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Abstract
Many quantum internet applications need access to
multiple entangled links existing simultaneously.
This requires the generation of multiple entangled
links within a time window. Using single entangled
link generation protocol, we model this task as a
Markov decision process and propose a heuristic-
based policy to generate them. This policy chooses
different configuration parameters depending on
the number of links in the register. Entanglement
purification is also incorporated into this heuristic
in different ways. To compare, we choose two
baseline policies including a previously studied
fixed configuration parameter policy. We show that
this algorithm completes the generation up to six
times faster than the baselines in our simulations
and that using entanglement purification can
further improve its performance.

1 Introduction
In the domain of quantum internet, an entangled link is two
remote qubits that are entangled to each other which share a
correlation stronger than classical bits [1][2]. Such links can
be used as a vital resource in quantum internet [3]. The simul-
taneous availability of multiple entangled links is required
for many applications that are not feasible otherwise in clas-
sical communications. This includes Blind Quantum Com-
putation(BQC) [4] as well as extending entangled links via
repeater chains [5]. However, the entanglement generation
faces various challenges. Thus finding an efficient protocol
for generating multiple entangled links with minimised time
becomes a stepping stone toward achieving a full-fledged
quantum internet [3].

The two main obstacles here are generation success prob-
ability and noise. In a typical heralded entanglement genera-
tion scheme which is commonly used today [6], the success
probability of generating an entangled link can be as low as
5 × 10−5 [7]. Even after heralding multiple generations, we
still cannot guarantee that they ensure a successful genera-
tion. At the same time, the links we generate are never per-
fect. After the entangled link is established and stored in a
quantum register, it also suffers from decoherence that arises
from the interaction between the register and the environment
[1]. This decreases the quality of the link over time until the
link is too noisy to be kept useful. Thus, we must find a way
of generating entangled links before the existing links are dis-
carded due to low quality.

In an experimental setting for entanglement generation,
several generation actions can be chosen by selecting differ-
ent configuration parameters. This will affect two quantities:
the successful generation probability, and the quality of the
link. The goal is to simultaneously establish n entangled
links up to a certain quality threshold over the communica-
tion channel. Previously, this problem was characterised un-
der the assumption that the instrument can generate entangled
links with a fixed success probability and quality (fixed con-
figuration parameters) [8]. And we are tempted to ask: can

we improve the performance by using different configuration
parameters cleverly?

In this work, we model the process of generating multi-
ple entangled links as a Markov decision process (MDP). We
propose a policy on this MDP with a trimmed action space
and a heuristic that chooses actions based on estimating the
time needed to generate future links. In our simulations, this
can improve the performance up to six times compared to a
fixed configuration parameter approach.

We also consider the effect of entanglement purification on
entanglement generation. Purification is a process that can
bring multiple low-fidelity entangled links to higher quali-
ties with some probability. We have developed a way to in-
corporate two-to-one purification schemes into our heuristic.
Specifically, we consider the Extreme Photon Loss (EPL-D)
scheme [9][10] and the DEJMPS scheme [11] in our simu-
lation results to show the improvement that purification can
bring.

We first cover the background in Section 2. Here the
model of interest is defined as well as several useful con-
cepts throughout the paper. We also justify the assumptions
we have made for the model. Next, we introduce our heuris-
tic and the policy in Section 3. Here we explain the heuristic
policy and how purification protocols can be added to our pol-
icy in different ways. The simulation results are illustrated in
Section 4, accompanied by discussions and analysis of the
results. Finally, the conclusion and future directions are in
Section 5.

2 Preliminaries
2.1 Background
Entangled link
A quantum state can be represented by a unit vector in the
Hilbert space |ψ⟩ ∈ H ; e.g, the state of a qubit is a vector
with dimension d = 2. Quantum mechanics postulate de-
mands that for two systems A,B with corresponding Hilbert
space HA,HB , the Hilbert space of the compound system
would be their tensor product:HAB = HA ⊗HB . A perfect
entangled link |Ψ⟩ is a maximally entangled state in a two
qubits systemHA ⊗HB which can be written as

|Ψ⟩ = 1√
2
(|ψ0⟩|ϕ0⟩+ |ψ1⟩|ϕ1⟩) (1)

for some orthonormal basis {|ψ0⟩, |ψ1⟩} ∈
HA, {|ϕ0⟩, |ϕ1⟩} ∈ HB . On the other hand, when we
are uncertain about the specific state a system is in, we
can express the state in a more general way as a classical
probabilistic mixture of states known as the mixed state:

ρ =
∑
i

pi |ψi⟩⟨ψi| ,
∑
i

pi = 1, pi ≥ 0. (2)

In reality, the entangled links we generate are always noisy
and take the form of a certain mixed state. We define the
quality of a link as the ’closeness’ between the perfect en-
tanglement state and the link known as the fidelity between
them:

F (|Ψ⟩⟨Ψ| , ρ) = ⟨Ψ|ρ|Ψ⟩ ∈ [0, 1]. (3)
If not specified otherwise, fidelity in this paper refers to the
fidelity with the perfect entanglement state.
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Success probability and fidelity trade-off
At each generation attempt, we conduct multiple entangle-
ment generations that in total have a certain success proba-
bility p to generate a link with fidelity F . All the attempts
will cost a constant amount of time ∆t. In a typical heralded
entanglement scheme, we can continuously tune the success
probability p and fidelity F with a linear trade-off between
them:

F = 1− λp, p, F ∈ (0, 1). (4)

The derivation of this trade-off relation and the formula for
λ are specified in Appendix A. A typical λ can take a value
between 0.1 to five (e.g., in [6] we have λ = 2). For the rest of
the paper, we assume that all our generation attempts follow
this trade-off relation. However, other possible relations can
be derived. We show a different trade-off relation based on
interpolation in Appendix B.

Noise model and fidelity bins
After an entangled link is established and stored in the quan-
tum register, the noise arising from its interaction with the
environment is generally complicated. The exact noise will
heavily depend on the actual realisation and calibration of the
platform. However, it has been shown that if we assume the
noise to be Markovian, then we can always use the depolar-
ization noise model as a worst-case model to describe the sys-
tem [12]. Depolarization noise channel can be seen as Pauli
operators randomly acting on the state in a Poisson process,
characterized by a single positive decay parameter Γ′:

E(ρ) = e−Γ′tρ+ (1− e−Γ′t)
I

4
. (5)

Together with the fidelity definition in (3), we can see that
the fidelity decays exponentially towards 1

4 (the fidelity of a
maximally mixed state):

F (t) =

(
F0 −

1

4

)
e−Γ′t +

1

4
. (6)

Given that each timestep is constant, we can discretize the
depolarization process based on each subsequent generation
attempt after a link is established:

F (n) =

(
F0 −

1

4

)
e−Γn +

1

4
. (7)

Here we define the discrete decay rate Γ = Γ′∆t which is
referred to below as the decay rate. This tells us the fidelity
of a state after n generation attempts given its initial state
fidelity F0.

Low-fidelity entangled links have been subjected to a lot
of noise. For example, a state with fidelity lower than 0.5
can be a separable state that does not have any entanglement.
Therefore, we require that the fidelities of the links we want
to be higher than a certain threshold Fth. Any link lower than
this threshold is not useful anymore and is discarded. Due
to the depolarizing noise mentioned above, an entangled link
in the register only has a limited amount of time before its
fidelity goes below the threshold. This allows us to perform a
limited amount of entanglement generations.

Suppose the entangled link that we have generated has ini-
tial fidelity F . Using (7), we can derive how many timesteps
n it took before the link decays below the threshold Fth and
is discarded:

(F − 1

4
)e−Γn +

1

4
≥ Fth ⇒ n <

1

Γ
ln

F − 1
4

Fth − 1
4

. (8)

We thus define the maximum number of timesteps a link can
have before its fidelity drops lower than Fth as its fidelity bin
n(F ):

n(F ) =

⌊
1

Γ
ln

F0 − 1
4

Fth − 1
4

⌋
. (9)

A visualization for the fidelity bin can be found in Figure 1

Figure 1: Each bi here is a fidelity bin. We can see that the fidelity
ranges for different fidelity bins are different since fidelity decays
exponentially with depolarization noise. Adapted from B. Davies
with permission.

This fidelity bin can be interpreted as the lifespan of a link,
which will decrease by one after each generation attempt. It
also signals how many entanglement generations we can do
before this link is discarded. If a link is in fidelity bin zero,
this means that once the next generation attempt is finished,
its fidelity will be below the threshold and being discarded.

The binning process also assigns two links with different fi-
delity to be within the same bin. This means that their fidelity
will not make a difference to our system since the genera-
tion attempts do not cost an arbitrarily small amount of time.
We can thus describe the state of a link by its corresponding
fidelity bin n(F ).

2.2 A Markov decision model
In this section, we define the system formally as an MDP
based on the observations above. To summarize, our system
can be defined by the following parameters:

• s, the number of entangled links we want to generate;
• Fth, the fidelity threshold for the entangled links we

want;
• Γ, the decay rate for the quantum register;
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• {(p, F ) ∈ (0, 1)2}, the entanglement generation
scheme.

An MDP is a 6-tuple (S,A, Pa(s, s
′), sinitial, Sterminal, Ra)

where

• S is the state space which consists of all possible states
in the system. Here we can define it as

S = {T : |T | ≤ s,∀ni ∈ T, 0 ≤ ni ≤ n(1)}, (10)

where the state T here is the set of fidelity bins for all ex-
isting entangled links in the register. Note that the state
size will not exceed the total number of required links s
and the fidelity bin is between zero and the maximal fi-
delity bin n(1) (the lifespan for a perfect entangled link);

• A is the action space, representing all possible actions
we can do within a timestep. We directly call the fidelity
of the link that an action can create as the fidelity of an
action. The Heralded entanglement generation scheme
will give us a continuous action space with parameter λ:

A = {(pa, Fa) : pa, Fa ∈ (0, 1), Fa = 1− λpa}. (11)

In experiments we might also want to restrict our-
selves to a smaller action space with a restricted p ∈
(a, b), 0 ≤ a < b ≤ 1:

A = {(pa, Fa) : p ∈ (a, b), Fa ∈ (0, 1), Fa = 1−λpa};
(12)

• Pa(s, s
′) is the transition function representing the prob-

ability distribution of the next state s′ given the previous
state s and action a. In our system, this transition char-
acterises the following steps:

– A decay process where each fidelity bin in the state
will degrade by one. Any link with fidelity bin 0
will be discarded, e.g., {0, 2, 3, 5} → {1, 2, 4},

– Based on the action (pa, Fa) we have chosen,
a new link is added with probability pa: if the
generation attempt is successful, a link with fi-
delity bin n(Fa) will be added to the register, e.g.,
(success){1, 2, 4} → {1, 2, 4, n(Fa)};

• sinitial is the initial state of the MDP with no links in
the quantum register sinitial = ∅;

• Sterminal is the set of terminal states where the MDP
ends with s links in the register Sterminal = {T ∈ S :
|T | = s}.

Since we use a heuristic approach in this paper, we do not
need to define the reward function Ra.

2.3 Purification
Purification, also called entanglement distillation, is a pro-
cess that transforms multiple noisy entangled links into links
with higher fidelity via local operation and classical commu-
nication (LOCC) [1][13]. In this paper, we utilize two well-
studied purification schemes. Both of them purify two iden-
tical copies into a single link with some success probability.
Failing the purification process will result in the loss of all
input states. They also require only one round of classical

communication and the time for the purification process is
negligible in our model.

The single-click protocol for entanglement generation that
we specified in Appendix A generates links with fidelity F0

in state ρ = F0 |Ψ+⟩⟨Ψ+|+ (1− F0) |00⟩⟨00| where the Bell
state |Ψ+⟩ = 1√

2
(|01⟩+ |10⟩) is a maximally entangled state.

This can be transformed into R-states with equal fidelities by
applying X gate locally on both sides:

ρ
X1⊗X2−−−−−→ F0

∣∣Ψ+
〉〈
Ψ+

∣∣+ (1− F0) |11⟩⟨11| . (13)

EPL-D purification scheme [9] takes in such R-states [10] and
returns a perfect entangled link |Ψ+⟩⟨Ψ+| with probability

pepl =
F 2
0

2
. (14)

Notice that the EPL-D scheme only works for R states and we
can only apply it immediately after the links are generated.

To purify links in the register that have gone through
stochastic noise, we can first transform them into a Werner
state ρ′ = 4F0−1

3 |Ψ+⟩⟨Ψ+| + 1−F0

3 I with equal fidelity F0

via local operations. Then we can apply DEJMPS purifica-
tion protocol [11]. This purification process has a success
probability

pD =
8F 2

0 − 4F0 + 5

9
(15)

to generate a link with fidelity

FD =
10F 2

0 − 2F0 + 1

8F 2
0 − 4F0 + 5

. (16)

The exact steps of carrying out the two purification schemes
are specified in Appendix C.

3 Heuristic and Policy
3.1 Action space reduction
Notice that the definition of fidelity bins in (9) contains a floor
function. For two different actions (pa, Fa), (pb, Fb) that are
rounded down to the same fidelity bin n(Fa) = n(Fb), they
share the same lifespan and only differ in their corresponding
success probabilities. Therefore, within the same fidelity bin,
the action with maximum fidelity will be strictly better than
other actions.

Given the action space in (12), we can define the optimal
action within some fidelity bin n as:

(pn, Fn)optimal = argmax
a
{pa : (pa, Fa) ∈ A, n(Fa) = n}.

(17)
Since the trade-off is linear, maximizing the probability
means that this optimal action produces a link with minimal
fidelity: the lower bound fidelity to have fidelity bin n. This
implies that after it decays to fidelity bin 0, its fidelity will be
exactly Fth. Note that we can only define an optimal action
if the corresponding fidelity bin is achievable in the original
action space: n(Fmin) ≤ n ≤ n(Fmax).

We can thus restrict the whole action space to a finite opti-
mal action subset

Aoptimal = {(pn, Fn)optimal : n(Fmin) ≤ n ≤ n(Fmax)}.
(18)
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We can see that the discrete nature of the batched attempts
not only gives a finite state space but a discrete optimal ac-
tion space as well. This leaves only a discrete set of fidelities
desirable to generate. Such restriction simplifies the action
space and reduces the complexity of the MDP dynamics. It
can also remove the unnecessary fidelity requirement within
the same fidelity bin in the heuristic policy below.

3.2 Look-ahead heuristic and policy
Look ahead
One difficulty in finding a desirable policy for the MDP is the
big state space. As the size of the state space grows exponen-
tially with the number of links.1

To avoid complicated analysis of the state space, we adopt
a heuristic called look-ahead which only considers the num-
ber of links in the current state. Here we look ahead to de-
rive the current action based on future expectations instead
of looking back on different fidelity bins of the links in the
current state.

The basic observation here is that the current link we want
to generate needs to survive when all necessary links have
been generated. This is a reasonable requirement since it
would be pointless if we tried to generate a link that would
be discarded by the end of the generation. We denote the fi-
delity bin of the link we want to generate as ncurrent and the
estimated time ahead to generate the rest of all the links as
tahead. This heuristic can be expressed as ncurrent needs to
be proportional to tahead:

ncurrent ∝ tahead. (19)

Qualitatively speaking, the link wants a long lifespan at the
start since it takes more time to generate other links in the
future. On the other hand, the last few links that we want
to generate can have lower fidelity bins (thus higher success
probabilities) to cost less generation time.

Look-ahead policy
Based on the heuristic above, we can derive the policy in a
backward manner with the algorithm below.2 The three pa-
rameters here are the number of links we need to generate s,
the optimal action space we derived in action space reduction
Aoptimal, and the proportion factor α for the relation in (19):
ncurrent = α · tahead.

This new proportion factor α can be interpreted as how
‘secure’ we want the current link to be. Policy with a high α
value tends to generate links with higher fidelity bins. Since
the time we need to generate the links ahead is a distribution
associated with our estimation for the time ahead, higher α
grants the current link a bigger chance of surviving till the
last generation. On the other hand, small α generates the cur-
rent link with a higher success probability and thus costs less
average time to generate it.

1We show this in Appendix D
2In general, we cannot assume that there exists an action that

has the fidelity bin ⌊α · tahead⌋}. In this case, we can assign the
action with the closest fidelity bin to the required bin. An example
is shown in Figure 4 where we hit the lower and upper bound of the
action space.

The returned ‘policy’ π′ : N → Aoptimal will tell us
the action π′(i) to carry out for generating the ith link in
the register. In other words, we can write the whole policy
π : S → Aoptimal as π(T ) = π′(|T |+ 1), |T | is the number
of links for a register state T . We also denote the estimated
time ahead after the ith link is generated as tahead(i)

Algorithm 1 Heuristic Policy(s,Aoptimal, α)

tahead(s)← 0 ▷ no need to generate future links
π′(s)← argmax

a
{pa : (pa, Fa) ∈ Aoptimal, Fa ≥ Fth}

for i = {s− 1, s− 2, . . . , 2, 1} do
tahead(i)← tahead(i+ 1) + 1

pπ(i+1)
▷ increase tahead

π′(i)← arga{n(Fa) = ⌊α · tahead⌋} ▷ the heuristic
return π′

We start from generating the last link when we already have
s − 1 link in the register. The optimal action here would be
the action with maximum success probability as long as its
fidelity is above Fth.

To see this, suppose the optimal policy carries out an ac-
tion with non-maximum success probability pa < pmax when
there are s − 1 links in the register. If it succeeds, the gen-
eration ends immediately just like succeeding with maximum
success probability action, and in both cases the future gener-
ation time is zero. If it fails, it will end up with the same state
as the maximum success probability action fails. From the
Markovian property of the system, the same state will give
the same future generation time. However, pa has less prob-
ability of success which will end the generation immediately.
Therefore, this action takes a longer time to finish the gener-
ation on average.

Thus we assign the policy for generating the last link
π′(s) = argmax

a
{pa : (pa, Fa) ∈ Aoptimal, Fa ≥ Fth}.

Since we do not need any future attempts once this link is
generated, the estimated time ahead when this link is gener-
ated is tahead(s) = 0.

Next, the time to generate a new link for an action with
probability p is a geometric distribution P (Tp = a) = (1 −
p)ap. The average time for it is E[Tp] = 1

p . If the future
policies π′(i + 1), π′(i + 2), . . . , π′(s) are settled, we can
calculate the average time for carrying them out as

tahead(i) =

s∑
k=i+1

1

pπ′(k)
. (20)

We then use the heuristic π′(i) = arga{n(Fa) =
⌊α · tahead(i)⌋} to assign the action for the current policy.
The floor function here removes unnecessary fidelity require-
ments. In this way, each previous policy can be derived itera-
tively.

We can see that both tahead(i) and π′(i) do not depend on
the fidelity bin of the fidelity bins of the links in the current
register. This allows them to be precomputed before the ac-
tual generation starts.

Also, note that tahead(i) is the average time for success-
fully generating s− i links in the future. It does not guarantee
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that all of these links will survive in the register by the end of
the generation.

3.3 Incorporating purification
Both purification protocols we mentioned in the previous sec-
tion require two identical copies of entangled links. There-
fore, we need to modify our actions slightly. We assume that
the success of each action will now create two links that are
ready for purification afterwards. Based on this change, we
give two different ways of including purification

Purification on arrival
For each successful generation attempt (pa, Fa) ∈ A, we can
carry out a purification process right away. This allows us to
define a new action for each old action:

(pa, Fa)
purify−−−−→ (papp(Fa), Fp(Fa)). (21)

This new action will succeed if both the generation and pu-
rification process are successful and will produce one link in
that case. Here pp(F ), Fp(F ) are the functions representing
the purification success probability and resulting fidelity with
input fidelity F . In this way, a purification scheme will create
a new set of actions Ap that has the same size as the original
action space Aoptimal.

However, we cannot directly apply the previous algorithm
to the system with extended action space A′. This is because
actions that produce one and two links are not directly com-
parable.

Generating more links per action reduces the time for fu-
ture generation attempts. Suppose we have i−1 links in mem-
ory, an action that generates two links has the future genera-
tion time tahead(i+1). An action with purification only gives
one link, and it has the future time estimation tahead(i) in this
case. The heuristic thus gives us two actions – an action anop
without purification and an action ap with purification:

anop = arga∈Aoptimal
{n(Fa) = ⌊α · tahead(i+ 1)⌋}, (22)

ap = arga′∈Ap
{n(Fa) = ⌊α · tahead(i)⌋}. (23)

We then choose the action that will give a smaller
time ahead increase for tahead(i − 1): π′(i) =

argminap,anop

(
1

panop
+ tahead(i+ 1), 1

pap
+ tahead(i)

)
.

This reduces the generation time for generating the current
link. With (20), this comparison can also be written as

1

panop

∼ 1

pap

+
1

pπ′(i+1)
. (24)

The overall policy algorithm is:
In our simulation results, we purify under the EPL-D

scheme. The overall success probability of the new action
follows from (4) and (14):

p′a = papp(Fa) =
paF

2
a

2
=
F 2
a − F 3

a

2λ
. (25)

Since this will produce a perfect link with fidelity 1 regard-
less of the input states, we choose the action with fidelity
Fa = 2

3 to maximise the success probability.3 Therefore we

3If in experimental setting Fa = 2
3

is not achievable, we can
always find another value that maximises the probability

Algorithm 2 Policy with Purification(s,Aoptimal, α)

tahead(s)← 0
π′(s)← argmax

a
{pa : (pa, Fa) ∈ Aoptimal, Fa ≥ Fth}

for i = {s− 1, s− 2, . . . , 2, 1} do
tahead(i)← tahead(i+ 1) + 1

pπ(i+1)

anop ← arga∈Aoptimal
{n(Fa) = ⌊α · tahead(i+ 1)⌋}

ap ← arga′∈Ap
{n(Fa) = ⌊α · tahead(i)⌋}

if 1
panop

< 1
pap

+ 1
pπ′(i+1)

then
π′(i)← anop

else
π′(i)← ap
return π′

can view EPL-D as adding a single new action in the action
space Ap = {(p′max, 1)} where p′max is the maximum suc-
cess probability for all actions with purification. Since we
only have one action for purification that produces perfect
link, we only need to evaluate anop here and compare with
(p′max, 1) using (24).

Purification in the end
We can also incorporate purification as a modification on the
transition function of the MDP: Whenever two links reach fi-
delity threshold Fth and are about to expire, we automatically
purify them during that timestep. In this case, purification
strictly improves the performance since the two links would
expire otherwise. We have also tried different thresholds for
purifying two states, but simulation results showed that Fth

gives the best performance in most cases. However, this ap-
proach gives us less insight into the dynamics of the system
and we use it as a comparison to the above case.

Since the links in the register with threshold fidelity suffer
from depolarizing noise, we assume them to be Werner states
ρ = 4Fth−1

3 |Ψ+⟩⟨Ψ+|+ 1−Fth

3 I and adopt DEJMPS protocol
for the two links.

4 Results
4.1 Heuristic policy without purification
We first illustrate the properties of the heuristic without con-
sidering purification. We compare the heuristic’s perfor-
mance to the random action and fixed action policies, then
we show how changing the number of links we want changes
the performance of the heuristic.

With an action space where p ∈ (a, b), the two baselines
that we choose here are

• random action: At each timestep, the policy chooses ran-
domly between two extreme actions (with maximum and
minimum success probability) in the action space A,

• fixed action: At each timestep, the policy always
chooses a fixed action with the mean success probability
a+b
2 .

In the case of generating four links, the heuristic costs less
than half the time to finish the generation compared to the two
baselines as shown in Figure 2. We can see that in this specific
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case, the performance has a sweet spot when α is at around
1.1-1.26. This can be viewed as a balance between generat-
ing high-quality links and generating links quickly. We also
notice that the policy varies discretely with changing α. This
is due to our restricted action space Aoptimal being discrete.
However, applying the whole action space A will also have
the same discrete jumps as what we have seen in Figure 2.
This jump arises because the fidelities of actions are assigned
in discrete fidelity bins in our model.

Figure 2: This is how the performance for generating four links
changes when we tune the proportional factor α. It is possible to
tune α below 1, but that in general performs poorly. Tuning α too
low will also cause the policy not being able to produce s links at all.
The fixed error and random error at the bottom are the errors with a
95% confidence interval for the two baseline policies.

The heuristic works better for a less near-term network
where more links are required and the system has a lower
decay rate4. We show the result for generating 20 links with
a lower decay rate in Figure 3. Here the heuristic is six times
faster than the fixed action policy and 45 times faster than
the random action policy. This shows that random action and
fixed action are far from optimal in the regime of large link
numbers s. At the same time, the action space and state space
grow larger accordingly. Thus searching for an optimal pol-
icy via policy iteration or machine learning would be compu-
tationally costly. Therefore the heuristic can be particularly
helpful in this case.

We also witness the performance in Figure 3 with a very
sharp increase when α is small. We observe that the genera-
tion time follows a short-tailed distribution regardless of the
policy that we choose. Since in our heuristic ⌊α · tahead⌋ can
be seen as a cut-off that guarantees the link will survive if the
generation time for the rest of the links does not exceed the
cut-off, when we vary α too low, the probability of survival
drops sharply. This also shows that optimizing α is a very
important step for this heuristic.

4A lower decay rate implies a register with less decoherence
noise or the time for each generation attempt is shorter.

Figure 3: Here we show the case for generating 20 links. We can see
that the expected time ratio gets widened compared to the 4 links’
case. The heuristic policy can be up to six times faster than the
fixed action policy and 45 times faster than the random action policy.
However, when α = 1, the heuristic policy would perform even
worse than the fixed action policy. The fixed error and random error
at the bottom are the errors with a 95% confidence interval for the
two baseline policies.

The performance of the heuristic when we vary the num-
ber of links s is shown in Figure 4. The blue line shows the
performance and the red line shows the bin n(Fπ′(1)) for the
new action that is appended for each policy. Since tahead is
estimated backwards, every time we want to generate an ad-
ditional link, we only append a new action at the beginning
of the previous policy. For example, if the policy for s = 2 is
[a2, a1], the policy for s = 3 would be [a3, a2, a1] for some
action a3 at the beginning. Therefore, the policy for generat-
ing s links can be seen as the partial red line on the left side
of x = s. We see that as tahead grows, no action can offer
the corresponding fidelity bins at some point, and the action
would be fixed to the one with the highest fidelity bin after-
wards. This appears to be the start of bad performance for
the heuristic. Any increase in the number of links we want
will result in a fixed action and the expected generation time
will grow rapidly afterwards. The performance would then
appear similar to the fixed action case [8] where the expected
time is bounded exponentially in the worst case. This may
be the limit for the heuristic. On the other hand, it may also
indicate the limit of the system configuration itself: we are
hitting some hardware limitations for generating more than a
certain amount of links efficiently.

4.2 Heuristic policy with purification
To see the further improvement from purification, we com-
pare the two different purification approaches with the orig-
inal heuristic policy. Figure 5 shows the performance for
all the different approaches with varying numbers of links to
generate. Here the performance is optimized over α.

The first thing we realize during our research is that purifi-
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Figure 4: For the blue line, the figure shows the performance for
generating different numbers of links. For the red line, it shows
the action we carry out given the number of links we still need to
generate. Since the policy π′ only depends on the number of links,
the policy for generating s links is the partial red line on the left
side of x = s. When the number of links s is high enough(in the
figure its about s = 13), the policy has to choose the highest fidelity
bin action to start with constantly if we increase s even higher. At
this point, the expected time of the heuristic will start to increase
significantly.

cation depends on the actual fidelity of the link. This means
that the fidelity bin itself is no longer enough to characterize
the system dynamics. The links need to have higher fidelities
in order to have a higher success probability during purifica-
tion. For DEJMPS protocol, the fidelity jump also depends
on the input fidelities from (16). This means that purification
works better when we have higher threshold Fth and lower
decay rate respectively. This makes purification more useful
for less near-term quantum networks. In Figure 5, we set the
threshold to be 0.9.

According to Figure 5, purification on arrival does not per-
form as well as purification in the end. Specificly when
s = 16, it is even worse than the baseline without purifica-
tion. To our surprise, a small modification for the purifica-
tion on arrival approach changes its performance. We can see
that the modified purification outperforms both approaches
steadily and has the least expected time.

The modification is on (24) and we show the whole al-
gorithm in Appendix E. We assume that the next action af-
ter the purification action is similar to the purification action
π′(i+1) = ap. Then we only need to compare 2panop

∼ pap

and choose the action that is bigger in the comparison:

π′(i) =

{
anop 2panop

> pap

ap 2panop ≤ pap

. (26)

The new policy afterwards removes occasional purification
actions when there are many links in the register. While in
the earlier stages of the generation, the policy is still very
similar to the policy without modification. The improvement
might be because policies with more purification actions take
more steps to finish, and this leads to a higher variance for

the generation time. When multiple links are in the register,
higer variance makes it easier to lose the existing links.

The expected time ratios between no purification and the
three purification approachs are shown in Figure 6. When
generating odd numbers of links, purification gives a higher
improvement ratio. This is most probably because actions
without purification only generate two links, and purifying
two links to one link would help obtain the additional one
link of the 2n + 1 links we want. For an even number of
links, as the number of links increases, the expected time for
the baseline can still be 50.4% higher than the expected time
for the modified purification approach.

However, the two purification-on-arrival approaches don’t
always perform well. We have seen cases where they can
have the same policy as the baseline: the heuristic simply re-
gards the purification actions as not worthy to be used here.
This gives zero improvement since purification is completely
overlooked by the heuristic. In this case, purification in the
end would be a better choice. The fact that it strictly gives
improvement under any configuration makes it more robust
compared to the other two approaches. Another potential ad-
vantage of this approach is that fidelity drops exponentially
under depolarizing noise and makes the fidelity decrease to
slow down over time. We can see that the fidelity bins be-
come smaller when they are close to the threshold in Figure
1. Therefore, carrying out purification at the threshold grants
bigger fidelity bin leaps.

Figure 5: For each data point we optimize a different α ∈ (0.9, 1.7)
for the shortest expected time. The baseline is less stable since each
action will create two links, this means that the performance would
be stepwise for every two more links to generate. On the other hand,
the curve for policies with purification are much smoother.

5 Conclusion
In summary, we have managed to model the entanglement
generation process as an MDP and proposed a heuristic-based
policy for it. The heuristic demands the lifespan of a link to
be proportional to the estimated future generation time. As
shown by the simulation results, the heuristic policy is able to
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Figure 6: This is the performance ratio between no purification and
the three purification approaches. The zig-zag line is a result of the
two link platform for the baseline performance. We can see this in
Figure 5

.

finish generation significantly faster than fixed action policy,
which was investigated in previous work [8]. This improve-
ment is also robust under different parameters ranging from
a near-term quantum network generating four entangled links
to the task of generating 20 links. Between different param-
eters, we find the heuristic to perform particularly well when
a larger number of links needs to be generated. On top of
that, we propose three different ways of incorporating dif-
ferent purification schemes(EPL-D, DEJMPS) and evaluate
their improvements to the original heuristic.

Further directions
So far, our policy is agnostic to the fidelity bins for the links
in the register. Although this has helped us avoid the com-
plexity of the state space, it also makes the heuristic too gran-
ular to capture specific cases. This includes situations where
previous generations have taken too much time. Many links
in the register are then about to expire. We would prefer to
start generating high-fidelity links directly and ’discard’ these
links with low-fidelity bin. A possible alternative policy can
take such a current state into account when we are estimating
the time ahead.

With regard to purification, our model and heuristic have
only utilized some specific protocols. Purification is a vast
field in quantum communication and quantum internet that
can be applied in various ways. We have only considered the
case of purifying two identical copies. The next possible step
can be using protocols which purify two links with different
fidelities or purify with more than two links. We also assume
the purification process takes negligible time compared to the
heralded generation. But this is not true for general purifica-
tion where multiple rounds of communication are needed and
we cannot execute them within a single timestep.

We also assume the trade-off function to be linear in our
work. As the success probability increases, the linear approx-

imation would be less accurate for heralded generation and a
full investigation for this accuracy is needed. For example,
in the case of generating two links for heralded entanglement
generation, a nonlinear trade-off function would be more suit-
able for the analysis, the performance under such trade-off
functions remains to be seen.

6 Responsible Research
Since the research that we have conducted in this paper in-
tends to broaden our knowledge in the public domain, it is
important to show that the results and conclusions that we
have made are reproducible and reliable.

For the reproducibility of our simulations in Section 4, we
have explained all our assumptions in the main body of this
paper and we have published our code on Github [14] with
the fully open-source MIT License to illustrate the simula-
tion process. This also includes original figures that we used
in the paper as well as other figures that are not adopted in
this paper for cross-referencing. This allows researchers to
reproduce and develop upon our results for future uses. The
code includes simulations and plot generation for all the fig-
ures in this paper (except the figure that is adapted from other
people with permission) and allows the researchers to gener-
ate different plots under different parameters. The researchers
can also find various MDPs in the repository where they can
test their own policies. However, it is important to note that
we simulate a probabilistic MDP and future researchers may
not achieve the exact same results. Therefore our simulations
also include error bars and the number of shots for each sim-
ulations for further reference.
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Appendix A. Trade-off between success
probability and Fidelity
In a single-click protocol that we considered here [7], the
two remote qubits will be prepared at a superposition state√
α |0⟩ +

√
1− α |1⟩. The parameter α is named brightness

and state |0⟩ is called bright state. we can drive the bright
state |0⟩ via optical transition to an excited state |e⟩ which
will decay and emit a single photon [7].

Upon generation, two wave-pulse will be applied simul-
taneously at the two qubits to a superposition of emitting a
photon and not emitting a photon. Then both photons will
travel through a beamsplitter where the path information is
removed. Finally, detecting a single photon will produce an
entangled state |Ψ+⟩ = 1√

2
(|01⟩+ |10⟩) [7].
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However, the detector cannot tell the difference between
one photon emitted and two photons emitted but one is lost.
In the case of high photon loss η ≪ 1, the resulting state that
we produce in this way would be ρ = (1 − α) |Ψ+⟩⟨Ψ+| +
α |00⟩⟨00|, and the success probability would be [7]

psucc = αη|ζ(t′)|2. (27)

with |ζ(t′)|2 is a constant related to the optical mode. This
will give us an entanglement link with fidelity [7]

F = 1− α. (28)

When we batch M single-photon generations with
Mpsucc ≪ 1, the probability of having at least one
success would be [8]

p = 1− (1− psucc)M ≃Mpsucc. (29)

Combining (27), (28) and (29), we arrive at the trade-off func-
tion for a single-click-based entanglement generation plat-
form with a tunable brightness parameter [8]:

F = 1− λp, λ =
α

Mpsucc
=

1

Mη|ζ(t′)|2
. (30)

The batch treatment of sending photons also results in nat-
ural discrete timesteps for the system with each entangle-
ment generation attempt costing a constant amount of time
∆t = Mtg where tg is the time for a single generation. We
may argue that in the case of batch generation, we can al-
ways stop the current batch of generation once an entangled
link is established. This can arguably reduce the average time
for the generation attempt. However, this introduces stochas-
tic uncertainty. For the simplicity of our analysis, we do not
consider them in this work.

Appendix B. Interpolating Between Two
Discrete Actions
Suppose we have two original actions {(p1, F1), (p2, F2)},
we can define a continuous family of actions {(pq, Fq) : q ∈
(0, 1)} as the probabilistic mixture of the two actions. We
first conduct a Bernoulli test with probability q and perform
action 1 if it is tail and action 2 otherwise:

1. Sample x from X ∼ Bernoulli(q);
2. Conduct action 1 if x = 0, conduct action 2 if x = 1 ;
3. If the link is established, assign its bin as nq = n(Fq).

Then the success probability for generating a link would be

Pq(success) = qp1 + (1− q)p2. (31)

To derive the fidelity Fq , let’s denote the link for action 1 is
ρ1 and the link for action 2 is ρ2, then the resulting state of the
new action would be a mixture state of ρ1, ρ2 with probability
conditioned on successful generation:

ρq = ρ1Pq(x = 0|success) + ρ2Pq(x = 1|success) (32)

=
qp1ρ1 + (1− q)p2ρ2
qp1 + (1− q)p2

. (33)

Figure 7: This plots the Fq − pq trade-off when we are interpolating
between two actions specified in the figure. Here we have λ = 1

Since fidelity is a linear function of the density matrix
F (aρ1 + bρ2, |ϕ+⟩ ⟨ϕ+|) = aF1 + bF2, its fidelity can be
expressed as

Fq = F (ρq,
∣∣ϕ+〉 〈ϕ+∣∣) = qp1F1 + (1− q)p2F2

qp1 + (1− q)p2
. (34)

In this case, the Fq − pq trade-off is

Fq(pq) =
1

pq

p1p2(F2 − F1)

p1 − p2
+
p1F1 − p2F2

p1 − p2
(35)

=
λp1p2
pq

+ 1− λ(p1 + p2). (36)

With this interpolation, we can always achieve a continuous
action space with only two discrete actions. This would al-
low us to greatly simplify our experimental setting to two
fixed brightness parameters described in Appendix A. How-
ever, the native linear trade-off performs better than the inter-
polation method we introduced here as we can see in Figure
7. Due to the discrete nature of the fidelity bins, we can argue
that under certain parameters and smaller gaps between two
actions, the performance can be equivalent to the linear trade-
off action space. This would allow us to perform a discrete set
of actions with interpolation to achieve the same performance
as native continuous action space.

There is also an interesting discovery about the average fi-
delity bins under interpolation. Suppose the memory is in-
formed about the choice of actions in the process and assigns
fidelity bin n = n(F1) for the link generated with action 1
and assigns n = n(F2) for action 2, we can still calculate the
average fidelity bin overall n̄q as:
n̄q = n(F1)Pq(x = 0|success) + n(F2)Pq(x = 1|success).

(37)
We can see that this is smaller than nq due to the concavity of
the fidelity bin function in (9):
n̄q = n(F1)Pq(x = 0|success) + n(F2)Pq(x = 1|success)

(38)
≤ n(F1Pq(x = 0|success) + F2Pq(x = 1|success)) = nq.

(39)
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Thus forgetting the actual choice we have made can in-
crease the lifespan of our link.

This idea of interpolation is developed independently from
the work in optimizing purification [10] where they adopted
interpolation between different purification protocols. They
also showed that extrapolation is possible towards fidelity 0
with similar ideas.

Appendix C. Entanglement Purification
Schemes
We reiterate the two entanglement purification schemes that
are specified in [10].

EPL-D scheme

Input: two identical copies of R-states

Apply bilocal CNOT gates between the two copies.
Measure the target qubits and communicate the results.
if The measured flags are 11 then

Output the source (first) copy

DEJMPS scheme
Although DEJMPS can be applied to a wider range of states,
here we only consider Werner states as inputs. DEJMPS also
requires the input fidelity to be larger than 0.5.

Input: two identical copies of Werner states with fidelity
higher than 0.5

Rotate both qubits on Alice’s side by π
2 around the X axis

and by −π
2 on Bob’s side

Apply bilocal CNOT gates between the two copies
Measure the target qubits and communicate the results.
if The measured flags are 00 or 11 then

Output the source (first) copy

A Appendix D. Lower Bound Estimation for
the State Space Size

When the number of required links increases, the maximum
fidelity bin also needs to increase respectively in order to al-
low such a number of links to be generated. For example, if
the highest fidelity action has fidelity bin four, it is impossible
to generate 20 links. Suppose the maximum fidelity bin and
the number of links have a fixed ratio n(Fmax) = ⌊as⌋ , a >
1, the state space size has a lower bound:

|S| =
s∑

i=0

(
n(Fmax)

i

)
>

(
⌊as⌋
s

)
. (40)

If a ≥ 2, then the lower bound for the space size can be
estimated as (

⌊as⌋
s

)
≥

(
2s

s

)
>

(
2s

s

)s

= 2s (41)

which grows exponentially for s.

If a < 2, then we can relax the combinatorics using the
fact that

(
m
n

)
≥

(
m−l
n−l

)
;m,n, l ∈ N ;m ≥ n ≥ l by setting

m = ⌊as⌋ , n = s, l = 2s− ⌊as⌋:(
⌊as⌋
s

)
≥

(
(2(⌊as⌋ − s)
⌊as⌋ − s

)
> 2⌊as⌋−s. (42)

We can see that in this case the lower bound also grows ex-
ponentially.

Appendix E. Modified Purification on Arrival

Algorithm 3 Modified Purification(s,Aoptimal, α)

tahead(s)← 0
π′(s)← argmax

a
{pa : (pa, Fa) ∈ Aoptimal, Fa ≥ Fth}

ap ← (p′max, 1) ▷ Only one purification action
for i = {s− 1, s− 2, . . . , 2, 1} do

tahead(i)← tahead(i+ 1) + 1
pπ(i+1)

anop ← arga∈Aoptimal
{n(Fa) = ⌊α · tahead(i+ 1)⌋}

if 2panop
> pap

then
π′(i)← anop

else
π′(i)← ap
return π′

References
[1] M. A. Nielsen and I. Chuang. Quantum computation

and quantum information. University Press, Cambridge,
10th anniversary edition edition, 2010.

[2] Mark M Wilde. From Classical to Quantum Shannon
Theory. 2019.

[3] Stephanie Wehner, David Elkouss, and Ronald Hanson.
Quantum internet: A vision for the road ahead. Science,
362(6412), 2018.

[4] Anne Broadbent, Joseph Fitzsimons, and Elham
Kashefi. Universal blind quantum computation. In 2009
50th Annual IEEE Symposium on Foundations of Com-
puter Science. IEEE, October 2009.

[5] Álvaro G. Iñesta, Gayane Vardoyan, Lara Scavuzzo, and
Stephanie Wehner. Optimal entanglement distribution
policies in homogeneous repeater chains with cutoffs.
npj Quantum Information, 9(1):46, May 2023.

[6] M. Pompili, C. Delle Donne, I. Te Raa, B. Van
Der Vecht, M. Skrzypczyk, G. Ferreira, L. De Kluijver,
A. J. Stolk, S. L. N. Hermans, P. Pawełczak, W. Ko-
zlowski, R. Hanson, and S. Wehner. Experimental
demonstration of entanglement delivery using a quan-
tum network stack. npj Quantum Information, 8(1):121,
October 2022.

[7] S L N Hermans, M Pompili, L Dos Santos Martins,
A R-P Montblanch, H K C Beukers, S Baier, J Bor-
regaard, and R Hanson. Entangling remote qubits us-
ing the single-photon protocol: an in-depth theoreti-
cal and experimental study. New Journal of Physics,
25(1):013011, January 2023.

10



[8] Bethany Davies, Thomas Beauchamp, Gayane Var-
doyan, and Stephanie Wehner. Tools for the analysis
of quantum protocols requiring state generation within
a time window, April 2023. arXiv:2304.12673 [quant-
ph].

[9] Charles H. Bennett, David P. DiVincenzo, John A.
Smolin, and William K. Wootters. Mixed-state entan-
glement and quantum error correction. Phys. Rev. A,
54:3824–3851, Nov 1996.
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