
Delft Center for Systems and Control

Sparsity based hybrid system
identification using a SAT solver

J.H.M. Zwart

M
as

te
ro

fS
cie

nc
e

Th
es

is





Sparsity based hybrid system
identification using a SAT solver

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

J.H.M. Zwart

October 23, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

System identification for switched linear systems from input output data has received sub-
stantial attention in recent years. There is a growing interest for techniques that pose the
identification problem as a sparse optimisation problem. At the same time a vast amount of
research is dedicated to improving SAT solvers which as a result become faster every year. In
this work a novel identification method for Switched AutoRegressive eXogenous (SARX) sys-
tems and PieceWise AutoRegressive eXogenous (PWARX) systems is proposed that combines
sparse optimisation with a SAT solver. The presented method aims to minimise the number
of submodels needed to fit the data, while facilitating a prescribed minimum dwell time be-
tween switches. The procedure for the identification of switched ARX models is composed of
two steps. The First phase determines the switching times in an iterative process aided by
a SAT solver. Second, the model parameters and the switching sequence are estimated by
optimising the sparsity of a sequence.

The identification procedure for PWARX models operates similarly although it incorporates
the knowledge that switches depend on the regressor. An extension to these methods that
makes the identification of large datasets tractable is also put forward. The proposed al-
gorithm is evaluated on synthetic systems from the literature and shows promising results.
Finally, the proposed algorithm is applied to an experimental benchmark dataset for a non-
linear system. All the algorithms proposed in this thesis project are implemented in the form
of a toolbox that is made publicly available.
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Chapter 1

Introduction

Hybrid systems have received a lot of attention in recent years. Their ability to describe
systems which exhibit continuous as well as discrete dynamics makes them very powerful.
Hybrid systems can be used to model a wide range of processes and systems and various
applications of hybrid systems exist in biology, computer vision, the process industry, com-
munication systems and in many more fields. A great deal has already been published about
the control, reachability and stability of hybrid systems, but similarly to conventional system,
most analysis and applications require a model of the system. In most situations a model can
not easily be derived from the laws of physics but instead data driven system identification
is required.
There are many different classes of hybrid systems, used to model different processes. Various
methods can be found that deal with the identification of a specific type of hybrid system.
This thesis will be involved with the identification of two particular types of hybrid systems:
Switched AutoRegressive eXogenous (SARX) systems and PieceWise AutoRegressive eXoge-
nous (PWARX) systems. These systems both belong to the class of linear switch systems,
and consist of a finite number of affine or linear submodels and a discrete state. This discrete
state keeps track of which submodel is active. At all times only one submodel, also known as
a mode, is active. SARX models and PWARX models are commonly used for two purposes.
The first one is to describe physical systems which exhibit different behaviour for different
operating modes. One can think of a car changing gears for instance. The second application
is to approximate nonlinear systems. PWARX systems have the ability to approximate all
nonlinear system with arbitrary precision [3].
The identification of hybrid systems is not a trivial task. The difficulty is strongly related
to the prior information available. In case there is no information on when each submodel
was active, the identification problem becomes complicated. Now the classification of the
datapoints to a certain submodel is directly correlated with the estimation of the model
paramaters. In the literature, different methods that address this problem exist. For a
comprehensive overview see the survey paper by Garulli et al. [4].
Vidal et al. [5], [6] tackled this problem by fitting a polynomial of a high dimension to
the dataset. This polynomial has a higher dimension than the submodels and captures the
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2 Introduction

information about all the submodels at the same time. This method is often called the
algebraic approach, and has sparked a fruitful line of research. One downside of the algebraic
method is the sensitivity to noise. The identification problem can also be cast as a mixed-
integer program [7]. One drawback this brings forward, is that the computation time scales
exponentially with the length of the dataset. Therefore this is only tractable for small datasets.
Juloski et al. [8] incorporate probability into the identification process. The parameters
describing the PWARX model, the switching sequence and the observations are described
by their probability density functions. Methods based on clustering are a popular choice for
identifying PWARX models in particular [9], [10]. These methods group datapoints that have
a short distance in between together to the same submodel. More recently methods that are
based on the notion of sparsity received attention [11], [12], [1], [13], [14], [15].

Ozay et al. [1] proposed a method for identifying switched ARX systems that recasts the
identification problem as a maximisation problem in which the sparsity of a sequence is
maximised. In their work two different algorithms which attempt to maximise two different
criteria are proposed. One tries to minimise the number of submodels needed to fit the
data while placing a bound on the error. This method results in simple small SARX models
which are computationally attractive for further use. The second method tries to minimise
the number of switches between submodels, which is useful in, amongst other things, data
segmentation. Observations show that their approach for minimising the number of submodels
comes at the cost of a switching sequence with a high number of switches. This can for
instance be seen in Figure 2-3. A high switching frequency in a model could be undesired
when this does not properly reflect the system being identified. Most switched systems have
the tendency to remain in a specific mode for a certain amount of time. Another issue with
this methodology is that submodels are identified one by one. This favors datapoints to be
attributed to submodels which are identified in the beginning of the algorithm as opposed to
later identified submodels. These submodels therefore tend to be overfitted.

In this master thesis a method based on this methodology is proposed. The objective is still
minimising the number of submodels in the identified model. However a lower bound on the
time between switches is prescribed. In order to enforce this lower bound a SAT solver is
used. Sat solvers are a structured and fast instrument to reason on propositional logic, and are
becoming faster every year which makes them an attractive tool to include. The involvement
of a SAT solver has the added benefit of being able to straightforwardly add certain other
constraints on the switches in the identified model.

This thesis is organised as follows. Chapter 2 further introduces the PWARX model and
SARX model, and the identification problem is more formally addressed. This chapter also
introduces the Boolean satisfiability problem and SAT solvers which will be a core part of
the proposed method. The proposed method for the identification of SARX systems and
PWARX systems is illustrated in respectively chapter 3 and 4, and extended to the case
of large datasets in Chapter 5. The performance of the discussed algorithms is evaluated
by simulations and on experimental data in Chapter 6. Finally, in Chapter 7 the results
are discussed and the strengths and weaknesses are highlighted. Here a conclusion is also
provided and recommendations for future work are given.

J.H.M. Zwart Master of Science Thesis



1-1 Notation 3

1-1 Notation

In this work vectors will be denoted by bold lowercase letters, matrices by capital letters and
sets by calligraphic letters. We will write |A| or #A for the cardinality of set A, and min(A)
for the smallest element in set A. For scalars |a| will denote the absolute value instead. Both
sets and sequences appear in this work. To differentiate between them, sets are build using
braces ({·}), while sequences are denoted by angle brackets (〈·〉). e will denote a vector with
every entry equal to one. Let x be a vector in Rn. ||x||p denotes the `p-norm of a vector and is

defined as ||x||p ,
(∑n

i=1 |xi|p
) 1

p

, where 0<p<∞. Let ||x||∞ denote the ∞-norm, defined as

||x||∞ , max({x1, ..., xn}), and ||x||0 the `0-norm defined as ||x||0 , #{i|xi 6= 0}. Likewise
||〈x(k)〉Nk=1||0 , #{z ∈ {x(1), ..,x(N)} | z 6=

[
0 ... 0

]T
}, which is simply the number of

vectors in the sequence 〈x(k)〉Nk=1 which are not equal to the zero vector.

Master of Science Thesis J.H.M. Zwart





Chapter 2

Preliminaries and problem statement

This chapter further introduces the classes of SARX and PWARX models. First the equations
describing these models will be given and then the problem of their identification will be
addressed.

2-1 Switched ARX models

A SARX model consists of a collection of ARX models that describe the output as a linear
combination of past inputs and outputs together with a noise term:

y(k) =
ny∑
i=1

aiσ(k)y(k − i) +
nu∑
i=1

biσ(k)u(k − i) + ω(k) (2-1)

where y(k) ∈R, u(k) ∈ R and ω(k) ∈ R are respectively the output, input and a noise term
at time k. A graphical example of a switched ARX model with three modes is represented in
Figure 2-1. The discrete switching sequence that maps each point in time to one particular
submodel is denoted by σ(k), σ : T → Σ, where Σ is the set of submodels and T is the length
of the available data set. The cardinality of Σ, or |Σ| denotes the total number of modes
present in the SARX model. Lastly, ny and nu denote the order of the output and input
respectively. We will initially focus on the SISO case. For the extension to MIMO systems
see Section 3-2-4. For identification it is more practical to consider the following form of
Equation (2-1)

y(k) = θTσ(k)r(k) + ω(k) (2-2)

where r(k) denotes the regressor which contains the past inputs and outputs.
r(k) =

[
y(k − 1) y(k − 2) ... y(k − ny) u(k − 1) u(k − 2) ... u(k − nu)

]T
∈ Rny+nu ,

and θσ(k) is the parametervector that encodes the values of aiσ(k) and b
i
σ(k) at each time step:

θσ(k) =
[
a1
σ(k) . . . a

ny

σ(k) b1σ(k) . . . bnu

σ(k)

]T
∈ Rny+nu . For SARX models in this report

Master of Science Thesis J.H.M. Zwart



6 Preliminaries and problem statement

Figure 2-1: Visualisation of a SARX model with 3 modes

the submodels are assumed to be linear. When instead affine submodels are desired, the
SARX model needs to be altered slightly by extending the regressor: r̄(k) =

[
r(k)T 1

]T
∈

Rny+nu+1. The extended parametervector now also includes one extra term that needs to be
identified: θσ(k) =

[
a1
σ(k) . . . a

ny

σ(k) b1σ(k) . . . bnu

σ(k) c1
σ(k)

]T
∈ Rny+nu+1

2-2 Piecewise affine ARX models

PWARX models can be considered a subclass of SARX models. The difference lies in the
cause of a switch between submodels. In SARX models switches are assumed to be regulated
externally, i.e. the cause of a switch is not part of the model. For PWARX models on the other
hand, the switching sequence is based on the regressor. The regressor space is partitioned,
and the systems current location in this space determines which model is active.

Figure 2-2: 2-dimensional example of a regressor space divided into 4 regions

J.H.M. Zwart Master of Science Thesis



2-3 The identification problem 7

Each region in this regressor space, denoted by Ri, is a convex polyhedra. These regions are
separated from each other by a hyper plane. Let f be a piecewise affine function defined as
in Equation 2-4. The output of a PWARX system is now given by:

y(k) = f(r̄(k)) + ω(k) (2-3)

where

f(r̄(k) =



θT1 r̄(k) if r(k) ∈ R1

θT2 r̄(k) if r(k) ∈ R2
...
θT|Σ|r̄(k) if r(k) ∈ R|Σ|

(2-4)

and r̄(k) =
[
r(k)T 1

]T
∈ Rny+nu+1 is the extended regressor. The discrete state is related

to the regressor in the following way:

σ(k) = i⇔ r(k) ∈ Ri (2-5)

Finally, the regions are given by

Ri = {r ∈ Rny+nu |Hir̄ ≤ 0} (2-6)

where Hi denotes the coefficientmatrix of the hyperplanes separating region i. An illustrative
example of a possible separating of the regressorspace can be seen in Figure 2-2.

2-3 The identification problem

Often the number of submodels is assumed to be known a priori in hybrid system identification
techniques. When this is the case, this results naturally in the following SARX/PWARX
identification problem (when using a quadratic loss function)

min
θ1,...,θ|Σ|

T∑
k=1

min
i

(y(k)− θiTr(k))2, ∀i ∈ Σ, ∀k ∈ T (2-7)

Note that this generally represents a non convex optimisation problem. When the number
of submodels is not prescribed the problem becomes ill-defined, and care must be taken not
to overfit. As reported in [16], the datafit generally goes up when choosing more submodels
but this is often not desired as this results in overfitting on a specific dataset and in complex
SARX models. This can be avoided by placing a penalty on the number of submodels [15] or
by first estimating the number of submodels from data. A different approach to tackle this
problem is trying to minimise the number of submodels while placing a bound on the error
[1],[16]. This will also be the path followed in this thesis.

Master of Science Thesis J.H.M. Zwart



8 Preliminaries and problem statement

(a) Minimising number of submodels (b) Minimising number of switches

Figure 2-3: Comparison of the switches sequence between two methods from [1]. The same
dataset and hyperparameters were used.

2-3-1 Identification of SARX models

To order to make sure that minimising the number of submodels does not result in a turbulent
switching sequence a minimum dwell time will be enforced in the form of a constraint added
to the SARX identification problem.

Definition 2-3.1. The minimum dwell time, denoted by τd, is the minimum time the system
stays in one mode before a switch to another mode can occur. The minimum dwell time
constraint enforces that if a mode becomes active, it remains active for at least τd timesteps:
if σ(k) 6= σ(k − 1) then σ(k) = σ(k + 1) = ... = σ(k + τd − 1), ∀k ∈ T

With the minimum dwell time in place this leads to the following identification problem for
SARX models.

Problem 2-3.1. Given a dataset of input-output data 〈y(k), u(k)〉Tk=1, the order of the model,
ny and nu, and a specified minimum dwell time τd, identify the parameter vectors θi, 1, ..., s
and the switching sequence σ(k) of the SARX model by minimising the number of submodels.
This SARX model should fit every input-output pair within a bound δ, and obey the minimum
dwell time τd.

2-3-2 Identification of PWARX models

The identification of PWARX models will be treated in a similar way to the identification of
SARX models. For the identification of PWARX models the minimum dwell time requirement
is swapped to a different constraint. Regressor dependant switching often involves the system
being in some regions for a short time while longer in others. To still prevent a switching
sequence with a high number of mode switches a less restrictive constraint will be put in place,
which restricts the maximum number of switches that are allowed. A limit on the number of
switches is equivalent to a certain minimum average dwell time.

J.H.M. Zwart Master of Science Thesis



2-3 The identification problem 9

Definition 2-3.2. The switching limit, denoted by Ls, is the maximum number of switches
that can appear in the identified switching sequence. The switching limit constraint is given
by:∑T
k=1 g(σ(k)) ≤ Ls

where g(σ(k)) =
{

0, if σ(k − 1)− σ(k) = 0
1, if σ(k − 1)− σ(k) 6= 0

Remark 2-3.1. The switching limit and minimum dwell time constraint are interchangeable
in the proposed identification method and either one can be used for the identification of SARX
models and PWARX models.

The identification problem of PWARX systems is more elaborate. Apart from the parame-
tervectors and the discrete state, the regions of the regressorspace also need to be identified.
This leads to the following problem.

Problem 2-3.2. Given a dataset of input-output data 〈y(k), u(k)〉Tk=1, the order of the model,
ny and nu, and a specified switching limit Ls, identify the parametervectors θi, i = 1, ..., s,
the switching sequence σ(k) and the coefficients of the hyperplanes seperating the regions
Hi, i = 1, ..., s of a PWARX model that minimises the number of submodels. This PWARX
model should fit every input-output pair within a bound δ, and obey the switching limit
described in Definition 2-3.2.

2-3-3 Research goals

As described in the literature report written at the start of this thesis project [17], the goal
of this thesis work is to design an identification method for hybrid systems that strives to
minimise the number of submodels while placing a limit on the frequency of switching. The
goal is therefore to develop two algorithms that offer a solution to Problem 2-3.1 for SARX
models and to Problem 2-3.2 for the identification of PWARX models.

The proposed identification method in question is based on the work of Ozay et al. [1],
and includes a SAT solver as a core part. The goal is to implement this method in the
form of a toolbox written in Python, where the user can input a dataset, and specify certain
parameters. The produced toolbox is publicly available [18]. The next section provides
background information regarding the SAT problem and SAT solvers.
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10 Preliminaries and problem statement

2-4 Boolean Satisfiability Problem

The Boolean Satisfiablity Problem (SAT) is a well-known decision problem in the field of
computer science that has seen a lot of interest in recent years. The problem is to find out
whether a Boolean formula is satisfiable, i.e. if there exist a combination of Boolean variables
that makes the formula amount to True. In addition to this, a combination of variables that
achieves this goal is also desired. The Boolean Satisfiablity Problem (SAT) was the first
problem that was proven to be NP complete, by [19] and [20] independently.
Although finding a solution for the SAT problem has in the worst case exponential run time,
algorithms were developed for it that can handle large problems in a reasonable time. Because
the SAT problem is NP complete, all NP problems can be cast to a SAT problem in polynomial
time, and afterwards solved by a SAT solver. This makes SAT solvers very powerful. They are
widely used in software [21] and hardware verification [22] and in planning problems [23]. The
basis of Most SAT solvers is the Davis - Putnam - Logemann - Loveland (DPLL) algorithm
[24], [25]. This algorithm guesses variables to be True or False. When a conflict occurs, it
backtracks to a point where it still had the possibility of being satisfiable. SAT solvers often
require a special form of the Boolean formula called Conjunctive Normal Form (CNF). The
CNF-SAT problem (commonly just referred to as SAT problem), consists of the following
elements.

— atoms: can either be a constant or a Boolean variable. Booleans variables can only have
two values: True (1) or False (0): bi.

— Literals, are atoms or their negation: bi, ¬bi.

— Clauses, consist of a combination of Literals and the logical OR (∨) operator: ¬bi ∨ bj

— CNF formula, which consists of a combination of clauses and the logical AND operator
(∧): Ci ∧ Cj

An assignment or valuation of a CNF formula, denoted by µ, is obtained when true or false
are assigned to each variable. Example 2-4.1 gives an example of a SAT problem.

Example 2-4.1. (b1 ∨ b2 ∨ ¬b3) ∧ (b2 ∨ b3) ∧ (¬b1 ∨ b2)
A Satisfiable assignment is given by b1 = False, b2 = True, b3 = False, therefore
this problem is satisfiable.

2-4-1 Cardinality constraints

Cardinality constraints on Boolean variables are encountered often when translating a problem
into a SAT problem. These constraints of the form

n∑
i=1

xi ≤ k (2-8)

have been dealt with in multiple ways. For an overview see [26] and references therein. Most
encodings introduce new auxiliary Boolean variables. The encodings differ in the quantity of
required extra clauses and required extra variables. In this work the sequential encoding [27]
is used. It requires O(n · k) new variables and O(n · k) new clauses.
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2-4 Boolean Satisfiability Problem 11

2-4-2 SMT

One major drawback of SAT solvers is that many real world problems are not easily encoded
to a SAT problem. Most real world problems involve variables that can have a wide range of
values and are not limited to True or False. An extension to the SAT problem that overcomes
this drawback is called SMT. The SMT problem is involved with deciding whether a first
order formula with respect to a specific background theory is satisfiable. The Atoms in SMT
are not limited anymore to Boolean variables but can be any expression that can amount to
True or False for a specific theory. This is illustrated in Example 2-4.2, which depicts a SMT
formula using linear arithmetic as a theory.

Example 2-4.2.
(
(x ≤ y) ∨ x > 0

)
∧ (y < 2) ∧ (x < 1)

Notice that each atom, e.g. x>0, still can either amount to True or False depending on the
value of the variables. Example 2-4.2 can be abstracted to the SAT formula

(
b1∨b2

)
∧(b3)∧(b4),

using the map: { x ≤ y ↔ b1, x > 0↔ b2, y < 2↔ b3, x < 1↔ b4}.

2-4-3 Lazy SMT

Two main approach to solving SMT formulas exist. The approach that has gained the most
traction is referred to as lazy SMT. In lazy SMT two solvers are used, A SAT solver and a
theory solver. the SAT solver will handle the Boolean reasoning and the theory solver handles
the theory specific part. First the SMT formula ϕSMT is abstracted to a SAT formula ϕb using

Algorithm 1 Lazy SMT procedure
1: procedure determine satisfiability SMT-formula
2: ϕb ← Boolean abstraction(ϕSMT )
3: while True do
4: (satisfiability, µ)← SAT solver(ϕb)
5: if satisfiability==UNSAT then
6: return satisfiability
7: end if
8: M = Map(µ)
9: (T -satisfiability, ϕcert)← Theory solver(M)

10: if T -satisfiabilility==T -SAT then
11: return (T -satisfiability,M)
12: end if
13: ϕb ← ϕb ∧ ϕcert
14: end while
15: end procedure

a dictionary. This propositional formula is checked for satisfiability by a SAT-solver which
proposes a valuation of Booleans µ. This valuation is mapped according to the dictionary to
a set of constraintsM. Now the theory solver is invoked to check if this set of constraints is
feasible with respect to a certain theory. If there is a solution consistent with all constraints,
the set of constraints is called T -satisfiable. If this is not the case, the theory solver will
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12 Preliminaries and problem statement

generate a conflict clause called a certificate. This certificate captures information regarding
the conflict and limits the search space for the SAT solver. This certificate clause is added
to the SAT solver, and the cycle continues. The collaboration of a SAT solver with a theory
specific solver has received much interest in recent years. Applications range from robotic
motion planning by Shoukry et al. [28] to secure state estimation [29]. In the next chapter
an identification method for switched linear systems is proposed along the lines of lazy SMT.

Figure 2-4: Schematic representation of the lazy SMT framework
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Chapter 3

SARX Identification Algorithm

This chapter describes the proposed identification algorithm aimed at identifying SARX mod-
els. The identification method consists of two steps. In the first step a feasible sequence of
switching times will be determined. To achieve this a SAT solver will be iteratively used in
cooperation with linear programming.

In the second step the parameter vectors of the sub models will be determined and attributed
to intervals between switches. The parameter vectors will be estimated by posing the iden-
tification problem as a problem of maximising the sparsity of a specific sequence. Together
these two steps form the proposed algorithm called HySI-SAT (derived from "Hybrid System
Identification" and "SAT solver").
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14 SARX Identification Algorithm

3-1 First Step - Identifying switching time sequence

The goal of the first step is to determine a feasible switching time sequence.

Definition 3-1.1. The switching time sequence S is defined as a sequence containing all the
time instances in T where σ(k) 6= σ(k − 1), ordered from small to large.

S = 〈t1s, t2s, ..., tms 〉 (3-1)

where tis is the time instance of switch i and m is the total number of switches.

The first step along the lines of lazy SMT, lets a SAT solver interact with a theory solver.
The SAT solver will propose a switching time sequence every iteration, which is satisfiable
with respect to the Boolean constraints. The theory solver will decide if this switching time
sequence is viable and if not, steer the SAT solver in the right direction.

This procedure starts at the SAT solver. The SAT solver proposes a switching time sequence
that does not conflict with the minimum dwell time constraint (see Definition 2-3.1). Then
the dataset is split up into parts according to the switching time sequence. These parts of the
dataset are then individually checked by the theory solver for feasibility. The theory solver
uses linear programming, to see if for all parts of the dataset there exist an ARX model that
fits. If any of the parts of the dataset are deemed infeasible by the theory solver, we go
back to the SAT solver to ask for a different switching time sequence. This is done in the
form of adding a constraint clause to not allow this specific switching time sequence. This
interplay between the SAT solver and linear programming is repeated and every iteration
another constrained is added.

Termination

There are two ways the procedure can terminate. The first is that the Linear Programming
approves all the parts of the dataset and thereby validates the last proposed switching time
sequence. This is the desired result. In this case the method can continue with step 2. It is
however also possible that after a while the SAT solver returns UNSAT, which indicates that
there does not exist a switching time sequence that satisfies the constraints. This implies that
the conditions are to strict and there does not exist a SARX model that fits the data within
the prescribed bound while upholding the dwell time constraint. The program terminates
and either the minimum dwell time needs to be decreased or the bound on the allowable error
increased.

In the coming sections the components will be one by one addressed in more detail starting
with a closer look at the SAT solver.
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3-1 First Step - Identifying switching time sequence 15

3-1-1 SAT solver

In the first step the SAT solver will be used to propose a sequence of switching times that
is valid with respect to the constraints. To add the constraints to the SAT solver a set of
Booleans is required. Therefore a set of Boolean variables {b(k)}Tk=1, b(k) ∈ B is introduced
which denote whether a switch occurs at time k, i.e. bi(k)⇒

(
σ(k) 6= σ(k−1)

)
and ¬bi(k)⇒(

σ(k) = σ(k − 1)
)
.

Adding constraints

To add the dwell time constraint to the SAT solver it first must be posed as a Boolean
formula. Constraints are added in the form of clauses. The dwell time constraint enforces a
minimum time between switches. It decodes that if a switch is proposed at time k, then for the
remainder of the dwell time no other switch can be proposed and therefore the corresponding
Booleans should be set to False. This can be cast as a Boolean formula:

ϕdwell = b(k)⇒ (¬b(k + 1) ∧ ... ∧ ¬b(k + τd − 1)), ∀k ∈ T (3-2)

and yields the following constraint in conjuntive normal form

ϕdwell =
(
¬b(k) ∨ ¬b(k + 1)

)
∧ ... ∧

(
¬b(k) ∨ ¬b(k + τd − 1)

)
,∀k ∈ T (3-3)

The CNF formula that is fed to the SAT solver at the start, only consists of the dwell time
constraint.

ϕ = ϕdwell (3-4)

As mentioned previously, this constraint can be replaced by a switching limit constraint. In
this case the Boolean formula is given by

ϕswitchinglimit =
T∑
k=1

b(k) ≤ Ls (3-5)
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16 SARX Identification Algorithm

3-1-2 Theory solver

After the SAT solver proposed a valuation µ, the switching time sequence is reconstructed.

S = 〈sk|b(k) = 1〉Tk=1 (3-6)

According to the switching time sequence (S) the dataset will be split at each tk ∈ S. Let
interval i, denoted by Ii, be the set of time instances between switch i and the preceding
switch. The time instance associated with the preceding switch is also included in interval Ii,
see Equation 3-7. In case of the first interval the start is not marked by the preceding switch
but rather by the beginning of the dataset. All the input-output pairs are now attributed to
exactly one interval.

I1 = {k|k < t1s}, ∀k ∈ T (3-7)
I2 = {k|t1s ≤ k < t2s}, ∀k ∈ T
... =

...
Im+1 = {k|k ≥ tms }, ∀k ∈ T

For each interval i, the following feasibility problem is solved by linear programming.

min
θ

1 (3-8)

s.t.

|y(k)− θTr(k)| ≤ δ
∀k ∈ Ii

Certificate generation

If for any of the intervals, Problem (3-8) gives no solution then the switching time sequence
does not meet our requirements. The following simple constraint certificate could therefore
be created in the form of a Boolean formula to restrict this specific switching time sequence

ϕbasic = ¬µ (3-9)

This yields the new formula fed to the SAT solver:

ϕ = ϕ ∧ ϕbasic (3-10)

By restricting just the proposed switching time sequence, the search space is only very slightly
decreased every iteration. Therefore the algorithm generally takes a long time to find a valid
switching time sequence. The process can be sped up significantly by using more of the
information that is obtained by the linear programming. Any interval that is infeasible,
signifies that the input-output pairs in that interval do not all belong to the same mode. By
this we can infer that a switch is necessary somewhere in that interval. Lets I∗ denote an
interval where the smallest time instance k is removed. For every infeasible interval we can
now create a conflict clause :

ϕjinf =
∨
i∈I∗j

bi (3-11)
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3-1 First Step - Identifying switching time sequence 17

This constraint clause enforces that one of the Booleans in that interval should be true and
therefore enforces a switch. The conjunction of these conflict clauses leads to the following
infeasible interval certificate

ϕinf = ϕinf1 ∧ ... ∧ ϕinft (3-12)

where t is the number of infeasible intervals. Equation (3-10) now changes to

ϕ = ϕ ∧ ϕinf (3-13)

As noted by Shoukry et al. [28], a shorter conflict certificate removes more of the search
space each iteration. This generally leads to a faster solution when the computation time to
generate the certificate is small in contrast to the rest of the algorithm.

Remark 3-1.1. Both the infeasible interval certificate and the basic certificate only exclude
false candidate solutions from the search space.

3-1-3 Algorithm switching time sequence

The first step is summarised in Algorithm 2. A schematic overview is shown in Figure 3-1.

Algorithm 2 HySI-SAT step 1
1: procedure Determine switching time sequence
2: ϕ← ϕdwell
3: while True do
4: (satisfiability, µ)← SAT solver(ϕ)
5: if satisfiability==UNSAT then
6: return satisfiability
7: end if
8: S ← Equation3−6(µ)
9: (T -satisfiability, ϕinf )← Theory solver(S)

10: if T -satisfiabilility==T -SAT then
11: return (T -satisfiability, S)
12: end if
13: ϕ← ϕ ∧ ϕinf
14: end while
15: end procedure

3-1-4 Decrease computation time

The following two features can be added to the algorithm to decrease the computation time.
They are however not core to the method. These features are included in the HySI-SAT
toolbox.

Master of Science Thesis J.H.M. Zwart



18 SARX Identification Algorithm

Remove redundant certificates

After a while some certificates may not provide extra information. A certificates ϕinf can
be present that enforces a switch in a time frame that is completely covered by the second
certificate. The second certificate has no added value in this situation and should be removed.
More formally, a certificate i is redundant with respect to certificate j if the following holds:

ϕj =⇒ ϕi (3-14)

In the first step of HySI-SAT, all infeasible interval certificates are checked for redundancy
each cycle.

Dictionary of feasible intervals

It often occurs that the SAT solver will propose a switching time sequence that result in some
intervals that were already checked for feasibility in a previous cycle. Checking the feasibility
again is unnecessary. Therefore the theory solver will keep a list of all intervals that were
feasible in previous cycles. Whenever the theory solver encounters an interval that is in this
list it will assume it is feasible.

Figure 3-1: Schematic overview of determining a valid switching time sequence
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3-2 Second Step - Identifying model parameters 19

3-2 Second Step - Identifying model parameters

This step can be seen as a modification to the sparsity based algorithm in [1] where the
number of submodels needed to explain a dataset is minimised. This algorithm is first briefly
summarised, after which the modification is highlighted. For the details of their approach or
a more in depth explanation, the interested reader is direct to their work [1].

3-2-1 Sparsity based approach for minimising models [1]: An overview

The goal is to explain the data with a minimum number of submodels. [16] posed this
problem as dividing an infeasible system of linear equations into a minimum number of feasible
linear subsystems. This is known as the MIN PFS problem [30]. This problem is NP-hard.
Therefore this is often relaxed to the MAX FS problem, which is the problem of finding the
largest possible feasible subsystem. Solving this problem is also NP-hard [31]. In our case the
MAX FS problem is related to finding a parametervector (θ̃) that fits as many datapoints as
possible. θ̃ fits a time instance k if ||θ̃Tr(k) − y(k)||∞ ≤ δ. Ozay et al. cast the problem of
finding θ̃ as maximising the sparsity of the sequence 〈θ(k)− θ̃〉Tk=1. Maximising the sparsity
of a sequence is equivalent to minimising its `0-norm1. This leads to Equation (3-15) for
finding a parameter vector that fits as many time instances as possible in a set N .

min
θ(k),θ̃

||〈θ(k)− θ̃〉||0 (3-15)

s.t. ||θ̃Tr(k)− y(k)||∞ ≤ δ, ∀k ∈ N

Minimising the `0-norm is also generally NP-hard. Commonly, `0-optimisation problems
are relaxed to convex `1-optimisation problems. Candès and Tao [32] introduced certain
conditions which ensure that solving the `1-minimisation results in the same solution to the
original `0-minimisation problem. Ozay et al. [1] follow the approach from [33], where instead
of minimising the `0-norm, a sequence of weighted `1-minimisation problems is solved. In
practise this approach shows good results even if the conditions from [32] do not hold.

min
z,θ(k),θ̃

wTz (3-16)

s.t. ||θ̃ − θ(k)||∞ ≤ zk
||y(k)− r(k)Tθ(k)||∞ ≤ δ
∀k ∈ N

This is summarised in Algorithm 3. ε denotes a regularisation constant and η is the number
of iterations. The reweighted `1-minimisation is fairly robust to the choise of ε, according to
Candès and Wakin [33].

1The `0-norm is not a real norm because the homogeneity property is violated. ||cx||0 is generally not equal
to |c| · ||x||0
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20 SARX Identification Algorithm

Algorithm 3 Find θ̃ from [1]
1: procedure Weighted `1 relaxation from [33]
2: w ← e
3: for i=1:η do
4: (z, θ̃)← Equation3−16(N ,w)
5: wk ← 1

zk+ε , ∀k ∈ N
6: end for
7: return θ̃
8: end procedure

After θ̃ is found, the time instances that fit this parameter vector are removed from the search
space. For the remaining time instances Algorithm 3 is run again, removing fitting datapoints
at each iteration. This continues until all time instances are attributed to a submodel.

3-2-2 Modification to fit intervals

In step 1 a valid switching time sequence S was determined. The intervals can easily be
inferred from S. In contrast to the method proposed in [1], our goal is to find a parameter
vector that fits as many intervals as possible opposed to as many time instances as possible.
To achieve this Equation 3-16 is modified which results in Equation 3-17.

min
z,θ(j),θ̃

wTz (3-17)

s.t. ||θ(j)− θ̃||∞ ≤ zj
||y(k)− r(k)Tθ(j)||∞ ≤ δ, ∀k ∈ Ij
∀j ∈ {1, ..., |S|+ 1}

Algorithm 4 describes this procedure. Algorithm 4 returns the parameters of the model
together with a collection of sets of time instances belonging to each submodel. From this the
switching sequence can straightforwardly be recovered, which gives the final SARX model.

These two steps form HYSI-SAT and are summarised in Algorithm 5.

Algorithm 5 HySI-SAT (SARX)
1: procedure SARX identification
2: (S, T -satisfiability)← HySI-SAT step 1(〈y(k), u(k)〉Tk=1) (see Algorithm 2)
3: (Ki, ...,Ks, θ1, ..., θs)← HySI-SAT step 2(S) (see Algorithm 4)
4: σ(k)← Recover switching sequence(Ki, i = 1, ..., s)
5: Σ← {θ1, ..., θs}
6: return (Σ, σ(k))
7: end procedure

3-2-3 Resolving progress obstruction

Notice that in Equation 3-17 only one constraint is placed on θ̃: ||θ(j)− θ̃||∞ ≤ zj . θ̃ is here
only bounded by zj , which is unbounded itself. Therefore when the weighted `1-relaxation
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Algorithm 4 HySI-SAT step 2
1: procedure Find submodels
2: l← 0
3: N1 ← {1, ..., |S|+ 1} . Initialise a set containing the indices of all intervals
4: while |Nl+1| > 0 do . Continue till all intervals are accounted for
5: l← l + 1
6: w ←

[
1 1 ... 1

]T
7: for i=1:η do . Reweighted `1-minimisation
8: (z, θ̃)← Equation3−17(Nl,w)
9: wj ← 1

zj+ε , ∀j ∈ Nl
10: end for
11: θl ← θ̃
12: Kl ← {j ∈ Nl| ||y(k)− r(k)Tθl||∞ ≤ δ, ∀k ∈ Ij}
13: Nl+1 ← Nl \ Kl . Create new set with indices from unacounted intervals
14: end while
15: return (Ki, i = 1, ..., l,θi, i = 1, ..., l)
16: end procedure

does not converge to the same value as the `0-minimisation, it can occur that the found θ̃
does not fit any interval. When this is the case no intervals are removed from the set of
unaccounted intervals this iteration. The next time the weighted `1-relaxation is solved the
minimisation problem is identical to the problem last time which will again result in the
same θ̃ that does not fit any interval. Progress is halted and the algorithm can not continue.
This problem arises because the used reweighted `1-minimisation is completely deterministic.
Experience shows that this problem does not occur all that often. Nonetheless we propose two
solutions to this problem. The first solution removes the deterministic nature by initialising
the problem with random weights. Line 6 of Algorithm 4 is replaced by

wj ∼ U(0, 1),∀j ∈ N (3-18)

The second course of action one can take for resolving the issue is by marking the q intervals
that have the lowest error with the troublesome θ̃. The next loop, only the marked intervals
are considered in the reweighted `1-minimisation. If now the obstruction still remains q can
be decreased till a fitting θ̃ is found and the algorithm can proceed normally.

3-2-4 MIMO systems

The proposed identification method can also identify MIMO SARX models of the form

y(k) =
ny∑
i=1

Aiσ(k)y(k − i) +
nu∑
j=1

Bj
σ(k)u(k − j) + ω(k) (3-19)

where the output, input and noise term are now given by y(k) ∈ Rn, u(k) ∈ Rm and
ω(k) ∈ Rn respectively. Aiσ(k) and Bi

σ(k) are parameter matrices of appropriate dimension.
Stacking the outputs together into one vector yields the following regressor used for identifying
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22 SARX Identification Algorithm

MIMO models.

r =
[
y(k − 1)T ... y(k − ny)T u(k − 1)T ... u(k − nu)T

]T
(3-20)
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Chapter 4

PWARX identification Algorithm

Mode switching for a PWARX system is based on the regressor. This gives us extra infor-
mation that can aid us during identification. In this chapter HySY-SAT will be extended to
PWARX models, where we will use this extra information in the process. Similarly to many
existing PWARX identification methods, e.g. [8], [16], [34], first the parameter vectors are
estimated and the data points classified, and afterwards the regressor space is partitioned
based on this classification.

4-1 Parameter estimation and classification

The regressor space for a PWARX model is partitioned into disjoint convex regions. Therefore
we can assume that in a noiseless setting, groups of datapoints belonging to different models
are linearly separable. This is used as an extra check to determine if a switching time sequence
is feasible. At this point the models are not known, but a switch signifies that the interval
before the switch will belongs to a different model than the interval after the switch. This
property of linear separability can be checked for all couples of adjacent intervals.

4-1-1 Testing for linear separability

In order to test the linear separability of two intervals, first the convex hull of both groups of
datapoints is calculated. The convex hull of a collection of points is defined as the smallest
convex set containing all those points. The convex hull of a group of points forms a polyhedron.
An example is shown in Figure 4-1b. We take noise into consideration by assuming that
datapoints fall at most a distance δ outside of their true region. To incorporate this, both
convex hulls are eroded to a smaller set. This is done by taking their Minkowski difference.
Various definitions of the Minkowski difference are in use. We will use the following definition
[35]:

Definition 4-1.1. The Minkowski difference of two sets of points in Rn, denoted by A1 and
A2, is defined as A1 	A2 = {x ∈ Rn|A2 + x ⊆ A1}
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(a) Two groups of points (b) convex hull

(c) eroded sets (d) Checking for intersection

Figure 4-1: A 2-dimensional example of the test conducted on two adjacent intervals. In case
the intersection is not empty (red area), a li-certificate is created and added to the SAT solver.
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4-2 Partitioning the regressor space 25

Let B be a closed ball centered around the origin with radius δ, and P the convex hull of the
points in one interval. The eroded set is now given by

P̃ = P 	 B (4-1)

The two eroded sets of points are now checked for an intersection. When the intersection is
not empty a linearly inseparable (li)-certificate is created that enforces one of the two intervals
to include a switch, or remove the switch that separates them. Next, this certificate is added
to the SAT solver. Let I1 denote the first of two adjacent intervals and I2 the interval which
occurs later in time. The li-certificate is defined as

ϕli =
( ∨
i∈(I?

1∪I
?
2 )
bi

)
∨ ¬bmin(I2) (4-2)

Recall that the asterisk sign denotes the exclusion of the smallest element in an interval.
This test for linear separability is included in every iteration of the first step of the PWARX
identification algorithm, and is run on every couple of adjacent intervals. Step 2 of HySI-SAT
is identical for SARX models and PWARX models.

4-2 Partitioning the regressor space

Finally, the regressor space is partitioned. This resembles a common problem in the field of
pattern recognition, and numerous linear classifiers exist that can be used. A popular solution
is to use a Support Vector Machine (SVM) [36], for instance used for PWARX identification
in [10], [9]. SVMs are very fast but are binary classifiers which only take two classes into
consideration at the same time. One method of extending SVM to multi class problems is by
classifying all possibles couples of 2 classes, resulting in K·(K−1)

2 binary One-versus-one (OVO)
[37] classifiers. One drawback however, as mentioned by [9], is that this can leave holes in the
regressor space which are not classified to any class, see Figure 4-2. One other approach of
extending SVM to a multiclass problem is by training K One-versus-rest (OVR) classifiers.
A OVR classifier sets one class against a combination of all the other classes combined into
one "rest" class. Straightforwardly combining these can still result in holes and some regions
which are ambiguous as they are classified to more than one class, as is the case in Figure
4-3a. The problem of holes can be resolved by classifying a datapoint in this region to the
class closest to this datapoint. In the same way, we classify datapoints that are attributed to
more than one class, to the class where the datapoint is furthest from the decision boundary.
This approach was first proposed in [38]. The decision boundaries are given by the equation
wT
i x = 0, where wi denotes a vector of weights and x denotes a datapoint. x is now classified

to a class according to the following equation

class = argmax
i

wT
i x (4-3)

The hyperplanes that form the new decision boundary between class i and class j are therefore
given by the equation

(wi −wj)Tx = 0 (4-4)
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Figure 4-2: Combining decision boundaries of one-vs-one classifiers can result in a hole.

The coefficients Hi can finally be recovered by stacking the corresponding coefficients from
equation 4-4 which yields

Hi =


wT
i −wT

1
wT
i −wT

2
...

wT
i −wT

K

 (4-5)

These coefficientmatrices describe the final partitioning according to Equation 2-6.
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(a)

(b)

Figure 4-3: (a) Linear decision boundaries generated by One-versus-rest classifiers. Light green
marks regions that belong in two classes, while dark green marks a region not attributed to any
class. (b) Decision boundaries merged with the fusion rule.
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Chapter 5

Dealing with large datasets

The proposed identification method can become slow for large datasets. This section proposes
a way to deal with large datasets. The idea is to split the dataset into smaller parts to make
the problem more tractable. This comes at the cost of obtaining a SARX/PWARX model
with potentially more submodels. The method consists of three steps.

5-1 Step 1 - Identification in parts

First the dataset is split into m (almost) equal parts. Let the set containing all time instances
for one specific part be called a block denoted by Bi, i = 1, ...,m:

Bi = {k ∈ T
∣∣(i− 1) · Tm < k ≤ i · Tm} (5-1)

For the first block (B1) Algorithm 5 is run which results in a set of submodels and a switching
sequence. Let Σb1 denote this set of submodels: Σb1 = {θ1, ..., θs}, where s is the number of
submodels returned by Algorithm 5. Furthermore let σb1(k) denote the identified switching
sequence for the first block. The idea for the subsequent blocks is to use, if possible, the
previously identified models. For these blocks a modified version of Algorithm 5 is run.
Starting with the second block, The times of switching are determined according to Section
3-1. Then all the intervals between switches in block 2 are checked for feasibility with the
previously identified models in set Σb1. Every interval that fits one of those submodels is
removed from the set of intervals that still need to be attributed to a model. Then for the
intervals that are left in this set, new models are estimated following the methodology of
Section 3-2. These new models in addition to the models from Σb1 together form set Σ. For
the remaining blocks the process is repeated by first checking if the models from set Σ fit
before identifying new submodels which are then again added to Σ. This modified version of
Algorithm 5 is summarised in Algorithm 8 in Appendix D. Step 1 in its entirety is shown in
Algorithm 6.
It is possible though not encouraged to stop after this step as the next two steps can be con-
sidered refinement steps. The final switching sequence can in this case be obtained by merging
the switching sequences of the blocks in the following way: σ(k) = 〈σb1(k), ..., σbm(k)〉.
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Algorithm 6 IdentLarge-step1
1: procedure First step for identifying large datasets
2: N ← {1, ..., T}
3: for i=1:m do
4: Bi ← {k ∈ N|(i− 1) · Tm ≤ k < i · Tm}
5: if i==1 then
6: (σb1(k),Σb1)← HySI-SAT (Bi) (see Algorithm 5)
7: Σ = Σb1
8: else
9: (σbi(k),Σbi)← HySI-SAT modified (Bi,Σ) (see Algorithm 8)

10: Σ = Σ ∪ Σbi
11: end if
12: end for
13: σ(k)← 〈σb1(k), ..., σbm(k)〉
14: return (Σ, σ(k))
15: end procedure

5-2 Step 2 - Minimising number of submodels

Since not all data was taken into account simultaneously during the estimation of the pa-
rameter vectors, the set of submodels Σ generally overapproximates the required number of
submodels. The cardinality of Σ can therefore potentially be reduced. First we introduce two
sets: M={1, ..., |Σ|} and Q = {Q1, ...,Qp}, where p represents the total number of intervals
resulting from the first stage. Qj describes which models fit interval j, more specifically,
Qj =

{
i ∈M

∣∣∣ ||y(k)− r(k)Tθi||∞ ≤ δ, ∀k ∈ Ij
}
, and p represents the number of intervals.

Now we want to eliminate as many submodels from Σ as possible while ensuring that each
interval is accounted for by at least one fitting submodel. This leads to the following problem:
Problem 5-2.1. Given a setM={1, ..., |Σ|}, and a set Q={Q1, ...,Qp} where Qi ⊆M. Find
the minimal subset ofM so that this subset has at least one element in common with each
set Qi. (Msub ∩Qi 6= ∅, ∀i = 1, ..., p)

This is further illustrated in Example 5-2.1
Example 5-2.1. GivenM={1, 2, 3, 4} and Q = {{1, 4}, {2}, {1, 3, 4}}, solve Problem 5-2.1.
If we exclude 2 and thus chooseMsub as {1, 3, 4}, Q2 would have no element in common with
Msub which is not allowed. However the elements 3 and 4 can safely be excluded, resulting
in Msub = {1, 2}. This hitting set is a minimum hitting set since a hitting set with fewer
element does not exist.

Problem 5-2.1 is a form of the minimum hitting set problem, which is a known problem
in mathematics. It is equivalent to the minimum set cover problem [39], which is NP-hard
to solve [40]. Multiple approaches to solving the minimum set cover problem exist. The
decision problem of hitting set/set cover is NP-complete [40] and can therefore be cast to
a SAT problem in polynomial time. Solving a sequence of these SAT problems now solves
the minimum hitting set problem. This approach is used in the HySI-SAT program, as it
does not require new software since the SAT solver is already used in a different phases of
the algorithm. The mapping from [41] is used to map the hitting set problem to a Boolean
satisfiability problem.
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5-2-1 Solving the minimum hitting set problem using a SAT solver

Let us introduce the Boolean variables xi, i = 1, ..., p. Each Boolean is associated with its
corresponding element fromM in Problem 5-2.1. The Boolean is true iff the corresponding
element is in subsetMsub. For every Qi it is required to have atleast one element in common
with subsetMsub. This can be encoded by the following clause:

CQi =
∨
j∈Qi

xj (5-2)

For Qi = {2, 5, 8} this would result in the clause: x2 ∨ x5 ∨ x8. The course of action consists
of finding the minimum hitting set by solving a sequence of SAT problems with an increasing
bound on the sum of the Booleans. The cardinality is constraint by the following clause.

Ckcard =
(∑

i

xi ≤ k
)

(5-3)

This yields the following SAT formula:

Ck = CQ1 ∧ CQ2 ∧ ... ∧ CQp ∧ Ckcard (5-4)

A minimum hitting set can now be obtained by feeding this CNF-formula to a SAT solver
for k=1, and repeat this for increasing values of k till the SAT solver returns SAT. This is
illustrated in Algorithm 7.

Algorithm 7 IdentLarge-step2
1: procedure Second step for identifying large datasets
2: k ← 1
3: while true do
4: (satisfiability, µ)← SAT solver(Ck)
5: if satisfiability == UNSAT then
6: k ← k + 1
7: else
8: return (satisfiability,µ)
9: end if

10: end while
11: end procedure

Solving the minimum hitting set problem presumably provides a reduced set of models. All
intervals are attributed to the model from this reduced set that gives the smallest error. This
results in the final switching sequence.

5-3 Step 3 - Final parameter estimation

The final step consists of estimating the parameter vectors one last time. Some intervals were
attributed to different submodels in the previous step. Since the final switching sequence is
already known, this problem falls back to a sequence of linear identification problems. For
every submodel Problem 5-3.1 is solved.

Master of Science Thesis J.H.M. Zwart



32 Dealing with large datasets

Problem 5-3.1. Given a dataset 〈y(k), u(k)〉Tk=1, a switching sequence σ(k), and a set Σ
containing s different submodels, solve the following minimisation problem for i=1:s

min
θi

T∑
k=1

(
y(k)− θTi r(k)

)2
|y(k)− θTi r(k)| ≤ δ, ∀k ∈ {k ∈ T |σ(k) = i}

Note that instead of splitting a large dataset the procedure described in this chapter, is also
capable of combining datasets from different experiments.
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Chapter 6

Experiments

In this chapter the performance of the proposed method is evaluated. Numerical experiments
are conducted in addition to a case study on a real system. The proposed method was tested
by using the toolbox which was created supplementary to this thesis report. The toolbox
uses Z3solve [42] as a SAT solver and CPLEX [43] as a convex optimisation tool. For more
information on this toolbox see Appendix C. All experiments where the computation time is
shown were conducted on a laptop running Microsoft Windows 10 with 8GB of RAM and a
Intel(R) Core(TM) i7-3630 CPU at 2.4 GHz. Moreover, the toolbox is written in python and
compiled to C code.

To quantify the performance of the proposed method and compare it to established identifi-
cation techniques some quality metrics are introduced. The FIT [44] is used as a measure for
the accuracy of the datafit.

FIT = 100% ·
(

1− ||ŷ − y||2
||y − ȳ · e||2

)
(6-1)

The normalised parameter identification error measure [1], is used to quantify the error be-
tween the identified and real parameters.

∆n = 1
T

T∑
1

||θ(k)− θ̂(k)||2
||θ(k)||2

(6-2)

Finally the Root-mean-squared-error is used in Section 6-3 to compare the standard deviation
of the residuals.

RMSE =

√√√√ 1
T

T∑
k=1

(
ŷ(k)− y(k)

)2 (6-3)
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6-1 Synthetic systems

6-1-1 Switched ARX models

To evaluate the performance of the presented method a SARX system is borrowed from the
work of Ozay et al. [1]. In this SARX system the output is given by

y(k) =
[
y(k − 1) y(k − 2) u(k − 1)

]
θσ(k) + ω(k) (6-4)

with

θ1 =
[
0.2 0.24 1

]T
, (6-5)

θ2 =
[
−1.4 −0.53 2

]T
and the switching is defined as

σ(k) =
{

1 if k ≤ 25 or 50 < k ≤ 75
2 if 25 < k ≤ 50 or k > 75

(6-6)

An uniformly distributed input, u(k) ∼ U(-1,1), is used to simulate the system for T=100.
The noise is uniformly distributed, ω(k) ∼ U(−ωmax, ωmax). The example system is simulated
for 15 different values of ωmax, ranging from 0.1 to 1.5. For every value of ωmax, 10 different
runs were simulated. The mean of ∆n is displayed in Figure 6-1, and Figure 6-2 illustrates the
estimated number of submodels. The algebraic approach [6], and the sparsification approach
[1] are included for comparison purpose. Note that for the algebraic method the number
of submodels is assumed to be known beforehand. For HySI-SAT, τd is set to 20 during
identification.

Figure 6-1: Mean value of ∆n for example system 2 with different values of ωmax.
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6-1 Synthetic systems 35

Figure 6-2: Average number of submodels for example system 2 with different values of ωmax.

Table 6-1: ∆n for identification of system 6-7

HySI-SAT Segreg[11] Son-em[15]

∆n 0.0134 0.0318 0.0174

Segmentation

The sparsification approach and the algebraic approach do not assume any continuity in the
switching sequence. Now the presented method is compared against a methods that penalise
changes in the parametervector. Consider the following SARX model consisting of 3 modes
[14]:

y(k) =
[
y(k − 1) y(k − 2) u(k) u(k − 1) u(k − 2)

]
θσ(k) + ω(k) (6-7)

with

θ1 =
[
0.6 0.3 1 0.5 −0.3

]T
, (6-8)

θ2 =
[
0.7 −0.6 1.4 −0.4 −0.2

]T
,

θ3 =
[
−0.5 −0.4 −0.2 1.3 0.9

]T
and the switching is defined as

σ(k) =


1 if k ≤ 60
2 if 60 < k ≤ 130
3 if k > 130

(6-9)

The input values are chosen from an uniform distribution U(-1,1), and the noise ω(k) is
Gaussian with normal distribution, ω(k) ∼N (0, 0.052). This system is simulated for T=200,
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and identified with HySI-SAT (SARX), Segreg [11] and SON-EM [15]. The identification
with Segreg and SON-EM was conducted using Matlab [45] code retrieved from [46] and [47]
respectively. The estimated parameter vectors are compared to their true values in Table 6-2.
The normalised parameter identification error is shown in Table 6-1.

Table 6-2: Estimated parameter vectors for system 6-7

HySI-SAT Segreg [11] SON-EM [15] True
value

θ1


0.6143
0.2847
0.9924
0.5029
−0.2950




0.5557
0.3452
0.9942
0.5621
−0.3119




0.5895
0.3099
1.0150
0.5026
−0.2834




0.6
0.3
1

0.5
−0.3



θ2


0.7008
−0.5937

1.392
−0.3891
−0.2111




0.6983
−0.6079

1.404
−0.3931
−0.1778




0.7011
−0.5975
1.4189
−0.4084
−0.2031




0.7
−0.6
1.4
−0.4
−0.2



θ3


−0.4863
−0.3975
−0.1913

1.309
0.8917




−0.5262
−0.3969
−0.2037

1.307
0.9170




−0.4829
−0.4087
−0.2162
1.3145
0.8802




−0.5
−0.4
−0.2
1.3
0.9



6-1-2 PWARX examples

The following synthetic system is used to demonstrate the ability of HySI-SAT to identify
PWARX systems. Let the output of a system as described by Equation 2-3 be given as:

y(k) =



[
0.6 −0.4 0.4

] [r(k)
1

]
+ ω(k), if r(k) ∈ R1

[
0.5 0.7 0.2

] [r(k)
1

]
+ ω(k), if r(k) ∈ R2

[
0.4 0.4 −1.3

] [r(k)
1

]
+ ω(k), if r(k) ∈ R3

(6-10)

J.H.M. Zwart Master of Science Thesis



6-1 Synthetic systems 37

Figure 6-3: Identified PWA map using HySI-SAT. Red dots represent datapoints.

where r(k) =
[
y(k − 1) u(k − 1)

]T
and the regions are defined as

R1 =
{
r(k) ∈ R2∣∣ [−5 1 −2

] [r(k)
1

]
≤ 0

}
(6-11)

R2 =
{
r(k) ∈ R2∣∣ [5 −1 2

1 3 −3

] [
r(k)

1

]
≤ 0

}
(6-12)

R3 =
{
r(k) ∈ R2∣∣ [−1 −3 3

] [r(k)
1

]
≤ 0

}
(6-13)

The dataset used for identification is obtained by applying the following input for T=200

u(k) = 1.1 · sin(k) + 4 · sin(0.2k) + 0.8 · sin(3k) (6-14)

ω(k) is simulated as a uniformly distributed sequence ω(k) ∼ U(−0.1, 0.1). For validation a
sawtooth signal of amplitude 10 and period 2 · π was used.

Table 6-3: FIT for validation of system 6-10

HySI-SAT PWASON[48]

FIT [%] 69.0 60.3

6-1-3 Frequent switching

This section evaluates the performance of the proposed method on a system where during
simulation the submodels were activate for only a short period before switching to the next
submodel. The system in question is borrowed from [16] (also portrayed in Appendix B) and
simulated for T=50. The identified switching sequence and true switching sequence are shown
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Table 6-4: Identified model parameters system 6-10. 2 datapoints are attributed to extra mode
4

Identified parameter vectors

θ1
[
0.570 −0.426 0.429

]T
θ2

[
0.507 0.691 0.194

]T
θ3

[
0.411 0.394 −1.28

]T
θ4

[
−3.00 −0.0214 −2.10

]T

in Figure 6-4. It can be seen that the true switching sequence is erratic. In fact, only for 7
samples the regressor was located in the same region as previous time instance. From this
experiment it becomes apparent that the presented methodology does not function properly
on datasets with a very low dwell time.

Remark 6-1.1. Note that for a SARX systems that switch every time instance, the switching
time sequence would be given by 〈n〉Tn=1. In the optimal case that this would be the switching
time sequence determined in the first step, the second step of our method becomes equivalent
to the approach from [1]. Therefore in these situations their algorithm is preferred.

Figure 6-4: Identified switching sequence in comparison to true switching sequence

6-2 Random systems

The following synthetic experiment is involved with the effect of the number of data points in
comparison to the computation time and accuracy of the parameter estimation. To evaluate
this random systems were created and simulated. The specification of these systems can be
found in Appendix A-1. For each case 100 random systems were simulated. The results are
shown in Table 6-5. The results show that as the number of datapoints increases the accuracy
of the estimated parameters and the computation time also generally increases, which is to
be expected.
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Table 6-5: Computation time and ∆n for increasingly large datasets

T 60 120 180 240 300 360

∆n
median 5.5 · 10−3 4.5 · 10−3 3.4 · 10−3 3.8 · 10−3 3.3 · 10−3 3.2 · 10−3

(IQR) (0.0114) (0.0102) (0.0056) (0.0151) (0.0119) (0.0095)

computation median 3.48 19.6 52.7 117 101 269
time [s] (IQR) (3.56) (13.3) (41.1) (78.5) (109) (191)

Table 6-6: Trade-off computation time versus number of blocks

Number of blocks 1 2 3

computation mean 2.82 · 103 1.41 · 103 1.14 · 103

time [s] (std) (453) (346) (504)

estimated # mean 3.50 5.70 7.10
of submodels (std) (1.65) (2.21) (2.64)

Large datasets

The next experiment demonstrates the procedure described in Chapter 5 for dealing with large
datasets. It is applied to datasets of 2000 input-output pairs. These datasets are generated by
random SARX systems described in Appendix A-2. For each case 10 random datasets were
generated. The average computation time and number of submodels is displayed in Table 6-6.
The trade-off between computation time and the number of blocks the dataset is separated
in, can clearly be seen.

6-3 Experimental data

6-3-1 Modeling room temperature

As stated in the introduction, the objective of the proposed method is to minimise the number
of submodels while maintaining a minimum dwell time. This will now be demonstrated
by modeling the temperature of a room using a dataset containing 1800 input-output data
samples (Figure 6-9). The inputs consist of the temperature of adjacent rooms (T1-T3), the
outside air temperature (To), the supply air mass flow (WA) and lastly the Temperature of
the supply air (TA). The Temperatures were measured in degrees Celsius (◦C), and the mass
flow in kilograms per second (kg · s−1). The dataset was identified by HySI-SAT and the
sparsification based approach [1] which also aims at minimising the number of submodels.

The resulting switching sequence is shown in Figure 6-5. It can be seen that for the bound on
the error given by δ = 0.36, the same number of submodels was obtained for both methods
while a significant difference in the switching frequency can be observed. For δ = 0.26 the
sparsification approach is able to explain the data with less models. However the switching
frequency corresponding to HySI-SAT is significantly lower, which fulfils our objective of
identifying models with less switches.
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(a) Sparsification δ = 0.36 (b) HySI-SAT δ = 0.36

(c) Sparsification δ = 0.26 (d) HySI-SAT δ = 0.26

Figure 6-5: Switching sequence obtained for 2 different bounds on the error.

6-3-2 Case study

This section is concerned with the identification of a real system in order to demonstrate
the ability of HySI-SAT to approximate nonlinear systems by a piecewise affine model. The
system in question is the coupled electric drives [49]. The dataset was provided by Wigren
and Schoukens [50], and is part of a collection of nonlinear benchmarking datasets which are
made publicly available.

System description

The coupled electric drives consists of two electric motors connected to a pulley by a flexible
belt. The pulley is held in place by a spring. The setup is shown in Figure 6-6. The input and
output of the system are respectively the voltage applied to the motors and the measured
angular speed of the pulley. The data is collected by applying a piecewise constant input
signal that switches every 5 samples to a random value in the range of -1.5 V to +3.0 V. The
input and output were obtained with a sampling period of 20 milliseconds. Two datasets were
provided. The first one was split into a training set and a validation set. 200 samples were
used for training and 300 for validation. The second dataset was only used for validation.
During the validation phase the input data and the first three values of the measured output
were used. The following hyperparameters were used during identification: Ls = 20, δ = 0.05.
The quality measure to evaluate the performance on the benchmark dataset is the Root mean
squared error, given by Equation 6-3.
The performance is compared to different techniques from the literature that were as well
tested on this benchmark dataset. The RMSE of the following methodologies is considered:
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Figure 6-6: Schematic overview of the coupled electric drives [2]

(a) Validation on dataset 1 (b) Validation on dataset 2

Figure 6-7: The simulated output of the model on the validation datasets

an approach which uses a neural network with radial basis functions [51], a fuzzy system and
an extended fuzzy logic system (FLe), both reported by [52], and lastly a LOLIMOT [54] fuzzy
model reported in [53]. In addition to results from the literature, a different technique for
identifying PWARX model was considered, which is the sum of norm regularisation method
proposed by Ohlsson and Ljung [48]. Using their code [55], a large range of values for the
different tuning parameters was tried out. The best result was obtained using N=12, and
λ=0.0001. Lastly, to put the results into perspective, a single 3th order ARX model was
fitted to the data.

LOLIMUT was trained in [53] using the first 374 samples of the second dataset and validated
using the next 126 samples. In [51], the first dataset was used for training the neural network

(a) Input for training the model (b) Input for validation

Figure 6-8: Input coupled electric drives dataset 1
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Table 6-7: Comparison RMSE on the coupled electric drive dataset

Single
ARX
model

HySi-SAT
(PWARX)

PWASON
[48]

RBFNN1

[51]
Fuzzy
system
[52]

FLe
[52]

LOLIMOT 1

[53], [54]

Dataset 1 0.463 0.304 0.397 -
0.323 0.0921

-

Dataset 2 0.299 0.231 0.255 0.185 0.0699

and the second dataset for validating it. In [52] no details were provided on which of the two
datasets was used and neither on the quantity of samples used for training and validation.

The Root-mean-squared-error is portrayed in Table 6-7.

(a)

(b)

Figure 6-9: Output (a) and inputs (b) of dataset Section 6.3.1

1A different error measure was reported which was converted to the RMSE for easier comparison
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Chapter 7

Discussion and conclusion

In this chapter the proposed algorithms and the experimental results from Section 6 are
discussed, and some interesting properties of the algorithm are highlighted. Finally, the
thesis is concluded and recommendations for future research are provided.

7-1 Discussion

One goal that was set out for this thesis project was to develop an identification method
for SARX models that minimises the number of submodels while respecting the minimum
dwell time. This was motivated by the observation that the approach proposed in [1] worked
very well for minimising the number of submodels, however resulted in a model with many
switches, and overfitting of some submodels. To validate if the presented approach deals with
these issues both methods are applied to experimental data in Section 6-3-1 The results show
that performance of HySI-SAT on the front of minimising the number of submodels comes
close or even matches that of the method described in [1]. Nevertheless the model identi-
fied by HySI-SAT has considerably less switches due to the minimum dwell time constraint.
Noteworthy is the fact that the identified switching sequence seem to exhibit a far longer
average dwell time than is enforced by the minimum dwell time constraint. This behaviour
is observed more often than not. We suspect this to be a consequence of the specific SAT
solver used. The SAT solver tend to prefer valuations with relatively many Booleans assigned
to False, resulting in sporadic switching. This effect would be interesting to look into in the
future.
Two synthetic SARX systems from the literature were identified in Section 6-1-1. HySI-SAT
was able to accurately estimate the model parameters, and recover the switching sequence.
The proposed algorithm for identifying PWARX models is also validated on two example
systems (Section 6-1-2). These experiments show that the suggested algorithm is proficient
in identifying PWARX models when the system transitions slowly between modes. When the
system switches rapidly the performance deteriorates, which results in a complex model with
many submodels.
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In Section 6-3 the proposed method is validated on a benchmark dataset. Experimental data
from the coupled electric drives is used to estimate a model and afterwards validate it. The
error for the validation data, displayed in Table 6-7, shows that HySI-SAT has a lower error
in contrast to a single ARX model and PWASON [48]. The error of the proposed method
is considerably higher than the reported errors of the neural network, fuzzy extended logic
system and the fuzzy system reported in [53]. However one benefit the PWARX model iden-
tified via HySI-SAT has in respect to the last three is it’s simplicity. The identified PWARX
model consists of 5 third order affine submodels while the methods with a considerably lower
error make either use of a more complex regressor or significantly more local models.

7-1-1 Properties of HySI-SAT

HySI-SAT is deterministic, given that the SAT solver is deterministic and the method for
resolving progress obstruction (Section 3-2-3) is deterministic. If these conditions are fulfilled,
running the algorithm twice, will result in the same identified model. Another interesting
property arises by the incorporation of a SAT solver in the identification process.

Different constraints

The inclusion of a SAT solver presents the opportunity to add extra constraints. Many
constraints on the desired times of switching between models can straightforwardly be added
to the SAT problem. A few examples will be given, but this list is by no means exhaustive.

• Particular number of switches:∑
b(k) = ds

where ds denotes the desired number of switches.

• No switch in a particular time frame:
¬b(kstart) ∧ ... ∧ ¬b(kend)

• Required switch in a particular time frame:
b(kstart) ∨ ... ∨ b(kend)

The last two constraints can be added to include extra information. For instance, when it is
observed that a physical process visibly changes around a certain time but the exact time is
not known, the third example can be added to enforce a switch in a specific time window.

7-2 Conclusion

In this thesis a novel method for the identification of Piecewise affine ARX and Switched
ARX systems from input-output data is presented and discussed. This approach seeks to
find a SARX/PWARX model with a minimum number of switches that is consistent with the
data and respects a minimum dwell time. This method first segments the dataset into feasible
subsets. The segmentation is performed by an iterative procedure between a SAT solver and
a convex optimisation tool. Then the identification problem is posed as a problem of fitting
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the minimum number of submodels to these subsets. Based on the method of Ozay et al. [1],
this problem is reformulated to a `0-minimisation problem of a sequence, and subsequently
relaxed to a convex optimisation problem.
A procedure for dealing with large datasets is also presented. Here the dataset is divided
into parts that are successively identified. Next, the identified models are fitted to the data.
Finally, by means of solving a form of the minimum hitting set problem the number of
submodels is further minimised.
The proposed methods are demonstrated by numerical experiments. These experiments sug-
gest that it holds up well against established methods from the literature. However the
proposed method does not seem appropriate for datasets with frequent switching.
The suggested method for PWARX system identification is applied to experimental data from
the coupled electric drives. This highly nonlinear system is used as a benchmark system in
the literature. The results show a good combination of datafit and model simplicity.
Supplementary to this thesis a toolbox is developed that incorporates the presented algo-
rithms. This toolbox is publicly available and free to use/build upon.

7-3 Future work

Datapoints close to a switch

The SAT solver does not look for the optimal switching sequence but for a feasible one.
Datapoints close to a switch can sometimes be included in both intervals adjacent to that
switch, and result in a feasible switching sequence. Assigning points to the wrong interval
can cause datapoints that were simulated by different subsystems to be grouped together. In
this case the interval is commonly classified as a new separated mode which results in extra
modes in the final model. It would be interesting to look into a way of refining the switching
time sequence after the first step, by shifting particular switching times marginally backward
or forward in time.

Spacial seperation

During the first phase a feasible switching sequence is established in which time instances
between switches are classified to belong to the same submodel. This can be seen as a pre-
clustering procedure. It inherently favors datapoints in close temporal proximity to belong
to the same submodel. For PWARX systems that switch frequently it would be interesting
to partition the dataset based on spacial features. The Booleans could encode a partitioning
based on location of the datapoints. The SAT solver proposes a separating in groups, which
will each be checked for feasibility. This iterative procedure could work in a similar manner
to the presented approach in this work.

Outliers

Momentary sensor failure or unmodeled dynamics can result in observations that deviate
considerably from the expected value. These outliers in the data can degrade the performance
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of identification. This motivates the search for a method of dealing with outliers. In [34],
[56] methods which are robust to outliers are presented. This raises the question how the
proposed method can be shaped to remove (the effect of) outliers.

`1-relaxation

Recently alternatives to the reweighted `1-relaxation have emerged that choose the weights
differently. Le [57] proposed a different method of choosing the weights that results in bet-
ter convergence to the `0-norm. Choosing the weights differently might be one road worth
pursuing to improve HySI-SAT.
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Appendix A

Randomly generated systems

A-1 Experiment: Size of dataset

The system is described by the following equation.

y(k) =
[
y(k − 1) y(k − 2) u(k − 1) u(k − 2)

]
θσ(k) + ε(k) (A-1)

with

θ1 =
[
a1

1 a1
2 b11 b12

]T
,

θ2 =
[
a2

1 a2
2 b21 b22

]T
,

a1
1, a

1
2, a

2
1, a

2
2 ∼ U(−0.5, 0.5),

b11, b
1
2, b

2
1, b

2
2 ∼ U(−2, 2)

σ(k) ∈ {1, 2, 3}

with ε(k) ∼ U(−0.1, 0.1) and u(k) ∼ U(−1, 1). The discrete state stays constant for 16
samples at a time. Then every sample it has a probability of one in three to change to a
randomly picked different mode until it switches. The first two values of y(k) are samples
from the U(−1, 1) distribution.

A-2 Experiment: Large datasets

The system is identical to system A-1, except on two fronts. First the noise description is
given as ε(k) ∼ U(−0.03, 0.03), and secondly the discrete state stays constant for atleast 20
samples at a time.
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Appendix B

Simulation with frequent switching

The following system system from [16] was identified in Section 6-1-3.

y(k) =



[
−0.4 1 1.5

] [r(k)
1

]
+ ω(k), if r(k) ∈ R1

[
0.5 −1 −0.5

] [r(k)
1

]
+ ω(k), if r(k) ∈ R2

[
−0.3 0.5 −1.7

] [r(k)
1

]
+ ω(k), if r(k) ∈ R3

(B-1)

where r(k) =
[
y(k − 1) u(k − 1)

]T
and the regions are defined as

R1 =
{
r(k) ∈ R2∣∣ [4 −1 10

] [r(k)
1

]
≤ 0

}
(B-2)

R2 =
{
r(k) ∈ R2∣∣ [−4 1 −10

5 1 −6

] [
r(k)

1

]
≤ 0

}
(B-3)

R3 =
{
r(k) ∈ R2∣∣ [−5 −1 6

] [r(k)
1

]
≤ 0

}
(B-4)

(B-5)

where u(k) and ω(k) are sampled from the uniformly distribution U(-4,4) and U(-0.2,0.2)
respectively.
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Appendix C

HySI-SAT toolbox

This section contains information about the toolbox supplementary to this thesis work. First
a short overview of the toolbox will be given, followed by a brief instruction on how one could
use the tool.

C-1 Overview

HySI-SAT is an application written in python and compiled to C using cython. The toolbox
requires Z3 solve [42] as a SAT solver and Cplex [43] as a convex optimisation program. The
toolbox can be obtained from [18]. A more elaborate manual and installation instructions
can also be retrieved from there.

C-2 Instruction

The toolbox features a Graphical User Interface (GUI) where the user can interact with the
program. An overview of the GUI is given in Figure C-1. On the left side parameters can be
specified in addition to the choice of identifying either a PWARX model or a SARX model.
The user can either generate a random model for identification which can be used to compare
this method with other methods, or input a dataset of input output data. The input and
output should be supplied as a comma seperated text file. When the dataset is loaded the
input and output are displayed on the right. The user can start identification by pressing the
start button. A bar on the bottom of the screen shows the progress. When identification is
completed, the resulting switching sequence is displayed on the right. An information panel
will display information during and after identification. When the identified model meets
the demands, the gui can be closed. A folder will be created, named after the time and
date of identification, that contains information about the identified model. The switching
sequence, model parameters, regressor, input and output are stored in the form of Matlab
formatted data. Moreover, in case a PWARX model is identified, one extra file is added.
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52 HySI-SAT toolbox

Figure C-1: Graphical user interface of the HySI-SAT program

This file stores the coefficient matrices that determine the partitioning of the regressorspace.
Every identification procedure is saved to a database that allows easy storage and retrieval
of previously identified models.
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Appendix D

HySI-SAT modified

The following algorithm appears in Section 5 to identify models for every block except the
first one.

Algorithm 8 HySI-SAT modified
1: procedure SARX identification block Bi
2: (S, T -satisfiability)← HySI-SAT step 1(〈y(k), u(k)〉|k ∈ Bi)
3: l← 0
4: N1 ← {1, ..., |S|+ 1}
5: Fit previously identified submodels to the data:
6: while l < |Σ| do
7: l← l + 1
8: Kl ← {j ∈ Nl| ||y(k)− r(k)Tθl||∞ ≤ δ, ∀k ∈ Ij}
9: Nl+1 ← Nl \ Kl

10: end while
11: Identify submodels for the remaining intervals:
12: while |Nl+1| > 0 do
13: l← l + 1
14: w ←

[
1 1 ... 1

]T
15: for p=1:η do
16: (z, θ̃)← Equation3−17(Nl,w)
17: wj ← 1

zj+ε , ∀j ∈ Nl
18: end for
19: θl ← θ̃
20: Kl ← {j ∈ Nl| ||y(k)− r(k)Tθl||∞ ≤ δ, ∀k ∈ Ij}
21: Nl+1 ← Nl \ Kl
22: end while
23: σbi(k)← Recover switching sequence(Ki, i = 1, ..., l)
24: Σbi ← {θ|Σ|, ..., θl}
25: return (σbi(k),Σbi)
26: end procedure
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Glossary

List of Acronyms

SARX Switched AutoRegressive eXogenous

PWARX PieceWise AutoRegressive eXogenous

SAT Boolean Satisfiablity Problem

SMT Satisfiability Modulo Theories

CNF Conjunctive Normal Form

DPLL Davis - Putnam - Logemann - Loveland

MIMO Multiple Input Multiple Output

SVM Support Vector Machine

OVR One-versus-rest

OVO One-versus-one

GUI Graphical User Interface

List of Symbols

µ Valuation of Booleans
τd Dwell time
δ Bound on the error
ω Noise
Σ Set of submodels
σ Switching sequence
θ Parameter vector
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60 Glossary

ϕdwell Boolean dwell time constraint
ϕswitchinglimit Boolean switching limit constraint

wi Weights of the decision function
Bi Block
Ii Interval
N Normal distribution
Ri Region of the regressorspace
U Uniform distribution
B Set of Boolean numbers
R Set of real numbers
	 Minkowski difference
ϕb Propositional formula
ϕSMT SMT formula
∨ Or operator
∧ And operator
bi Boolean
Hi Coefficient matrix of a hyperplane
Ls Switching limit
tis Time instance of a switch
I∗ Interval without smallest element
Ci Clause in a CNF formula
k Time instance
nu Order of the input
ny Order of the output
r Regressor
S Switching time sequence
T Length of the dataset
u Input
V Volts
y Output
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B
block, 29

C
cardinality constraint, 10
certificate, 16
classifiers, 27
clause , 14

L
l0-minimisation, 19
l1-relaxation, 19

M
minimum dwell time, 8
minimum set cover problem, 30

N
notation, 3

P
PWARX models, 6

R
research goals, 9

S
SARX model, 5
SAT problem, 10
SAT solver, 10
SMT, 11
sparsity, 19
switching limit, 8
switching time sequence, 14
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