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Supervisor(s): Emir Demirović1, Jacobus G.M. van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2023

Name of the student: Giulio Segalini Final project course: CSE3000 Research Project
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Abstract
The Algorithm Selection Problem is a relevant
question in computer science that would enable us
to predict which algorithm would perform better
on a given instance of a problem. Different solu-
tions have been proposed, either using Mixed Inte-
ger Programming or machine learning models, but
both suffer from either poor scalability, no guaran-
tees of optimality, or not interpretable models that
could be used to gain insights into the nature of the
problem.
In this work we propose a dynamic programming
method to build Optimal Decision Trees to solve
the Algorithm Selection Problem, giving us an in-
terpretable model that is globally optimal over the
training dataset. We also show that this method is
orders of magnitude faster in training trees that are
identical to the current state-of-the-art and propose
possible improvements for future work.

1 Introduction
Computationally-hard problems are critical in computer sci-
ence, and being able to solve them optimally has been a major
area of interest for decades. A particular subset of appeal is
NP-Hard problems, the set of all problems at least as hard as
the hardest problem in NP, for which no determinist polyno-
mial time algorithm is known. This implies that many possi-
ble algorithms have been developed over the years, but given
that none of them has strictly better asymptotic runtime than
the others, it is important to analyze which one could be the
best option in specific scenarios.

An example of one of these problems is SAT, the satis-
fiability problem, the problem of finding an assignment of
boolean variables that satisfies a set of propositions. This
problem was proven to be NP-complete [6] and so being able
to solve it efficiently is of utmost importance. For this reason,
competitions are hosted each year to compare different algo-
rithms. The results of these competitions show us that there
is no best way to solve the problem and performance varies
considerably in different instances [2].

The problem of assigning instances of a problem, for ex-
ample, the aforementioned SAT, to the best algorithm to solve
them is known as the Algorithm Selection Problem, as de-
fined by Rice [22]. This is usually solved using machine
learning techniques and given that in recent years the need
for interpretable models has become more pressing [23] de-
cision trees have been studied.

Decision tree learning is a widely used approach in ma-
chine learning, as they provide a concise and humanly in-
terpretable model. Moreover, given the nature of the model
itself, it is possible to split the training into subtrees that can
be trained independently, opening the way to possible perfor-
mance improvements. Heuristic methods can be used to ob-
tain trees with a high level of accuracy, but none of these are
guaranteed to be globally optimal and so it may not necessar-
ily be the best representation of the data in terms of accuracy,
size, or other constraints. This motivated the development of

different strategies for obtaining optimal decision trees, that
is the best possible tree according to a specific metric, for ex-
ample, the number of misclassified elements.

Different work has been done to achieve this, for exam-
ple, the work of Demirović et al. [7] and van der Linden et
al. [24] that exploit the recursive nature of the tree to train
it using dynamic programming, Narodytska et al. [20] which
models the problem as an instance of the SAT problem and
Boas et al. [27] which uses Mixed Integer programming and
Variable Neighborhood Descent. The dynamic programming
approach was able to achieve high scalability compared to
other methods, but as of now has been tested on specific clas-
sification problems. It would be interesting to adapt its ideas
to solve the Algorithm Selection problem.
Research questions This paper shows how to generate op-
timal decision trees for the Algorithm Selection problem us-
ing dynamic programming and how this method compares to
the current state of the art in terms of scalability.
Contributions This new method outperforms the current
state-of-the-art by several orders of magnitude while being
able to obtain the same level of accuracy. It is also able to
train trees up to depth 7, while the competing method reported
optimal trees up to depth three.

2 Related Work
This section shows a literature review of previous similar
work, in particular on the Algorithm Selection problem and
optimal decision trees.

2.1 Algorithm Selection Problem
The first definition of the Algorithm Selection problem (ASP)
was given in 1976 by Rice [22]. One of the first approaches
to solve the ASP used regression to predict the performance
of the problem for a specific algorithm and select the best
one [29] then Lagoudakis et al. [15] successfully used rein-
forcement learning and opened the way for machine learning
methods exploration.

A common assumption used by different methods is that
problem instances can be grouped into clusters of similar
characteristics and that a specific algorithm will perform sim-
ilarly on instances in the same cluster. This approach enables
the ASP to be reduced into a training phase in which we iden-
tify the clusters and an association phase in which different
algorithms get assigned to clusters. Using this approach Mal-
itsky et al. [17] devised a method, later refined by Kadioglu
et al. [12] by combining the use of a scheduler to maximize
the number of solved instances in a set time. Malitsky et al.
have then improved over the clustering technique by using
Cost-Sensitive Hierarchical Clustering [18] and Kadioglu et
al. [13] also devised a strategy to solve the ASP by obtain-
ing instance-specific algorithm configuration values together
with algorithm selection from other works. In 2022 Kara-
halion et al. [14] devised a method to not only choose algo-
rithms but also the optimal variable ordering to solve Con-
straint Programming models.

Finally, Boas et al. [27] showed how to build optimal deci-
sion trees to solve the ASP by using Mixed Integer program-
ming to build optimal trees and a heuristic based on Variable



Neighborhood Descent to obtain suboptimal trees, but in sub-
stantially less time. This last work shows the potential of de-
cision trees to obtain accurate results but has significant dif-
ficulties in scalability. In particular, only Optimal trees up to
depth three were trained, while heuristic-based methods train
trees that perform better than Random Forests with more in-
terpretable results.

2.2 Optimal Decision Trees
Optimal decision trees have been studied for an extended pe-
riod, and in 1976 Laurent et al. proved that the problem of
constructing them is NP-Complete [16]. Bennett et al. have
proposed a solution for constructing globally optimal deci-
sion trees by fixing the structure of the tree and then solving
a system of linear inequalities using existing optimizers [3].

The idea of using constraints programming or Mixed Inte-
ger Programming (MIP) together with specific optimization
has been proposed multiple times, in particular by Bertsimas
et al. in 2007 [5], again Bertsimas et al. in 2017 [4] and Ver-
wer et al. [25], that the refined the method in 2019 by using
an efficient binary encoding of the training dataset [26].

More recent work was conducted by Hu et al. [10] intro-
ducing a method to build optimal sparse trees, Aglin et al. [1]
that presented DL8.5, an algorithm that uses Branch-and-
Bound search, caching, pruning, and heuristics to outperform
other works by order of magnitudes. Demirović et al. pre-
sented MurTree that employs “many specialized techniques
that exploit properties unique to classification trees” [7].

All of these methods use dynamic programming to split the
problem into smaller subtrees, but sacrifice generalizability to
gain better runtime performance. Of the works stated above
MurTree can obtain optimal classification trees and has been
further generalized to any optimization task in STreeD [24],
which is the starting point for this work.

3 Preliminaries
This section provides insights and explanations into the meth-
ods and terminology used in the current literature. The first
part formally defines the algorithm selection problem, while
the second part describes the dynamic programming formu-
lation for building optimal decision trees.

3.1 Formal Problem Description
The Algorithm Selection Problem (ASP) has been first for-
mally defined by Rice [22] as the problem of identifying the
best algorithm to solve a particular instance of a problem ac-
cording to a given metric, for example, runtime or memory
usage. We can use this to delineate the following notation:

• P: The problem space, that is the set {p1, p2, . . . , pn} of
all possible instances of the specific problem of which
we are analyzing possible algorithms.

• p: A particular element of the problem space.
• A : The algorithm space, that is the set {a1,a2, . . . ,am}

of all available algorithms that correctly solve instances
in P .

• a: An element of the algorithm space, one specific algo-
rithm.

• R(p,a): A mapping from a pairing algorithm and prob-
lem instance to the metric we want to optimize, in most
cases this is runtime.

• S(p): The solution to the problem, a mapping from a
problem in the problem space to an algorithm in the al-
gorithm space.

• B(p): The ideal solution to the problem, the mapping
that goes from each problem to their best performing al-
gorithm according to the metric R.

With the following notation, we can define the problem as
finding the mapping S(x) that minimizes the distance from the
optimal mapping, giving us the following objective function:

min ∑
p∈P

|R(p,S(p))−R(p,B(p))|

This formalization is as general as possible and, in the fol-
lowing section, it is adapted for usage with the dynamic pro-
gramming formulation of decision trees. However, it does not
consider the concept of features, which is important to create
meaningful mappings.

We can summarize the definition in a single sentence:
given a set of algorithms and a new instance, which algorithm
should we select based on its features such that the chosen al-
gorithm optimizes a performance metric?

3.2 Optimal Decision tree for the ASP
This subsection covers the description of mappings and in-
put and output variables, followed by an explanation of how
features are defined and formalized.

Functions and Variables
The definition in subsection 3.1 can almost be employed as is,
but we need to introduce a bit more notation to better adapt
the problem for being solved with decision trees.

• Ptr: A subset of the problem space used for training.

• Pts: A subset of the problem space used for testing.

• R(p,a): Runtime of algorithm a on problem p relative
to the lowest runtime, so R(p,B(p)) = 0.

The objective function is the same as before, but given that
we construct Optimal Decision Trees, we will minimize its
value over the training set, while the testing set is used to
assess the accuracy of the obtained tree.

Features
To effectively distinguish problems, we identify features for
each instance. We can define a feature as an intrinsic charac-
teristic of the problem space that changes between instances
of the same problem, for example, the number of propositions
in a SAT instance.

Features vary widely between problem spaces, and we
need good formalization. For them to be usable by the dy-
namic programming formulation of subsection 3.4, they must
be binary. More details on how binarization is achieved are
in section 5.1. The formulation below defines two feature
spaces: one is the original, while the other is the binary ver-
sion.
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Figure 1: The Algorithm Selection problem [22;
27]

• F : The feature space, the different characteristics we
can quantify for each problem.

• f : A feature in the feature space. The feature can assume
different values from Vf = {v f 1,v f 2, . . . ,v f k}.

• F(p)= ( f1, f2, f3, . . . , fk), the feature values for problem
p.

• FB: The binarized feature space. Each feature in F gets
binarized into n values, more details in section 5.1.

• fb: A feature in the binarized feature space, this time it
can only get values from Vf = 0,1

• FB(p) = ( f b1, f b2, f b3, . . . , f bn·k), the binary features
value for problem p.

It is important to note that the cardinality of the feature
space should be significantly less than that of the problem
space, to mitigate the risk of overfitting by just looking at
features that are unique to specific instances.

The formalization is summarized in Figure 1.

3.3 Decision Trees
A decision tree is a decision model that uses a tree structure
in which a branching node represents a conditional statement,
while a leaf node represents a decision. Given a new instance
that needs to be analyzed using the model, we can traverse
the tree and follow each branching point that satisfies the in-
stance’s features until we decide on a leaf node.

If we have a set of branching conditions F , for example,
a set of binary features, and a set of labels K, we can see a
decision tree as a tuple τ = (B,L,b, l), with B being the set
of branching nodes, L the set of leaf nodes, b : B → F an
assignment of a splitting condition to each branching node,
and l : L → K the mapping of labels to each leaf node. Given
any node u ∈ B we can call ul and ur the left and right child
respectively.

Using this definition, we can build a dynamic programming
formulation of decision trees as shown in subsection 3.4.

3.4 Dynamic Programming Formulation
As said in Section 2, different approaches to building opti-
mal decision trees have been studied, but in this research,
we will work on the dynamic programming formulation from
MurTree [7] and STreeD [24]. This has various advantages
that are consequences of the ability of the problem to be bro-
ken into smaller sub-problems that can be cached and used
again if needed. The sub-problems are also independently

solvable and parallelizable. Furthermore, when a subtree is
solved with a suboptimal score, we can prune the search space
and avoid unnecessary computations.

To explain the formulation, we need to define a common
terminology:

• K : the set of possible labels.

• opt(S): a function that given a set of solutions returns
the set of optimal solutions, this requires a comparison
cmp(s1,s2) operator between solutions to identify which
is best.

• merge(S1,S2): a function that given two sets of solutions
for left and right subtrees, returns the set of all solutions
of trees that have one subtree from each set as children.

• g(D,k): a function that given dataset D and a label k
returns the total cost associated of assigning the label k
to all instances in D.

• D f and D f̄ : respectively, the subset of D containing val-
ues that have positive value for feature f and values that
have negative value for feature f .

The DP formulation is then shown in Equation 1 and uses the
same ideas as STreeD [24].

T (D,d) =


opt (

⋃
k∈K g(D,k)) d = 0

opt(
⋃

f∈F

merge(T (D f ,d −1),T (D f̄ ,d −1))) d > 0
(1)

The equation consists of two cases. The base case occurs
when d = 0, where we consider all possible labels and return
the ones that yield optimal solutions. For all other depths,
we return all optimal solutions built by splitting the dataset
over a binary feature, getting the optimal sub-solutions, and
merging them.

We can further optimize the dynamic programming ap-
proach by employing a specialized solver for trees of depth
two or less, as first shown in MurTree [7] and STreeD [24].
This solver consists of two distinct phases: the frequency
counting phase and the tree construction phase. The first
phase counts the number of instances and their associated cost
that present a specific set of features, while the second phase
can use the just computed counts to find the best possible tree.

In more detail, during the frequency counting phase we can
first compute the frequency count for every possible feature
pair and label of the dataset and the associated cost of having
that specific label assigned to the relevant instances. This will
be called C( f1, f2, l), the total cost of instances that present
features f1, f2 when assigned with label l.

By using the sum of the costs computed before, we can find
which triplet ( froot , fle f t , fright) of features and quadruplet of
labels (l1, l2, l3, l4) gives us the best tree, as shown in Figure 2.
The objective becomes then minimizing (or maximizing de-
pending on the task):

C( froot , fle f t , l1)+C( froot , ¯fle f t , l2)

+C( ¯froot , fright , l3)+C( ¯froot , ¯fright , l4)
(2)
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Figure 2: An example tree built using a quadruplet of labels and a
triplet of features.

To prune the search space, we can keep track of upper and
lower bounds solutions as shown in MurTree [7] using con-
cepts from DL8.5 [1]. MurTree [7] also implements a stricter
lower bound approach called similarity lower bound which
STreeD [24] generalizes by using the largest change in score
assigning a particular label to an instance would produce.
These values are then employed to compute the maximum
difference in score between two datasets.

The details of how this method works are not relevant to
this paper. However, it is important to note that to use this
technique, we only need to define the worst score associated
with a specific label.

4 Contributions
In this section, we show the main contributions of this work.
Firstly, we adapt the dynamic programming formulation from
the previous section for the Algorithm Selection problem.
Secondly, we describe the adaptation of the depth-two solver
and the bounds from [7]. Lastly, we introduce a strategy to
reduce overfitting by incorporating a regularization term.

The contributions are built upon the STreeD frame-
work [24], and we introduce all the elements required to solve
the Algorithm Selection problem efficiently and effectively.

4.1 Dynamic Programming for the ASP
As the definition of the dynamic programming formulation
in subsection 3.4 is very general, it can be simplified and
adapted for the Algorithm Selection problem by defining the
cost function g as below:

g(D,k) = ∑
p∈D

R(p,k) (3)

This function computes the sum of all differences between
the best possible runtime and the runtime we would obtain
with algorithm k for problems p in D.

We can then define a comparison operator cmp(s1,s2) that
returns whether solution s1 is better than solution s2 as:

cmp(s1,s2) = s1 < s2 (4)

by which a solution is better than another if the total runtime
is a smaller value.

4.2 Depth-two solver and Lower bounds
Using the comparison operator and the cost function, we can
modify the specialized depth-two solver to meet the require-
ments of the new objective function. Instead of keeping track

of frequencies that are used in the misclassification score, we
can keep track of the cost R(p,a) that assigning label (algo-
rithm) a to problem p would give and then compute the value
of C( f1, f2, l) using Equation 5:

C( f1, f2, l) = ∑
p∈D f1, f2

R(p, l) (5)

It is then possible to precompute these values for all com-
binations of features and labels and obtain the same speedups
that MurTree [7] and STreeD [24] achieve.

In addition to the specialized solver for trees of depth two,
MurTree [7] and STreeD [24] can use upper and lower bound-
ing to prune the search space. In particular, STreeD can do
so if it is possible to define the value wk, the worst-case con-
tribution assigning an instance to label k to the total cost. For
the algorithm selection problem, this is:

wk = max{∀p ∈ D | R(p,k)} (6)

4.3 Reducing overfitting using a regularization
term

To reduce the chance of overfitting we can introduce a reg-
ularization term [30] in which we penalize small leaf nodes
in the same way Boas et al. [27] have proposed. This term
introduces a penalty of β for each instance that is missing in
a leaf node to reach a certain threshold τ , greatly reducing
the chance of obtaining trees in which some algorithms are
assigned to only a few instances. This changes our objective
function to:

min ∑
p∈P

R(p,S(p))+ ∑
l∈leaves

d(l) ·β (7)

In which d(l) is the function that returns the distance be-
tween the number of instances assigned to leaf node l and the
threshold τ , so:

d(l) =
{

0 size of l ≥ τ

τ − (size of l) otherwise
(8)

This added penalty changes the worst case added cost de-
fined in Equation 6 as adding or removing an instance p to a
leaf with label k can change the score by β . The new worst
case needs to also account for this, becoming:

wk = max{∀p ∈ D | R(p,k)}+β (9)

5 Experimental Setup and Results
In this section first, we show which dataset and features are
used, followed by the actual setup and each experiment’s re-
sults. We conducted a total of 4 experiments to check respec-
tively: scalability with increasing maximum allowed depth to
compare against the work of Boas et al. [27], how much the
bound-based pruning is effective, in and out-of-sample accu-
racy, and how different binarization strategies affect runtime.



5.1 Datasets and features
For this work, two datasets from MaxSAT competitions
20211 and 20222 were used, as they contain a realistic sce-
nario in which competitive solvers are benchmarked against
a wide variety of instances. The unweighted complete tracks
from both years were used, as in this setting, the competing
algorithms obtain the same result and the only performance
metric is runtime. On the other hand, the weighted track mea-
sures both runtime and the total weight of satisfied clauses,
which would require the score to combine these two values.
To use the data with the dynamic programming method, we
need to extract features and then binarize them.

Feature extraction
Feature extraction for SAT instances has been extensively
studied, in particular, the work of Nudelman et al. [21] that
has then been expanded by Hutter et al. [11] presented 138
possible features. We selected a subset of 32 features from the
aforementioned work, prioritizing those that could be com-
puted within a reasonable time frame. These highlighted fea-
tures are shown in Figure 3.

These features can be grouped into three groups: features
related to the size of the problem, features that show the
instance balance through ratios of positive and negative lit-
erals and variable occurrences together with the number of
short clauses, and features that relate to the Horn formula and
clauses.

A clause is called a Horn clause when it’s a disjunction of
at most one positive literal [9]. These clauses are important
in SAT instances as an instance containing only Horn clauses
is solvable in linear time [8]. For most of these features the
mean, variance, minimum and maximum values, and Shan-
non’s entropy are included as they could provide more useful
information.

Feature binarization
The dynamic programming formulation assumes binary fea-
tures, while the feature extracted previously are continuous
values. To obtain binary features without significant loss of
accuracy, we can discretize the features into k bins and have
each original value be encoded by k− 1 new ones. First, all
the possible feature values for the data are sorted and divided
into k equally sized bins delimited by k−1 threshold values.
Then we can use each new feature to represent whether the
original feature value is smaller than the respective threshold
value.

This approach is similar to what the work of Boas et al. [27]
does, as we are effectively defining k−1 branching points for
each feature. For the rest of this work, the number of bins
was fixed to k = 2, unless specified otherwise, to be able to
train trees in a reasonable time. We explore different values
of k in subsection 5.6 to showcase how they impact runtime
and accuracy.

5.2 Experimental setup
The main reason to run experiments is to assess the scalability
of this work against the current state-of-the-art optimal deci-

1https://maxsat-evaluations.github.io/2021/
2https://maxsat-evaluations.github.io/2022/

• Problem size features
1. Number of clauses (c)
2. Number of variables (v)

3-5. Ratios: c/v, c2/v2, c3/v3

6-8. Reciprocals of above ratios: v/c, v2/c2, v3/c3

9-13. Length of clauses: mean, variance, min, max, en-
tropy

• Balance features
14-18. Fraction of positive clauses: mean, variance, min,

max, entropy
19-21. Fraction of unary, binary, and ternary clauses
22-26. Fraction of positive occurrences for each variable:

mean, variance, min, max, entropy
• Horn clauses features

27. Fraction of horn clauses
28-32. Occurrences in horn clauses for each variable:

mean, variance, min, max, entropy

Figure 3: Extracted features from SAT instances

sion trees used to solve the Algorithm Selection problem, the
method of Boas et al. [27]. As said in section 2, two methods
are proposed in the work of Boas et al., but as this paper fo-
cuses on globally optimal trees only a comparison against the
MIP model was executed.

The MIP model from [27] was implemented in Python 3
using Gurobi’s3 interface, a commercial MIP solver. The
model defines features as continuous values that can be split
on a specific set of numbers, This is effectively the same as
what we presented in section 5.1, but done during training
and not as a pre-processing step. To be able to use the same
processed file format with features already divided into bins
and represented by binary 0,1 values, we define the branching
values for each variable as the singleton set {0}.

The dynamic programming implementation is based on
STreeD [24] and uses a C++ framework. As both methods
use a regularization term based on parameters τ and β , val-
ues of τ = 10 and β = 50 were chosen to compare fairly to
the work in [27].

All experiments were run on a single thread on an Intel
Core i7-10510U CPU with a timeout of 3600s. It is important
to note that Gurobi and other MIP solvers support paralleliza-
tion and that it can be used to obtain better performance, but
for these experiments, it was chosen to have the same run-
ning condition as the dynamic programming implementation,
which is not parallel.

The two datasets from subsection 5.1 were used to train
trees of increasing depths and measure runtime, this enables
us to understand how the different implementations scale on
more complex trees. For both datasets, features were ex-
tracted and binarized, with instances in which none of the
algorithms found a solution during the competition removed,
giving us a total of 439 instances and eight labels for the 2021

3https://www.gurobi.com/

https://maxsat-evaluations.github.io/2021/
https://maxsat-evaluations.github.io/2022/
https://www.gurobi.com/


(a) Experiments with MaxSAT
2022 dataset

(b) Experiments with MaxSAT
2022 dataset

Figure 4: Runtime experiments run with two datasets

dataset, while we have 461 instances and 11 labels for the
2022 one.

To test the efficacy of the bound-based pruning, we exe-
cuted experiments in which calls to the depth-two solver were
measured when the bound was calculated using Equation 9
and when no bounds were employed. Running this on both
datasets with increasing maximum depths gives us an idea of
the amount of pruning that can be done.

To showcase the usefulness of higher depth models two
more experiments were run to show how the optimized metric
value over the training and the testing set respectively changes
for increasing depths. In each run, the datasets were split
randomly into a training and a test set dedicating 90% the
instances to the former and the rest to the latter.

The last set of experiments shows how different binariza-
tion strategies, in particular the number of bins, can influence
the value of the metric we are trying to optimize.

5.3 Runtime performance analysis
The plots in Figure 4 representing the data collected from the
experiments all use a logarithmic scale on the y-axis, as the
runtime increases exponentially. We run both methods five
times for each depth to show a 95% confidence interval and
stopped as soon as one of the training timed out for the current
depth.

Results for the 2021 dataset are shown in Figure 4a and re-
sults for the 2022 datasets are similar and shown in Figure 4b.

We can see how the dynamic programming implementa-
tion outperforms the MIP model, both in runtime for small
depths and in the possibility of training deeper trees. In both
experiments, the MIP implementation was unable to obtain a
globally optimal tree of depth three in less than 1 hour, while
the dynamic programming formulation needs less than a sec-
ond for all depths smaller than 4.

The objective function value for the trained trees between
the two methods was identical when the same depth and
dataset were used, showing that the obtained trees perform
the same over the training dataset.

Summarizing, we can see that the Dynamic programming
method is orders of magnitude faster while obtaining the
same or comparable trees as the current state-of-the-art and
can scale easily to deep trees.

5.4 Bound-based pruning
The following experiments show the number of calls to the
depth-two solver, so the number of times the recursive dy-
namic programming implementation reached the base case.

(a) Experiments for terminal
calls run with the MaxSAT 2021
dataset

(b) Experiments for terminal
calls run with the MaxSAT 2022
dataset

Figure 5: Experiments for terminal calls run with two datasets

(a) Metric value over training
dataset for increasing depth

(b) Metric value over testing
dataset for increasing depth

Figure 6: Experiments to check the total run time of instances and
assigned algorithm for trees with increasing depth

They are counted at increasing depth using both datasets as
for the other experiments and are shown in Figure 5a and Fig-
ure 5b.

From these experiments, we can see that with deep trees the
search space gets pruned, but for smaller trees the difference
is negligible. This indicates that there is potential to reduce
the search space even further if this work is continued.

5.5 Metric score (total runtime) for training and
test datasets

As the two datasets do not contain many instances the param-
eters β and τ needed to be readjusted and the values of β = 50
and τ = 25 were chosen.

Here the plot in Figure 6 is showing training and testing
total runtime for each instance with the assigned algorithm
for the two datasets when the maximum depth of the tree is
increased. As we can see the metric’s value decreases for the
training set, and it stabilizes at around depth 6. The metric
over the test set also decreases, but as the depth increases the
chance of overfitting also increases and the value fluctuates.

If datasets containing more instances were to be used we
could obtain better and more meaningful results, but these
preliminary results show that the model performs well and
that having more scalable methods that can train deeper trees
is important.

5.6 Binarisation strategies
As said in section 5.1 it is possible to discretize the contin-
uous feature in different amounts of bins. The following ex-
periments want to show how increasing this number affects
performance, both regarding training runtime and the value
of the optimized metric.



(a) Runtime to train trees of
increasing depth using differ-
ent discretization values for
MaxSAT 2021

(b) Runtime to train trees of
increasing depth using differ-
ent discretization values for
MaxSAT 2022

Figure 7: Experiments to check the runtime of training with increas-
ing depth and different binarization strategies

Figure 8: Optimized metric value for trees with increasing depth
using different discretization values for MaxSAT 2021

Trees were trained using values of k = 2,3,5 with depth
going from 1 to 5 using the same settings and plot scale as
the experiments from subsection 5.3. The runtime needed for
training is shown in Figure 7 while the optimized metric value
is shown in Figure 8 and Figure 9.

As we can see the runtime grows exponentially for all dis-
cretization strategies, but the more information we try to ex-
press by using more bins the faster the runtime will increase.

The total runtime that the instances would have using the
assigned algorithm still decreases with higher depths, but us-
ing more precise encoding for features also increases accu-
racy. Depending on which is more important a compromise
between accuracy and training time needs to be taken into
account by users of this method.

Figure 9: Optimized metric value for trees with increasing depth
using different discretization values for MaxSAT 2022

6 Responsible Research
This research and its experiments were conducted under the
FAIR principles. These are four main axioms that should be

followed to “act as a guideline for those wishing to enhance
the reusability of their data holdings” [28] and are listed be-
low together with how they were followed.

• Findable: Data and metadata are freely available on the
same repository as the code so that they can be easily
used to reproduce the same experiments shown in the
paper.

• Accessible: Access to the data does not require specific
authentication, the original results of the MaxSAT com-
petitions are open to the public and so are the processed
datasets.

• Interoperable: The data is stored in a common CSV
format with easy-to-understand explanations shipped to-
gether with it.

• Reusable: The header and metadata files explain well
how the data is structured such that it can be reused for
different types of research.

By following these four criteria we hope that the data ob-
tained and used in this research can be used to conduct more
experiments and so increase our understanding of algorithms
and NP-Hard problems.

7 Conclusions and Future Work
The Algorithm Selection Problem is a relevant problem
in Computer Science that could lead to improvements in
performance-sensitive environments. Solving it efficiently
can not only help make a better choice of algorithm to solve
specific problem instances but also give us insights into how
different features influence the performance of different algo-
rithms. Multiple machine learning models have been used to
solve the ASP, but one of the few that gives us both mathe-
matical guarantees of optimality over the training dataset and
an interpretable model is Optimal Decision Trees.

Over the years different heuristics, constraints program-
ming, and Mixed-Integer programming models have been
employed to train Optimal Decision trees, but dynamic pro-
gramming formulations have been shown to increase scala-
bility and reduce runtimes. In this paper, we explored how
to build Optimal Decision trees using dynamic programming
to solve the algorithm selection problem and showed that this
new method outperforms the current state-of-the-art by orders
of magnitudes while obtaining the same trees.

In the future, it would be interesting to explore the possi-
bility of stricter upper and lower bounds. The current ones
can prune the search space for deep trees, but it is possible
to reduce it even more. Moreover, more testing on the actual
accuracy and performance of the trees should be investigated
more deeply, as in the limited timeframe of this project only
datasets of about 500 instances were used to assess scalabil-
ity and out-of-sample performance. This would require more
instances that have accurate measurements over the same al-
gorithms, together with pre-processing and feature extraction
for each of these instances. Other datasets not related to the
SAT problem might also be used, like for example the freely
available MIPLIB4 or the collection from Dr. Hans D. Mittel-
mann [19].

4https://miplib.zib.de/

https://miplib.zib.de/


The method is promising and is already usable to obtain
trees comparable to the current state-of-the-art in a fraction of
the time, but more research to assess the accuracy of classifi-
cation needs to be conducted together with an exploration of
how bounds-based pruning can be used to reduce the search
space even more than it already does. The optimized met-
ric value, so the total runtime of the instances in the training
and test set, is promising and given that it is equal to or bet-
ter than the work of Boas et al. we can assume that it will
perform similarly.
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