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Multi-system intervention optimization for interdependent infrastructure 
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Dept. of Civil Engineering and Geosciences (CEG), Delft University of Technology, Delft, the Netherlands   
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A B S T R A C T   

The wellbeing of modern societies is dependent upon the functioning of their infrastructure networks. This paper 
introduces the 3C concept, an integrative multi-system and multi-stakeholder optimization approach for man-
aging infrastructure interventions (e.g., maintenance, renovation, etc.). The proposed approach takes advantage 
of the benefits achieved by grouping (i.e., optimizing) intervention activities. Intervention optimization leads to 
substantial savings on both direct intervention costs (operator) and indirect unavailability costs (society) by 
reducing the number of system interruptions. The proposed optimization approach is formalized into a structured 
mathematical model that can account for the interactions between multiple infrastructure networks and the 
impact on multiple stakeholders (e.g., society and infrastructure operators), and it can accommodate different 
types of intervention, such as maintenance, removal, and upgrading. The different types of interdependencies, 
within and across infrastructures, are modeled using a proposed interaction matrix (IM). The IM allows inte-
grating the interventions of different infrastructure networks whose interventions are normally planned inde-
pendently. Moreover, the introduced 3C concept accounts for central interventions, which are those that must 
occur at a pre-established time moment, where neither delay nor advance is permitted. To demonstrate the 
applicability of the proposed approach, an illustrative example of a multi-system and multi-actor intervention 
planning is introduced. Results show a substantial reduction in the operator and societal costs. In addition, the 
optimal intervention program obtained in the analysis shows no predictable patterns, which indicates it is a 
useful managerial decision support tool.   

Notations  

ck ∈ ℝ+cost of performing an intervention of type k. 
cli ∈ ℝ+service unavailability cost of object i 
f1 ∈ ℝ+ total cost of interventions 
f2 ∈ ℝ+total service unavailability cost caused by the interventions 
Gmin, k ∈ ℕ+ minimum number of time steps between two successive interventions of 

intervention type k 
Gmax, k ∈ ℕ+ maximum number of time steps between two successive interventions of 

intervention type k 
I = [Iij] matrix of interaction between objects i and j. 
K ∈ ℕ+ number of intervention types 
M = [mk, t] matrix indicating the existence of intervention of type k at time step t 
nI ∈ ℕ+ number of intervention types 
N ∈ ℕ+ number of analyzed objects (e.g., water pipe, road section, etc.) 
R = [rik] relation matrix indicating upon which object i each intervention type k 

intervenes 
T ∈ ℕ+ number of time steps considered 
δ(.) Kronecker delta  

1. Introduction 

Infrastructure networks are subject to constant degradation due to 
their excessive use and natural hazards [1,2]. Degradation of infra-
structure networks ultimately leads to failure, which affects the service 
quality and causes safety issues and physical damage. Interventions such 
as maintenance and renovations are executed ensuring a continuous 
fulfillment of the infrastructure functional goals and its related quality of 
service parameters (e.g., water protection, traffic flow, etc.). Infra-
structure managers are increasingly realizing that the availability of 
their infrastructures can be effectively increased by better planning their 
interventions [3]. It is being realized that budget availability is not the 
only important factor when planning effective intervention programs 
that aim at increasing infrastructure availability, optimal planning is as 
important and could yield a high infrastructure availability with a 
reduced budget. Therefore, when dealing with infrastructure interven-
tion planning, another way of thinking is required. 
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1.1. System thinking 

Current approaches dealing with infrastructure intervention plan-
ning employ analytical thinking rather than system thinking, which is 
considered a more appropriate approach. In analytical thinking, the 
object to be studied is treated as “a whole to be taken apart”, while in 
system thinking, the thing to be analyzed is treated as “a part of the 
containing whole”; the first reduces the focus while the second expands 
it [4]. In system thinking, the performance of a system depends more on 
how its parts interact than on how they act independently of each other 
[2]. In the context of infrastructure intervention planning, the inter-
vention program of an infrastructure network is normally obtained by 
conducting a deterioration analysis for each object in the network [5–7]. 
The results of the deterioration analysis lead to optimal intervention 
programs for the individual objects. While these results guarantee a low 
risk of failure for the individual objects, they might not be optimal when 
considering the system as a whole, causing frequent system disruptions. 
Following system thinking, this can be resolved by grouping in-
terventions, even if this results in sub-optimal intervention programs for 
the individual objects. The benefit is mainly due to the reduced service 
interruptions and reduced intervention costs. 

Literature offers state-of-the-art approaches on how to combine in-
terventions to reduce the total cost incurred by the infrastructure 
operator. These approaches can be classified into system-specific ap-
proaches that focus on specific types of engineering systems, such as 
bridges [8], roads [9], pavement [10], water networks [11], and 
offshore wind turbines [12]; and general approaches that can be applied 
to different (single) engineering systems [13–15]. Most of these ap-
proaches use optimization models that take advantage of the set-up and 
crew travel costs to reduce the total cost. The aim is to reduce the 
financial impact on the owner by decreasing the cost of performing a set 
of interventions. Therefore, they do not consider other types of impact 
that can result from executing interventions, such as user impact and 
impact on objects that are of spatial proximity. 

1.2. Service unavailability impact 

The unavailability of an object in an infrastructure network, due to 
either intervention or unexpected disruption, causes an impact on 
different stakeholders. Many attempts to consider the service unavail-
ability impact on multiple stakeholders in the planning process fail to do 
so. In the context of this paper, a stakeholder is defined as an individual, 
group, or organization that is directly or indirectly connected to the 
infrastructure network Adey, et al. [16]. A person driving a vehicle on a 
road would be considered as a user that is directly affected by the un-
availability of the road. The same person when is far from the road 
would be considered a part of the indirectly affected public. 

Adey, et al. [16] and Kerwin and Adey [17] distinguish between 
different types of service disruption impact for different stakeholders. 
For example, comfort, noise, and accidents are users’ impact types, 
while the cost of intervention is an owner’s impact type. While the focus 
of their papers is the service of road and water networks, respectively, 
most of the ideas presented hold for other types of infrastructure net-
works. Hence, this paper adopts the definition and classification of 
service unavailability impact in [16]. In addition, an often-used practice 
when planning intervention programs for an infrastructure network is to 
consider the impact on the owner in terms of intervention cost [16]. 
Considering only the intervention cost implicitly implies that none of the 
other types of impact matters. To allow for a net benefit maximization, 
all impact types resulting from service interruption must be considered 
[18,19]. 

Quantifying the value of lost service, which depends on how 
different stakeholders value the services as well as how long and in 
which way the services are interrupted, represents a challenging task. 
Kielhauser, et al. [20] proposed a methodology to estimate the loss of 
service of infrastructure networks due to deterioration and intervention. 

Other authors have proposed mathematical equations to quantitatively 
estimate the impact of service loss on multiple stakeholders, such as [17] 
for water networks and [16] for road networks. 

1.3. Spatial proximity and interconnectivity of infrastructure networks 

As infrastructures have become gradually interconnected, traditional 
ways of maintaining them turned out to be insufficient. It has become 
increasingly evident that infrastructure interconnectivity plays a large 
role. The unavailability impact of infrastructure services due to inter-
vention becomes apparent when the intervention plans of multiple op-
erators do not go in harmony with one another. What if, for instance, 
executing an intervention on the water pipe necessitates closing a road 
for excavation when no intervention is planned for the road itself? This 
implies users suffering the road unavailability twice, the first is when the 
water pipe is replaced and the second is when intervention is scheduled 
for the road. To increase the global system operability, the road inter-
vention can be scheduled at the same time the intervention on the water 
pipe is scheduled. While in this case the road operator would have to pay 
extra cost due to the early intervention, the net benefit can significantly 
increase. Therefore, intervention programs for spatially-close and 
functionally-connected networks should be developed together. Coor-
dinating infrastructure intervention is progressively becoming of para-
mount importance to reduce service disruption and repair costs. 

Most of the available intervention planning approaches target indi-
vidual infrastructures [21–26]. These studies focus on grouping in-
terventions related to a single infrastructure type without considering 
the interconnectivity with other infrastructure types that are on spatial 
proximity. There has been little research on the determination of 
optimal intervention programs for interrelated infrastructure networks, 
i.e. where events on one network affect other networks [18,20,27–29]. 
For example, Kielhauser, et al. [27] proposed two methods to account 
for infrastructure interconnectivity when planning an intervention 
program. Both methods allow for consideration of the spatial proximity 
of the objects within the infrastructure networks. Kielhauser and Adey 
[29] presented a unified model of the service provided by infrastructure 
networks to be used in the search for optimal intervention planning. 
Kielhauser, et al. [20] developed a methodology to estimate the loss of 
service on several infrastructure networks due to both preventive and 
corrective interventions. The aforementioned studies focus more on 
infrastructure interconnectivity due to spatial proximity (geographical) 
than on other types of interactions (e.g., functional, cyber, logical, etc.) 
These studies are also limited to direct interconnectivities of infra-
structure objects. The case when an intervention on an infrastructure 
object (e.g., water pipe) indirectly affects another infrastructure object 
(e.g., road section) is not covered. This can occur when an intervention 
on a water pipe requires closure of given road section (road section A), 
which is in series with another road section (road section B). This im-
plies that an intervention on the water pipes directly affects road section 
A and indirectly affects road section B. Capturing this progressive ser-
vice unavailability impact among infrastructure networks represents a 
current challenge. 

1.4. Modeling error 

Another aspect the existing research does not take into account is the 
centralized nature of some intervention types. Some of the current 
intervention planning models are based on an unrealistic assumption 
that all interventions are flexible to be moved forward or backward in 
time when clustering interventions [30,31]. This is rather too optimistic 
because there are interventions that can only be implemented at certain 
instances in time and therefore they cannot be moved. Take for example 
the intervention scheduling of railway tracks under limited possession 
time granted by the infrastructure manager. In this case, the possession- 
based intervention is usually ‘given’; i.e., imposed as a single option, and 
scheduled well in advance and cannot be moved forward or backward. 
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Another example is the closure of highway tunnels which is often pri-
marily driven by the time- or usage-dependent cleaning which takes 
place at fixed intervals. Accounting for such intervention types, which 
are called hereafter central interventions, can be done by fixing those 
interventions at predefined moments through a process called central-
izing. All other interventions can then be clustered around the central 
interventions. Several existing models focus solely on the clustering (or 
grouping) part of the problem when calculating the optimal intervention 
plan, ignoring the centralization part (see for instance [14]). 

1.5. Research goals & novelties 

The primary goal of this paper is to cover all the previously 
mentioned shortcomings of existing scientific literature by introducing 
an integrative multi-system optimization approach for infrastructure 
interventions in which multiple infrastructure networks and stake-
holders can be reflected. To summarize, this paper: 

1) Formalizes a mathematical model and simulation approach for 
intervention scheduling from a system-level perspective to be able to 
objectify the most effective and efficient intervention programs; 

2) Considers multiple infrastructure networks and accounts for the 
hindrance impact caused by the interventions, accommodating different 
types of interventions, such as maintenance, upgrading, and removal; 

3) Accounts for central interventions that are usually implemented 
with a fixed time interval, reflecting the real-life human intervention 
planning actions and systems behavior; 

4) Models the interdependency within and across infrastructure 
networks by introducing the interaction matrix (IM); 

5) Illustrates the applicability of the introduced approach using a 
simple multi-system intervention plan composed of three interacting 
networks (i.e., highway, railway, and water network). 

The aforementioned approach is called the integrative 3C concept, 
where ‘3C’ covers three main elements in the proposed intervention 
planning: centralize, cluster, and calculate. The 3C concept builds upon 
recent operational research in the field of intervention scheduling and 
optimization. To our knowledge, this concept has not been implemented 
in any of the existing state-of-the-art engineering asset management 
tools (e.g., IBM Maximo, Oracle, eAM, etc.) or any scientific literature 
reference in which the set of novel points offered in this paper is covered. 

The remainder of the paper is organized as follows. Section 2 pre-
sents the 3C concept for optimizing interventions considering the 
interaction among infrastructure networks. Section 3 introduces the 
mathematical formulation of the multi-system optimization problem. 
Section 4 presents a numerical example to illustrate the applicability of 
the proposed optimization model. Finally, conclusions are drawn in 
Section 5 together with the proposed future work. 

2. The integrative 3C concept: Centralize, Cluster, Calculate 

In this paper, an integrative systems-thinking approach is followed. 
This implies that the focus is not placed on the individual objects within 
an infrastructure network as this could produce plans that are tailored 
for the objects. The attention is rather placed on the integrated system, 
which is in the context of this paper the interconnected infrastructure 
networks. As will be demonstrated later, this vision expansion will give a 
wider view of the problem by considering the joint benefits of the 
infrastructure operators (i.e., intervention cost) and the users (i.e., so-
cietal impact, hindrance, possession, etc.). 

2.1. 3C concept definition 

This section presents the 3C concept for effectively scheduling in-
terventions of interdependent infrastructure networks. What stands out 
in this concept is its ability to reflect the actual human actions during 
intervention planning. This occurs in the first phase of the 3C concept (i. 
e., centralization) where the intervention types are classified into central 

and non-central. Central intervention types are those that must occur at a 
pre-established time moment, where neither delay nor advance is 
permitted. They are usually implemented with a fixed time interval1 due 
to their dominant time-dependent nature. This time interval represents 
the time between two interventions of the same type; for instance, the 
time between an intervention on a road section and the next interven-
tion on the same road section. The non-central intervention types are 
condition-based interventions and can be scheduled during the planned 
closures of the central interventions. That does not mean anymore 
defining optimal intervention moments for each intervention type 
separately, but that the planned interventions (i.e., central in-
terventions) serve as a starting point for the non-central interventions. 

The second phase of the 3C concept is the clustering phase. In the 
clustering phase, the non-central interventions are clustered with the 
planned central interventions while respecting some predefined indi-
vidual constraints, such as the time interval between two successive 
interventions of the same type. The first two steps of the 3C concept are 
illustrated in Fig. 1, where intervention type A is central and intervention 
type B is non-central. 

Every intervention type is assigned two values, Gmin, k and Gmax, k, 
which are two externally imposed constraints that represent the mini-
mum and maximum time intervals, respectively, between two in-
terventions of the same type. Gmin, k is set to prevent frequent 
interventions on the same object in the network. It can simply be set to 
‘1’ if no minimum requirements are available. Gmax, k, on the other hand, 
is set to reduce the risk of failure of an object. The risk of failure of an 
object increases as the time from the last intervention increases [32,33]. 
Gmax, k is equivalent to the Mean Time Between Failures (MTBF) of an 
object. It can be determined using existing methods, such as block 
replacement models [34], delay-time models [35], and degradation 
models [6,36,37]. The use of these models is normally limited by the 
availability of historical data on the average time between failures. If 
these data are unavailable, the MTBF can be estimated using expert 
judgment techniques and expert knowledge. Since central intervention 
types are implemented with a fixed time interval, the minimum and 
maximum time intervals between two successive interventions of the 
same type, Gmin, k and Gmax, k, are set equal. Fig. 2 illustrates the notion 
of time interval for two intervention types A and B, where A is a central 
intervention type and B is a non-central intervention type. 

The third and final phase is to calculate or optimize for the inter-

Fig. 1. Centralizing and Clustering of interventions.  

1 As indicated in the introduction, this time interval can be originated by a 
given slot of an infrastructure manager or by usage/time-dependent 
intervention. 
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vention program that meets the conditions initially set. In this work, the 
optimization objective is to reduce the global cost of executing the in-
terventions. The global cost is divided into two parts: the first part is the 
actual cost of the interventions while the second part is the cost of 
suspending all affected objects (i.e., service unavailability cost). The 
unavailability cost represents the impact of service unavailability. 
Implementing multiple interventions at the same time signifies reduced 
service unavailability, and thus a reduced cost. The unavailability cost of 
the service must be monetized to be able to combine it with the inter-
vention cost. Several comprehensive methods on how to monetize the 
impact of service unavailability have been recently published 
[16,17,38]. The mathematical formulation of the 3C concept is intro-
duced in Section 3. 

2.2. Multi-system consideration 

In the context of this paper, an object (obj in Fig. 3) is considered a 
part of a major infrastructure network (Net). The definition of the object 
will respond to modeling needs in a manner that two contiguous 
network sections or components characterized by different essential 

features represent two different objects. An operator is the manager of 
an infrastructure network, who can be responsible for one or multiple 
networks. Each operator is assumed responsible for the intervention and 
service unavailability costs of their networks. An intervention type (Int) 
is an intervention on one or more objects. Fig. 3 shows the relationships 
between operators, infrastructure networks, assets, objects, and inter-
vention types. The proposed 3C concept takes into consideration the 
interaction among different objects. This is especially important when 
tackling interconnected infrastructure networks run by multiple opera-
tors. For a single network, there is always dependency between the 
performance of the network and its objects (i.e., executing an inter-
vention on a major object might require a temporary suspension of part 
of or the whole network). When tackling multiple networks, the loss of 
performance of an object within Network A could or could not affect an 
object within Network B. Therefore, the relationships among the objects 
across the networks should be considered. The interdependency can be 
split into physical, geographical, and functional interdependency [39]. 
Physical interdependency arises from a physical linkage between the 
input and output of two objects (e.g., two water pipes in series). 
Geographical interdependency occurs if a local event, such as an inter-
vention, can create state changes of multiples objects. This happens 
when objects of multiple infrastructures are in spatial proximity (e.g., 
intervention on a buried pipe requires excavation of the road on top). 
Finally, functional interdependency occurs if the state of an object de-
pends on the state of another object via a mechanism that is not physical 
or geographic (e.g., electrical power and railway). 

Eq. (1) is an IM of a set of N objects, where I is a square matrix whose 
components, the so-called interaction coefficients Iij = {0,1}, determine 
if object i interacts with object j. Iij = 0 means that object i does not affect 
the functionality of object j, whereas Iij = 1 implies the contrary. 
Consequently, the diagonal terms of IM are Iii = 1 and I can be asym-
metric as a result of the non-reciprocal interaction behavior between the 
objects. The values of the interaction coefficients can be obtained from 
expert judgment [40,41]. 

I =
[
Iij
]
=

⎡

⎣
I11 … I1N
⋮ ⋱ ⋮

IN1 … INN

⎤

⎦ (1) 

Let’s assume an example of a small network involving a road, a 
railway, and a buried water pipe (Fig. 4). In the area of interest, the 
section of the road and the section of the railway are located parallel to 
each other while the section of the water pipe intersects with the road 
and the railway (Fig. 4-a). This means that executing an intervention on 
the water pipe would interrupt the functionality of both road and rail-
way because excavation is needed to access the water pipe. On the other 
hand, executing an intervention on either the road or the railway does 
not affect the functionality of the other objects. These interactions be-
tween the objects can be mathematically represented using Eq. (2). 

I =

⎡

⎣
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎤

⎦ =

⎡

⎣
1 0 0
0 1 0
1 1 1

⎤

⎦ (2) 

One could argue that executing an intervention on the water pipe in 
the section buried under the road does not necessitate suspending the 
operation of the railway. To tackle this, the water pipe can be treated as 
two objects (Fig. 4-b). In this case, the water pipe is modeled using 
multiple objects that interact with other objects according to their 
physical location and functional dependence. The interaction matrix can 
then be rewritten as follows: 

I =

⎡

⎢
⎢
⎣

I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 1 1 1
1 0 1 1

⎤

⎥
⎥
⎦ (3) 

It is important to note the functional dependence between water 
pipes W1 and W2. Hence, the interaction coefficients I34 and I43 are set 1 

Fig. 2. Time interval between two successive interventions of the same type: A 
is a central intervention type and B is a non-central intervention type. 

Fig. 3. Relationships between operators, infrastructure networks (Net), Assets 
(Ass), objects (Obj), and intervention types (Int). 
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because it is assumed that the disruption of a pipe section affects the 
functionality of the other pipe section. 

The matrix I can consider any type of interdependency. For example, 
excavating a road to do an intervention on a water pipe is considered a 
geographical interdependency. Intervention on a pipe section disrupts 
the second pipe section on the same pipeline, and this is considered a 
functional interdependency. Note that the interdependency between 
objects in a network is not necessarily binary. Intervention on one object 
can partially affect other objects in the network. In such a case, a value Iij 
that is between 0 and 1 can be set; however, in this case, Eq. (6) should 
be modified to account for partial service unavailability costs. 

3. The mathematical formulation of the 3C problem 

3.1. Objective function 

The optimization problem aims at scheduling interventions for each 
object such that the global intervention cost, including the direct 
intervention costs and the compound costs of service unavailability, is 
minimum. The optimization problem can be expressed as: 

Min
M

(f1 + f2), (4)  

where f1 is the total cost of interventions, given by: 

f1 =
∑T

t=1
ckM =

∑T

t=1
ck
[
mk,t

]
(5)  

where ck ∈ ℝ+ is the cost of performing an intervention of type k with k 
= 1, 2, …K, K ∈ ℕ+ being the number of intervention types, T ∈ℕ+ is the 
number of time steps considered in the analysis, and mk, t ∈ {0,1} are the 
components of M indicating at which time steps each intervention type 
is conducted over the total time of analysis. It is assumed that each 
intervention is entirely performed within a time interval; and f2 is the 
total service unavailability cost caused by the interventions: 

f2 =
∑T

t=1
cliδ(It × R × M) =

∑T

t=1
cliδ

([
Iij
]t[ri,k

][
mk,t

] )
(6)  

wherecli ∈ ℝ+ is the service unavailability cost of object i, [Iij]t is the 
transpose of [Iij], ri, k ∈ {0,1} are the components of the relation matrix R 
that indicates upon which object i each intervention type k intervenes. 
The function δ(.) represents the Kronecker delta defined as follows 

δ(x) =
{

0 if x = 0
1 if x ∕= 0 (7) 

Note that the Kronecker delta is applied to each component of the 

resulting (N x T) matrix. The Kronecker delta in Eq. (7) allows the 
consideration of the benefits of clustering interventions, as it introduces 
the service unavailability cost of an affected object only once when 
several interventions affecting its performance are occurring at the same 
time. It is important to note that the Kronecker delta does not cause 
double-counting for two objects which are in a row. Each object is 
associated with an independent unavailability cost. That is, if a pipe with 
an unavailability cost x is divided into two equal sections, each one will 
be assigned an unavailability cost equal to x/2. The disruption of any of 
the pipe sections will automatically affect the second pipe section (see 
the relation matrix R in Eq.(6)), and this causes the unavailability cost to 
be again equal to x. The pipe division serves only the geographic 
interdependency, for example when a road is crossing only a part of the 
pipeline. In this case, it is important to identify which part of the pipe is 
directly disrupted by an intervention to know whether the road will also 
be disrupted. 

3.2. Constraints 

The first constraint set, which restricts any two successive in-
terventions of type k to have at least a time interval equal to Gmin, k, is 
expressed by Eq. (9), where Gmin, k ∈ ℕ+ is the minimum number of time 
steps between two successive interventions of intervention type k: 

0 ≤
∑t+Gmin,k − 1

t
mk,t ≤ 1 for t = 1→T − Gmin,k + 1, ∀k = 1, 2,…,K (8) 

It is assumed that each intervention is performed and finalized 
within a time interval. The second constraint set restricts any two suc-
cessive interventions of type k to have a time interval not larger than 
Gmax, k, as shown by Eq. (8), where Gmax, k ∈ ℕ+ is the maximum number 
of time steps between two successive interventions of intervention type 
k: 

∑t+Gmax,k − 1

t
mk,t ≥ 1 for t = 1→T − Gmax,k + 1, ∀k = 1, 2,…,K (9)  

3.3. Optimality and uniqueness of the solution 

The mathematical problem defined by Eqs. (4) to (9) is a mixed- 
integer nonlinear optimization problem where the variables (mk, t) are 
binary. This problem can be solved using exact methods, e.g., the Mixed- 
Integer Nonlinear Programming (MINP). However, exact methods are 
suitable for problems with a small number of variables. For problems 
with a medium to a large number of variables, other heuristic ap-
proaches can be used. Genetic Algorithm (More precisely, the Integer 
Genetic Algorithm (IGA)) has been chosen among other (Meta-)heuristic 

Fig. 4. Multi-system interactions (a) water pipe considered as a unique object, (b) water pipe made of two objects.  
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algorithms because of implementation reasons. This algorithm is 
commonly present in many of the commercial software (e.g., Matlab and 
Python). The difference between IGA and the ordinary Genetic Algo-
rithm (GA) is the special creation, crossover, and mutation functions of 
the IGA that enforce the variables to be integers [42]. IGA attempts to 
minimize the penalty function, not the fitness function. The penalty 
function contains a term for infeasibility. This penalty function is com-
bined with a binary tournament selection to select individuals for sub-
sequent generations [43]. In this work, the optimization problem can be 
of a high number of variables. Therefore, IGA is used for solving the 
optimization problem. 

IGA is a heuristic approach that yields the so-called “best-known 
solution”, which is not necessarily an optimum but a near-optimum 
solution. Given that the IGA is sensitive to the initial population used 
to seed the genetic algorithm, the optimization problem is solved mul-
tiple times with different feasible initial populations and then the (near) 
optimal solution is chosen among the solutions obtained in each itera-
tion. In this way, the quality of the solution is improved. Optimization 
based on (Meta-)heuristics always requires a trade-off between the 
computational time and the quality of the solution. The robustness of the 
solution must therefore be carefully investigated. 

The system of Eqs. (4) to (9) provides a solution space rather than a 
unique solution, that is, multiple configurations (i.e., intervention pro-
grams) can yield the minimum cost. Given that the presented 3C 
mathematical framework aims to help operators define their best stra-
tegies, multiple (near) optimal solutions might be more interesting for 
the operators. Nonetheless, further restrictions can be imposed to reduce 
the solution space, and eventually obtain a unique solution; for instance; 
restrictions regarding the temporal order of performing the in-
terventions, or deadlines to perform some interventions. 

4. Demonstrative example of the 3C concept 

The purpose of this section is to demonstrate the applicability of the 
3C concept for preventive intervention planning based on a real-life 
example from industry. This example has been translated for demon-
strative purposes. The example considers different infrastructure net-
works comprising water, railway, and highway objects. The input data 
used in this example are realistic in the sense of the proportionality of 

used values, and therefore they reflect reality and serve well for the 
objective of this example. Moreover, some of the data, such as the 
intervention/deterioration data, are relative rather than absolute (e.g., 
time, euros, etc.). 

4.1. Networks description and interaction 

The network is composed of three infrastructure networks: water 
network, highway, and railway (Fig. 5). The networks are operated by 
independent operators, herein called W (water operator), H (Highway 
operator), and R (Railway operator). Every network is divided into 
several objects identified according to their physical location and/or 
functional dependence. The water network is divided into six objects 
(W1–6), the highway network is divided into four objects (H1–4), and 
the railway network is divided into two objects (R1–2). 

Fig. 5 shows the analyzed infrastructure networks with several 
intervention types that are to be planned. As shown in the figure, the 
objects intersect at different locations. These intersections imply inter-
dependency among the objects in such a way that an intervention on one 
object could cause a closure to the intersecting objects. 

Fig. 5. Infrastructure networks with preventive interventions to be planned.  

Table 1 
Data of the analyzed objects.  

Object Index 
(i) 

Service 
unavailability cost of 
object i, cli 
(monetary unit) 
×103 

Interaction with 
other objects (i) 

Start 
joint 

End 
joint 

W1 1 25 2 (W2), 7 (H1) J4 J5 
W2 2 12,5 1 (W1), 11 (R1) J5 J6 
W3 3 20 9 (H3) J6 J8 
W4 4 22 10 (H4) J8 J13 
W5 5 15 6 (W6), 10 (H4), 

12 (R2) 
J9 J10 

W6 6 27,5 5 (W5), 8 (H2) J10 J11 
H1 7 15 – J1 J2 
H2 8 25 – J2 J3 
H3 9 12,5 11 (R1) J2 J7 
H4 10 20 12 (R2) J2 J12 
R1 11 22,5 9 (H3), 12 (R2) J13 J15 
R2 12 15 10 (H4), 11 (R1) J15 J16  

O. Kammouh et al.                                                                                                                                                                                                                             



Automation in Construction 127 (2021) 103698

7

The unavailability of an object incurs service unavailability cost. 
Table 1 lists the analyzed objects with their service unavailability cost, 
cli. Both intervention and service unavailability costs have been pro-
posed by the authors. Service unavailability costs are assumed to be 
significantly larger than the intervention cost, based on [44–46]. The 
unavailability cost occurs every time an object is directly or indirectly 
affected by one of the interventions. Direct effect means that an inter-
vention is executed directly on the object while indirect effect means 
that an intervention is performed on an interdependent object causing 
closure to the analyzed object. The service unavailability cost of an 
object reflects the impact the object would cause if it becomes unavai-
lable (i.e., higher cost implies increased impact). These interactions 
among the objects, which are necessary to feed the interaction matrix I, 
are also listed in the table. An example of directly and indirectly affected 
objects is intervention I2 (see Fig. 5). I2 is an intervention type per-
formed on the buried water network object W1, which requires the 
closure of highway H1 because of the excavation, and the closure W2 
because it is an extension object of W1. In this case, W1 is said to be 
directly affected by I2 while H1 and W2 are indirectly affected. The 
service unavailability costs of W1, W2, and H1 are thus applied. Eq. (10) 
presents the interaction matrix I, which is derived from Table 1 
following Section 2.2. 

I =
[
Iij
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W1 W2 W3 W4 W5 W6 H1 H2 H3 H4 R1 R2
W1 1 1 0 0 0 0 1 0 0 0 0 0
W2 1 1 0 0 0 0 0 0 0 0 1 0
W3 0 0 1 0 0 0 0 0 1 0 0 0
W4 0 0 0 1 0 0 0 0 0 1 0 0
W5 0 0 0 0 1 1 0 0 0 1 0 1
W6 0 0 0 0 1 1 0 1 0 0 0 0
H1 0 0 0 0 0 0 1 0 0 0 0 0
H2 0 0 0 0 0 0 0 1 0 0 0 0
H3 0 0 0 0 0 0 0 0 1 0 1 0
H4 0 0 0 0 0 0 0 0 0 1 0 1
R1 0 0 0 0 0 0 0 0 1 0 1 1
R2 0 0 0 0 0 0 0 0 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

4.2. Description of the intervention types 

As shown in Fig. 5, seven preventive intervention types are to be 
planned. The intervention types target different objects at different lo-
cations. The intervention types with their descriptions are listed in 
Table 2. Information about the time intervals between interventions of 
the same type is also presented. Interventions of the same type can be 
performed with minimum and maximum time intervals Gmin, k and Gmax, 

k, respectively. As previously mentioned, Gmin, k is set to avoid unnec-
essary intervention while Gmax, k to avoid unexpected failure of the 
object. Gmax, k is equivalent to the mean time between failure (MTBF), 
which can be derived from analyses of the life expectancy of the objects. 

Gmin, k and Gmax, k are assumed here as given since numerous methods 
have been developed in the past that can be used to compute their values 
[26,36,37,47]. In this example, intervention type I7 is set as a central 
intervention type that starts at the first time step and occurs with a fixed 
time interval of three time steps. Column 7 shows the cost of executing 
the intervention type, ck. This cost may include the cost of replacement 
parts, mobilizing resources, etc. Table 2 also includes a list of objects 
that are affected by the interventions. Interventions can directly affect 
multiple objects at the same time. For example, I5 is an intervention on 
the crossing joint of the highway H3 and railway R1. Hence, two objects 
are (directly) affected by this intervention type. In this case, two oper-
ators are responsible for the cost of intervention type (i.e., operators H 
and R). The relations between the intervention types and the objects, 
which are derived from Table 2, are represented by the relation matrix R 
in Eq. (11), which indicates upon which object i each intervention type k 
intervenes. 

R =
[
ri,k

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1 I2 I3 I4 I5 I6 I7
W1 0 1 0 0 0 0 0
W2 0 0 1 0 0 0 0
W3 0 0 0 0 0 1 0
W4 0 0 0 0 0 1 0
W5 0 0 0 0 0 1 0
W6 0 0 0 0 0 0 0
H1 1 0 0 1 0 0 0
H2 0 0 0 1 0 0 0
H3 0 0 0 1 1 0 0
H4 0 0 0 1 0 0 0
R1 0 0 0 0 1 0 0
R2 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)  

4.3. Optimization problem 

The optimal intervention program is obtained through the optimi-
zation problem Eqs. (4)–(9). The number of time steps considered in this 
example is 18 time steps (T = 18). The IGA used to solve the optimizing 
problem has been run 500 times with different initial populations. The 
number of variables T × nI is 126, where nI = 7 is the number of inter-
vention types. The parallel computing technique has been used to reduce 
the simulation time. The optimization problem was solved using the 
optimization package of Matlab® R2018b on a desktop computer with 
the following specifications: Windows 10, Intel Core i5–6500 CPU 
@3.20GHz, and installed memory (RAM) of 8 GB, and the total simu-
lation time was 12 mins. 

4.4. Results 

Fig. 6 shows the optimal intervention program of the intervention 
types for a period of 18 time steps. Every row on the graph represents the 
intervention program of one intervention type. As can be seen, no 
pattern could be identified for the intervention programs of the seven 

Table 2 
Description of the intervention types.  

Intervention 
type 

Index 
(k) 

Intervention on Objects directly 
affected (i) 

Gmin, k(time 
step) 

Gmax, k 

(time 
step) 

Cost of one intervention of 
type k,ck 

(monetary unit) 
×103 

Operator 
responsible 
(W,H,R) 

I1 1 Highway section H1 7 (H1) 3 5 5 H 
I2 2 Water network section W1 1 (W1) 2 6 2,5 W 
I3 3 Water network section W2 2 (W2) 4 6 4 W 
I4 4 Highway crossing J2 7, 8, 9, 10 

(H1, H2, H3, H4) 
3 4 4,5 H 

I5 5 Crossing of the highway section H3 and 
railway section R1 

9, 11 
(H3, R1) 

3 3 3 H&R 

I6 6 Water joint J9 3, 4, 5 
(W1, W2, W3) 

4 6 5,5 W 

I7 7 Railway section R2 12 (R2) 2 4 3 R  
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intervention types. This demonstrates that finding the optimal inter-
vention program is not intuitive especially when large networks are 
involved. The minimum and maximum time intervals (i.e., the con-
straints) between two successive interventions of the same type (see 
Table 2) are all satisfied. The cumulative costs of interventions f1, the 
cumulative cost of service interruption (service unavailability cost) f2, 
and the cumulative total cost are plotted on the same graph. It is clear 
that the service unavailability cost makes up most of the total cost. 
Therefore, it is easy to reduce the cost by better arranging the in-
terventions, even if the arrangement does not yield the least total 
number of interventions. The 500 simulations (with 500 initial pop-
ulations each) have resulted in 19 unique intervention programs. The 
cumulative curve of the total cost obtained from the 19 programs is 
plotted in Fig. 7. The program with the least total cost is selected as the 
optimal program (black curve). There is approximately a 10% difference 
in the final cost between the best-known solution and the most expen-
sive sub-optimal solution. This demonstrates the robustness of the 
optimization algorithm. If this variability range had been much larger, 
exploring other algorithms would have been required. What is 

interesting about this graph is that the optimal solution is conditioned 
on the period of analysis. If the period of analysis was, for instance, 11 
time steps, another solution would have been considered optimal (see 
dashed-line curve). To demonstrate this, another simulation for a longer 
period (T = 60 time steps) is performed and the results are presented in 
Fig. 8. It is evident in this figure that the optimal program for the first 18 
time steps is different than that in Fig. 6. Therefore, it is not adequate to 
adopt an optimal solution obtained from, for instance, a short-term 
simulation for long-term planning. Hence, the period of analysis 
should be carefully selected. It is important to note that the total 
simulation time for the 500 simulations with T = 60 was 35 mins. This 
suggests that the running time is roughly proportional to the period of 
analysis (i.e., it took 12 mins with a period of analysis T = 18 time steps). 
This means that increasing the period of analysis does not increase the 
running time exponentially. This is important when a longer period of 
analysis is considered, for instance when replacement interventions are 
to be included in the planning. 

To analyze the cost-benefit, the optimal intervention program is 
compared to another intervention program in which the number of 

Fig. 6. Optimal intervention program with the corresponding cumulative incurred cost for T = 18 time steps.  

Fig. 7. Cost comparison between optimal and sub-optimal intervention programs.  
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interventions is minimum. The latter implies minimum intervention cost 
for the operator and thus it is usually assumed among operators [16]. In 
such intervention program, the time between two successive in-
terventions of the same type is equivalent to Gmax. Hereafter, this 
intervention program will be referred to as individual intervention pro-
gram. The individual intervention program occurs when every operator 
individually plans their interventions with no regard to other operators’ 
intervention programs, overlooking the service unavailability their in-
terventions would cause to other networks. In real life, this is usually the 
case because there is indeed minimal or no communication among the 
infrastructure operators in this regard. Table 3 compares the cost 
incurred to each operator from the individual intervention program 
against the optimal program given by the 3C-approach. 

The top half of the table presents the costs related to the intervention 
types while the bottom half presents the service unavailability costs. The 
ratio between the results of the optimal solution and the individual 
intervention program is calculated. For the intervention costs, results 
show an increase of 25% of the cost for the highway operator and 18% 
for the railway operator. These percentages are translated into 9500 and 
3000 monetary units, respectively. The increase in intervention costs for 

the highway and railway operators is due to an increase in the number of 
interventions for these operators. This implies that these operators must 
perform more interventions than what they used to do and they are, 
therefore, put at a disadvantage. There are several possible ways to 
mitigate the additional costs paid by some of the operators. A possible 
approach is to adopt a sub-optimal intervention program that guaran-
tees an equal additional cost by all operators. The disadvantage of this 
approach is the loss in the net benefit, which is the difference between 
the net benefit resulting from the optimal program and that resulting 
from the selected sub-optimal program. Another approach is to divide 
the extra costs over all operators proportionally to what they would have 
paid if they have had planned their own intervention programs. 

The bottom half of the table shows a substantial decrease in the 
service unavailability costs for all operators. The total saving from the 
reduced service unavailability sums up to 370,000 monetary units (i.e., 
25% reduction). This significant saving is the result of the optimal 
arrangement of interventions, which imposed additional intervention 
costs against two operators. The additional intervention costs can be 
considered as an investment towards a substantial increase in the global 
benefit. The total service unavailability cost saving is 30 times greater 
than the extra intervention costs. 

5. Discussion and conclusions 

In this paper, the integrative 3C concept, a multi-system optimiza-
tion approach for infrastructure intervention planning, is presented. The 
proposed approach can consider the interactions between multiple 
infrastructure networks and multiple stakeholders (e.g., society and 
infrastructure operators), and can accommodate different types of in-
terventions, such as maintenance, removal, and upgrading. The in-
teractions within and across the infrastructure networks are modeled 
using a proposed interaction matrix (IM), which can account for 
different types of interdependencies, such as physical, geographical, and 
functional. What stands out in this approach is the ability to distinguish 
between central and non-central intervention types. Central interventions 
are those that occur at a pre-established time moment and are usually 
implemented with a fixed time interval. Non-central interventions, on 
the other hand, are the flexible interventions that can be clustered 
around other interventions, central or non-central. This distinction al-
lows better reflecting the actual human actions during intervention 
planning. Finally, the proposed intervention scheduling approach is 
formalized using a comprehensive mathematical model. 

Fig. 8. Optimal intervention program with the corresponding cumulative incurred cost for T = 60 time steps.  

Table 3 
Comparison between the individual and the 3C intervention programs for T = 18 
time steps.   

Individual 
approach 

Optimal 
solution 

Ratio Difference  

∑T
1ck 

(monetary 
unit) ×103  

∑T
1ck,opt 

(monetary 
unit) ×103  

optimal/ 
individual 
(monetary 
unit) ×103 

(monetary 
unit) ×103 

Operator W 36 36 1 0 
Operator H 37,5 47 1.25 +9,5 
Operator R 16,5 19,5 1.18 +3 
Total intervention 

cost 
90 102,5 1.14 þ12,5 

Operator W 480 367,5 0.77 − 112,5 
Operator H 572,5 435 0.76 − 137,5 
Operator R 442,5 322,5 0.73 − 120 
Total service 

unavailability 
cost 

1495 1125 0.75 ¡370 

Total Cost 
(intervention +
service 
unavailability) 

1585 1227,5 0.77 ¡357,5  
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To illustrate the applicability of the 3C concept, a numerical example 
of three interdependent infrastructure networks is presented. It has been 
shown that finding the optimal arrangement of interventions may 
significantly reduce the total cost, which is divided into (indirect) ser-
vice unavailability cost and (direct) intervention cost. The decrease in 
cost, amounting to 25% in the example, is due to the reduction in the 
service unavailability. 

The proposed optimization problem is simple and easily scalable. 
The time consumed by the simulation is roughly proportional to the 
number of variables, unlike other published algorithms where the 
simulation time increases exponentially by increasing the number of 
variables. This is a significant advantage because it allows for inter-
vention planning of systems with many objects accounting for the in-
terdependencies among them. Moreover, the optimal intervention 
program obtained in the analysis might look random at first glance; 
however, as the results are based on an optimization, they are better 
than what could be obtained by human intuition. This indicates it is a 
useful managerial decision support tool. 

The solution obtained by the proposed optimization approach is 
considered conservative as compound service unavailability effects are 
not considered. The compound effect occurs when there is no propor-
tionality between the level of service interruption and the degree of 
impact. For instance, multiple small interventions can cause a cut-off of 
a whole region. Nonetheless, this is not going to significantly modify the 
optimal point as the service unavailability impact is normally much 
larger than the intervention costs; thus, if a larger unavailability impact 
is incurred due to the compound effect, the savings obtained by applying 
this approach would be even larger. 

The proposed method can be used for different types of intervention, 
such as maintenance and replacement. Replacing an object in a network 
can be done by introducing it as an intervention in the planning scheme. 
In the case that the object to be replaced is crossing with another object, 
a decision must be taken whether to postpone the replacement of the 
first object or to bring forward the replacement of the second object. 
This decision is reflected in the parameters Gmin and Gmax which define 
the time flexibility in executing an intervention. In some cases, the two 
objects cannot be replaced at the same time due to a large gap in their 
service life, then the corresponding interventions shall be executed 
separately, if possible. Nonetheless, it is advised that operators agree on 
making their intervention scheduling more flexible as it can result in 
large benefits. 

The results of this paper encourage infrastructure managers to foster 
communication between each other regarding their intervention plan-
ning as this could bring significant benefits to all of them by jointly 
planning their interventions. Future work will be geared towards 
extending the 3C approach by 1) accounting for the uncertainty of in-
terventions occurrence, 2) exploring other heuristic-based methods to 
improve the computational time, 3) revoking the assumption that an 
intervention is completed during a single time interval, which allows 
considering longer intervention durations, and 4) validating the 3C 
concept in a real-life asset management case (organizations, infra-
structure data, etc.) and analyzing the optimal solutions for different 
stakeholders. 
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[13] Vu H.C.,Do Van P., Barros A., Bérenguer C., Bouvard C., Brissaud F., Dynamic 
grouping maintenance with time limited opportunities, Reliability Engineering 
System Safety, 120, (2013), 51–59, doi: https://doi.org/10.1016/j.ress.2013.03.0 
16. 

[14] H.-C. Vu, P. Do, A. Barros, A study on the impacts of maintenance duration on 
dynamic grouping modeling and optimization of multicomponent systems, IEEE 
Trans. Reliab. 67 (3) (2018) 1377–1392, https://doi.org/10.1109/ 
TR.2018.2827926. 

[15] P. Do, A. Barros, Maintenance Grouping Models for Multicomponent Systems, 
Elsevier, Mathematics Applied to Engineering, 2017, pp. 147–170, https://doi.org/ 
10.1016/B978-0-12-810998-4.00008-9. 

[16] B. Adey, M. Burkhalter, C. Martani, Defining road service to facilitate road 
infrastructure asset management, Infrastructure Asset Management 7 (4) (2020) 
240–255, https://doi.org/10.1680/jinam.18.00045. 

[17] S. Kerwin, B.T. Adey, Optimal intervention planning: a bottom-up approach to 
renewing aging water infrastructure, J. Water Resour. Plan. Manag. 146 (7) 
(2020), 04020044, https://doi.org/10.1061/(asce)wr.1943-5452.0001217. 

[18] C. Kielhauser, B.T. Adey, Determination of intervention programs for multiple 
municipal infrastructure networks: considering network operator and service costs, 
Sustainable and Resilient Infrastructure 5 (1–2) (2020) 49–61, https://doi.org/ 
10.1080/23789689.2018.1497879. 

[19] M. Burkhalter, B.T. Adey, Modelling the complex relationship between 
interventions, interventions costs and the service provided when evaluating 
intervention programs on railway infrastructure networks, Infrastructures 5 (12) 
(2020) 113, https://doi.org/10.3390/infrastructures5120113. 

[20] C. Kielhauser, N. Lethanh, B. Adey, A methodology to estimate losses in level of 
service for urban infrastructure networks, Transforming the Future of 
Infrastructure through Smarter Information: Proceedings of the International 
Conference on Smart Infrastructure and Construction, 27–29 June 2016, 2016, 
765–770 doi: https://doi.org/10.1680/tfitsi.61279.765. 

[21] M. Burkhalter, B.T. Adey, Determining Optimal Intervention Programs for Large 
Railway Infrastructure Networks Using a Genetic Algorithm, 12th World Congress 
on Railway Research–Railway Research to Enhance the Customer Experience 
(WCRR 2019), 2019, https://doi.org/10.3929/ethz-b-000384527. 

[22] C. Stenström, A. Parida, U. Kumar, Measuring and monitoring operational 
availability of rail infrastructure, Proceedings of the Institution of Mechanical 
Engineers, Part F: Journal of Rail and Rapid Transit 230 (5) (2016) 1457–1468, 
https://doi.org/10.1177/0954409715592189. 

O. Kammouh et al.                                                                                                                                                                                                                             

https://peer.berkeley.edu/sites/default/files/final_2016_08_gian_paolo_cimellaro_ali_zamani_noori_omar_kammouh.pdf
https://peer.berkeley.edu/sites/default/files/final_2016_08_gian_paolo_cimellaro_ali_zamani_noori_omar_kammouh.pdf
https://peer.berkeley.edu/sites/default/files/final_2016_08_gian_paolo_cimellaro_ali_zamani_noori_omar_kammouh.pdf
https://doi.org/10.1007/978-981-13-7446-3_2
https://doi.org/10.1007/s13198-011-0045-x
http://refhub.elsevier.com/S0926-5805(21)00149-7/rf0020
http://refhub.elsevier.com/S0926-5805(21)00149-7/rf0020
https://doi.org/10.1201/b17063-307
https://doi.org/10.1201/b17063-307
https://doi.org/10.1002/qre.1388
https://doi.org/10.1002/qre.1388
https://doi.org/10.1111/mice.12452
https://doi.org/10.1016/S0141-0296(97)00186-7
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(202)
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(202)
https://doi.org/10.1111/j.1467-8667.2009.00636.x
https://doi.org/10.1111/j.1467-8667.2009.00636.x
https://doi.org/10.1080/15732479.2019.1671466
https://doi.org/10.1177/1748006X12464616
https://doi.org/10.1177/1748006X12464616
https://doi.org/10.1016/j.ress.2013.03.016
https://doi.org/10.1016/j.ress.2013.03.016
https://doi.org/10.1109/TR.2018.2827926
https://doi.org/10.1109/TR.2018.2827926
https://doi.org/10.1016/B978-0-12-810998-4.00008-9
https://doi.org/10.1016/B978-0-12-810998-4.00008-9
https://doi.org/10.1680/jinam.18.00045
https://doi.org/10.1061/(asce)wr.1943-5452.0001217
https://doi.org/10.1080/23789689.2018.1497879
https://doi.org/10.1080/23789689.2018.1497879
https://doi.org/10.3390/infrastructures5120113
https://doi.org/10.1680/tfitsi.61279.765
https://doi.org/10.3929/ethz-b-000384527
https://doi.org/10.1177/0954409715592189


Automation in Construction 127 (2021) 103698

11

[23] M. Burkhalter, B.T. Adey, A network flow model approach to determining optimal 
intervention programs for railway infrastructure networks, Infrastructures 3 (3) 
(2018) 31, https://doi.org/10.3390/infrastructures3030031. 

[24] R. Ugarelli, V. Di Federico, Optimal scheduling of replacement and rehabilitation 
in wastewater pipeline networks, J. Water Resour. Plan. Manag. 136 (3) (2010) 
348–356, https://doi.org/10.1061/(Asce)Wr.1943-5452.0000038. 

[25] C. Fecarotti, J. Andrews, Optimising strategy selection for the management of 
railway assets, Stephenson Conference : Research for Railways (2017). http://epr 
ints.nottingham.ac.uk/id/eprint/41148. 

[26] S. Bressi, J. Santos, M. Losa, Optimization of maintenance strategies for railway 
track-bed considering probabilistic degradation models and different reliability 
levels, Reliability Engineering & System Safety 207 (2021) 107359, https://doi. 
org/10.1016/j.ress.2020.107359. 

[27] C. Kielhauser, B.T. Adey, N. Lethanh, Investigation of a static and a dynamic 
neighbourhood methodology to develop work programs for multiple close 
municipal infrastructure networks, Struct. Infrastruct. Eng. 13 (3) (2017) 361–389, 
https://doi.org/10.1080/15732479.2016.1162818. 

[28] S. Abu-Samra, M. Ahmed, L. Amador, Asset management framework for integrated 
municipal infrastructure, J. Infrastruct. Syst. 26 (4) (2020), 04020039, https://doi. 
org/10.1061/(asce)is.1943-555x.0000580. 

[29] C. Kielhauser, B.T. Adey, A demonstration of the use of a unified service model for 
urban infrastructure networks, Infrastructure Asset Management 7 (4) (2020) 
269–281, https://doi.org/10.1680/jinam.18.00040. 
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