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Abstract

Gaussian Splatting is a successful recent method for gen-
erating novel views of a scene based on photographs taken
from that scene [1]. It uses rasterization in order to ren-
der the scenes it generates, which consist of 3D Gaussians.
However, modern hardware and tools are designed and op-
timized around rendering polygonal and texture based mod-
els [2]. This paper proposes a method of extracting both a
3D model and texture file from a Gaussian Splatting scene
by using renders of that scene in Photogrammetry. It shows
that this can be a viable method for generating a tradi-
tional 3D model from Gaussian Splatting scene, and can
for certain cases generate a model of comparable quality
while lowering the number of initial images required by up
to three times.

1. Introduction
Gaussian Splatting (GS) is one of the most successful recent
developments in novel-view synthesis [3]. In it, images are
taken and the scene of the images is recreated using a point
cloud [1]. Since the publishing of this method in August
2023, many further developments and refinements of the
method have been developed and published [3].

Most available tools and hardware are designed and op-
timized for rendering and manipulation of polygon based
3D models, which makes it desirable to extract a traditional
mesh from the GS point cloud [2]. One of those recent de-
velopments is the introduction of SuGaR, by which a polyg-
onal 3D mesh can be extracted from a Gaussian scene [2].
This method, however, has the downside of not offering a
method to also extract the texture data from the point cloud,
only the mesh. In order to make use of the full set of avail-
able tools, both a mesh and texture data would be ideal.

One of the methods for constructing a 3D model of a
real world object is Photogrammetry (PG), in which several
photographs are taken of said object from different angles
and then applied to a program that produces a mesh and
textures [4]. The method, however, is limited by the degree
of overlap between images, necessitating a large number of
input images for best results [5].

The overall question of this research paper is: “Is PG
a viable method for extracting the polygonal 3D mesh and
texture from a GS scene?” This is done both to evaluate the
method as a way to extract a full 3D model from a Gaussian
scene, as well as whether the amount of photographs needed
for PG can be reduced via data augmentation with GS.

The research that will be conducted in this paper is done
with three sub-questions, used to evaluate and answer the
overall research question:
1. “Is there a significant difference in the quality measure-

ments for PG output, when using renders of a GS scene

for source images, in comparison to using photographs
of the original object?” [6][7]

2. “Is there a significant difference in the quality measure-
ments for PG output, when using renders from a GS
scene that was trained from less images than another
scene of the same object?”

3. “What visual artefacts form from the use of novel views
synthesized by GS as input images for PG, in compari-
son to using photographs of the original model?”
This paper begins with a background on GS and the

methods that have already been developed for model recon-
struction. It will also discuss PG and some of its limitations.
These questions were then answered via a controlled exper-
iment, with both a qualitative and a qualitative analysis of
the experiment’s results.

2. Background
This section discusses the outline of what GS is, what meth-
ods have been developed to extract a Mesh from it, as well
as PG and its limitations.

2.1. Gaussian Splatting

Gaussian Splatting is a recent successful development in
novel-view synthesis methods [1][3]. It involves the cre-
ation of a 3D representation of a scene from photographs by
creating a point cloud of 3D anisotropic (parameter chang-
ing based on viewing angle) Gaussians [1]. These Gaus-
sians are then trained using gradient descent, via rerender-
ing of the scene and comparison to the source images, to
manipulate their scales, orientation and spherical harmon-
ics used for colours, in order to accurately recreate the scene
[1].

This method was successful as it not only boosted the
training and rendering times, but it also produced compara-
ble (and at times higher) novel view synthesis quality as pre-
vious developments in the field, such as NeRF and Plenox-
els [1][8][9]. Most notable of these previous methods was
NeRF, as this was the previous state of the art in the field
which made use of a neural network for learning and recon-
struction of a scene [10][1][3][9][11].

2.2. Existing Mesh & Texture Reconstruction Meth-
ods

GS’s use of 3D Gaussians is what allows it to be ren-
dered and trained as quickly as it is, however it comes with
its limiations [1]. Most available hardware and tools for
working with 3D visualizations are designed and optimized
for working with 3D models built with polygons and tex-
tures, not Gaussians, incentivizing a method for transform-
ing the Gaussian representation into a traditional polygonal
3D model [2][3][12][13].

Among these developments, a major one that extracts a
mesh from a Gaussian scene is SuGaR, which applies a reg-
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ularization term to the learning in order to incentivize the
Gaussians to follow the surface of the object, and then ap-
plies Poisson reconstruction to extract the polygonal mesh
with the shape of the object[3][2]. Another recent devel-
opment is Texture-GS, which works to separate the texture
data from the Gaussians for easier manipulation, the first of
its kind to do so as far as the literature review for this pa-
per found [13][3]. There have also been works such as the
3D Gaussian Model, which aims to circumvent the issue
by proposing a rendering pipeline for Gaussians that make
them as easily malleable as traditional rendering methods
[12] [3].

Critically, however, there has been no published method
by which to extract both the mesh and texture data from a
Gaussian scene [3]. SuGaR only extracts a colorless mesh
which it textures by flattening the associated Gaussians over
it, and the texture data from Texture-GS is not generated in
a way that can be readily accurately mapped to a mesh gen-
erated by a method like SuGaR [2][13]. From my research,
a method for extracting a full model with mesh and tex-
ture data from Gaussian Splatting is not currently available
[3][13].

2.3. Photogrammetry

A widely used method for extraction of a mesh and texture
data from images is Photogrammetry (PG) [4]. The process
involves the capture of several images of an object from dif-
ferent angles in order to produce an accurate representation
of it in the form of a polygonal 3D model [4].

The mathematics and principles behind the method have
been around for over a hundred years, and it has been put
to use decades ago with the rise of computers to help create
mathematically accurate representations [4]. As such, there
are several mature software packages available that can be
used for PG, such as RealityCapture [14].

However, the method comes with several limitations,
namely that the generation of a high quality model requires
a high degree of overlap between input images, necessitat-
ing a very large number of photographs to be taken with
minimal differences [5]. In contrast, GS is able to generate
models from comparably low image counts, most notably
with the GaussianObject paper that managed to create vi-
able scenes from only 4 input images [15].

As GS is designed for the synthesis of accurate novel
views of an object, this begs the question of if these novel
views can be used in PG to generate a full 3D model, and
whether the minimal number of actual photographs of an
object can be lowered by use of GS.

3. Controlled Experiment
A controlled experiment was performed to answer the first
two research sub-questions. As both of the research ques-
tions cover a similar topic, that requires similar set up in or-

der to validate, they will both be explored within the same
experiment.

3.1. Hypotheses

The hypothesis that is associated with the first sub-question
is: ”The quality measures will be the same for models gen-
erated with PG using renders from GS and renders of the
original model.”

The hypothesis that is associated with the second sub-
question is: ”Using less source images for the training of a
GS scene will negatively affect the quality measurements of
its PG generated model.”

3.2. Independent Variables

Within this experiment there are a number of independent
variables, that are manipulated in order to measure the im-
pact on the dependent variables:
• The dataset and the models selected from that dataset for

use. A variety of models will be used to evaluate the effi-
cacy of the method for different subjects.

• Number of images taken for training a GS scene. This
will be varied to measure the impact of training image
counts on final model quality.

• The perspectives that training photographs are taken from
for each object [5]. Renders need to be taken that together
provide a full view of the model in order to make sure that
the model can be recreated fully and accurately.

• Number of images taken for use in PG. [5]. PG requires
a high degree of overlap between input images for best
results.

• The perspectives that renders are taken from for use in
PG [5]. The same applies as for GS, full visibility of the
model is needed for accurate recreation.

3.3. Confounding Variables

There are also a number of confounding variables that can-
not be directly manipulated, but that affect the dependent
variables, namely:
• Camera lens distortions, including lens quality, focal

length, image texture [5].
• Camera resolution [5].
• Blurred and distorted images.
• The lighting of the objects when taking training pho-

tographs.
All of these limitations are controlled for by use of ren-

ders of a 3D model in a dedicated rendering software, which
eliminates lens and camera distortions and other such de-
fects unless manually enabled.

3.4. Dependent Variables & Measures

The dependent variables that will be affected and measured
via changes to the independent variables are the 3D model
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generated via PG, and the quality of that 3D model. The
quality of the 3D models generated by PG will be measured
with 5 heuristics:
• Average Track Length (ATL), denoting on average how

many images a generated point appears in, which is used
for alignment of images [16].

• Median Reprojection Error in Pixels (MRE), is the me-
dian error by which points may be offset from one image
to the next [16].

• Percentage of Registered Cameras (%-RC), denoting the
percentage of the original number of input images that the
PG software actually used to generate a model [16].

• Peak Signal-to-Noise Ratio (PSNR) of renders of the fi-
nal generated model, used to measure the degree of noise
in an image compared to the original [7]. This is used for
renders of both a lit, textured version of the final mod-
els, as well as one that displays the surface normals of the
models, and compares them to such renders of the origi-
nal input model. This is used to quantize how accurately
the model visually captures the original. The lit renders
measure how accurate it is to the original model while tex-
tured. The face-normal renders measure how accurately
it recreates the geometry of the original model.

3.5. Procedure

The selected objects will be placed in a scene with a black
background. Lighting will be set parallel with the camera’s
point of view, to simulate a ring-light around the camera.
Each object will have 120 renders taken of it. These renders
are taken in a sphere around the object, each on 3 horizontal
layers on that sphere, 40 renders taken on each layer. The
exact spherical coordinates of these camera’s relative to an
object at origin are written in a table in appendix C.1.

For each object, the GS algorithm will be trained three
times: once with 120 renders, once with 60 renders, and
once with 30. The scenes trained from these renders will be
labelled 120-GS, 60-GS and 30-GS respectively.

From each GS scene, 182 renders will be taken, spheri-
cally as before, but in 4 layers of 45 images, and with two
renders vertically above and below the object. A table with
the spherical coordinates of these camera angles can be seen
in appendix C.2. Each object will also have its original
model rendered from these angles. These renders will be
used as input images for PG. Thus, each object will have 4
model categories generated from it, including from renders
of a gaussian scene trained with:
• 120 source renders: the ’120-GS’ model,
• 60 source renders: the ’60-GS’ model,
• 30 source renders: the ’30-GS’ model,
as well as from renders of the original object: the ’No-GS’
model. From these, the generated 3D models will have the
first 3 measures (ATL, MRE and %-RC) associated with it
shown from the software used to create it.

These generated models will then be placed back in the
original rendering scene, and renders will be taken from
those same 182 camera angles. Renders will be taken with
a lit version of the model, and a version that colorizes the
model’s polygon faces to display their surface normal di-
rection. These two versions will have their PSNR measures
evaluated separately. Each set of 182 PSNR results will be
aggregated into a single median value for analysis.

3.6. Analysis Plan

For the analysis of the results, a series of statistical tests will
be performed to verify any difference in the data. These will
be compared to the null-hypotheses that relate to the two hy-
potheses. These are tested across all quality measures, and a
significant difference in one denotes a significant difference
in the overall category.

The null-hypothesis associated with the first hypothesis
is: ”There is no significant difference between the quality
measurements resulting from the PG model generated from
GS renders from 120 training images, compared to from
renders of the original model.” This also has two other null-
hypotheses that are otherwise the same, but for Gaussian
splatting scenes from 60 and 30 training images.

The null-hypothesis associated with the second hypothe-
sis is: ”There is no significant difference between the qual-
ity measurements resulting from the PG model generated
from GS renders trained from 120 and 60 images.” The null
hypothesis is also repeated for comparison between 120 and
30 training images, and between 60 and 30 training images.

First, all of the values from the different objects will be
pooled together per category and per measure. Meaning
f.e. 120-GS/MRE will have 30 results containing the MRE
of the models based on renders of GS with 120 training im-
ages. These 30 results are taken from each of the 30 original
input models used in this experiment.

For each measure, pairs of model categories will be com-
pared with a significant difference test. For each of these
measures, a Shapiro-Wilk Test will be applied as a means to
test whether the values in the pool are normally distributed
[17][18]. If both pools are normally distributed according
to the Shapiro-Wilk Test, then a T-Test will be used to eval-
uate a difference [19]. If one or both of the pools are non-
parametric, then a Mann-Whitney U-Test will be performed
instead, [20].

If a difference is found between two measures, then the
means of the numbers will be compared to determine the
superior model. For most measures, the higher mean will
be chosen as superior, except for MRE, where a lower mean
is better.

3.7. Qualitative Analysis

In order to answer the third research question, a qualitative
analysis will also be performed on the resulting models gen-
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erated by PG.
As finding a good set of quantitative quality measure-

ments for PG is still an active field of research, the mea-
surements listed before are not fully indicative of the qual-
ity of the model [6]. A qualitative analysis will be used to
point out any visual artefacts, errors and abnormalities that
the quantitative results can not show.

The qualitative analysis will be performed via visual in-
spection of each of the generated 3D models, both lit and
textured, and unlit and colorized to show the normal direc-
tion of the faces. This way both the general look of the
model, as well as its geometry can be easily inspected.

4. Experimental Setup
During the experiment described in the methodology, spe-
cific tools and set ups were used to perform data generation
and analysis. These will be discussed in this section.

4.1. OmniObject3D Dataset

The dataset that was used for the controlled experiment was
the OmniObject3D dataset [21]. This is a dataset consisting
of several photographic scans of real life objects. It con-
sists of both photographs and photogrammetrized 3D mod-
els generated from the photographs. The models used were
found under the ’raw-scans’ folder.

For this research, the first three 3D models from each
category of item was used. For example: from anise.tar.gz,
the first three folders, anise-001, anise-002, and anise-003,
were taken. In the case that the categories didn’t start with
the numbers 1 through 3, the numerically sorted first three
folders were taken.

The number of models from each category was limited
to 3 due to time concerns with qualitatively analyzing each
model’s PG scan output.

4.2. Blender

Blender was used for the purposes of camera placement and
rendering of the 3D objects taken from OmniObject3D’s
dataset [21] [22]. Within Blender, a script was prepared to
take renders of each object from the dataset. This script was
created largely from the blender rendering script in the NerF
research paper repository [11]. Cameras are located on a
1 meter radius sphere centered on the origin. All of these
cameras are pointed towards the origin of the scene. At
each of these camera positions, a sunlight would also have
its direction changed to be parallel to the camera’s viewing
angle. The exact script for rendering can be found under
appendix D.

In order to make sure the different camera positions
could properly view the objects, each model from the
dataset was manually rescaled to fit within the viewing
range of the cameras. The materials were also edited so that

all objects have a roughness value of 1, in order to avoid
artefacts and Gaussian floaters caused by light reflections.

4.3. Gaussian Splatting

For the generation of GS scenes, the original GS repository
was used [23]. These scenes were trained on a Laptop RTX
4080 GPU. The resolution of the images used for training
was 1920 by 1080 pixels.

For the generation of input images for PG, the SIBR-
based renderer provided by the repository was used. The
images were rendered by loading a pregenerated path and
saving the images via the ‘Play (No Interp)’ button. This
path is available under appendix D.

4.4. Photogrammetry

For the generation of 3D models from images, the Reality-
Capture program was used [14]. All of the default settings
were unchanged during the experiment.

The resolution of all of the input images, from both
Gaussian Splatting renders and images of the original
model, was 2000 by 2000 pixels. For alignment of the
scenes, the very first model, anise-1, was used. Control
points were placed on renders of that model until the num-
ber of components was reduced to 1, at which point the
metadata of the camera positions was exported and reused
for all other objects. This process used 5 control points,
which created camera alignment metadata for 180 of 182
input images. The two input images that were not able to
have metadata generated for them, were the top and bottom
views of the model.

During the generation of the models, after loading the
images, the ‘Align’, ‘Calculate Model (Normal Quality)’
and ‘Texture’ steps of the process were used. The ‘Sim-
plify’ step was skipped for the sake of geometry analysis, as
it allows to see what the geometry of the model was before
the program began to cull vertices. The ‘Colorize’ step was
skipped, as the purpose of this research is to extract texture
data, while colorizing only applies color data to vertices.

5. Results
In this section, the results of the experiment are handled.
Do note, that out of the 30 models that were taken from the
dataset for use in the experiment, asparagus-1, asparagus-
2 and asparagus-3 were not recorded in the results. The
asparagus models were not included, because, except for
asparagus-3/120-GS, Gaussian splatting failed to create a
representation of any of the models and instead produced
blank scenes for each of them for all numbers of training
images. A possible reason for the failure, was that the orig-
inal input model is too thin, and there was insufficient over-
lapping area on the model between images.

In order to avoid biases caused by differing numbers of
input values per category, models where at least one of the

4



Measure No-GS 120-GS 60-GS 30-GS
ATL 3.766 3.630 3.538 3.102
MRE 0.319 0.366 0.386 0.411
%-RC 0.991 0.990 0.989 0.989

PSNR-Lit 40.136 39.841 39.747 39.452
PSNR-Normal 41.191 40.352 40.126 39.418

Table 1. The mean of each measure of each category across the 27
models included in the final results. Generally, the results worsen
across all measures when comparing from No-GS, to 30-GS, to
60-GS, to 120-GS.

categories failed to generate a 3D model were excluded
from the overall results. The results for the models that
were able to be generated are recorded under appendix A.1.
The results that were excluded from the analysis were also
recorded under appendix A.2.

The aggregated means of the quantitative results can be
found in table 1. The %-RC does not appear to change much
between categories. From 120-GS to 60-GS there’s only a
0.021% difference, between 60-GS and 30-GS there’s only
a 0.041% difference. No-GS boasts a slightly larger im-
provement of 1.64% over 120-GS.

From a viewing of the results, a trend can be seen where
the results become worse from 120-GS to 60-GS to 30-
GS. The difference between 120-GS and 60-GS is generally
slight, on average an absolute difference of 2.2%, excluding
%-RC. The difference between 60-GS and 30-GS is gener-
ally stronger, on average an absolute difference of 5.3%,
excluding %-RC.

The scores when comparing 120-GS to No-GS appear to
show an improvement with No-GS over 120-GS in all cat-
egories, with No-GS having an average absolute difference
of 4.9%, excluding %-RC.

6. Responsible Research
As this research paper involves an experimental verification
of a method, a number of risks are involved that need mit-
igation. The topics covered in this section are related to
possible moral, reproducibility, data transparency & avail-
ability, as well as ecological concerns.

6.1. Moral

As this research paper involves the evaluation of a 3D model
generation method, it does not handle any subjects or per-
form any experiments that could pose potential risks to in-
dividuals. The models used in the experiment were sourced
from an open access dataset, mitigating any risks posed by
potential breaches of privacy or consent when using real life
objects. Blender and the SIBR renderer were accessed as
open source renderers for 3D models and Gaussian Splats
respectively [22][23]. RealityCapture was used as PG soft-

ware made freely available for students [14].

6.2. Reproducibility

In order to make sure the experiment is as reproducible as
possible, the methodology was described in as much de-
tail as possible. These descriptions also include any errors
technically issues or human errors that were made during
the procedure of the experiment.

Further references to the appendix were also added for
additional information on reproducing the experiment. Ap-
pendix C includes the full list of spherical coordinates de-
noting the camera positions used for gathering renders of
models. Appendix D includes a link to a database contain-
ing the python scripts used to render the models in blender
and perform the quantitative analysis. That document also
includes the recorded camera positions used in the SIBR
renderer for gathering images for use in PG, as well as Re-
alityCapture camera alignment metadata files.

One aspect of the methodology that was not able to be
fully detailed was the description of the qualitative analy-
sis. As that form of analysis used visual inspection of the
models as its basis, it is not possible to fully describe the
method by which noteworthy elements of models are found
and noted. The method suffers from the inherent bias of
what aspects of a model does the viewer find noteworthy.
This problem in itself cannot be mitigated, but the harmful
effects of it were mitigated by making the models used dur-
ing visual inspection available publicly in the database ref-
erenced in Appendix D. This way, each person that views
this paper is free to take the models and inspect them for
themselves.

6.3. Data Transparency & Availability

One risk is the potential misanalysis of results due to omis-
sion of other results that could conflict with the conclusions
drawn. This was mitigated by including the full quantitative
results in appendix A, with both the used and unused results
recorded per input model.

In order to ensure the ability to contest the findings of
the qualitative analysis, the final models produced by PG
were made available as part of the database in Appendix D.
These models are free to be used and placed into rendering
software, such that each person reading this paper has the
ability to visually inspect the final models for themselves.

6.4. Ecological

The final risk factor, is the eco-friendliness of a method
such as the one presented here, in the case that it were to
be widely adopted. The process of first performing GS, and
then using those renders in PG, reduces the number of initial
images required, but does so at a cost of computing power
and electricity. This cost is especially present in scenarios
where GS training can last upwards of half an hour to an
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Measure 120-GS 60-GS 30-GS
ATL 0.333 0.105 2.351e− 6
MRE 0.015 4.194e− 3 3.831e− 5
%-RC 0.077 0.032 2.588e− 3

PSNR-Lit 0.522 0.406 0.161
PSNR-Normal 0.185 0.048 4.551e− 3

Table 2. For each category, for each measure, p-value for differ-
ence to ’No-GS’ model measures. Significant differences (p <
0.05) are marked with bold.

hour, and where PG can potentially take long as well. It is
generally less environmentally taxing for more initial pho-
tographs to be taken, rather than to generate them, given
that the process of image gathering is done by a person. In
the future, this issue can hopefully be lessened by future
developments in GS leading to further reductions in train-
ing time, or developments in hardware required to perform
these tasks.

7. Discussion
7.1. Quantitative Analysis

The results of the difference test analyses comparing to No-
GS can be found in table 2. Significant differences (p <
0.05) are marked with bold.

From the results, it appears that all GS based models sig-
nificantly differ from No-GS in at least one measure. The
MRE measures of all categories is significantly different
from No-GS, with 120-GS having that as its only significant
difference. The only measure that does not have any signif-
icant differences for any category is the Lit scene PSNR
score.

In 60-GS, the %-RC and Face-normal rendered PSNR
scores significantly differ from No-GS, with the MRE dif-
ference being very significant (p < 0.01). With 30-GS, ev-
ery value except PSNR-Lit differs very significantly from
No-GS. This rejects the null-hypothesis that there is no
quantitative difference between the No-GS and GS based
models, even with 120-GS.

In the comparisons between the different levels of Gaus-
sian training, there appears to be no significant difference
in quality between 120-GS and 60-GS. Comparing 60-GS
to 30-GS a very significant difference appears for the ATL.
Comparing 120-GS and 30-GS, very significant differences
appear for the ATL and MRE scores. The %-RC and PSNR
scores do not significantly differ between any of the GS
based models.

This disproves the null-hypotheses, that there is no sig-
nificant difference between 30-GS and higher training im-
age counts. This indicates that the second hypothesis is cor-
rect. Reducing the number of training images down to 30
significantly deteriorates the quality measures of the gen-

Measure 120 vs. 60 120 vs. 30 60 vs. 30
ATL 0.491 4.965e− 5 5.710e− 4
MRE 0.228 8.993e− 3 0.096
%-RC 0.654 0.081 0.161

PSNR-Lit 0.775 0.324 0.467
PSNR-Normal 0.494 0.069 0.172

Table 3. P-values for difference tests between Gaussian Splatting
based models. Significant differences (p < 0.05) are marked with
bold.

No-GS 120-GS 60-GS 30-GS

Figure 1. Visual comparison of textured model of ’120-GS’, ’60-
GS’, ’30-GS’, and ’No-GS’ models respectively for the apple-1
input model.

erated 3D models. However, reducing the training image
counts from 120 to 60 does not.

When going from PG with renders of the original model,
to renders of a GS based representation of that model, there
appears to be a sudden drop in quality in at least one as-
pect. However, when reducing the number of initial images
down from 120 to 60, the quality of the model does not
appear to significantly worsen any further. This would in-
dicate that the method presented in this paper comes with a
loss in quality, but that to a minimum of 60 initial images,
that loss in quality does not significantly worsen when re-
ducing images.

7.2. Qualitative Analysis

On visual inspection of the models, most appear to fairly ac-
curately recreate the original models they were referenced
from, although there are some exceptions. In most cases,
the difference between 120-GS models and No-GS is visu-
ally negligible if not at times non-existent. In most of the
models, the same also applies for the 60-GS models. With
30-GS is where visual decay begins to emerge, with a more
noticeable loss in geometric detail, and the growing number
and size of holes in the model’s surface. The textures them-
selves of the models do not appear to have any artefacts in
lit scenes, most of the visual decay is caused by the noisi-
ness of the geometry. An example of this is in figure 1 and
2.

One feature where this is most noticeable is the rough-
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No-GS 120-GS 60-GS 30-GS

Figure 2. Visual comparison of geometry of ’120-GS’, ’60-GS’,
’30-GS’, and ’No-GS’ models respectively for the apple-1 input
model.

No-GS 120-GS 60-GS 30-GS

Figure 3. Visual comparison of geometry of ’No-GS’, ’120-GS’,
’60-GS’ and ’30-GS’ models respectively for the beauty-blender-1
input model.

ness of smooth featureless surfaces when reducing the num-
ber of training images in GS. It is most easily demonstrated
in figure 3. In this case, the roughness becomes so pro-
nounced that it begins to affect the outline of the model’s
otherwise smooth curved silhouette. It is also a case where
a small difference is present between the No-GS and 120-
GS models. It does not appear to be caused by a lack of
lighting information, as the spherical harmonics of Gaus-
sian Splatting are able to successfully recreate the termina-
tor gradient around the object’s curved surface leading into
shadow. This can be seen in figure 4.

A possible cause is the presence of floaters in the GS
scene in angles where the training images were not able to
have a clear view. Along with that, in the case of 30-GS
models, the input images used for PG also showed parts of
the scene object that appeared transparent and where the
inner Gaussians were visible. These two problems being
more prominent in lower training image counts in GS would
explain why the difference in quality between 60-GS and
30-GS is so drastic. The floaters can be removed by re-
ducing the GS scene rendering frame down to only the ob-
ject. However, the presence of gaps in the object’s Gaus-
sian representation would need changes to how Gaussians
are trained in order to fix, if possible.

Generally, featureless surfaces were struggled to be
recreated across all the categories of models, an example
of which being in figure 5, where many of the details of the

30-GS Original

Figure 4. Comparison of gaussian splatting input image (left) to
original 3D model render (right) used for generating the 30-GS
and No-GS category models for beauty-blender-1 respectively.

120-GS No-GS Orig. Orig. Lit

Figure 5. For backpack-1, renders of the geometry of the 120-GS,
No-GS, and original model, as well as a lit render of the original
model.

120-GS 60-GS 30-GS No-GS Orig.

Figure 6. Visual comparison of geometry of ’120-GS’, ’60-GS’,
’30-GS’, ’No-GS’, and original input models for antique-2.

backpack are lost in the noisy geometry. However, these
effects were generally much more drastic in the Gaussian
Splatting based models, as opposed to No-GS. In cases such
as figure 6, all GS based models failed to accurately recreate
the basic shape of the input model, with the effects worsen-
ing when reducing training image count.

However, a number of models have also shown that the
there is little negligible difference between 120-GS, 60-GS
and No-GS, such as in figure 7. For this model, very few ap-
parent visual differences exist between the No-GS and 120-
GS model. Even with the reduction to 60-GS, the model
is still mostly identical to No-GS, with some noise in the
crevices.
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No-GS 120-GS

60-GS 30-GS

Figure 7. Visual comparison of geometry of ’No-GS’, ’120-GS’,
’60-GS’, ’30-GS’, and models respectively for the anise-2 input
model.

8. Conclusions
Through the experiment, it has been shown that it is possible
to generate 3D models from a GS scene by using PG. It also
shows that it is possible to augment the number of images
used in PG by using them in GS first to train a scene and
take more images from.

In the comparison of the quality measures for GS based
models with No-GS based models, significant differences
occurred for all levels of GS training, with more differences
arising as the number of training images decreased. When
comparing GS based models with each other, no signifi-
cant differences occurred when reducing the training image
count from 120 to 60. However, reducing the number of
training images to 30 showed significant drops in quality
compared to 60 and 120 images.

This method does come with some visual errors, namely
that the geometry of a model becomes less detailed the less
original images are used to train the GS model. Reducing
the number of training images to 30 causes holes to appear
in the models surface. The visual errors are also much more
pronounced on models that consist of mostly smooth sur-
faces, and especially with featureless surfaces.

Despite these errors, the method is able to successfully
generate a viable 3D model from Gaussian Splatting that is
sometimes on par with only using original images, while
reducing the amount of images required from the original

object by up to 3 times.

9. Future Improvements
There are aspects of this research that could be improved
or built upon in future papers. Something worth evaluating
is if there is a tangible difference in the quality of models
that are, for example, made with hundreds of renders taken
of a Gaussian Splatting scene trained with only a few pho-
tographs, versus only using those few photographs as inputs
for Photogrammetry.

A future paper could also use better, more finely tuned
quality measures or more input models for a more robust
basis for its conclusions. The practicality of this method
can also be tested by making use of real photographs and
scenes as sources of images for the experiment. This way
its applicability for real life scenarios is evaluated.

It is also worth to instead explore a possible combina-
tion of works such as Texture-GS and SuGaR for full tex-
tured model extraction directly from a GS scene’s Gaus-
sians, versus using renders as inputs in already existing
methods [2][13]. If such a line of research would also at
some point include techniques from GaussianObject to fur-
ther reduce the number of input photographs needed, then it
could potentially introduce a novel method for PG to gener-
ate accurate 3D models while using far fewer images than is
needed with current techniques [15]. In the future, a method
such as that could be much more practical than by continu-
ing to use PG for model extraction from GS.
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A. Full Results
A.1. Used Results

Name ATL MRE RC PSNR-L PSNR-N
anise-1
120-GS 3.548 0.41 0.989 39.796 38.504
60-GS 3.414 0.409 0.989 39.821 38.5
30-GS 3.135 0.431 0.989 39.719 38.358
No-GS 3.506 0.332 0.989 39.884 38.638
anise-2
120-GS 3.228 0.414 0.989 38.873 37.446
60-GS 3.241 0.413 0.989 38.893 37.428
30-GS 2.985 0.456 0.989 38.76 37.174
No-GS 3.358 0.351 0.989 38.923 37.663
anise-3
120-GS 3.083 0.379 0.989 41.192 39.913
60-GS 3.066 0.383 0.989 41.184 39.886
30-GS 2.874 0.415 0.989 41.105 39.738
No-GS 3.227 0.32 0.989 41.241 40.038

antique-1
120-GS 3.493 0.501 0.989 37.401 36.622
60-GS 3.351 0.496 0.989 37.395 36.593
30-GS 2.829 0.568 0.989 36.786 35.832
No-GS 3.885 0.46 0.989 37.314 37.443

antique-2
120-GS 3.053 0.45 0.989 39.648 39.399
60-GS 2.857 0.466 0.989 40.037 39.39
30-GS 2.788 0.537 0.989 36.47 36.424
No-GS 3.123 0.45 0.989 41.897 41.707

antique-3
120-GS 4.134 0.372 0.995 39.6 39.882
60-GS 4.092 0.374 0.995 39.583 39.697
30-GS 3.621 0.413 0.989 39.225 38.682
No-GS 4.47 0.284 1.0 39.581 40.924
apple-1
120-GS 4.166 0.392 0.989 39.812 41.165
60-GS 3.935 0.415 0.989 39.767 40.854
30-GS 2.985 0.454 0.989 38.988 39.151
No-GS 4.378 0.269 0.989 39.917 42.238
apple-2
120-GS 4.368 0.389 0.989 39.174 41.342
60-GS 4.122 0.42 0.989 39.157 41.131
30-GS 3.271 0.457 0.989 38.632 39.637
No-GS 4.504 0.29 0.995 39.242 42.039
apple-3
120-GS 4.357 0.219 0.995 39.226 42.203
60-GS 4.164 0.388 0.989 39.929 42.177
30-GS 3.335 0.428 0.989 39.501 40.638
No-GS 4.541 0.282 0.995 39.959 42.936

backpack-1
120-GS 3.147 0.461 0.989 39.495 38.547
60-GS 3.123 0.474 0.989 39.47 38.477
30-GS 2.939 0.448 0.989 39.489 38.317
No-GS 3.14 0.432 0.989 39.416 39.111

backpack-2
120-GS 2.787 0.464 0.989 38.876 37.677
60-GS 2.767 0.48 0.989 38.836 37.651
30-GS 2.645 0.468 0.989 38.815 37.549
No-GS 2.736 0.448 0.989 38.834 38.156
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backpack-3
120-GS 3.09 0.328 0.989 38.016 38.479
60-GS 3.03 0.329 0.989 38.002 38.421
30-GS 2.819 0.355 0.989 37.808 38.086
No-GS 3.2 0.288 0.989 38.146 38.67
ball-1

120-GS 3.927 0.309 0.995 38.649 39.423
60-GS 3.844 0.319 0.995 38.596 39.225
30-GS 3.363 0.337 0.989 38.299 38.487
No-GS 3.813 0.266 0.995 38.866 40.342
ball-2

120-GS 3.912 0.345 0.989 37.658 39.639
60-GS 3.845 0.363 0.989 37.62 39.472
30-GS 3.178 0.381 0.989 37.117 37.844
No-GS 3.98 0.304 1.0 37.736 40.017
ball-3

120-GS 3.502 0.376 0.989 36.454 37.667
60-GS 3.345 0.412 0.989 36.336 37.212
30-GS 2.769 0.445 0.989 35.874 36.137
No-GS 3.509 0.255 0.989 36.538 39.11

bamboo-1
120-GS 3.95 0.328 0.989 44.966 45.651
60-GS 3.841 0.346 0.989 44.966 45.655
30-GS 3.107 0.352 0.989 44.823 45.183
No-GS 4.234 0.361 0.989 44.977 45.833

bamboo-2
120-GS 3.542 0.32 0.989 43.972 44.821
60-GS 3.409 0.329 0.989 43.982 44.761
30-GS 2.86 0.35 0.989 43.924 44.331
No-GS 3.695 0.323 0.989 44.006 44.943

bamboo-3
120-GS 3.984 0.309 0.989 44.473 45.301
60-GS 3.844 0.319 0.989 44.477 45.279
30-GS 3.298 0.346 0.989 44.28 44.632
No-GS 3.965 0.296 0.989 44.534 45.442

banana-1
120-GS 4.179 0.332 0.989 40.517 41.687
60-GS 4.173 0.341 0.989 40.488 41.586
30-GS 3.768 0.366 0.989 40.372 41.074
No-GS 4.268 0.28 0.995 40.586 42.173

banana-2
120-GS 4.4 0.343 0.989 40.788 41.573
60-GS 4.436 0.35 0.989 40.788 41.573
30-GS 3.999 0.36 0.989 40.559 40.89
No-GS 4.409 0.264 0.995 40.974 42.436

banana-3
120-GS 4.163 0.356 0.989 40.592 41.284
60-GS 4.14 0.361 0.989 40.547 41.115
30-GS 3.721 0.374 0.989 40.297 40.523
No-GS 4.535 0.309 1.0 40.744 42.139

battery-1
120-GS 3.73 0.321 0.989 40.554 41.445
60-GS 3.674 0.335 0.989 40.5 41.286
30-GS 3.351 0.357 0.989 40.24 40.775
No-GS 3.692 0.294 0.989 40.619 41.656

battery-2
120-GS 3.395 0.399 0.989 39.117 39.81
60-GS 3.428 0.419 0.989 39.128 39.789
30-GS 3.164 0.428 0.989 39.117 39.436
No-GS 3.462 0.392 0.989 39.132 39.885

battery-3
120-GS 3.55 0.444 0.989 38.795 39.315
60-GS 3.542 0.434 0.989 38.768 39.249
30-GS 3.195 0.445 0.989 38.693 38.596
No-GS 3.665 0.434 0.989 38.794 39.908

beauty-blender-1
120-GS 3.103 0.326 0.989 39.909 41.598
60-GS 2.865 0.396 0.989 39.602 40.508
30-GS 2.476 0.411 0.989 39.153 39.517
No-GS 3.402 0.211 0.989 40.174 43.531

beauty-blender-2
120-GS 2.89 0.279 0.989 40.438 40.085
60-GS 2.858 0.325 0.989 37.617 37.739
30-GS 2.5 0.385 0.989 39.851 39.426
No-GS 3.015 0.171 0.989 42.973 43.363

beauty-blender-3
120-GS 3.344 0.325 0.989 37.728 39.036
60-GS 3.133 0.323 0.989 37.681 38.753
30-GS 2.778 0.336 0.989 37.321 37.859
No-GS 3.961 0.24 0.989 38.679 41.831

Table 4. Full Quantitative Results Per Category Per Measure Per
Model

A.2. Unused Results

Name ATL MRE RC PSNR-L PSNR-N
asparagus-1

No-GS 3.330 0.386 180 47.577 46.950
asparagus-2

No-GS 3.285 0.364 180 46.351 46.319
asparagus-3

120-GS 3.527 0.384 180 45.950 45.621
No-GS 3.647 0.371 180 45.932 45.620

Table 5. Quantitative results from unused input models.

B. Model Names in OmniObject Dataset

OmniObject3D Dataset as it was accessed on 11-06-2024
[21].
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Model Name in Paper Model Name in Dataset
anise-1 anise 001
anise-2 anise 002
anise-3 anise 003

antique-1 antique 004
antique-2 antique 005
antique-3 antique 014
apple-1 apple 001
apple-2 apple 002
apple-3 apple 003

asparagus-1 asparagus 001
asparagus-2 asparagus 002
asparagus-3 asparagus 003
backpack-1 backpack 001
backpack-2 backpack 002
backpack-3 backpack 003

ball-1 ball 001
ball-2 ball 001
ball-3 ball 001

bamboo-1 bamboo shoots 001
bamboo-2 bamboo shoots 002
bamboo-3 bamboo shoots 003
banana-1 banana 001
banana-2 banana 002
banana-3 banana 003
battery-1 battery 001
battery-2 battery 002
battery-3 battery 003

beauty-blender-1 beauty blender 001
beauty-blender-2 beauty blender 002
beauty-blender-3 beauty blender 003

Table 6. Full list of names of models used from OmniObject3D,
with their names as used in the paper and as listed in the dataset.

C. Polar Coordinates of Camera Positions

C.1. Gaussian Splatting Training Image Camera
Coordinates

Camera Nr. θ φ
0 0.25pi 0.0pi
1 0.25pi 0.05pi
2 0.25pi 0.1pi
3 0.25pi 0.15pi
4 0.25pi 0.2pi
5 0.25pi 0.25pi
6 0.25pi 0.3pi
7 0.25pi 0.35pi
8 0.25pi 0.4pi
9 0.25pi 0.45pi

10 0.25pi 0.5pi
11 0.25pi 0.55pi
12 0.25pi 0.6pi
13 0.25pi 0.65pi
14 0.25pi 0.7pi
15 0.25pi 0.75pi
16 0.25pi 0.8pi
17 0.25pi 0.85pi
18 0.25pi 0.9pi
19 0.25pi 0.95pi
20 0.25pi 1.0pi
21 0.25pi 1.05pi
22 0.25pi 1.1pi
23 0.25pi 1.15pi
24 0.25pi 1.2pi
25 0.25pi 1.25pi
26 0.25pi 1.3pi
27 0.25pi 1.35pi
28 0.25pi 1.4pi
29 0.25pi 1.45pi
30 0.25pi 1.5pi
31 0.25pi 1.55pi
32 0.25pi 1.6pi
33 0.25pi 1.65pi
34 0.25pi 1.7pi
35 0.25pi 1.75pi
36 0.25pi 1.8pi
37 0.25pi 1.85pi
38 0.25pi 1.9pi
39 0.25pi 1.95pi
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40 0.5pi 0.0pi
41 0.5pi 0.05pi
42 0.5pi 0.1pi
43 0.5pi 0.15pi
44 0.5pi 0.2pi
45 0.5pi 0.25pi
46 0.5pi 0.3pi
47 0.5pi 0.35pi
48 0.5pi 0.4pi
49 0.5pi 0.45pi
50 0.5pi 0.5pi
51 0.5pi 0.55pi
52 0.5pi 0.6pi
53 0.5pi 0.65pi
54 0.5pi 0.7pi
55 0.5pi 0.75pi
56 0.5pi 0.8pi
57 0.5pi 0.85pi
58 0.5pi 0.9pi
59 0.5pi 0.95pi
60 0.5pi 1.0pi
61 0.5pi 1.05pi
62 0.5pi 1.1pi
63 0.5pi 1.15pi
64 0.5pi 1.2pi
65 0.5pi 1.25pi
66 0.5pi 1.3pi
67 0.5pi 1.35pi
68 0.5pi 1.4pi
69 0.5pi 1.45pi
70 0.5pi 1.5pi
71 0.5pi 1.55pi
72 0.5pi 1.6pi
73 0.5pi 1.65pi
74 0.5pi 1.7pi
75 0.5pi 1.75pi
76 0.5pi 1.8pi
77 0.5pi 1.85pi
78 0.5pi 1.9pi
79 0.5pi 1.95pi

80 0.75pi 0.0pi
81 0.75pi 0.05pi
82 0.75pi 0.1pi
83 0.75pi 0.15pi
84 0.75pi 0.2pi
85 0.75pi 0.25pi
86 0.75pi 0.3pi
87 0.75pi 0.35pi
88 0.75pi 0.4pi
89 0.75pi 0.45pi
90 0.75pi 0.5pi
91 0.75pi 0.55pi
92 0.75pi 0.6pi
93 0.75pi 0.65pi
94 0.75pi 0.7pi
95 0.75pi 0.75pi
96 0.75pi 0.8pi
97 0.75pi 0.85pi
98 0.75pi 0.9pi
99 0.75pi 0.95pi

100 0.75pi 1.0pi
101 0.75pi 1.05pi
102 0.75pi 1.1pi
103 0.75pi 1.15pi
104 0.75pi 1.2pi
105 0.75pi 1.25pi
106 0.75pi 1.3pi
107 0.75pi 1.35pi
108 0.75pi 1.4pi
109 0.75pi 1.45pi
110 0.75pi 1.5pi
111 0.75pi 1.55pi
112 0.75pi 1.6pi
113 0.75pi 1.65pi
114 0.75pi 1.7pi
115 0.75pi 1.75pi
116 0.75pi 1.8pi
117 0.75pi 1.85pi
118 0.75pi 1.9pi
119 0.75pi 1.95pi

Table 7. θ and φ coordinate values for camera positions used to
train GS scenes. r is always equal to 1.
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C.2. Photogrammetry Input Image Camera Coor-
dinates

Camera Nr. θ φ
0 0.2pi 0.0pi
1 0.2pi 0.044pi
2 0.2pi 0.089pi
3 0.2pi 0.133pi
4 0.2pi 0.178pi
5 0.2pi 0.222pi
6 0.2pi 0.267pi
7 0.2pi 0.311pi
8 0.2pi 0.356pi
9 0.2pi 0.4pi

10 0.2pi 0.444pi
11 0.2pi 0.489pi
12 0.2pi 0.533pi
13 0.2pi 0.578pi
14 0.2pi 0.622pi
15 0.2pi 0.667pi
16 0.2pi 0.711pi
17 0.2pi 0.756pi
18 0.2pi 0.8pi
19 0.2pi 0.844pi
20 0.2pi 0.889pi
21 0.2pi 0.933pi
22 0.2pi 0.978pi
23 0.2pi 1.022pi
24 0.2pi 1.067pi
25 0.2pi 1.111pi
26 0.2pi 1.156pi
27 0.2pi 1.2pi
28 0.2pi 1.244pi
29 0.2pi 1.289pi
30 0.2pi 1.333pi
31 0.2pi 1.378pi
32 0.2pi 1.422pi
33 0.2pi 1.467pi
34 0.2pi 1.511pi
35 0.2pi 1.556pi
36 0.2pi 1.6pi
37 0.2pi 1.644pi
38 0.2pi 1.689pi
39 0.2pi 1.733pi
40 0.2pi 1.778pi
41 0.2pi 1.822pi
42 0.2pi 1.867pi
43 0.2pi 1.911pi
44 0.2pi 1.956pi

45 0.4pi 0.0pi
46 0.4pi 0.044pi
47 0.4pi 0.089pi
48 0.4pi 0.133pi
49 0.4pi 0.178pi
50 0.4pi 0.222pi
51 0.4pi 0.267pi
52 0.4pi 0.311pi
53 0.4pi 0.356pi
54 0.4pi 0.4pi
55 0.4pi 0.444pi
56 0.4pi 0.489pi
57 0.4pi 0.533pi
58 0.4pi 0.578pi
59 0.4pi 0.622pi
60 0.4pi 0.667pi
61 0.4pi 0.711pi
62 0.4pi 0.756pi
63 0.4pi 0.8pi
64 0.4pi 0.844pi
65 0.4pi 0.889pi
66 0.4pi 0.933pi
67 0.4pi 0.978pi
68 0.4pi 1.022pi
69 0.4pi 1.067pi
70 0.4pi 1.111pi
71 0.4pi 1.156pi
72 0.4pi 1.2pi
73 0.4pi 1.244pi
74 0.4pi 1.289pi
75 0.4pi 1.333pi
76 0.4pi 1.378pi
77 0.4pi 1.422pi
78 0.4pi 1.467pi
79 0.4pi 1.511pi
80 0.4pi 1.556pi
81 0.4pi 1.6pi
82 0.4pi 1.644pi
83 0.4pi 1.689pi
84 0.4pi 1.733pi
85 0.4pi 1.778pi
86 0.4pi 1.822pi
87 0.4pi 1.867pi
88 0.4pi 1.911pi
89 0.4pi 1.956pi

14



90 0.6pi 0.0pi
91 0.6pi 0.044pi
92 0.6pi 0.089pi
93 0.6pi 0.133pi
94 0.6pi 0.178pi
95 0.6pi 0.222pi
96 0.6pi 0.267pi
97 0.6pi 0.311pi
98 0.6pi 0.356pi
99 0.6pi 0.4pi

100 0.6pi 0.444pi
101 0.6pi 0.489pi
102 0.6pi 0.533pi
103 0.6pi 0.578pi
104 0.6pi 0.622pi
105 0.6pi 0.667pi
106 0.6pi 0.711pi
107 0.6pi 0.756pi
108 0.6pi 0.8pi
109 0.6pi 0.844pi
110 0.6pi 0.889pi
111 0.6pi 0.933pi
112 0.6pi 0.978pi
113 0.6pi 1.022pi
114 0.6pi 1.067pi
115 0.6pi 1.111pi
116 0.6pi 1.156pi
117 0.6pi 1.2pi
118 0.6pi 1.244pi
119 0.6pi 1.289pi
120 0.6pi 1.333pi
121 0.6pi 1.378pi
122 0.6pi 1.422pi
123 0.6pi 1.467pi
124 0.6pi 1.511pi
125 0.6pi 1.556pi
126 0.6pi 1.6pi
127 0.6pi 1.644pi
128 0.6pi 1.689pi
129 0.6pi 1.733pi
130 0.6pi 1.778pi
131 0.6pi 1.822pi
132 0.6pi 1.867pi
133 0.6pi 1.911pi
134 0.6pi 1.956pi

135 0.8pi 0.0pi
136 0.8pi 0.044pi
137 0.8pi 0.089pi
138 0.8pi 0.133pi
139 0.8pi 0.178pi
140 0.8pi 0.222pi
141 0.8pi 0.267pi
142 0.8pi 0.311pi
143 0.8pi 0.356pi
144 0.8pi 0.4pi
145 0.8pi 0.444pi
146 0.8pi 0.489pi
147 0.8pi 0.533pi
148 0.8pi 0.578pi
149 0.8pi 0.622pi
150 0.8pi 0.667pi
151 0.8pi 0.711pi
152 0.8pi 0.756pi
153 0.8pi 0.8pi
154 0.8pi 0.844pi
155 0.8pi 0.889pi
156 0.8pi 0.933pi
157 0.8pi 0.978pi
158 0.8pi 1.022pi
159 0.8pi 1.067pi
160 0.8pi 1.111pi
161 0.8pi 1.156pi
162 0.8pi 1.2pi
163 0.8pi 1.244pi
164 0.8pi 1.289pi
165 0.8pi 1.333pi
166 0.8pi 1.378pi
167 0.8pi 1.422pi
168 0.8pi 1.467pi
169 0.8pi 1.511pi
170 0.8pi 1.556pi
171 0.8pi 1.6pi
172 0.8pi 1.644pi
173 0.8pi 1.689pi
174 0.8pi 1.733pi
175 0.8pi 1.778pi
176 0.8pi 1.822pi
177 0.8pi 1.867pi
178 0.8pi 1.911pi
179 0.8pi 1.956pi

Table 8. θ and φ coordinate values for camera positions used to
generate a 3D model with PG. r is always equal to 1.
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