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ABSTRACT 

The procedure of fatigue damage accumulation in composite 

structures is still unknown and depends on several 

parameters such as type and frequency of loading, stacking 

sequence and material properties. Additionally, the 

nonhomogeneous and anisotropic nature of composites 

result to a stochastic activation of the different failure 

mechanisms and make the estimation of remaining useful 

life (RUL) very complex but interesting task. Data driven 

probabilistic methodologies have found increasing use the 

last decade and provide a platform for reliable estimations 

of RUL utilizing condition monitoring (CM) data. However, 

the fatigue life of a specific composite structure has a quite 

significant scatter, with specimens that either underperform 

or outperform. These specimens are often referred as 

outliers and the estimation of their RUL is challenging. This 

study proposes a new RUL probabilistic model, the Extreme 

Non-Homogenous Hidden Semi Markov Model 

(ENHHSMM) which is an extension of the Non-

Homogenous Hidden Semi Markov Model (NHHSMM). 

The ENHHSMM uses dynamic diagnostic measures, which 

are estimated based on the training and testing CM data and 

adapts dynamically the trained parameters of the 

NHHSMM. The available CM data are acoustic emission 

data recorded throughout fatigue testing of open-hole 

carbon–epoxy specimens. RUL estimations from the 

ENHHSMM and NHHSMM are compared. The 

ENHHSMM is concluded as the preferable option since it 

provides more accurate outlier prognostics. 

1. INTRODUCTION 

Enhancing safety, availability, and reliability of engineering 

systems through prognostics has gained momentum over the 

last decade. Research on prognostics is often correlated with 

estimating the remaining useful life (RUL) of the system 

utilizing condition monitoring (CM) data, where the RUL 

estimation implies to find its probability density function 

(pdf). In general, similar engineering systems, which serve 

under the same conditions, tend to fail at different times 

during their life-span. Composite structures are a profound 

example because their lifetime, especially when they are 

subjected to service loads such as fatigue, deviate 

remarkable. The main reason for this deviation is the 

process of damage initiation and propagation, known as 

fatigue damage accumulation. 

The fatigue damage accumulation depends on several 

parameters such as the type of material and the lay-up, 

loading frequency and sequence, the form of the fatigue 

cycle and in combination with the multi-phase nature of 

composites and the variation of defects, different failure 

mechanisms are stochastically activated. Thus fatigue 

damage analysis, and consequently the prognostics, 

becomes very complex and at the same time challenging 

task. The fatigue life of a specific composite structure has a 

quite significant scatter, with extreme cases the left and 

right outlier. The estimation of their RUL is challenging 

because the training process of the selected probabilistic 

model doesn’t take into account CM data that are associated 

with the outlier performance. Therefore, probabilistic 

methodologies that will account for the extreme cases, are 

required in prognostics field.  

Methods based on stochastic filtering (Orchard & 

Vachtsevanos, 2009), multi-stage degradation models 

(Rabiner, 1989) and covariate hazard models (Lu & Liu, 

2014) are common methodologies, which can take lifetime 

scattering into account (Si, Zhang & Hu, 2017). Since the 

phenomenon of damage accumulation of composites 

structures is stochastically correlated with CM data, multi-

stage degradation models, such as Markov models (MMs), 

are the preferable approach in order to estimate the RUL of 

composite structures. MMs have been utilized as early as 

the 80s (Bogdanoff & Kozin, 1985) but the Markovian 
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assumption, i.e. future degradation state depends on the 

current degradation state, is not generally enough in order to 

describe efficiently the damage accumulation phenomenon 

in engineering systems. Driven of that drawback, Hidden 

Markov models (HMMs) have been introduced by Rabiner 

(1989). HMM is a multistate structure where each state is 

hidden correlated with the damage accumulation 

phenomenon. The main disadvantage in that case is the 

assumption of an exponentially sojourn time distribution for 

each of the hidden states, which is not always valid. Hidden 

Semi Markov models (HSMMs) relax this assumption 

allowing the unconstrained selection of the sojourn time 

distributions (Peng & Dong, 2011). Both in HMMs and 

HSMMs, there is a limitation regarding the state transition 

which is independent on the age of the engineering system 

or the sojourn time in the current hidden state. In order to 

take into account this limitation Moghaddass and Zuo 

(2014
a
) extended the HSMM approach developing the Non-

Homogenous Hidden Semi Markov model (NHHSMM). 

According to this model, the state transition depends on the 

current hidden state, the sojourn time of the current hidden 

state and the total age of the studied system. However, a 

limitation of all the aforementioned models, i.e. MMs, 

HMMs, HSMMs and NHHSMMs, is the lack of adaptation 

regarding the estimated model’s parameters, while the 

engineering system i.e. composite structure, is operating. To 

our knowledge, such data driven probabilistic 

methodologies, which can dynamically adapt the estimated 

parameters have not been developed for prognostic tasks 

yet.  

Therefore, there is a need for developing methodologies that 

are able to dynamically adapt the model’s parameters based 

on the testing CM data in the sense that outlier aspects can 

be reflected. The contribution made in this paper is to 

propose a new RUL probabilistic model, the Extreme Non-

Homogenous Hidden Semi Markov model (ENHHSMM) 

which is an extension of the NHHSMM. The ENHHSMM, 

which is described in Section 2, uses the available 

diagnostic measures and adapts dynamically the trained 

parameters of the NHHSMM. The remainder of this paper is 

organized as follows: in Section 3, the case study analysis is 

presented and finally the paper is concluded in Section 4. 

2. EXTREME NHHSMM 

As already mentioned in introduction there is a need for 

developing dynamic probabilistic models which will be able 

to adapt the estimated model’s parameters using the testing 

CM data. Figure 1 summarizes the RUL prediction 

methodology, which consists of two parts; the training and 

testing process. The training process contains the training 

CM data and the stochastic model while the testing process 

uses the training process’ output, the extracted testing CM 

data and dynamic diagnostic measures.  

The aim of this probabilistic model, which called 

ENHHSMM, is to be able to estimate more accurately the 

RUL of an outlier based on the adapted parameters and the 

available testing CM data. 

 

Figure 1. Flowchart of the RUL prediction methodology. 

2.1. NHHSMM 

This subsection briefly reviews the fundamentals of the 

NHHSMM. The interested reader can refer to Moghadass 

and Zuo (2014) and Eleftheroglou and Loutas (2016) for a 

more detailed description. The NHHSMM consists of a bi-

dimensional stochastic process. The first process forms a 

finite Semi Markov chain, which is not directly observed, 

and the second process, conditioned on the first one, forms a 

sequence of independent random CM data variables. In 

order to describe the aforementioned bi-dimensional 

stochastic process the model’s parameters θ have to be 

estimated. 

The parameter estimation consists of the initialization and 

training procedure. The purpose of the initialization 

procedure is to identify a set of parameters ζ, with high 

computational efficiency, which will associate the damage 

accumulation phenomenon and the available CM data. The 

purpose of the training procedure is to estimate the 

parameters θ={Γ,Β}. Γ parameters characterize the 

transition rate distribution between the hidden states 

(degradation process), while Β parameters deal with the 

correlation between the hidden states and CM data 

(observation process). This correlation is represented in a 

nonparametric and discrete form via a matrix called 

emission matrix. The purpose of the training procedure is to 

estimate the parameters θ based on the selected parameters 

ζ. The complete model M is defined when ζ and θ are 

known, M={ζ,θ}. 

The initialization procedure is obtained by defining the 

following parameters: 

 Number of hidden states (Ν). N refers to the 

number of discrete levels of degradation. However, 

hidden states are not quantitatively but just 
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qualitatively correlated with the damage 

accumulation phenomenon. The main assumption 

in this paper is that the system under study starts to 

operate on its perfect functioning state, hidden state 

1, until its total failure i.e. state N. The final state N 

is not hidden but self-announcing and always 

corresponds to the failure state. As a result, the last 

observation of the available CM data should be 

unique dictating a common failure threshold in the 

available CM data. 

 Transition between the hidden states (Ω). This 

parameter defines the connectivity between the N 

selected hidden states and it can be soft (gradual 

transition to neighbour hidden state), hard (sudden 

transition from any hidden state to failure state N) 

and multistep (transition to an intermediate state 

between the current hidden state and the failure 

state). Figure 2 illustrates the three possible types 

of transition. The fatigue damage accumulation, 

which always increases during the life of the 

structure, dictates that the available transitions are 

left to right only.  

 Transition rate function (λ). This parameter is the 

main describer of the degradation process since 

each transition is going to follow this λ transition 

rate function. The transition process can depend on 

the involved hidden states (Markovian property), 

the sojourn time of the current hidden state, the 

total operation time (aging) and any other 

combination between the aforementioned 

parameters. The most commonly used distributions 

for the λ function are the Weibull, Gaussian, 

Exponential and Gamma failure rates. In this study 

the Weibull failure rate is used since it is the most 

generic one. 

 Discrete CM indicator space (Z={z1,z2,…,zV}). 

The selection of this parameter is crucial for the 

observation process since emission matrix has N 

(number of hidden states) rows and V (number of 

discrete condition monitoring values) columns. The 

entry in the element (i,j) of the emission matrix 

represents the probability that zj CM value is 

observed when the system is in hidden state i. 

 

Figure 2. Soft (I), hard (II) and multistep (III) types 

of transition. 

 

To summarize, the initialization topology can be denoted as 

ζ={N,Ω,λ,V}. With regards to the training procedure, 

parameters θ={Γ,Β} are obtained via the maximum 

likelihood estimation. Moghadass and Zuo (2014) proposed 

a method for defining the Maximum Likelihood Estimator 

(MLE) θ* of the model parameter θ which leads to 

maximize the likelihood function L(θ,y
(1:K)

), where y
(k)

 is 

the k-th degradation history, K is the number of available 

degradation histories and 

L(𝛉, 𝐲(𝟏:𝐊)) =∏Pr(𝐲(𝐤)|𝛉)
L′=log(L)
⇒      

K

k=1

            

𝐿′(𝜽, 𝒚(𝟏:𝑲)) = ∑ 𝑙𝑜𝑔(𝑃𝑟(𝒚(𝒌)|𝜽))

𝐾

𝑘=1

⇒           

𝛉∗ = argmax
𝛉
(∑log (Pr(𝐲(𝐤)|𝛉))

K

k=1

) 

      

(1) 

setting initial values for Γ, Β and solving the 

aforementioned optimization problem, the parameter 

estimation process is obtained and diagnostics and 

prognostics can be estimated. 

2.2. Diagnostics 

Finding a monotonic degradation measure, which at least 

reflects qualitatively the damage accumulation has always 

been an interesting and challenging topic in a real time CM 

applications (Shen et al., 2012). Therefore, a reasonable 

measure to monitor the overall health status of an 

engineering system is the diagnostic measure Most Likely 

State (MLS) (Moghaddass & Zuo, 2014
b
), which can be 

determined via Eq. (2). 

MLS(t|y1:t, 𝐌
∗)=argmax

i
 Pr(Qt = i|y1:t, 𝐌

∗) (2) 

This measure maximizes the probability Pr(Qt = i|y1:t, 𝐌
∗) 

of being at the hidden state i at the time point t given the 

CM data up to time t. With M*={ζ, θ*} a specific model 

topology is denoted. 

2.3. Dynamic adaptation process 

In addition to the NHHSMM’s assumptions, presented by 

Moghaddass and Zuo (2014
a
), extra assumptions should be 

considered for the development of the ENHHSMM: 

 The emission matrix is independent on the time 

since it correlates CM values and hidden states. As 

a result, we assume that the emission matrix 

parameters remain the same during the dynamic 

adaptation process, that means B
**

= B
*
. 

 The scale and shape parameters of the Weibull 

failure rate distribution describe the degradation 

process Γ. The shape parameter can be interpreted 
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as a value that indicates when the failure rate 

remains constant, decreases or increases over time. 

On the other hand, the scale parameter shifts the 

distribution along the abscissa scale. Assuming that 

all specimens have the same volume of damage at 

the end of their fatigue life, the scale Weibull 

parameter adapts only enabling the sojourn time of 

each hidden state to shift in time. In order to 

quantify this shift the aforementioned dynamic 

diagnostic measure MLS is used. During the 

testing process the MLS is estimated enabling 

observation of the transition time from the current 

hidden state i to any new hidden state j. Therefore, 

the sojourn time of the i hidden state can be 

defined (meanΓi,j
**

). However, the PDF of sojourn 

time, at hidden state i, is estimated based on the 

NHHSMM’s Γ
*
 parameters (meanΓi,j

*
) and a 

comparison between these two sojourn times 

(meanΓi,j
**

, meanΓi,j
*
) is achieved. Since the target 

of the ENHHSMM is to estimate more accurately 

the RUL of the testing system the scale Γ
*
 

parameters are dynamically adapted in order to 

have as mean sojourn time the value which the 

MLS has defined (meanΓi,j
**

). This adaptation is 

determined via introducing the Eq. (3) (Deng & 

Jiang, 2017). 

 

                  Scale_Γi, j∗∗  =
meanΓi, j∗∗ 

Gamma(1 + 1 Shape_Γi, j∗⁄ )
 

 

(3) 

 

 The ratios between the training and testing sojourn 

times of hidden state i and i+1 should be constant. 

To demonstrate this last assumption, which 

dynamical updates the sojourn times of the future 

hidden states based on the current and past hidden 

states’ sojourn time adaptation, the following 

flowcharts and pseudo code are presented. 

 

Figure 3. Sojourn times per hidden state based on 

the NHHSMM Γ* parameters. 

 

Figure 4. Sojourn times per hidden state based on 

the MLS diagnostic measure when the engineering 

system just transited from the hidden state i to i+1. 

 

The following pseudo code dynamically adapts the sojourn 

time of each (past, present and future) hidden state when the 

engineering system just transited from the present hidden 

state i to i+1. 

For s=1 to N 

If s<i+1 then  

meanΓs,s+1
**

=Ts,s+1   

𝑅𝐹𝑠,𝑠+1 = 
𝑚𝑒𝑎𝑛𝛤𝑠,𝑠+1

∗∗

𝑚𝑒𝑎𝑛𝛤𝑠,𝑠+1
∗  

Else 

Rescaling_Factor =mean(RF) 

meanΓs,s+1
**

 = Rescaling_Factor × 

meanΓs,s+1
*

 

End If 

End For 

Based on the aforementioned three assumptions the dynamic 

adaptation process, which is the key element of the 

ENHHSMM, is introduced in the present work and receives 

as inputs the extracted CM data and the estimated model´s 

parameters θ
*
. By utilizing the available CM data and θ

* 

parameters the MLS diagnostic measure is calculated. 

Afterwards the dynamic adaptation process can be 

implemented. Τhe rational behind the adaptation is 

according to Figure 5. 

2.4. Prognostics 

Prognostic measures can be defined based on the θ
**

 

parameters and the testing CM data. In other words, 

conditional to the testing CM data and the complete extreme 

model M
**

={ζ, θ
**

}, prognostics tries to estimate the 

probability of being in hidden states 1,…,N-1 at a specific 

time points in future i.e. the conditional reliability function. 

Conditional reliability function, R(t|y1:tp , L > tp, 𝐌
∗∗) =

Pr (L > t|y1:tp , L > tp, 𝐌
∗∗), represents the probability that 

the studied system continues to operate after a time t, less 

than life-time L (L>t), further than the current time tp given 

that the system has not failed yet (L>tp), the testing CM 

data y1:tp and the complete model M
**

. In this study the 

mean and confidence intervals of RUL are proposed as 

prognostic measures. These measures were calculated via 

the cumulative distribution function (CDF) of RUL 

(Moghaddass & Zuo, 2014
b
). The CDF of RUL is defined at 

any time point via the conditional reliability according to the 

following equation: 

   Pr (RULtp ≤ t|y1:tp, 𝐌
∗∗) = 1 − R(t + tp│y1:tp , 𝐌

∗∗)   (4) 

 

 

 

(4) 

1       
meanΓ1,2

* . . . 
i-1        

meanΓi-1,i
* 

i       
meanΓi,i+1

* 
i+1     

meanΓi+1,i+2
* 

. . . N 

1            
T1,2

 . . . 
i-1           

Ti-1,i
 

i            
Ti,i+1 

i+1               
??? 

. . . N 
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Figure 5. Dynamic adaptation process flowchart. 

NO 

Y

E

S 

Ti,j = sojourn time of hidden state i before the transition to j 

Mean_Γi,j
**

 = Ti,j 

Scale_Γi,j
**

 = Mean_Γi,j
** / Gamma(1+1/Shape_Γi,j

*) 

Rescaling_factor = mean(   𝑖
𝑤=1 ∑

Tw,h

Mean_Γ∗w,h

𝑗

ℎ=1
) 

Mean_Γj,z=j+1:N
**

 = Mean_Γj,z=j+1:N
*
 x Rescaling_factor 

Scale_Γj,z=j+1:N 
**= Mean_Γj,z=j+1:N

**/ Gamma(1+1/Shape_Γj,z=j+1:N
*) 

Γ**= (Scale_Γ**, Shape_Γ*) 

Θ**={Β*,Γ**} 

Θ*= Θ** 

Θ*={Β*,Γ*} Testing data 

Diagnostic measures 

()(ΜΛΣ) 

MLS 

Transition from i 

to j hidden state 

Start 
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3. CASE-STUDY 

To demonstrate the RUL estimations of the ENHHSMM, a 

case study on composite structures is considered where 

open-hole carbon/epoxy specimens were subjected to 

fatigue loading until failure. 

3.1. Experimental campaign 

A laminate with [0/±45/90]2s lay-up was manufactured 

using the autoclave process and seven specimens with the 

following geometrical details: dimensions [300mm x 

30mm] and a central hole of 6mm diameter were tested at 

90% of the static tensile strength with R=0 and f=10 Hz.  

An acoustic emission (AE) system was used in order to 

perform the AE measurements. 1/A (1/amplitude) calculated 

cumulatively in periodic windows of 500 cycles for all the 

tested specimens. 1/A is chosen since it produced more 

monotonic observation sequences than other conventional 

AE features e.g. energy, hits, RA (rise time/amplitude), as it 

was observed in (Eleftheroglou & Loutas, 2016). The AE 

degradation histories for seven specimens are shown in 

Figure 6 with left outlier’s (specimen05) degradation history 

highlighted. The reader can refer to Eleftheroglou et al. 

(2016)
 
for a more detailed description of the experimental 

campaign. 

 

Figure 6. Acoustic Emission degradation histories. 

3.2. Extreme NHHSMM Implementation 

Initially, the procedure of damage accumulation in 

composite structures under fatigue loading is modelled via 

the NHHSMM and θ
*
={B

*
,Γ

*
} parameters were determined 

via the Maximum Likelihood Estimation procedure Eq. (1). 

In Figure 7 the dashed lines depicts the NHHSMM 

estimated Γ
*
 parameters.  

Regarding the initialization procedure the Bayesian 

Information Criterion (BIC) was employed to estimate the 

optimum number of hidden states which was found at N=4. 

Actually, the number of degradation states N suggesting that 

the damage accumulation process of the studied composite 

structure can be approximated as a four-state procedure. 

Figure 8 presents the estimations of the aforementioned 

diagnostic measure MLS as calculated from Eq. (2) at each 

time point during the fatigue test of specimen05. Figure 8 

reflects that specimen05 is an outlier since the sojourn time 

of the hidden state 1 based on MLS is just 600 sec and 

based on the NHHSMM is 840.6 sec (Figure 5), similar 

results were obtained for the sojourn time of the hidden state 

2 since MLS sojourn time is 600 sec and NHHSMM sojourn 

time is 1123.4 sec. Utilizing the NHHSMM estimated 

parameters θ
*
, the testing CM data and the MLS estimations 

the ENHHSMM can be defined and dynamically adapt the 

parameters θ
*
 to θ

**
, following the process which described 

in subsection 2.3. In Figure 7 the outcome of the 

ENHHSMM is presented with solid lines. 

 

 

Figure 7. Sojourn time Weibull distributions utilizing the Γ* 

and Γ** parameters. 

 
Figure 8. MLS diagnostic measure of specimeon05. 

 

Based on Figure 7 the ENHHSMM Weibull pdfs are shifted 

to the left side as it was desired since Specimen05 is the left 

outlier of this case study. In this direction the ENHHSMM 

RUL estimations are expected to be more accurate, 

comparing with the NHHSMM RUL estimations since the 

mean sojourn time values are getting shorter. 

3.3. Remaining Useful Life Estimations 

Specimen05 is actually the left outlier in the sense that fails 

earlier than all the specimens in its training set. The 

degradation history of Specimen05  has not been included in 

the training procedure. Consequently, the minimum failure 

time of this training data set is 2200 sec while the 

Specimen05's failure time is 1300 sec, see Figure 6. Figure 

9 presents the RUL estimations of the NHHSMM and the 

ENHHSMM regarding that specimen.  
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Figure 9. RUL estimations of the left outlier specimen05. 

 

However, it is not possible to detect an outlier before it 

reaches the end of its lifetime. Therefore, in terms of 

robustness the proposed model should be also applied to 

non-outlier cases. Based on Figure 6, specimen03 is an 

interesting case since its degradation rate is similar to left 

outlier’s rate but its failure time is almost double i.e. 2200 

sec. Figure 10 presents the RUL estimations of the 

NHHSMM and the ENHHSMM of specimen03. 

 
Figure 10.  RUL estimations of specimen03. 

 

Based on Figure 9 and 10 the ENHHSMM provides better 

outlier and non-outlier prognostics since the mean 

ENHHSMM RUL estimations are able to approach more 

satisfactorily the real RUL estimations than the NHHSMM. 

Additionally, the confidence intervals of the ENHHSMM 

contain the real RUL curve during almost the whole lifetime 

of specimen05/specimen03 and their distance is shorter than 

the classic model in both of the two aforementioned 

specimens. Furthermore regarding the outlier, the initial 

mean ‘extreme’ RUL estimations almost overlaps to the real 

RUL and at the same time the ‘classic’ RUL estimations are 

not accurate, 150% overestimation. Therefore, the 

ENHHSMM can identify early enough an outlier and adapt 

the RUL estimations in an efficient and accurate way. 

4. CONCLUSIONS 

In this paper, a new dynamic probabilistic model, which can 

estimate more accurately the RUL of an outlier was 

developed. The efficiency and the correctness of the 

ENHHSMM were evaluated during experimental campaign 

of open-hole carbon/epoxy specimens. The specimens were 

subjected to constant amplitude fatigue loading up to failure 

and AE technique were employed in order to provide the 

required CM data. In conclusion, the results demonstrate 

that the ENHHSMM provides better prognostics than the 

NHHSMM. As a result, adapting the model’s parameters 

using the available diagnostic measures has the potential to 

estimate the RUL of extreme and non-extreme cases more 

efficiently. 
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