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A NEW APPROACH TO SPACE-TIME BOUNDARY INTEGRAL
EQUATIONS FOR THE WAVE EQUATION*

OLAF STEINBACH' AND CAROLINA URZUA-TORRES!

Abstract. We present a new approach for boundary integral equations for the wave equation
with zero initial conditions. Unlike previous attempts, our mathematical formulation allows us to
prove that the associated boundary integral operators are continuous and satisfy inf-sup conditions
in trace spaces of the same regularity, which are closely related to standard energy spaces with
the expected regularity in space and time. This feature is crucial from a numerical perspective, as
it provides the foundations to derive sharper error estimates and paves the way to devise efficient
adaptive space-time boundary element methods, which will be tackled in future work. On the other
hand, the proposed approach is compatible with current time dependent boundary element method’s
implementations and we predict that it explains many of the behaviours observed in practice but
that were not understood with the existing theory.
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1. Introduction. Different strategies have been used to derive variational meth-
ods for time domain boundary integral equations for the wave equation. The more
established and successful ones include weak formulations derived via the Laplace
transform, and also space-time energetic variational formulations, often referred as
energetic BEM in the literature. These approaches started with the groundbreaking
works of Bamberger and Ha Duong [5], and Aimi et al. [4], respectively. In spite
of their extensive use [2, 3, 6, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26] at the time of
writing this article, the numerical analysis corresponding to these formulations was
still incomplete and presents difficulties that are hard to overcome, if possible at all.

One of these difficulties is the fact that current approaches provide continuity and
coercivity estimates which are not in the same space-time (Sobolev) norms. Indeed,
there is a so-called norm gap arising from a loss of regularity in time of the related
boundary integral operators. Yet, recent work by Joly and Rodriguez shows that
these norm gaps are not present in 1D [19]. Moreover, to the best of the authors’
knowledge, there is no proof nor numerical evidence that such loss of time regularity
should hold for higher dimensions either. These two observations encouraged us to
believe that one may be able to prove sharper results using different mathematical
tools. Another disadvantage of current strategies is that they do not provide the
foundations for space-time boundary element methods, which are basically boundary
element discretizations where the time variable is treated simply as another space
variable, in contrast to techniques such as time-stepping methods and convolution
quadrature methods [26]. Therefore, we need to establish mapping properties of the
related boundary integral operators in Sobolev trace spaces in the space-time domain.

Space-time discretization methods offer an increasingly popular alternative, since
they allow the treatment of moving boundaries, adaptivity in space and time simul-
taneously, and space-time parallelization [12, 27, 28, 30]. However, in order to exploit
these advantages, one needs to have a complete stability and error analysis of the
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2 0. STEINBACH AND C. URZUA-TORRES

corresponding space-time Galerkin boundary element methods.

We construct a new approach to boundary integral equations for the wave equa-
tion by working directly in the time domain. Furthermore, we develop a mathematical
framework that not only overcomes the aforementioned difficulties, but also paves the
way to stable space-time FEM/BEM coupling, using either the symmetric approach
or Johnson-Nédélec coupling [1, 15, 25]. We present these new results following the
standard pieces and arguments from classical boundary integral equations. We hope
this highlights some mathematical intuitions behind the obtained results and makes
the article easier to read for those familiarized with the boundary integral equation
literature. In addition to a new boundary integral equation formulation, we provide
novel existence and uniqueness results for the Dirichlet and Neumann wave equation
initial boundary value problems, when initial conditions are zero.

In order to understand some of the ideas and motivations we present in this work,
it is worth mentioning that classical analysis for the wave equation considers the right
hand side f in L?(Q). We refer the reader to [20, 21, 22] for further details. Indeed,
it is the work by Lions and Magenes the one that paves the way to classical boundary
integral equation analysis for the wave equation [5], which is based on Fourier analysis
techniques. In contrast, the approach we pursue in this paper follows the cue from
[8]. For this, we consider f to be in a functional space that is bigger than L?(Q),
which naturally makes us enlarge the ansatz space in the same fashion as in [32].

The structure of this article is as follows. Section 2 introduces notation and sum-
marizes results from the literature that will be needed later in the paper. We begin
by using some key ideas of recent work on the wave equation in H*(Q) [31, 35]. Then,
in Section 3, we introduce trace spaces, trace operators and their corresponding prop-
erties for three different families of spaces. With this we aim, on the one hand, to
emphasize the link between the existing space-time (volumetric) variational formula-
tions and our new results. On the other hand, we prove that the related trace spaces
are indeed connected, which provides a new and deeper understanding of the different
existing boundary integral formulations and their relation. Section 4 presents some
required results on initial boundary value problems for the wave equation, while all
the remaining building blocks of the new boundary integral equation formulation are
presented in Section 5. This final section concludes with the existence and uniqueness
results for solutions of related boundary integral equations.

2. Preliminaries.

2.1. Model problem. Let Q C R” n = 1,2,3, with boundary I' := 0Q2. We
assume () to be an interval for n = 1, or a bounded Lipschitz domain for n = 2, 3.
Let 0 < T < oo. For a finite time interval (0,7T), we define the space-time cylinder
Q:=Qx(0,7) C R*""! and its lateral boundary ¥ :=T" x [0, T]. We also introduce
the initial boundary Xg := Q x {0}, and the final boundary X7 := Q x {T'}. We
denote the D’Alembert operator by [ := 0y — A,, and write the interior Dirichlet
initial boundary value problem for the wave equation as

Ou(x,t) = f(x,t) for (z,t) € Q,
(2.1) u(z,t) = g(z,t) for (z,t) € X,
u(z,0) = dyu(z,t)y=g = 0 for x € Q.

2.2. Notation and mathematical framework. Let O C R™, m € N. We
stick to the usual notation for the space C*°(Q) of functions which are bounded
and infinitely often continuously differentiable; the subspace C§°(O) of compactly
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 3

supported smooth functions; the spaces LP(Q) of Lebesgue integrable functions; and
the Sobolev spaces H*(Q). Moreover, inner products of Hilbert spaces X are denoted
by standard brackets (-,-)x, while angular brackets (-, -),, are used for the duality
pairing induced by the extension of the inner product (-,-)z2(oy. For a Hilbert space
X we denote by X’ its dual with the norm

Hf”X/: sup M

for f € X'.
orvex |lvllx

In particular, we will use
Hl(O) = OT((Q)H'HHMO), Hol(O) = W‘H‘Hl(on

where

m 1/2
9l 10y = <||¢%2((9) + Z ||3xi¢||%2(0)> :

=1

In the specific case O = Q = Q x (0,T) C R"*! we identify H!(Q) with the Sobolev
space
HYNQ) == L*(0,T; H'(Q)) N H'(0,T; L*(2))

using Bochner spaces, see, e.g., [21, Sect. 1.3, Chapt. 1] and [22, Sect. 2, Chapt. 4].
Furthermore, let

HE(0,T; LX(Q)) := {v € L2(Q) : dyv € LA(Q), v(z,0) =0 forz € Q}
HYL(0,T; LX(Q)) = {v € L2(Q): 8w € LAQ), v(z,T) =0 forz e Q}
With this we introduce

HG'(Q) = L*(0,T; H'(Q)) N Hy (0, T; L* (%)),
HY Q) = L*(0,T; H'(Q)) N H (0, T; L* (%)),

with norms

lull s @y = /100l ) + V22 g

lollri @) = /10122y + 1VavllZa(q -

Note that the space H, (Q) corresponds to o H'(Q) as used in [17, 21, 22]. In the case
of zero Dirichlet boundary data along the lateral boundary ¥ we define the subspaces

00,(Q) == L*(0,T; Hy () N Hy (0,T; L*(€)),
0:0(Q) == L*(0,T; Hy () N H (0, T; L*(9)).
We remark that H;lo’}(Q) and H&’&(Q) prescribe zero initial values at ¢ = 0, while

H;l’(’)1 (@) and Hé;”lo(Q) have zero final values at ¢t = T.

In this paper we will consider, as in [32], a generalized variational formulation
to describe solutions of the wave equation (2.1) also for f € [Hé;”lo(Q)]’ , instead of
f € L*(Q), as usually considered, e.g., [20]. Therefore we introduce the extended
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4 0. STEINBACH AND C. URZUA-TORRES

space-time cylinder Q_ = Q x (=T, T). For u € L?(Q), we define u € L*(Q_) as
zero extension,

i t) = u(x,t) for (z,t) € Q,
T 0 for (z,t) € Q_\Q.

The application of the wave operator [J to u € L?(Q_) is defined as a distribution on
Q_, i.e., for all test functions ¢ € C§°(Q-), we define

(Ou, ) / / (z,t) Op(z,t) dedt = / / (z,t) Op(z,t)dxdt.

This motivates to consider the Sobolev space HJ (Q_) with the norm

I¢ly@ ) = /19132, + IVablZaq, for é € HF(Q-),

the dual space [Hg(Q-)]’, and the duality pairing (-,-)g_ as extension of the in-
ner product in L2(Q_). We also introduce the restriction operator R : H}(Q_) —
Hé;”lo(Q), ie., R¢ := ¢|q, and its adjoint R’ : [Hg 10(Q)] — [H}(Q-))'. Moreover,
let € : H&;}O(Q) — H}(Q-) be any continuous and injective extension operator with
norm

HEUHHg(Q,)

Y

€11 5121 () a2 sup
@) 0#v€Hé;}0(Q) H“”Hé;b(@)

and its adjoint £ : [HH(Q-)]' — [H&’B(Q)]', satisfying RE¢p = ¢ for all ¢ € Hé;’)lo Q).

In order to consider f € [H}(Q_))', we need a solution space that is bigger than
H&’&(Q). For this reason, we introduce the Banach space [32]

HQ) = {u =T 7€ LX(Q.), Tjax(—10) =0, 0 € [H&(Q,)]’},

with the norm [Jull3(g) := \/||u||§2(Q) + 1|0 oy > Where

_ (O, Ev)q_|
Il @y = sup S
OiveHé;}o(Q) Hvl Hé:’,lo(Q)

By completion, we finally define the Hilbert spaces

RIS

C Hio,(Q) = Hy'(Q) CH(Q),

Uy

NI+ (@)

Ho,(Q) == H(};’(},(Q)
e.g.,
#0.(Q) = {1 € H(Q)+ Hunlnen © HE(Q) with Tim [lu = s ) =0}

Note that H&;&(Q) C Hop,(Q) and H}O’}(Q) C H.0,(Q), see [32, Lemma 3.5] for the
first inclusion.

This manuscript is for review purposes only.
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2.3. Transformation operator Hr. For u € L?(0,T) we consider the Fourier
series

0= Y wsin (5 e4m) 7). =7 [ wesin(5+0m) 1) o

As in [31] we introduce the transformation operator Hr as

Hru(t) Zuk oS ((;T + kw) ;) ,

and it’s inverse, i.e., for v € L?(0,T),

= gyk sin <<72T + lmr) ;) ) —/ ) cos ( + k’7r) T) dt.

By construction we have Hp : Hj (0,T7) — HYL(0,T), and Hy' : HY(0,T) —
H&(O,T). In the following, we summarize some additional properties fulfilled by
the operators Hr and H,', see [31, 35].

PROPOSITION 2.1.
1. For any u,v € L?(0,T)

(Hru,v) 20,1y = <U7H;1U>L2(07T)-
2. For allu e H&,(O,T)
OHru = —H; ' Ou.
3. Hr and ’H;l are norm preserving, i.e.,
[Hrwl 20,7 = lwllz207), 1M w20 = lwllzzer Yw € L*(0,T).
4. For allw € L*(0,T)
(w, Hrw) 20,7y = 0.

We conclude this subsection by extending the modified Hilbert transformation Hp to
our functional spaces. For u € L?(Q) we first have the decomposition

£ = f: iuk sin <(72T + k) ;) o),

k=0 1i=0

2 t
Ui = T/Qu(z,t) sin <(72T + kTr) T) dt ;(x) dz,
where @; are the Neumann eigenfunctions of the Laplacian, i.e.,
—AQDZ' = )\1901 in Q, 8nz<pz =0 onT, H(PIHL?(Q) =1, 0= Ao <A VieN.

They are an orthonormal basis in L?(£2) and an orthogonal basis in H'(Q), e.g., [20,
Chapt. 2]. With this we define

Hru(x,t) ZZUMCOS <<72r + kw) ;) vi(z), (z,t) €Q,

k=0 i=0

with Hr : Hg' (Q) — H.'y'(Q). Analogously, Hy' : H 3 (Q) — Hg' (Q).

This manuscript is for review purposes only.
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6 0. STEINBACH AND C. URZUA-TORRES
Remark 2.2. The time-reversal map 7, defined as [9, Eq. (2.36)]
(2.2) wrw(z,t) = w(x, T —t) for (z,t) € Q,w € HY(Q),

is often used instead of the transformation operator Hy : H;lo’vl(Q) — H;%bl(Q). How-
ever, as we will see in Section 5, the composition H7 with the standard boundary
integral operators turns out to be coercive and bounded in the same Sobolev trace
spaces.

2.4. Fundamental solution and retarded potentials. Let us briefly present
the boundary layer potentials for the wave equation, often called retarded potentials.
We refer the reader to [10] and [17] for further details. First, we introduce the funda-
mental solution of the wave equation,

1
3 H(t — |z|), n=1,
1 H(t —|z]) _
(2:3) Gty =2 /o o "TH
t2 — ||
Lol
dr ||

with 0 the Dirac distribution, and H the Heaviside step function. Let . be the single
layer potential and 2 the double layer potential, i.e., for (z,t) € @ and regular enough
densities w and z, respectively,

(2.4) (Fw)(x,t) := /0 /1“ Gz —y,t —71)w(y,7)dsy dr,

(2.5) (D2)(x,t) = /0 /FﬁnyG(x —y,t —7)2(y,T)ds, dr.

In the following, we will make use of the fact that . and 2 can also be interpreted
as distributional pairings. Concretely, for n = 3, these layer potentials are
(2.6)

1 [ wyt—|z—y])
S w a:,t = 7/ — " "ds s
( )( ) A7 - ‘x_y| Yy

1 2yt =z —yl) O, [z —yl
2.7) (Z2z2)(z,t) := / [an, — Oiz(y,t — |x — dsy.

The fact that the time argument is the retarded time 7 = t — |z — y| motivates that
& and Z are usually called retarded potentials.

3. Green’s Formula, Trace Spaces and Trace Operators. We introduce
the lateral interior trace operator 44 : u — uy as continuous extension of the trace
map defined in the pointwise sense for smooth functions. As in [23, Lemma 4.1] we
can write a space-time Green’s formula for ¢ € C?(Q) and ¢ € C1(Q) as

T T A T
vp0)= [ [Opvasars [ [ o, prbvdsidi— [ [apu] _ dn
o Ja o Jr Q =0

This manuscript is for review purposes only.
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 7

where

(3.1) D(p, ) :/OT/Qatcpﬁtwdxdt+/OT/QVmgo-Vf,ﬂ/)dxdt.

In particular, for ¢ € C%(Q) with d,p(x, t)jt=0 = 0 for z € Q and for 1) € C1(Q) with
Y(x,T) =0 for x € , this gives Green’s first formula

(3.2) (¢, 1)) :/OT/QDpwdde—/OT/Fanznp'ygwdswdt.

3.1. Traces on H;lo’)l(Q), H;l,bl(Q), and H. (Q). Following [22, Theorem 2.1,
Chapt. 4 and p. 19] we get that the interior trace map 7% is continuous and surjective
from H'(Q) to HY/?(X). In addition, let & : HY/?(X) — H'(Q) be a continuous
right inverse.

Let us introduce the spaces

Hy/*(2) := L(0,T; HY*(D)) N Hy/* (0,75 L*(T)),
H{?(2) = L2(0,T; HY*(T)) N H*(0,T; LA(T)),

with H(}KQ(O, T; L*(T)) and H’lo/2 (0,T; L*(T")) defined by complex interpolation as

Hy/?(0,T; L*(T)) = [H} (0, T; L*(T), L2(0, T; L*(D)]; 2,
H{?(0,T; L*(T)) == [HY(0, T; L*(T), L2(0, T; L*(D)], 2.

)

Then, we have the following result, which is stated in [17] without a proof. Here we
provide one for completeness.

LEMMA 3.1. The interior trace map v is continuous and surjective from H;lo’}(Q)
to Hy*(S).

Proof. We adapt the proof of [22, Theorem 2.1, Chapt. 4] to H}O’}(Q) (instead of
H(Q)). Recall that

we Hg'(Q) = L*(0,T; H(Q)) N Hy (0,T; L*(2)).

Without loss of generality, we can take @ = {x € R" : z, > 0} and I' = {z € R" :
2, = 0}. Then, by using the notation z = {z/, z,, }, with 2’ = {x1,..., 2,1}, we can
write:

u€ Hy(Q) ©ue L*(Ryg,; L2(0,T; HY(RY ) N L2(0,T; L*(R2)),
w€ L*(Ryq,; L2(0, T; L*(R1) N Hy (0,T; L*(R2Y),

where R, ;. indicates that the variable z, is considered in the positive real line.
Then, we can apply Theorem 4.2 from [21, Chapt. 1] with

X = L20,T; HY (R ) N H (0, T; LA(RYY), Y = L2(0,T; L*(R% ™)),

to get that u(2’,0,t) € [X,Y];/5. Now, let us point out that Theorem 13.1 in [21,
Chapt. 1] gives

(X, Y12 = [L*(0, T; HY(RZ)) N H (0,75 L*(R2H)), Y] 2
= [L*(0, Ty H' (RZ)), Y] /2 N [Hg (0,75 L*(R21)), Y11 o

This manuscript is for review purposes only.
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8 0. STEINBACH AND C. URZUA-TORRES

Consequently, by interpolation we get
(X, Y]y = L2(0, T3 HY(R) 0 Hy /(0,73 L (R),

which corresponds to Hé7/2 (R?' x [0,T]). Hence, we conclude that vu € Hé7/2(2).
Surjectivity also follows from Theorem 4.2 in [21, Chapt. 1]. d

By similar arguments, one can also prove:

LEMMA 3.2. The interior trace map v is continuous and surjective from H;ljbl(Q)
to HY*(S).

Finally, we define the lateral trace space
Ho, (2) := {v =1LV forall Ve 7—[;07(62)}

with the norm

v = inf Vv .
[V [l940. (=) VEH;O,(Q):'ygV:v” Q)

Remark 3.3. By the definition of Ho (X) and using the linearity of 74, we have
that for any v € Ho (X) there exists a sequence (vp)nen C H&m(E) such that
nlggo v — Un||yo,(z) =0.

Remark 3.4. The trace spaces investigated in this paper are closely related to
the spaces used in the classical time dependent BEM approach for the wave equation,
introduced by Bamberger and Ha-Duong [5]. Indeed, as pointed out in [17, Remark 2],
Hé’/Q(E) agrees with !

Hy? = {u € LT (o, H'?(I)); /

|ﬁ’|1/2,w,F dw < OO}
R+io

!/
when o = 0. Additionally, (Hé/2(2)> corresponds to

H;%/Q,—l/Q = {u S LT(O'7H—1/2(1")); /]R+- |ﬁ|71/2,w,F dw < OO}
io

when ¢ = 0. Remarkably, ¢ is taken to be zero for practical computations and
numerical experiments, yet the analysis of classical time dependent BEM does not
cover this case. We refer to [17] for the detailed definitions and a more comprehensive
discussion.

4. Initial boundary value problems.

4.1. Homogeneous Dirichlet data. Instead of (2.1), let us first consider the
Dirichlet initial boundary value problem with zero boundary conditions,

Tu(wt) = flat) for (@) €Q,
(4.1) u(z,t) = 0 for (z,t) € X,
u(r,0) = dpu(w,t))y=g = 0 for z € Q.

1The norm |7, .1 Trelates to Sobolev norms with a parameter w.
\W,

This manuscript is for review purposes only.
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 9

A possible variational formulation of (4.1) is to find u € H&’&(Q) such that

T T T
(4.2) 7/ /8tu8tvdxdt+/ /Vzu~V$vdxdt:/ /fvdxdt
o Ja o Ja o Ja

is satisfied for all v € Hé;}O(Q). When assuming f € L%(Q) we are able to construct

a unique solution u € H&;&y(Q) of the variational formulation (4.1), satisfying the
stability estimate [31, Theorem 5.1], see also [20, Chapt. IV, Theorem 3.1],

1

lull iz @) = 5 Tl llz@-
While the variational formulation (4.2) is well posed also for f € [Hé;’}O(Q)]’ , it is
not possible to prove a related inf-sup condition to ensure the existence of a unique
solution u € H&’&(Q), see [35, Theorem 4.2.24]. However, by definition we have the
inf-sup condition

_ (O, Ev)q_|
(4.3) ||Du||[Hé(Q_)]/ = sup D= 277C-1 forallu e Ho:0,(Q),
0£veHY L (Q) 1ol )

and therefore we conclude unique solvability of the variational formulation to find
u € Hoy,(Q) such that

(4.4) (L, Ev)q = (fv)q

is satisfied for all v € H&’}O(Q), see [32, Theorem 3.9]. Moreover, for the solution w it
holds
[(Ou, Ev)g | [(f;v)ql

1072y = sup sup

< ||fH HY ’-
0£vEHYL(Q) HUHH(};}O(Q) 0£veHEL (Q) HUHH(};}O(Q) [Ho, 0(Q)]

In fact, (4.4) is the variational formulation of the operator equation &'Ou = f in
[Ho;0(Q))'s e,
fulv) = (E'0u,v)q = (Ou,Ev)g_ forv e Hé;”lo(Q) C H;lybl(Q)

is a continuous linear functional with norm

[fu(v)] (B, Ev)q_ ~
”f“”[H.lbl(Q)]’ = Su?1 ||U|| o = SIIP1 W = ”DUH[H(%(Q_)]/
h O#'UEHQ;’,Q(Q) H;,b (@) O#UEHU;YU(Q) H;,b (Q)

Recall that for u € H&’&(Q) C Hoso,(Q) we have

fu(v) = (0T, Ev)q_ = —(Byu, Oyv) 12(q) + (Vou, Vot 12y for all v € Hyo(Q).

Using the Hahn—Banach theorem, e.g., [34, Chapt. IV., Sect. 5], [7, Theorem 5.9-1],
there exists a linear continuous functional f, : H ;1761’(6,2) — R satisfying

(4.5) fu(v) = fu(v) forallve Hé;’,lo(Q)7

||fu||[H;{bl(Q)]' = Hfu”[H;l”Ol(Q)]’ = ||DﬁH[H3(Q,)]’-

This manuscript is for review purposes only.
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Indeed, for u € H&’&(Q), we have the explicit representation

(4.6) fu(v) == (00, Ev)q_ = — (0w, ) 12(q) + (Vau, Vav)r2(q) Vv € H3(Q).
In the following we assume f € [H ;1’(’)1 (Q)]', and we consider the variational formulation
to find \; € [H}O/Q(E)]' such that

@7 {(8) N v)e = (Nirkv)s = fulv) = (fv)g forallv € Hig (Q).

For v € Hy'y(Q) C H'y(Q), it holds

Fuw) = (f,0)0 = fu(v) — (f,v)o = (OU, Ev)q_ — (f,v)q =0,

ie.,
Fu— 1 € (kern)® = (H4(@)° = {9 € HF Q) (g,0)e =0 Vv e HL@).

By the closed range theorem, we obtain

fu - f € Im[H}O/z(E)]’(,Y%:)/’
which ensures existence of a solution \; € [H ’10/ ()] of the variational formulation

(4.7). Since the norm in [H ’10/ *(2)]’ is defined by duality, this immediately implies the
inf-sup condition

N Al
||)‘||[H1/2(2)], = sup M zvsl for all A € [HIO/Q(Z)]’,
,0 ’

0£veH! 1 (Q) HUHH;I,’J(Q)

and therefore uniqueness of \; € [H )10/ *(2))'. Moreover, this also gives

)\ia
Nl gy = sup [, ysv)sl
’ orveny @ IVlii@

[fulv) = {f,v)l

= sup <2 ||f|| LA /s
orverip@  Ilae 1 (@]
where we used
| fu(v)] _
sup i = || full g1 @y

0#£veH! 1 (Q) ||U||H;{51(Q) -
= ||fu“[H;{b1(Q)]’ = [|8ull g2y < ||f||[H;{bl(Q)]f~
We now rewrite the variational formulation (4.7) as
Fu(0) = (i) + Mirkv)s,  ve H(Q).
In particular, for u € H&’&(Q), and using (4.6), this gives

(0w, Opv) L2(q) + (Vatt, Vo) r2(g) = (f,0)0 + (M, 76v)s, v E Hy (Q).
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 11

ie., ‘
B(u,v) = (f,v)Q + (Ai, 13v)x.

When comparing this with Green’s first formula (3.2) for suitable chosen functions,
we observe that \; corresponds to the spatial normal derivative of u. Hence, also in
the general case we shall write y4u := 8, u = \; and call this distribution the interior
spatial normal derivative of u € Ho,,(Q), i.e.,

T Hoo,(Q) = [HY (D))"
In a similar way, we also define
Vi Hoo(Q) — [Hy 2 (D))

For a related approach in the case of an elliptic equation, see also [23, pp. 116-117].

4.2. Inhomogeneous Dirichlet data. Next we consider the Dirichlet bound-
ary value problem (2.1). For g € Ho (X) there exists, by definition, an extension
ug = Exg € H,(Q), and the zero extension 4, € L*(Q_). Thus, it remains to find
Up = u — ug € Hoy,(Q) satistying

(Oup, Evyg_ = (f,v)g — (Ouy, Ev)g_ forallv e H&;}O(Q).

Note that u, € H.0,(Q) C H(Q) involves Ou, € [HI(Q-)]'. For the solution uy we
obtain
[(Oug, Ev)g | _ [(fv)@ — (Oug, Ev)q_|

Btollpry @y = sup  —ro P [ol]
0#vEH ((Q) H; 5(Q) 0#vEH ((Q) H y(Q)

< ||f||[H;;}0(Q)]f + ||5||Hé;}0(Q),Hg(Q,)||9||Ho,(2),

where we have used

18 [l @y < \/Ilugll2 0% 17 0y = Nttgllrec@) = 910 =

As before, we can determine \; € [H,lo/ *(2)] as unique solution of the variational
formulation (4.7), and where v4u := ); is again the spatial normal derivative of the
solution u of the Dirichlet boundary value problem (2.1), satisfying

(4'8> ||)\i||[H,lo/2(2)]' <2 HfH[Hé;,lO(Q)]’ + HgHHé;‘lO(Q),H(}(Q,)”g”HO,(E)

Specially, for f = 0, this describes the interior Dirichlet to Neumann map g — \; =
Yy u, where u is the solution of the homogeneous wave equation with zero initial data.

This can be written as A\; = S; g, where S; : Ho (£) — [H}O/Q(E)}’ is the so-called
Steklov-Poincaré operator, and from (4.8) we immediately conclude

(49) 1Si 9l < 5" Nl for all g € Ho, (%),

: Si .
with ¢5* := ||g||H01;‘10(Q),Hé(Q—)'
As before, we can write the variational formulation (4.7) as

fuw) = (f.v)q + Minbv)s, ve HY(Q).
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Now, for u € H.o (@) there exists a sequence {uy nen C H;{bl(Q) with
lim ||u—u =0.
Jim | nll#(Q)

Hence we can write

fu) = lim f, (v)= lim —<atun,atv>L2(Q)+<vmun,vzv>L2(Q)].

n—oo n—oo

In particular, for v € H;l’(’)1 (Q) N H?(Q), we can apply integration by parts to obtain

Fulw) = lim_ | (s, O0) () + (Yt Vit — (1 (T), B0(T) 1200

= (u,0v) r2(q) + (veu, viv)s — (W(T), 0(T)) r2(0) -

With this we finally obtain Green’s second formula for the solution v € H.o (Q) of
(2.1) and v € H'y (Q) N H(Q),

(4.10) (u,0v) 12(@) + (15w, Yyv)s — (u(T), B0(T)) L2(0) = (f,v)Q + (Vau, 150) s

4.3. The Neumann boundary value problem. We now consider (as in (4.7))
the variational problem to find u € H,p (@) such that

(4.11) f;(v) = {f,v)g + (\Akv)s forallv e H;l,bl(Q),

when A € [H’lo/ ?(2)] is given. This is the generalized variational formulation of the
Neumann boundary value problem

(4.12) Ou=f inQ, ~yu=XA on¥, wu=0du=0 on,.

LEMMA 4.1. For all u € H,0 (Q) there holds the inf-sup stability condition

V2 | fu(w)]

(4.13) —— lullyy < sup .
V24T @ orverr (@ Va1 Q)
Proof. Using (4.5) and the norm definition by duality, we first have
u 7 |fu(v)]
”DUH[HC%(Q,)]’ = ”fu”[H;lybl(Q)]/ = sup -

0#£veH! 1 (Q) ol o) '
Now, for 0 # u € H,0 (Q), there exists a non-trivial sequence (up)nen C H;%’,I(Q),

Uy, Z 0, with
lim [|u — unl[3(0) = 0.

n—oo
For each u, € H;lo’)1 (Q) we can write, as in (4.6),
fun (v) = —(Ostin, 010) 12(@) + (Valn, Vav)12(q) for allv € H;lybl(Q),

and we define w,, € H ;17{)1(@) as the unique solution of the variational formulation

—(04v, Oywn) £2(Q) + (Vav, Vown) 12(Q) = (Un,v)12(g) for allv € H;lo’} (Q).
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 13
This variational formulation corresponds to a Neumann boundary value problem for

the wave equation with a volume source u,, € L?(Q), and zero conditions at the
terminal time ¢t = T. As for the related Dirichlet problem we conclude the bound

1
sy @) < 75 7 llzsco)
In particular, for the test function v = u,,, the variational formulation gives

*<atun7atwn>L2(Q) + <vmun7 vatrwn>L2(Q) = ||un||%2(Q)

With this, we now conclude

@) < 1, (wa)]

1wl = sup >
QY pemii@ i) = Twallig)
| = (Ovtin, Ovwn) L2(Q) + (Vatin, Vawn) 2yl lunllZag) N V2 a2
= = = L .
ol @) lwnllprp) — T 7" @

Completion for n — oo now gives

= V2
Hfu“[H;l”Ol(Q)]’ 2 7||UHL2(Q)'

Hence, we can write, for some a € (0, 1),
2 _ 2 _ 2
Il @y = @ Wulliz @y + (= @) Mulli gy
2 ~
Z a0 [ull72(q) + (1 — ) ||DU||[2H[}(Q,)]f

= (1= ) (lll3 ) + 1Ty ) = (1= ) Julq),

when
l-a=a« T2
is satisfied, i.e.,
_ T? 2
“Taorr “T oy

This concludes the proof. 0

LEMMA 4.2. For all0 # v € H;lbl (Q), there ezists a function u, € H. (Q) such
that
(4.14) fu. (v) > 0.

Proof. For 0 # v € H;l,bl(Q), there exists a unique solution w, € H}O’}(Q) C
H.0,(Q), satisfying

— (Ot Osw) 12(Q) + (Valty, Vow) 1200y = (v, w) r2(q) for allw € Hibl(Q),

and, for w = v, we obtain

Fus(v) = —(0sth, 04v) 12(Q) + (Valby, Vo) 2(0) = HU||2L2(Q) > 0. O
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14 0. STEINBACH AND C. URZUA-TORRES

The inf-sup condition (4.13) and the surjectivity condition (4.14) ensure unique solv-
ability of the variational formulation (4.11). Moreover, for the unique solution
u € H,,(Q) we obtain

2 il < sup EIACIE
2 - 1
V24T orverti @ I0laty @)

_ ap  wet Ars)s]

0£veH! ' (Q) HU“H;{’(}(Q)

S ||f||[H111’01(Q)]’ + ||)\||[H,10/2(2)]/a
and when taking the lateral trace this gives

i 1
@13) Il < e < 5 V2E T (1l + My ]

In particular, for f = 0, this defines the interior Neumann to Dirichlet map A — y&u
which can be written as y&u = S; ' A when using the inverse of the Steklov-Poincaré
operator S;. From (4.15) we then conclude

(4.16)
_ st 1/2 57t 1
157 Allage, () < €5° ||>\||[Hlo/2(2)]/ for all A € [H,o/ @), o = Vo 2+ 17,
Now, using (4.9) and duality this gives
(5w, ws|

I /2 sy = 1 Sivsull iz sy < 650 1Veullag 5y = ¢5° sup ,
[H g™ (2] By = T2 T THe () = B2 o£uefHo. (=) 11l o, ()1

i.e., the inf-sup stability condition

1 S,
e ||)\||[H10/2(2)}/ < sup L5 A wsl for all X € [H,1()/2(E)],~
5 ,

(4.17)
o#uelHo, ) 11, ()1

Furthermore, using (4.16) for g; := v4u and duality we obtain
19:ll340,2) = InStellane, 29 = 1157 Allao, ()

st st [(A )5
<, H)\H[Hlo/z(z)], =cy sup —_—

0£ve H?(S) ”””H?O”(z)
i.e., the inf-sup condition

|(Si i, v)s|

1
(418) T ||gi||7~t01(2) < sup for all g; € 7‘[07(2)

Cy 0£veH'{?(3) ”U”H}O/?(z)

4.4. Adjoint problems. Related to the variational problem (4.11) we now con-
sider the adjoint problem to find w € H;%bl(Q) such that

(4.19) Fu(w) = (fru)q + (9. 7%u)s

is satisfied for all u € H, (Q). For w € H;{(’)I(Q), let w, € H, (Q) be the unique
solution of the variational problem

Fuu (V) = (84w, 80) 12(q) + (Vow, Vo) 2y for allv € HY(Q).
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 15
For v = w, this gives
£ _ 2
fuw(w) = ||wHH:1)b1(Q) .

Moreover, using the inf-sup stability condition (4.13), we obtain

V2 [ fu ()]

T [l < sup o
NoEw R orverr (@ Va2 Q)

[(Orw, 0v) 2y + (Vew, Vo) 120

= sup < Nwll g
0£veH! 1 (Q) ol @) % (D)
and thus it follows that
~ V2
Fau ) = g ) > 72 lullu ol o
In other words, we have
2 fu
V2 sup fulw)l for all w € H;{(’)l(Q).

—— vl yr1g) < u
V2+ 12 @ = i ) lullio)

Since the inf-sup condition (4.13) also implies surjectivity, unique solvability of the
variational formulation (4.19) follows. In fact, for f € [H,0 (Q)] and g € [Ho,(X)]" we
have w € H ;17(’)1 (Q) as the weak solution of the adjoint Neumann problem for the wave
equation

(4.20) Ow=f inQ, ~yw=g onY, w=0dw=0 onXp.

5. Boundary Integral Equations.

5.1. Representation formula. Let u € H.o (Q) be a solution of the generalized
wave equation &'Ou = f in [H;ljbl(Q)]’ . For (z,t) € Q and v(y,7) = kiG(x — y,T),
with G(+, -) being the fundamental solution introduced in (2.3) and ; the time-reversal
map from (2.2), formula (4.10) becomes the representation formula

t
u(z,t) = / /Q fy,7) Glr —y,t — 1) dydr + (Yyu, 750)y — (Y5u, Yn0)y, -
0
In particular, for f = 0, we conclude the following representation formula

(5.1) u(@,t) = (Syyu)(,t) = (Prvzu)(@,t),  (,t) € Q,

with the single and double layer potentials . and &, defined as in (2.4) and (2.5),
respectively.

5.2. Single layer potential. We first recall the definition (2.4) of the single
layer potential

t
Uy (x,t) = (Lw)(z,t) = / / Gz —y,t—1)w(y,7)dsydr, (z,t) €Q.
0o Jr
PROPOSITION 5.1. For the single layer potential we have

S HP () = Ho Q).
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Proof. For u,, = Sw and a suitable ¥, we can write the duality pairing as
extension of the inner product in L?(Q) as

(Uw, ¥)q =/OT/Quw(x,t)¢(x,t) da dt

/OT/Q/Ot/FG(:cy,tT)w(y,T)dsyqujz(x,t)dxdt

T T

:/ /w(y,r)/ G(x —y,t —7)¢(z,t)dedtds, dr
0 r T
T

:/0 /Fw(y,T) oy (y, 7)dsy dr

= (W, 7%0p)s,
where

T
ww%7w=/ Gla—y,t — 1), ) dedt, (y,7) € Q

is a solution of the adjoint problem (4.20). Hence, for ¢ € [H.o (Q)]’, we obtain ¢, €

Hibl (Q), and therefore &, € H}O/Q(E). From this, we conclude that u,, € H.0,(Q)

when w € [H}O/Q(Z)}’ is given. d

As a corollary of the previous result, we can define the single layer boundary integral
operator

(5.2) V= b [HY(E)) — Ho,(2),
and the normal derivative of the single layer potential,

(5.3) W HPE) = [HY ().

)

5.3. Double layer potential. We first recall the definition (2.5) of the double
layer potential

t
uz(z,t) = (Z2)(x,t) = / /8nyG(x —y,t—71)2(y,7)dsydr, (x,t) € Q.
o Jr
PROPOSITION 5.2. For the double layer potential we have
D - 'HO,(Z) — ,H;O,(Q).

Proof. The proof is analogous to that of Proposition 5.1 choosing v, = 2z . 0O

With the previous result we are in a position to consider the lateral trace of the double
layer potential

(5.4) V62 : Ho,(E) = Ho,(3),

and the so-called hypersingular boundary integral operator as normal derivative of
the double layer potential,

(5.5) W= 42 Ho () = [HY*(2)].
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A NEW APPROACH TO SPACE-TIME BIES FOR THE WAVE EQUATION 17

5.4. Boundary integral operators and Calderodn identities. Without loss
of generality, let us consider the complementary domains

Q°:=Bp\Q and Q°:=Q°x(0,7),

with Bg := {x € R" : |x| < R} is a sufficiently large ball containing I". With this,
we define the exterior traces 7§ and 7§, following the same ideas from Subsection 3.1,
but using Q€ instead of Q.

Remark 5.3. Clearly, the mappings
76 HGH Q) — Hy (%), 76 H Q) - H (%),
75 Mo, (QF) = Ho, (X)), 75 1 Hi0(QF) = Ho(X),
are continuous and surjective, while
e Hg Q) = [H () Q) = [Hy ()
M Ho (@) = [H (), e H0(Q) = [HyX(2)),
are continuous. Moreover, Green’s formulae and other properties of the interior trace

operators 74 and 74 also apply to these exterior traces in their corresponding spaces.
Indeed, following Propositions 5.1 and 5.2, we have the continuity of the mappings

S HPE) = Ho(QF),  D:Ho (D) — Ho,(Q°).
We define the jumps across ¥ by

reul ==2%u -5, [yvu] =R -y,
which clearly do not depend on the choice of Br. Now we can state the following
result:
PROPOSITION 5.4. The following jump relations hold for all w € [H}O/Q(E)}’ and
S 'HO,(E),
[ysLw] =0, [yvFLw] = —w, (V222 = 2, [yw2z] = 0.

Proof. The jump relations are known to hold when w and z are smooth, e.g., [11,

Sect. 2.2.1], and [26, Sect. 1.3]. We extend them to (w, z) € [H}O/Q(E)]' x Ho,(2) by
using that the combined trace map (v, yw) : u = (ysu, yvu) maps Cg°(R™ x Ry )|z

onto a dense subspace of [H,IO/Q(Z)]' X H&m(E) (cf. [8, Lemma 3.5]), and that H&/z(Z)
is dense in Hy, (X). O

We can now define the boundary integral operators as follows:

DEFINITION 5.5.
Vw :=~yaSw =45 w,

1 .
Kz:= 3 (1422 +1522),

1 .
K'w:= 3 (VL w + V5L w)
Wz = 492 = —159Pz.
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From this definition and (5.2), (5.3), (5.4), (5.5), we obtain:

THEOREM 5.6. The boundary integral operators introduced in Definition 5.5 are
continuous in the following spaces:

Vi [HGP ()] = Ho (D),
K: Ho (X)) — Ho,(X2),
K HPE) > [H O]
W: Ho(S) = [H*(D)
Next, we take traces on the representation formula (5.1) and get

i 1 i i
VU = (5 | = K)ysu + Vyyu,

. . 1 .
Yavu =W+ (5 1+ K.

As usual, we can rewrite this as
g 1K \% g
(5.6) e I L A N
TNU W (1K) TN

with the interior Calderon projection Cég.
Using standard arguments (see for example [26, Sect. 1.4]), we can now prove

Furthermore, this gives (CiQ)2 = Cé;), from which we get

1 1 1 1
VW= (G1-K)(GI+K), WV=(GI-K)GI+K), VK =KV, KW=WK.

5.5. Coercivity of boundary integral operators. In this subsection, we are
going to prove coercivity properties of boundary integral operators, i.e., of the single
layer boundary integral operator V and the hypersingular boundary integral operator
W, which ensure unique solvability of related boundary integral equations.

THEOREM 5.7. The single layer boundary integral operator V : [H,lO/Q(Z)]’ —
Ho,(X) satisfies the inf-sup stability condition

[V w, 1|
(5.7) ey ||w||[H10/2(E)], < sup _—

for allw € [H 1/2(2)] .
o£neto. () 11l o, )1

Proof. For w € [H 1/2(2)}’ we consider the single layer potential u = .#w which
defines a solution u € 7—{,07(Q) of the homogeneous wave equation. When taking the
lateral trace of u this gives g = vou = Vw € Ho (X). In fact, u is the unique solution
of the Dirichlet boundary value problem

Ou=0 inQ, Au=g on%, u=0u=0 onX.
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When using the interior Steklov—Poincaré operator S; we can determine the related
interior Neumann trace

Ni=7hu=S;g€[H{* ).

Since the Steklov—Poincaré operator S; is invertible, this gives g = Si_1 iy e, g =~4u
is the lateral trace of the solution of the Neumann boundary value problem

Ou=0 inQ, ~Ayu=2X\ on¥%, u=0du=0 onX,.

From the inf-sup stability condition (4.17) of the inverse interior Steklov-Poincaré
operator S; ! we now conclude

Al < sup (ORRINI sup IVw, p)s|
ng‘ [H’O @)= 0#upe[Ho, (X)) ||:u’||[7'lo,(2)]/ 0Au€E[Ho, (X)) H/‘L”[’HO(E)]’

For the exterior problem we can derive a related estimate, i.e.,

\%
wp  LVwms)

W <
g e 1/2 P 3
ey TN T o et oy el o, (2

where ). is the exterior Neumann trace of the single layer potential u = .w. Now,
and using the jump relation of the adjoint double layer potential, this gives

Hw”[H,lom(Z)]’ = ”)"L - )\EH[H’IO/Z(E)]/
: [(Vw, p)s|
ANz en + DAelliirisz s < (€57 4+ ¢5¢) sup =
H5" ()] H5" ()] ? ? oznelo, @) |1lpo. )
which implies the desired inf-sup condition. 0

While the inf-sup stability condition (5.7) ensures uniqueness of a solution of a related
boundary integral equation, the following result will provide solvability.

LEMMA 5.8. For any 0 # p € [Ho,(X)] there exists a w, € [H}O/z(Z)]’ such that
<V wunu>2 >0

is satisfied.
Proof. For given 0 # p € [Ho (X))’ we define the adjoint single layer potential
w, € H'y' (Q) by
T
(Y, 7) :/ /G(x—y,t—r) p(z,t)ds, dt  for (y,7) € Q.
T r
For the lateral trace y&u,, € H710/2(E) and arbitrary w € [H’lo/2 (3)]" we then have

T T
<w,7§uu>z :/ /Fw(yﬂ')/ /FG(x— y,t —7) p(x,t) ds, dt ds, dr
0 T
T t
:/ // /G(xfyvt*T)w(yaT) dsy dr p(z,t)dsy dt = (Vw,p)s .
o JrJo Jr

This manuscript is for review purposes only.



613

614

615

616

617

618

619

620

634

635

636

637
638

639
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Moreover, we compute
t
Uu(z,t) ::/ uy(z,s)ds for (z,t) € Q,
0

with the lateral trace g, = y4U, € H&’/Z(E) C Ho,(X). Hence, there exists a unique
solution v,, € M, (Q) of the Dirichlet problem for the wave equation,

v, =0 inQ, v,=g, ond, v,=0v,=0 onXp.

We then conclude

¢
0
—vu(z, s) Osv,(x, s) dsy ds
| [ aovtan o)

t
= / / [6%1/“(%7 5) Osvu(x, 8) + Vavu(x, s) - VaOsv,(z, s)} dx ds
0 Ja

1 [td
3| % [ [P o + (Fav(o )] dods
1 1
= 10y + 5 Va0 (Dl3a) > 0 forallt € (0,7].

In the case

1 1
3 1860 ()12 + B} IVov, ()2 =0 forallt € (0,T],

and together with the zero initial conditions, we would conclude v, = 0 in @, which
then implies g, = 0 on X, and thus u, = 0. But this contradicts p # 0. Therefore we
have

T
0 1 1
/0 /F TMU“(I’t) Opvy(,t) dsy dt = 3 100, (T) 1720y + B IVevu(T)|| 720y > 0,
and with
U, =u, inQ, Ow,=0dg, onY, g,=15U,, w,:=~yv,¢€ [H}O/2(E)]’

we finally conclude

T
) 1o}
(Vwy, )s = (W, yutu)s = / / I v, (z,t) Qv (2, t) dszdt > 0.
0 T Oy 0

The solution of the Dirichlet boundary value problem

Ou=0 inQ, u=g onX, u=0u=0 ond
is given by the representation formula

u(@,t) = (Syyu)(,t) = (Z29)(w,t) for (z,1) € Q,

where we can determine the yet unknown Neumann datum w = i u € [H 710/ (%)) as

the unique solution of the first kind boundary integral equation

1
(5.8) Vw= (§I+K)g on Y,
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i.e., of the variational formulation

(5.9) Vs = (3 14 K)g, ) for all p & [Ho, ()]

Solvability of the variational formulation (5.9) follows from Lemma 5.8, while unique-
ness of the solution is a consequence of Theorem 5.7. Instead of the variational
formulation (5.9), we may use the modified Hilbert transformation Hr as defined in

subsection 2.3 to end up with an equivalent variational problem to find w € [H ,10/ 2 X))
such that

(5.10) (Vs = (Hr(5 1+ K)g, s for all p € [Ho(D)]

Due to the inclusion H710/2(Z) C H,0(X), we obviously have [H ()] C [H,lo/2(2)]’
which will allow for a Galerkin-Bubnov space-time boundary element discretization
of (5.10).

Remark 5.9. For a solution u of the homogeneous wave equation with zero initial
data but inhomogeneous Dirichlet boundary conditions and a suitable test function v
we can write Green’s first formula as

T T
/ /8nmuvdxdt:/ /{8ttuv+ku~vzv} dx dt .
o Ja 0o Ja

In particular, for v = Jyu, this results in the energy representation
T
E(u):= / / [8ttu Ou+ Vau - Vwatu} dx dt
0o Ja
1 2 1 2
=3 10vu(T) 2202y + 3 [Vaw(T) 22y > 0

Note that this representation is the basis of the energetic BEM, see, e.g., [4]. Instead,
when using the particular test function v = Hpu and Proposition 2.1 this gives

T 8 T
/ / Hopuds,dt = / / [HTatu B+ Vou - HTun] dedt>0.
0 I 0 Q

u
ong

Specifically, for the single layer potential v = .w in R"*1\¥ we then conclude

T
(w, Hr V w)s, :/ / [HTﬁtuatu+Vmu~HTVmu} drdt>0.
0 Q

In fact, when considering the spatially one-dimensional case n = 1 we can prove the
following ellipticity estimate [29, 33]

for all w € [H}O/Q(Z)]'.

\%4 2
<w’Hva>Z > 1 Hw”[HYlO/Z(E)]'

Since the single layer boundary integral operator V : [H )10/ 2(2)] = Ho. (D) is invertible,
we can write the solution of the boundary integral equation (5.8) as

. 1
w ZVEVUZV71(§I+K)9:SL9’
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representing the Dirichlet to Neumann map with the interior Steklov—Poincaré oper-
ator

S; = v—l(% 1+ K) - Ho,(Z) = [HY (D).

Hence we find that
1
VS, = 5 I+K: 'H(),(E) — HO’(Z)

is invertible. As we can formulate a related boundary integral equation also for the
exterior Dirichlet boundary value problem,

1
Vagu = (—5 I+K)g onX,
this gives that the exterior Steklov—Poincaré operator
1
S, = — V*l(5 | —K) : Ho,(Z) = [H (D))
is invertible, and so is
1
5 |-K= 7VSG : 7‘[07(2) — Ho’(z) .
Consequently
1 1
VW = (5 I — K)(§ I+ K): Ho (E) = Ho (2),

and thus
1 1
W = v—l(5 = K)(5 1+ K) : Ho,(2) = HY* ().
This finally implies that the hypersingular boundary integral operator W : Hg (2) —

[H )10/ 2(E)]’ satisfies the inf-sup stability condition

Wo, n)s
611) Mol < sup :<”>
o£nery? ) IMEY2m)

for all v € Ho, (X).
The solution of the Neumann boundary value problem

Ou=0 in@, Oph,u=A onX, u=0u=0 on
is given by the representation formula

u(z,t) = (LN (z,t) — (D2)(z,t) for (z,t) € Q,

where we can determine the yet unknown Dirichlet datum z = vhu € Ho () as the
unique solution of the first kind boundary integral equation

1
=

Wz:(2 K)A on X.

Unique solvability follows as described above.
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6. Conclusions. In this paper, we presented a new framework to describe the
mapping properties of boundary integral operators for the wave equation. The results
are similar as known for the boundary integral operators for elliptic partial differential
equations, i.e., providing ellipticity and boundedness with respect to function spaces of
the same Sobolev spaces. This will be the starting point to derive quasi-optimal error
estimates for related boundary element methods which are not available so far, and
which will be reported in forthcoming work. Other topics of interest include efficient
implementations of the proposed scheme using the modified Hilbert transformation,
a posteriori error estimates and adaptivity, an efficient solution of the resulting linear
systems of algebraic equations, and the coupling with space-time finite element meth-
ods. Ongoing work also includes the numerical properties of the modified Hilbert
transformation and exploring other operators, like the usual Hilbert transform, in
order to regularize the boundary integral equations for the wave equation.
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