construction year class of a residential building type.

BAG

2 Building function In order to filter out the non-residential buildings BAG

3 Area of dwelling
Might be related to residential building types, exemplary
buildings and reference dwellings are often given with a
reference area

BAG

4 No. dwellings See classification process of the Kadaster BAG
5 No. adjacent buildings See classification process of the Kadaster Extracted from BAG

6 No. adjacent buildings
with dwellings See classification process of the Kadaster Extracted from BAG

7 No. adjacent buildings
of adjacent building See classification process of the Kadaster Extracted from BAG

8 Area Footprint area, describes the form of the building. Extracted from BAG

9 Perimeter
Footprint area, describes the form of the building and provides
additional information about the footprint shape, like the
compactness and complexity.

Extracted from BAG

10 No. vertices The number of the vertices gives another indication of the
complexity of the footprint shape. Extracted from BAG

11 No. neighbours
The number of neighbouring building centroids within a certain
radius of the footprint centroid. For example, taller buildings, like
apartment blocks generally have more open space in the surroundings

Extracted from BAG

12 Building height Describes the form of the building. Extracted from 3D BAG
13 Building length Describes the form of the building. Extracted from 3D BAG
14 Building width Describes the form of the building. Extracted from 3D BAG

15 Roof shape Might be related to specific residential building types, if there
are no special cases. Extracted from 3D BAG

16 Roof surface area Describes building geometry, exemplary buildings and reference
dwellings are often given with a reference roof surface area Extracted from 3D BAG

17 Wall surface area Describes building geometry, exemplary buildings and reference
dwellings are often given with a reference wall surface area Extracted from 3D BAG

18 Building volume Describes building geometry. Extracted from 3D BAG

Table 5.1: Possible candidates for features.

5.2 Tools and datasets used

Furthermore, a table (5.1) has been made with a list of datasets relevant to this master thesis. The 3D
BAG contains the 3D geometry of the building stock of the Netherlands. The BAG is the Dutch National
cadastral dataset and contains the 2D geometries of the buildings (panden) in the Netherlands and their
dwellings (verblijfsobjecten), some relevant attributes from the BAG are the functions of the dwellings
and their areas. Rijssen-Holten is a dataset similar to the 3D BAG, but it covers only the municipality
of Rijssen-Holten. However, different from the 3D BAG the Rijssen-Holten dataset has given semantics
to the surfaces of the 3D geometry of the buildings and different attributes some of which are relevant,
namely, the number of adjacent buildings and the building type. With the inclusion of the building type,
the Rijssen-Holten dataset can be considered labeled data for this thesis and can be used as ground
truth in the evaluation of the prediction models. Likewise, the EP-online contains the energy labels and
performance of the buildings of the Netherlands and also the building type.

Dataset name Description Version Source
3D BAG 3D building models of the building stock of the Netherlands 21.09.8 (Peters et al., 2022)
BAG National cadastral dataset 01-08-2023 (Kadaster, 2023)
Rijssen-Holten Open testbed for energy applications, study area is located in the municipality of Rijssen-Holten 11-07-2022 (León-Sánchez et al., 2022)
EP-online Official national database containing energy labels and energy performance indicators of buildings 01-01-2023 (Rijksoverheid, 2023)

Table 5.2: Relevant datasets.
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6 | Time planning

Figure 6.1: Gantt chart.
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