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A B S T R A C T

Nowadays, we witness the proliferation of edge IoT devices, ranging from smart cameras to autonomous
vehicles, with increasing computing capabilities, used to implement AI-based services in users’ proximity, right
at the edge. As these services are often computationally demanding, the popular paradigm of offloading their
tasks to nearby cloud servers has gained much traction and been studied extensively. In this work, we propose
a new paradigm that departs from the above typical edge computing offloading idea. Namely, we argue that
it is possible to leverage these end nodes to assist larger nodes (e.g., cloudlets) in executing AI tasks. Indeed,
as more and more end nodes are deployed, they create an abundance of idle computing capacity, which,
when aggregated and exploited in a systematic fashion, can be proved beneficial. We introduce the idea of
reverse offloading and study a scenario where a powerful node splits an AI task into a group of subtasks and
assigns them to a set of nearby edge IoT nodes. The goal of each node is to minimize the overall execution
time, which is constrained by the slowest subtask, while adhering to predetermined energy consumption and
AI performance constraints. This is a challenging MINLP (Mixed Integer Non-Linear Problem) optimization
problem that we tackle with a novel approach through our newly introduced EAI-ARO (Edge AI-Adaptive
Reverse Offloading) algorithm. Furthermore, a demonstration of the efficacy of our reverse offloading proposal
using an edge computing testbed and a representative AI service is performed. The findings suggest that our
method optimizes the system’s performance significantly when compared with a greedy and a baseline task
offloading algorithm.
1. Introduction

The rapid development of computing resources and the increas-
ing storage capacities of IoT devices has helped to develop as well
as improve many applications. This has the effect of moving data
processing from centralized cloud environments to decentralized edge
computing [1,2]. Today there is an increasing number of services that
require the collection and processing of data so as to extract valuable in-
formation. Indeed, the term edge intelligence has been recently coined
to describe a gamut of applications that follow this paradigm [3–6].

Given the computation load and the need for specialized ML li-
braries, a prominent paradigm for the implementation of these ser-
vices is edge computing, where the end devices (far edge) offload
the most demanding of these tasks to nearby servers, e.g., cloudlets.
In the last several years a remarkable number of studies explored
the potential, and the different facets, of such computation offloading
architectures [7–10]. One aspect that has started to gain a lot of traction
is that these far-edge devices when in large numbers, can also serve as
computation offloading terminals [11]. In fact, as more and more of

∗ Corresponding author.
E-mail address: tlagkas@cs.duth.gr (T. Lagkas).

these devices are deployed (billions of IoT nodes are expected) it is
only reasonable to consider scenarios where larger nodes (at the edge
or farther) send their tasks (perhaps after splitting them) to the far-edge
for execution.

Several researchers have worked on task offloading [12–14], most
of them offloading tasks from end devices to servers for processing.
Moreover, contributions in the development of different optimization
methods to minimize power consumption and latency while maxi-
mizing the performance of edge computing applications have been
presented [15–17]. On the contrary, ‘‘reverse’’ offloading, i.e., offload-
ing tasks from the cloudlets to the end devices (see Fig. 1) has not been
thoroughly studied.

In this work, this reverse offloading idea, namely offloading from
the server to the end devices, is proposed based on the formulation
of an optimization problem for the overall performance. Our goal is
to minimize the task completion time, which is defined as the longest
subtask time, while considering accuracy and energy constraints. Con-
sidering that the end devices have heterogeneous computing times
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Fig. 1. Reverse task offloading proposal.
because of the dynamic network parameters and different deep learning
models implemented, our optimization problem becomes challenging.

To provide a more specific definition of our optimization prob-
lem, we first optimize the task distribution percentage to minimize
the latency under energy consumption constraints. Then, we enrich
the optimization problem providing the flexibility to end-devices to
choose from a set of available deep learning models that are used for
object detection services on images. This choice affects the latency, the
consumed energy, as well as the mean accuracy of the system which
is added as a constraint in the optimization problem. Numerically, this
extra degree of freedom inserts a discrete variable in the optimization
problem, thus making continuous optimization algorithms unsuitable.
We solve this optimization problem using a novel adaptive offloading
approach that combines stochastic algorithms, namely Genetic Algo-
rithms (GA), with Linear Programming (LP). Finally, we also examine
the behavior of the algorithms in large-scale scenarios and propose
dedicated strategies. The outcomes demonstrate significant cost savings
and improvements in performance.

1.1. Methodology and contributions

We examine a wireless edge computing network model featuring
nodes with diverse object detector models and a single access point.
Within this network, each end device generates computer vision tasks,
capable of local execution with specific accuracy and delay require-
ments. The end devices are interconnected via links with different
capacities, consuming energy for the computation tasks.

To be more precise, we investigate a method where an edge server
distributes the workload among several end devices to optimize the
processing speed of AI workloads. To illustrate this service, we focus
on processing images (e.g., videos with a specific duration) that are
sent from edge servers to the end devices, on which an object detector
is applied to locate the objects of interest. Each end device possesses
an object detector with a different characteristic, namely the neural
network size, which practically means that every device disposes differ-
ent performance and efficiency. The edge server algorithm decides the
distribution or splitting of the images to the end devices. Making this
decision involves evaluating the potential performance gains, which are
2 
measured in terms of latency. For this purpose, we suggest employing
different optimization algorithms implemented in the edge server, to
improve the performance of such IoT networks.

Taking the conducted evaluation a step further, we develop com-
prehensive solutions implemented as ‘‘reverse’’ offloading algorithms.
These solutions are evaluated through a series of experiments con-
ducted on a wireless testbed consisting of 4 Raspberry Pis (RPis), along
with the use of state-of-the-art object detector applications. Addition-
ally, we leverage these experimental measurements to simulate larger
networks, or more specifically we perform a numerical validation in a
large-scaled testbed to illustrate the efficiency of the proposed methods.
The results prove that the latency has been significantly reduced by
our implemented strategy when compared to a greedy algorithm as
used in [18–20] and a fixed task offloading baseline algorithm [21].
Moreover, our offloading method, which we call EAI-ARO, tailors its
operation by taking resource availability into account. Therefore, this
work adds the following contributions:

• Performance Optimization. We propose the idea of reverse
offloading where powerful edge nodes split their tasks and as-
sign the subtasks to far-edge nodes. This is of great importance
when it comes to edge computing services and IoT networks.
The contribution of this paper consists in the formulation of
optimization problems for finding the minimum-time assignment
strategy while respecting accuracy and energy constraints. We
design an adaptive reverse offloading algorithm (EAI-ARO) for
the above problem which is adaptable to various AI tasks, diverse
edge devices with varying hardware and processing capabilities,
as well as resource limitations.

• Distribution Strategies. We propose strategies for the distri-
bution of the total task load based on the dynamic network
conditions and the number of end devices. More specifically,
when the number of end-devices turns the solution of the opti-
mization problem to become too costly, we split the end-devices
into clusters or more specifically into groups of devices and we
optimize the distribution in each of these clusters separately.
Moreover, we examine how the network conditions impact the
frequency of optimization runs, i.e., the batch-splitting step.
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The proposed architecture and decision framework is evaluated in
our wireless testbed with a common deep learning (object detection)
task and a benchmark COCO dataset [22]. The experiments show that
our proposed methods achieve considerable cost savings and perfor-
mance gains. Furthermore, the results also illustrate that the EAI-ARO
algorithm can be implemented in various edge computing topologies
with many end devices, different processing capabilities and different
kinds of AI tasks.

The rest of the paper is structured as follows: In Section 2, we
focus on exploring the literature. An introduction to the formulation
of the optimization problems along with the proposed algorithms is
provided in Section 3. Then, we present the results of our distribution
mechanisms in Section 4. Last, in Section 5 we conclude our work.

2. Related work

This section presents different task offloading optimization ap-
proaches in edge computing networks used in recent literature.

Computation Offloading. Task offloading involves identifying spe-
cific tasks or workloads that can be transferred from one device to
another, ‘‘traditionally’’ from far edge to edge nodes. For instance the
study [23] explored the domain of Multi-Access Edge Computing (MEC)
enhanced by 5G technology. One effective method according to the
authors in reducing latency was to offload computing tasks from end
devices to edge servers within the edge network. This work introduced
a Particle Swarm Optimization (PSO) based task offloading technique,
which provided low latency and energy efficiency by optimizing the
offloading process. In [24], the problem of optimizing computation
offloading and resource allocation in a dynamic multi-user (MEC)
system was tackled. The authors want to minimize the total energy
consumption while taking into account the uncertain resource demands
of different tasks and delay constraints. They formulate the problem
as a MINLP problem and propose a Q-learning-based reinforcement
learning method to solve it. To address the performance limitations of
mobile devices (MDs) with limited battery and computing resources,
the authors in [25] addressed the problem of optimizing computational
offloading in MEC networks. By offloading tasks to neighboring mobile
edge servers (MES), the authors’ fast and energy-efficient deep learning-
based offloading technique (EFDOT) seeks to minimize overall costs,
including service delay e and energy consumption. Real-time mobile
application processing by investigating a MEC network opened new
possibilities by Unmanned Aerial Vehicles (UAVs) [26]. The authors
emphasize on minimizing system-wide computation costs in a dynamic
environment where users generate tasks with time-varying probabilities
by optimizing both edge server deployment and multi-user computa-
tion offloading. All these studies show the gains of the ‘‘traditional’’
offloading approaches attempted to optimize some of the objectives
our work tries to optimize like minimizing the latency of the task
execution, all with different algorithms like the PSO or with deep
learning approaches. An approach that has been overlooked is the
‘‘reverse’’ offloading namely offloading from cloudlets to far edge de-
vices. Furthermore, our work introduced a novel optimization method
designed to enhance the efficiency of this reverse offloading approach.

Cooperative offloading. This approach emphasizes collaboration
between the far edge and edge nodes. Collaborative caching in an
EC context has been the subject of several researchers [27], with the
goal of reducing the overall system cost, which includes costs for
quality of service (QoS) and data migration overhead. To address this
complex problem, an online solution based on Lyapunov optimality
conditions was devised, called the collaborative edge data caching
problem (CEDC). In [28] the issue of computational complexity and
resource constraints associated with artificial intelligence (AI) algo-
rithms, which present many difficulties in augmented reality systems,
was studied. However, the rise of MEC offers a potentially effective
way to tackle these problems. In order to improve recognition accu-

racy, minimize inference delays, and consume less energy, this paper

3 
introduced a framework for video-based AI inference processes in MEC
systems. To this end, a MINLP problem was formulated. The inference
complexity model and the accuracy model were derived and improved
through experimentation, leading to an iterative solution approach
using alternating optimization. In [29] an attempt to address privacy
concerns in MEC systems by increasingly adopting federated learning
(FL) is presented. The challenge lies in finding a balance between the
learning accuracy of FL and energy consumption usage. To address this
trade-off, this paper presented the FL-TD3 framework, specifically de-
signed for large spaces of states and energies in a continuous domain. A
framework [15] was introduced to enable collaborative task execution
in Internet of Things (IoT) networks with limited resources, specifically
addressing challenges in edge data analytics. The authors proposed an
auction-based algorithm to optimize task-node assignments, ensuring
optimal execution accuracy and minimal delays. Another, cooperative
task execution approach in [30] ensures the effective transfer of edge
tasks to nearby IoT devices and the efficient execution of local IoT tasks.
The authors highlighted the significance of two conditions for IoT-
assisted edge computing to succeed: maintaining the integrity of local
IoT tasks and maximizing the use of computing resources to increase
edge service throughput. Finally, all the above works execute different
tasks like AI tasks or augmented reality tasks in a collaborative fashion
while offloading from the far edge to the edge nodes (eg., edge servers).
Our work has a different approach while having a non-cooperative
fashion by executing the AI tasks sent from the cloudlet locally on the
far edge device. The key component of this approach lies in finding
the optimal task splitting decision according to the current dynamic
systems parameters.

Reverse offloading. Offloading from cloudlets to far-edge devices
has not been thoroughly studied, although some attempts to imple-
ment reverse offloading have been conducted especially in VEC (Ve-
hicular Edge Computing). In [11] a reverse offloading framework
was presented to reduce the amount of computational workloads on
VEC servers by offloading the vehicular computations to Cooperative
Vehicle-Infrastructure Systems (CVIS). This framework attempted to
minimize the latency of processing the workloads by optimizing the
reverse offloading and resource allocation. To address the challenge
of limited computational resources of VEC servers, because of the
growing amount of sensor data generated, another reverse computing
offloading framework making use of the computer power of vehicles
was introduced [31]. In this method offloading decision-making and
resource allocation have been studied, including Q-Learning-based
algorithms and constrained Markov decision processes. It is clear that
not many studies have been conducted which highlight the reverse
offloading approach, especially when handling AI workloads. In this
work, we try to enhance this approach for AI applications, such as Deep
Learning, which have not been examined thoroughly in the last years.

In conclusion, while recent literature provides valuable information
on various aspects of edge computing, task offloading, and optimization
methods, a particular need that our work studies derives from the
gaps in the literature on reverse offloading. Our work contributes
significantly to filling these gaps by presenting new reverse task of-
floading algorithms that specifically address the challenges of latency
minimization while taking into account accuracy and energy consump-
tion constraints in the context of artificial intelligence tasks, showing
their effectiveness in practical scenarios through experimentation in a
wireless testbed.

3. Model and problem formulation

3.1. Optimal task distribution

We introduce our system model and the mathematical formulation
of the respective problem. In Table 1, we show all the key parameters
and decision variables we use. The system consists of a set  of 𝑁
devices for which a batch of images 𝐵 or else the Batch step is sent for
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processing from the edge server. The task to be executed by the devices
is an AI task or more precisely an object detection task. Every device 𝑖
n our system implements a deep learning model (neural network) for
bject detection. The models may be of different size, thus differ in their
omputational performance, average accuracy and energy consumption
see Table 3). For every device 𝑖 ∈  , the neural network used is
escribed via its index 𝑦𝑖 ∈ , where  = {1, 2,… ,𝑀} is a set of

neural networks.
Our purpose is to obtain a system with different processing capabil-

ties to reveal sharp trade-offs. In more detail, the devices of our system
mplement the Yolov8 [32] object detector. The devices with different
haracteristics and configurations provide in real-time the confidence
accuracy) of the detection executed on the transmitted images by the
dge server.

For each end device 𝑖, we introduce an optimization variable 𝑥𝑖 ∈
[0, 1], which represents the portion of 𝐵 sent to the end device 𝑖 ∈
[1, 𝑁]. We gather all these variables in a vector 𝐱 = [𝑥1,… , 𝑥𝑁 ] ∈
[0, 1]𝑁 . Our goal is to minimize the maximum latency, i.e., the time
to process all the images sent from the server to the end devices. For
each device the latency is defined here as the total time needed for the
communication with the server (𝑇 𝑖

𝑡𝑥) and the execution of the object
detection process (𝑇 𝑖

𝑑𝑙), i.e.,:

𝐿𝑖(𝑥) = 𝑥𝑖𝐵𝑇
𝑖
𝑡𝑥 + 𝑥𝑖𝐵𝑇

𝑖
𝑑𝑙(𝑦𝑖) = 𝐶𝑖𝑥𝑖,

here:
𝐶𝑖 = 𝐵(𝑇 𝑖

𝑡𝑥 + 𝑇 𝑖
𝑑𝑙(𝑦𝑖)).

Moreover, in real-life applications, one further needs to take into
account the available energy of each device to ensure that the device
has actually the capacity to perform the attributed tasks. This adds an
extra constraint for each device, s.t.:

𝐸𝑖(𝑥𝑖, 𝑦𝑖) ≤ 𝐸𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒,

where:
𝐸𝑖(𝑥𝑖, 𝑦𝑖) = 𝑥𝑖𝐵𝐸(𝑦𝑖)

and 𝐸(𝑦𝑖) represents the energy consumed for the object detection
process of one image by the neural network 𝑦𝑖.

Then, the optimization problem can be expressed as follows:

min
𝑥

max
𝑖

𝐶𝑖𝑥𝑖

s.t. 𝐸𝑖(𝑥𝑖, 𝑦𝑖) ≤ 𝐸𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 𝑖 = 1,… , 𝑁

∑𝑁
𝑖=1 𝑥𝑖 = 1

𝑥𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝑁

(1)

o avoid the non-differentiability of the 𝑚𝑎𝑥 operator in (1), we re-
ormulate the optimization problem according to Taylor and Bendsøe
33]. We introduce a positive auxiliary optimization variable, denoted
0 ∈ [0,∞), which serves both as the cost function and as a uniform
ound for all devices’ latency. The new optimization problem reads:

min
𝑥,𝑥0

𝑥0 (2.1)

s.t. 𝐶𝑖𝑥𝑖 ≤ 𝑥0, 𝑖 = 1,… , 𝑁 (2.2)
𝐸𝑖(𝑥𝑖, 𝑦𝑖) ≤ 𝐸𝑖

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 𝑖 = 1,… , 𝑁 (2.3)
∑𝑁

𝑖=1 𝑥𝑖 = 1 (2.4)
𝑥𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝑁 (2.5)
𝑥0 ≥ 0 (2.6),

(2)

hich is a linear programming (LP) problem and can be solved via
tandard dedicated algorithms (SIMPLEX, etc.) [34–36]. In more detail,
he objective function (2.1) contains merely the auxiliary variable
0. The additional constraints due to the problem reformulation are
hown in (2.2). Then, the energy constraints, ensuring that each device
isposes the required energy to perform the attributed tasks, are shown

n (2.3). Eq. (2.4) imposes the sum of portions {𝑥𝑖}𝑖=1,…,𝑁 of 𝐵 sent to

4 
able 1
ey parameters and variables.
Description Parameters/Variables

𝑥𝑖 Percentage of the total number of images for every device 𝑖.
𝐵 Batch of images for processing (Batch step).
𝑇 𝑖

Tx Time to send a single image to device 𝑖.
𝑇 𝑖

dl(𝑦𝑖) Time for executing the object detector on a transmitted image on
device 𝑖, using the neural network 𝑦𝑖.

the end device to be equal to 1. Finally, Eqs. (2.5) and (2.6) are bound
constraints for the optimization variables.

Our optimization method is an adaptive offloading technique that
monitors the device and network characteristics and optimally dis-
tributes tasks among devices based on the current condition of the
system.

Remark. In the above formulation for the latency, a major assumption
is made. The network characteristics (𝑇 𝑖

Tx) are assumed to remain
constant until the end of the task execution process. This reasonable
assumption simplifies significantly the formulation and the solution
of the optimization problem. Our experimental results, presented in
the sequel, validate that this does not affect significantly the expected
performance, as long as the network speed fluctuates within some
expected interval.

3.2. Optimal task distribution and neural network selection

In Section 3.1, the neural network index 𝑦𝑖 for each device is
considered to be fixed, i.e., each device implements a predetermined
object detector. In this Section, we add a discrete optimization variable,
denoted as 𝑦 = [𝑦1,… , 𝑦𝑁 ], that represents the neural network selection
used for the object detection at each end device.

In more detail, this variable represents the object detector model
files which have different sizes and are located on every end device.
The edge server in this case not only provides the splitting of the images
but further decides for every end device which model it should use in
order to optimize the overall performance.

For problem (2), which does not include a predefined object detec-
tion accuracy constraint the optimal choice of neural network is trivial,
since the fastest neural network is also the less energy consuming and
constitutes evidently the optimal choice. However, this choice produces
the worst possible mean accuracy, which is also a critical performance
parameter to consider. To obtain a meaningful problem, we define the
normalized mean accuracy of the whole object detection process as:

𝐴(𝑥, 𝑦) =
𝑚𝐴𝑃 (𝑥, 𝑦) − 𝑚𝐴𝑃𝑚𝑖𝑛
𝑚𝐴𝑃𝑚𝑎𝑥 − 𝑚𝐴𝑃𝑚𝑖𝑛

, (3)

here:
𝑚𝐴𝑃 (𝑥, 𝑦) =

∑

𝑖
𝑚𝐴𝑃 (𝑦𝑖)𝑥𝑖 (4)

nd 𝑚𝐴𝑃𝑚𝑖𝑛, 𝑚𝐴𝑃𝑚𝑎𝑥 represent the minimum and maximum mean Av-
rage Precision possible, i.e., the average precision provided by the
mallest and largest neural network correspondingly. Then, we add
n accuracy constraint stating that the minimum normalized accuracy
chieved in the processing procedure must be greater than a threshold
alue defined by the user. The new optimization problem reads:

min
𝑥,𝑥0 ,𝑦

𝑥0

s.t. 𝐶𝑖𝑥𝑖 ≤ 𝑥0, 𝑖 = 1,… , 𝑁

𝐸𝑖(𝑥𝑖, 𝑦𝑖) ≤ 𝐸𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 𝑖 = 1,… , 𝑁

𝐴(𝑥, 𝑦) ≥ 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑖𝑛 ∈ [0, 1]
∑𝑁

𝑖=1 𝑥𝑖 = 1

𝑥𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝑁

(5)
𝑥0 ≥ 0
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3.3. Solution of the mixed integer non-linear optimization problem

The optimization problem (5) is a MINLP which is not suited for
gradient-based algorithms. Treating the discrete variables as continuous
and then rounding the optimized values to the closest integers does not
guarantee the optimality nor the satisfaction of the constraints.

An alternative option consists in adopting stochastic algorithms,
which can be adjusted to treat both discrete and continuous variables.
However, several limitations emerge under this perspective. First, the
computational complexity increases exponentially with the number of
discrete optimization variables and it is even worse for continuous
variables. Second, handling several constraints in stochastic algorithms
is tricky and it can lead to poor convergence. Consequently, since
the speed of the algorithm is a crucial parameter for the practical
applicability of our method, using purely stochastic algorithms is not
relevant.

To circumvent the aforementioned inconveniences we propose a
mixture of a stochastic algorithm and linear programming, that is able
to handle problem (5) efficiently. We exploit the fact that, for a fixed
choice of neural network indices 𝑦, problem (5) is a linear programming
problem in low dimension and can be solved rapidly using dedicated
algorithms. Therefore, we delegate to the stochastic algorithm only the
search of the optimal 𝑦, while all the rest information (optimal task
distribution, constraints satisfaction) derives from solving, for fixed 𝑦,
the following linear programming problem:

min
𝑥,𝑥0

𝑥0

s.t. 𝐶𝑖𝑥𝑖 ≤ 𝑥0, 𝑖 = 1,… , 𝑁

𝐸𝑖(𝑥𝑖, 𝑦𝑖) ≤ 𝐸𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 𝑖 = 1,… , 𝑁

𝐴(𝑥, 𝑦) ≥ 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑖𝑛 ∈ [0, 1]
∑𝑛

𝑖=1 𝑥𝑖 = 1

𝑥𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝑁

𝑥0 ≥ 0

(6)

To the best of our knowledge, this approach is novel in literature, at
least in the framework of Reverse Task Offloading.

For the numerical implementation of our approach, we have used
a standard ‘‘𝜇+𝜆’’ Genetic Algorithm (GA) [37–39]. GA is a population-
based algorithm, where a set of candidate solutions (population)
evolves during the iterations of the algorithm (generations) until a
termination criterion is satisfied. The population evolution is prin-
cipally determined by two nature-inspired operations: recombination
and mutation. The recombination operation combines randomly chosen
members of the current population (parents) to create ancestors for
the next generation (offsprings), while mutation introduces random
changes in a small portion of the ancestors. For the next generation, the
best-performing members among parents and children are chosen, such
that the total population size remains constant. Iterating this procedure
is expected to overwrite characteristics of dominant solutions over
the population, such that after some point no further improvement is
achieved, indicating algorithmic convergence.

The pseudo-code of the EAI-ARO algorithm is shown in Algorithm
1. In line 1, the initial population 𝐵(0)

𝑝 is created. It is composed of 𝜇
𝑦 vectors containing combinations of the neural network indices. Lines
2–13 contain the optimization loop that iterates until some convergence
criterion is satisfied. In every iteration, steps 3–12 are repeated. More
precisely, lines 3–9 describe the creation of the offsprings population.
In line 4, two members of 𝐵(𝑔)

𝑝 are randomly chosen to become parents
𝑃𝑖 for the new offspring. Applying the recombination (via crossover)
operator on 𝑃𝑖 we create the offspring 𝑂𝑖 in line 5. Then, for a small
percentage of offsprings, randomly chosen, we apply mutation in line 6
to obtain the final offspring 𝑂̄𝑖. In order to compute the fitness function
for 𝑂̄𝑖, we solve the LP problem (6) in line 7, then compute the latency
in line 8. Once the loop has been completed, we gather all offsprings

(𝑔)
and their corresponding performance in the offspring population 𝐵𝑜
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Table 2
Genetic Algorithm parameters.

Optimization parameters Values

Population size 100
Number of parents (𝜇) 50
Number of children (𝜆) 50
Number of mutants 10
max number of iterations 500
max number of successive refused iterations 100

in line 10. In line 11, we apply the so-called ‘‘𝜇 + 𝜆’’ selection operator
to chose the best 𝜇 members among the parents and ancestors. In line
12, we update the generation index before starting the new iteration.

Algorithm 1 Mixed GA-LP algorithm (EAI-ARO)

1: g:=0, create initial population 𝐵(0)
𝑝

2: loop:
3: for 𝑖 ∶= 1 to 𝜆
4: random choice of parents 𝑃𝑖
5: 𝑂𝑖 = recombination(𝑃𝑖)
6: 𝑂̄𝑖 = mutation(𝑂𝑖)
7: solve LP problem (6) for 𝑂̄𝑖
8: calculate fitness 𝐹𝑖 for 𝑂̄𝑖
9: end
0: 𝐵(𝑔)

𝑜 = {𝑂̄𝑖, 𝐹𝑖}𝑖=1,...,𝜆
1: (𝜇 + 𝜆): 𝐵(𝑔)

𝑝 = best(𝐵(𝑔)
𝑝 , 𝐵(𝑔)

𝑜 , 𝜇);
2: g:=g+1
3: until convergence criterion;

After extensive numerical experiments, our choice of parameters for
Algorithm 1 appears in Table 2. Concerning convergence criteria, we
terminate our algorithm after a maximum number of successive refused
iterations, i.e., where the objective function does not reduce, or after
some total number of iterations.

3.4. Greedy reverse task offloading algorithm

We follow the methodology adopted in [18] and compare our
proposed solution with a greedy algorithm, adjusted to fit the setup
of our scenario. The used greedy algorithm assumes a fixed choice of
neural network indices 𝑦 and determines the task distribution variables
𝑥𝑖 based on some notion of optimality [40]. It is composed of two steps
detailed in the sequel.

First, the task distributions 𝑥𝑖 are determined to be optimal for
he latency objective, neglecting the accuracy and energy constraints,
.e., they solve the optimization problem:

min
𝑥

max
𝑖

𝐶𝑖𝑥𝑖

𝑠.𝑡.
∑𝑁

𝑖=1 𝑥𝑖 = 1
(7)

The analytical solution of (7) reads (see Appendix):

𝑥𝑖 =
𝐶
𝐶𝑖

, where: 𝐶 = 1
∑𝑛

𝑖=1
1
𝐶𝑖

. (8)

Then, we apply a heuristic step to handle the accuracy and energy
onstraints. In case the initial task distribution violates the accuracy
onstraint, the algorithm gradually redistributes tasks by assigning
ewer tasks to devices with lower accuracy and more tasks to devices
ith higher accuracy, until the accuracy constraint is satisfied. Finally,

he algorithm ensures that the energy constraint for each device is
espected by setting an upper bound for each variable 𝑥𝑖 as: 𝑥𝑚𝑎𝑥𝑖 =
𝐸𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝐵𝐸(𝑦𝑖)

, which is the highest task distribution respecting the energy
constraint for each device.
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Fig. 2. Testbed topology.
4. Results

In this section, we present both experimental and numerical results
using the proposed adaptive offloading approach. Numerical results
derive from solving numerically the optimization problem at stake
using artificial network values for each link between the edge server
and end device. On the other hand, experimental results correspond
to the findings of our method when implemented in our testbed under
real-world network conditions.

In the first step, we present our testbed and compare the EAI-ARO
with the fixed offloading baseline and greedy algorithm. The fixed
offloading baseline algorithm offloads a predetermined percentage or
portion of the task to each end device, regardless of its current network
condition. More specifically, we evenly distribute tasks among devices
in our testbed. Then, we examine how the expected gain in time
varies with the characteristics of the network. Finally, we examine
the efficiency of our approach for large-scale systems and propose a
clustering technique that maximizes the gain in latency.

4.1. Testbed

We present an edge computing setup that consists of four end
devices, an edge server and a Wi-Fi access point, as shown in Fig. 2.

The end devices correspond to Raspberry Pi’s 4 Model B with 4 GB
of RAM along with the corresponding wireless network connections.
They perform object detection tasks using YOLOv8, a deep-learning
object detector. They use YOLOv8, a deep-learning object detector,
to carry out object detection tasks. In more detail, the input for the
YOLOv8 model corresponds to a 𝑛 × 𝑛 × 3 array of image pixels, each
of which can be represented as an integer or floating-point value. After
downsampling this input array, a grid of cells is produced that suggests
labels and bounding boxes for the objects in the dataset. As a result, a
set of bounding boxes for the identified objects is produced, completed
with labels and confidence values. Each end device may dispose several
6 
Table 3
Characteristics of object detection models.
𝑦𝑖 index Input image size 𝑚𝐴𝑃 (𝑦𝑖) 𝐸(𝑦𝑖) (W/image)

1 224 × 224 × 3 0.325 0.6
2 320 × 320 × 3 0.415 1.22
3 480 × 480 × 3 0.481 2.16
4 640 × 640 × 3 0.531 4.8

YOLOv8 models, implemented with different input image sizes, energy
consumption values and mAP values, as shown in Table 3.

The edge server, which is essentially a laptop powered by an i7-
12700H CPU processor equipped with 32 GB of RAM, distributes
batches of images (picked from the COCO dataset) for object detection
to the four end devices simultaneously. The results, which include la-
bels for every processed image and the corresponding bounding boxes,
are then transmitted back by the end devices, the device that finishes
the processing of the images last is considered as the latency.

The total batch corresponds to 20 000 images of about 150 KB
and every batch step equals 2000 images, i.e., the process completes
after 10 batch steps. At the end of every task execution process, an
optimization problem is solved taking into account the current network
state (see Fig. 3), i.e., the inherent dynamic problem is approximated
as a series of static problems. To better explain the imbalance between
devices, each device in the network due to distance to the access point
has a different range of network speed values. Specifically, those lo-
cated closer to the access point benefit from a stronger connection and
consequently higher network speeds, whereas devices situated further
away experience weaker connections and reduced network speeds. The
whole distribution mechanism is coded in Python.

4.2. Optimal task distribution

In our first example, each end device 𝑖 is attributed the corre-
sponding object detector with index 𝑖, i.e., 𝑦 = [1, 2, 3, 4] is considered
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Fig. 3. Network status at every batch step.
Fig. 4. Comparison of latency at each batch step between the fixed offloading, the greedy and the EAI-ARO algorithm.
as constant. Moreover, the available energy is assumed to be equal
to 20 000 (mAh) for all end devices. We search to optimize the task
distribution between the devices solving the optimization problem (2)
at every batch step for the testbed described in Section 4.1.

In Fig. 4, we plot the numerical evolution of the latency at every
batch step for the fixed offloading, the greedy, and the EAI-ARO algo-
rithm. First, let us note that as long as the energy constraints remain
inactive, both the used greedy and the EAI-ARO algorithms solve the
optimization problem (2), i.e., the provided solutions are equivalent.
Moreover, one can observe that their solution outperforms significantly
the fixed task offloading at every batch step. In average, the gain
in latency equals 73.5% for the numerical results and 72.3% for the
experimental results (see Table 4).
7 
In Fig. 5, we also provide the corresponding evolution of 𝑥𝑖, i.e., the
task distribution for each device at every batch step. It is obvious that
due to the fact that device 1 has nearly 50% better network connection
on average compared to the other devices, this leads to receiving almost
56% on average more task load at each batch step.

The above gain highlights the importance of employing the EAI-
ARO algorithm when handling time-sensitive applications. In fact, in
case of a very bad connection between the server and some end
device, which additionally may be provided with a slow object de-
tection model, the fixed offloading algorithm may result in excessive
processing time. This situation is avoided in the EAI-ARO approach
by providing a sufficiently low task percentage to the corresponding
device.
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Fig. 5. Evolution of distributions at every batch step and device.
Table 4
Average latency for the results in Fig. 4.

Results Fixed offloading (s) Greedy (s) EAI-ARO (s) Gain (%)

Numerical 785 208 208 73.5
Experimental 779 215 215 72.3

4.3. Optimal task distribution and neural network selection

In the following example, beyond optimizing the task distribution,
each end device is further provided with the complete set of the
available object detectors and the selection at each batch step, using
the EAI-ARO method, is determined by the solution of the optimization
problem (5). We examine the gains of our proposed method for two
different thresholds (𝐴𝑚𝑖𝑛) of the accuracy constraint, which correspond
to different fixed selections of neural networks for the greedy and the
fixed offloading methods. More specifically, we examine the case of
𝑦 = [1, 1, 1, 1] and 𝑦 = [2, 2, 3, 4] that provide 𝐴𝑚𝑖𝑛 = 0 and 𝐴𝑚𝑖𝑛 = 0.47
correspondingly.

Once more, we test our approach both numerically and experi-
mentally. The obtained results (see Table 5) show that the proposed
approach provides significant gains in terms of latency, compared to
the greedy and fixed task distribution method. In Fig. 6, we plot the
evolution of the latency at every batch step for all methods. As ex-
pected, the gain depends strongly on the specified accuracy threshold.
In more detail, setting 𝐴𝑚𝑖𝑛 = 0 turns the optimal solution of 𝑦 to
become trivial and equal to [1, 1, 1, 1], i.e., all three methods use the
same neural networks. As we mentioned before if all devices dispose
of the needed energy to perform the attributed tasks, the EAI-ARO
and greedy approach results coincide. On the other hand, when the
accuracy threshold is set to 𝐴𝑚𝑖𝑛 = 0.47, the optimal 𝑦 choice is non-
trivial, therefore there is margin for further gain. This is reflected in
the results in Table 5. As expected the gain of the EAI-ARO method
with respect to the greedy approach is smaller compared to the fixed
task offloading algorithm. Finally, in Fig. 6(b) one may observe a
sudden increase in latency for all methods at different batch steps.
This increase corresponds to instances when some energy constraint
becomes active, i.e., some device runs out of battery. It is clear from
the latency evolution that the EAI-ARO algorithm is more robust since
it is less affected compared to the other two methods.
8 
4.4. Impact of network characteristics

In this section, we test numerically the efficiency of our approach
under different network conditions. In more detail, instead of a network
that varies for each connection between the server and the end devices,
we consider uniform network conditions. Three different scenarios are
examined, shown in Table 6.

For each scenario, we first optimize the task distribution considering
fixed the Neural Network selection (see Section 4.2). The results are
shown in Table 7. As expected, the gain is reduced for slower networks,
since the object detection task becomes more significant than the image
transmission for the latency.

Then, we also provide the possibility to optimize the choice of the
Neural Network used. The results appear in Table 8. One may verify
therein the expected tendencies concerning the network speed, as well
as the accuracy limit.

4.5. Large-scale testbed

In the previous sections, we validated the efficiency of our proposal
using a testbed comprised of four end devices. In order for the method
(EAI-ARO) to be applicable for real-life applications, we need to further
examine the efficiency of the approach in large-scale testbeds. This
is achieved in a numerical framework described in the sequel of this
section.

4.5.1. Clustering technique
For small testbeds, as the one in Section 4.1, the time for the

resolution of the MINLP problem can be assumed negligible compared
to the processing time of the task. However, as the number of end
devices increases, the cost of the Genetic Algorithm is expected to
increase exponentially, in accordance to the possible combinations of
indices composing the 𝑦 vector. It shall be expected that the total time
(processing + solution of MINLP problem) increases after some limit
value of end devices, which also depends on the characteristics of the
particular application (network status, batch step, testbed, etc.). When
the number of end devices exceeds this limit value, devices shall be
clustered to maximize the possible gain. For each cluster, a separate
MINLP problem is solved.

In our numerical test for detecting the optimal cluster size, we
consider a testbed composed of 128 end devices. For the network status,
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Fig. 6. Evolution of latency for different accuracy thresholds for all task distribution methods.
Table 5
Average latency and gain for the results in Fig. 6.

Experiments Accuracy threshold Fixed offloading (s) Greedy (s) EAI-ARO (s) Gain (Fixed) (%) Gain (Greedy) (%)

Numerical 0 238.6 238.6 169.1 29.1 0
Experimental 0 268 268 200 25.3 0
Numerical 0.47 707 555.7 397.7 43.7 28.4
Experimental 0.47 740.1 592 438.3 40 28.9
Table 6
Uniform network scenario characteristics.

Network average speed (MB/s) Network speed interval (MB/s)

5.9 4.8–7
3.0 2.2–3.8
0.35 0.2–0.5

Table 7
Average latency for the uniform network scenario.

Inteval (MB/s) Fixed offloading (s) EAI-ARO (s) Gain (%)

4.8–7 610 178 70.1
2.2–3.8 745 285.2 65.3
0.2–0.5 824 400 51.4

we consider random values varying between the limit measurements
in Fig. 3. Provided the stochastic nature of our algorithm, to achieve
reliable results, we execute the process 200 times for each cluster size
in the set {4, 8, 16, 32, 64, 128}.

The outcomes of the calibration procedure are illustrated in Fig. 7.
The cluster latency reduces as the number of devices in each clus-
ter increases. This is expected since the degrees of freedom in the
MINLP problem increases and the optimization algorithm (EAI-ARO)
can achieve more efficient distributions and 𝑦 combinations. However,
gains are not significant for more than 16 end devices. On the contrary,
the curve representing the total time presents a minimum value that is
achieved for 32 end devices. This value is considered as the optimal
configuration for the numerical tests in Section 4.5.2.

4.5.2. Numerical validation
In this section, we create numerically testbeds in our heterogeneous

scenario for 32 end devices which is the optimal configuration accord-
ing to Section 4.5.1 and compare our EAI-ARO distribution proposal
with the greedy and the uniform task offloading algorithm. The creation
of the testbeds is performed by replicating the characteristics of the
architecture described in Section 4.1. As in Section 4.5.1, the artificial
network status is constructed by considering random values varying
between the limit measurements in Fig. 3.

First, we examine the optimal task distribution for fixed object
detection models, solving the optimization problem (2) for different
testbeds. The results appear in Table 9, validating a significant gain of
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57.2% compared to the fixed task offloading algorithm. We highlight
here that the solution of the optimization problem (2), which is a Linear
Programming problem, requires negligible time to reach the global
optimum and it can be extended without problem for much larger
testbeds.

Then, we provide the possibility for every device to implement
any of the Neural Networks described in Table 3, solving the MINLP
problem (5) for different testbeds and two accuracy limits. We highlight
that for more than 32 end devices, which is the optimal cluster size
found in Section 4.5.1, the clustering technique is applied. For the
trivial 𝑦 selection corresponding to 𝐴𝑚𝑖𝑛 = 0 the results are shown in
Table 10. One can verify that our proposed method provides a gain
in terms of latency of 39.2% compared to the fixed task offloading
algorithm. For the non-trivial case of 𝐴𝑚𝑖𝑛 = 0.58 the results are
also shown in Table 10. The gain in latency increases to 40% when
compared to the fixed algorithm and 13.5% compared to the greedy
algorithm, which verifies once more that the additional optimization
variables corresponding to the object detection models enhance the
performance of the system without reducing the mean accuracy.

Reverse offloading can be beneficial in scenarios where the compu-
tational resources of edge devices are either idle or more effective for
specific tasks than centralized cloud servers. In such cases, the adoption
of reverse offloading is recommended. This method minimizes latency
and prevents bottlenecks by reducing the requirement for continuous
data transmission to the cloud, which is especially helpful in situations
where network bandwidth is limited. To achieve faster response times,
reverse offloading is particularly helpful for tasks requiring real-time
processing or when the edge devices are located closer to the data
source. Furthermore, by utilizing local processing power, this technique
can increase energy efficiency by lowering the total energy consump-
tion related to cloud computing and data transfer. Systems that use
reverse offloading instead of the traditional task offloading in some
circumstances can achieve better load balancing, improve reliability
through localized processing, and provide more immediate feedback.

5. Conclusion

We developed an effective optimization-based distribution mecha-
nism for reverse task execution of AI applications in resource-
constrained IoT networks. The motivation behind this work derives
from the rapid increase of computational power and the improved
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Table 8
Average latency for the uniform network scenario and different accuracy thresholds.

Interval (MB/s) 𝐴𝑚𝑖𝑛 Fixed offloading (s) Greedy (s) EAI-ARO (s) Gain fixed (%) Gain greedy (%)

4.8–7 0 98 85 85 13.2 0
4.8–7 0.58 620.1 445.5 378.2 28.1 15.1
2.2–3.8 0 113 105 105 7 0
2.2–3.8 0.58 634.1 468.5 398.3 26.1 14.9
0.2–0.5 0 309 290 290 6.1 0
0.2–0.5 0.58 780.2 579.8 502.3 25.7 13.2
Fig. 7. Calibration of the optimal cluster size.
Table 9
Average latency for 32 devices and fixed models.

Fixed offloading (s) Greedy (s) EAI-ARO (s) Gain (%)

101 43.2 43.2 57.2

storage capacity of IoT devices, resulting in new capabilities for IoT
applications. The distribution mechanism called EAI-ARO (Edge AI-
Adaptive Reverse offloading) is designed to determine the optimal
task-splitting strategy in a systematic fashion, solving corresponding
optimization problems. We propose a novel approach that combines
different algorithms to solve the formulated MINLP-type optimization
problem. We fully assessed the performance of our proposal, utilizing
it in an object detection application within a Raspberry Pi testbed.
Furthermore, we executed a numerical validation in a large-scale
testbed to determine the scalability of our method for real-world
systems and suggested a strategy based on clustering of end devices.
The results unequivocally demonstrate that our mechanism surpasses
the fixed task offloading baseline and the greedy algorithm among end
devices and increases the ability to handle AI workloads improving
significantly the system’s overall performance. Our findings open up
fascinating new directions for future research. These include the design
of task distribution mechanisms based on multi-objective optimization
problems, accounting both for latency minimization, energy efficiency,
and accuracy maximization, which can be implemented and used for
real-time applications without the use of cloud resources. Additionally,
a predictive offloading method, where decisions are based on machine
learning models predicting future network conditions, could further
enhance the efficiency of our reverse offloading computing systems.
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Table 10
Average latency for 32 devices and different accuracy thresholds.

Accuracy threshold Fixed offloading (s) Greedy (s) EAI-ARO (s) Gain fixed (%) Gain greedy (%)

0 39.7 24.1 24.1 39.2 0
0.58 92 68.5 55.2 40 13.5
Appendix. Proof of Eq. (8)

We reformulate the optimization problem (7) as:

min
𝑥,𝑥0

𝑥0

𝑠.𝑡. 𝐶𝑖𝑥𝑖 ≤ 𝑥0, 𝑖 = 1,… , 𝑁
∑𝑁

𝑖=1 𝑥𝑖 = 1

(A.1)

nd define the Lagrangian function:

𝐿(𝑥, 𝑥0, 𝜆, 𝜇) = 𝑥0 +
𝑁
∑

𝑖=1
𝜆𝑖(𝐶𝑖𝑥𝑖 − 𝑥0) + 𝜇(

𝑁
∑

𝑖=1
𝑥𝑖 − 1), (A.2)

here 𝜆 = [𝜆1,… , 𝜆𝑁 ] ∈ 𝑅𝑁 are positive lagrange multipliers for
he inequality constraints and 𝜇 ∈ 𝑅 is a lagrange multiplier for the
quality constraint. The KKT optimality conditions are revealed by
etting the partial derivatives of the 𝐿 equal to zero:

𝜕𝐿(𝑥, 𝑥0, 𝜆, 𝜇)
𝜕𝑥𝑖

= 0 ⇒ 𝜆𝑖𝐶𝑖 + 𝜇 = 0 (A.3)

𝜕𝐿(𝑥, 𝑥0, 𝜆, 𝜇)
𝜕𝑥0

= 0 ⇒
𝑁
∑

𝑖=1
𝜆𝑖 = 1 (A.4)

𝜕𝐿(𝑥, 𝑥0, 𝜆, 𝜇)
𝜕𝜇

= 0 ⇒
𝑁
∑

𝑖=1
𝑥𝑖 = 1 (A.5)

f 𝜆𝑖 = 0 𝑖 = 1,… , 𝑁 , from Eq. (A.3) we conclude that 𝜇 = 0 and
𝑖 = 0 ∀𝑖 = 1,… , 𝑁 , which is impossible due to Eq. (A.4). Therefore
𝑖 > 0 and:

𝜕𝐿(𝑥, 𝑥0, 𝜆, 𝜇)
𝜕𝜆𝑖

= 0 ⇒ 𝐶𝑖𝑥𝑖 = 𝑥0 ⇒ 𝑥𝑖 =
𝑥0
𝐶𝑖

(A.6)

Using Eqs. (A.5) and (A.6) we get:
𝑁
∑

𝑖=1
𝑥𝑖 =

𝑁
∑

𝑖=1

𝑥0
𝐶𝑖

= 1 ⇒ 𝑥0
𝑁
∑

𝑖=1

1
𝐶𝑖

= 1 ⇒ 𝑥0 =
1

∑𝑁
𝑖=1

1
𝐶𝑖

(A.7)

Substituting Eq. (A.7) in (A.6) concludes the proof.
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