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Chapter 1

Introduction

The decomposition of complex sentences into simpler, more manageable compo-
nents is one of the crucial tasks in the field of natural language processing (NLP),
with widespread applications in information retrieval [1], question answering [2],
and automated fact-checking system [3]. Complex sentence decomposition involves
breaking down intricate statements into simple subclauses, facilitating better under-
standing and processing by computational models. This task is essential for im-
proving the verifiability and interpretability of models, allowing humans to better
understand how these models process and interpret natural language. By making
the model’s understanding more transparent, we can ensure that complex sentences
are handled in a way that is both clear and accurate.

Many prior studies have focused on the task of decomposing complex sentences.
Traditional methods often relied on rule-based approaches, dependency parsing,
and heuristic-based strategies to dissect sentences into simpler components [4], [5].
While these methods provided foundational insights, they were limited by their
rigidity and inability to generalize across diverse linguistic contexts. On the other
hand, with the advent of large language models (LLMs) such as GPT-3 [6] and Mix-
tral [7], there has been a significant shift towards using these models for complex
claim decomposition. These models, trained on vast corpora, exhibit remarkable
capabilities in understanding and generating human-like text. Recent studies have
shown that LLMs can perform reasonably well in breaking down complex sentences
[8]. However, challenges remain: LLMs often struggle with nuanced understand-
ing and precise decomposition, particularly when dealing with highly intricate sen-
tences with complicated syntactic structures. Despite their advanced linguistic ca-
pabilities, these models can still fail to accurately capture and disassemble complex
sentence structures into comprehensible parts, especially those involving intricate
logical relationships [9]. Figure 1.1 illustrates how LLMs struggle to comprehend
the claim due to the lack of necessary syntactic and semantic knowledge for effec-
tive parsing. This limitation underscores the importance of enhancing LLM reason-
ing capabilities, which can be achieved through techniques like Chain-of-Thought
(CoT) prompting that help models articulate intermediate reasoning steps [10]. Fur-
thermore, supervised learning also plays a critical role in refining these reasoning
processes, aligning them more closely with human judgment, and improving both
the accuracy and interpretability of sentence decomposition tasks [11].

To get the best of both worlds, we decided to utilize linguistic features for the sen-
tence decomposition using LLMs. This is because these structural features provide
information that humans can easily understand and apply to sentence decomposi-
tion. For instance, the constituency parsing tree of a complex sentence can clearly
reveal its hierarchical structure.

Consider the sentence “The actor who played DCI Billy O’Connell on the tele-
vision pilot of Police 2020 was born before Michael Fassbender.” Looking at the
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FIGURE 1.1: An Example of LLMs Failing to Understand a Complex
Claim

The correct answer of this claim is false. David did not specifically serve as an advisor to Hubert
Humphrey during his vice presidency.

constituency tree shown in 1.2, we can clearly see that this complex sentence can be
easily decomposed into simpler subcomponents.

FIGURE 1.2: Constituency Tree

Since humans can easily decompose sentences using linguistic features, we hy-
pothesize that LLMs can also use these features to improve their sentence decom-
position capabilities. Therefore, we propose a novel approach that combines lin-
guistic feature enhancement and advanced prompting methods to improve the per-
formance of LLMs in complex claim decomposition. Our method is grounded in
the principle of divide-and-conquer, aiming to break down complex problems into
manageable, verifiable components. By incorporating linguistic features, we aim to
provide additional context and structural information that can aid the LLM in bet-
ter understanding and decomposing complex claims. Additionally, using diverse
prompting methods, we intend to refine the reasoning process of the LLM, guiding
it to more effectively leverage the provided features.

Our implementation adopts a program-based approach to verify complex claims,
consisting of two main components: program generation and program execution.
The program generation phase, which is the primary focus of our research, utilizes
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few-shot prompting to guide the LLM in decomposing complex claims and gener-
ating corresponding programs that express their meaning. We enhance this process
by incorporating linguistic features to improve the model’s sentence comprehension
and by employing different prompting methods to facilitate better reasoning about
the provided features. This approach aims to boost the overall performance of the
decomposition task. In the execution phase, we implement specific handlers for var-
ious generated functions to carry out the claim verification process.

1.1 Research question

In light of the challenges and limitations identified in the current state of research,
this thesis seeks to explore novel methods for improving the decomposition of com-
plex claims using LLMs. Specifically, the research is guided by the following ques-
tions:

1. RQ1: To what extent can linguistic features enhance the complex sentence
decomposition capabilities of LLMs?

This question aims to investigate whether providing LLMs with additional
linguistic context and structural information can improve their ability to un-
derstand and break down complex sentences into simpler, more manageable
components.

2. RQ2: What is the impact of different reasoning techniques and supervision
methods on the performance of LLMs during the decomposition process??

This question examines the impact of various prompting techniques on the
LLMs’ reasoning abilities. By comparing different prompting methods, such
as in-context learning and chain-of-thought prompting, the research seeks to
determine which strategies most effectively guide LLMs in accurately decom-
posing complex claims.

1.2 Contribution

In exploring the role of linguistic features and diverse prompt engineering strategies
in reasoning and supervision to enhance the decomposition capabilities of LLMs,
this work contributes towards understanding how machines process complex claims.
This study demonstrates that incorporating semantic representations like Abstract
Meaning Representation (AMR) can improve LLMs’ ability to process complex claims,
although the benefits vary depending on the context and specific scenarios. The
research also delves into how different approaches in reasoning and the use of su-
pervision signals during prompting engineering affect the reasoning processes of
LLMs. While these methods show potential in reducing decomposition errors and
aiding in complex problem-solving, they also introduce new types of errors and in-
crease computational costs. This investigation into the dynamics of errors and the
trade-offs between accuracy and efficiency provides crucial insights for future model
development. By highlighting these aspects and the limitations of mentioned tech-
niques, the study sets a stage for further research aimed at refining the capabilities
of LLMs in real-world applications.
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1.3 Overview

The structure of this thesis is as follows: In Chapter 2, we present the preliminaries
of this work, which include LLMs, linguistic features, and the borrowed program
structure. Chapter 3 focuses on related work, discussing the latest developments in
this field and the motivation and hypothesis of our work. Chapter 4 details the de-
sign of our approach. Chapter 5 describes the experimental setup and corresponding
results. Chapter 6 encompasses the discussion of our findings and outlines future re-
search directions. Finally, Chapter 7 provides the conclusion of our work.
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Chapter 2

Preliminaries

This chapter primarily introduces some preliminary knowledge about our work to
help readers better understand our research. Section 2.1 explains the definition of
complex sentences. Section 2.2 describes the design principle and the program struc-
ture and syntax used in our approach. Section 2.3 explains what linguistic features
are and their characteristics. Section 2.4 presents the current state of large language
models.

2.1 Sentence Complexity

Sentence complexity refers to the use of various syntactic structures within a sen-
tence that contributes to its overall intricacy [12]. This includes the employment of
clauses, phrases, and other grammatical constructions that enhance the depth and
richness of the text. Complex sentences often consist of multiple clauses, including
dependent and independent ones, which help in conveying detailed and nuanced
information[13], [14]. The ability to embed clauses and phrases within other clauses
adds to this complexity, creating layers of meaning that require advanced cognitive
and linguistic skills to decode[15].

One of the primary indicators of sentence complexity is the use of subordinate
and coordinate clauses [14]. Subordinate clauses add depth by providing additional
information and context to the main clause, while coordinate clauses connect ideas
of equal importance [13]. The integration of these clauses contributes to the syntactic
richness of a sentence.

Complex sentences also tend to use nominalizations and passive constructions
[13]. These elements are prevalent in academic writing due to their ability to con-
dense information and shift focus from the agent to the action or recipient of the
action. Nominalizations involve converting verbs into nouns, making sentences
denser and more formal [16]. This structural choice not only affects readability but
also increases the cognitive load required to process the text.

Embedding involves placing clauses or phrases within other clauses, which also
contribute to the overall complexity [15]. This technique is common in scientific
and technical writing, where detailed and layered information is necessary. The
use of embedded clauses increases the density of information within a sentence,
demanding more from the readers cognitive resources to parse and understand the
relationships between the various elements [14].

Multi-hop reasoning is another crucial aspect of sentence complexity [17]. It in-
volves processing complex sentences where the system must traverse multiple in-
termediate reasoning steps, jumping from one piece of information to another, and
gradually building a chain of reasoning that leads to the correct conclusion. Each
step in the reasoning process relies on the information obtained from previous steps.
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This type of reasoning is essential for understanding and generating complex sen-
tences that span multiple ideas or concepts. Multi-hop reasoning is particularly
important in advanced language tasks such as multi-hop question answering and
multi-hop reading comprehension, where understanding and integrating informa-
tion from various sentences is crucial [18], [19].

2.2 ProgramFC

Our research innovatively extends the concept of program-based reasoning for veri-
fying complex claims, an approach detailed in the work titled "Fact-Checking Com-
plex Claims with Program-Guided Reasoning" by Pan et al. [20]. This research
introduces the ProgramFC model, an innovative framework for fact-checking that
employs a structured, programmatic approach to decompose complex claims into
simpler, verifiable sub-tasks.

In our research, we have adopted this program-based structure and syntax, in-
spired by the ProgramFC framework. By utilizing this approach, we can decom-
pose complex claims into individual sub-tasks, making the verification process more
manageable and interpretable. This integration enhances our ability to verify intri-
cate claims, ensuring thorough and explainable results.

2.2.1 Principle

The design criterion of ProgramFC is based on the divide and conquer design, where
complex claims are first broken down into reasoning step programs before execu-
tion.

ProgramFC can be divided into two stages, which are program generation and
program execution. In the program generation stage, complex claims are broken
down into simpler sub-tasks, which can be addressed using a shared library of spe-
cialized functions. To be specific, a reasoning program is generated for the input
claim. The generated reasoning program acts as a step-by-step guide for verifying
the claim. Subsequently, the program is executed by sequentially assigning each
sub-task to the appropriate sub-task handler in the program execution stage. These
sub-tasks might involve answering questions, verifying straightforward claims, or
performing logical reasoning.

2.2.2 Program Structure and Syntax

The model leverages a unique syntax, where each step is an action involving a spe-
cific function and its arguments. This approach ensures precise and clear logical
flow, facilitating effective verification of complex claims.

There are three primary types of functions in the generated programs: question,
verify, and predict. Each type serves a distinct purpose and is formatted in a specific
way to ensure the correct handling of complex claims.

1. Question: The question function is designed to handle interrogative sentences.
The format of a question function includes the question itself and expects a
handler capable of understanding and responding accurately.

2. Verify: The verify function is used to determine the truthfulness of a given
statement. This function takes a declarative sentence as input, and the handler
evaluates its accuracy.
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3. Predict: The predict function is typically the final handler in the program and
is responsible for performing logical operations. It integrates the results from
previous steps, utilizing the variables and values obtained from the question-
ing and verifying function.

An example program with its corresponding claim is shown in 2.1.

# The claim is that The model of the car Trevor Bayne drives was
introduced for model year 2006. The Rookie of The Year in the 1997
CART season drives it in the NASCAR Sprint Cup.

def program():
answer_1 = Question("Which model of car is drived by Trevor Bayne
?")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")
answer_2 = Question("Who is the Rookie of The Year in the 1997
CART season?")
fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.")
label = predict(fact_1 and fact_2)

LISTING 2.1: Example Program

In our research, we have adopted this structured programmatic approach for ver-
ifying complex claims to enhance the transparency, reliability, and efficiency of our
fact-checking model. This method allows for a systematic breakdown and evalua-
tion of intricate claims, improving the overall robustness of our verification process.

2.3 Linguistic Features

In the domain of NLP, linguistic features play a critical role in the decomposition
of complex sentences. Understanding these features is essential for developing al-
gorithms that can effectively parse and interpret sentences with intricate structures.
These features can be broadly categorized into several types, including phonolog-
ical, morphological, syntactic, and semantic features. For the purpose of complex
sentence decomposition, syntactic and semantic features are of paramount impor-
tance.

2.3.1 Syntactic Parsing

Syntactic parsing, also known as syntactic analysis, is a foundational aspect of the
study of natural language processing. This analysis assigns syntactic structure to the
sentences based on a set of grammatical rules. Syntactic parsing can not only help
to check for grammatical correctness but also aim to understand the different roles
played by each word in a sentence and how these words interact with each other to
convey meanings.

Syntactic parsing relies heavily on formal grammars, such as Context-Free Gram-
mars (CFGs), which consist of a set of production rules that describe how sentences
in a language can be constructed. The basic idea is to start with a start symbol and
apply these production rules to generate sentences. Each rule defines a way to re-
place a symbol with a sequence of symbols, enabling the parser to break down a
complex sentence into its constituent parts.
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Syntactic parsing is fundamental in many applications within NLP. It is crucial
for tasks such as machine translation, where understanding the structure of sen-
tences in both the source and target languages can dramatically improve translation
quality. It is also essential in other applications like speech recognition and infor-
mation extraction, where the syntactic structure helps in accurately interpreting the
input and extracting relevant information.

Syntactic parsing can be divided into two main types: constituency parsing and
dependency parsing. Constituency parsing emphasizes syntactic analysis, while de-
pendency parsing is capable of handling both syntactic and semantic analysis.

Constituency Parsing

Constituency parsing aims at dividing sentences into sub-phrases or constituents,
which are usually phrasal structures such as noun phrases (NPs) or verb phrases
(VPs)[21]. These constituents are identified by parsing trees, where each node rep-
resents a linguistic category, and the leaves represent the words of the sentence. An
example of a constituency parsing tree is shown in figure 2.1.

According to grammar, typically a Context-Free Grammar(CFG), the constituency
parsing can construct a parse tree that represents the syntactic structure of a sen-
tence[22]. Top-down or bottom-up parsing strategies are the most foundational and
simple parsing techniques, while modern parsers often employ probabilistic mod-
els, which improve accuracy by considering the likelihood of different parse trees
based on trained models from annotated corpora.

Constituency parsers are particularly useful in syntactic tasks that require a de-
tailed understanding of phrase structure, such as text-to-speech systems, syntactic
translation systems, and grammar-checking tools. They are also essential in educa-
tional applications where understanding the detailed structure of language is neces-
sary.

Dependency Parsing

Unlike constituency parsing, dependency parsing does not use phrasal categories.
It aims to identify syntactic dependencies between words in a sentence, where the
structure is defined by links between head words and their dependents[23]. In the
dependency parsing tree, words are nodes, and grammatical relationships are di-
rectional edges that connect a headword to its dependent, revealing the functional
structure of the sentence. As this method focuses on the relationships and roles of
words in a sentence, it is particularly useful for semantic analysis. An example of a
dependency parsing tree is shown in figure 2.2.

Dependency parsing techniques have evolved from rule-based to more sophis-
ticated machine learning approaches[24]. Modern dependency parsers utilize algo-
rithms that can either incrementally build the parse tree (transition-based) or analyze
the sentence as a whole to determine the best tree structure (graph-based).

Dependency parsing is crucial for tasks that require a clear understanding of the
relationships between words, such as semantic role labeling, information extraction,
and machine translation. Its focus on word-to-word connections makes it highly
effective for languages with flexible syntax.
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FIGURE 2.1: Constituency Parsing Tree of Sentence “The boy wants
the girl to believe him.”

2.3.2 Semantic Parsing

Semantic parsing is the process of converting natural language into a more struc-
tured representation that captures the meaning of the input text[25]. That is, seman-
tic parsers translate sentences into formal languages or ontologies, such as logical
forms or graph-based structures. This transformation enables computers to perform
tasks like answering questions or executing commands based on the content of the
text.

Early semantic parsers were rule-based systems that relied heavily on hand-
crafted rules. However, the advent of machine learning has led to the development
of data-driven approaches that learn to map sentences directly to their meaning
representations[26]. These approaches often utilize advanced techniques such as
sequence-to-sequence models, which can handle a wide range of linguistic phenom-
ena more flexibly.

Semantic parsing is crucial for applications requiring deep understanding and
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FIGURE 2.2: Dependency Parsing Tree of Sentence “The boy wants
the girl to believe him.”

reasoning over texts, such as question-answering systems, interactive voice assis-
tants, and information retrieval systems. By converting natural language into a
structured format, these systems can more effectively process and respond to user
queries.

Abstract Meaning Representation

Abstract Meaning Representation(AMR) is a semantic representation language that
abstracts away from the syntactic nuances of natural language, capturing only the
essential meaning elements of sentences[27]. In AMR, sentences are represented as
directed, acyclic graphs where nodes represent concepts (entities, events, properties)
and edges represent semantic relationships between these concepts. This representa-
tion focuses on who is doing what to whom, ignoring syntactic details such as word
order and morphological variations. An example of AMR is shown in figure 2.3.

Constructing AMRs typically involves parsing techniques that either directly
generate these graphs or use an intermediate representation that is then converted
into an AMR[28]. Recent approaches in AMR parsing often utilize graph-based neu-
ral networks, which can effectively predict the structure and labels of the graph
nodes and edges from raw text[29].

AMR is particularly useful in cross-linguistic studies, machine translation, and
summarization, where the goal is to preserve the meaning across different languages
or distill the essential information from long texts. By providing a language-independent
representation, AMR facilitates a deeper, more consistent analysis of semantic con-
tent.

w/want-01

b/boy:ARG0

b2/believe-01

:ARG1

:ARG1

g/girl
:ARG0

FIGURE 2.3: Abstract Meaning Representation of Sentence “The boy
wants the girl to believe him.”
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2.4 Large Language Models

Large Language Models (LLMs) are AI systems that are trained on vast datasets,
which equip them to comprehend and generate text in human natural language,
thereby enabling them to execute a variety of tasks [30]. The rising public interest in
LLMs can be attributed to their significant impact on advancing generative AI tech-
nologies. Businesses are increasingly adopting these models for various functions,
shifting away from older methods that demand distinct models for each specific
task.

As the architecture of LLMs is based on transformer models, they can generate
natural language by predicting the next word in a sequence using probabilistic meth-
ods [31]. The vast amount of training data enables them to capture intricate patterns
in language and autonomously learn language patterns, grammar, and semantics.
Over time, these models enhance their precision and reliability by employing meth-
ods such as prompt engineering and reinforcement learning, which help overcome
typical challenges like biases and inaccuracies in the content they generate.

In practical applications, LLMs are reshaping industries by enhancing digital in-
teractions and content creation [20], [32]. They power chatbots and virtual assistants,
provide translation services, assist in academic research, and facilitate content gen-
eration across media. This versatility extends to coding, where LLMs help in debug-
ging and translating between programming languages. The accessibility of these
models, such as OpenAIs GPT series, Google’s BERT, and IBMs Granite, through
simple API integrations, underscores their integration into mainstream technology
solutions.
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Chapter 3

Related Works

This chapter reviews the relevant literatures of our approach. Section 3.1 dives into
decomposing complex sentences by traditional machine learning or language mod-
els approach. Section 3.2 provides state-of-the-art techniques that utilizing prompt
engineering techniques to improve LLMs’ ability of solving complex tasks. Section
3.3 explores studies about enhancing LLMs on complex tasks decomposition.

3.1 Sentence Decomposition

3.1.1 Intergrating Linguistic Feature

Previous works have shown linguistic features play a crucial role in enhancing ma-
chine understanding of complex sentences by providing additional context and struc-
tural information [33].

Syntactic features, including part-of-speech (POS) tags, dependency relations,
and phrase structure trees, help models understand the sentence structure [34], [35].
Works by Jurafsky and Martin [36] emphasize how these syntactic features can help
in the accurate decomposition of sentences by revealing the grammatical roles and
relationships within the sentence. Syntactic parsing involves analyzing the gram-
matical structure of a sentence to identify its constituent parts and their relation-
ships. Dependency parsing, in particular, has been effective in decomposing com-
plex sentences by identifying the main clause and its dependent clauses. Studies
such as those by Honnibal et al. [37] have demonstrated the use of syntactic parsers
like spaCy or neural network-based parsers [38] are able to help language models
break down complex sentences into simpler, syntactically valid subunits.

Semantic features are equally important in the field of complex sentence under-
standing and decomposition [39]. Semantic role labeling (SRL) is another linguis-
tic feature that can be applied to enhance the performance of sentence decomposi-
tion. SRL is used to identify the predicate-argument structures within a sentence,
essentially mapping out "who did what to whom." [39]. This technique helps in
decomposing complex sentences by elucidating the roles of different entities and
actions within the sentence. Works by He et al. [40] have shown how SRL can be
integrated with neural networks to enhance sentence decomposition. It maps out
the predicate-argument structures, ensuring that decomposed sentences retain their
original meaning and relational context. This approach helps in generating coherent
and contextually appropriate sentence fragments.

Furthermore, understanding discourse relations, which include coherence rela-
tions and discourse markers, helps in decomposing sentences while preserving their
logical and semantic structure [41], [42]. Research by Prasad et al. [43] highlights the
importance of these features in maintaining the integrity and flow of decomposed
sentence components.
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3.1.2 Model Enhancement

Recent advancements in neural networks, particularly sequence-to-sequence (Seq2Seq)
models, have shown promise in decomposing complex sentences [44]. These mod-
els, enhanced by attention mechanisms [44], [45], leverage both syntactic and se-
mantic features to focus on the most relevant parts of a complex sentence during
decomposition. This enhancement allows for more accurate and contextually rele-
vant simplifications, directly improving the performance of these models.

Further improvements in model performance have been achieved through the
use of reinforcement learning techniques [46]. These models incorporate linguistic
features to optimize the decomposition process, balancing grammatical correctness
with semantic fidelity. By dynamically adjusting based on feedback from gener-
ated outputs, reinforcement learning models continuously enhance their ability to
decompose sentences effectively over time.

Moreover, memory-augmented networks [47] represent a significant leap in han-
dling long-range dependencies and intricate sentence structures. These models uti-
lize external memory to store intermediate representations of complex sentences, al-
lowing them to manage and process extensive and detailed information efficiently.
This ability to handle long-range dependencies further improves the performance of
neural networks in sentence decomposition tasks.

3.2 Prompt Engineering

Prompt engineering is a powerful technique that harnesses the capabilities of LLMs
to solve complex tasks. It ensures that the systems generate the most effective and
desired outputs by designing tailored inputs for AI tools. Users are able to carefully
shape how the models interact with a specific task and guide the AI’s behavior to
suit particular needs using prompt engineering. The essence of prompt engineering
lies in its ability to provide the necessary context and constraints that teach how an
AI model processes information and responds to queries.

In this section, we will introduce prompt engineering in a progressive order,
which includes: in-context learning, chain-of-thought reasoning, rational engineer-
ing, and problem decomposition.

3.2.1 In-context Learning

LLMs such as GPT-3 have demonstrated an in-context learning (ICL) ability, a paradigm
that allows language models to learn tasks given only a few examples in the form
of demonstration[6]. The models can be prompted with a question and a few input-
output example pairs to potentially solve a problem through "reasoning". Many
studies have shown that LLMs can perform a series of complex tasks through ICL,
such as mathematical reasoning problems.

Analogy is the key idea for in-context learning. The ICL prompt template usually
contains several demonstration examples written in natural language, followed by a
query question and the piece of the prompt context. The model is expected to learn
the hidden pattern in the demonstration and make the right decision according to
the pattern.

Large language models (LLMs) have shown significant innate capability for in-
context learning. On the other hand, research indicates that these capabilities can
be further enhanced through specialized training approaches prior to inference[48],
[49]. Pretraining or continual pertaining are the most straightforward directions to
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boost the ICL capability. Gu et al.[49] have innovated by reorganizing pretrain-
ing corpora to include related contexts, which helps models better integrate and
reason across previous examples. In contrast, Li et al.[32] have developed a meta-
distillation pretraining method that trains LLMs to operate on distilled demonstra-
tion vectors, enhancing efficiency without losing effectiveness in ICL tasks.

Furthermore, the integration of a warm-up phase between pre-training and ICL
inference serves as a crucial enhancement strategy. This stage adjusts the LLMs by
altering or adding parameters to better prepare them for ICL, addressing the gap
left by general pretraining data which often are not tailored specifically for ICL[48].
Various researchers, including Min et al.[50] and Wang et al.[51], have demonstrated
that continued fine-tuning of LLMs across a diverse array of tasks significantly en-
hanced ICL capabilities. These innovative training strategies are part of a broader
effort to optimize LLMs for more effective in-context learning through enhanced in-
struction following and adaptation to diverse datasets.

The performance of ICL highly depends on the organization of the demonstra-
tion and the format of instruction. According to Dong et al. [52], many studies have
shown that the selection, formatting, and ordering of demonstration examples will
greatly affect the performance of ICL.

The selection of demonstrations aims to find the best examples for ICL prompt-
ing. Unsupervised methods, such as selecting the nearest neighbors of the input
instances based on their similarities[53], [54], can be applied to filter the best can-
didate. The most common methods of calculating similarities are distance metrics,
including the L2 distance or cosine similarity. Apart from the similarities, mutual
information[55] and perplexity[56] can also provide valuable insight for prompt se-
lection. With unsupervised methods that provide easy-to-use solutions, their effec-
tiveness is limited by a lack of task-specific training. Several supervised techniques
have been developed to overcome this issue. Rubin et al.[57] developed a two-stage
training process for a dense retriever that initially uses unsupervised methods to
gather candidate examples and then trains a supervised model on these data. Ye et
al.[58] further enhanced the approach by retrieving sets of demonstrations to explore
inter-relationships among examples. Wang et al.[59] applied prompt tuning to use
LLMs as topic models that generate tokens from learned concept variables. Zhang
et al.[60] employed reinforcement learning, framing example selection as a Markov
decision process, using Q-learning based on demonstration accuracy.

A typical method for formatting demonstrations is to link several examples with
a template directly. However, in tasks requiring complex reasoning, such as math
word problems or tasks involving common sense, it is challenging to understand the
relationship between inputs and outputs with only a few examples. While template
engineering has been explored in prompting[61], other researchers are focusing on
creating more effective demonstration formats for ICL by using specific task instruc-
tions. Honovich et al.[62] discovered that given several examples, Large Language
Models (LLMs) can autonomously generate these task instructions. Building on this,
Zhou et al.[63] introduced an Automatic Prompt Engineer to automate the creation
and selection of instructions. To enhance the quality of these auto-generated instruc-
tions, various methods involve using LLMs to refine their outputs. Moreover, the
concept of Chain-of-Thought(CoT)[10] introduces intermediate steps in the reason-
ing process, improving problem-solving and understanding. Recent developments
also focus on improving these step-by-step reasoning capabilities in models.

Arranging demonstration examples in a specific order is also a crucial aspect
of constructing prompts. Lu et al.[64] have identified order sensitivity as a preva-
lent issue across various models. To address this, previous research has introduced
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multiple methods that do not require additional training to sequence demonstration
examples. In particular, Liu et al.[64] sequenced the examples by their similarity to
the input, placing the nearest example last in the sequence. Global and local entropy
measures are also applied, discovering a positive relationship between these mea-
sures and the performance of the ICL. They then applied these entropy measures
to determine the best order for the demonstrations. Furthermore, ICL[65] recom-
mended organizing demonstrations from simplest to most complex, thereby incre-
mentally heightening the complexity of examples throughout the inference process.

In-context learning is recognized for its user-friendly interface and efficient prompt-
ing method, making it widely applicable to traditional natural language processing
tasks. Notably effective in tasks requiring complex reasoning and compositional
generalization, ICL utilizes demonstrations that enhance reasoning capabilities[50].
Furthermore, its effectiveness extends to emerging applications such as data engi-
neering, model augmentation, and knowledge updating. In data engineering, ICL
offers a cost-effective alternative to traditional human or noisy automatic annota-
tions by generating high-quality data which boosts performance [51]. For model
augmentation, the flexible nature of ICL enhances retrieval-augmented methods
and helps steer models to safer outputs by prepending grounding documents to
inputs. In the realm of knowledge updating, ICL corrects outdated or incorrect in-
formation in large language models more effectively than gradient-based methods,
as evidenced by higher success rates[52]. The profound impact of ICL across both
conventional and novel NLP tasks has spurred further research into its application
across different modalities including vision, vision-language, and speech, indicating
its potential beyond mere text processing.

While ICL is a highly effective and powerful technique in the area of artificial in-
telligence, it is not without its limitations. ICL faces issues of efficiency and scalabil-
ity as the incorporation of increasing numbers of demonstrations elevates computa-
tional costs and is constrained by the maximum input length of large language mod-
els[66]. Efforts to refine these aspects include distilling demonstrations into com-
pact vectors and speeding up inference times, though these can compromise per-
formance or require access to model parameters-often unfeasible with proprietary
models like ChatGPT and Claude[67]. Additionally, the generalization capability of
ICL is limited by the availability of high-quality, annotated examples, particularly
in low-resource languages and tasks, highlighting a disparity in data resources that
impacts performance[53], [68]. Furthermore, while extending the context with more
demonstrations in advanced LLMs[69], [70], it has been observed that increasing
demonstrations only does not necessarily improve outcomes and may even decrease
them, underscoring the need for more detailed research into effective ICL strategies.

3.2.2 Chain-of-thought Reasoning

Chain-of-Thought (CoT) prompting leverages the inherent sequential thinking abil-
ity of humans to enable LLMs to solve multi-step reasoning problems [10]. This
advanced prompting technique enhances the reasoning capabilities of LLMs, in-
cluding arithmetic reasoning [71], common sense reasoning, and symbolic reason-
ing [10]. CoT prompting involves providing examples that illustrate the intermedi-
ate reasoning steps necessary to arrive at the final output. Tasks such as reasoning,
question-answering, and code generation are notably improved through the use of
CoT prompts.

Similar to In-Context Learning (ICL) prompting, two critical elements influence
the effectiveness of CoT prompts: CoT demonstrations and textual instructions. A
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CoT demonstration typically consists of a tripartite structure: a problem descrip-
tion, the rationale, and the answer. The rationale component represents the inter-
mediate reasoning steps that bridge the problem and the answer, thereby facilitating
enhanced problem-solving performance.

The complexity of a problem plays a critical role in shaping the effectiveness
of CoT prompts. The complexity can be measured through the number of reason-
ing steps required, the length of these steps, and the logical difficulty involved[72],
[73]. More complex problems encourage LLMs to engage in deeper reasoning, thus
preventing them from settling for simplistic, shortcut answers. This is achieved by
selecting demonstration problems that feature the most reasoning steps[72] or those
with high uncertainty[74], which challenges the model’s predictive capabilities.

The rationale component of a CoT prompt can be dissected into two main parts:
bridging objects and language templates[75], [76]. Bridging objects are crucial el-
ements that illustrate the logical progression needed to solve the problem, while
language templates provide the contextual knowledge necessary to connect these
logical steps[75]. Together, these components work symbiotically to enhance the
clarity and effectiveness of the reasoning process. The structural completeness of a
rationale, therefore, is vital in ensuring that the LLM can process and replicate these
reasoning pathways effectively, ultimately leading to a more robust problem-solving
performance.

In addition to the problem’s complexity and the structure of rationale, it is also
noted that the number and order of demonstrations can significantly influence the
outcome. Research suggests that increasing the number of demonstrations incre-
mentally from zero to two can considerably enhance performance[77], [78]; how-
ever, further increases might yield only little benefits and could potentially lead to
excessive computational costs[79]. It is of great importance to balance the num-
ber of demonstrations to optimize both performance and computational efficiency.
Changing the sequence of demonstrations could have a significant effect. However,
establishing a definitive ordering strategy remains challenging as the outcomes can
differ based on the specific models, tasks, and datasets involved[64].

3.2.3 Problem Decomposition

While CoT prompting is effective for eliciting reasoning in LLMs, it may struggle
with complex tasks that require compositional generalization. Dividing a complex
problem into several subproblems and solving each is a helpful way to deal with
complex tasks.

Least-to-most prompting, which is presented by Zhou et al. [80], is designed
based on the idea above. It breaks down a complex problem into a series of sim-
pler subproblems and solves them in sequence. This approach aims at easy-to-hard
generalization, improving the performance when models need to solve problems
harder than the exemplars shown in the prompts. PEARL [81] also makes use of
this idea, decomposing the input question into a sequence of actions. In addition,
Dua et al. introduced successive prompting [82], where a complex task is iteratively
decomposed into the next simple task. The iteration repeats after answering every
simple task until the complex question is answered. This approach elicits the ability
to decompose a previously unseen reasoning composition of LLMs.
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3.3 LLM Enhancement for Decomposition

While LLMs can solve many reasoning tasks, applications involving planning and
open-world problems remain problematic. Enhancing LLMs by incorporating other
methods such as planning and decision-making methods can improve interactivity,
enabling them to simulate and understand complex interactions in the real world.
This can also enhance the diversity of LLMs and help them better address complex
tasks.

3.3.1 Planning and Decision Making

Tree search

As the procedure of planning can be regarded as finding a sequence of actions that
transform the initial state into a desired goal state while considering various possible
actions and their consequences, the concept of tree search is a useful way to model
the entire exploration and decision-making process. Thus, integrating tree search
methods can enhance the planning ability of LLMs.

Tree-of-Thought (ToT), as proposed by Yao et al. [83], represents a generalized
approach to Chain-of-Thought (CoT) prompting, augmented by search heuristics.
This method actively maintains a tree of "thoughts," representing intermediate steps
in problem-solving. ToT enables large language models (LLMs) to perform decision-
making by considering multiple reasoning paths, self-evaluating choices, and de-
ciding subsequent actions, including looking ahead or backtracking. Experimental
results demonstrate that ToT significantly improves LLM performance on tasks re-
quiring complex planning or search.

Monte Carlo Tree Search (MCTS) is the most widely used planning algorithm
for strategically exploring reasoning trees, balancing exploration and exploitation
effectively. It can be employed to achieve human-like strategic planning for daily
tasks [84], [85]. MCTS allows LLMs to leverage their world modeling knowledge for
informed reasoning and to explore new action combinations for novel task-solving.
Additionally, LLMs enhance MCTS through biased sampling of states and actions,
thereby improving efficiency in addressing complex task-planning problems. Zhu et
al. [86] proposed that MCTS can also be utilized to enhance LLM reasoning abilities
by probabilistically selecting candidate tokens to generate solution paths.

External Module Intergration

As LLMs fall short on long-term planning since managing an extensive context over
multiple steps is complex and resource-consuming, some approaches integrate ex-
ternal modules such as planners and goal selectors with LLMs. Dagan et al. [87]
introduce LLM Dynamic Planner, combining LLM with a symbolic planner to find a
sequence of actions that transition from an initial state to a goal state. To overcome
the challenge of task planning for multi-task embodied agents in an open-world en-
vironment, Wang et al. [88]propose an interactive planning approach. It includes
a goal selector, which is a trainable module that ranks parallel candidate sub-goals
based on the estimated step of completion.

3.3.2 Feedback and Self-reflection

Properly prompted LLMs have demonstrated emergent capabilities to conduct multi-
step reasoning processes, enabling them to solve complex tasks such as arithmetic
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and symbolic reasoning [89]. However, these models rely solely on their internal
representations to generate thoughts and lack interaction with the external world,
limiting their capacity for reactive reasoning and knowledge updating. To address
this limitation, Yao et al. introduced ReAct [89], a framework that combines rea-
soning and acting with LLMs for decision-making tasks. ReAct integrates iterative
feedback from the environment, enabling the agent to take "thinking" steps and aug-
ment its context with a reasoning trace. SayCan [31] focuses on using LLMs for
robotic action planning and decision-making, prompting LLMs to predict possible
actions for a robot, which are then reranked based on feedback from an affordance
model grounded in the visual environment for final prediction.

Moreover, LLMs do not always generate the optimal output on their first at-
tempt. Feedback can identify errors or inaccuracies in LLM responses, facilitating
continuous learning and refinement. Madaan et al. introduced SELF-REFINE [90],
where the LLM generates output and subsequently provides feedback on its output
to iteratively refine itself. DEPS by Wang et al. [88] uses feedback to adjust gener-
ated plans upon failure effectively. When the controller fails to complete a sub-goal,
the current situation is summarized as text and sent back to the LLM planner for
refinement.
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Chapter 4

Approach

In this chapter, we will give a detailed explanation of the design of our approach
to answer the research question. Section 4.1 will first explain the motivation and
hypotheses of our work. Section 4.2 provides a structural overview of our entire
approach. This approach can be divided into program generation and program exe-
cution, which are shown in Section 4.3 and Section 4.4 in detail.

4.1 Motivation and Hypotheses

Our review of related work in the fields of prompt engineering, LLM enhancement,
and sentence decomposition has highlighted significant advancements and gaps
that guide our experimental focus. Notably, while existing studies have explored
various aspects of integrating linguistic features in language models and enhancing
models by training or fine-tuning specific data, integrating linguistic features to en-
hance LLMs’ capabilities in decomposing complex sentences is still under-explored.

Given the transformative potential demonstrated by previous models through
the integration of linguistic features, we are driven to pioneer this approach in the
context of sentence decomposition with LLMs. Many domains require the ability to
decompose complex sentences, underscoring the need for a lightweight, universally
applicable approach. We aim to develop a method that can be easily adapted across
different fields without the need for substantial modifications to the model itself or
extensive data for fine-tuning. Instead, we focus on leveraging lightweight prompt
engineering to avoid the high costs associated with fine-tuning.

Based on the gaps identified in the related work section 3 and the potential for
significant contributions to the field, we propose the following hypotheses for our
study:

1. H1: Linguistic features can improve LLMs’ ability to decompose complex sen-
tences.

2. H2: Utilizing linguistic features for reasoning and providing reference steps
and results as supervision signals during the decomposition process will en-
hance the ability of large language models to decompose complex sentences.

4.2 Overall Architecture

Our system’s overall design is based on the methodology from Pan et al. [20], which
is presented in section 2.2.1 in detail. Figure 4.1 provides a design overview of our
approach. The core idea of our work is to decompose complex claims into a pro-
gram that represents the reasoning steps of the claim, and then execute this program
to verify the claim. Our work can be comprehensively organized into two stages:
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FIGURE 4.1: Overview of Our Approach

program generation and program execution, each designed to systematically pro-
cess a complex claim.

During the program generation phase, we create a sequence of subtask handlers
designed to break down a complex query step-by-step. This begins with prompt-
ing LLMs by providing a manually curated set of examples that include claims and
their corresponding generated programs. The goal is to enhance the LLMs ability
to parse complex claims and construct accurate programs. However, LLMs some-
times struggle to fully understand the semantics or syntactic structures of the sen-
tence. To address this, we have incorporated linguistic features into the prompt, such
as constituency parsing, dependency parsing, and abstract meaning representation.
This integration aims to determine whether these linguistic features can improve the
LLM’s performance by providing a deeper understanding of the linguistic structures
of the claims.

Additionally, we have developed several types of prompts to further enhance the
LLM’s ability to generate precise programs. These different prompts focus on two
main areas: integrating reasoning steps to teach LLM utilizing linguistic features,
and designing prompts for both supervised and unsupervised contexts. For the
reasoning steps, we explored three strategies: no reasoning steps, chain-of-thought
reasoning, and tree-of-thought reasoning. This approach results in six different com-
binations when considering the presence or absence of supervision in the prompts,
allowing us to explore various dimensions of improving the LLM’s performance.

Following the program’s creation, we proceed to the execution phase, where each
component of the generated program is methodically executed by assigning specific
tasks to their respective sub-task handlers. These tasks may range from answering
questions and verifying factual claims to performing complex logical reasoning.

Through these meticulous phases, the project aims to investigate whether com-
bining linguistic features can improve the performance of LLMs in complex claim
decomposition.
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4.3 Program Generation

In this chapter, we will dive into the program generation stage of our system, which
leverages prompt engineering to decompose complex sentences into executable pro-
grams.

Prompt engineering offers several distinct advantages over other methods when
it comes to decomposing complex sentences into executable programs. One primary
reason is that reasoning tasks are well-suited for the chain-of-thought method, which
involves step-by-step decomposition of problems, making them easier to solve. As
carefully crafted prompts can guide the LLM through each step of the reasoning
process, the chain-of-thought prompting method is suitable to handle this prob-
lem. Moreover, prompt engineering is a lightweight and cost-effective approach
compared to fine-tuning models. Fine-tuning requires significant computational re-
sources, time, and data, which can be prohibitive. In contrast, prompt engineering
leverages pre-trained models, reducing the need for extensive retraining and making
the process more efficient and economical. It can also achieve effective performance
with minimal additional data, utilizing the broad knowledge base already embed-
ded in pre-trained models. Finally, the flexibility and versatility of prompt engineer-
ing make it particularly advantageous. Prompts can be easily adapted to different
contexts and tasks, allowing our system to handle a wide range of sentences and
decompositions without requiring multiple specialized models.

To achieve our goal of decomposing complex sentences into executable programs,
we follow a structured approach using prompt engineering. The process involves
providing the LLMs with a sufficient number of exemplars, allowing them to gener-
ate programs by imitating these examples. Each exemplar consists of a claim, the
correct resulting program, and some related information including the linguistic
parsing tree and the reasoning steps. Based on these inputs, the LLM generates
detailed and accurate outputs.

We mainly focus on two primary aspects while providing additional informa-
tion and constructing exemplars: incorporating reasoning steps and constructing
supervised prompts. For the reasoning steps, we considered three approaches: pro-
viding no reasoning steps, using the chain-of-thought method, and using the tree-
of-thought method. This results in six possible combinations when factoring in
whether or not supervision is included in the prompts. This results in six possible
combinations of prompting methods when factoring in whether or not supervision
is included in the prompts, which is shown in Table 4.1 and Figure 4.2. The corre-
sponding full prompt is shown in Appendix A.

Experiment setup No
Reasoning(NR)

Chain-of-
Thought(CoT)

Tree-of-
Thought(ToT)

No supervision NR-NS CoT-NS ToT-NS
With supervision NR-S CoT-S ToT-S

TABLE 4.1: Prompting Methods
This table shows all of the combinations of the prompting methods. NS is short for No Supervision. S
is short for (with) supervision.

4.3.1 Incorporating Linguistic Features

To enhance LLMs’ ability to understand complex sentences, we decided to integrate
linguistic features into the prompts. Previous works observed limitations in LLMs
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Different Prompting Methods

NR- S

System Instruction
(Given claim + tree, generate program)

model user

NR- NS

model user

CoT- NS

model user

ToT- NS

model user

……

CoT- S

System Instruction
(Given claim + tree, generate analysis + program)

model user

……

ToT- S

System Instruction
(Given claim + previous steps, generate next step)

model user

……

Claim: (claim)
Parsing tree: (tree structure)

Program code: (generated code)

Suggested code: (code)
Learn from discrepancies, work on next claim

(generated code)

Claim: (claim)
Parsing tree: (tree structure)
Program code: (code)

Claim: (claim)
Parsing tree: (tree structure)
Program code: (code)
...

Claim: (claim)
Parsing tree: (tree structure)
Program code:

(generated analysis + code)

Claim: (claim)
Parsing tree: (tree structure)
Analysis: (analysis)
Program code: (code)

Claim: (claim)
Parsing tree: (tree structure)
Analysis: (analysis)
Program code: (code)
...

Claim: (claim)
Parsing tree: (tree structure)
Analysis: 

(generated next step)

Claim: (claim)
Previous steps: (previous steps)
Next step: (next step)

Claim: (claim)
Previous steps: (previous steps)
Next step: (next step)
...

Claim: (claim)
Previous steps: (previous steps)
Next step:

Target Claim: (claim)
Parsing tree: (tree structure)

Target Program code: (generated code)

Claim: (claim)
Parsing tree: (tree structure)

Analysis: (generated analysis)
Program code: (generated code)

Suggested analysis: (analysis)
Suggested code: (code)
Learn from discrepancies, work on next claim

Target Claim: (claim)
Parsing tree: (tree structure)

Analysis: (generated analysis)
Target Program code: (generated code)

Claim: (claim)
Previous steps: (previous steps)

Next step: (generated next step)

Suggested next step: (next step)
Learn from discrepancies, work on next claim

Target Claim: (claim)
Previous steps: (previous steps)

Target next step: (generated next step)

FIGURE 4.2: Prompting Exemplars of Different Prompting Methods

when parsing complex claims, as the models struggled to capture full information
within the sentence[66]. In particular, LLMs may struggle to understand the full
semantics or generate correct program structures due to a lack of deep understand-
ing of linguistic nuances. The syntactic structure and semantic structure can both
accurately reflect the construction of a sentence, helping to understand the overall
structure and meaning of the sentence. Thus, we raise the research question, pro-
viding the LLM with a richer and more precise context by embedding syntactic and
semantic features directly into the prompts. This approach is intended to bolster the
model’s performance by facilitating a deeper comprehension of the linguistic struc-
tures inherent in the claims, thus leading to more accurate and reliable program
generation.

Syntactic and semantic characteristics are two important linguistic components
that we intend to use. The syntactic features include constituency parsing and de-
pendency parsing. Constituency parsing breaks down sentences into sub-phrases or
constituents, providing a hierarchical structure that reveals the grammatical organi-
zation of a sentence. This can assist the LLM in comprehending the function and
relationship of every word or phrase within the overall structure. Dependency pars-
ing, on the other hand, focuses on the relationships between words. It determines
how each word in a sentence is related to others. By emphasizing the grammatical
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structure and dependencies, this approach helps the LLM understand how various
sentence components interact and depend on each other. On the other hand, we
use AMR for semantic parsing in addition to syntactic parsing. The meaning of the
text is represented graph-based by AMR, which captures the underlying semantics
and relationships in a structured way. This semantic parsing may assist the LLM in
comprehending the context and deeper meaning, then further generated programs
appropriately reflect the intended meaning of the sentences.

The integration of these linguistic features into the prompts is performed by di-
rectly adding them to the prompt. Specifically, we append the linguistic features,
including constituency parsing trees, dependency parsing trees, and AMR repre-
sentations, immediately after the sentence in the prompt. Figure 4.3 demonstrates
different parsing trees we utilized in our study.

[('ROOT', 0, 3), ('det', 2, 1), ('nsubj', 3, 2), ('det', 5, 4), ('obj
', 3, 5), ('mark', 7, 6), ('xcomp', 3, 7), ('obj', 7, 8), ('punct
', 3, 9)]

(A) Dependency Parsing

(B) Constituency Parsing

# ::snt The boy wants the girl to believe him.
(w / want-01

:ARG0 (b / boy)
:ARG1 (b2 / believe-01

:ARG0 (g / girl)
:ARG1 b))

(C) Abstract Meaning Representation

FIGURE 4.3: Parsing Tree Examples of sentence “The boy wants the
girl to believe him.”

4.3.2 Reasoning Methods

No Reasoning

In the "No Reasoning" approach, the prompt does not provide any step-by-step anal-
ysis or instructions on how to parse the tree. Instead, it simply includes the claim
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and its corresponding parsing tree. This approach relies on the LLM’s ability to in-
dependently interpret the provided parsing tree and generate the appropriate pro-
gram. This approach aims to evaluate the LLM’s inherent capability to understand
and utilize the syntactic and semantic structures directly from the parsing tree. Af-
ter providing the exemplars, a new claim with its corresponding parsing tree will be
provided to the model, and the model is required to generate the programs of the
claim. A simplified prompting example is provided below.

# The claim is that Howard University Hospital and Providence Hospital
are both located in Washington, D.C.

The constituency parsing tree is:

def program():
fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")
label = Predict(fact_1 and fact_2)

LISTING 4.1: No Reasoning prompt exempler

Chain-of-Thought Reasoning

We apply the chain-of-thought(CoT) method to further enhance LLMs’ ability of
sentence understanding. In this approach, we provide not only the parsing tree
but also a detailed reasoning process that guides the LLM through the step-by-step
decomposition of the claim using the parsing tree.

The reasoning step shows how to navigate the tree and select the appropriate
nodes in order to break the phrase down into smaller sub-clauses and generate an
accurate program. There are two components to the reasoning stage. The first part is
how to decompose the sentence using the parsing tree. Using a top-down method,
we teach the model how to move around the tree and choose nodes one at a time to
decompose the intricate text. This entails figuring out the sentence’s primary clause,
supporting clauses, and other pertinent elements. Next, we tackle the process of cre-
ating the program using the generated sub-sentences. We include reasoning stages
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to resolve these references since the produced sub-clauses may contain pronouns,
which might cause issues during execution because of ambiguous antecedents. This
might also involve using question prompts to clarify the antecedents of pronouns
within the sub-clauses. For example, in the sentence "it is not raining," we might
include a step that asks the model to identify what "it" refers to in the context of the
original claim. One of the simplified exemplar prompts is shown in list 4.2. Follow-
ing all exemplars, a new claim with its corresponding parsing tree will be provided
to the model, and the model is required to first generate its analysis based on the
parsing tree, and then generate the programs of the claim.

# The claim is that Howard University Hospital and Providence Hospital
are both located in Washington, D.C.

The constituency parsing tree is:

Analysis: (First describe how to select nodes in a top-down manner,
breaking them down step by step to obtain simplified clauses, and
then demonstrate how to convert the subclauses into a program.)

Program code:
fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")
label = Predict(fact_1 and fact_2)

LISTING 4.2: Chain-of-Thought(No Supervision) prompt exempler

Tree-of-Thought Reasoning

Fully inspired by the previous work on the tree-of-thought[91] method, we adopted
this approach to incrementally generate our programs. In this method, each line in
the program is considered as a step. The format of our exemplars involves provid-
ing a claim and the previous steps, along with the next step generated based on the
previous ones. One of the prompt exemplars is shown in list 4.3. Initially, we sup-
ply the claim and the previous steps, allowing the model to generate multiple next
steps. The newly generated next steps are unique. Subsequently, we evaluate these
candidates to identify the most appropriate result.
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Given that the newly generated next steps will have certain syntactic and seman-
tic similarities with the original claim, we incorporate the parsing tree into our eval-
uation process. The evaluation method is relatively straightforward: we compare
the new step to the initial claim and assess the similarities. The higher the similarity,
the better the step is considered.

Initially, parsing trees for the additional steps and the claim will be produced.
Next, we use BERTScore[92] to embed these trees into vector space. We derive a
similarity score by computing the cosine similarity between the claim and new step
embeddings. This score is then summed with the similarity scores accumulated from
previous steps. Finally, we rank the candidates in descending order based on their
total scores. The top-ranked candidate is selected as the result of the current itera-
tion, and the process repeats. Here is an example provided in the few-shot learning
prompt:

The claim is: Gael and Fitness are not published in the same country.
Previous steps are:
def program():

answer_1 = Question("Which country was Gael published in?")
answer_2 = Question("Which country was Fitness published in?")

Next step:
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same
country.")

LISTING 4.3: Tree-of-Thought prompt exempler

4.3.3 Supervision to Reasoning

In our program generation system, we employ two distinct approaches to construct
example prompts: no supervision and supervision. These methods are designed to
instruct the model effectively by providing it with the necessary information and
feedback to generate accurate programs.

No Supervision

In the no-supervision approach, we use pure text prompts to provide the model
with the entire set of example information directly. Each prompt contains the claim
and the correct reference program, and depending on the experimental setting, it
may also include different parsing trees and reasoning analyses on how to derive
the correct program using the tree. Several examples are shown in the previous sec-
tion 4.3.2. In this format, the model receives all the necessary information upfront,
including the claim, parsing tree, and the correct program, along with any reason-
ing steps if applicable. This approach does not involve any interaction or feedback
during the example presentation.

Supervision

In the supervision approach, we use a chat format to guide the model through the
program generation process. This method involves a system role that briefly ex-
plains the requirements for program generation. When providing examples, instead
of giving the entire example at once, we present only the necessary information such
as the claim and parsing tree. The model is then asked to generate the program or
the reasoning and program, depending on the experimental setting.
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In this supervision setting, after the model generates its response, we provide the
reference answer and prompt the model to learn from this standard. We also provide
the model with the requirement to examine the difference between the generated
answers and the standard ones and learn from the correct answers. This process
involves iterative learning, where the model practices generating programs from all
the examples, receiving feedback, and refining its approach before generating the
required programs for new claims. The simplified supervised exemplar of Chain-of-
thought (CoT) is shown in list 4.4.

{
"role": "system",
"content": (System instruction: Generate an analysis and a pseudo
program to verify a claim step-by-step using the corresponding
constituency parsing tree, following specific rules for functions
and logical operators.)

},
{

"role": "user",
"content": "The claim is that Howard University Hospital and
Providence Hospital are both located in Washington, D.C..\nThe
constituency parsing tree is:

},
{

"role": "assistant",
"content": (Generated parsing tree analysis and program code)

},
{

"role": "user",
"content": "The suggested analysis is: (Suggested analysis).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
LISTING 4.4: Chain-of-Thought with Supervision prompt exempler
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4.4 Program Execution

4.4.1 Function Handler

In our system, the function handler is a core component of the program execution
stage, responsible for processing various functions generated during the program
generation phase. According to the function type mentioned in the previous section
2.2.2, which are question, verify, and predict functions, we have designed three main
types of corresponding function handlers.

1. Question Handler:

The question handler is responsible for processing interrogative sentences. It
takes a question Q as input and returns a string answer A. We utilize FLAN-
T5 for this task, which has been trained on over 1,800 tasks and has achieved
state-of-the-art zero-shot performance on a variety of QA benchmarks. The
prompt used by this module is listed below:

[EVIDENCE] Q: [QUESTION] ? The answer is:

2. Verify Handler:

The verify handler functions as a fact verification module. It accepts a claim C
as input and returns a label of either TRUE or FALSE. We also employ FLAN-
T5 for this module, using the following prompt:

[EVIDENCE] Q: Is it true that [CLAIM]? True or False?
The answer is:

3. Predict Handler:

The predict handler performs logical operations over variables established in
previous steps. It takes as input a logical expression that can include AND and
OR operations. The output is the predicted veracity label for the entire claim.
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Chapter 5

Experiments

This chapter presents the experimental design and the corresponding results of our
study. Section 5.1 shows the setup of our experiment, including the dataset, models,
and the design of our studies. Section 5.2 and section 5.3 present the results and
initial observations of our experiments. Section 5.4 offers a further analysis based on
the result and then outlines the findings of our study.

5.1 Experimental Setup

5.1.1 Dataset

In our approach, we mainly focus on the HOVER (Happy VERification) dataset[93].
It is specifically designed to address complex claims requiring multi-hop reasoning
for verification. The dataset comprises a collection of claims sourced from Wikipedia,
where each claim’s validation requires synthesizing information from as many as
four English articles. This requirement for multi-hop reasoning and multiple data
sources is critical, as it mirrors the complex logical structures often encountered in
real-world scenarios.

As we mainly focus on improving LLMs’ ability to decompose complex sen-
tences and generate coherent programs, the complexity of the dataset, including
structural complexity and multi-hop reasoning, is of great importance. However,
commonly used datasets often present simple scenarios where the information re-
quired for answering or verifying a claim is readily apparent within a single text
snippet or through direct inference. HOTPOTQA, Thus most existing datasets in-
cluding FEVER and HOTPOTQA are not complex enough to meet the requirements
of our approach [94], [95]. In contrast, the HOVER dataset requires the model to
engage in a deeper, more intricate process of claim decomposition and verification.
It needs the retrieval and integration of information from multiple hops to verify a
claim, ensuring the model must perform rigorous reasoning rather than relying on
superficial text matching or straightforward inference. This aspect of the dataset is
particularly beneficial for our project, as we aim to develop and test a methodology
that can efficiently handle complex, multihop claims. This alignment with our re-
search objectives makes the HOVER dataset an ideal choice for exploring advanced
verification techniques within a more complex and practical scenario.

The HOVER dataset is a specialized resource designed for fact verification, con-
taining a total of 4,000 data entries. This dataset is balanced with an equal pro-
portion of refuted and supported claims, maintaining a 1:1 ratio. It is character-
ized by its composition of multi-hop claims, which are pivotal for evaluating the
depth and complexity of reasoning required in claim verification. Specifically, the
HOVER dataset comprises 80% of 2-hop claims, 39% of 3-hop claims, and 15% of
4-hop claims.
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Given the complexity and detailed nature of our experiments, particularly those
involving the incorporation of extensive textual information such as parsing trees
and decomposition analysis in prompts, evaluating the entire dataset would result
in prohibitive costs. To manage these expenses efficiently while maintaining experi-
mental integrity, we opted to extract a subset of the dataset, consisting of 500 entries.
This subset was carefully curated to mirror the original dataset’s characteristics, en-
suring that the balance of refuted to supported claims remains at 1:1. Additionally,
the proportion of n-hop claims in our subset aligns with their distribution in the full
dataset, preserving the structural and compositional integrity of the original HOVER
dataset. This strategic sampling allows for a cost-effective yet comprehensive eval-
uation of our models under various experimental settings.

5.1.2 Models

In this experiment, we utilized several large language models for program gener-
ation, specifically Mixtral 8x7, Qwen2 72B, and GPT models. We opted not to use
the Llama model due to its limited context window, which is insufficient to accom-
modate all our exemplars during prompting. These models are well-known in the
field, and we tested across different scales to derive generalizable conclusions and
evaluate the adaptability of our method across various models.

Additionally, we also focused on the cost efficiency of the models used. Table 5.1
shows the pricing of the models used in our experiment. The pricing information for
the GPT series models used in our experiments is sourced from the official website
data available from May-June 2024 1. It’s important to note that these figures may
differ from current prices due to potential changes in pricing policies or updates to
the models themselves. Although the Mixtral and Qwen models are open-source,
our lack of high-performance computing resources necessitated the use of a third-
party service to run these models. For this purpose, we utilized the API provided
by TogetherAI 2, which offers inference services for a variety of models with quick
processing times.

Pricing per 1M tokens Input Output
Mixtral 8x7b 0.6$ 0.6$
Qwen2 72b 0.9$ 0.9$
GPT-3.5-turbo 0.5$ 1.5$
GPT-4 5$ 15$

TABLE 5.1: Pricing of Models (in US Dollars)

GPT

GPT-3.5 [6] is part of OpenAI’s Generative Pre-trained Transformer series. Features
175 billion parameters, it is one of the largest language models available. It is trained
on a diverse dataset to perform a wide array of language-related tasks, including
translation, summarization, and even code generation. Its versatility and capacity
for context-aware language generation have made it a benchmark in the field. As
the model is trained extensively, GPT3.5 can generate coherent and contextually rel-
evant text across various topics. It has been widely applied in everyday conversa-
tional AI to complex problem-solving because of its adaptability and broad utility.

1https://openai.com/api/pricing/
2https://www.together.ai/

https://openai.com/api/pricing/
https://www.together.ai/
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GPT-4 marks a significant advancement over GPT-3.5, offering improvements in per-
formance, efficiency, and safety. Although specific details about its architecture and
parameters are not fully disclosed, GPT-4 is known for its enhanced ability to gen-
erate accurate and relevant text. It includes extensive training on up-to-date data,
improving its contextual understanding and response quality. The model incorpo-
rates advanced fine-tuning techniques and safety mechanisms to minimize biases
and ensure ethical use.

Mixtral

Mixtral is designed for domain-specific tasks with high accuracy and interpretabil-
ity. It is a sparse mixture-of-experts network and a decoder-only model where the
feedforward block selects from eight distinct parameter groups [7]. Mixtral matches
or exceeds the performance of GPT-3.5 on several benchmarks. It excels in mathe-
matics, code generation, and multilingual tasks, significantly outperforming Llama 2
70B in these areas. Mixtral effectively retrieves information from its context window
regardless of sequence length and the location of information. The primary con-
figurations include Mixtral 8x7B and Mixtral 8x22B, each tailored to leverage both
rule-based methods and deep learning techniques for precise outputs in specialized
domains. Mixtral 8x7B consists of eight interconnected models, each with 7 billion
parameters, while Mixtral 8x22B with each model having 22 billion parameters.

Qwen

Qwen, derived from the Chinese phrase "Qianwen" meaning "thousands of prompts,"
is a comprehensive language model series encompassing various models with dif-
ferent parameter counts [96]. The series includes base pre-trained models, chat mod-
els fine-tuned with human alignment techniques like supervised fine-tuning (SFT)
and reinforcement learning with human feedback (RLHF), as well as specialized
models for coding and mathematics. The base Qwen models have been extensively
trained on up to 3 trillion tokens of diverse texts and codes, demonstrating superior
performance across numerous tasks compared to larger counterparts. Qwen-CHAT
models are fine-tuned on curated datasets for tasks such as chat, tool use, and safety,
showing competitive performance, although slightly behind GPT-4 in benchmarks.

Qwen addresses diverse needs with many specialized models, achieving remark-
able results in various domains. Specialized models like CODE-Qwen, which in-
cludes CODE-Qwen-7B and CODE-Qwen-14B, excel in code generation, debugging,
and interpretation, performing highly on benchmarks such as HumanEval and MBPP.
MATH-Qwen-CHAT models, including MATH-Qwen-7B-CHAT and MATH-Qwen-
14B-CHAT, are designed for mathematical problem-solving and outperform open-
source models of similar sizes, nearing GPT-3.5 performance on math-related bench-
marks like GSM8K [97] and MATH [98].

5.1.3 Baseline

Our baseline setting in this experiment involves not incorporating any linguistic fea-
tures and not providing supervision during prompting. For each model used, we
have established a corresponding baseline result. This approach allows for horizon-
tal comparison within each model, enhancing the persuasiveness of our analysis.
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5.1.4 Study Design

Our study mainly focuses on a comprehensive experimental framework designed
to explore the integration of various parsing trees, reasoning paths, and prompting
formats. As we have three distinct types of parsing trees, three reasoning paths,
and two prompting formats, ideally there should be a total of eighteen experimental
combinations. However, due to constraints in time and resources, we strategically
divided our experiments into two primary studies, each focusing on different as-
pects of the framework. Table 5.2 provides a clear view of the experimental settings
for two different studies.

Experimental
Setting

Linguistic Feature Reasoning Supervision

Study One Dependency parsing,
Constituency parsing,
AMR

NR NS

Study Two Constituency parsing NR, CoT, ToT S, NS

TABLE 5.2: Experimental Setting for Studies

1. Study One: The impact of linguistic features

The first study focused exclusively on the analysis based on different parsing
trees. For this part of the study, we employed the Mixtral 8x7 model [7], a ro-
bust system capable of handling complex linguistic structures. We conducted
these experiments across the entire HOVER dataset, utilizing three different
parsing trees to assess how variations in syntactic analysis impact the outcome
of our claim verification processes.

In terms of reasoning and prompting, we simplified the experimental settings
to a "No Reasoning - No Supervision" (NR-NS) configuration. This setting was
chosen to isolate the effect of the parsing trees from other variables, provid-
ing a clear view of how different syntactic structures alone can influence the
performance of the language models in complex claim verification tasks.

2. Study Two: The impact of reasoning and supervision

The second study was tailored to evaluate the combined effects of reasoning
paths and prompting formats. In this setup, we standardized the use of the
constituency parsing tree as our linguistic feature across all experiments to
maintain consistency in the syntactic analysis while varying the cognitive and
interactive aspects of the models. Because of the budget limit, we only used
the subset of the HOVER dataset.

We deployed a total of six experimental combinations with three different
models: Mixtral 8x7 [7], Qwen2 72B [96], and GPT-3.5 [6]. These models
were selected for their varying capabilities and approaches to handling rea-
soning tasks and interaction formats. Notably, the "Tree of Thought" reasoning
method required a more advanced understanding and generation capability,
which the aforementioned models struggled with due to their limited ability
to execute "single-step generation" commands effectively. Consequently, for
experiments utilizing the Tree of Thought method, we opted to use GPT-4,
leveraging its enhanced cognitive capabilities to better accommodate the com-
plexity of this specific reasoning approach.
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In designing the experimental groups, we prioritized both technical feasibility
and effective resource management. This division allowed us to explore a signifi-
cant portion of the experimental matrix within the constraints of our resources, al-
though it limited the breadth of variable interactions. Additionally, to minimize the
influence of randomness and ensure the accuracy of our results, we conducted each
experimental setting three times and took the average values as the final result. This
replication provides a robust basis for our findings, ensuring that observed effects
are consistent and reliable across multiple trials.

5.2 Study One: Impact of Linguistic Features

5.2.1 Main Results

Table 5.3 presents the Macro-F1 score of our experiments conducted across the dif-
ferent parsing trees. The Macro-F1 score is particularly valuable in scenarios where
class balance is crucial, as it calculates the average of the F1 scores for each class in-
dependently, treating all classes with equal importance regardless of their frequency.
This makes it an ideal metric for our study, given the balanced nature of the HOVER
dataset between ’refute’ and ’support’ claims, ensuring that both types of outcomes
are equally represented and assessed in the analysis.

2 hop 3 hop 4 hop total
Baseline 53.64 52.53 51.88 52.68
Dependency parsing 52.75 52.81 51.68 52.55
Constituency parsing 54.80 50.74 51.59 52.08
AMR 55.06 54.50 52.65 54.26

TABLE 5.3: Macro-F1 Score for Study One

To assess the statistical significance of the observed differences in F1 scores across
various settings, we performed a T-test. A T-test is a statistical test that is used to
compare the means of two groups to determine if there is a significant difference
between them. It is particularly useful in experiments like ours where the aim is
to figure out the effectiveness of different experimental variables on model perfor-
mance. The result of the two-tailed T-test is shown in table 5.4.

Dependency Parsing Constituency Parsing AMR
p-value 0.95 0.77 0.47

TABLE 5.4: P Values for the Result of Study One

As we focus on the universality of our approach and its adaptability to different
fields, cost is also within our evaluation scope. The pricing of different models was
mentioned in section 5.1.2. We only present the total cost of running this study on
4000 data entries, which is shown in table 5.5.

Baseline Dependency Parsing Constituency Parsing AMR
Cost 1.23$ 2.71$ 2.90$ 2.60$

TABLE 5.5: Cost (in US Dollars) for Study One
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5.2.2 Observations

1. Adding linguistic features will not significantly increase costs.

Based on the table 5.5, the inclusion of parsing trees in our experiments did
not significantly increase the overall cost. This suggests that integrating these
structural components can enhance the model’s comprehension and decom-
position abilities without a substantial increase in financial expenditure.

2. Adding linguistic features is not statistically significant.

From the table 5.4, the p-values obtained from the T-test are greater than 0.05.
This indicates that the differences in F1 scores between baseline and adding lin-
guistic features are not statistically significant. Further experiment is required
to draw general conclusions.

3. AMR enhances semantic understanding and sentence decomposition, while
syntactic features show limited impact.

Among all the parsing trees tested, AMR demonstrated the most significant
performance improvement. The F1 scores shown in 5.3 indicate that while
the results for constituency and dependency trees were nearly identical to the
baseline, AMR surpassed the baseline by approximately 2%. Moreover, AMR
consistently outperformed the baseline across different hop numbers. These
findings suggest that AMR can enhance the model’s semantic understanding
to a noticeable extent, making it a valuable asset in parsing complex claim
structures.

On the other hand, the performance of the syntactic trees either had no impact
on the overall results or even showed a decline. This decline in performance
for syntactic trees leads us to speculate that semantic representations, like those
provided by AMR, might be more useful because they comprehensively cap-
ture all semantic information.

5.3 Study Two: Impact of Reasoning and Supervision

5.3.1 Main Results

Table 5.6 presents the Macro-F1 score of our experiments conducted across the dif-
ferent reasoning methods and supervision settings. Table 5.7 shows the result of the
two-tailed T-test. Table 5.8 shows the total cost incurred during the entire exper-
imental process of study two, which only focuses on a subset of 500 data entries.

Baseline NR-NS NR-S CoT-NS CoT-S ToT-NS ToT-S
Mixtral 8x7B 61.60 60.40 60.60 58.60 55.80 – –
Qwen2 72B 64.20 63.40 63.00 64.40 60.40 – –
GPT-3.5 63.00 62.60 61.60 62.80 58.40 – –
GPT-4 64.80 – – – – 63.20 64.00

TABLE 5.6: Macro-F1 scores for Study Two

As shown in the table 5.7, all the p-values obtained from the T-tests are greater
than 0.05. This indicates that the differences in F1 scores between the various ex-
perimental settings are not statistically significant. Therefore, we conclude that the



5.3. Study Two: Impact of Reasoning and Supervision 37

NR-NS NR-S CoT-NS CoT-S ToT-NS ToT-S
Mixtral 8x7B 0.92 0.51 0.80 0.95 – –
Qwen2 72B 0.59 0.61 0.87 0.71 – –
GPT-3.5 0.68 0.91 0.85 0.53 – –
GPT-4 – – – – 0.76 0.57

TABLE 5.7: P Values of the Result of Study Two

Cost Baseline NR-NS NR-S CoT-NS CoT-S ToT-NS ToT-S
Mixtral 8x7B 1.23$ 2.90$ 6.73$ 10.34$ 14.69$ – –
Qwen2 72B 1.85$ 4.32$ 10.05$ 15.48$ 22.00$ – –
GPT-3.5 1.10$ 2.50$ 5.69$ 9.10$ 12.87$ – –
GPT-4 11.11$ – – – – 37.39$ 62.64$

TABLE 5.8: Cost (in US Dollars) for Study Two

variables tested (parsing trees, reasoning paths, and prompting formats) do not have
a significant impact on the accuracy of the models as measured by the F1 score.

5.3.2 Observations

Based on the results from our various experimental settings, we observed key trends
that influence model performance, particularly concerning different parsing trees
and prompting methods. These observations are summarized as follows:

1. Superior Performance of Qwen2 Model.

The Qwen2 72B model has outperformed the Mixtral 8x7B and GPT-3.5 model
in this task, and even performs similar to GPT-4. This highlights the advance-
ments in the Qwen model’s capabilities, particularly in handling complex lan-
guage processing tasks. We assume this is due to the fact that Qwen is trained
better on sentence decomposting task, and also it is the newest version [96].

2. Suitability of Models with Lower Input Token Costs

Given our experimental settings, which resulted in a much higher number of
input tokens compared to output tokens, models with lower input token pric-
ing are more suitable for this task. This cost-efficiency is particularly relevant
when dealing with large datasets where the volume of input data can dramat-
ically influence total costs.

3. Advanced prompting methods have a negative impact on decomposition.

Contrary to our hypothesis H2 that reasoning and supervision can facilitate
LLMs’ ability to decompose sentences, our results show otherwise. The base-
line F1 scores were consistently higher than those of other settings, with only
one exception. This trend was particularly obvious in the lightweight Mix-
tral 8x7b model, where the worst-performing method lagged behind the base-
line by as much as 6%. Among all the settings, the Chain of Thought with
Supervision (CoT-S) method exhibited the poorest performance, consistently
scoring at least 4% lower than the baseline. This indicates that while theoreti-
cally promising, the practical application of these advanced prompting meth-
ods may require refinement to avoid detrimental effects.
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5.4 Further Analysis on Study Two

Given the unexpected outcomes related to the reasoning and supervision prompting
methods, which did not align with our initial hypotheses and expectations, a more
detailed approach is required. To address these issues, we have decided to perform a
series of case studies specifically targeting these aspects of our experimental frame-
work.

The primary motivation for employing case studies in this context is to gain
deeper insights into the nuances of how different prompting methods influence the
generation of executable programs. Due to the complexity of the programs gener-
ated and the current lack of appropriate evaluation methodologies that accurately
measure the effectiveness of such programs, traditional metrics like the F1 score are
insufficient for our needs. Therefore, in these case studies, we will shift our evalua-
tion strategy from relying on quantitative metrics such as the F1 score derived from
program execution outcomes, to a qualitative assessment conducted by manual re-
view. This approach involves a detailed examination of the programs generated
by the models under various prompting conditions. Reviewers will assess whether
these programs logically and effectively represent the original claims’ information
and meaning. The criteria for evaluation will focus on the program’s coherence,
logical structure, and fidelity to the original claim.

5.4.1 Program Analysis

Before initiating our case studies, it is essential to establish clear and effective evalu-
ation criteria for the programs generated by our models. Our focus will be on highly
contentious claims, where the programs exhibit a minimal difference or even equal-
ity between support and refute outcomes. This is because these claims are more
likely to contain a diverse array of logical flaws or misrepresentations, making them
ideal candidates for a detailed evaluation.

We selected ten claims that are deemed the most contentious for each hop level.
After analyzing 540 programs (18 programs per claim × 10 claims per hop level ×
3 hop levels), we have broadly categorized occurred errors into three main types:
format errors that prevent normal execution, errors occurring during the decompo-
sition of claims, and errors arising from the conversion of subclauses into the pro-
gram. In this section, we will demonstrate the various types of errors that may occur
in the generated program in detail and attempt to analyze the causes of these errors.

Format Errors

Format errors occur when the structure of the generated program does not conform
to the format specified and exemplified in our setting. Because the structure cannot
be correctly parsed, these programs fail to execute properly. When we encounter
such cases, we classify the execution results of these programs as errors. This means
that the outcomes of these programs are neither "refute" nor "support," and they will
never match the standard answers. Such programs can never be considered correct
in terms of execution results.

Format errors can be further subdivided into three categories:

1. Context Retention Failure

This type of failure occurs when the program fails to correctly retain the vari-
ables used in previous steps. These programs may reference a variable that
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has never been defined or declared, leading to execution failure. Here is an
example of programs with context retention failure:

fact_1 = Verify(subclause_1)
fact_2 = Verify(subclause_2)
label_1 = Predict(f_1 and f_2)

From the first two Verify() functions, we can observe the variables used are
fact_1 and fact_2. However, the model fails to accurately remember the pre-
viously generated variable names, so in the final step, it uses f_1 instead of
fact_1.

2. Structural Errors

Structural errors occur when the generated program uses syntax structures
that we have not specified. Some programs may use advanced programming
syntax structures, such as conditional statements or loop statements. Others
may generate more than one Predict() statement at the end of the program
or fail to generate a Predict() statement at all. Here is an actual generated
program with structural error:

fact_1 = Verify("The film The Wild was released.")
answer_1 = Question("Which film was released first, The
Country Bears or The Wild?")
if answer_1 == "The Wild":

label = Predict(True)
else:

label = Predict(False)

3. Function Misuse

Function misuse errors arise when the program does not correctly use the func-
tions we have specified. These errors include treating the return value of a fact
function as a variable within a claim or question, using unsupported logical
operators (such as != or xor) within the predict function, performing verifica-
tion within the predict function, or including extraneous parentheses in the
predict function. According to our specifications, the predict function is only
meant to integrate the results of various steps, and the only supported logical
operators are and or. Here is an example of function misuse:

fact_1 = Verify(sub_claim1)
fact_2 = Verify(sub_claim2)
fact_3 = Verify({fact_1} publishes {fact_2}.)
label = Predict(answer_1 == answer_2)

Decomposition Errors

Decomposition errors occur when the model makes mistakes while breaking down
a claim into subclauses. Due to the experimental setup, we can clearly see the sub-
clauses resulting from claim decomposition only in the chain of thought method. In
the other two experimental setups, we can only infer the subclauses from the content
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of the generated program. These errors are critical because the quality of the decom-
position directly impacts the accuracy and reliability of the final program execution.

Decomposition errors can be broadly classified into five categories:

1. Insufficient Decomposition

This issue arises when the model fails to thoroughly break down all the sub-
clauses, leaving one or more subclauses still containing two or even more
hops. In the most extreme cases, the subclause remains identical to the origi-
nal claim without any decomposition. Insufficient decomposition can lead to
overly complex subclauses that the executor cannot properly understand or
run, significantly impacting the programs performance and accuracy. Here is
an example of a program with insufficient decomposition. The program fails
to return the correct answer due to the high complexity of the subclause that
returns fact_1.

# The claim is that The attraction at universal studios that was
based on "The Tonight Show" replaced an attraction that
replaced an attraction based on the movie Fear Factor.

answer_1 = Question("What is the attraction at universal studios
that was based on 'The Tonight Show'?")

fact_1 = Verify("The attraction {answer_1} replaced an attraction
that replaced an attraction based on the movie Fear Factor.")

label = Predict(fact_1)

2. Over Decomposition

Contrary to intuition, more decomposition is not always better. Completely
breaking down a claim into several simple sentences can sometimes alter the
original meaning or result in the loss of crucial information. Here is an example
of over-decomposition:

# The claim is that David Luchins served as an advisor to a Vice
President who passed away in 1978.

answer_1 = Question("Who did David Luchins serve as an advisor to
?")

fact_1 = Verify("{answer_1} was a Vice President.")
fact_2 = Verify("{answer_1} passed away in 1978.")
label = Predict(fact_1 and fact_2)

This decomposition seems to be correct, but it misses one key constraint, lead-
ing to the wrong answer. The Vice President mentioned in the claim who
passed away in 1978 is Hubert Horatio Humphrey Jr. David Luchins did serve
as an advisor to Hubert Horatio Humphrey, but not during his tenure as Vice
President. Thus the correct decomposition should be:

answer_1 = Question("Who is the Vice President that David Luchins
served as an advisor to?")

fact_1 = Verify("{answer_1} passed away in 1978.")
label = Predict(fact_1)
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3. Information Missing

This error occurs when the subclauses fail to cover all the information present
in the original claim. This type of error can also occur during the conversion
process, where the subclauses are correctly decomposed, but some informa-
tion is lost when converting them into the program. This error occurs when
the subclauses fail to cover all the information present in the original claim.
Certain qualifiers and adjectives are easily overlooked by the model. Such
errors do not necessarily lead to incorrect execution results because the miss-
ing information might not be decisive for the overall semantics. However,
they still represent a failure in accurately capturing the full scope of the orig-
inal claim. As the example shown below, during the decomposition process,
"(I'm 10,000 Years Old)" and iconic rock and roll singer are omitted.

# The claim is that "(I'm 10,000 Years Old)" was the subtitle of
the 11th album by the iconic rock and roll singer, Elvis
Presley.

answer_1 = Question("What was the subtitle of the 11th album by
Elvis Presley?")

fact_1 = Verify("{answer_1} was the subtitle of the 11th album.")
label = Predict(fact_1)

4. Adding External Information

LLMs are trained on vast amounts of data, which inherently includes some
external data. During the decomposition process, the model might uncon-
sciously identify and incorporate information related to the claim from its
training data into the subclauses. Although this external information is often
highly accurate, it is considered an error in our context because we focus solely
on the decomposition process. The inclusion of external information can lead
to deviations from the original claim, impacting the validity of the decomposi-
tion. For example, the program shown below mentions a name, Spike Lee, that
is not in the original claim. Even though Spike Lee is the director of "She Hate
Me" and owns the production company 40 Acres and the Mule Filmworks, it
is still considered an error. This is because we mainly focus on the preciseness
of decomposition, but not the accuracy of the execution result.

# The claim is that The production company 40 Acres and a Mule
Filmworks is owned by the director of "She Hate Me".

fact_1 = Verify("40 Acres and a Mule Filmworks is owned by Spike
Lee.")

fact_2 = Verify("Spike Lee is the director of She Hate Me.")
label = Predict(fact_1 and fact_2)
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5. Semantic Unintelligibility

These errors may stem from the model’s inability to fully understand the claim’s
semantics or specific terms within it. This leads to errors in the decomposed
subclauses, including but not limited to reversing the intended meaning or
misidentifying the referents. Semantic errors are particularly problematic as
they can lead to fundamentally incorrect interpretations and subsequent pro-
gram execution results. Here is an example of a semantic unintelligibility error
in that the meaning of the program is the opposite of the meaning of the origi-
nal claim.

# The claim is that American singer and songwriter Tori Amos has
a mezzo-soprano vocal range, where the singer who released The
Stories Are True doesn't.

answer_1 = Question("Which singer has a mezzo-soprano vocal range
, where the singer who released The Stories Are True doesn't
?")

fact_1 = Verify("The singer who released The Stories Are True has
a mezzo-soprano vocal range.")

fact_2 = Verify("Tori Amos doesn't have a mezzo-soprano vocal
range.")

label = Predict(fact_1 and fact_2)

Conversion Error

Conversion errors occur when the model correctly decomposes a claim into sub-
clauses but introduces mistakes when converting these subclauses into a program.
Similar to decomposition error, we can clearly observe this type of error only in the
chain of thought setting, where the model generates steps showing the decomposi-
tion of subclauses. In the other two settings, while the steps are not explicitly shown,
we can still identify these errors in the generated program.

Conversion errors can be categorized into four types:

1. Over-Complexification

When dealing with a subclause of a statement, the simplest conversion method
is to directly use the verify function to check the subclause. However, some-
times the model complicates the process by first using the question function
to ask about a specific component of the subclause with special interrogative
words, then using the obtained component in a subsequent verify function.
Although the generated program appears semantically correct, this unneces-
sary complexity increases the likelihood of errors occurring during execution
in these convoluted parts. For example, the Question() and Verify() func-
tions shown in the example below are highly semantically repetitive. This
combination can be simplified into a single Verify() function call.

# The claim is that "(I'm 10,000 Years Old)" was the subtitle of
the 11th album by the iconic rock and roll singer, Elvis
Presley.
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answer_1 = Question("What was the subtitle of the 11th album by
Elvis Presley?")

fact_1 = Verify("{answer_1} was the subtitle of the 11th album.")
label = Predict(fact_1)

2. Semantic Discontinuity

This issue often arises when the model uses the question function to obtain
a critical component of the claim but fails to use this component in the sub-
sequent verify function. This type of error tends to occur with semantic am-
biguity error. The lack of continuity between the obtained information and its
application results in a disjointed semantic flow. As the example shown below,
the variable answer_1 has never been used in the following function call, even
though this variable covers the key information in the original claim.

# The claim is that Simon Helberg is the American actor, writer,
and musician, born in 1980, who appeared with Jason Ritter in
"Ode to Janice Melt".

answer_1 = Question("Who is the American actor, writer and
musician, born in 1980?")

fact_1 = Verify("Simon Helberg appeared with Jason Ritter in 'Ode
to Janice Melt'.")

label = Predict(fact_1)

3. Semantic Ambiguity

Such errors typically occur when pronouns are not properly handled during
the conversion of subclauses into a program. In a passage, each sentence is
closely linked with the preceding and following sentences, allowing the model
to clearly understand what a pronoun like "the" refers to. However, when
converting to a program, each function operates independently without any
context from other functions. This lack of context means the model cannot
determine what "the" refers to within a single function, leading to semantic
ambiguity.

# The claim is that Zamalek Sporting Club Centennial was a
friendly match against professional football club that plays
in La Liga.

fact_1 = Verify("Zamalek Sporting Club Centennial was a friendly
match.")

fact_2 = Verify("The match was against a professional football
club.")

fact_3 = Verify("The professional football club plays in La Liga
.")

label = Predict(fact_1 and fact_2 and fact_3)
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4. Overly Broad Questioning

During the conversion process, the model might need to choose the correct
subclause from multiple options and use its information for filtering. Thus
choosing the best subclause is of great importance for the quality of generat-
ing the program. However, some subclauses may provide information that is
too common or general, which lacks sufficient constraint. This means the in-
formation within the subclause is too vague to accurately filter out a unique
answer.

# The claim is that Zamalek Sporting Club Centennial was a
friendly match against professional football club that plays
in La Liga.

answer_1 = Question("Which professional football club plays in La
Liga?")

fact_1 = Verify("Zamalek Sporting Club Centennial was a friendly
match against {answer_1}.")

label = Predict(fact_1)

5.4.2 Case Study

To delve deeper into the qualitative aspects of the programs generated by our mod-
els and to understand why the baseline setting consistently outperforms others, we
are initiating targeted case studies. These studies will focus on two main objectives:
assessing the nuanced quality of the programs beyond mere correctness and uncov-
ering the reasons behind the baseline’s superior performance. Each study analyzes
20 claims, specifically examining the programs generated by the Qwen model. The
Qwen model was selected for these studies due to its recency and sophistication,
which are representative of current models. It also allows us to derive valuable in-
sights that could inform the development of future high-performance models.

Why Baseline Outperforms Other Settings?

In our exploration of why the baseline setting consistently exceeds the performance
of other experimental settings, we conducted a focused case study involving a care-
ful selection of 20 claims from the subset of 500 claims. We aim to delve deeper
into the quality and integrity of the programs generated under the baseline setting
compared to others. This involves assessing whether the baseline programs are gen-
uinely superior in terms of their semantic accuracy and logical consistency, or if they
merely yield correct results by coincidence.

The selection process was designed to maintain the proportion of hops consis-
tent with the overall distribution in the HOVER dataset. A total of 20 claims were
selected based on the specific criteria below that highlight the comparative effec-
tiveness of the baseline setting. The claims were chosen according to the following
principles:

1. Baseline Accuracy

All selected claims must have correct execution results under the baseline set-
ting. This ensures that the baseline is performing effectively for these claims.
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2. Low Accuracy in Other Settings

The claims selected generally exhibit poor performance in settings other than
the baseline. Ideally, these are claims where the baseline is the only setting that
yields a correct result, or where very few other settings manage to produce
correct results.

What is the Distribution of Different Errors in Programs?

This case study aims to analyze the distribution of different types of errors in the
programs generated by our models for decomposing controversial claims. We focus
on how well these programs represent the original claims’ information and logic,
and how linguistic features and different prompting methods influence the models’
effectiveness in decomposition.

To conduct this analysis, we selected the 20 most controversial claims from the
subset of 500 claims extracted from the original HOVER dataset, specifically choos-
ing those with the most balanced support and refute outcomes. While ensuring these
claims were selected, we maintained the original dataset’s proportionality in terms
of hop numbers and claim outcomes. This approach guarantees that our analysis
is representative and unbiased, offering a balanced view of the model’s capabilities
across varied claim complexities. By examining these controversial claims, we can
better understand the common errors in program generation and their respective
proportions, providing valuable insights for future improvements.

Results and Observations

FIGURE 5.1: Distribution in Program Generation for ’Why Baseline
Outperforms Other Settings’

Figure 5.1 and figure 5.2 shows two stacked bar charts representing the result
of two case studies. To aid in the visualization and interpretation of our results, we
adopted a uniform color scheme across the graphical representations in both studies.
This approach not only enhances the clarity of our findings but also facilitates a
straightforward comparison between different types of errors within and across the
case studies. In our stacked bar charts, the following color coding is used:

1. Green: correct programs, which means properly decomposes and accurately
represents the original claim’s semantics, regardless of the program’s execu-
tion outcome.
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FIGURE 5.2: Error Distribution in Program Generation for ’What is
the Distribution of Different Errors in Programs?’

2. Yellow: format errors.

3. Red: decomposition errors, including adding/missing information and in-
complete decomposition.

4. Blue and Purple: conversion errors, including semantic ambiguity, semantic
discontinuity, overgeneralized query, and overcomplicated process.

Here are the observations from the result:

1. Correct execution result may not necessarily guarantee accurate program
logic.

From the case study ’Why Baseline Outperforms Other Settings’, which is
shown in figure 5.1, despite all 20 claims being selected based on their correct
execution outcomes in the baseline setting, only 11 of these programs (55%)
were actually correct in their logical composition and execution. However, in
other settings with generally incorrect execution results, each still had at least
6 programs (30%) that were accurate. This reveals that correct outcomes do
not always reflect accurate program logic, and model logic can be correct even
when execution outcomes suggest otherwise.

2. Parsing trees and varied prompting methods can enhance decomposition
but may increase conversion errors.

Baseline settings tend to have a higher ratio of decomposition error compared
to other settings. From the first case study shown in figure 5.1, the baseline set-
ting exhibited the highest rate of decomposition errors at 78% (7 out of 9), while
other settings reduced errors to a maximum of 38% (5 out of 13). Moreover, the
COT-S setting particularly stood out, with decomposition errors at just 8% (1
out of 12), highlighting the substantial improvement prompted methods can
offer. This demonstrates the effectiveness of integrating syntax trees and vary-
ing prompting methods in improving decomposition. We can also witness the
same patterns in the second case study in figure 5.2. While 61% (8 out of 13) of
the false programs are due to decomposition errors in the baseline setting, the
highest rate among other settings is only 42%(5 out of 12).
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On the other hand, parsing trees and varied prompting methods may increase
conversion errors, as they tend to have a larger portion among the errors. From
figure 5.1, in the baseline, conversion errors accounted for only 22% (4 out of
13) of all errors, whereas in other settings, they comprised at least 54% (7 out
of 13) of errors, peaking at 86%(12 out of 14). From figure 5.2, there are only
31%(4 out of 13) errors due to conversion in the baseline setting, while there are
at least 58% (7 out of 12) errors for other settings. This suggests that while these
additions aid in decomposition, they may complicate the conversion process,
leading to more errors of this type.

3. Supervised settings increase conversion errors, especially semantic ambigu-
ity.

Supervised settings, especially CoT-S, showed a higher prevalence of conver-
sion errors. In figure 5.1, such error accounts for 86% (12 out of 14) of errors in
this category, with No Reasoning with Supervision (NR-S) following at 62% (8
out of 13). Both settings also showed a high incidence of semantic ambiguity
errors, which are 50%(6 out of 12) and 43%(6 out of 14). Similarly, in figure
5.2, 80% (12 out of 15) of the errors in setting CoT-S are due to conversions.
This observation suggests that while supervision improves certain processing
aspects, it also complicates semantic accuracy, increasing conversion errors.
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Chapter 6

Discussion

6.1 Answer to Research Questions

6.1.1 Can the addition of linguistic features enhance the decomposition
capabilities of LLMs?

Our research suggests that the addition of linguistic features can potentially enhance
the decomposition capabilities of LLMs, but the effects are nuanced and context-
dependent. While we observed some positive impacts, particularly in reducing de-
composition errors during program generation, the overall results were mixed and
lacked statistical significance, indicating that the benefits may not be universally ap-
plicable or consistently demonstrable across all scenarios.

Our first set of experiments, exploring different parsing trees, showed promising
results. The incorporation of AMR led to improved performance in decomposition
tasks, indicating that semantically rich representations can aid LLMs in processing
complex claims. However, our second set of experiments, using constituency trees
with various prompting methods, revealed a more complicated picture. While over-
all execution accuracy did not improve and even slightly declined, our case study
analysis showed a reduction in decomposition errors when linguistic features were
used. This apparent inconsistency between macro-level metrics and micro-level im-
provements highlights the multifaceted nature of enhancing LLM capabilities.

However, the addition of linguistic features led to a decrease in decomposition
errors but simultaneously introduced more errors in converting sub-clauses into pro-
grams. This explains why we didn’t see an improvement in overall execution accu-
racy despite the reduction in decomposition errors. It suggests that while linguistic
features enhance the LLM’s ability to break down complex claims, they may also
introduce challenges in subsequent processing stages.

It is also important to note that our statistical analysis did not reveal significant
differences, indicating that these findings may not be universally applicable. This
lack of statistical significance underscores the need for larger-scale studies, more
diverse datasets, or alternative statistical approaches to provide more definitive in-
sights.

6.1.2 How effective are different prompting methods in aiding LLMs rea-
soning during the decomposition process?

This question does not yield a straightforward answer based on our experimental
results. Our findings suggest that the effectiveness of different prompting methods
varies across different aspects of the decomposition process, with each method pre-
senting its own set of advantages and challenges.
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Examining the execution results through F1 scores, we were unable to draw a
unified conclusion about the superiority of any single prompting method. Our case
studies provided more nuanced insights. We observed that the CoT settings (CoT-
NS, CoT-S) performed slightly better in decomposition compared to settings with-
out explicit reasoning prompts. This was evidenced by a marginally lower propor-
tion of decomposition errors, suggesting that encouraging step-by-step reasoning
can somewhat improve the LLM’s ability to break down complex claims. More no-
tably, settings with supervision showed a marked decrease in decomposition errors
compared to those without supervision. This observation leads us to hypothesize
that using supervision to enable iterative learning allows the model to better grasp
how to correctly utilize provided information, resulting in improved decomposi-
tion capabilities. The iterative nature of supervised learning appears to enhance the
model’s understanding of the decomposition task over time.

However, this improvement in decomposition came with a trade-off. Supervised
settings also led to an increase in conversion errors, particularly in semantic ambi-
guity. We speculate that this setting may inadvertently hinder the model’s ability to
treat each function in the generated program as independent. This was evidenced
by a higher occurrence of pronouns in critical positions such as subjects or objects
within the generated programs, potentially leading to ambiguity and errors in the
final output.

On the other hand, from a cost-effectiveness perspective, both supervision and
CoT settings present less efficiency. The addition of reasoning steps and the imple-
mentation of iterative learning significantly increase the input prompt size, leading
to higher computational costs and reduced economic efficiency. This practical con-
sideration is crucial when evaluating the overall viability of these prompting meth-
ods in real-world applications.

It also should be noted that given that our experimental results did not demon-
strate statistical significance after conducting a t-test, coupled with the fact that our
case study was limited to analyzing only 20 claims for each selected model program,
the findings of this study may lack generalizability. Therefore, the conclusions pre-
sented should be considered preliminary and interpreted with caution, serving as a
reference rather than definitive evidence.

6.2 Limitation

6.2.1 Experimental Limitation

Limited Data Scope

The conclusions drawn from our experiments may not universally apply due to the
limited scope of data tested. Primarily, the experiments were restricted to a subset
of one single dataset because of the limited time and budget of calling models’ APIs.
This restriction narrows the breadth of our conclusions as the dataset may not repre-
sent the variability and complexity found in wider applications. The limited dataset
scope also raises concerns about the robustness of our findings when applied to dif-
ferent or more extensive datasets, which might exhibit different characteristics and
behaviors under similar experimental conditions.
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Reduced Experimental Setting

Our innovative approach, which integrates multiple syntax trees, reasoning meth-
ods, and prompting formats(with or without supervision), ideally requires a broad
set of experimental setups to thoroughly explore all possible interactions and ef-
fects. We need to conduct experiments across eighteen different settings based on
the combinations of three syntax trees, three reasoning methods, and two prompt-
ing formats. However, due to practical limitations, we consolidated these into only
two sets of combinations. The first combination involved various pairings of reason-
ing methods and prompting formats, while the second was an isolated investigation
of the syntax trees. This grouping likely resulted in a failure to capture all potential
interactions and effects, thereby narrowing the scope of our insights. The limited ex-
ploration of these variables can lead to conclusions that do not fully account for the
effects of different integrations, potentially missing out on optimal configurations
that could enhance performance.

6.2.2 Technical Limitation

Introducing Extra Errors

Our use of a program-based approach inadvertently introduced additional errors.
While the model accurately parsed sentences, errors sometimes emerged during the
transformation of these sentences into executable programs. This issue illustrates
a critical flaw in the program-based approach, where the model’s accuracy in sen-
tence parsing does not necessarily translate to error-free program generation. Such
discrepancies can alter the outcome of claim verification, affecting the reliability of
the results.

Ineffective Use of Parsing Tree Information

Based on our observation and analysis, the effectiveness of using parsing tree in-
formation through few-shot prompting has proven to be less than satisfactory. This
limitation suggests that our approach might require modifications or enhancements
to better leverage structured syntactic data, which is crucial for understanding and
processing complex claims.

Dependency on Model and Data

Another considerable technical limitation is the dependency of our methodology
on the underlying capabilities of the language model and the quality of the input
data. The performance of our approach is highly relevant to these factors, and any
shortcomings in the model’s understanding of complex linguistic structures or the
dataset’s integrity directly undermine the effectiveness of the generated programs.
This dependency highlights the need for robust model training and comprehensive,
high-quality datasets to ensure reliable and accurate verification of complex claims.

6.3 Further Improvement

In this study, we explored the effectiveness of integrating linguistic features, rea-
soning methods and supervision in prompting to enhance the decomposition capa-
bilities of LLMs in processing complex queries. Our findings indicated that while
linguistic features such as semantic parsing provide useful insights, they alone are
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not sufficient to significantly enhance decomposition capabilities. Advanced reason-
ing techniques in prompting and supervisions showed potential in improving the
models’ ability to handle complex sentence structures through step-by-step reason-
ing. However, the overall effectiveness varied, suggesting a need for more refined
prompting strategies that can dynamically adapt to the complexity of the query.

6.3.1 Experimental Improvements

To address the limitations posed by the restricted experimental settings and data
scope, a broader range of experiments should be conducted. This would involve
testing additional combinations of experimental settings, including a wider array
of linguistic features, reasoning methods, and prompting formats. Expanding the
diversity of models and datasets utilized in these experiments would also help in
assessing the robustness of our findings across different linguistic and logical struc-
tures.

6.3.2 Technical Improvements

While parsing trees have been beneficial, their application could be optimized fur-
ther. Future work could concentrate on refining the integration of linguistic features
by training custom models that inherently utilize these features in their core reason-
ing processes, rather than merely as additional inputs. Such integration could lead
to a deeper understanding and more robust handling of complex linguistic struc-
tures. Moreover, investigating alternative methods of leveraging parsing trees to
enhance the efficiency of decomposition could prove to be beneficial. For example,
experimenting with dynamic tree structures that adapt based on the complexity and
specific requirements of each claim could provide more tailored and effective pars-
ing solutions. Additionally, exploring different tree traversal techniques that might
better align with the logical flow required for certain types of claims could also im-
prove decomposition accuracy.

Methodologically, creating adaptive prompting techniques that tailor the level
of guidance based on real-time model performance would not only refine the mod-
els’ reasoning capabilities but also their ability to self-correct and learn from iter-
ative feedback. An additional crucial area for future research involves addressing
and reducing semantic ambiguities introduced by supervision methods. Our exper-
iments highlighted that while supervision aids in structuring the decomposition pro-
cess, it can inadvertently introduce errors, particularly semantic ambiguities. Future
methodologies should focus on developing supervision techniques that minimize
these ambiguities. This could involve the use of advanced semantic analysis tools to
ensure that the supervisory feedback aligns closely with the intended meanings and
contexts of the processed texts. By refining these supervision methods, we can en-
hance the precision of the LLMs in understanding and processing complex queries,
thus mitigating the risk of semantic inaccuracies.
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Chapter 7

Conclusion

This thesis investigated the integration of linguistic features and advanced prompt-
ing methods, including reasoning and supervision settings, to enhance the decom-
position capabilities of LLMs for processing complex sentences. Our findings showed
that incorporating linguistic features has the potential to improve LLMs’ under-
standing of complex sentence structures, providing essential scaffolding for inter-
preting syntactic and semantic layers effectively.

The study also evaluated various reasoning methods and supervision settings.
Structured reasoning paths along with different levels of supervision show promise
towards enhancing the model’s ability to accurately decompose and analyze com-
plex sentences. On the other hand, while supervision aids in structuring the decom-
position process, it also tends to introduce more errors during the conversion from
sub-sentences to the program, particularly in terms of semantic ambiguity. This in-
dicates a critical area for improvement in how supervision is implemented. Opti-
mizing how these settings control the flow and integrity of data conversion could
mitigate these errors, potentially leading to more reliable and accurate output from
the models.

Despite these findings, the study identified several error types in the programs
generated by LLMs, including format, decomposition, and conversion errors. These
errors highlight the need for further refinement in model training and prompt de-
sign.

In conclusion, the insights gained from integrating linguistic features, reasoning,
and supervision in prompting positively contribute to advancing LLM capabilities.
This thesis lays a foundation for future research aimed at refining AI systems for
more sophisticated, accurate, and context-aware processing of human language, en-
couraging further exploration into optimizing supervision techniques and prompt
designs to reduce errors and improve reliability.
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Appendix A

Full Prompts

A.1 Baseline

Generate a pseudo program that describes the reasoning steps required
to verify the claim step-by-step. You can call three functions in
the program: 1. Question() to answer a question; 2. Verify() to
verify a simple claim; 3. Predict() to predict the veracity label.
Several examples are given as follows.

# The claim is that Howard University Hospital and Providence Hospital
are both located in Washington, D.C.

def program():
fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")
label = Predict(fact_1 and fact_2)

# The claim is that An IndyCar race driver drove a Formula 1 car
designed by Peter McCool during the 2007 Formula One season.

def program():
answer_1 = Question("Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?")
fact_1 = Verify(f"An IndyCar race driver drove the car {answer_1}.
")
label = Predict(fact_1)

# The claim is that WWE Super Tuesday took place at an arena that
currently goes by the name TD Garden.

def program():
answer_1 = Question("Which arena the WWE Super Tuesday took place?
")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden.
")
label = Predict(fact_1)

# The claim is that Talking Heads, an American rock band that was "one
of the most critically acclaimed bands of the 80's" is featured

in KSPN's AAA format.
def program():
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fact_1 = Verify("Talking Heads is an American rock band that was '
one of the most critically acclaimed bands of the 80's'.")
fact_2 = Verify("Talking Heads is featured in KSPN's AAA format.")
label = Predict(fact_1 and fact_2)

# The claim is that The model of car Trevor Bayne drives was
introduced for model year 2006. The Rookie of The Year in the 1997
CART season drives it in the NASCAR Sprint Cup.

def program():
answer_1 = Question("Which model of car is drived by Trevor Bayne?
")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")
answer_2 = Question("Who is the Rookie of The Year in the 1997
CART season?")
fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.")
label = predict(fact_1 and fact_2)

# The claim is that The song recorded by Fergie that was produced by
Polow da Don and was followed by Life Goes On was M.I.L.F.$.

def program():
fact_1 = Verify("M.I.L.F.$ was recorded by Fergie.")
fact_2 = Verify("M.I.L.F.$ was produced by Polow da Don.")
fact_3 = Verify("M.I.L.F.$ was was followed by Life Goes On.")
label = Predict(fact_1 and fact_2 and fact_3)

# The claim is that Gina Bramhill was born in a village. The 2011
population of the area that includes this village was 167,446.

def program():
answer_1 = Question("Which village was Gina Bramhill born in?")
fact_1 = Verify(f"The 2011 population of the area that includes {
answer_1} was 167,446.")
label = Predict(fact_1)

# The claim is that Don Ashley Turlington graduated from Saint Joseph'
s College, a private Catholic liberal arts college in Standish.

def program():
fact_1 = Verify("Saint Joseph's College is a private Catholic
liberal arts college in Standish.")
fact_2 = Verify(f"Don Ashley Turlington graduated from Saint
Joseph's College.")
label = Predict(fact_1 and fact_2)

# The claim is that In the 2004 Hockey film produced by a former major
league baseball pitcher Kurt Russell played the USA coach.

def program():
answer_1 = Question("Which 2004 Hockey film was produced a former
major league baseball pitcher?")
fact_1 = Verify("Kurt Russell played the USA coach in the film {
answer_1}.")
label = Predict(fact_1)
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# The claim is that Jack McFarland is the best known role of the host
of the 64th Annual Tony Awards.

def program():
answer_1 = Question("Who are the hosts of the 64th Annual Tony
Awards?")
fact_1 = Verify(f"Jack McFarland is the best known role of {
answer_1}.)
label = Predict(fact_1)

# The claim is that [[CLAIM]]
def program():

A.2 No Reasoning with No Supervision(NR-NS)

Given a claim and its constituency tree, generate analysis about how
to decompose the claim, and a pseudo program that describes the
reasoning steps required to verify the claim step-by-step. You can
call three functions in the program: 1. Question() to answer a

question; 2. Verify() to verify a simple claim; 3. Predict() to
predict the veracity label. Several examples are given as follows.

# The claim is that Howard University Hospital and Providence Hospital
are both located in Washington, D.C.

Constituency parsing tree:

def program():
fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")
label = Predict(fact_1 and fact_2)
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# The claim is that An IndyCar race driver drove a Formula 1 car
designed by Peter McCool during the 2007 Formula One season.

Constituency parsing tree:

def program():
answer_1 = Question("Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?")
fact_1 = Verify(f"An IndyCar race driver drove the car {answer_1
}.")
label = Predict(fact_1)

# The claim is that WWE Super Tuesday took place at an arena that
currently goes by the name TD Garden.

Constituency parsing tree:

def program():
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answer_1 = Question("Which arena the WWE Super Tuesday took place
?")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden
.")
label = Predict(fact_1)

# The claim is that Talking Heads, an American rock band that was "one
of the most critically acclaimed bands of the 80's" is featured

in KSPN's AAA format.
Constituency parsing tree:

def program():
fact_1 = Verify("Talking Heads is an American rock band that was '
one of the most critically acclaimed bands of the 80's'.")
fact_2 = Verify("Talking Heads is featured in KSPN's AAA format.")
label = Predict(fact_1 and fact_2)

# The claim is that The model of car Trevor Bayne drives was
introduced for model year 2006. The Rookie of The Year in the 1997
CART season drives it in the NASCAR Sprint Cup.

Constituency parsing tree:

ewpage

def program():
answer_1 = Question("Which model of car is drived by Trevor Bayne
?")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")
answer_2 = Question("Who is the Rookie of The Year in the 1997
CART season?")
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fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.")
label = predict(fact_1 and fact_2)

# The claim is that The song recorded by Fergie that was produced by
Polow da Don and was followed by Life Goes On was M.I.L.F.$.

Constituency parsing tree:

ewpage

def program():
fact_1 = Verify("M.I.L.F.$ was recorded by Fergie.")
fact_2 = Verify("M.I.L.F.$ was produced by Polow da Don.")
fact_3 = Verify("M.I.L.F.$ was was followed by Life Goes On.")
label = Predict(fact_1 and fact_2 and fact_3)

# The claim is that Gina Bramhill was born in a village. The 2011
population of the area that includes this village was 167,446.

Constituency parsing tree:

def program():
answer_1 = Question("Which village was Gina Bramhill born in?")
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fact_1 = Verify(f"The 2011 population of the area that includes {
answer_1} was 167,446.")
label = Predict(fact_1)

# The claim is that Don Ashley Turlington graduated from Saint Joseph'
s College, a private Catholic liberal arts college in Standish.

Constituency parsing tree:

def program():
fact_1 = Verify("Saint Joseph's College is a private Catholic
liberal arts college in Standish.")
fact_2 = Verify(f"Don Ashley Turlington graduated from Saint
Joseph's College.")
label = Predict(fact_1 and fact_2)
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# The claim is that In the 2004 Hockey film produced by a former major
league baseball pitcher Kurt Russell played the USA coach.

Constituency parsing tree:

ewpage

def program():
answer_1 = Question("Which 2004 Hockey film was produced a former
major league baseball pitcher?")
fact_1 = Verify("Kurt Russell played the USA coach in the film {
answer_1}.")
label = Predict(fact_1)
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# The claim is that Jack McFarland is the best known role of the host
of the 64th Annual Tony Awards.

Constituency parsing tree:

def program():
answer_1 = Question("Who are the hosts of the 64th Annual Tony
Awards?")
fact_1 = Verify(f"Jack McFarland is the best known role of {
answer_1}.)
label = Predict(fact_1)

# The claim is that [[CLAIM]]
Constituency parsing tree:
[[TREE]]
def program():

A.3 No Reasoning with Supervision (NR-S)

[
{

"role": "system",
"content": "You have strong ability of reasoning. You only need to
generate an executable pseudo program within simple structure

that reflect the reasoning steps required to verify the claim step
-by-step. The constituency tree of the claim is provided to help
you understand the claim structure and decompose it. You can only
call three functions in the program: 1. Question() to answer a
question; 2. Verify() to verify a simple claim; 3. Predict() to
predict the veracity label, the only logical operators can be used
is 'and'."

},
{
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"role": "user",
"content": "The claim is that Howard University Hospital and
Providence Hospital are both located in Washington, D.C.. The
constituency parsing tree is:

"
},
{

"role": "assistant",
"content": "```pseudo # Decompose the claim into simpler sub-
claims sub_claim1 = "Howard University Hospital is located in
Washington, D.C." sub_claim2 = "Providence Hospital is located in
Washington, D.C.""

},
{

"role": "user",
"content": "The correct answer is: def program(): fact_1 =
Verify("Howard University Hospital is located in Washington, D.C
.") fact_2 = Verify("Providence Hospital is located in
Washington, D.C.") label = Predict(fact_1 and fact_2).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that An IndyCar race driver drove a
Formula 1 car designed by Peter McCool during the 2007 Formula One
season. The constituency parsing tree is:

"
},
{

"role": "assistant",
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"content": "```pseudodef program(): # Decompose the claim
into simpler sub-claims sub_claim1 = "An IndyCar race driver
drove a Formula 1 car during the 2007 Formula One season."
sub_claim2 = "The Formula 1 car was designed by Peter McCool.""

},
{

"role": "user",
"content": "The correct answer is: def program(): answer_1 =
Question("Which Formula 1 car was designed by Peter McCool during
the 2007 Formula One season?") fact_1 = Verify(f"An IndyCar
race driver drove the car {answer_1}.") label = Predict(
fact_1). Carefully examine the differences between your answers
and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
{

"role": "user",
"content": "The claim is that WWE Super Tuesday took place at an
arena that currently goes by the name TD Garden. The constituency
parsing tree is:

"
},
{

"role": "assistant",
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"content": "```pseudo def program(): answer_1 = Question("
What is the current name of the arena where WWE Super Tuesday took
place?") fact_1 = Verify(f"The arena is currently called {

answer_1}.") fact_2 = Verify("WWE Super Tuesday took place at
the arena.") label = Predict(fact_1 and fact_2) ```"

},
{

"role": "user",
"content": "The correct answer is: def program(): answer_1 =
Question("Which arena the WWE Super Tuesday took place?")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden
.") label = Predict(fact_1). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is that Talking Heads, an American rock
band that was "one of the most critically acclaimed bands of the
80's" is featured in KSPN's AAA format. The constituency parsing
tree is:

"
},
{

"role": "assistant",
"content": "```pseudo def program(): answer_1 = Question("
Which band is featured in KSPN's AAA format?") fact_1 =
Verify(f"The band is Talking Heads.") fact_2 = Verify("
Talking Heads is an American rock band that was one of the most
critically acclaimed bands of the 80's.") label = Predict(
fact_1 and fact_2) ```"

},
{

"role": "user",
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"content": "The correct answer is: def program(): fact_1 =
Verify("Talking Heads is an American rock band that was 'one of
the most critically acclaimed bands of the 80's'.") fact_2 =
Verify("Talking Heads is featured in KSPN's AAA format.")
label = Predict(fact_1 and fact_2). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is that The model of car Trevor Bayne drives
was introduced for model year 2006. The Rookie of The Year in the
1997 CART season drives it in the NASCAR Sprint Cup. The

constituency parsing tree is:

"
},
{

"role": "assistant",
"content": "```pseudo def program(): answer_1 = Question("
What model of car does Trevor Bayne drive?") fact_1 = Verify(
f"The model of car Trevor Bayne drives was introduced for model
year 2006.") fact_2 = Verify(f"The Rookie of The Year in the
1997 CART season drives the car in the NASCAR Sprint Cup.")
label = Predict(fact_1 and fact_2) ```"

},
{

"role": "user",
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"content": "The correct answer is: def program(): answer_1 =
Question("Which model of car is drived by Trevor Bayne?")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")

answer_2 = Question("Who is the Rookie of The Year in the
1997 CART season?") fact_2 = Verify(f"{answer_2} drives {
answer_1} in the NASCAR Sprint Cup.") label = predict(fact_1
and fact_2). Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
{

"role": "user",
"content": "The claim is that The song recorded by Fergie that
was produced by Polow da Don and was followed by Life Goes On was
M.I.L.F.$. The constituency parsing tree is:

"
},
{

"role": "assistant",
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"content": "```pseudo def program(): answer_1 = Question("
Which song was recorded by Fergie and produced by Polow da Don?")

fact_1 = Verify(f"The song recorded by Fergie that was
produced by Polow da Don was {answer_1}.") fact_2 = Verify(f"
The song followed by Life Goes On was {answer_1}.") label =
Predict(fact_1 and fact_2) ```"

},
{

"role": "user",
"content": "The correct answer is: def program(): fact_1 =
Verify("M.I.L.F.$ was recorded by Fergie.") fact_2 = Verify("
M.I.L.F.$ was produced by Polow da Don.") fact_3 = Verify("M.
I.L.F.$ was was followed by Life Goes On.") label = Predict(
fact_1 and fact_2 and fact_3) . Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is that Gina Bramhill was born in a village.
The 2011 population of the area that includes this village was

167,446. The constituency parsing tree is:

"
},
{

"role": "assistant",
"content": "```pseudo def program(): fact_1 = Verify("Gina
Bramhill was born in a village.") fact_2 = Verify("The 2011
population of the area that includes this village was 167,446.")

label = Predict(fact_1 and fact_2) ```"
},
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{
"role": "user",
"content": "The correct answer is: def program(): answer_1 =
Question("Which village was Gina Bramhill born in?") fact_1 =
Verify(f"The 2011 population of the area that includes {answer_1}
was 167,446.") label = Predict(fact_1). Carefully examine

the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that Don Ashley Turlington graduated
from Saint Joseph's College, a private Catholic liberal arts
college in Standish. The constituency parsing tree is:

"
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},
{

"role": "assistant",
"content": "```pseudo def program(): fact_1 = Verify("Don
Ashley Turlington graduated from Saint Joseph's College.")
fact_2 = Verify("Saint Joseph's College is a private Catholic
liberal arts college in Standish.") label = Predict(fact_1
and fact_2) ```"

},
{

"role": "user",
"content": "The correct answer is: def program(): fact_1 =
Verify("Saint Joseph's College is a private Catholic liberal arts
college in Standish.") fact_2 = Verify(f"Don Ashley
Turlington graduated from Saint Joseph's College.") label =
Predict(fact_1 and fact_2). Carefully examine the differences
between your answers and the standard ones. Learn from the correct
decomposing approaches and formats, and apply these insights to

your next claim."
},
{

"role": "user",
"content": "The claim is that In the 2004 Hockey film produced by
a former major league baseball pitcher Kurt Russell played the USA
coach. The constituency parsing tree is:

"
},
{

"role": "assistant",



80 Appendix A. Full Prompts

"content": "```pseudo def program(): answer_1 = Question("
Which 2004 Hockey film was produced by a former major league
baseball pitcher?") fact_1 = Verify(f"Kurt Russell played the
USA coach in the film {answer_1}.") label = Predict(fact_1)
```"

},
{

"role": "user",
"content": "The correct answer is: def program(): answer_1 =
Question("Which 2004 Hockey film was produced a former major
league baseball pitcher?") fact_1 = Verify("Kurt Russell
played the USA coach in the film {answer_1}.") label =
Predict(fact_1). Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
{

"role": "user",
"content": "The claim is that Jack McFarland is the best known
role of the host of the 64th Annual Tony Awards. The constituency
parsing tree is:

"
},
{

"role": "assistant",
"content": "```pseudo def program(): answer_1 = Question("
Who is the host of the 64th Annual Tony Awards?") fact_1 =
Verify(f"Jack McFarland is the best known role of {answer_1}.")

label = Predict(fact_1) ```"
},
{

"role": "user",
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"content": "The correct answer is: def program(): answer_1 =
Question("Who are the hosts of the 64th Annual Tony Awards?")
fact_1 = Verify(f"Jack McFarland is the best known role of {

answer_1}.) label = Predict(fact_1). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
}

]

A.4 Chain-of-Thought with No Supervision(CoT-NS)

Given a claim and its constituency tree, generate analysis about how
to decompose the claim, and a pseudo program that describes the
reasoning steps required to verify the claim step-by-step. You can
call three functions in the program: 1. Question() to answer a

question; 2. Verify() to verify a simple claim; 3. Predict() to
predict the veracity label. Several examples are given as follows.

# The claim is that Howard University Hospital and Providence Hospital
are both located in Washington, D.C.

Constituency parsing tree:

Analysis: At the top, the sentence is divided into a large noun phrase
(NP) and a verb phrase (VP). The noun phrase itself is a compound
structure, made up of two separate entities: "Howard University

Hospital" and "Providence Hospital." These entities are connected
by the conjunction "and," indicating that the action described in
the verb phrase applies equally to both entities.
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Moving to the verb phrase, it consists of the auxiliary verb "are,"
the adverb "both," the main verb "located," and a prepositional
phrase "in Washington, D.C." This structure tells us that the
state of being located is shared by both subjects of the compound
noun phrase. The prepositional phrase at the end of the sentence
specifies the location, indicating that both hospitals are
situated in Washington, D.C.

In breaking down this sentence, we observe how each part of the
structure contributes to the overall meaning. The conjunction in
the noun phrase effectively binds the two hospitals into a shared
circumstance, while the components of the verb phrase distribute
this circumstance across both subjects equally. Thus, using the
constituency tree helps to visually and logically segment the
sentence into digestible parts without altering the intended
meaning. This detailed analysis shows how both hospitals, though
mentioned separately, are unified in their description,
emphasizing their collective presence in the same geographical
location.

From this analysis, we can derive two simpler sub-sentences: 1. Howard
University Hospital is located in Washington, D.C. 2. Providence

Hospital is also located in Washington, D.C.
Based on this information, we can transform each fact into a Verify()

function. The first Verify() function checks if the "Howard
University Hospital is located in Washington, D.C." and the second
Verify() function checks if "Providence Hospital is located in

Washington, D.C.".Finally, the Predict() function is used to
predict the veracity label of the overall claim. The logical
operator 'and' is used to combine the results of the two Verify()
functions. If both Verify() functions return true, then the
Predict() function will also return true, meaning the overall
claim is true.

Program code:
fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")
label = Predict(fact_1 and fact_2)

# The claim is that An IndyCar race driver drove a Formula 1 car
designed by Peter McCool during the 2007 Formula One season.

Constituency parsing tree:

ewpage

Analysis: We use a top-down approach to analyze this sentence. We
start by identifying the highest node in the parsing tree, which
categorizes the entire sentence into two primary components: a
noun phrase (NP) and a verb phrase (VP).



A.4. Chain-of-Thought with No Supervision(CoT-NS) 83

Noun Phrase (NP):At the top level, the NP "An IndyCar race driver" is
selected. This phrase is identified as the subject of the sentence
. The NP combines a determiner "An" with a compound noun "IndyCar
race driver". This NP sets the stage by identifying who is
performing the action, grounding the sentence in the world of
IndyCar racing.

Verb Phrase (VP): Following the subject, we examine the VP "drove a
Formula 1 car designed by Peter McCool during the 2007 Formula One
season." This complex VP begins with the verb "drove," which is

the main action connecting the subject to the direct object "a
Formula 1 car." This object itself extends into a more detailed
description through additional nested structures: 1. The phrase "
designed by Peter McCool" is an embedded clause that modifies "a
Formula 1 car," specifying that the car was designed by Peter
McCool. Here, "designed" acts as a verb in a smaller verb phrase,
which includes a prepositional phrase "by Peter McCool." "Peter
McCool" serves as a noun phrase within this prepositional phrase,
attributing the design to him. 2. The final part of the VP, "
during the 2007 Formula One season," provides the temporal context
. This is structured as a prepositional phrase containing "the
2007 Formula One season," which acts as a noun phrase detailing
when the action took place.

By decomposing the original sentence, we can derive two simplified sub
-sentences that preserve the meaning but clarify the structure:1.
An IndyCar race driver drove a Formula 1 car. 2. The car was
designed by Peter McCool during the 2007 Formula One season.
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We can pose the second part of the claim as a question using the
Question() function: "Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?". This question aims to
identify the specific car that the IndyCar race driver drove. The
answer to this question is stored in the variable answer_1. Then,
we use this answer to verify the fact that "An IndyCar race

driver drove the car {answer_1}". This is done using the Verify()
function and stored in the variable fact_1.Finally, we use the
Predict() function to predict the veracity label of the overall
claim. The Predict() function uses the result of the Verify()
function (fact_1) as an input. If the Verify() function returns
true, then the Predict() function will also return true, meaning
the overall claim is true.

Program code:
answer_1 = Question("Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?")
fact_1 = Verify(f"An IndyCar race driver drove the car {answer_1
}.")
label = Predict(fact_1)

# The claim is that WWE Super Tuesday took place at an arena that
currently goes by the name TD Garden.

Constituency parsing tree:

ewpage

Analysis: We use a top-down approach to analyze this sentence. The
sentence's structure is initially split into a noun phrase(NP) "
WWE Super Tuesday" and a verb phrase (VP) "took place at an arena
that currently goes by the name TD Garden".

Noun Phrase (NP): The NP "WWE Super Tuesday" acts as the main subject
and sets the stage for the verb phrase, grounding the sentence in
the context of a wrestling entertainment event.
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Verb Phrase (VP): The verb phrase "took place at an arena that
currently goes by the name TD Garden" begins with the verb "took"
linked to the noun "place," collectively forming the predicate "
took place." This construction indicates the occurrence of an
event. The phrase then extends to include a prepositional phrase (
PP) "at an arena" that specifies the location. This prepositional
phrase includes an additional NP "an arena," which is modified by
a relative clause. This relative clause "that currently goes by
the name TD Garden" adds specificity to "an arena." The clause
starts with the pronoun "that," referring back to "arena," and
includes a complex structure: An adverbial phrase "currently"
modifies the verb "goes," indicating the timing of the action; and
a verb "goes" is followed by another prepositional phrase "by the
name TD Garden," where "the name TD Garden" is a nested NP

specifying the current name of the arena.
By decomposing the original sentence, we can derive two simplified sub

-sentences: 1.WWE Super Tuesday took place at an arena. 2.The
arena currently goes by the name TD Garden.

We can pose the first part of the claim as a question using the
Question() function: "Which arena the WWE Super Tuesday took place
?". This question aims to identify the specific arena where the
event happened.The answer to this question is stored in the
variable answer_1. Then, we use this answer to verify the fact
that "{answer_1} currently goes by the name TD Garden". This is
done using the Verify() function and stored in the variable fact_1
.Finally, we use the Predict() function to predict the veracity
label of the overall claim. The Predict() function uses the result
of the Verify() function (fact_1) as an input. If the Verify()

function returns true, then the Predict() function will also
return true, meaning the overall claim is true.

Program code:
answer_1 = Question("Which arena the WWE Super Tuesday took place
?")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden
.")
label = Predict(fact_1)

# The claim is that Talking Heads, an American rock band that was "one
of the most critically acclaimed bands of the 80's" is featured

in KSPN's AAA format.
Constituency parsing tree:

Analysis: Using a top-down approach, we first identify the major
divisions within the sentence, which are divided into a complex
noun phrase (NP)"Talking Heads, an American rock band that was "
one of the most critically acclaimed bands of the 80's"" as the
subject and a verb phrase (VP)"is featured in KSPN's AAA format"
as the predicate.
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Noun Phrase (NP):The initial NP "Talking Heads" acts as the main
subject, which is a proper noun referring to the name of a band.
This NP is then expanded with an additional descriptive clause
that provides more information about "Talking Heads." This
expansion starts with ", an American rock band," which itself is a
noun phrase describing what "Talking Heads" is, further

identifying the genre and nationality of the band. This clause
canbe further divided into 2 parts: 1. It begins with the pronoun
"that," linking back to "American rock band." 2. The clause
includes a verb "was," leading into another nested noun phrase "
one of the most critically acclaimed bands of the 80s."

Verb Phrase (VP):The verb phrase following the extensive subject
details begins with "is featured," indicating the current status
or activity regarding the band. The verb "is featured" links to a
prepositional phrase "in KSPN's AAA format."

By decomposing the original sentence, we can derive three simplified
sub-sentences: 1.Talking Heads is an American rock band that was '
one of the most critically acclaimed bands of the 80's. 2.Talking
Heads is featured in KSPN's AAA format.
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Based on this information, we can transform each fact into a Verify()
function. The first Verify() function checks if the "Talking Heads
is an American rock band that was 'one of the most critically

acclaimed bands of the 80's'", and the second Verify() function
checks if "Talking Heads is featured in KSPN's AAA format".Finally
, the Predict() function is used to predict the veracity label of
the overall claim. The logical operator 'and' is used to combine
the results of the two Verify() functions. If both Verify()
functions return true, then the Predict() function will also
return true, meaning the overall claim is true.

Program code:
fact_1 = Verify("Talking Heads is an American rock band that was '
one of the most critically acclaimed bands of the 80's'.")
fact_2 = Verify("Talking Heads is featured in KSPN's AAA format.")
label = Predict(fact_1 and fact_2)

# The claim is that The model of car Trevor Bayne drives was
introduced for model year 2006. The Rookie of The Year in the 1997
CART season drives it in the NASCAR Sprint Cup.

Constituency parsing tree:

ewpage

Analysis: We employ a top-down approach to analyze the tree. The
structure as divided into two main sentence components (S) with
their respective noun phrases (NP) and verb phrases (VP).

Analysis of the First Sentence (S):
Noun Phrase (NP): The initial NP "The model of car Trevor Bayne drives

" acts as the main subject of the first sentence. Starting with "
The model," which is the core noun phrase, it is expanded by a
prepositional phrase "of car Trevor Bayne drives," which includes
a nested NP "car Trevor Bayne" modified further by the NP "Trevor
Bayne," identifying the specific individual associated with the
car.

Verb Phrase (VP): The verb phrase "was introduced for model year 2006"
follows, describing the action and the temporal context

concerning the car's model. The verb "was introduced" indicates
the introduction of the car model, linked by the preposition "for"
to another NP "model year 2006".

Analysis of the Second Sentence (S):
Noun Phrase (NP): The subject of the second sentence, "The Rookie of

the Year in the 1997 CART season," is structured with a main NP "
The Rookie of the Year," expanded by the prepositional phrase "in
the 1997 CART season." This phrase is further detailed by the NPs
"the 1997" and "CART season," which place the rookie title within
a specific historical and sporting context.

Verb Phrase (VP): The VP "drives it in the NASCAR Sprint Cup" involves
the main action "drives," referring back to the subject of the

first sentence. The object "it" likely refers to the car model
discussed earlier. The phrase is concluded with another
prepositional phrase "in the NASCAR Sprint Cup," naming the
competition where the action takes place.
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By decomposing the original sentence, we can derive two simplified sub
-sentences:1.The model of car that Trevor Bayne drives was
introduced in 2006. 2.The Rookie of the Year in the 1997 CART
season drives that model in the NASCAR Sprint Cup.
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We can pose the first part of the claim as a question using the
Question() function: "Which model of car is drived by Trevor Bayne
?". This question aims to identify the specific model of car
Trevor Bayne drives. The answer to this question is stored in the
variable answer_1.Then, we use this answer to verify the fact that
"{answer_1} was introduced for model year 2006". This is done

using the Verify() function and stored in the variable fact_1.Next
, we pose the second part of the claim as a question using the
Question() function: "Who is the Rookie of The Year in the 1997
CART season?". This question aims to identify the specific person
who is the Rookie of The Year in the 1997 CART season. The answer
to this question is stored in the variable answer_2.Then, we use
these answers to verify the fact that "{answer_2} drives {answer_1
} in the NASCAR Sprint Cup". This is done using the Verify()
function and stored in the variable fact_2.Finally, we use the
Predict() function to predict the veracity label of the overall
claim. The Predict() function uses the results of the two Verify()
functions (fact_1 and fact_2) as inputs. If both Verify()

functions return true, then the Predict() function will also
return true, meaning the overall claim is true.

Program code:
answer_1 = Question("Which model of car is drived by Trevor Bayne
?")
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")
answer_2 = Question("Who is the Rookie of The Year in the 1997
CART season?")
fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.")
label = predict(fact_1 and fact_2)

# The claim is that The song recorded by Fergie that was produced by
Polow da Don and was followed by Life Goes On was M.I.L.F.$.

Constituency parsing tree:
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Analysis: Using a top-down approach, the sentence is primarily divided
into a noun phrase(NP)"The song recorded by Fergie that was

produced by Polow da Don and was followed by Life Goes On" and a
verb phrase(VP)"was M.I.L.F. $"

Noun Phrase (NP) :"The song" serves as the main subject of the
sentence. The NP can be further decompose into 3 clauses.

Relative Clause 1: Modified by "recorded by Fergie," where "by Fergie"
acts as a prepositional phrase (PP) pointing to the artist

involved in the recording.
Nested Clause: Within this first clause, there's another clause "that

was produced by Polow da Don." Here, "that" refers back to "the
song," "was produced" forms the verb phrase (VP), and "by Polow da
Don" is another prepositional phrase describing the producer.

Relative Clause 2: "and was followed by 'Life Goes On'" connects with
a conjunction "and." "Was followed" is the verb, and "by 'Life
Goes On'" is the prepositional phrase indicating what followed the
song.

Verb Phrase (VP): "M.I.L.F. $" is the complement of "was," completing
the predicate by specifying the songs title.

By decomposing the original sentence, we can derive two simplified sub
-sentences:1. M.I.L.F. $ was recorded by Fergie 2. M.I.L.F. $ was
produced by Polow da Don 3. M.I.L.F. $ was followed by 'Life Goes
On'

Based on this information, we can transform each fact into a Verify()
function. The first Verify() function checks if the "M.I.L.F.$ was
recorded by Fergie", the second Verify() function checks if "M.I.

L.F.$ was produced by Polow da Don", and the third Verify()
function checks if "M.I.L.F.$ was followed by Life Goes On".
Finally, the Predict() function is used to predict the veracity
label of the overall claim. The logical operator 'and' is used to
combine the results of the three Verify() functions. If all Verify
() functions return true, then the Predict() function will also
return true, meaning the overall claim is true.

Program code:
fact_1 = Verify("M.I.L.F.$ was recorded by Fergie.")
fact_2 = Verify("M.I.L.F.$ was produced by Polow da Don.")
fact_3 = Verify("M.I.L.F.$ was was followed by Life Goes On.")
label = Predict(fact_1 and fact_2 and fact_3)

# The claim is that Gina Bramhill was born in a village. The 2011
population of the area that includes this village was 167,446.

Constituency parsing tree:
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Analysis: The claim involves two facts about Gina Bramhill and the
village she was born in. The first fact is that "Gina Bramhill was
born in a village" and the second fact is that "The 2011

population of the area that includes this village was 167,446".
The constituency parsing tree helps us break down the sentence
into its constituent parts. The tree shows that the sentence has a
main branch that represents the first fact: "Gina Bramhill was

born in a village". The village is further described in the second
fact: "The 2011 population of the area that includes this village
was 167,446". From the parse tree, we can identify the subject of
the first fact: "Gina Bramhill" (NP), the action itself: "was

born" (VERB), and the location of the action: "in a village" (PP).
We can pose the first part of the claim as a question using the

Question() function: "Which village was Gina Bramhill born in?".
This question aims to identify the specific village where Gina
Bramhill was born. The answer to this question is stored in the
variable answer_1. Then, we use this answer to verify the second
fact that "The 2011 population of the area that includes {answer_1
} was 167,446". This is done using the Verify() function and
stored in the variable fact_1. Finally, we use the Predict()
function to predict the veracity label of the overall claim. The
Predict() function uses the result of the Verify() function (
fact_1) as an input. If the Verify() function returns true, then
the Predict() function will also return true, meaning the overall
claim is true.

Program code:
answer_1 = Question("Which village was Gina Bramhill born in?")
fact_1 = Verify(f"The 2011 population of the area that includes {
answer_1} was 167,446.")
label = Predict(fact_1)
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# The claim is that Don Ashley Turlington graduated from Saint Joseph'
s College, a private Catholic liberal arts college in Standish.

Constituency parsing tree:

ewpage

Analysis: We use a top-down approach to examine the structure as
outlined by the tree. The sentence is organized around a central
noun phrase(NP)"Don Ashley Turlington" and a verb phrase (VP) "
graduated from Saint Joseph's College, a private Catholic liberal
arts college in Standish".

Noun Phrase (NP) "Don Ashley Turlington":This NP serves as the subject
of the sentence, identifying the individual involved.

Verb Phrase (VP) "graduated from Saint Joseph's College, a private
Catholic liberal arts college in Standish": The action "graduated"
is the main verb. It links the subject to the institution from

which they graduated, which is Prepositional Phrase (PP) "from
Saint Joseph's College, a private Catholic liberal arts college in
Standish". Appositive NP "a private Catholic liberal arts college
in Standish" provides additional descriptive information about

Saint Josephs College.
From the full sentence structure, simplified sub-sentences can be

derived: 1. Don Ashley Turlington graduated from Saint Joseph's
College. 2.Saint Joseph's College is a private Catholic liberal
arts college in Standish.



A.4. Chain-of-Thought with No Supervision(CoT-NS) 93

Based on this information, we can create two Verify() functions. The
first Verify() function checks if "Saint Joseph's College is a
private Catholic liberal arts college in Standish". This fact is
derived from the appositive phrase that describes the college. The
second Verify() function checks if "Don Ashley Turlington

graduated from Saint Joseph's College". This fact is directly
stated in the main clause of the sentence. Finally, the Predict()
function is used to predict the veracity label of the overall
claim. The logical operator 'and' is used to combine the results
of the two Verify() functions. If both Verify() functions return
true, then the Predict() function will also return true, meaning
the overall claim is true.

Program code:
fact_1 = Verify("Saint Joseph's College is a private Catholic
liberal arts college in Standish.")
fact_2 = Verify(f"Don Ashley Turlington graduated from Saint
Joseph's College.")
label = Predict(fact_1 and fact_2)

# The claim is that In the 2004 Hockey film produced by a former major
league baseball pitcher Kurt Russell played the USA coach.

Constituency parsing tree:

Analysis: The sentence can be divided into three parts: Prepositional
Phrase (PP) 'In the 2004 Hockey film', Verb Phrase (VP) 'produced
by a former major league baseball pitcher', and main Verb (VP) '
played the USA coach'.

Prepositional Phrase (PP): The sentence starts with a prepositional
phrase "In," which sets the temporal and thematic context. Within
this phrase, "the 2004 Hockey film" acts as a noun phrase (NP)
that specifies which film is being discussed.
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Verb Phrase (VP): The action "produced" links the film to its producer
. This verb phrase includes a complex prepositional phrase "by a
former major league baseball pitcher," providing detailed
background about the producer.

Main Verb (VP): The main clause of the sentence is "Kurt Russell
played the USA coach." Here, "played" is the main verb indicating
the action performed by Kurt Russell. The object "the USA coach"
is a noun phrase describing the role that Kurt Russell assumed in
the film.

From the full sentence structure, simplified sub-sentences can be
derived: 1. In the 2004 Hockey film, Kurt Russell played the USA
coach. 2. The film was produced by Kurt Russell, a former major
league baseball pitcher.

To extract the information needed: 1. We use the Question() function
to ask about the specific film: "Which 2004 Hockey film was
produced a former major league baseball pitcher?". This question
aims to identify the film produced by the former pitcher. The
answer to this question is stored in the variable answer_1. 2.
Next, we use this answer to verify whether Kurt Russell played the
USA coach in this specific film, forming the Verify() function: "

Kurt Russell played the USA coach in the film {answer_1}." This
checks the accuracy of Kurt Russells role in the identified film.
Finally, we use the Predict() function to predict the veracity
label of the overall claim based on the result of the Verify()
function. If the Verify() function returns true, then the Predict
() function will also return true, meaning the overall claim is
true.

Program code:
answer_1 = Question("Which 2004 Hockey film was produced a former
major league baseball pitcher?")
fact_1 = Verify("Kurt Russell played the USA coach in the film {
answer_1}.")
label = Predict(fact_1)

# The claim is that Jack McFarland is the best known role of the host
of the 64th Annual Tony Awards.

Constituency parsing tree:

Analysis: We'll use a top-down approach to break down the structure
based on its components. The sentence is organized into two main
components: anoun phrase (NP)"Jack McFarland" identifying the
subject of the sentence, and a verb phrase (VP) "is the best known
role of the host of the 64th Annual Tony Awards.", provides

additional information about the subject.
Noun Phrase (NP): This NP serves as the main subject of the sentence.
Verb Phrase (VP): The linking verb "is" connects the subject "Jack

McFarland" to the descriptive clause that follows. The remaining
clause could be further divided into NP "the best known role" and
PP "of the host of the 64th Annual Tony Awards".



A.5. Chain-of-Thought with Supervision(CoT-S) 95

From the full sentence structure, simplified sub-sentences can be
derived: 1. Jack McFarland served as the host of the 64th Annual
Tony Awards. 2. Jack McFarland is best known for his role.

We can pose the first part of the claim as a question using the
Question() function: "Who are the hosts of the 64th Annual Tony
Awards?" This question aims to identify the specific host of the
event. The answer to this question is stored in the variable
answer_1. Then, we use this answer to verify the fact that "Jack
McFarland is the best known role of {answer_1}." This is done
using the Verify() function and stored in the variable fact_1.
Finally, we use the Predict() function to predict the veracity
label of the overall claim. The Predict() function uses the result
of the Verify() function (fact_1) as an input. If the Verify()

function returns true, then the Predict() function will also
return true, meaning the overall claim is true.

Program code:
answer_1 = Question("Who are the hosts of the 64th Annual Tony
Awards?")
fact_1 = Verify(f"Jack McFarland is the best known role of {
answer_1}.)
label = Predict(fact_1)

# The claim is that [[CLAIM]]
Constituency parsing tree:
[[TREE]]
Analysis:

A.5 Chain-of-Thought with Supervision(CoT-S)

[
{

"role": "system",
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"content": "You have strong ability of reasoning. Given a claim
and its constituency tree, generate analysis about how to
decompose the claim based on the tree, and a pseudo program that
describes the reasoning steps required to verify the claim step-by
-step. The constituency tree is to help you understand and
decompose. You can only call three functions in the program: 1.
Question() to answer a question; 2. Verify() to verify a simple
claim; 3. Predict() to predict the veracity label, the only
logical Operators can be used is 'and'. Your reasoning steps
should start with 'Analysis:', and the program code you generated
should start with 'Program Code:'."

},
{

"role": "user",
"content": "The claim is that Howard University Hospital and
Providence Hospital are both located in Washington, D.C.. The
constituency parsing tree is:

},
{

"role": "assistant",



A.5. Chain-of-Thought with Supervision(CoT-S) 97

"content": "Analysis: To verify the claim "Howard University
Hospital and Providence Hospital are both located in Washington, D
.C.", we need to break it down into simpler components based on
the constituency tree. The tree shows that the claim consists of
two main entities (Howard University Hospital and Providence
Hospital) and a location (Washington, D.C.). 1. Identify the
first entity: "Howard University Hospital". 2. Identify the
second entity: "Providence Hospital". 3. Identify the location: "
Washington, D.C.". 4. Verify if "Howard University Hospital" is
located in "Washington, D.C.". 5. Verify if "Providence Hospital"
is located in "Washington, D.C.". 6. Combine the results of the

two verifications to determine if both hospitals are located in
Washington, D.C. Program Code: # Step 1: Verify if Howard
University Hospital is located in Washington, D.C. verify_howard
= Verify("Howard University Hospital is located in Washington, D.C
.") # Step 2: Verify if Providence Hospital is located in
Washington, D.C. verify_providence = Verify("Providence Hospital
is located in Washington, D.C.") # Step 3: Combine the results
result = Predict(verify_howard and verify_providence) "

},
{

"role": "user",
"content": "The suggested analysis is: At the top, the sentence
is divided into a large noun phrase (NP) and a verb phrase (VP).
The noun phrase itself is a compound structure, made up of two
separate entities: "Howard University Hospital" and "Providence
Hospital." These entities are connected by the conjunction "and,"
indicating that the action described in the verb phrase applies
equally to both entities. Moving to the verb phrase, it consists
of the auxiliary verb "are," the adverb "both," the main verb "
located," and a prepositional phrase "in Washington, D.C." This
structure tells us that the state of being located is shared by
both subjects of the compound noun phrase. The prepositional
phrase at the end of the sentence specifies the location,
indicating that both hospitals are situated in Washington, D.C.
In breaking down this sentence, we observe how each part of the
structure contributes to the overall meaning. The conjunction in
the noun phrase effectively binds the two hospitals into a shared
circumstance, while the components of the verb phrase distribute
this circumstance across both subjects equally. Thus, using the
constituency tree helps to visually and logically segment the
sentence into digestible parts without altering the intended
meaning. This detailed analysis shows how both hospitals, though
mentioned separately, are unified in their description,
emphasizing their collective presence in the same geographical
location.
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From this analysis, we can derive two simpler sub-sentences: 1.
Howard University Hospital is located in Washington, D.C. 2.
Providence Hospital is also located in Washington, D.C. Based on
this information, we can transform each fact into a Verify()
function. The first Verify() function checks if the "Howard
University Hospital is located in Washington, D.C." and the second
Verify() function checks if "Providence Hospital is located in

Washington, D.C.".Finally, the Predict() function is used to
predict the veracity label of the overall claim. The logical
operator 'and' is used to combine the results of the two Verify()
functions. If both Verify() functions return true, then the
Predict() function will also return true, meaning the overall
claim is true., and the correct answer is: fact_1 = Verify("
Howard University Hospital is located in Washington, D.C.")
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.") label = Predict(fact_1 and fact_2).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that An IndyCar race driver drove a
Formula 1 car designed by Peter McCool during the 2007 Formula One
season. The constituency parsing tree is:

"
},
{
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"role": "assistant",
"content": "Analysis: To verify the claim "An IndyCar race driver
drove a Formula 1 car designed by Peter McCool during the 2007

Formula One season," we need to break it down into simpler
components based on the constituency tree. The tree shows that the
claim consists of several key elements: 1. The subject: "An

IndyCar race driver". 2. The action: "drove". 3. The object: "a
Formula 1 car designed by Peter McCool". 4. The time frame: "
during the 2007 Formula One season". From this analysis, we can
derive simpler sub-sentences: 1. An IndyCar race driver drove a

Formula 1 car. 2. The Formula 1 car was designed by Peter McCool.
3. The event occurred during the 2007 Formula One season. We

can transform each fact into a Verify() function. The first Verify
() function checks if "An IndyCar race driver drove a Formula 1
car." The second Verify() function checks if "The Formula 1 car
was designed by Peter McCool." The third Verify() function checks
if "The event occurred during the 2007 Formula One season."
Finally, the Predict() function is used to predict the veracity
label of the overall claim. The logical operator 'and' is used to
combine the results of the three Verify() functions. If all Verify
() functions return true, then the Predict() function will also
return true, meaning the overall claim is true.
Program Code: # Step 1: Verify if an IndyCar race driver drove a
Formula 1 car. fact_1 = Verify("An IndyCar race driver drove a
Formula 1 car.") # Step 2: Verify if the Formula 1 car was
designed by Peter McCool. fact_2 = Verify("The Formula 1 car was
designed by Peter McCool.") # Step 3: Verify if the event
occurred during the 2007 Formula One season. fact_3 = Verify("The
event occurred during the 2007 Formula One season.") # Step 4:
Combine the results label = Predict(fact_1 and fact_2 and fact_3

)"
},
{

"role": "user",
"content": "The suggested analysis is:
We use a top-down approach to analyze this sentence. We start by
identifying the highest node in the parsing tree, which
categorizes the entire sentence into two primary components: a
noun phrase (NP) and a verb phrase (VP).
Noun Phrase (NP):At the top level, the NP "An IndyCar race driver"
is selected. This phrase is identified as the subject of the

sentence. The NP combines a determiner "An" with a compound noun "
IndyCar race driver". This NP sets the stage by identifying who is
performing the action, grounding the sentence in the world of

IndyCar racing.
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Verb Phrase (VP): Following the subject, we examine the VP "drove
a Formula 1 car designed by Peter McCool during the 2007 Formula
One season." This complex VP begins with the verb "drove," which
is the main action connecting the subject to the direct object "a
Formula 1 car." This object itself extends into a more detailed
description through additional nested structures: 1. The phrase "
designed by Peter McCool" is an embedded clause that modifies "a
Formula 1 car," specifying that the car was designed by Peter
McCool. Here, "designed" acts as a verb in a smaller verb phrase,
which includes a prepositional phrase "by Peter McCool." "Peter
McCool" serves as a noun phrase within this prepositional phrase,
attributing the design to him. 2. The final part of the VP, "
during the 2007 Formula One season," provides the temporal context
. This is structured as a prepositional phrase containing "the
2007 Formula One season," which acts as a noun phrase detailing
when the action took place.
By decomposing the original sentence, we can derive two simplified
sub-sentences that preserve the meaning but clarify the structure

:1. An IndyCar race driver drove a Formula 1 car. 2. The car was
designed by Peter McCool during the 2007 Formula One season.
We can pose the second part of the claim as a question using the
Question() function: "Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?". This question aims to
identify the specific car that the IndyCar race driver drove. The
answer to this question is stored in the variable answer_1. Then,
we use this answer to verify the fact that "An IndyCar race

driver drove the car {answer_1}". This is done using the Verify()
function and stored in the variable fact_1.Finally, we use the
Predict() function to predict the veracity label of the overall
claim. The Predict() function uses the result of the Verify()
function (fact_1) as an input. If the Verify() function returns
true, then the Predict() function will also return true, meaning
the overall claim is true., and the correct answer is:
answer_1 = Question("Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?") fact_1 = Verify(
f"An IndyCar race driver drove the car {answer_1}.") label =
Predict(fact_1).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that WWE Super Tuesday took place at an
arena that currently goes by the name TD Garden. The constituency
parsing tree is:

"
},
{

"role": "assistant",
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"content": "Analysis: To verify the claim "WWE Super Tuesday took
place at an arena that currently goes by the name TD Garden," we

need to break it down into simpler components based on the
constituency tree. The tree shows that the claim consists of
several key elements: 1. The event: "WWE Super Tuesday". 2.
The action: "took place". 3. The location: "at an arena". 4. The
description of the arena: "that currently goes by the name TD

Garden". From this analysis, we can derive simpler sub-
sentences: 1. WWE Super Tuesday took place at an arena. 2. The
arena currently goes by the name TD Garden. We can pose the
second part of the claim as a question using the Question()
function: "Which arena currently goes by the name TD Garden?".
This question aims to identify the specific arena where WWE Super
Tuesday took place. The answer to this question is stored in the
variable `answer_1`. Then, we use this answer to verify the fact
that "WWE Super Tuesday took place at the arena {answer_1}". This
is done using the Verify() function and stored in the variable `
fact_1`. Finally, we use the Predict() function to predict the
veracity label of the overall claim. The Predict() function uses
the result of the Verify() function (`fact_1`) as an input. If the
Verify() function returns true, then the Predict() function will

also return true, meaning the overall claim is true. Program
Code: # Step 1: Ask which arena currently goes by the name TD
Garden. answer_1 = Question("Which arena currently goes by the
name TD Garden?") # Step 2: Verify if WWE Super Tuesday took
place at the identified arena. fact_1 = Verify(f"WWE Super
Tuesday took place at the arena {answer_1}.") # Step 3: Combine
the results label = Predict(fact_1)"

},
{

"role": "user",
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"content": "The suggested analysis is: We use a top-down approach
to analyze this sentence. The sentence's structure is initially

split into a noun phrase(NP) "WWE Super Tuesday" and a verb phrase
(VP) "took place at an arena that currently goes by the name TD

Garden". Noun Phrase (NP): The NP "WWE Super Tuesday" acts as
the main subject and sets the stage for the verb phrase, grounding
the sentence in the context of a wrestling entertainment event.

Verb Phrase (VP): The verb phrase "took place at an arena that
currently goes by the name TD Garden" begins with the verb "took"
linked to the noun "place," collectively forming the predicate "
took place." This construction indicates the occurrence of an
event. The phrase then extends to include a prepositional phrase (
PP) "at an arena" that specifies the location. This prepositional
phrase includes an additional NP "an arena," which is modified by
a relative clause. This relative clause "that currently goes by
the name TD Garden" adds specificity to "an arena." The clause
starts with the pronoun "that," referring back to "arena," and
includes a complex structure: An adverbial phrase "currently"
modifies the verb "goes," indicating the timing of the action; and
a verb "goes" is followed by another prepositional phrase "by the
name TD Garden," where "the name TD Garden" is a nested NP

specifying the current name of the arena. By decomposing the
original sentence, we can derive two simplified sub-sentences: 1.
WWE Super Tuesday took place at an arena. 2.The arena currently
goes by the name TD Garden. We can pose the first part of the
claim as a question using the Question() function: "Which arena
the WWE Super Tuesday took place?". This question aims to identify
the specific arena where the event happened.The answer to this

question is stored in the variable answer_1. Then, we use this
answer to verify the fact that "{answer_1} currently goes by the
name TD Garden". This is done using the Verify() function and
stored in the variable fact_1.Finally, we use the Predict()
function to predict the veracity label of the overall claim. The
Predict() function uses the result of the Verify() function (
fact_1) as an input. If the Verify() function returns true, then
the Predict() function will also return true, meaning the overall
claim is true., and the correct answer is: answer_1 =
Question("Which arena the WWE Super Tuesday took place?")
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden
.") label = Predict(fact_1). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is that Talking Heads, an American rock
band that was "one of the most critically acclaimed bands of the
80's" is featured in KSPN's AAA format.. The constituency parsing
tree is:
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"
},
{

"role": "assistant",
"content": "
Analysis: To verify the claim "Talking Heads, an American rock
band that was 'one of the most critically acclaimed bands of the
80's' is featured in KSPN's AAA format," we need to break it down
into simpler components based on the constituency tree. The tree
shows that the claim consists of several key elements: 1. The
subject: "Talking Heads, an American rock band that was 'one of
the most critically acclaimed bands of the 80's'". 2. The action:
"is featured". 3. The location: "in KSPN's AAA format". From

this analysis, we can derive simpler sub-sentences: 1. Talking
Heads is an American rock band. 2. Talking Heads was one of the
most critically acclaimed bands of the 80's. 3. Talking Heads is
featured in KSPN's AAA format.
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We can pose the first part of the claim as a question using the
Question() function: "Which American rock band was one of the most
critically acclaimed bands of the 80's?". This question aims to

identify the specific band that fits this description. The answer
to this question is stored in the variable `answer_1`. Then, we
use this answer to verify the fact that "{answer_1} is featured in
KSPN's AAA format". This is done using the Verify() function and

stored in the variable `fact_1`. Finally, we use the Predict()
function to predict the veracity label of the overall claim. The
Predict() function uses the result of the Verify() function (`
fact_1`) as an input. If the Verify() function returns true, then
the Predict() function will also return true, meaning the overall
claim is true.
Program Code: # Step 1: Ask which American rock band was one of
the most critically acclaimed bands of the 80's. answer_1 =
Question("Which American rock band was one of the most critically
acclaimed bands of the 80's?") # Step 2: Verify if the
identified band is featured in KSPN's AAA format. fact_1 = Verify
(f"{answer_1} is featured in KSPN's AAA format.") # Step 3:
Combine the results label = Predict(fact_1)"

},
{

"role": "user",
"content": "The suggested analysis is: Using a top-down approach,
we first identify the major divisions within the sentence, which
are divided into a complex noun phrase (NP)"Talking Heads, an
American rock band that was "one of the most critically acclaimed
bands of the 80's"" as the subject and a verb phrase (VP)"is
featured in KSPN's AAA format" as the predicate. Noun Phrase (NP)
:The initial NP "Talking Heads" acts as the main subject, which is
a proper noun referring to the name of a band. This NP is then

expanded with an additional descriptive clause that provides more
information about "Talking Heads." This expansion starts with ",
an American rock band," which itself is a noun phrase describing
what "Talking Heads" is, further identifying the genre and
nationality of the band. This clause canbe further divided into 2
parts: 1. It begins with the pronoun "that," linking back to "
American rock band." 2. The clause includes a verb "was," leading
into another nested noun phrase "one of the most critically
acclaimed bands of the 80s." Verb Phrase (VP):The verb phrase
following the extensive subject details begins with "is featured,"
indicating the current status or activity regarding the band. The
verb "is featured" links to a prepositional phrase "in KSPN's AAA
format."
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By decomposing the original sentence, we can derive three
simplified sub-sentences: 1.Talking Heads is an American rock band
that was 'one of the most critically acclaimed bands of the 80's.
2.Talking Heads is featured in KSPN's AAA format. Based on this

information, we can transform each fact into a Verify() function.
The first Verify() function checks if the "Talking Heads is an
American rock band that was 'one of the most critically acclaimed
bands of the 80's'", and the second Verify() function checks if "
Talking Heads is featured in KSPN's AAA format".Finally, the
Predict() function is used to predict the veracity label of the
overall claim. The logical operator 'and' is used to combine the
results of the two Verify() functions. If both Verify() functions
return true, then the Predict() function will also return true,
meaning the overall claim is true.
the correct answer is: fact_1 = Verify("Talking Heads is an
American rock band that was 'one of the most critically acclaimed
bands of the 80's'.") fact_2 = Verify("Talking Heads is
featured in KSPN's AAA format.") label = Predict(fact_1 and
fact_2). Carefully examine the differences between your answers
and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
{

"role": "user",
"content": "The claim is that The model of car Trevor Bayne
drives was introduced for model year 2006. The Rookie of The Year
in the 1997 CART season drives it in the NASCAR Sprint Cup.. The
constituency parsing tree is:



106 Appendix A. Full Prompts

"
},
{

"role": "assistant",
"content": "Analysis: To verify the claim "The model of car
Trevor Bayne drives was introduced for model year 2006. The Rookie
of The Year in the 1997 CART season drives it in the NASCAR

Sprint Cup," we need to break it down into simpler components
based on the constituency tree. The tree shows that the claim
consists of two main parts: 1. The model of car Trevor Bayne
drives was introduced for model year 2006. 2. The Rookie of The
Year in the 1997 CART season drives it in the NASCAR Sprint Cup.
From this analysis, we can derive simpler sub-sentences: 1. The
model of car Trevor Bayne drives was introduced for model year
2006. 2. The Rookie of The Year in the 1997 CART season drives
the same model in the NASCAR Sprint Cup.
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We can transform each fact into a Verify() function. The first
Verify() function checks if "The model of car Trevor Bayne drives
was introduced for model year 2006." The second Verify() function
checks if "The Rookie of The Year in the 1997 CART season drives
the same model in the NASCAR Sprint Cup." Finally, the Predict()
function is used to predict the veracity label of the overall
claim. The logical operator 'and' is used to combine the results
of the two Verify() functions. If both Verify() functions return
true, then the Predict() function will also return true, meaning
the overall claim is true.
Program Code: # Step 1: Verify if the model of car Trevor Bayne
drives was introduced for model year 2006. fact_1 = Verify("The
model of car Trevor Bayne drives was introduced for model year
2006.") # Step 2: Verify if the Rookie of The Year in the 1997
CART season drives the same model in the NASCAR Sprint Cup.
fact_2 = Verify("The Rookie of The Year in the 1997 CART season
drives the same model in the NASCAR Sprint Cup.") # Step 3:
Combine the results label = Predict(fact_1 and fact_2)"

},
{

"role": "user",
"content": "The suggested analysis is: We employ a top-down
approach to analyze the tree. The structure as divided into two
main sentence components (S) with their respective noun phrases (
NP) and verb phrases (VP). Analysis of the First Sentence (S):
Noun Phrase (NP): The initial NP "The model of car Trevor Bayne
drives" acts as the main subject of the first sentence. Starting
with "The model," which is the core noun phrase, it is expanded by
a prepositional phrase "of car Trevor Bayne drives," which

includes a nested NP "car Trevor Bayne" modified further by the NP
"Trevor Bayne," identifying the specific individual associated

with the car. Verb Phrase (VP): The verb phrase "was introduced
for model year 2006" follows, describing the action and the
temporal context concerning the car's model. The verb "was
introduced" indicates the introduction of the car model, linked by
the preposition "for" to another NP "model year 2006". Analysis

of the Second Sentence (S): Noun Phrase (NP): The subject of the
second sentence, "The Rookie of the Year in the 1997 CART season,"
is structured with a main NP "The Rookie of the Year," expanded

by the prepositional phrase "in the 1997 CART season." This phrase
is further detailed by the NPs "the 1997" and "CART season,"

which place the rookie title within a specific historical and
sporting context. Verb Phrase (VP): The VP "drives it in the
NASCAR Sprint Cup" involves the main action "drives," referring
back to the subject of the first sentence. The object "it" likely
refers to the car model discussed earlier. The phrase is concluded
with another prepositional phrase "in the NASCAR Sprint Cup,"

naming the competition where the action takes place.
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By decomposing the original sentence, we can derive two simplified
sub-sentences:1.The model of car that Trevor Bayne drives was

introduced in 2006. 2.The Rookie of the Year in the 1997 CART
season drives that model in the NASCAR Sprint Cup. We can pose
the first part of the claim as a question using the Question()
function: "Which model of car is drived by Trevor Bayne?". This
question aims to identify the specific model of car Trevor Bayne
drives. The answer to this question is stored in the variable
answer_1.Then, we use this answer to verify the fact that "{
answer_1} was introduced for model year 2006". This is done using
the Verify() function and stored in the variable fact_1.Next, we
pose the second part of the claim as a question using the Question
() function: "Who is the Rookie of The Year in the 1997 CART
season?". This question aims to identify the specific person who
is the Rookie of The Year in the 1997 CART season. The answer to
this question is stored in the variable answer_2.Then, we use
these answers to verify the fact that "{answer_2} drives {answer_1
} in the NASCAR Sprint Cup". This is done using the Verify()
function and stored in the variable fact_2.Finally, we use the
Predict() function to predict the veracity label of the overall
claim. The Predict() function uses the results of the two Verify()
functions (fact_1 and fact_2) as inputs. If both Verify()

functions return true, then the Predict() function will also
return true, meaning the overall claim is true.
the correct answer is: answer_1 = Question("Which model of
car is drived by Trevor Bayne?") fact_1 = Verify(f"{answer_1}
was introduced for model year 2006.") answer_2 = Question("

Who is the Rookie of The Year in the 1997 CART season?")
fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.") label = predict(fact_1 and fact_2).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that The song recorded by Fergie that
was produced by Polow da Don and was followed by Life Goes On was
M.I.L.F.$.. The constituency parsing tree is:

},
{

"role": "assistant",
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"content": "Analysis: To verify the claim "The song recorded by
Fergie that was produced by Polow da Don and was followed by Life
Goes On was M.I.L.F.$.," we need to break it down into simpler
components based on the constituency tree. The tree shows that the
claim consists of several key elements: 1. The subject: "The

song recorded by Fergie". 2. The additional information about the
song: "that was produced by Polow da Don and was followed by Life
Goes On". 3. The identification of the song: "was M.I.L.F.$".
From this analysis, we can derive simpler sub-sentences: 1. The

song recorded by Fergie was produced by Polow da Don. 2. The song
recorded by Fergie was followed by Life Goes On. 3. The song

recorded by Fergie was M.I.L.F.$. We can pose the first part of
the claim as a question using the Question() function: "Which

song recorded by Fergie was produced by Polow da Don?". This
question aims to identify the specific song recorded by Fergie
that was produced by Polow da Don. The answer to this question is
stored in the variable `answer_1`. Then, we use this answer to
verify the fact that "{answer_1} was followed by Life Goes On".
This is done using the Verify() function and stored in the
variable `fact_1`. Finally, we use the Verify() function to check
if "{answer_1} was M.I.L.F.$". This is done using the Verify()
function and stored in the variable `fact_2`. Finally, we use the
Predict() function to predict the veracity label of the overall
claim. The Predict() function uses the results of the two Verify()
functions (`fact_1` and `fact_2`) as inputs. If both Verify()

functions return true, then the Predict() function will also
return true, meaning the overall claim is true. Program Code:
# Step 1: Ask which song recorded by Fergie was produced by Polow
da Don. answer_1 = Question("Which song recorded by Fergie was
produced by Polow da Don?") # Step 2: Verify if the identified
song was followed by Life Goes On. fact_1 = Verify(f"{answer_1}
was followed by Life Goes On.") # Step 3: Verify if the
identified song was M.I.L.F.$. fact_2 = Verify(f"{answer_1} was M
.I.L.F.$.") # Step 4: Combine the results label = Predict(
fact_1 and fact_2)"
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},
{

"role": "user",
"content": "The suggested analysis is: Using a top-down approach,
the sentence is primarily divided into a noun phrase(NP)"The song
recorded by Fergie that was produced by Polow da Don and was

followed by Life Goes On" and a verb phrase(VP)"was M.I.L.F. $"
Noun Phrase (NP) :"The song" serves as the main subject of the
sentence. The NP can be further decompose into 3 clauses.
Relative Clause 1: Modified by "recorded by Fergie," where "by
Fergie" acts as a prepositional phrase (PP) pointing to the artist
involved in the recording. Nested Clause: Within this first

clause, there's another clause "that was produced by Polow da Don
." Here, "that" refers back to "the song," "was produced" forms
the verb phrase (VP), and "by Polow da Don" is another
prepositional phrase describing the producer. Relative Clause 2:
"and was followed by 'Life Goes On'" connects with a conjunction "
and." "Was followed" is the verb, and "by 'Life Goes On'" is the
prepositional phrase indicating what followed the song. Verb
Phrase (VP): "M.I.L.F. $" is the complement of "was," completing
the predicate by specifying the song\u2019s title. By decomposing
the original sentence, we can derive two simplified sub-sentences

:1. M.I.L.F. $ was recorded by Fergie 2. M.I.L.F. $ was produced
by Polow da Don 3. M.I.L.F. $ was followed by 'Life Goes On'
Based on this information, we can transform each fact into a
Verify() function. The first Verify() function checks if the "M.I.
L.F.$ was recorded by Fergie", the second Verify() function checks
if "M.I.L.F.$ was produced by Polow da Don", and the third Verify

() function checks if "M.I.L.F.$ was followed by Life Goes On".
Finally, the Predict() function is used to predict the veracity
label of the overall claim. The logical operator 'and' is used to
combine the results of the three Verify() functions. If all Verify
() functions return true, then the Predict() function will also
return true, meaning the overall claim is true.
the correct answer is: fact_1 = Verify("M.I.L.F.$ was
recorded by Fergie.") fact_2 = Verify("M.I.L.F.$ was produced
by Polow da Don.") fact_3 = Verify("M.I.L.F.$ was followed

by Life Goes On.") label = Predict(fact_1 and fact_2 and
fact_3) . Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
{

"role": "user",
"content": "The claim is that Gina Bramhill was born in a village
. The 2011 population of the area that includes this village was
167,446.. The constituency parsing tree is:
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},
{

"role": "assistant",
"content": "Analysis: To verify the claim "Gina Bramhill was born
in a village. The 2011 population of the area that includes this

village was 167,446," we need to break it down into simpler
components based on the constituency tree. The tree shows that the
claim consists of two main parts: 1. Gina Bramhill was born in
a village. 2. The 2011 population of the area that includes this
village was 167,446. From this analysis, we can derive simpler
sub-sentences: 1. Gina Bramhill was born in a village. 2. The

2011 population of the area that includes the village where Gina
Bramhill was born was 167,446. We can transform each fact into
a Verify() function. The first Verify() function checks if "Gina
Bramhill was born in a village." The second Verify() function
checks if "The 2011 population of the area that includes the
village where Gina Bramhill was born was 167,446." Finally, the
Predict() function is used to predict the veracity label of the
overall claim. The logical operator 'and' is used to combine the
results of the two Verify() functions. If both Verify() functions
return true, then the Predict() function will also return true,
meaning the overall claim is true. Program Code: # Step 1:
Verify if Gina Bramhill was born in a village. fact_1 = Verify("
Gina Bramhill was born in a village.") # Step 2: Verify if the
2011 population of the area that includes the village where Gina
Bramhill was born was 167,446. fact_2 = Verify("The 2011
population of the area that includes the village where Gina
Bramhill was born was 167,446.") # Step 3: Combine the results
label = Predict(fact_1 and fact_2)"

},
{
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"role": "user",
"content": "The suggested analysis is: The claim involves two
facts about Gina Bramhill and the village she was born in. The
first fact is that "Gina Bramhill was born in a village" and the
second fact is that "The 2011 population of the area that includes
this village was 167,446". The constituency parsing tree helps us
break down the sentence into its constituent parts. The tree

shows that the sentence has a main branch that represents the
first fact: "Gina Bramhill was born in a village". The village is
further described in the second fact: "The 2011 population of the
area that includes this village was 167,446". From the parse tree,
we can identify the subject of the first fact: "Gina Bramhill" (

NP), the action itself: "was born" (VERB), and the location of the
action: "in a village" (PP). We can pose the first part of the

claim as a question using the Question() function: "Which village
was Gina Bramhill born in?". This question aims to identify the
specific village where Gina Bramhill was born. The answer to this
question is stored in the variable answer_1. Then, we use this
answer to verify the second fact that "The 2011 population of the
area that includes {answer_1} was 167,446". This is done using the
Verify() function and stored in the variable fact_1. Finally, we

use the Predict() function to predict the veracity label of the
overall claim. The Predict() function uses the result of the
Verify() function (fact_1) as an input. If the Verify() function
returns true, then the Predict() function will also return true,
meaning the overall claim is true., and the correct answer is:

answer_1 = Question("Which village was Gina Bramhill born in?")
fact_1 = Verify(f"The 2011 population of the area that

includes {answer_1} was 167,446.") label = Predict(fact_1).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is that Don Ashley Turlington graduated
from Saint Joseph's College, a private Catholic liberal arts
college in Standish. The constituency parsing tree is:
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},
{

"role": "assistant",
"content": "Analysis: To verify the claim "Don Ashley Turlington
graduated from Saint Joseph's College, a private Catholic liberal
arts college in Standish," we need to break it down into simpler
components based on the constituency tree. The tree shows that the
claim consists of several key elements: 1. The subject: "Don

Ashley Turlington". 2. The action: "graduated". 3. The location:
"from Saint Joseph's College". 4. Additional information about

the college: "a private Catholic liberal arts college in Standish
".
From this analysis, we can derive simpler sub-sentences: 1. Don
Ashley Turlington graduated from Saint Joseph's College. 2. Saint
Joseph's College is a private Catholic liberal arts college in

Standish. We can pose the first part of the claim as a question
using the Question() function: "Which college did Don Ashley

Turlington graduate from?". This question aims to identify the
specific college from which Don Ashley Turlington graduated. The
answer to this question is stored in the variable `answer_1`. Then
, we use this answer to verify the second fact that "{answer_1} is
a private Catholic liberal arts college in Standish". This is

done using the Verify() function and stored in the variable `
fact_1`. Finally, we use the Predict() function to predict the
veracity label of the overall claim. The Predict() function uses
the result of the Verify() function (`fact_1`) as an input. If the
Verify() function returns true, then the Predict() function will

also return true, meaning the overall claim is true.
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Program Code: # Step 1: Ask which college Don Ashley Turlington
graduated from. answer_1 = Question("Which college did Don Ashley
Turlington graduate from?") # Step 2: Verify if the identified
college is a private Catholic liberal arts college in Standish.

fact_1 = Verify(f"{answer_1} is a private Catholic liberal arts
college in Standish.") # Step 3: Combine the results label =
Predict(fact_1)"

},
{

"role": "user",
"content": "The suggested analysis is: We use a top-down approach
to examine the structure as outlined by the tree. The sentence is
organized around a central noun phrase(NP)"Don Ashley Turlington"
and a verb phrase (VP) "graduated from Saint Joseph's College, a

private Catholic liberal arts college in Standish". Noun Phrase (
NP) "Don Ashley Turlington":This NP serves as the subject of the
sentence, identifying the individual involved. Verb Phrase (VP)
"graduated from Saint Joseph's College, a private Catholic liberal
arts college in Standish": The action "graduated" is the main

verb. It links the subject to the institution from which they
graduated, which is Prepositional Phrase (PP) "from Saint Joseph's
College, a private Catholic liberal arts college in Standish".

Appositive NP "a private Catholic liberal arts college in Standish
" provides additional descriptive information about Saint Joseph\
u2019s College. From the full sentence structure, simplified sub-
sentences can be derived: 1. Don Ashley Turlington graduated from
Saint Joseph's College. 2.Saint Joseph's College is a private
Catholic liberal arts college in Standish. Based on this
information, we can create two Verify() functions. The first
Verify() function checks if "Saint Joseph's College is a private
Catholic liberal arts college in Standish". This fact is derived
from the appositive phrase that describes the college. The second
Verify() function checks if "Don Ashley Turlington graduated from
Saint Joseph's College". This fact is directly stated in the main
clause of the sentence. Finally, the Predict() function is used to
predict the veracity label of the overall claim. The logical

operator 'and' is used to combine the results of the two Verify()
functions. If both Verify() functions return true, then the
Predict() function will also return true, meaning the overall
claim is true., and the correct answer is: fact_1 = Verify("
Saint Joseph's College is a private Catholic liberal arts college
in Standish.") fact_2 = Verify(f"Don Ashley Turlington
graduated from Saint Joseph's College.") label = Predict(
fact_1 and fact_2). Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next

claim."
},
{

"role": "user",
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"content": "The claim is that In the 2004 Hockey film produced by
a former major league baseball pitcher Kurt Russell played the

USA coach.. The constituency parsing tree is:

},
{

"role": "assistant",
"content": "Analysis: To verify the claim "In the 2004 Hockey
film produced by a former major league baseball pitcher Kurt
Russell played the USA coach," we need to break it down into
simpler components based on the constituency tree. The tree shows
that the claim consists of several key elements: 1. The context
: "In the 2004 Hockey film produced by a former major league
baseball pitcher". 2. The action: "Kurt Russell played the USA
coach".
From this analysis, we can derive simpler sub-sentences: 1. There
is a 2004 Hockey film produced by a former major league baseball

pitcher. 2. Kurt Russell played the USA coach in that film.
We can pose the first part of the claim as a question using the
Question() function: "Which 2004 Hockey film was produced by a
former major league baseball pitcher?". This question aims to
identify the specific film. The answer to this question is stored
in the variable `answer_1`. Then, we use this answer to verify the
second fact that "Kurt Russell played the USA coach in {answer_1

}". This is done using the Verify() function and stored in the
variable `fact_1`. Finally, we use the Predict() function to
predict the veracity label of the overall claim. The Predict()
function uses the result of the Verify() function (`fact_1`) as an
input. If the Verify() function returns true, then the Predict()

function will also return true, meaning the overall claim is true.



116 Appendix A. Full Prompts

Program Code: # Step 1: Ask which 2004 Hockey film was produced
by a former major league baseball pitcher. answer_1 = Question("
Which 2004 Hockey film was produced by a former major league
baseball pitcher?") # Step 2: Verify if Kurt Russell played the
USA coach in the identified film. fact_1 = Verify(f"Kurt Russell
played the USA coach in {answer_1}.") # Step 3: Combine the

results label = Predict(fact_1)"
},
{

"role": "user",
"content": "The suggested analysis is: The sentence can be
divided into three parts: Prepositional Phrase (PP) 'In the 2004
Hockey film', Verb Phrase (VP) 'produced by a former major league
baseball pitcher', and main Verb (VP) 'played the USA coach'.
Prepositional Phrase (PP): The sentence starts with a
prepositional phrase "In," which sets the temporal and thematic
context. Within this phrase, "the 2004 Hockey film" acts as a noun
phrase (NP) that specifies which film is being discussed. Verb

Phrase (VP): The action "produced" links the film to its producer.
This verb phrase includes a complex prepositional phrase "by a

former major league baseball pitcher," providing detailed
background about the producer. Main Verb (VP): The main clause of
the sentence is "Kurt Russell played the USA coach." Here, "

played" is the main verb indicating the action performed by Kurt
Russell. The object "the USA coach" is a noun phrase describing
the role that Kurt Russell assumed in the film. From the full
sentence structure, simplified sub-sentences can be derived: 1. In
the 2004 Hockey film, Kurt Russell played the USA coach. 2. The

film was produced by Kurt Russell, a former major league baseball
pitcher. To extract the information needed: 1. We use the
Question() function to ask about the specific film: "Which 2004
Hockey film was produced a former major league baseball pitcher?".
This question aims to identify the film produced by the former

pitcher. The answer to this question is stored in the variable
answer_1. 2. Next, we use this answer to verify whether Kurt
Russell played the USA coach in this specific film, forming the
Verify() function: "Kurt Russell played the USA coach in the film
{answer_1}." This checks the accuracy of Kurt Russell\u2019s role
in the identified film. Finally, we use the Predict() function to
predict the veracity label of the overall claim based on the
result of the Verify() function. If the Verify() function returns
true, then the Predict() function will also return true, meaning
the overall claim is true., and the correct answer is:
answer_1 = Question("Which 2004 Hockey film was produced a former
major league baseball pitcher?") fact_1 = Verify("Kurt
Russell played the USA coach in the film {answer_1}.") label
= Predict(fact_1). Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

},
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{
"role": "user",
"content": "The claim is that Jack McFarland is the best known
role of the host of the 64th Annual Tony Awards. The constituency
parsing tree is:

},
{

"role": "assistant",
"content": "Analysis: To verify the claim "Jack McFarland is the
best known role of the host of the 64th Annual Tony Awards," we
need to break it down into simpler components based on the
constituency tree. The tree shows that the claim consists of
several key elements: 1. The subject: "Jack McFarland". 2. The
predicate: "is the best known role". 3. The object: "of the host
of the 64th Annual Tony Awards".
From this analysis, we can derive simpler sub-sentences: 1.
Identify the host of the 64th Annual Tony Awards. 2. Verify if
Jack McFarland is the best known role of that host.
We can pose the first part of the claim as a question using the
Question() function: "Who is the host of the 64th Annual Tony
Awards?". This question aims to identify the specific person who
hosted the 64th Annual Tony Awards. The answer to this question is
stored in the variable `answer_1`. Then, we use this answer to

verify the second fact that "Jack McFarland is the best known role
of {answer_1}". This is done using the Verify() function and

stored in the variable `fact_1`. Finally, we use the Predict()
function to predict the veracity label of the overall claim. The
Predict() function uses the result of the Verify() function (`
fact_1`) as an input. If the Verify() function returns true, then
the Predict() function will also return true, meaning the overall
claim is true.
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Program Code: # Step 1: Ask who is the host of the 64th Annual
Tony Awards. answer_1 = Question("Who is the host of the 64th
Annual Tony Awards?") # Step 2: Verify if Jack McFarland is the
best known role of the identified host. fact_1 = Verify(f"Jack

McFarland is the best known role of {answer_1}.") # Step 3:
Combine the results label = Predict(fact_1)"

},
{

"role": "user",
"content": "The suggested analysis is: We'll use a top-down
approach to break down the structure based on its components. The
sentence is organized into two main components: anoun phrase (NP)"
Jack McFarland" identifying the subject of the sentence, and a
verb phrase (VP) "is the best known role of the host of the 64th
Annual Tony Awards.", provides additional information about the
subject. Noun Phrase (NP): This NP serves as the main subject of
the sentence. Verb Phrase (VP): The linking verb "is" connects
the subject "Jack McFarland" to the descriptive clause that
follows. The remaining clause could be further divided into NP "
the best known role" and PP "of the host of the 64th Annual Tony
Awards".
From the full sentence structure, simplified sub-sentences can be
derived: 1. Jack McFarland served as the host of the 64th Annual
Tony Awards. 2. Jack McFarland is best known for his role.
We can pose the first part of the claim as a question using the
Question() function: "Who are the hosts of the 64th Annual Tony
Awards?" This question aims to identify the specific host of the
event. The answer to this question is stored in the variable
answer_1. Then, we use this answer to verify the fact that "Jack
McFarland is the best known role of {answer_1}." This is done
using the Verify() function and stored in the variable fact_1.
Finally, we use the Predict() function to predict the veracity
label of the overall claim. The Predict() function uses the result
of the Verify() function (fact_1) as an input. If the Verify()

function returns true, then the Predict() function will also
return true, meaning the overall claim is true.
the correct answer is: answer_1 = Question("Who are the hosts
of the 64th Annual Tony Awards?") fact_1 = Verify(f"Jack

McFarland is the best known role of {answer_1}.) label =
Predict(fact_1). Carefully examine the differences between your
answers and the standard ones. Learn from the correct decomposing
approaches and formats, and apply these insights to your next
claim."

}
]

A.6 Tree-of-Thought with No Supervision(ToT-NS)
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As a professional linguistic expert, your final goal is to decompose a
complex claim into a program that describes the reasoning steps

required to verify the claim. Each function in the program can be
seen as a step, and your task is to return one and only one step
based on the original claim and the provided pre-decomposed steps.
Note that the generated new step needs to maintain semantic and

variable continuity with the preceding steps and avoid semantic
repetition. You can call three functions in the program:

1. Question(): answer a question;
2. Verify(): verify a simple claim;
3. Predict(): predict the veracity label.
If no further step is needed, return "TERMINATE". Several decomposed

examples are given as follows.

The claim is: WWE Super Tuesday took place at an arena that currently
goes by the name TD Garden.

Previous steps are:
def program():

answer_1 = Question("Which arena the WWE Super Tuesday took place
?")

Next step:
fact_1 = Verify(f"{answer_1} currently goes by the name TD Garden
.")

The claim is: Jack McFarland is the best known role of the host of
the 64th Annual Tony Awards.

Previous steps are:
def program():

answer_1 = Question("Who is the host of the 64th Annual Tony
Awards?")
fact_1 = Verify(f"Jack McFarland is the best known role of {
answer_1}.)

Next step:
label = Predict(fact_1)

The claim is: Blackstar is the name of the album released by David
Bowie that was recorded in secret.

Previous steps are:
def program():

fact_1 = Verify("David Bowie released an album called Blackstar.")
Next step:

fact_2 = Verify("David Bowie recorded an album in secret.")

The claim is: Maria Esther Andion Bueno, not Jimmy Connors, is the
player that is from Brazil.

Previous steps are:
def program():
Next step:

fact_1 = Verify("Maria Esther Andion Bueno is from Brazil.")
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The claim is: The song recorded by Fergie that was produced by Polow
da Don and was followed by Life Goes On was M.I.L.F.$.

Previous steps are:
def program():

fact_1 = Verify("M.I.L.F.$ was recorded by Fergie that was
produced by Polow da Don.")
fact_2 = Verify("M.I.L.F.$ was was followed by Life Goes On.")

Next step:
label = Predict(fact_1 and fact_2)

The claim is: Talking Heads, an American rock band that was "one of
the most critically acclaimed bands of the 80's" is featured in
KSPN's AAA format.

Previous steps are:
def program():
Next step:

fact_1 = Verify("Talking Heads is an American rock band that was '
one of the most critically acclaimed bands of the 80's'.")

The claim is: An IndyCar race driver drove a Formula 1 car designed
by Peter McCool during the 2007 Formula One season.

Previous steps are:
def program():
Next step:

answer_1 = Question("Which Formula 1 car was designed by Peter
McCool during the 2007 Formula One season?")

The claim is: Don Ashley Turlington graduated from Saint Joseph's
College, a private Catholic liberal arts college in Standish.

Previous steps are:
def program():

fact_1 = Verify("Saint Joseph's College is a private Catholic
liberal arts college is located in Standish.")

Next step:
fact_2 = Verify(f"Don Ashley Turlington graduated from Saint
Joseph's College.")

The claim is: Gael and Fitness are not published in the same country.
Previous steps are:
def program():

answer_1 = Question("Which country was Gael published in?")
answer_2 = Question("Which country was Fitness published in?")
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same
country.")

Next step:
label = Predict(fact_1)

The claim is: Gina Bramhill was born in a village. The 2011
population of the area that includes this village was 167,446.

Previous steps are:
def program():
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answer_1 = Question("Which village was Gina Bramhill born in?")
Next step:

fact_1 = Verify(f"The 2011 population of the area that includes {
answer_1} was 167,446.")

The claim is: In the 2004 Hockey film produced by a former major
league baseball pitcher Kurt Russell played the USA coach.

Previous steps are:
def program():

answer_1 = Question("Which 2004 Hockey film was produced a former
major league baseball pitcher?")

Next step:
fact_1 = Verify("Kurt Russell played the USA coach in the film {
answer_1}.")

The claim is: Along with the New York Islanders and the New York
Rangers, the New Jersey Devils NFL franchise is popular in the New
York metropolitan area.

Previous steps are:
def program():

fact_1 = Verify("The New York Islanders and the New York Rangers
are popular in the New York metropolitan area.")
fact_2 = Verify("The New Jersey Devils NFL franchise is popular in
the New York metropolitan area.")

Next step:
label = Predict(fact_1 and fact_2)

The claim is: Thomas Loren Friedman has won more Pulitzer Prizes than
Colson Whitehead.

Previous steps are:
def program():

answer_1 = Question("How many Pulitzer Prizes has Thomas Loren
Friedman won?")
answer_2 = Question("How many Pulitzer Prizes has Colson Whitehead
won?")

Next step:
fact_1 = Verify(f"{answer_1} is more than {answer_2}.")

The claim is: The model of car Trevor Bayne drives was introduced for
model year 2006. The Rookie of The Year in the 1997 CART season

drives it in the NASCAR Sprint Cup.
Previous steps are:
def program():

answer_1 = Question("Which model of car is drived by Trevor Bayne
?")

Next step:
fact_1 = Verify(f"{answer_1} was introduced for model year 2006.")

The claim is: Barton Mine was halted by a natural disaster not
Camlaren Mine.

Previous steps are:
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def program():
fact_1 = Verify("Barton Mine was halted by a natural disaster.")
fact_2 = Verify("Camlaren Mine was not halted by a natural
disaster.")

Next step:
label = Predict(fact_1 and fact_2)

The claim is: Howard University Hospital and Providence Hospital are
both located in Washington, D.C.

Previous steps are:
def program():

fact_1 = Verify("Howard University Hospital is located in
Washington, D.C.")

Next step:
fact_2 = Verify("Providence Hospital is located in Washington, D.C
.")

The claim is: Vladimir Igorevich Arnold died after Georg Cantor.
Previous steps are:
def program():

answer_1 = Question("When did Vladimir Igorevich Arnold die?")
answer_2 = Question("When did Georg Cantor die?")
fact_1 = Verify(f"{answer_1} is after {answer_2}.")

Next step:
label = Predict(fact_1)

The claim is: Eatza Pizza and Your Pie were not founded in the same
state.

Previous steps are:
def program():

answer_1 = Question("Which state was Eatza Pizza founded in?")
Next step:

answer_2 = Question("Which state was Your Pie founded in?")

The claim is: Gregg Rolie and Rob Tyner, are not a keyboardist.
Previous steps are:
def program():

fact_1 = Verify("Gregg Rolie is not a keyboardist.")
fact_2 = Verify("Rob Tyner is not a keyboardist.")

Next step:
label = Predict(fact_1 and fact_2)

The claim is: John O'Hara and Rabindranath Tagore are not the same
nationality.

Previous steps are:
def program():

answer_1 = Question("What is the nationality of John O'Hara?")
answer_2 = Question("What is the nationality of Rabindranath
Tagore?")
fact_1 = Verify(f"{answer_1} and {answer_2} are not the same
nationality.")
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label = Predict(fact_1)
Next step:

TERMINATE

*** Important Rules ***
- You should never repeat the original claim or previous steps
- You must follow the requirement of ONLY GENERATING ONE STEP.
- You should use variables in previous steps if needed to ensure

semantic continuity.
- You should return "TERMINATE" within a python code block once no

further steps is needed.

*** Task Overview ***
The claim is: {claim}.
Previous steps are:
def program():

{prev_step}
Next step:

A.7 Tree-of-Thought with Supervision(ToT-S)

[
{

"role": "system",
"content": "As a professional linguistic expert, your final goal
is to decompose a complex claim into a program that describes the
reasoning steps required to verify the claim. Each function in the
program can be seen as a step, and your task is to return one and
ONLY step based on the original claim and the provided pre-

decomposed steps. Note that the generated new step needs to
maintain semantic and variable continuity with the preceding steps
and avoid semantic repetition. You can call three functions in

the program:1. Question(): answer a question;2. Verify(): verify a
simple claim;3. Predict(): predict the veracity label. ***

Important Rules *** - You should never repeat the original claim
or previous steps - You must follow the requirement of ONLY
GENERATING ONE STEP. - You should use variables in previous steps
if needed to ensure semantic continuity. - You should return "

TERMINATE" within a python code block once no further steps is
needed."

},
{

"role": "user",
"content": "The claim is: Howard University Hospital and
Providence Hospital are both located in Washington, D.C..
Previous steps are: def program(): fact_1 = Verify("Howard
University Hospital is located in Washington, D.C.") fact_2 =
Verify("Providence Hospital is located in Washington, D.C.")
label = Predict(fact_1 and fact_2) Next step:"

},
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{
"role": "assistant",
"content": "```python return label ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Howard University Hospital and
Providence Hospital are both located in Washington, D.C..
Previous steps are: def program(): fact_1 = Verify("Howard
University Hospital is located in Washington, D.C.") Next step:"

},
{

"role": "assistant",
"content": "```python fact_2 = Verify("Providence Hospital is
located in Washington, D.C.") ```"

},
{

"role": "user",
"content": "The correct answer is: fact_2 = Verify("Providence
Hospital is located in Washington, D.C."). Carefully examine the

differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is: An IndyCar race driver drove a Formula
1 car designed by Peter McCool during the 2007 Formula One season
.. Previous steps are: def program(): answer_1 = Question("
Which Formula 1 car was designed by Peter McCool during the 2007
Formula One season?") Next step:"

},
{

"role": "assistant",
"content": "```python answer_2 = Question("Did an IndyCar race
driver drive the Formula 1 car {} during the 2007 Formula One
season?".format(answer_1)) ```"

},
{

"role": "user",
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"content": "The correct answer is: fact_1 = Verify(f"An
IndyCar race driver drove the car {answer_1}."). Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply

these insights to your next claim."
},
{

"role": "user",
"content": "The claim is: An IndyCar race driver drove a Formula
1 car designed by Peter McCool during the 2007 Formula One season
.. Previous steps are: def program(): answer_1 = Question("
Which Formula 1 car was designed by Peter McCool during the 2007
Formula One season?") fact_1 = Verify(f"An IndyCar race
driver drove the car {answer_1}.") Next step:"

},
{

"role": "assistant",
"content": "```python label = Predict(fact_1) ```"

},
{

"role": "user",
"content": "The correct answer is: label = Predict(fact_1).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: WWE Super Tuesday took place at an
arena that currently goes by the name TD Garden.. Previous steps
are: def program(): answer_1 = Question("Which arena the WWE
Super Tuesday took place?") fact_1 = Verify(f"{answer_1}

currently goes by the name TD Garden.") Next step:"
},
{

"role": "assistant",
"content": "```python label = Predict(fact_1) ```"

},
{

"role": "user",
"content": "The correct answer is: label = Predict(fact_1).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: WWE Super Tuesday took place at an
arena that currently goes by the name TD Garden.. Previous steps
are: def program(): answer_1 = Question("Which arena the WWE
Super Tuesday took place?") Next step:"
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},
{

"role": "assistant",
"content": "```python fact_1 = Verify(f"{answer_1} currently goes
by the name TD Garden.") ```"

},
{

"role": "user",
"content": "The correct answer is: fact_1 = Verify(f"{answer_1
} currently goes by the name TD Garden."). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is: Talking Heads, an American rock band
that was "one of the most critically acclaimed bands of the 80's"
is featured in KSPN's AAA format.. Previous steps are: def
program(): fact_1 = Verify("Talking Heads is an American rock
band that was 'one of the most critically acclaimed bands of the

80's'.") fact_2 = Verify("Talking Heads is featured in KSPN's
AAA format.") label = Predict(fact_1 and fact_2) Next step

:"
},
{

"role": "assistant",
"content": "```python return label ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Talking Heads, an American rock band
that was "one of the most critically acclaimed bands of the 80's"
is featured in KSPN's AAA format.. Previous steps are: def
program(): fact_1 = Verify("Talking Heads is an American rock
band that was 'one of the most critically acclaimed bands of the

80's'.") Next step:"
},
{

"role": "assistant",
"content": "```python fact_2 = Verify("Talking Heads is featured
in KSPN's AAA format.") ```"

},
{
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"role": "user",
"content": "The correct answer is: fact_2 = Verify("Talking
Heads is featured in KSPN's AAA format."). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
{

"role": "user",
"content": "The claim is: The model of car Trevor Bayne drives
was introduced for model year 2006. The Rookie of The Year in the
1997 CART season drives it in the NASCAR Sprint Cup.. Previous
steps are: def program(): answer_1 = Question("Which model
of car is drived by Trevor Bayne?") fact_1 = Verify(f"{
answer_1} was introduced for model year 2006.") answer_2 =
Question("Who is the Rookie of The Year in the 1997 CART season?")

fact_2 = Verify(f"{answer_2} drives {answer_1} in the NASCAR
Sprint Cup.") label = predict(fact_1 and fact_2) Next step

:"
},
{

"role": "assistant",
"content": "```python return label ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: The model of car Trevor Bayne drives
was introduced for model year 2006. The Rookie of The Year in the
1997 CART season drives it in the NASCAR Sprint Cup.. Previous
steps are: def program(): Next step:"

},
{

"role": "assistant",
"content": "```python answer_1 = Question("Which model of car is
drived by Trevor Bayne?") ```"

},
{

"role": "user",
"content": "The correct answer is: answer_1 = Question("Which
model of car is drived by Trevor Bayne?"). Carefully examine the
differences between your answers and the standard ones. Learn from
the correct decomposing approaches and formats, and apply these

insights to your next claim."
},
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{
"role": "user",
"content": "The claim is: The song recorded by Fergie that was
produced by Polow da Don and was followed by Life Goes On was M.I.
L.F.$.. Previous steps are: def program(): fact_1 = Verify
("M.I.L.F.$ was recorded by Fergie.") fact_2 = Verify("M.I.L.
F.$ was produced by Polow da Don.") fact_3 = Verify("M.I.L.F.
$ was was followed by Life Goes On.") label = Predict(fact_1
and fact_2 and fact_3) Next step:"

},
{

"role": "assistant",
"content": "```python TERMINATE ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: The song recorded by Fergie that was
produced by Polow da Don and was followed by Life Goes On was M.I.
L.F.$.. Previous steps are: def program(): Next step:"

},
{

"role": "assistant",
"content": "```python fact_1 = Verify("M.I.L.F.$ was recorded by
Fergie.") ```"

},
{

"role": "user",
"content": "The correct answer is: fact_1 = Verify("M.I.L.F.$ was
recorded by Fergie."). Carefully examine the differences between
your answers and the standard ones. Learn from the correct
decomposing approaches and formats, and apply these insights to
your next claim."

},
{

"role": "user",
"content": "The claim is: Gina Bramhill was born in a village.
The 2011 population of the area that includes this village was
167,446.. Previous steps are: def program(): answer_1 =
Question("Which village was Gina Bramhill born in?") Next step:"

},
{

"role": "assistant",
"content": "```python fact_1 = Verify("The 2011 population of the
area that includes {} was 167,446.".format(answer_1)) ```"
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},
{

"role": "user",
"content": "The correct answer is: fact_1 = Verify(f"The 2011
population of the area that includes {answer_1} was 167,446.").
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Gina Bramhill was born in a village.
The 2011 population of the area that includes this village was
167,446.. Previous steps are: def program(): answer_1 =
Question("Which village was Gina Bramhill born in?") fact_1 =
Verify(f"The 2011 population of the area that includes {answer_1}
was 167,446.") label = Predict(fact_1) Next step:"

},
{

"role": "assistant",
"content": "```python TERMINATE ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Don Ashley Turlington graduated from
Saint Joseph's College, a private Catholic liberal arts college in
Standish.. Previous steps are: def program(): Next step

:"
},
{

"role": "assistant",
"content": "```python fact_1 = Verify("Don Ashley Turlington
graduated from Saint Joseph's College.") ```"

},
{

"role": "user",
"content": "The correct answer is: fact_1 = Verify("Saint Joseph's
College is a private Catholic liberal arts college in Standish.")

. Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
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"content": "The claim is: Don Ashley Turlington graduated from
Saint Joseph's College, a private Catholic liberal arts college in
Standish.. Previous steps are: def program(): fact_1 =

Verify("Saint Joseph's College is a private Catholic liberal arts
college in Standish.") Next step:"

},
{

"role": "assistant",
"content": "```python fact_2 = Verify("Don Ashley Turlington
graduated from Saint Joseph's College.") ```"

},
{

"role": "user",
"content": "The correct answer is: fact_2 = Verify(f"Don
Ashley Turlington graduated from Saint Joseph's College.").
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: In the 2004 Hockey film produced by a
former major league baseball pitcher Kurt Russell played the USA
coach.. Previous steps are: def program(): Next step:"

},
{

"role": "assistant",
"content": "```python answer_1 = Question("What is the name of
the 2004 Hockey film produced by a former major league baseball
pitcher?") ```"

},
{

"role": "user",
"content": "The correct answer is: answer_1 = Question("Which 2004
Hockey film was produced a former major league baseball pitcher

?"). Carefully examine the differences between your answers and
the standard ones. Learn from the correct decomposing approaches
and formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: In the 2004 Hockey film produced by a
former major league baseball pitcher Kurt Russell played the USA
coach.. Previous steps are: def program(): answer_1 =
Question("Which 2004 Hockey film was produced a former major
league baseball pitcher?") fact_1 = Verify("Kurt Russell
played the USA coach in the film {answer_1}.") Next step:"

},
{

"role": "assistant",
"content": "```python label = Predict(fact_1) ```"
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},
{

"role": "user",
"content": "The correct answer is: label = Predict(fact_1).
Carefully examine the differences between your answers and the
standard ones. Learn from the correct decomposing approaches and
formats, and apply these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Jack McFarland is the best known role
of the host of the 64th Annual Tony Awards. Previous steps are:
def program(): answer_1 = Question("Who are the hosts of the
64th Annual Tony Awards?") fact_1 = Verify(f"Jack McFarland
is the best known role of {answer_1}.) label = Predict(fact_1
) Next step:"

},
{

"role": "assistant",
"content": "```python TERMINATE ```"

},
{

"role": "user",
"content": "The correct answer is: TERMINATE. Carefully examine
the differences between your answers and the standard ones. Learn
from the correct decomposing approaches and formats, and apply
these insights to your next claim."

},
{

"role": "user",
"content": "The claim is: Jack McFarland is the best known role
of the host of the 64th Annual Tony Awards.. Previous steps are:
def program(): Next step:"

},
{

"role": "assistant",
"content": "```python answer_1 = Question("Who are the hosts of
the 64th Annual Tony Awards?") ```"

},
{

"role": "user",
"content": "The correct answer is: answer_1 = Question("Who are
the hosts of the 64th Annual Tony Awards?"). Carefully examine the
differences between your answers and the standard ones. Learn

from the correct decomposing approaches and formats, and apply
these insights to your next claim."

}
]
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