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Abstract

Routine maintenance is an essential requirement for the optimal functioning and longevity of
any technical system that has been constructed. The issue occurs when the maintenance plan-
ning for such a structure becomes necessary. The adverse weather conditions prevalent in the
Netherlands contribute to the heightened danger associated with the duty of a maintenance
worker. Additionally, it is vital to comprehend the optimal time frame for minimising revenue
losses when allocating time towards maintenance activities rather than operational tasks.
The objective of this project is to create a methodology for enhancing and improving the man-
agement of asset maintenance planning. This process is carried out by developing two sta-
tistical models. The primary objective of this study is to examine the feasibility of utilising
API data from wind forecast sites to provide accurate production forecasts for individual wind
turbines up to a 7-10 day period in advance. Furthermore, this study aims to forecast the elec-
tricity prices for the upcoming week by analysing historical data and recent day-ahead pricing.
The outputs generated by these models are subsequently aggregated to yield a single outcome
in terms of revenue.
The predictive model for electricity prices utilises data sourced from ENTSOE to generate an
aggregate of electricity prices spanning the previous 7-8 years. This aggregate is subsequently
adjusted by incorporating the electricity prices observed within the most recent three-week pe-
riod. The model exhibits high accuracy in predicting day-ahead pricing during weekdays, but
its performance is not consistently replicated on weekends.
The wind turbine output forecast model utilises operational archival data and high-resolution
10-day forecasts obtained from the European Centre for Medium-Range Weather Forecasts
(ECMWF). A correlation has been established between the archival data and the historical
turbine data provided by Green Trust Consultancy for the designated wind farm. The afore-
mentioned correlation is subsequently employed to establish a connection between the output
of a turbine and the real-time forecast data. The accuracy of the power generation forecast
decreases from the initial day to the tenth day of the projection, resulting in inconsistent out-
comes.
The combined outputs of these two models yield a solitary outcome that aids in predicting
the potential revenue loss for the selected turbine during the period of maintenance-induced
idleness. The limitations inherent in both models contribute to the generation of imprecise out-
comes inside the revenue model pertaining to wind turbines. The model accurately predicts
outcomes in two out of the four tested scenarios.
The model is additionally executed for an alternative wind farm situated at a distinct site to
establish its independence from the selected wind farm or its specific geographical placement.
The limitations of the three models are discussed, and potential strategies to address these
limitations are explored to enhance the accuracy of the model’s output.

ii



iii

The report is structured in the following manner. chapter 1 provides a comprehensive overview
of the research problem. chapter 2 pertains to a thorough understanding of historical electricity
prices, turbine data, and weather forecast data, and their use in calculating turbine-generated
revenue. The prediction and forecasting models for the price of electricity and turbine power
output are described in chapter 3 and chapter 4. The methodology and application are also
included. In chapter 5, the combined results of both models are utilised to develop a unified
output, which is subsequently employed to forecast the revenue generated by the turbines.
Several case scenarios are offered for the turbines, and their performance is analysed for each
situation. chapter 6 includes an alternative wind farm to assess the model’s performance in a
distinct geographical setting. Subsequently, chapter 7 provides an exposition of the limitations
inherent in the model, accompanied by an examination of potential avenues for enhancement.
The conclusion and future recommendations for the model can be observed in chapter 8.
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1
Introduction

By the end of 2020, the Netherlands had 2,606 wind turbines to generate electricity, of which
2,144 were located on land, and the rest were at sea (Central Bureau van Statistiek, 2022). In
2020, these turbines generated enough electricity to power 5.6 million households (15.3 billion
kWh), with 36 % coming from offshore turbines and 64 % from onshore turbines. These gi-
normous structures are responsible for providing around 17% of the total electricity demand of
the Netherlands. Wind turbines are complex systems that require proper maintenance and care
to achieve high operational efficiency and long service life. The expected lifetime of a wind
turbine is around 20–25 years, depending on the design, environmental conditions, and main-
tenance strategies. Therefore, it is essential for wind farm owners and operators to develop an
optimal maintenance plan that ensures timely and regular inspection, repair, and replacement
of the turbine components (Ding et al., 2013).
To ensure the continuous operation of wind turbines, a combination of preventative and correc-
tive maintenance measures are implemented. Preventive maintenance can be categorised into
two basic approaches: time-based and condition-based. Planning time-based maintenance is
often considered to be more straightforward compared to condition-based maintenance. This
is mostly due to the fact that condition-based maintenance relies on monitoring and responding
to changes in the condition of the equipment, which are often difficult to foresee. Both forms
of maintenance necessitate the need for preparatory measures and the subsequent wind turbine
shutdown, leading to a reduction in production yield (Schouten et al., 2022).
Wind turbine maintenance comprises tasks like routine inspections, cleaning procedures, lu-
brication protocols, and corrective actions, which are undertaken to ensure the efficient and
uninterrupted operation of wind turbines (Wang et al., 2019b). A couple of examples of these
tasks being conducted are depicted in Figure 1.1. According to the Standard Operating Pro-
cedure (SOP), the frequency of maintenance is contingent upon various factors, including the
specific wind turbine model, prevailing climatic conditions, and the maintenance approach em-
braced by the operator. However, it is generally advisable to do maintenance activities on an
annual basis as depicted in research conducted by Besnard et al. (2011).
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Figure 1.1: Technicians inspecting, cleaning and repairing the composite rotor blades.(Marsh, 2011)

In studies conducted by Costa et al. (2021) and Froger et al. (2018), state-of-the-art research
was conducted on the topic of wind turbine maintenance, but, neither was able to provide the
exact duration a maintenance task would need. After consulting with the technicians and the
asset management team (ASM) at Green Trust Consultancy it was understood that, on average,
completing the turbine maintenance task requires a time commitment of around 20 working
hours. In many instances, this entails the technicians engaging in two separate 10-hour shifts
whilst leaving the turbine inactive overnight.
The repair of rotor blades and gearboxes is a highly intricate process that necessitates a substan-
tial amount of downtime (Lu et al., 2009). Blades are often made of carbon fibre-reinforced
polymer composites. These materials are often plagued with a weak interface and a lack of
toughness, which implies that the blades are prone to failure (Sayam et al., 2022). The safety
concerns associated with certain blade designs encompass poor blade root and middle section
dimensions, insufficient compliancewith strength and stiffness criteria regarding section shape,
and surpassing the expected load limit specified in the blade’s design (Peng et al., 2023).
Furthermore, the blade’s leading edge is susceptible to erosion caused by wind and rain (Sa-
reen et al., 2014). Studies have shown that the performance of wind turbines decreases by up
to 27% in power output due to the effects of rain (Bashir, 2022). Consequently, the turbines
would experience a reduction in performance. The weather conditions prevalent in the Nether-
lands throughout the year, as depicted in the study conducted by Sabir et al. (2007), can pose
a significant challenge for wind turbine blades.
Lightning strikes are infrequent occurrences that possess the potential to inflict substantial
harm upon wind turbine blades, and, in certain cases, may even incite combustion, hence lead-
ing to considerable losses and associated hazards (Wang et al., 2019a). An example of the
damage inflicted by lightning can be viewed in Figure 1.2.
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Figure 1.2: Wind turbine catches fire due to lightning strike (Senn, 2022)

Wind turbines operate by harnessing the kinetic energy of wind and transforming it into me-
chanical energy, which is subsequently transformed into electrical energy through a gearbox.
The rotational motion of the wind turbine facilitates the propulsion of the primary shaft, induc-
ing the rotation of the generator via the gearbox (Zhang & Lu, 2019).
The gearbox comprises a significant quantity of gears, with gear failure responsible for around
60% of all gearbox failure instances. The primary cause of gear failure predominantly occurs
within the teeth, encompassing issues such as tooth surface corrosion, tooth surface wear, tooth
surface bonding, and tooth breakage. Gearboxes are typically engineered with an anticipated
operational lifespan of approximately two decades. Frequently, the aforementioned failures
result in the need for frequent replacement of gearboxes before their expected lifespan, hence
causing increased turbine downtime and financial losses for the owner (Yan et al., 2021).
Additional turbine failures include the deterioration of the tower’s foundation, flanges, and the
structure itself. In a study by Reder et al. (2016), a downtime analysis was conducted for each
of the failures associated with a wind turbine and its components. In Figure D.1 and Figure D.2
in Appendix D, the failure rates of and downtimes of typical geared and Direct drive turbines
are plotted.

1.1. The problem with maintenance scheduling
During designated maintenance periods, the turbine is locked, the blades remain stationary and
do not engage in rotational motion to harness energy from the incoming wind. Therefore, the
production of power is not intended for the purpose of being delivered to the grid connection.
In other words, the turbine does not generate any financial revenue. Investment funds often
own wind farms, with the responsibility for operating and maintaining the turbines frequently
delegated to a third-party entity (Froger et al., 2018). Consequently, additional financial re-
sources must be committed in order to carry out the task of turbine maintenance successfully.
Frequently, turbine owners utilise consultancy services to manage the turbine’s routine opera-
tions. The primary responsibility of the ”Operations Management” team is to engage techni-
cians through subcontracting arrangements and provide them with particular dates and times
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for the execution of turbine maintenance tasks. Upon being notified of the scheduled main-
tenance, the technicians proceed to the wind farm location and establish their campsite. The
technicians employ the utilisation of ropes as a means to descend onto the blades, as shown in
Figure 1.4 and use self-hoisting cranes, which are depicted in Figure 1.3, to perform tasks like
retrofitting, repair or replacement.

Figure 1.3: Gearbox repair/ replacement done by technicians using a self-hoisting crane (Enel, 2023)

Figure 1.4: Blade repair done by technicians using rope (Vivablast, 2023)

The safety of specialists engaged in turbine maintenance is crucial, as they consistently face
life-threatening risks while carrying out their duties. Hence, it is of equal significance to take
into account the operational aspects of the wind turbine farm location, including factors such as
visibility and wind speed. The technicians shouldn’t be expected to undertake these hazardous
activities under conditions of limited sunlight or when wind speeds at hub height are signifi-
cantly high. The study conducted by Liu et al. (2019), discusses the importance of safety and
technical disclosures in wind turbine repair work. These disclosures directly affect the safety
of maintenance work and the reliability of maintenance quality.
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This academic research aims to tackle the difficulty faced by the Asset Management team
(ASM) at Green Trust Consultancy in relation to wind turbine maintenance. Numerous schol-
arly investigations have been conducted to address the issue of scheduling maintenance for
wind turbines. The study conducted by Froger et al. (2018) employed a distinct method that
prioritised resource management, specifically the allocation of technicians, as opposed to a
revenue-centric perspective when addressing the problem of turbine maintenance scheduling.
In a study conducted by Schouten et al. (2022), the authors examined the issue of wind turbine
maintenance planning, specifically focusing on a singular component with foreseeable time-
dependent maintenance expenses. The emphasis was placed on age-based replacement plans
for single components, as opposed to the various maintenance tasks discussed earlier in this
chapter.
Returning to the issue encountered by the ASM team, typically, the technicians make contact
on a Friday to indicate their intention of establishing their base for service work in the follow-
ing week. There is a lack of definitive information regarding the optimal day for executing
this task. The typical protocol entails a member of the Asset Management team at Green Trust
making decisions based on the weather forecasts accessible on Windy (2023) to determine the
suitable days for technicians to carry out their specified tasks in the forthcoming week. Regret-
tably, the available information provides no insight into the financial impact on the owner’s
earnings throughout the maintenance period. Consequently, choosing the optimal timing for
undertaking this operation in the forthcoming week remains challenging.

1.2. Solving the problem of maintenance scheduling
The research objective of this report is to tackle the problem of wind turbine maintenance faced
by the asset management team at Green Trust Consultancy. This is done by:

1. Creating a statistical model for the electricity price prediction for the coming seven days
based on the historical and recent day-ahead prices.

2. Creating a statistical model for predicting the production forecast up to 7-10 days upfront
on a wind turbine level using the API data from wind forecast sites.

3. Combining the outputs of the two models to generate the forecast revenue of the chosen
wind turbine.

Turbine data from a specific wind farm site under the care of Green Trust Consultancy is used
along with a 10-day weather forecast to predict the turbine output for the eventual calculation
of the revenue generated by the turbines. In a research project performed by Hesselink (2018),
a model that can translate day-ahead weather forecasts into power production forecasts for
wind turbines was developed using regression models with historical turbine data. Whereas,
the objective of this study was to utilise past turbine data and weather forecasts to develop
a predictive model capable of estimating turbine output for a period of seven to ten days, as
opposed to the existing approach of predicting output only one day in advance. Thus, the first
step is to decide on a specific weather forecast model that will be implemented for the forecast
model.
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1.2.1. Choosing the right weather forecast model
TheWindywebsite provides users with various choices for accessingweather forecasts (Windy,
2023). These options are illustrated in Figure A.1, Figure A.2 and Figure A.3 in Appendix A.
The website also provides concise descriptions of each model, which can be viewed in Ta-
ble 1.1, allowing users to understand why the ECMWFmodel is considered the optimal choice
for weather forecasting. Moreover, in a study conducted by Iseh.A. and Woma.T. (2013), a
survey on all the available weather forecast models is conducted. Previous research work on
understanding the ECMWF data for weather forecast models was done by Yang et al. (2022).
The aforementioned model is the sole model that effectively fulfils the requirement of serving
as a high-resolution 10-day forecast model specifically tailored for the geographical area of
the Netherlands.

Table 1.1: Windy forecast model comparison (Windy, 2023)

Model Name Description

GFS 22km

The GFS is the most well-known free global weather model. It’s updated
every 6 hours and produced by the National Centers for Environmental
Prediction (NCEP) of the United States National Oceanic and Atmospheric
Administration (NOAA). It doesn’t take topography and shapes of coastlines
into account, so it isn’t very accurate for places next to bodies of water.

ECMWF 9km Very accurate global weather model created and operated by ECMWF. It is
considered the best for precipitation and cloudiness.

METEOBLUE Ensemble multiple global and local forecast models using AI. It beats other
models in temperatures and wind. It is only a 7-day forecast.

ICON-D2 2.2 km
High resolution model developed and operated by German DWD. One of the
most modern forecast models delivering very good results in central Europe.
It produces only a 2-days forecast.

AROME 1.3km
AROME is a regional France and the surrounding territories weather model
by the Meteo France (French National Meteorological Service).
It is only a 7-day forecast.

UKV 2km

A post-processed regional downscaled configuration of the unified model,
covering mainly the UK and Ireland, with hourly forecast data. With a
resolution of approximately 0.018 degrees, hourly data is produced for the
coming seven days at the surface level and at standard pressure levels.

ECMWF provides access to real-time data sets and archival datasets. The real-time datasets
provide the user with two main kinds of forecasting data. The data required for this project
was a medium-range forecast, i.e. up to 10 days ahead. First, HRES, a single high-resolution
forecast (horizontal resolution around 9 km), provides a detailed description of future weather
up to 10 days ahead. The other is ENS, which is an ensemble of 51 forecasts with a horizontal
resolution of around 18km, whereas HRES is a deterministic model.
The archival datasets are of two main types. The first one is the operational archive, which is
a collection of the deterministic forecast datasets from the previous 50 years. The second is
the re-analyses dataset, which is essentially the same as the operational archive, but the main
difference lies in the fact that the forecasted data is altered with the observed data, hence the
term reanalysis. For uniformity in the real-time and archival datasets, the deterministic HRES
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and the operational archive model are chosen.

1.2.2. Previous work on electricity price prediction
The second statistical model in this research is the model to predict day-ahead electricity prices
in the Netherlands for the coming seven days. Numerous attempts have been undertaken in
the field of electricity price prediction. Each strategy employs a distinct facet of the electric-
ity market. Several researchers have employed methodologies, such as machine learning, to
assess various models in order to make predictions on electricity prices (Tschora et al., 2022).
Others have used state-of-the-art algorithms to perform open-source forecasting models to pre-
dict electricity prices (Lago et al., 2021). For predicting the Day Ahead Market (DAM) in
the Netherlands, a greedy algorithm was applied using candidate countries selected through an
integrated analysis based on open-source European electricity market data or ENTSOE (Hei-
jden et al., 2021). Another study focused on forecasting the day-ahead electricity spot prices
in Germany (Johnsen, 2019)
However, these researches share two commonalities. Initially, the ML models under consid-
eration exhibited a high level of complexity, mostly due to their limited explainability and in-
terpretability. Consequently, reproducing these researches or incorporating their findings into
a simplified multi-day predictive model posed significant challenges. Furthermore, it should
be noted that the primary purpose of developing these models was to accurately anticipate the
Day-ahead electricity price rather than to provide forecasts for prices several days in advance.
The primary focus of the study discussed in the aforementioned publications is the accurate
prediction of spot market prices through the utilisation of diverse regression models.
Nonetheless, there has been one research that created a Multi-Day-Ahead Electricity Price
Forecasting while also considering the price spikes for up to four days ahead (Manfre Jaimes
et al., 2023). A set of five models were developed with the purpose of facilitating a four-day
weather forecast. These models specifically focused on analysing the output power of thermal
units as a means to identify unanticipated outages or changes in the supply stack, hence ad-
dressing price spikes. The research was conducted in Canada, thus implying that reproducing
the results within the context of the Canadian market may provide challenges.
This study adopted a simplified approach wherein historical data from previous years was
utilised in conjunction with recent three-week data to develop a statistical model for forecast-
ing electricity costs up to a seven-day horizon. This would not be possible with most existing
complex models. Data was retrieved from ENTSOE (2023) regarding electricity price fore-
casting. The website provides data on the Load, Generation, Transmission, Balancing, etc.,
for the various member states of the European region. The historical day-ahead prices for
electricity spanning a six-year period (2015-2023) in the Netherlands have been exported in
order to facilitate comprehension of the fluctuations in electricity costs across daily, weekly,
monthly, and annual timeframes. Figure C.1 in Appendix C presents an illustrative example
of a website whereby the data obtained from ENTSOE is exported and saved as a CSV file for
subsequent analysis.

1.2.3. Chosen wind farm
The selected subject for this model is a three-turbine wind farm located in the South-West
region of the Netherlands. It comprises three Vestas V-90 3MW turbines viz. 3T-1, 3T-2 and
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3T-3, with each turbine equipped with a hub height of 105m and a rotor diameter of 88m.
These turbines’ datasheet is available in Appendix B. Figure 1.5 displays the arrangement of
the three turbines in terms of their alignment. Further details on the turbines are elaborated
upon in section 2.2.

Figure 1.5: Terrain map of the 3-turbine wind farm



2
Data comprehension

This chapter provides a comprehensive analysis of both electricity costs and weather forecast
data. The primary focus of the discussion in 2.1 pertains to the temporal volatility of electricity
prices. Following that, the correlation between wind speed and turbine output is established
in Section 2.2. Additionally, the subsequent sections, section 2.3 and section 2.4, delve into
a detailed explanation of the data retrieval procedure from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Finally, the revenue generated by the turbines may be
determined by utilising both the electricity pricing and weather forecast, as seen in 2.5.

2.1. Volatile nature of electricity prices
Before 2021, electricity prices in the Netherlands had only crossed the 100 €/MWh mark 129
times between the start of 2015 and the end of 2020. The year 2021 showed a massive spike in
electricity prices, totaling up to 3026 times when the electricity prices crossed the 100 €/MWh
mark. The average price of electricity went from a mere 40 €/MWh in 2015 to a massive 103
€/MWh in 2021. As the year 2021 progressed, there was a steady increase in electricity prices,
which saw a further surge again in February 2022 following Russia’s invasion of Ukraine, lead-
ing to an all-time high figure of 871 €/MWh in August 2022. The average day-ahead electricity
price in the Netherlands in June 2023 was 91.98 €/MWh, one of the lowest month-average in
the country since the summer of 2021 (In Statista, 2023). Figure 2.1 is plotted below, which
depicts the variation in average monthly monthly prices from 2019 till the present.
Despite the inherent volatility of electrical prices, identifiable patterns and trends can never-
theless be observed in their diurnal, weekly, and annual fluctuations. Hence, it is necessary to
undertake comprehensive efforts in order to have a clear understanding of the patterns exhib-
ited by these prices. This section focuses on analysing the behavioural patterns exhibited by
power prices.

9
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Figure 2.1: Netherlands; January 2019 to June 2023; day-ahead prices (In Statista, 2023)

2.1.1. 4 seasons
In Figure 2.2, how the season affects electricity prices can be easily observed. In the winter
months (January, February, November and December), the electricity prices seem to be at the
highest in 2019. A steady decrease in prices can be observed from January until June, where
the average prices seem to be the lowest; at the end of the summer period or the beginning
of fall (around the end of September), the average prices rise again, reaching a high point in
November which is surprisingly more elevated than the average prices in December. This
can be explained by the presence of the Christmas period. In the Netherlands, most people
spend time with their families, and the major offices are often shut during this period. A
comprehensive study is done in subsection 2.1.3.

Figure 2.2: Average electricity prices throughout the year 2019.
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Upon examination of Figure 2.3, it is evident that the average power prices exhibit a notable
disparity between the colder months of January and February, as compared to the summer
months of June and July. This discrepancy serves as a visual representation of the seasonal
variations in electricity prices.

Figure 2.3: Average electricity prices throughout the year 2023.

2.1.2. Weekend vs. Weekday
Typically, on weekends, there is a notable decrease in electricity prices due to the closure of
numerous industries, resulting in a reduction in the overall load on the grid system. In order to
align with reduced demand, electricity is offered at a reduced price. In instances characterised
by abundant sunlight and strong wind conditions, there is a possibility, albeit rare, for power
prices to become negative due to continuous electricity generation without interruption. This
is discussed in greater detail in subsection 2.1.4
A representative data set is extracted from the initial week of the year 2023 and is depicted in
Figure 2.4. The electricity costs observed on Sunday and Saturday, representing the left and
right ends of the graph, respectively, are lower than the prices observed during the weekdays
fromMonday through Friday, which are represented by the data sets in the middle of the graph.

Figure 2.4: Electricity prices throughout the week 01/01/2023 till 07/01/2023.
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2.1.3. Public holidays
Koningsdag, which falls on the 27th of April, is frequently celebrated by the general public in
the Netherlands. This event signifies a period during which individuals gather in public spaces
adorned in the hue of orange, engaging in wild festivities. The majority of offices are closed
on this particular day. A preliminary examination is conducted on the day preceding, during,
and following King’s Day in order to understand the influence of this holiday on electricity
pricing. The lack of apparent disparity in electricity prices on the day in question, as depicted
in Figure 2.5, suggests that there is no noteworthy variation when compared to the preceding
and subsequent days surrounding King’s Day. The primary cause of pricing changes can be
attributed to individuals’ preferences for indoor or outdoor activities. As an illustration, the
prices during the late nocturnal hours exhibit an upward trend compared to those observed in
the late afternoon. Given that many sectors often decrease their production levels throughout
the course of the week, it is plausible to anticipate a decline in overall electricity prices during
this period.

Figure 2.5: Electricity prices in the week of King’s Day (2023) and the adjacent weeks.

The next period under discussion is the holiday season. There appears to be a noticeable de-
cline in the mean electricity rates seen between the months of November and December. The
period of Christmas (24th December till 31st January) is analysed and compared against the
rest of the month. The data presented in Figure 2.6 indicates that the average electricity prices
throughout the Christmas period in the years preceding 2021 exhibit minimal deviation from
the rates recorded during the remainder of the month. A significant disparity is evident only
in the years 2021 and 2022. The energy costs have experienced a notable escalation since the
beginning of 2021, primarily attributed to the global impact of the COVID-19 epidemic and
the expanding worldwide demand. The negative effects have been further exacerbated by the
Russian invasion of Ukraine and the evolving climatic circumstances. The question remains
as to whether the prices over this year’s Christmas period will exhibit a similar trend to those
observed in the past few years or if they will revert to the levels observed before the onset of
the COVID-19 pandemic.
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Figure 2.6: The effect of Christmas on the electricity prices

2.1.4. Negative electricity prices
During periods of high solar radiation and strong winds, there is an increased chance that elec-
tricity prices may decrease to below zero. A significant number of these occurrences take
place on weekends, a period characterised by reduced demand on the power grid. A compre-
hensive analysis of the data obtained for the calendar year 2023 has been conducted. The term
”Renewable Ratio” is introduced as a distinct parameter, defined as the ratio between the to-
tal scheduled renewable generation from solar, onshore wind, and offshore wind and the total
scheduled generation across all types. The utilisation of fossil fuel resources influences the
pricing dynamics of the entire market in EU wholesale electricity markets to fulfil the over-
all demand (Climate Action Network Europe, 2021). Therefore, if renewable energy sources
fulfil a substantial portion of the energy demand, the impact of fossil fuel output diminishes,
resulting in a decline in the selling price of electricity. The main factor for determining the
occurrence of negative prices in Figure 2.7 is the resulting ratio expressed as a percentage.
Negative power prices are noticed during time slots when the percentage values of the ratio
exceed 80%.

Figure 2.7: Observed negative electricity prices from March 2023 till June 2023.
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For the time slots when the renewable ratio is above 100%, a portion of the excess power
generated is exported to the neighbouring countries viz. Germany, Belgium, UK, Denmark
and Norway. One such time slot is taken in Table 2.1 for the date and time 29/05/2023, 13:00
to 14:00. A negative electricity price of -161.70 was observed. The Renewable generation in
this time slot was greater than the scheduled generation by a value of 1250 MW, thus giving a
renewable ratio of 116%. The total day-ahead load can be met solely by renewable production.
The excess power was partially offset by exporting 649 MW to Norway, 748 MW to Belgium,
697 MW to Denmark, 543 MW to the UK and 3952 MW to Germany.

Table 2.1: ENTSOE data for the period 13:00 to 14:00 on 29/05/2023

Parameter Unit Value
Day-ahead Electricity Price EUR/MWh -161.70

Scheduled Generation Day Ahead MW 7757
Scheduled Generation (Wind and Solar) Day Ahead MW 9007

Total Load Day Ahead MW 6411
Cross-Border Physical Flow MW 6589

In the year 2023, until the end of June, a total of 127 negative electricity time slots have been
observed, and out of these, 53 were on the weekdays whilst the remaining 74 were on the
weekends (as can be viewed in Figure 2.8). The prices below zero tend to occur mostly on
Sundays, followed by Saturday and the workday, with the most negative prices observed on
Monday.

Figure 2.8: Occurrence of negative electricity prices on different days of the week from 2018-2022.
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2.2. Power curve
This subsection compares the power curves of the turbines 3T-1, 3T-2 and 3T-3 turbines to the
ideal power curve of a V90-3 MW turbine. The ideal 3MW turbine has a rated power of 3000
kW, and it produces the rated power at wind speeds of approximately 14.3 m/s and above until
the cut-off velocity of 25 m/s. In Figure 2.9, the ideal power curve of a V90-3 MW turbine is
plotted.

Figure 2.9: Ideal power curve of the Vestas 3MW turbine(Terziev et al., 2021).

The datawas collected for the three turbines in the period from 01/01/2018 00:00 till 31/12/2023
23:00. Two of the chosen parameters, wind speed (m/s) and turbine power (kW), were used to
construct the general power curve for each of the turbines which can be viewed in Figure 2.10.

(a) General power curve of 3T-1 (b) General power curve of 3T-2

(c) General power curve of 3T-3

Figure 2.10: General power curves of wind turbines at the chosen wind farm
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On one hand, all four graphs follow a similar kind of curve with the wind speeds from cut-in
to the rated wind speed; there is a cubic relation between the wind speed and turbine power
and a constant power output until the cut-off value of wind speed. On the other hand, the data
points on the three chosen turbines show a deviation from the power curve seen in the ideal
curve. Also, the observed values of the power between the rated wind speed and the cut-off
wind speed are not the same as the rated power, i.e. 3000kW, but are a value slightly lesser
than that. This is because of the electricity from the power grid to operate this turbine. This
is also the reason why negative values of power can be observed when the turbine is not fully
unavailable.
It can also be observed that the cut-out wind speed of the turbines is 22.5 m/s rather than the
designed 25 m/s as above the speeds of 22.5 m/s, the power of the turbines does not match the
rated power output. Moreover, there are multiple data points that neither follow the cubic rela-
tion between the wind speed and power in the cut-in till the rated wind speed section nor follow
the constant power generation for wind speeds above the rated wind speed. The occurrence of
these data points can be explained by a variable called Time-based Series Availability (TSA).
In full turbine availability, the value ”1” is given with the TSA. Still, when the turbine is not
fully available due to either scheduled maintenance or repair works, or exceedingly high winds,
then the value of TSA is less than 1 with a minimum value of 0. In other words, the turbine
was entirely unavailable in that specific time slot. Hence, the observed deviation in the power
curve is observed as these data points do not represent the ideal turbine power production.
The wind turbine data is an intermediary in generating a forecast for the turbine output. The
historical data obtained from the turbines loosely correlates with the archival forecast data
pertaining to the specific site. The aforementioned correlation can be utilised in the context
of real-time forecasting in order to make predictions regarding the production of the turbine.
The next two parts provide an in-depth explanation of the two projections utilised to establish
this correlation. The rationale for choosing a certain forecast type and the methodology for
obtaining these forecasts are also elucidated.

2.3. MARS
MARS is ECMWF’s Meteorological Archival and Retrieval System. An API (Application
Programming Interface) enables users to contact the ECMWF servers and retrieve data for a
specific period. The data was gathered for the same period as in the previous section. MARS
has its catalogue feature from which data from various models can be retrieved. Archival can
be of 3 main classes: operational data, ECMWF-reanalyses data and Copernicus data. Oper-
ational data is the only class that allows the user to pick archival forecasts, as the other two
classes are reanalysed data.

To retrieve the data, a request file (.req) is fed to theMARS interface and is executed by launch-
ing the API. An example of a REQ file for the year 2019 is shown in Figure 2.11. The oper-
ational version and surface level were chosen for the request file. The parameters requested
were 100u and 100v, which are the u and v components of velocity measured at a height of
100m for the step range of 0-23, which represent the 24 hours of the day with these steps start-
ing at 00:00:00.The area was narrowed to that encompassing the Netherlands. The requested
data is received in a GRIB file (.grib) and converted to a CSV file (.csv). The data in the CSV
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file is altered with the formulae in Equation 2.1 and Equation 2.2 to give us the speed and di-
rection of the forecasted winds from ECMWF. This data will be used to create the operational
archive for each turbine.

Figure 2.11: Request file for the data from 2019 for the Netherlands.

|V⃗ | =
√
u2 + v2 (2.1)

ϕ = mod
(
180 +

180

π
atan2(v, u), 360

)
(2.2)

The entire process from the REQ file to the CSV file for the data from 1st January 2018 is
illustrated in Figure C.3 and Figure C.4. The MARS-API returns values on the closest four
grid locations for the input location given in Figure C.4a. As seen in the section 2.4, the nearest
grid location matching archival and real-time data will be used.

2.4. Real-time data
The real-time data provided by ECMWF is a 10-day forecast at the atmospheric level. ECMWF
has the provision to provide the data via a few types of file transfer methods, which are FTP,
SFTP, S3 and Google Cloud platform. Initially, an FTP file-transfer service called FileZilla
was used to transfer the data onto a server created at the offices of Green Trust in Oosterbeek,
Netherlands (FileZilla, 2023). The Real-time data generated in Bologna, Italy, is uploaded to
the FTP server and can be downloaded onto any user device with the required login credentials.
The chosen parameters were 10m, 100m and 200m u and v components of the wind velocity.
Data is in the same GRIB format as the operational archive and also had to be converted to a
CSV file so it can also be altered with the formulae in Equation 2.1 and Equation 2.2 to give the
wind speed and wind direction. To match this data with the data from the operational archive,
grid point 2 is chosen in Figure C.2, which has the location coordinates at a distance of 6.21km
from the 3-Turbine wind farm.
Regrettably, the FTP server being employed by Green Trust exhibited chronic sluggishness
in its communication with the ECMWF server. In addition, the geographical separation of
the two servers presents a challenge in terms of establishing efficient networking pathways.
The data was put onto the Green Trust server within two days following its generation. In
addition, it has been seen that certain files are absent from the server due to a failure in the
transfer process. Therefore, a different mechanism for transferring files has to be employed.
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Following extensive contact with the support team at the European Centre for Medium-Range
Weather Forecasts (ECMWF) using the Jira platform, a decision was reached on the 7th of July
2023 to utilise Amazon’s Simple Storage Service (S3). This meant that the real-time forecasts
without any missing files were only made available from the 10th of July 2023. The results
presented in this study are derived exclusively from real-time data collected from the period
starting on July 10th, 2023, up until the present day.
Amazon Simple Storage Service (Amazon S3) is an object storage service that offers industry-
leading scalability, data availability, security, and performance. It can store and retrieve any
data anytime, from anywhere (AWS, 2023). By cutting out the need for a physical storage
space, the transfer speed was significantly increased and enabled the user to receive files as
soon as they were generated without any missing files.
The process of retrieving real-time data became much simpler. In Figure 2.12, a BASH code
is visible in which a date filter ”T1D072300” is given that downloads all the files with that
specific date filter. The values 07 represent the month, and the value 23 represents the date for
which the 10-day forecast data is requested. These two values can be altered according to the
desired input date. The value ”00” is when the steps start; in this case, it will be 00:00 on the
23rd of July 2023. The next command attaches a GRIB extension to all the downloaded files
in the folder. All the files are then copied onto a singular GRIB file. The final two commands
read the merged file for the given location and convert the tab-separated GRIB file into the
output CSV file.

Figure 2.12: Input file for real-time data

The data obtained in real-time exhibits a step range spanning from 0 to 240, corresponding
to a 10-day forecast. However, it should be noted that the material is not distributed among
240 distinct files. In Figure C.5 and Table 2.2, it can be viewed that for the first 90 steps,
the data is per hour and from step 93 till step 144, it is per 3 hours and 6 hours after 144 till
240. The data from this CSV file is converted into the wind speed and direction per step and
then copied onto an Excel workbook (.xlsx). The missing steps are filled by averaging the
known and unknown values. An example of the skeleton file with all the filled data is shown
in Figure C.6 in Appendix C. This file will be the input for the turbine output forecast method
in chapter 4.

Table 2.2: Dissemination schedule of the atmospheric model high-resolution 10-day forecast (HRES).

Step Frequency Dissemination Schedule
0 to 90 by 1 5:45 –>6:12
93 to 144 by 3 6:12 –>6:27
150 to 240 by 6 6:27 –>6:55
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2.5. Revenue generation
The objective at hand is to determine a time interval during which the minimal amount of
revenue can be forfeited. One possible approach to optimise revenue is to choose a certain time
window throughout the week that minimises the product of the power price, turbine output, and
duration in hours. The product of the Average Turbine Output (ATP) in megawatts (MW) and
the Day-ahead Electricity price (DEP) for a specific time slot is then calculated. This amount
is thereafter multiplied by the overall duration of the time slot, which, for the purposes of this
report, is considered to be one hour. The output of this calculation in Equation 2.3 gives the
revenue generated by the specific turbine in that time slot in €. The revenue generated for each
time slot of the day is calculated using the same method.

[ATP ] ∗ [DEP ] ∗ [t] = Revenue (2.3)

Two distinct sets of time ranges are defined for the time parameter. The initial aspect pertains
to the designated operational time frame, which spans from 0800 to 1800, during which the
contractors possess the ability to engage in physical maintenance activities on the turbine. The
second period under consideration is the overnight range, spanning from 1800 hours to 0800
hours. During this time, the turbine may be intentionally kept idle as a preliminary step before
commencing work in the morning or for the purpose of turbine analysis. The graph below
illustrates the suggested time periods for the first time range. The data has been taken for 2018
from the 1st of January till the 5th of January. i.e. The 1st work week of the year 2018. It
is observed in Figure 2.13 that the working hour time range on the 1st (Monday) results in a
minor loss of money, and for the overnight time range, keeping the turbine idle on the night of
the 1st would result in the most minor loss of money.

(a) 08:00 to 18:00. (b) 18:00 to 08:00 (next day)

Figure 2.13: Total revenue each day of a week in the winter of 2018.

A comparable analysis was performed during the summer times when the wind velocities were
significantly lower. Typically, the cost of power tends to decrease in regions with higher levels
of solar irradiation and significant wind resources. The data was collected for 2018 from the
2nd of July till the 6th of July. From Figure 2.14, it can be observed that for the working hours
and the overnight periods on Friday, the 6th of June showed the least loss in revenue for the
specific week chosen.
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(a) 08:00 to 18:00. (b) 18:00 to 08:00 (next day)

Figure 2.14: Total revenue each day a week in the summer of 2018.



3
Predictive Model for Electricity Prices

(PMEP)

The fundamental workings of the PMEP are discussed in section 3.1, and multiple examples
are provided to evaluate the model’s performance. In section 3.2, an alternate working method
is contemplated and compared to the first method. Lastly, a fully functional model is presented,
and its workings and results are shown in section 3.3.

3.1. Fundamental working principal of the PMEP
The data collected by ENTSOE spans a period of seven years, namely from 2015 to the present.
This dataset comprises day-ahead prices in the Netherlands for each hour of the day. The
underlying concept revolves around utilising historical data to gain insights into the patterns
of electricity costs across each day of the week. One important observation is that the specific
date does not always occur on the same day every year. This is illustrated in the Figure C.9 in
Appendix C.
Assume that a prediction will be made on the 3rd of August 2023 for the forthcoming week
encompassing the period from the 6th of August to the 12th of August, including Sunday until
Saturday. The historical data about the above dates shows that the 6th day of themonth does not
coincide with a Sunday in any of the specified years. Therefore, in this scenario, it is necessary
to locate the nearest Sunday in the week where the 6th of August occurs in the corresponding
year. In the year 2022, the aforementioned date would correspond to the seventh day of August.
Similarly, in the year 2021, it would correspond to the eighth day of August. In the year 2020,
it would correspond to the ninth day of August. In the year 2019, it would have corresponded
to the fourth day of August. Lastly, in the year 2018, it would have corresponded to the fifth
day of August. The pattern in question has been allocated for implementation inside the PMEP.
The historical data is corrected with the data from recent weeks. The data from the past 3-4
weeks is then averaged into a singular column. The data for each day of the week is then
averaged for the historical data set and the recent week’s data. These are represented with
(P day) and (Rday). Then, the previous year’s averaged value (P ) is multiplied by a correction
factor (cf ), calculated using the Equation 3.1 to give the Predicted electricity price (F ) in
Equation 3.2. This method of predicting electricity prices is termed the ”Averaging Method”.

21
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cf =
P day

Rday

(3.1)

F = cf ∗ P (3.2)

Each predictive value obtained is compared to the observed values of the day-ahead prices
from ENTSOE. The RMSE (Root-Mean Square Error) is calculated with Equation 3.3 to check
the accuracy of the prediction where Pi and Oi represent the predicted and observed values,
respectively, for the total of n values.

RMSE =

√√√√Σn
i=1

(
Pi −Oi

)2

n
(3.3)

The month of April was the first to be chosen for the price prediction model. Two predictions
were made separately for the first two weeks of the month (02/04/2023 till 15/04/2023), and
the results are displayed in Figure 3.1. To understand the relative closeness of the forecast
values to the actual values, RMSE (root-mean-square error) analysis is performed, and it is
observed that a value of 32.36 €/MWh and 49.66 €/MWh is obtained for the respective weeks.

Figure 3.1: Forecast for 02-04-2023 till 08-04-2023 (top) and 09-04-2023 till 15-04-2023 (bottom).
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3.2. An alternate method
An alternate ”Normalised Method” was used to normalise electricity prices for different years
on a level base. This is done by gathering the data from the previous years with the same
method as discussed in the last section. Instead of averaging the historical values directly,
these values are normalised using Equation 3.4. The normalised previous year average (Pnom)
is defined as the ratio of the previous-year hourly electricity price (P) and the weekly average
Pweek of that particular week. These normalised values of previous years are then averaged to
produce a single data set for historical values. This dataset is then multiplied with the recent
3-week average (R) to form the normalised forecast (Fnom) in Equation 3.5.

Pnom =
P

Pweek

(3.4)

Fnom = Pnom ∗R (3.5)
Figure 3.2 shows the two methods used to predict the day-ahead electricity price for the same
week. The averaged method had a better RMSE of 29.76 €/MWh compared to the normalised
method, with a value of 35.72 €/MWh, making it the better-performingmethod this week. Both
methods face the familiar issue that neither method can predict negative prices.

(a) Averaged forecast

(b) Normalised forecast

Figure 3.2: Forecast for April 30th till May 5th 2023
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Next, a further analysis was done to establish the better-performing method. The data range
is extended to 2-weeks to get a better comparison. The graph is plotted and can be viewed
in Figure 3.3. The top image is from 21st May 2023 to 27th May 2023. The negative prices
observed throughout the week led to the RMSE of the forecast data with a higher than usual
value of 40.76 €/MWh. The normalised method was also used for the same period, giving
a slightly higher RMSE value of 42.78 €/MWh. The analysis period was then extended till
the 3rd of June 2023, and both methods resulted in similar but higher values of RMSE. The
Averaged method (RMSE= 56.25 €/MWh) was pipped by the Normalised method (RMSE=
54.94 €/MWh).

Figure 3.3: Averaged forecast vs. Normalised forecast 1-week comparison (top) and 2-week comparison
(bottom)

The two methods are further examined, with the period under examination extended till the
end of June 2023 and were compared in Table 3.1 and Table 3.2. For this period, the RMSE
of the Averaged method was 43.69 €/MWh. The normalised method only slightly improved
the RMSE value (RMSE= 41.81). For this comparison, the Averaged method performed
marginally better in a 1-week scenario while the Normalised method was marginally better
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over a longer period. It can be concluded that either method would provide a similar perfor-
mance in predicting electricity prices.

Table 3.1: RMSE (EUR/MWh) comparison of the Averaged and the Normalised method up to 3 weeks.

Method RMSE (1-Week) RMSE (2-Weeks) RMSE (3-Weeks)
Averaged Method 40.76 56.25 48.16
Normalised Method 42.78 54.94 47.45

Table 3.2: RMSE (EUR/MWh) comparison of the Averaged and the Normalised method 4-weeks to 6-weeks

Method RMSE (4-Weeks) RMSE (5-Weeks) RMSE (6-Weeks)
Averaged Method 47.01 46.53 43.69
Normalised Method 44.91 43.79 41.81

3.3. Fully functional PMEP
The subject week for the fully functional PMEP was chosen to be the week starting from the
9th of July and ending on the 15th of July in the year 2023. The forecasted electricity prices
are matched against the actual values of the day-ahead electricity prices in Figure 3.4 for the
subject week.

Figure 3.4: 7-day electricity price forecast from 09/07/2023 till 15/07/2023

The overall RMSE for the week was 40.26 €/MWh. Whilst the RMSE total for the weekdays
reduces to 31.69 €/MWh, the RMSE total for theWeekend was 55.03 €/MWh. From Table 3.3,
it can be observed that the RMSE on Sunday was 66.57 €/MWh while on the weekdays it
ranges from 20 €/MWh to 42 €/MWh. This further emphasises that the model matches up well
against the actual values during weekdays but struggles to do so on Sundays as the negative
prices seem to creep in more often in the electricity market on the weekend,d causing the actual
prices to deviate by large amounts to the natural trend. In Table 3.3, the RMSE
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Table 3.3: RMSE per day; 09/07/2023 till 15/07/2023.

Date Day of the Week RMSE
09/07/2023 Sunday 66.57
10/07/2023 Monday 36.60
11/07/2023 Tuesday 26.27
12/07/2023 Wednesday 41.99
13/07/2023 Thursday 28.43
14/07/2023 Friday 20.51
15/07/2023 Saturday 43.50

The same model is run for multiple subject weeks before it is automated in the section 5.2. The
week from the 12th of February 2023 to the 18th of February 2023 is another example to run
this model. The forecasted electricity prices are matched up against the actual values of the
day-ahead electricity prices in Figure 3.5 for this week.

Figure 3.5: 7-day electricity price forecast from 12/02/2023 till 18/02/2023

The overall RMSE was 63.27 €/MWh. Whilst the weekday RMSE was reduced to 42.05
€/MWh, the RMSE for the Weekend was 94.51 €/MWh. On Sunday, the 12th of February,
the model had an RMSE of 120.21 €/MWh due to the negative prices observed that day. Such
negative prices were uncommon in previous years.

Table 3.4: RMSE per day; 12/02/2023 till 18/02/2023.

Date Day of the Week RMSE
12/02/2023 Sunday 120.21
13/02/2023 Monday 32.11
14/02/2023 Tuesday 30.39
15/02/2023 Wednesday 57.15
16/02/2023 Thursday 52.29
17/02/2023 Friday 29.74
18/02/2023 Saturday 68.81



4
Forecast Model for Wind Turbine

Power (FMWTP)

A Sanity check is performed on the data from ECMWF in section 4.1. In the last section, data
filtering ensures the most appropriate values are used to correlate the archival and real-time
data to the turbine data. Lastly, insection 4.3, the methodology is established for the FMWTP,
and some examples of its performance are provided.

4.1. Sanity checks
As discussed in section 2.4, the real-time data from ECMWF gives the wind velocity at heights
of 10m, 100m and 200m for four separate grid locations. Given that the hub height of the three
selected turbines is 105m, it is advantageous to employ real-time and archive data collected at
a height of 100m to establish correlations with the turbine data. Before the data is correlated, a
sanity check is performed to evaluatewhether the data provided by ECMWF is accurate quickly.
This is done by plotting the wind rose for the archival data against all three turbines. A wind
rose gives you information on the relative wind speeds in different directions. The archival
dataset is the forecast dataset retrieved using the MARS-API, and the real-time data set is
the forecast dataset provided by ECMWF as soon as it is generated in real-time. Since both
archival and real-time data sets belong to the same category of forecast datasets, it is logical
to utilise the historical data in conjunction with the existing turbine data for swift verification.
Thus, by clearing the archival dataset, the real-time data can also be assumed to have earned
the same sanity check.
The data obtained from the three turbines is considered a unified dataset, and it can be viewed
in the Figure 4.1. Both datasets have a step range of 1 hour and are taken for the period from
0:00 on the 1st of January 2018 till 23:00 on the 31th of December 2022, thus, making the
comparison of their Wind rose more convenient. There are large similarities in the Wind Rose
of all four diagrams. Although a small difference can be noticed that the operational archive
skews a bit more towards the 270° direction, all four diagrams show more or less the same
relative frequency of wind directions.
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(a) 3T-1 (b) 3T-2

(c) 3T-3 (d)MARS

Figure 4.1: Wind rose diagram for the 3T wind farm

4.2. Filtering the data
A separate Excel workbook titled ”Operational Archive vs 3T” was created for every individ-
ual turbine. The operational data’s wind speeds and wind directions are recorded alongside
the wind turbine data in this workbook. Three critical parameters were not considered when
performing a sanity check on the data in section 4.1. These are the TSA of the turbines, the
direction matching and the wind ratio. Each parameter has been assigned a column in the
workbook. A single value or a range of values is established for these parameters to filter the
data. Filtering the data before it is used for the correlation to reduce the forecasted wind turbine
power inaccuracy.

4.2.1. TSA
The TSA is bounded by the interval of 0 and 1, with each turbine possessing a distinct TSA
value. The turbine’s availability is not full for any number below 1, indicating that the repre-
sentative turbine output should not be considered. In Figure 4.2, the data points are plotted
for turbine 3T-1 for the values of TSA not equal to 1, i.e. When the turbine is not fully avail-
able. The power curve in the two situations exhibits minimal resemblance to the power curve
depicted in Figure 2.10. Thus, the filtration is done with the value of TSA=1.
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Figure 4.2: Power curve for 3T-1 with data points having TSA ≠ 1.

4.2.2. Direction matching
The selection process for direction matching involves choosing datasets where the exact wind
direction is recorded for both the archival and turbine data. This is indicated by a direction
match value of 1. In Figure 4.3, the average wind direction per turbine is shown. For the
particular comparison, the wind directions are rounded to the closest 30° to form 12 wind
direction bins. It can be observed that with the slightest change in the wind direction, the
power observed for the individual can vary by a significant amount. From the orientation of
the wind farm in Figure 1.5 and the average turbine output in Figure 4.3, the wake effects on
the turbines can be better understood. For the wind directions, 30° and 60°, the wake effects
on the turbines 3T-1 and 3T-2 can be observed by the reduction in the average power output
compared to that of turbine 3T-1. Similar observations can be made for the wind directions
210° and 240°. The power output turbines 3T-2 and 3T-3 are greatly affected by the presence
of the wakes from turbine 3T-1. Thus, ensuring that the archival and turbine data for every
chosen data point have the same wind direction when rounded off is essential.

Figure 4.3: Averaged turbine output per wind direction
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4.2.3. Wind ratio
The wind ratio is defined as the ratio of the archival wind speed and the observed turbine wind
speed for the same time slot. Based on the marginal disparity between the hub height of 105m
and the real-time data recorded at the height of 100m, it is probable that the wind speeds mea-
sured at the selected grid point and the turbine will exhibit a negligible discrepancy and remain
largely consistent. The wind ratio was initially assigned a solitary value of 1. However, when
calculating the average number of valid points per cell for the region between the cut-in wind
speed and rated wind speed in the Matrix depicted in Figure 4.5, it was discovered that the
average number of valid points per cell was only 13. The objective of the ”wind ratio” filter is
to generate a power curve that is as smooth as feasible while maximising the number of data
points.

Following that, the wind ratio was assessed within the range of 0.95 to 1.055. In this particu-
lar instance, the curve exhibited a consistent level of smoothness, although it did not yield a
substantial rise in the average quantity of valid points per cell. In order to achieve an adequate
number of acceptable data points for the averaging process, it is necessary for the average valid
points per cell to approach a value of 50. This outcome was achieved by selecting a wind ratio
range spanning from 0.9 to 1.1, resulting in an average of 40 valid data points inside theMatrix.
In Figure 4.4, the effect of the filter on the power curve established between the archival wind
speed and the turbine output for the same turbine can be observed for all the different values
of the wind ratio.

(a) [TSA, Direction Match, Wind Ratio]= undefined (b) TSA=1, Direction Match=1, Wind Ratio= undefined

(c) TSA=1, Direction Match=1, Ratio= [0.9,1.1] (d) TSA=1, Direction Match=1, Ratio=1

Figure 4.4: Power curve made with archival wind speed for turbine 3T-1
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4.3. The workings of the FMWTP
The archival and the turbine wind speeds are rounded off to the nearest 0.5 m/s values, and
the respective wind directions are rounded off to the nearest 30°. The wind speed and wind
direction datasets are thus binned per 0.5 m/s and 30° to create the matrix Figure 4.5 with the
archival wind speed column ranging from 0 m/s to 22.5 m/s and the archival wind direction
row ranging from 0° to 360°. The averaged values of the power output are rounded off to the
closest 10 kW.

Figure 4.5: Matrix consisting of the averaged turbine power output (in kW) for 3T-1

The forecasted wind speed and wind directions are rounded off to the nearest 0.5 m/s and
30°, respectively. These are then used as the input values for the XLOOKUP function in
Excel (Stockton, 2021). The model employs a nested XLOOKUP function to perform both
VLOOKUP and HLOOKUP operations for the purpose of looking up the averaged wind speed
and averaged wind direction, respectively. Consequently, it retrieves the average turbine out-
put value by referencing the two parameters at each time step. The values obtained from
implementing the XLOOKUP function represent the forecasted turbine output.
For example, in Figure 4.5, to look up the value of the average turbine power for the archival
wind speed and wind direction of 7.5 m/s and 210°, The XLOOKUP function initially does
a horizontal lookup of the wind speed within the vertical column, and subsequently records
the associated power values for all wind directions (shown by the blue highlighting). Sub-
sequently, the model vertically scans for the specific column encompassing the entire power



4.3. The workings of the FMWTP 32

values corresponding to a wind direction of 210° (shown by the yellow highlighting). The
resulting value of the intended power output is determined by identifying the row and column
(highlighted in green).
The vacant cells are needed to be selectively filled. As the Netherlands predominantly ex-
periences wind in the South-West direction (Wingfeet, 2015) i.e. 210° and, 240° and 270° ,
the cells in those wind direction columns are filled out to completion. Before the cut-in wind
speed, the power values in each sector are denoted as 0 kW, while the absent values between
the rated power and the cut-out wind speed are denoted as 3000 kW, corresponding to the rated
power of these turbines. A power curve for the matrix is established for the 240° and depicted
in Figure 4.6.

Figure 4.6: Matrix power curve for 3T-1 for the dominant wind direction 240°.

In the Figure 4.7, the 7-day forecast executed on the 9th of July 2023 is measured against the
actual turbine power observed by the three chosen turbines. In order to evaluate the accuracy of
the forecast values derived from the matrix averaging approach compared to the actual turbine
output, a Root Mean Square Error (RMSE) study is conducted. The turbines 3T-1, 3T-2, and
3T-3 exhibit root mean square errors (RMSE) of 483 kW, 481 kW, and 695 kW, respectively.
There was a notable disparity between the observed and forecasted statistics of turbine 3T-3.
During this time period, the turbine had a time-based system availability (TSA) value of 0
during the initial 106 out of the 168 time slots.
A similar 7-day forecast is done for the 1st of January 2023. The forecast turbine output is
compared to the observed output and plotted in the Figure 4.8. It is observed that there is
an RMSE of 721 kW, 727 kW and 746 kW for the turbines 3T-1, 3T-2 and 3T-3 turbines
respectively. In the Table 4.1, the 7-day forecasts are compared to the 10-day forecasts.
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(a) 3T-1 turbine output: actual vs forecast (b) 3T-2 turbine output: actual vs forecast

(c) 3T-3 turbine output: actual vs forecast

Figure 4.7: 7-day turbine output forecast for the 9th of July, 2023.

(a) 3T-1 turbine output: actual vs forecast (b) 3T-2 turbine output: actual vs forecast

(c) 3T-3 turbine output: actual vs forecast

Figure 4.8: 7-day turbine output forecast for the 1st of January, 2023.
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Table 4.1: Summary table: FMWTP vs. Observed turbine output (3T-1) for January 2023

Date of Forecast
RMSE
7-Day
(EUR)

RMSE
10-Day
(EUR)

01/01/2023 721.00 843.14
08/01/2023 757.82 827.57
15/01/2023 656.77 583.86
22/01/2023 325.20 614.46
29/01/2023 623.25 674.10

The root-mean-square error (RMSE) for the turbine 3T-1, 3T-2 and 3T-3 as a function of the
lead time (0-240 hours) is plotted in Figure 4.9. The RMSE is derived from the difference in
the FMWTP output and the actual turbine output for each time slot. Data was collected from
individual forecasts spanning the period of 42 days starting from the 10th of July 2023 till the
20th of August 2023. As the time step value increases from zero to 240 a sharp increase in the
RMSE value of the turbine output can be clearly observed in all three graphs. The accuracy of
the FMWTP gradually decreases from the 1st day of the forecast till the 10th day. This can be
partially explained by the increase in inaccuracy of the meteorological wind speed and wind
directions with respect to the lead time for the same period under observation. These can be
viewed in Figure D.3 and Figure D.4 in Appendix D.

(a) 3T-1

Figure 4.9: RMSE (in kW) as a function of lead time for all three turbines
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(b) 3T-2

(c) 3T-3

Figure 4.9: RMSE (in kW) as a function of lead time for all three turbines



5
Revenue Model for Wind Turbines

(RMWT)

First, in section 5.1, themethodology of the RMWT is presented. This is compared to the actual
revenue generated by the 3-turbine wind farm. Next, the automation process of the RMWT
is discussed section 5.2. The RMWT is evaluated in comparison to the standard operating
procedure (SOP) for master maintenance, as outlined in section 5.3. In section 5.4, the model
is compared to the actual revenue of the turbine in multiple weeks. Lastly, in section 5.5, the
model is compared to the recommendation given by the ASM team at Green Trust.

5.1. Methodology
The prediction models for electricity prices and turbine output constructed in chapter 3 and
chapter 4 will be used to generate the revenue of the turbines. The period chosen for this
model is the week starting from the 9th of July 2023 and ending on the 15th of July 2023. The
forecasted values of the FMWTP and PMEP for the 9th of July 2023 till the 15th of July 2023
are fed to the RMWT, which uses Equation 2.3 the total forecasted revenue is calculated for
each turbine for the entire week. The product of the Forecast Turbine Power (ATPforecast),
the predictive electricity price (DEPpredicted) and the time step duration give the forecasted
revenue.

[ATPforecast] ∗ [DEPpredicted] ∗ [t] = [Revenueforecast] (5.1)

The forecasted revenues for different periods, specifically during working hours and overnight,
are compared to the actual revenue figures that would have been observed if the turbine output
and day-ahead electricity prices were considered. The actual values of the turbines do not
factor in the TSA values. In Figure 5.1c, illustrates the observed revenue of turbine 3T-3,
which is found to be negative. This negative revenue can be attributed to the turbine’s non-
operational state, resulting from continuing maintenance activities. Hence, these data will not
be considered during the analysis of the forecast’s performance. In Figure 5.1a and Figure 5.1b,
the RMWT performs better overnight than during working hours. This can be either because
of the better performance of the FMWTP, the PMEP, or both for the specific period.
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(a) 3T-1

(b) 3T-2

(c) 3T-3

Figure 5.1: Forecast revenue vs. Actual revenue of the chosen turbines from 09/07/2023 till 15/07/2023

5.2. Automation
This section discusses the automated process of the RMWT. The first step involves supplying
the model with a specific date in order to get the forecasted revenue estimate. The first date
randomly selected for the RMWT was the 23rd of July 2023. After giving the input date
filter ”T1D072300”, the 10-day HRES forecast provided by ECMWF is downloaded for the
corresponding date. The values of the wind speeds for each 1-hour time step from 0:00 hours
on the 23rd of July 2023 till 0:00 hours on the 2nd of August 2023. A few examples of the output
are illustrated in Figure C.7. In parallel, the specified date of 23th of July 2023 is inputted into
the PMEP, a system designed to forecast hourly electricity prices for the subsequent seven-day
period, spanning from 0:00 hours on 23rd to 23:00 on 29th of July 2023. The FMWTP and
PMEP output values are inputted into the RMWT to get the forecasted revenue.
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In Figure 5.2a, Figure 5.2b and Figure 5.2c, the revenue that would be lost for each of the
turbines if any form of maintenance were to be scheduled on these days can be seen. The
forecast revenue for the working hours and the overnight period are then calculated.

(a) 3T-1

Figure 5.2: Forecasted revenue of the chosen turbines from 23/07/2023 till 29/07/2023.

(b) 3T-2

(c) 3T-3

Figure 5.2: Forecasted revenue of the chosen turbines from 23/07/2023 till 29/07/2023.
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5.3. Hypothetical master maintenance
The turbine 3T-3 is the subject of analysis in this particular case study. The turbine has been
reported to undergo the process of comprehensive master maintenance. This would necessitate
the turbine undergoing service for two consecutive days and remaining inactive overnight. The
designated dates for the task in the present year were the 23rd and the 24th of May. The model
was employed to calculate the forecasted loss of revenue for the specified time frame. Based
on the findings, technicians will be provided with an alternative date for carrying out this
task. The model methodology will be used for the 19th of May 2023, the Friday of the week
before the scheduled dates. In this case, the archival forecast will be taken for the date 19th
of May 2023. The figure below presents the forecasted revenue generated on the 19th for the
forthcoming week. Based on the provided information, the user can make informed decisions
regarding the recommended dates for the master maintenance. .

(a) RMWT output

(b) Actual revenue

Figure 5.3: Revenue for the week 21/05/2023 till 26/05/2023 for turbine 3T-3

According to the results obtained from the model, if the master maintenance were to be per-
formed on the 23rd and the 24th, it would lead to a revenue loss of €1655.54. Rather than doing
the task on the dates 24th and 25th, it suggests forecasting a revenue loss of €693.24. When
comparing the forecast to the actual revenue, the dates 23rd and 24th give out a revenue loss of
€717.97 and a loss of €858.55 for the dates 24th and 25th. Either of the date ranges would lead
to a lesser loss of revenue, which is ideal for understanding the benefit of using this model,
which lacks accuracy at the moment but still provides a valid indication.
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5.4. Comparing with actual revenue
In this specific section, a comparison is presented between the forecasted revenue and the
realised revenue of turbine 3T-1 over a span of several weeks. The objective is to ascertain the
degree of correspondence between the model and the revenue across multiple instances. The
model’s input date filter for each week under observation is determined by selecting the day
corresponding to the Friday of the preceding week. In the first example, the input date of the
model is the 21st of July 2023. The corresponding forecast and the actual revenue are plotted
in Figure 5.4. From Figure 5.4a, it can be inferred that the model would suggest performing
any 2-day task on Monday and Tuesday with a forecasted revenue of €490.06. According to
the actual revenue, the master maintenance should also be performed on the same two days,
but the money lost would be much higher than what is predicted by the model. The model was
run on the input dates 14th of July, 28th of July, and 04th of August 2023 for the turbine 3T-1,
and the results can be viewed in Figure 5.5.

(a) Revenue forecast
(b) Actual revenue

Figure 5.4: Forecast vs. Actual revenue for turbine 3T-1 from 22/07/2023 till 28/07/2023.

(a) Revenue forecast (14/07/2023)
(b) Actual revenue (14/07/2023)

(c) Revenue forecast (28/07/2023)
(d) Actual revenue (28/07/2023)

Figure 5.5: Forecast vs. Actual revenue for turbine 3T-1 for multiple weeks
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In the first case, the model suggests Tuesday andWednesday with forecast revenue of €397.21.
The actual revenue on that day was €812.31. According to the Figure 5.5b, the days Thursday
and Friday would result in the least loss of revenue of €460.95 while the €812.31 would be lost
if the decision were to be made using the model. In the next case, the model again suggests
Tuesday and Wednesday as the days with forecast revenue of €1437.75, whilst the actual rev-
enue on those days is €3195.53. The optimum days would be. Thursday and Friday when the
actual revenue is €1889.30. The model indicates a significantly higher value of €5761.04. In
the final scenario, both the model and the actual revenue align, indicating that Wednesday and
Thursday are the recommended days. However, both sources yield notably distinct values of
€1651.76 and €179.43.

(e) Revenue forecast (04/08/2023)
(f) Actual revenue (04/08/2023)

Figure 5.5: Forecast vs. Actual revenue for turbine 3T-1 for multiple weeks

In the 4 cases presented above, the model gives the correct indication 2 out of 4 times when
compared to the actual revenue. Despite the model’s correct indication, it cannot forecast
revenue accurately. Therefore, the model would function as a more reliable indicator rather
than an exact income prediction. In the subsequent section, a comparison is made between the
model and the conventional approach of human input in determining the optimal dates for a
2-day maintenance task.

Table 5.1: Summary table: RMWT vs. Retrospect

Date of Forecast
RMWT

Revenue Forecast
(EUR)

RMWT
Revenue Actual

(EUR)

Retrospect
Revenue Forecast

(EUR)

Retrospect
Revenue Actual

(EUR)
14/07/2023 397.21 812.31 1090.37 460.95
22/07/2023 490.06 1058.42 490.06 1058.42
28/07/2023 1437.75 3195.53 5761.04 1889.30
04/08/2023 1651.76 179.43 1651.76 179.43

5.5. Comparing with regular method
In this case study, each member of the 3-man Asset Management team of Green Trust identi-
fied the ideal dates for performing a maintenance task on turbine 3T-1. They were given the
situation as follows: On Friday, the 11th of August, they will receive a call from the technicians
who want to perform a specific task on the turbine, for example, retrofitting or blade mainte-
nance, and they want to be told two consecutive dates in the next week when they can come to
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the wind farm and perform this task i.e the same time range in section 5.3. The ASM member
must then look at the weather forecast on the spot on Windy (shown in Figure 5.6), make up
their mind and provide a suggestion. This will be pitted against the advice of the RMWT. The
response given to the technician by members A and B was to come on Wednesday the 16th
and work until the evening of the 17th (Thursday), whilst member C instructed the technician
to come on Monday the 14th and work until the evening of the 15th (Tuesday).

Figure 5.6: Windy Forecast (ECMWF) mid-day on 11/08/2023.

According to RMWT, the forecasted revenue for Wednesday and Thursday (as shown in Fig-
ure 5.7 is €738.16. Alternatively, if Monday and Tuesday were suggested, the revenue loss
would be €348.76. If Tuesday and Wednesday were suggested, the revenue loss would be
€125.83, which is a much better value. If the decision were to be made for the dates based
on the RMWT, it would have given an additional saving of €612.33. The values obtained via
RMWT were cross-checked with the actual values of the revenue of the turbine in Table 5.2 to
understand the benefit of using the RMWT and what improvements can be made to get closer
to the actual values.

Table 5.2: Summary table: Decision making (case 1)

Decision maker Forecast revenue
(EUR)

Actual revenue
(EUR) 2-Day period suggestion

Team ASM 738.16 944.75 Wednesday and Thursday
RMWT 125.83 552.45 Tuesday and Wednesday

Figure 5.7: Forecasted vs. Actual Revenue for the input date 11/08/2023
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The 3-man team was again asked for their services on the following Friday, i.e. 18th of August
2023. The situation posed to themwas the same, and theymade their respective decisions based
on the image in Figure 5.8. There was a unanimous agreement to suggest the days Monday
and Tuesday to the technicians for the 2-day task to be performed. As shown in Figure 5.9, the
forecasted revenue for Monday and Tuesday is €101.65. In this case, the model agrees with the
decision made by the 3-man team. The actual revenue for the two days is €300.78. Based on
the model, the suggestions for the days Tuesday and Wednesday are made, with the forecasted
revenue being €165.00. In retrospect, it is evident from Table 5.3 that if these two days were
recommended instead of Monday and Tuesday, the owner would have realised a cost savings
of around €50, compared to the actual income of €249.16.

Figure 5.8: Windy forecast (ECMWF) mid-day on 18/08/2023.

Figure 5.9: Forecasted vs. Actual Revenue for the input date 18/08/2023

Table 5.3: Summary table: Decision making (case 2)

Decision maker Forecast revenue
(EUR)

Actual revenue
(EUR) 2-Day period suggestion

Team ASM 101.65 300.78 Tuesday and Wednesday
RMWT 101.65 300.78 Tuesday and Wednesday

Retrospect 165.10 249.16 Monday and Tuesday



6
Alternate onshore wind farm

The layout of onshore wind farms varies regarding the overall number of turbines and their
alignment. Therefore, evaluating the effectiveness of the FMWTP and RMWT models by
their application to a distinct wind farm case study is imperative. The first section describes the
layout of the newly chosen wind farm. In the next section, the turbines of the newly established
wind farm undergo data checks and filtering processes, followed by the construction of a power
curve that correlates the archival wind speed with the corresponding turbine output. Finally,
the RMWT is run for the new wind farm with the required changes, and the forecast revenue
is shown graphically.

6.1. 5-turbine wind farm
To evaluate the effectiveness of the FMWTP and RMWT models in an alternative wind farm,
a wind farm consisting of five turbines has been selected for testing purposes. The wind farm
configuration can be observed in the Figure 6.1.

Figure 6.1: Terrain map of the 5-turbine wind farm

44
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Similar to the 3-T turbines, the power curve of Enercon E82 (2.3 MW) turbines of the 5-T
wind farm are plotted in Figure 6.2a. The figure shows that the 5T turbines have a cut-in wind
speed of around 2 m/s, a rated wind speed of 14 m/s with its rated power of 2300 kW and a
cut-out wind speed of over 28 m/s.

(a) Ideal power curve

(b) Nacelle

Figure 6.2: 2.3 MW Enercon turbine (Wind Turbine Models, 2023a)

The turbines have a hub height of 78m. The wind speeds measured at the anemometer behind
the turbine’s nacelle in Figure 6.2b are comparable to the wind speeds retrieved from the closest
grid point at 100m. But, to ensure uniform comparison, the wind speeds measured at 100m
height are translated to 78m height. This is done using the Power Law equation shown in
Equation 6.1. It states that for altitudes above 60m, the influence of surface roughness is not
present. To find the wind speed at 78m, the wind speed at 100m is multiplied by the ratio of
the heights (78/100) to the power alpha (α), which is generally considered to be 0.143 over
land (Zaaijer & Viré, 2021).

U(h) = U(href ) ∗
( h

href

)α

(6.1)
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6.2. Check, filter and plot the power curve
Prior to using this wind park as a subject for the two models, it is necessary to conduct sanity
tests and data filtering. In Figure 6.3 below, the wind rose diagrams of the turbine and the
archival data for the closest grid point, which is at a distance of 1.41km from the input location
of the wind farm, can be observed.

(a) 5T-1 (b) 5T-2

(c) 5T-3 (d) 5T-4

(e) 5T-5 (f)MARS

Figure 6.3: Wind rose diagram for the 5T wind farm

On the one hand, it can be observed that the turbines 5T-1, 5T-3, and 5T-4 exhibit a strong
correspondence with the historical data. In contrast, there are notable disparities between the
wind rise diagrams of turbines 5T-2 and 5T-5 when compared to the archive data and the re-
maining three turbines. After conducting a more thorough analysis, the turbines 5T-2 and 5T-5
appear misaligned by almost 30° for the wind speeds in the Southwest direction. This is a gen-
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eral occurrence in many wind farms where the North of more than one turbine can be skewed
significantly, causing it to show the wrong wind direction readings. This is another aspect to
be considered when running these turbines in the FMWTP and RMWT models. To compen-
sate for this, the rounded-off values for the wind directions are altered based on the average
difference for the period under consideration for the archival data.
The grid connection for the 5T wind turbines has a total capacity of 10MW, which means the
turbines with full availability can not produce more than 2MW each at any given time. Keep-
ing this in mind, the archival wind speeds correlate to the Turbine Power with a maximum
attainable value of 2MW per turbine. Thus, compared to the ideal power curve, the Figure 6.4
and the Figure 6.5 have their rated power at 2000kW. For the data filtering, the chosen wind
ratio is 0.78 to 1.22. This gives an average of 46 valid data points between the cut-in wind
speed to the rated wind speed for the 5T-1 turbine and a smooth power curve for the same
region compared to 10 valid data points obtained when the ratio is 1.

(a) TSA= 1, Direction Match= 1, Ratio= [1] (b) TSA= 1, Direction Match= 1, Ratio= [0.78: 1.22]

Figure 6.4: Power curve made with archival wind speed for turbine 5T-1

Figure 6.5: Matrix power curve for 5T-1 for the dominant wind direction 210°
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6.3. Using the RMWT on the 5T wind farm
The forecasted revenue of the 5T turbines from 22nd till 28th of July 2023 is presented in
Figure 6.6. Therefore, it has been demonstrated in this section that both the FMWTP and the
RMWT exhibit effective utilisation across multiple wind farms.

(a) 5T-1

(b) 5T-2

(c) 5T-3

Figure 6.6: Forecasted 5T wind farm turbine revenue from 22/07/2023 till 28/07/2023.
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(d) 5T-4

(e) 5T-5

Figure 6.6: Forecasted 5T wind farm turbine revenue from 22/07/2023 till 29/07/2023.

6.4. Comparing RMWT with actual revenue
The forecasted revenue for the week mentioned in section 6.3 for turbine 5T-3 is compared to
the actual revenue of the turbine for the week. The performance of the RMWT for turbine 5T-3
can be viewed in 6.7. The depicted figure showcases the utilisation of an input date filter set
to the 23rd of July 2023. As a result, the model exhibits enhanced performance in relation to
the real income as the FMWTP is using the more accurate wind speeds of the first seven days
rather than the data from the forecasts from the 3rd day till the 8th day.

Figure 6.7: Forecast revenue vs. Actual revenue of 5T-3 from 23/07/2023 till 28/07/202
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In order to obtain a more precise evaluation of the RMWT for the 5T wind farm. The data
from the same date range is taken, but this time, the input data filter is assumed to be 21st
of July 2023. As can be observed from Figure 6.8, choosing the input date as the 21st, as
opposed to the 23rd, significantly impacts the resulting output of the RMWT. In this instance,
the prediction values exhibit higher inaccuracy than the forecast depicted in Figure 6.7.

Figure 6.8: Forecast revenue vs. Actual revenue of 5T-3 with input date 21/07/2023.
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Limitations of the model and scope for

improvement

In the first section, the limitations of the PMEP will be mentioned. In section 2, the same
would be done for the FMWTP and in the final section, the impact of the limitations of the
two models on the RMWT is discussed. The reasoning for the constraints and limitations is
presented in each section, and possible improvements are explored.

7.1. PMEP
Themajor limitation of the PMEP is the inability of the model to predict negative energy prices.
This leads to the RMSE of the model being higher on the weekends compared to the weekdays.
In subsection 2.1.4, it was observed that these prices are most often on weekends, but on rare
occasions, they also occur on weekdays. Being able to predict these negative prices or even
identify when a possibility may arise can help the accuracy of the model.
The first step is understanding the correlation of electricity prices with renewable generation
and load on the grid. In subsection 2.1.4, it was discovered that when the contribution of re-
newable production is more than 80%, then there is a chance that negative electricity prices
will occur. The second variable in understanding these prices is the demand or, in this case, the
load on the system. When the market on the system is low, and it can supply the demand with
renewables to a large extent, it is possible to expect negative prices. The issue arises for the
prediction of the load. In ENTSOE, the load data is provided on a day-ahead basis. Although
there is an option to retrieve the week-ahead forecast, only singular values are given for the
week-ahead load, which would have to be split into day-ahead loads, which then would have
to be divided into loads per hour.
The same ”Averaged Method” used to predict the day-ahead electricity prices was used to pre-
dict the day-ahead load using the actual load values from previous years and correcting it with
the recent weeks’ load. The RSME ranged around the values 20-50 €/MWh for the electric-
ity prices. However, the RSME was roughly around the 1000-2000 MW region for the load
data, which was a significant difference. But this prediction could well be used to anticipate
negative prices as long as the generation of renewable sources and the total generation could
be predicted. Similar to load data, these values were only available in the day-ahead format.
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For the renewables, a different approach was chosen. The forecast for the parameters viz. Wind
speed, direct solar radiation and total cloud cover were considered values that could be used
to predict renewable production. The Operational data used these parameters from a singular
location, the KNMI headquarters (De Bilt, Utrecht), to correlate them to the actual load. The
idea was to use real-time data with the parameters mentioned above and be able to predict the
negative prices using a linear regression curve. This would, at the least, indicate the possibility
of negative prices.
The first limitation of this method is that it cannot be expected that one location could represent
the weather of all of the Netherlands. This can be rectified by using multiple locations to create
a correlation with the actual historical load and then using the real-time forecast from the exact
locations and the predictive bag to create a predictive model for negative electricity prices. The
second limitation was insufficient time to convince the people at ECMWF to alter the chosen
parameters for the HRES order and implement these changes.
Another limitation of the PMEP is that the recent 3-week average does not always correct the
previous year’s average. If, in the summer period, solar and wind availability is abundant for
a few weeks, that would reflect in the recent 3-week average and would affect the forecasted
electricity price regardless of the weather forecast of the upcoming week. A similarity analysis
of the forecast for the recent three weeks and the forthcoming forecast can help establish if the
recent 3-week average should be used to correct the previous-year standard. This can also
be applied to periods like Christmas or the end of the summer. In both cases, the industries
close operations, affecting electricity prices. At the end of these periods, the reopening of the
industries and offices also results in prices that do not reflect the previous week’s prices.

7.2. FMWTP
The main limitation of the FMWTP is the accuracy of the weather forecast. Depending on
what day of the week the model is run can make a massive difference in the accuracy of the
output. Suppose the model is run on a Sunday, and the result is calculated from that particular
Sunday till the upcoming Saturday. In that case, the model uses the weather forecast for the
1st seven days. But, if the model is made to run on Friday rather than Sunday, then the model
uses the forecast from the 3rd till the 8th day for the 1-week forecast.
The accuracy of the weather forecast reduces with the increase in the time step. If the model is
run on Sunday, the forecast accuracy will be considerably higher than if it were run on Friday.
An example of the impact of the chosen day can be viewed in the results in chapter 4 where the
input date was always a Sunday, but in chapter 5, the model was run on a Friday, and that led to
the turbine output being less accurate than that in the previous chapter. The same comparison
was tested in section 6.4.
A limitation of using the real-time weather forecast is that if the wind speed for a particular
time step is below the cut-in wind speed, the model will give the turbine power output of 0
KW. In some cases, the actual wind speed might be slightly above the cut-in wind speed, or
a wind gust may increase the incoming wind speed. In both cases, the turbine would produce
power, but the forecast would show the produced power as zero. One rectification for this is
to include the parameter for wind gusts and the u and v components of electricity.
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Another limitation of the FMWTP is in filling the wind speed and direction of the missing
time steps from the real-time data. This is done by averaging the known values to find the
unknown values in between, but wind speeds do not follow such a predictable pattern. This
can be observed in Figure D.5 and Figure D.6. A better understanding has to be developed to
fill in the missing wind speeds.

7.3. RMWT
The culmination of the limitations of the PMEP and the FMWTP leads to the poor perfor-
mance of the RMWT in terms of accuracy with the actual revenue of the turbine. The revenue
model uses Equation 2.3 to calculate the total revenue per time step. Nothing can be done to
improve the performance of the RMWT without making considerable changes to the PMEP
and FMWTP. When comparing the performance of the RMWT for the overnight period and
the working hours period, it generally performs better in the overnight period, which is coun-
terproductive as most work on the turbine will be done during the working period. Thus, the
model’s accuracy during that period has to take priority in terms of improvement.



8
Conclusion and recommendation

8.1. Conclusion
The objective of this academic research is to develop a statistical model for the scheduling of
maintenance tasks for onshore wind turbines. The methodology involves the development of
two predictive models, which utilise historical data to estimate electricity prices and weather
API data to predict turbine output. The predicted revenue of the turbines is calculated in a
model called RMWT by combining the outputs of the PMEP and FMWTP. The calculations
have been conducted for a wind farm consisting of three turbines, as outlined in this paper, and
have been compared with the actual revenue data.
The operational mechanisms of the PMEP were formed through the implementation of two
distinct processes, with both methods demonstrating similar performance in terms of RSME.
Subsequently, the root mean square error (RMSE) of 40.26 €/MWh was computed for the pre-
dictive electricity prices. Notably, the predictive model’s electricity pricing (PMEP) perfor-
mance exhibited a superior RMSE on weekdays of 31.69 €/MWh compared to 55.03 €/MWh
on the weekends. In instances where negative prices were recorded, the model exhibited an in-
ability to forecast such negative prices accurately. Consequently, this increases the root mean
square error (RMSE) to 66.57 €/MWh. The weekends exhibited a greater frequency of nega-
tive pricing, resulting in higher RSME values on Saturdays and Sundays.
Following the use of data filtration techniques, a significant correlation was seen between the
wind speed of the turbine and its power output. This correlation facilitated the creation of a ma-
trix comprising the averaged values of the archival wind speed, archival wind direction, and the
corresponding turbine power. The above-mentioned relationship is subsequently employed to
generate a power value that is the foundation for predicting the turbine power associated with
the real-time data. The projected power figure is compared with the actual measurement of
turbine output power. The RMSE was observed in the range €300 till €850. The study re-
vealed that weather forecast data exhibited a decline in accuracy as time progressed, resulting
in a lack of consistency between the predicted power levels and the actual power output of the
turbines.
The outputs of both models were merged to yield a single output representing the turbine’s
revenue. The forecast revenue was evaluated against the actual revenue in several situations.
The indication accurately suggested the need for a 2-day maintenance activity in 2 of the four
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chosen cases with an actual revenue loss of only €1237.85 in the two cases. The model was
further evaluated against the implemented technique, wherein AMT members were assigned
consecutive workdays for the same task based on a weather forecast obtained from Windy.
The model proposed more favourable outcomes than what the members could offer, and a
comparison was made between the projected revenue and the actual revenue to verify the ac-
curacy of the model’s prediction. The suggestions based on the output of the RMWT led to
an actual revenue loss of €853.23. Subsequently, an alternate wind farm was used to evaluate
the model. The model underwent essential modifications and was successfully executed for
the newly established wind farm. Finally, the limitations of both models were discussed. The
major limitation of the PMEP is its inability to predict negative prices, while the FMWTP’s
main limitation is the inaccuracy of weather forecast data.
In conclusion, the RMWT effectively serves as an indicator for the scheduling of maintenance
operations. The model demonstrates a high level of accuracy in predicting electricity costs,
albeit encountering challenges in reliably predicting negative prices. The level of accuracy
in weather forecasting significantly influences the model’s inconsistent prediction of turbine
output. Both of these models collectively contribute to the lack of precision in estimating the
revenue generated by the turbines. The model exhibits versatility in its applicability, as it can
effectively be employed for many wind farms rather than being restricted to a singular wind
farm.

8.2. Recommendations for future work
The ultimate objective of this project is to develop the capability to anticipate and project the fi-
nancial losses incurred by a turbine for the forthcoming week. The procedure should prioritise
user-friendliness and minimise the number of components involved, aiming for instantaneity
or continuity. The model should be able to update itself while in operation, maintaining con-
tinuous functionality dynamically.
The first recommendation pertains to the European Network of Transmission System Opera-
tors for Electricity ENTSOE. The website offers the capability to utilise its application pro-
gramming interface (API), which can then be merged with the API of the real-time data from
ECMWF, resulting in a unified command file. This would facilitate the complete automation
of the RMWT. Updating electricity pricing for the PMEP involves manual weekly updates in
the Excel spreadsheet.
The second recommendation concerns the selection of parameters for the data arrangement in
the HRES 10-day forecast and the operational archive. The correlation between the turbine
and forecast data can be more detailed by choosing certain parameters like temperature and
pressure. These two parameters can be used to predict the air density, determining if the tur-
bine will produce a higher or lower power value for the same wind speed and direction.
The third recommendation is also in regard to the parameters in the data order for real-time and
archival data. The parameters of direct solar radiation and total cloud cover can be used along
with the wind speeds across multiple locations in the Netherlands to establish the weather for
the nation per date and time. Through this process, a study can be done with the archival data,
the historical negative prices and the load on the system. This understanding can be applied to
the PMEP to increase the accuracy of the models about its ability to identify the negative price
occurrences in the energy market.
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The fourth and final recommendation is to invest in storage solutions for producers and con-
sumers alike. By implementing this approach, renewable energy producers would no longer
need to curb their production whenever there is a decrease in demand. The surplus electric-
ity can be stored and subsequently utilised to power the corresponding wind or solar farms.
Consumers can utilise stored electricity as an alternative to procuring electricity at excessively
high costs. This will ultimately result in stabilising power prices, benefiting both parties in-
volved and reducing the frequency of negative electricity prices, consequently enhancing the
precision of the PMEP.
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A
Windy comparison

Figure A.1: Location: Comparison of all different weather forecast models for the location of 3T wind farm(1)
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Figure A.2: Location: Comparison of all different weather forecast models for the location of 3T wind farm (2)
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Figure A.3: Location: Comparison of all different weather forecast models for the location of 3T wind farm (3)
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B
Datasheets

B.1. Vestas V-90 3MW

(a)

(b)

Figure B.1: Datasheet for the Vestas V-90 3MW turbine (Wind Turbine Models, 2023b).
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B.2. Enercon E-82 2.3MW

(a)

(b)

Figure B.2: Datasheet for the Vestas V-90 3MW turbine(Wind Turbine Models, 2023a)
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C
Miscellaneous (screenshots)

C.1. ENTSOE-webpage

Figure C.1: Day-ahead prices for the Netherlands on 08/03/2023 (ENTSOE, 2023).
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C.2. Real-time data

(a) Real-time data in GRIB format

(b) Real-time CSV data (altered)

Figure C.2: Real-time data from ECMWF

C.3. MARS interface and Excel output

(a) Request file for the date 01/01/2018

(b)MARS interface

Figure C.3: The input for the process of generating the data using the MARS-API.
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(a) 01-01-2023.grib

Figure C.4: The output for the process of generating the data using the MARS-API.



C.3. MARS interface and Excel output 71

(b) 01-01.2018.csv

Figure C.4: The output for the process of generating the data using the MARS-API.
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C.4. Excel files for real-time data

(a)
(b)

(c)

Figure C.5: Real-time data CSV file for the 9th of July 2023.
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(a)

(b)

(c)

Figure C.6: Real-time data XLSX file for the 9th of July 2023.
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C.5. Matrix method

(a)

(b)

Figure C.7: Predictive turbine output forecast for all the 3 chosen turbines in the file ”Matrix Method.xlsx”
created for the 23rd of July 2023.
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(c)

Figure C.7: Predictive turbine output forecast for all the 3 chosen turbines in the file ”Matrix Method.xlsx”
created for the 23rd of July 2023.

(a)

Figure C.8: Predictive electricity price forecast initiated on the 23rd of July 2023.
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(b)

(c)

Figure C.8: Predictive electricity price forecast initiated on the 23rd of July 2023.
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C.6. Calendar

Figure C.9: The calendar month of August from 2018-2023



D
Supplementary graphs

D.1. Literature review
Figure D.1 and Figure D.2 are cited from the research study conducted by Reder et al., 2016.

Figure D.1: Normalised failure rates and downtimes for Geared G ≥ 1MW turbines

Figure D.2: Normalised failure rates and downtimes for Direct Drive turbines
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D.2. FMWTP

Figure D.3: Wind speed accuracy

Figure D.4: Wind direction accuracy
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D.3. Limitations

Figure D.5: FMWTP per 3-hour data comparison with turbine data.
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Figure D.6: FMWTP per 6-hour data comparison with turbine data.
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