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ABSTRACT

The high tech industry is at the forefront of pushing the limitations and barriers in motion
control technology. Demands for achieving higher precision and speeds are ever increas-
ing. The wafer scanner industry, which is involved in manufacturing integrated circuits,
is a prime example where (sub) nanometer precision positioning is required, while at the
same time meeting challenging throughput demands. PID control technique has been the
standard for industrial motion control for many years. With multiple advancements in the
feedforward control techniques, it has become possible to achieve very high bandwidths
and precision. However, PID control, being a linear control technique, has inherent de-
sign limitations such as the ’water-bed effect’, due to which the requirements in terms of
robustness and precision become conflicting in nature, thus making a trade-off inevitable.
Due to this, improving one performance criterion without negatively influencing the other
is impossible. Such limitations become more evident when the severity of the demands
increases. Thus there is a need to find ways to overcome such limitations.

This MSc thesis focuses on PID control, keeping in mind the prevalence of the technique
in motion control and its wide applicability. In order to overcome the limitations of lin-
ear control, it is clear that it is necessary to look into nonlinear control methods. Reset
control, one such nonlinear technique, is identified to be readily compatible with the PID
control scheme. In reset control, the controller states are reset when the error between the
reference signal and the output becomes zero. Studying the frequency domain properties
of reset control using describing function analysis, it is observed that reset elements have
lesser phase lag for similar gain behavior when compared to their linear counterparts. For
example, a reset integrator shows a phase lag of about 38 degrees, which is 52 degrees lesser
than a linear integrator. This is not possible with linear control, as explained by Bode’s gain
phase relationship. Thus, this thesis focuses on implementing reset in PID control scheme,
so as to lessen the severity of waterbed effect and to improve bandwidth and precision of
motion control systems.

Describing function analysis is used to approximate the phase advantage achieved, and to
obtain a better open loop shape in comparison to a PID controller. The PID controller is
tuned to a bandwidth of 150 Hz with a phase margin of 45 degrees, and it is ensured that
the developed reset controllers also have the same phase margin. This is done so that ro-
bustness of the system is not compromised.

During literature review it was observed that majority of the research in reset control was
focused on the integrator. Reset can be useful in low pass filter of PID, and more impor-
tantly in the lead part, as phase advantage from reset is most beneficial in the lead part and
can directly help reduce water bed effect. Implementation of reset in the taming pole of
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lead component in PID, and in the low pass filter give rise to the following three controller
configurations :

• Reset in taming pole for improvement in tracking performance and precision (Con-
troller A)

• Reset in taming pole for improvement in tracking performance and bandwidth (Con-
troller B)

• Reset in low pass filter for improvement in precision (Controller C)

It is shown that the waterbed effect is relaxed using reset control in theory. New design rules
are developed for the reset PID controllers. Sufficient conditions for asymptotic stability
have been shown to be satisfied. The controllers are then implemented digitally within a
MATLAB/Simulink environment and implemented on a dual stage precision system, via a
real-time dSPACE DS1103 controller interface.

The improvements in open loop shape shown using describing function can not be defini-
tive proof for improvements in the frequency domain properties of real systems, as the de-
scribing function method is only an approximation of the nonlinear controllers. So, closed
loop frequency responses were experimentally identified in the practical setup and it was
observed that they match well to the frequency responses calculated from describing func-
tion analysis. Moreover, in time domain, the performance of the reset controllers are com-
pared in terms of steady state precision with that of the PID controller. The maximum
errors in position are shown to be lower with controller A and C. Controller B was tuned to
have the same precision as the PID, but with higher bandwidth.

To the fine stage, a fourth order input-shaped reference signal was applied along with sec-
ond order feedforward. The tracking performances of the reset controllers are studied in
comparison to the PID controller as before. The tracking performance is also validated in
the dual stage system, by applying a fourth order input-shaped reference signal along with
fourth order feedforward. In the dual stage system, the coarse stage is controlled with a PID
and the fine stage is controlled with each of the three reset controllers developed. The per-
formance is compared with the results from using PID controllers on both stages and it is
observed that as expected, Controller A and Controller C show better tracking performance
than PID, while Controller B showed no improvement.
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1
INTRODUCTION

In this section, a basic introduction is given about high precision motion control as com-
monly practiced in industry , along with the concept of loop shaping and PID control. The
factors limiting the maximum achievable performance from PID are discussed. Reset con-
trol is introduced as a means of overcoming these limitations. The objective of the thesis is
defined, and a brief overview of the thesis is also given.

1.1. HIGH PRECISION MOTION CONTROL

Precision motion control is a very important part of mechatronic systems and has a very
wide range of applications. It is of extreme importance in the fields of optical engineering,
semiconductor production, and assembly industries for example, where precision in the
order of nanometers is required while at the same time achieving high bandwidths. For
accurate servo-positioning of mechanical actuators in real life engineering systems, high
quality motion control is required to achieve high speeds and precision [1]. Extensive re-
search has been done in this field and many advanced controllers have been developed.
Most of these control techniques however, have not been adopted by the industry for vari-
ous reasons. For example, the state feedback approach and H∞ control require an accurate
model of the system and are very sensitive to parameter variations. As a result, these tech-
niques have mainly stayed in academia. Industrial motion control requires control tech-
niques to be easily adaptable to various applications.

PID control technique is widely applicable and is the easiest to implement. The control
scheme is very intuitive and doesn’t require complete knowledge of the underlying sys-
tems. Tuning PID does not involve extensive numerical computations or complex tools.
Robust PID controllers can be tuned using basic rules of thumb. These factors explain why
PID control has been the industrial standard for precision motion control.

Loop shaping is an intuitive method used to tune linear PID controllers. It makes use of fre-
quency response functions, which provide a powerful tool to analyze LTI systems through
the use of graphic representations such as Bode and Nyquist plots. Knowledge of the poles
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2 1. INTRODUCTION

and zeros of the system is not necessary, as frequency measurement data can be used to
make inferences about performance and stability. Resulting controllers are also generally
of low order resulting in easy implementation when using this approach.

Combined with good feed-forward techniques, PID can be used to achieve high speeds and
precision and in many cases would be enough to meet the required performance criteria.
But in the high - tech industry, design requirements are becoming more and more demand-
ing by the day and hence there is a need to study the limiting factors that prevent us from
achieving better performance. Once they are established, possible control solutions that
are not bound by these limitations can be applied to improve the performance. Loop shap-
ing technique is introduced first, followed by PID control. For a more detailed text on high
precision motion control, the reader can refer to [1].

1.1.1. LOOP SHAPING

Loop shaping is a technique in which the controller is designed in such a way that the
frequency response of the open loop transfer function (L(s) = C (s)P (s)) has the desired
shape in gain and phase. Consider the feedback system shown in Figure 1.1

C(s) y

-
P(s)

+

+

n

ref
+

Figure 1.1: Block diagram of closed loop system with controller C(s) and plant P(s)

The concept of loop shaping can be understood through the sensitivity function and com-
plementary sensitivity function of the system. The complementary sensitivity function
T(s), defined as the transfer from the reference(ref) to the output(y), describes the ability
of the system to act as a servo system, and is given by

T (s) = C (s)P (s)

1+C (s)P (s)
(1.1)

The sensitivity function S(s) on the other hand is defined as the transfer from noise (n) to
the output (y) and describes the ability of the feedback system to reject sensor and any
additional noise. It’s defined as

S(s) = 1

1+C (s)P (s)
(1.2)

For good reference tracking, the open-loop gain at lower frequencies should be very high

(|L( jω)| → ∞) such that
Y(s)

R(s)
= |T ( jω)| ≈ 1 and

Y(s)

N (s)
= |S( jω)| ¿ 1. Similarly at high fre-

quencies the open-loop gain should be low (|L( jω)| ¿ 1) to effectively attenuate noise in
the system and hence provide good precision. Around the bandwidth region, the open loop
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must have a phase greater than −180° to ensure stability.

Such requirements in the gain and phase behavior guide the control design, as shown in
Figure 1.2. Once the open loop is designed, the controller C(s) can be calculated.

High Gain

Low Gain

Low Frequency 
     Region

Cross-over 
   Region

High Frequency 
     Region

Stability

-90

-180

-270

101 102 103 104

100

10-1

10-4

10-3

10-2

101

Frequency [Hz]

Ph
as

e 
[d
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]

M
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n
it
u
d
e 

(a
b
s)

Loop Gain L(s)

Figure 1.2: Gain and phase behavior to be met through loop shaping. Image courtesy [2]

1.1.2. PID CONTROL

CONTROL THEORY

In a control scheme based on a PID(Proportional-Integral-Derivative) controller, the error
signal is computed as the difference between the reference set point and the measured
output. This error signal is acted upon by proportional, integrator and derivative terms to
obtain the control action.

• The proportional term provides a control signal proportional to the current value of
the error and determines how quickly the controller reacts to the error.

• Integrator or lag component accumulates the past values of the error and provides a
control signal that tends to bring the error to zero. Hence it plays an important role
in the tracking behaviour of the system.

• The derivative or lead component acts on the current rate of change of the error and
accounts for future possible errors. It thereby adds a positive phase to the system
and is crucial to the stability of the system. A pure differentiating action is physically
infeasible as it requires having infinite gain at infinite frequencies. Also, it amplifies
the noise at high frequencies. To avoid this, the derivative action is always tamed with
a first order LPF.
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• Also commonly used in the PID control scheme is an additional low pass filter to
attenuate the high frequency noise and higher order dynamics. This low pass filter is
instrumental in achieving a high precision.

Transfer function of linear PID in series form is given by:

GPI D = Kp

(
1+ ωi

s

)
︸ ︷︷ ︸

Lag component

(
s

ωd
+1

)/(
s

ωt
+1

)
︸ ︷︷ ︸

Lead component

(
ωl

s +ωl

)
︸ ︷︷ ︸

LPF

(1.3)

whereωI is the frequency at which integral action is stopped, andωl is the cut off frequency
of the LPF. Kp is the proportional gain. Differentiating action is started at ωd and tamed at
ωt , and therefore ωt >ωc >ωd . The frequency response of PID can be distinguished into 3
parts as can be seen in 1.3
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Figure 1.3: Bode plot of PID

PID TUNING THROUGH LOOPSHAPING

To tune the PID controllers, the following basic guidelines are used [2].

1. Positive phase is added to the system in open loop around the bandwidth region to
ensure stability, (as explained in 1.1.1) using the differentiator which has a pole atωd .
In order to add sufficient phase lead to the system, the differentiating action should
begin at a frequency one thirds the crossover frequency of the system. This phase
addition is accompanied by +1 gain slope. To achieve sufficient phase margin but
at the same time have enough attenuation of higher frequencies, the differentiating
action should be terminated at a frequency ωt equal to three times the bandwidth of
the system by adding a pole. While this is the rule of thumb, the ratio ωτ/ωd can be
increased or decreased depending on the phase margin required. Generally the scale
ωc /ωd is kept equal to ωτ/ωc so that maximum phase is added at ωc .

ωd =ωc /3

ωτ = 3 ·ωc
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2. Integrator increases the low frequency gain through a pole placed at origin and hence
provides a favorable loop shape for tracking. Since the integrator creates a 90 degree
phase lag, the integrating action should be stopped at a factor 3.33 lower than the fre-
quency at which differentiating action begins to keep the effect of integrators phase
lag on the phase margin minimal.

ωi = ωc

10

3. The low pass filter decreases the gain at higher frequencies by placing a pole at ωl .
This attenuation in high frequencies provide a better loop shape for precision. In
order to keep the phase margin achieved at the crossover frequency intact, the low
pass filter should be placed at a frequency 6 to 10 times higher than the bandwidth of
the system.

ωl = (6 ∼ 10)∗ωc

4. The open loop gain at the targeted crossover frequency should be equal to one so that
the required bandwidth is achieved. The total controller gain (Kt ) at the crossover
frequency should therefore be chosen equal to the inverse of the gain of the plant at
this frequency. As the differentiating action adds gain to the system, the total gain
calculated must be divided by three.

Kp = Kt

3

1.2. LIMITATIONS IN LINEAR CONTROL

PID control has inherent design limitations that no linear control technique can overcome.
These limitations can be observed both in time domain and frequency domain. Only select
limitations that most affect the performance of linear control systems, with specific focus
on PID controllers, are discussed in this section. For a more detailed reference on the fun-
damental limitations in linear control, [3], and [4] can be referred.

1.2.1. WATER-BED EFFECT

The main limitation in frequency domain is described as the ’Water-bed effect’. For linear
systems with no poles in the right half plane, the sensitivity function S(iω) has the following
property[5]: ∫ ∞

0
log |S(iω)|dω= 0 (1.4)

In words, the integral of the sensitivity function over the entire frequency range must equal
zero. With sensitivity function being the closed loop frequency attenuation from noise to
output, it is desirable to have as low a value as possible. But due to water-bed effect it is im-
possible to decrease sensitivity at all frequencies, because decreasing the sensitivity func-
tion at one frequency region would always be accompanied by an increase in sensitivity at
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another region in order to maintain the integral at zero. This results in a trade off between
competing performance criteria. For example, increasing the bandwidth to improve the
disturbance rejection at lower frequencies would increase the gain at higher frequencies
thereby affecting the noise attenuation at those frequencies.

1.2.2. BODE’S GAIN PHASE RELATIONSHIP

The limitations in frequency domain can also be illustrated using Bode’s gain phase rela-
tionship. For a minimum phase stable system G(s), it can be derived that[5]

∠(G(iω0)) ≈ π

2

dl og |G(iω0)|
dl ogω

(1.5)

According to (1.4), for a linear system, the relationship between the gain and the phase of
the system is constant. Gain slopes of +20 dB/dec and -20 dB/dec would be accompanied
by 90 degree phase lead and lag respectively. Due to this limitation, using an integrator to
improve the tracking would cause a phase lag affecting the stability. Derivative term can be
used to provide a phase lead, but that would amplify the high frequency noise . Using a low
pass filter to achieve high frequency roll off would again reduce the phase at the crossover
frequency. Such unavoidable trade-offs limit the maximum bandwidth and precision that
can be achieved using a PID, or any linear control technique for that matter.

1.3. PROBLEM STATEMENT

PID control being a linear control technique, has been shown to have inherent design limi-
tations that constrain the maximum possible performance that can be achieved in the sys-
tem, in terms of tracking, robustness, and/or precision. These limitations occur in the form
of unavoidable trade offs that force a compromise in one or more performance criteria
when another criterion needs to be improved.

1.4. OVERCOMING FUNDAMENTAL LIMITATIONS

It has been established that it is necessary to look into nonlinear control techniques to re-
duce the water bed effect and break the gain phase relationship barrier. While choosing a
non linear control solution, the following conditions should be satisfied. The control tech-
nique:

• should not be bound by Bode’s gain phase relationship

• should be compatible with PID control scheme

• should be easily implementable and adaptable to wide range of systems

• should not require thorough prior knowledge of the system for design
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Reset control is a nonlinear technique that is becoming increasingly popular, in which a
linear controller is provided with a mechanism to reset all or a subset of its states when a
specified condition holds. In the most common approach to reset, the states are reset to
zero or to a fraction of the before reset value, when the error crosses zero. However, many
variations are possible.

Literature is available that show that reset control is not bound by Bodes gain phase re-
lationship and that the adversity of waterbed effect is reduced. For instance, in [6], reset
control has been used to meet desired control specifications even in plants with large pa-
rameter uncertainty. Reset has been used to improve mid-frequency disturbance rejection
in hard disk systems [7]. In [8], a fractional order reset integrator is used to improve per-
formance in servomotors. In [9], it is shown that reset can be used to reduce overshoot in
plants that have an integrator. Inspite of the potential shown by reset, it is observed that
much of the research in reset control was focused on the integrator. There have been ef-
forts in investigating other reset elements as well. For example, in [10], a phase lead reset
compensator has been used to increase phase margin. In [11], a first order reset element
was used to reduce overshoot and settling time in second order systems. A generalized frac-
tional order reset element was introduced in [12]. However apart from reset integrator, the
use of reset elements within the framework of PID for improved performance has not been
well investigated.

1.5. OBJECTIVE

The objective the thesis can be defined as,

To develop theory and guidelines for Reset PID control, and validate in a fast, high precision
setup.

The sub-ojectives can be organised as follows:

• Develop theory for implementation of reset in PID to obtain best possible perfor-
mance.

• Devlop guidelines for tuning reset PID, that ensure stability and given specifications.

• Implement the developed controllers in a practical setup and validate improvements
in bandwidth and precision.

• Create a toolbox for auto tuning of controllers.

1.6. OUTLINE

The thesis report is structured as follows : Reset control and the current state of the art
in the field is discussed in Chapter 2 : Reset Control. In Chapter 3: Reset in PID: the the-
ory behind using reset in PID control to achieve improvements in bandwidth and preci-
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sion. In Chapter 4 : System Overview, the dual stage mechanical setup used for validation
is presented. Development of reset controllers for the precision stage, along with imple-
mentation methods are discussed in Chapter 5 : Controller Design. The methods used for
validation in the fine stage and the results in both time domain and frequency domain are
given in Chapter 6 : Experimental Verification. The tracking performance of the dual stage
system is investigated in Chapter 7 :Experimental results - Dual stage. Following this, in
Chapter 8 - Tuning Reset PID, basic guidelines for tuning reset PID controllers are provided.
Finally, general conclusions along with recommendations for further research are given in
Chapter 9 : Conclusions.



2
RESET CONTROL

In this chapter, an introduction to reset control is given. A method for analyzing reset con-
trollers, namely describing functions, is discussed. This is followed by a brief overview of
various reset elements developed so far in academia. There are other types of reset con-
trollers than those discussed here, like reset systems that reset at fixed time intervals, and
those that reset at the surfaces of a predefined reset band. But focus has been kept on the
most widely used form of reset control, based on zero crossings of the error, because suf-
ficient literature and tools are available for checking stability and analysis in the frequency
domain. A method for tuning nonlinearity in the system is explained, followed by stability
conditions that need to be satisfied by reset controllers.

2.1. GENERAL FORM OF RESET CONTROLLER

A general form of reset controller would require two inputs in addition to the error signal
e(t ) required by the regular controller, as shown in 2.1b. One input c(t ) would specify the
reset instants. Thus, at the moments at which c(t) satisfies the specified reset condition, for
example, zero crossings of c(t ), the states are reset. The after reset value is specified by the
third input a(t ).

(a) (b)

Figure 2.1: (a) Feedback loop with reset controller C(s) and plant P(s). (b) Basic reset integrator with two
additonal inputs. Image courtesy [5]

Consider the feedback loop shown in Fig. 2.1a. The reset element C(s) which has linear
base dynamics that resets at zero crossings of e(t) can be described as follows:

9
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ẋ(t ) = Ar xr (t )+Br e(t ) when e(t ) 6= 0

x(t+) = Aρxr (t ) when e(t ) = 0

u(t ) =Cr xr (t )+Dr e(t ) (2.1)

where x(0) = x0; x(t+), lims→t+0 x(s).

Ar ,Br ,Cr ,Dr represent the state space matrices of the base linear system. e(t ) is the error
signal that is input to the reset controller and u(t) is the controller output . xr (t ) ∈Rn is the
state vector. The first and third equation denote the continuous or flow mode that hold true
whenever the reset condition is not met. At the reset instants, the jump mode is triggered,
given by the second equation. Aρ is a diagonal matrix that determines the values to which
the states are to be reset.

2.2. ANALYSIS OF RESET CONTROL SYSTEMS

The FRF methods discussed in 1.1.1 is not readily applicable to reset control as it is a nonlin-
ear technique. There are many methods to analyze nonlinear control problems. Describing
function (DF) method is one such technique, which is an extension of the frequency re-
sponse method and also inherits some of its desirable properties, and can be used to study
the frequency domain characteristics of non linear elements. Through quasi-linearization
of the non linear element, the DF method helps extend the concept of FRF to non linear
systems. This method makes the assumption that non linear system behavior has a quasi-
linear amplitude dependent relation between sinusoidal excitation inputs and the steady
state response at the fundamental excitation frequency. This approximation is possible
when the system under consideration has low pass characteristics that filters out the higher
harmonics. Since the relation is amplitude dependent, the excitation amplitude needs to
be considered as a parameter.

For a sinusoidal input function given by

a sin(ωt ) (2.2)

the first harmonic of the output that is assumed to sufficiently approximate the response is
given by

Z1(t ) = gr e sin(ωt )+ gi m cos(ωt ) (2.3)

The describing function of the nonlinear system is defined as the "complex ratio of the
fundamental harmonic component of the output to the input", i.e.

η(a,ω) = gr e + j gi m

a
(2.4)

In the next section, it will be shown through the use of describing functions, that reset sys-
tems show better phase behaviour compared to linear controllers while having comparable
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gain characteristics. A more detailed discussion on describing functions can be found in
[13]. It must be noted that describing functions can not completely describe a system and
can only be used as an approximation.

2.3. RESET ELEMENTS

2.3.1. CLEGG INTEGRATOR

Reset controllers were first proposed by J.C Clegg in 1958[14]. The Clegg integrator was de-
signed to serve as an alternative to conventional linear integrator, which is very essential
in motion control. Each integrator in a system causes a phase lag of 90 degrees, as shown
by Bodes gain - phase relationship. This imposes severe limitations when trying to meet
phase margin and overshoot requirements. A Clegg integrator is shown to have superior
performance than a linear integrator.

A Clegg integrator has an integrator as the base linear system and it integrates the error
signal. The reset instants are the zero crossings of the error signal, at which moments the
output is reset to zero. It is a specific case of the reset controller defined in (2.1), and can be
described as follows:

u̇(t ) = e(t ) when e(t ) 6= 0

u(t+) = 0 when e(t ) = 0

with u(0) = u0. Fig.2.2b shows the response of the linear and Clegg integrator to a sinusoidal
e(t).

The describing function of a Clegg integrator is given by :

C I ( jω) := 1.62e− j 30°

jω
e j 52° (2.5)

thus indicating a 52° positive phase compared to a linear integrator. The gain is 1.62 times
higher than that of the integrator. However, the slope of gain is same as that of linear in-
tegrator. The frequency response of the Clegg integrator is compared with that of a linear
integrator in 2.2a
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Figure 2.2: (a) Frequency response comparison between linear and Clegg Integrator. (b) Response of Clegg
and Linear Integrator to sinusoidal input

2.3.2. FIRST ORDER RESET ELEMENT

The First Order Reset Element(FORE) was first introduced in [6], and can be seen as a gen-
eralisation of the Clegg Integrator. The base linear system has a first order lag filter charac-
teristic and is given by

C (s) = K

s +a

The output of the FORE also resets to zero at zero crossings of the input. FORE can be
described by

u̇(t ) =−au(t )+K e(t ) when e(t ) 6= 0

u(t+) = 0 when e(t ) = 0

Upto the corner frequency, the behavior of the FORE is similar to that of linear lag filter
as shown in 2.3b. The phase lead achieved by FORE compared to linear filter at higher
frequencies is the same as that for a Clegg integrator. It can also be seen that the cutoff
frequency is altered by a small margin by resetting.

(a)

Frequency (rad/s)

(b)

Figure 2.3: (a) Block diagram of FORE. Image courtesy [5]. (b) Frequency response of FORE compared with
that of a lag filter and a Clegg integrator
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2.3.3. SECOND ORDER RESET ELEMENT

Second Order Reset Elements (SORE) were designed, with the main motivation being the
importance of second order filters such as notch filter and low pass filter in the field of mo-
tion control [15]. SORE provides more design freedom and better phase properties than a
FORE.

A second order low pass filter is given by

C (s) =
ω2

p

s2 +2βpωp s +ω2
p

where ωp is the corner frequency. A SORE with low pass filter as the base dynamics can be
described by the following parameters for (2.1).

Ar =
[

0 1
−ω2

p −2ωpβp

]
Br =

[
0
ω2

p

]
Cr =

[
1 0

]
Aρ =

[
0 0
0 0

]
(2.6)

In this case, both the states of the controller are reset to zero and it is termed full reset. The
parameter β is the damping coefficient, which can be used to tune the sharpness of the
filter around the corner frequency.

2.4. CONTROLLING NONLINEARITY

The reset matrix Aρ in (2.1) provides an additional degree of freedom in tuning the system
and is defined γIn where n is the number of states in the system.

If the resetting parameter γ = 1, the reset element reduces to its base linear system as no
reset occurs and γ=−1 denotes extreme reset. As |γ−1| increases, the nonlinearity in the
system increases because the magnitude of jump in state value increases. Increase in non-
linearity is not desired due to the associated higher order dynamics. The variation of phase
lag with change in γ is shown in Fig. 2.4a, and it can be seen that the more nonlinear the
system is, greater is the phase benefit.

Cutoff frequency of GFORE also varies with change in γ . The ratio of cutoff frequency of
reset filter to that of lag filter (β) is plotted in Fig. 2.4b for different values of γ . Choosing
γ values between -1 and 1 can help attain the desired trade-off between phase lag, cutoff
frequency and non linearity and hence can be used a tuning parameter in design of reset
controllers.
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Figure 2.4: (a) Variation of phase lag with change in γ. (b)Variation of ratio β with change in γ.

2.5. STABILITY OF RESET CONTROL SYSTEMS

2.5.1. GLOBAL ASYMPTOTIC STABILITY

The asymptotic stability conditions to be satisfied for a general reset system is developed
in [7] and is briefly discussed here. These criteria are used to verify the stability of the reset
controllers developed.

RC P
ref u y

-

+ e

xp

R

Figure 2.5: Control Architecture

Consider the feedback loop shown in Figure 2.5, with plant P and controller RC described
as follows:

P =
{

ẋp = Ap xp +Bp u
y =Cp xp

(2.7)

RC =


ż = Ar z + Ar p xp +Br e, e 6= 0
z(t+) = Aρz + Aρp xp , e = 0
u =Cr z +Cr p xp +Dr e

(2.8)

where, z ∈ℜr and xp ∈ℜp .

Combining P and RC , the combined state space of the open loop reset system R can be
represented as
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R =


ẋ = Ax +Be, e 6= 0
x(t+) =σρx, e = 0
y =C x

(2.9)

where x is the state vector of R, and

A =
[

Ap +BpCr p BpCr

Ar p Ar

]
, B =

[
Bp Dr

Br

]
C =

[
Bp Dr

Br

]
;σρ =

[
I 0
Aρp Aρ

]
For ease of representation following notations are defined:

Λ(ω),ω2I + A2

4(ω), I +e
π
ω A

4ρ(ω), I +σρe
π
ω A

Γρ(ω) ≡4−1
ρ (ω)σρ4(ω)Λ(ω)−1

Ω= {ω> 0|± jω are eigen values of A}
Ωρ = {ω> 0|λ(σρe

π
ω A)| < 1}

Consider the sinusoidal excitation input

e(t ) =αsin(ωt )

The time instants( tk ) at which reset occurs is given by

tk = kπ/ω k = 0,1, ..

Defining,

ηk = x(t+2k ) , ζk = x(t+2k+1) and ψ(t ),
∫ t

0
e−AsB sin(ωs)d s

the solution of the augmented plant with initial condition x(0+) = η0 has been shown to be

x(t ) =
{

e A(t−t2k )ηk +αe At [ψ(t )−ψ(t2k )], t ∈ (t2k , t2k+1]
e A(t−t2k+1)ζk +αe At [ψ(t )−ψ(t2k+1)], t ∈ (t2k+1, t2k+2]

(2.10)

where,
ζk =σρe

π
ω A[ηk +αψ(πω )],

ηk +1 =σρe
π
ω A[ζk −αψ(πω )], η0 = x(0+)

(2.11)

For the solution given in Equation 2.10 to be stable, the parameters ζk and ηk given in Equa-
tion 2.11 should converge as k →∞, leading to the stability condition

|λ(σρe
π
ω A)| < 1 (2.12)
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+ Σr Σnr

ΣRC

Σp yr

-

Figure 2.6: Block diagram of reset controller ΣRC in closed loop with plant Σp .

ζk and ηk converge if and only if Equation 2.12 is satisfied. Furthermore, the sinusoidal
input describing function of system in Equation 2.8 was derived as the ratio of the laplace
transforms of the steady state output (Yss) and the input(E), and is given below.

G( jω) = Yss

E
=C T

r ( jω− Ar )−1(I + jΘρ(ω))Br (2.13)

where,

Θρ =4− 2ω2

π
4(ω)[Γρ(ω)−Λ−1(ω)] (2.14)

2.5.2. LYAPUNOV STABILITY

Consider reset system ΣRC in closed loop with a plant ΣP as shown in Figure 2.6. The con-
troller ΣRC is separated into a part Σr whose states are reset and a part Σnr whose states are
not reset. For such a system,asymptotic stability is guaranteed when following conditions
are true:

Theorem [5] Let V : Rn → Rn be a continuously differentiable, positive-definite, radially
unbounded function such that

V̇ (x) :=
(
∂V

∂x

)T

Acl x < 0, if e(t ) 6= 0, (2.15)

∆V (x) :=V
(

Ax
ρ

)
−V (x) ≤ 0, if e(t ) = 0 (2.16)

where Aρ is the reset matrix defined as

A∗
ρ = diag(Aρ, Innr , Inp ) (2.17)

where nnr is number of states of Σnr and np is the number of states in Σp

Acl is the closed-loop A-matrix:

Acl =
[

Ar Br Cnr p

−Bnr pCr Anr p

]
(2.18)
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in which (Ar ,Br ,Cr ,Dr ) are the state space matrices of Σr and (Anr p ,Bnr p ,Cnr p ,Dnr p ) are
the state space matrices of Σnr and Σp in series.

Then the reset control system is asymptotically stable.

For quadratic stability of the system, the conditions (2.15), and (2.16) must hold true for
a potential function V (x) = xT P x with P > O. Based on this, the following theorem was
developed for proving quadratic stability.

Theorem [5] There exists a constantβ ∈Rnr ×1 and Pρ ∈Rnr ×nr ,Pρ > 0 where nr is the number
of reset states, such that the restricted Lyapunov equation

P > 0, AT
cl P +PAcl < 0 (2.19)

B T
0 P =C0 (2.20)

has a solution for P , where C0 and B0 are defined by:

C0 =
[
βCnr p 0nr ×nnr Pρ

]
(2.21)

B0 =
 0nnr p×nr

0nr ×nr

Inr

 (2.22)

Both conditions have been used to test stability of all developed controllers.





3
RESET IN PID

In this chapter, the theory behind the application of reset in the PID control loop is detailed.
It was discussed in section 1.4 that there has been lack of research on reset control within
PID framework, especially on elements other than integrator. Therefore, implementation
of reset in the other two memory elements within the PID structure, namely the taming
pole of the lead component and low pass filter is explored with focus on improving band-
width and precision. Through describing function analysis, the developed controllers are
compared with linear PID.

3.1. RESET IN TAMED PART OF LEAD COMPONENT

As discussed in section subsection 1.1.2, differentiator or lead component of the PID adds
essential phase to the system in bandwidth region to achieve stability and robustness. Phase
at the crossover frequency also affects the maximum overshoot of the system. Differentia-
tor is tamed by placing a pole at ωt because having large gains at higher frequencies is
not desirable for noise attenuation and precision. The maximum phase lead that can be
achieved from the differentiator in the absence of this taming pole would be 90°. How-
ever, the pole reduces the maximum phase lead to a value which depends on frequency
interval between the zero and the pole. By symmetrically placing the zero and pole around
the crossover frequency ωc , it is ensured that the maximum phase from lead is achieved at
bandwidth. Fig. 3.1a shows the frequency response of a typical differentiator used in PID.

Higher and lower phase margins can be achieved by increasing or decreasing the frequency
range between ωd and ωt respectively. The problem with this approach is that it results in
a trade-off between tracking and precision performance on one side and stability and ro-
bustness on the other. This can be observed in Fig. 3.1b. As the positive phase obtained
increases with increase in the ratio of ωt to ωd , the gain at higher frequencies is also in-
creased, which affects the precision of the system. As a result, with the linear design, it is
not possible to improve precision while having the same degree of robustness. Also, with
increasing phase, there is a decrease in low frequency gain thereby affecting tracking be-
havior.

19
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Figure 3.1: (a) Bode plot of a differentiator. (b) Bode plot showing increase in maximum phase and also high
freqeuncy gain with increasing ratio of ωt to ωd

Reset can be introduced in this tamed differentiator to improve performance such that this
fundamental limitation is overcome. Reset is introduced such that only the taming pole is
reset resulting in the reset and non-reset parts (as introduced in section 2.5.2) given by:

Σnr =
(

s
ωd

+1
)

; Σr = 1(
s
ωt

+1
) (3.1)

Although the non-resetting part as given in (3.1) is not a proper function, the completed
non-resetting part of Reset PID also consists of integrator and LPFs and hence will be
proper. In the case that this is not true, an LPF can be added at a frequency where it does
not affect phase at bandwidth, purely to make the function proper.

The frequency response obtained through describing function analysis is compared with
that of a linear tamed differentiator in Fig. 3.2a. It can be seen that for a similar gain behav-
ior, phase at frequencies higher than ωt is not zero in the case of reset. If γ= 0 is used, the
positive phase achieved would be 52 degrees.

It can be seen that phase from resetting is mainly added at higher frequencies beyond the
bandwidth and hence it is not useful. However, ωt can be brought closer to ωd and can
even be made equal to ωd to obtain a 0dB gain line with a positive phase, as shown in Fig.
3.2. Thus, phase addition at bandwidth is done purely through reset and not differentiating
action. To compensate for changes in cutoff frequency due to reset (as shown in Fig. 2.4b), a
factorα is used. The reset element can be reformulated as given in (3.2).Since γ determines
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amount of phase lead achieved, this is chosen to ensure that the same amount of phase is
added as with the originally designed differentiator.

Σr = 1(
s

αωd
+1

) (3.2)

It can be observed that the gain at high frequency is lower than the PID, while the low fre-
quency gain is increased, without affecting the phase margin. It can be concluded that
theoretically, better tracking and better precision has been achieved while maintaining the
same robustness, which was impossible to do with linear control.
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Figure 3.2: (a)Describing function analysis shows positive phase added by reset at frequencies aboveωt when
compared to a linear lead component. (b) Reset can be used to achieve the same phase lead with favourable
gain behavior.

The reset element, when combined with an integrator and low pass filter, forms Reset PID
controller A, given by (3.3).

ΣRC =
(
αωd

s +αωd

)
︸ ︷︷ ︸

Σr

Kp

(
1+ ωi

s

)(
1+ s

ωd

)(
ωl

s +ωl

)
︸ ︷︷ ︸

Σnr

(3.3)

Kp is chosen such that the open loop gain calculated from describing function analysis
equals unity at ωc . The other terms in (3.3) are chosen per guidelines given in subsec-
tion 1.1.2.

By increasing the controller gain such that the gain at high frequencies equals that of PID,
an increase in bandwidth can be achieved for the same phase margin and precision as



22 3. RESET IN PID

M
ag

n
it
u
d
e 

(d
B
)

Ph
as

e 
(d

eg
)

ωc

Frequency (rad/s)

-90

Pc

-180

Linear
Reset

(a)

M
ag

n
it
u
d
e 

(d
B
)

Ph
as

e 
(d

eg
)

ωc

Frequency (rad/s)

-90

Pc

-180

ωcr

Linear
Reset

(b)

Figure 3.3: (a) Comparison of describing function of Reset PID controller A with a PID controller having the
same bandwidth and phase margin. (b) Comparison of describing function of Reset PID controller B with a
PID controller having the same precision and phase margin.

shown in 3.3b. It can be seen that bandwidth has increased from ωc to ωcr . This con-
troller, which provides improved tracking and bandwidth for the same phase margin and
precision, will be referred to as Reset PID Controller B. Gain for Controller B at low fre-
quencies is higher than that of Controller A, thereby indicating a further improvement in
tracking performance.

3.2. RESET IN LPF

As discussed in section subsection 1.1.2, a low pass filter is commonly used in PID as it is
desirable to decrease the open loop gain at high frequencies as quickly as possible. This
is done to reduce the complementary sensitivity at high frequencies and thereby improve
noise attenuation. Phase lags caused by LPF at frequencies below cutoff frequency can
affect the phase around the bandwidth of the system. This causes a tradeoff between ro-
bustness and precision and therefore there is a limitation on the order of the LPF that can
be used and on how close to bandwidth the LPF can be placed.

When reset is implemented in the LPF, there is a reduction in the maximum phase lag of
the filter and also on how fast the phase decreases. Frequency response of a reset LPF and
its corresponding linear LPF are compared in 3.4a. It can be seen that for an LPF with cor-
ner frequency at ωl , the reset filter shows lesser phase lag at bandwidth ωc than the linear
filter. This phase advantage can be used to place the reset LPF at a lower frequency (ωl r )
than linear LPF, which provides better attenuation of high frequencies, as shown in 3.4b.
It can be seen that the corner frequency of LPF is reduced by a factor ν = ωl /ωl r , without
affecting the phase at bandwidth.
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Figure 3.4: (a) Comparison of describing function of Reset LPF with a linear LPF having the same corner
frequency (b) Corner frequency of Reset LPF is reduced so that phase at ωc is equal to that of linear LPF.

It must be noted that the cutoff frequency of the filter increases due to reset, as explained
in section 2.4. This reduces the factor ν and the improvement in attenuation that can be
achieved. Due to this tradeoff between phase lag and cutoff frequency, γ value is fixed at 0
for reset LPF.

Apart from describing function analysis, the improvement in noise attenuation especially
from the point of precision can even be seen in time domain also. Due to the chosen γ

value, output of the filter is reset to zero at zero crossings of input signals as shown in 3.5a.
The number of resets increases as signal frequency increases and this results in the reset
LPF letting through much less high frequency signal than a linear LPF. Necessary condition
is that the signal has zero mean and doesn’t contain significant low frequency signals. It
must be noted that the low pass characteristic of the filter is preserved because between
reset instants, reset filter shows linear behavior. Therefore, when there is no tracking sig-
nal present, reset LPF can provide better precision even when describing functions show
no reduction in high frequency gain. This is verified by applying a multisine signal with
randomized phase as input to a linear and reset LPF with equal corner frequencies and
comparing the outputs in open loop. This is shown in 3.5b. The RMS value of output of
reset LPF is reduced by around 70% compared to linear LPF.

Reset LPF, when combined with an integrator and lead component, forms Reset PID con-
troller C given by
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(a) (b)

Figure 3.5: (a) Output of reset LPF is reset to zero at zero crossings of signal with high frequency content. (b)
Comparison of output of Reset LPF and linear LPF for multisine input signal.

ΣRC =
(
ωl r

s +ωl r

)
︸ ︷︷ ︸

Σr

Kp

(
1+ ωi

s

)(
1+ s

ωd

)/(
s

ωt
+1

)
︸ ︷︷ ︸

Σnr

(3.4)

where ωl r denotes the corner frequency of reset LPF.



4
SYSTEM OVERVIEW

In this chapter, the experimental setup, a dual stage positioning system is described. Fol-
lowing a brief overview of the software and hardware, the two stages of the sytem are dis-
cussed in more detail. In the next section, the process of system identification and param-
eter estimation is detailed.

4.1. EXPERIMENTAL SETUP

The setup used in this thesis to validate the performance is a high precision one degree of
freedom dual stage positioning system, which was fabricated in 2016 by a former student
B.J. Joziasse, at the department PME[16]. The setup was modified to better suit the demon-
stration of the developed control technique.

The demonstrator consists of a coarse stage and a fine stage, both of which can be actuated
separately. The coarse stage is a commercially available 1 DOF positioning system, with a
built in linear encoder. The stator of the fine stage is mounted on top of the coarse stage
mover. A Lorentz actuator is used to actuate the fine stage. The coil of the Lorentz actuator
is attached to the stator and the permanent magnets are mounted on the mover. Parallel
leaf flexures are used for the linear guiding of the fine stage. The position of the fine stage
is measured using a laser interferometer. The conceptual drawing is shown in Figure 4.1

Fine stage stator
Coarse stage mover

Coarse stage stator

Leaf flexures

Fine stage mover

Lorrentz actuator

Interferometer

Figure 4.1: Conceptual system drawing

A dSPACE DS1103 real time control system acts as the interface between the computers and
the plant. Controllers developed using MATLAB/Simulink environment are run real time

25
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in dSPACE. This combination of hardware and software allows quick prototyping and tun-
ing. The dSAPCE reads out position measurements of both the stages and also applies the
required voltage signals computed by the controllers to the system. For the analog signals
in the system, 16 bit A/D and D/A converters are used. The digital phase quadrature sig-
nals of the position measurements are read out using a 24 bit encoder interface. Additional
communication signals required for the Aerotech Soloist motion controller are provided
via digital I/O. The controller runs at a cycling frequency of 10 kHz.

Figure 4.2: System overview

4.1.1. COARSE STAGE

A (Aerotech ABL10100LT) 1 DoF stage shown in 4.3a was used for the coarse stage. The
stage comprises of an air bearing guide with a stroke of 100 mm, a linear motor for actua-
tion. The specifications of the stage and further details can be found in Appendix A.1.

(a) Aerotech ABL10100LT (b) Aerotech Soloist ML

Figure 4.3: An Aerotech ABL10100LT linear stage is used as a coarse stage. The stage is driven by an Aerotech
Soloist ML.

The linear stage is driven using an Aerotech Soloist ML, shown in 4.3b. It comprises of a
power supply, amplifier and position controller. The controller is used in torque control
mode so that the motion of the coarse stage can be synchronised with that of the coarse
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stage. In this mode, the drive acts as an amplifier, converting a voltage control signal into
the required current to drive the actuator.

The Aerotech ABL10100LT also has a built in linear encoder with a resolution of 10nm. It
provides a quadrature encoder signal that can be converted to a position measurement.

4.1.2. FINE STAGE

ACTUATION

The fine stage, as discussed earlier, is actuated by a Lorentz actuator. Lorentz actuators
are characterised by their linearity and high force predictability, making it an ideal choice
for such a high precision application. A Lorentz force is generated between the stator and
the mover. Lorentz force is the interaction between a current carrying wire in the shape
of a coil and the magnetic field of the permanent magnets. The generated force is linearly
proportional to the current through the coil and is given by

F = lw · I×B (4.1)

where F is the resulting force, lw is the total length of the current carrying wire in the mag-
netic field, I is the current and B is the magnetic flux density. The specifications of the
actuator can be found in Appendix B.1.

AMPLIFIER

The control signal output of the D/A converter of the dSPACE has low voltage and low cur-
rent. This control signal is amplified in order to be applied on the actuator, using a current
feedback amplifier which shows a linear behaviour and is capable of providing bidirec-
tional current. The inductive load of the coil acts as a low pass filter, decreasing current
output at higher frequencies. The current feedback applied produces an output current
independent of the frequency dependent impedance of the actuator. The decreasing cur-
rents at high frequencies are compensated by applying a higher output voltage.

The resistive- inductive load of the actuator creates a resonance between the coil induc-
tance and the internal capacitance of the op-amp, which has been measured to be at 17
kHz. Also, the amplifier was shown to have a flat response upto 1 kHz, after which the
phase starts to decrease [16]. More information can be found in Appendix B.2.

SENSOR

The position of the fine stage is measured using a Renishaw RLE10 laser interferometer. It
uses a 633 nm Helium - Neon laser source and employs a double pass plane mirror configu-
ration. The output voltage signal is internally converted to a digital quadrature signal, from
which the position measurement can be obtained. The resolution of the interferometer is
10 nm.
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MECHANICAL DESIGN

The desired 1 DOF motion of the fine stage is achieved using four parallel plate springs,
which appropriately constrains the system. The parasitic motion in the vertical direction is
a disadvantage in this design. However it is relatively small (0.375mm) within the ±5mm
horizontal range of the stage. The stiffness in the translational direction of the linear guide,
taking into consideration the effect of pre-load caused by the weight of the mover is given
by Equation 4.2.

kx = 4 · 12E I

L3
− 6Fy

5L
(4.2)

where E is the Young’s modulus, I is the moment of inertia, L the length of the plate spring
and Fy the pre-load force.

The Lorentz actuator is placed in such a way that the actuation forces act in line with the
center of mass, which occurs at the point of symmetry of the parallel plate spring guide.
The sensor is placed in such a way that the position measurement is done in line with the
actuation forces and the center of mass. This ensures that the influence of possible rota-
tions of the mover have the least effect on the position measurement.

The original system had additional magnets attached to the stator and mover of the fine
stage in order such that the magnets act virtually as a nonlinear spring. This is done to ob-
tain a nonlinear force-displacement curve which provides high acceleration and decelera-
tion forces, thereby reducing control input and the resulting Joule heating in the actuator.
The drawback is that the nonlinearity must be considered as a disturbance and compen-
sated for. In order to reduce the complexity, these magnets were removed from the fine
stage. Stiffness of leaf flexures was increased from 24Nm to 174Nm in order to compen-
sate for the reduction in translational stiffness.

4.2. SYSTEM IDENTIFICATION

4.2.1. DYNAMIC MODEL

A simplified dynamic model of the system must be established to predict the behaviour of
the system. The dual stage is modelled to be a double mass-spring-damper system shown
in Figure 4.4. The behaviour of the system is described by the following two equations in
the Laplace domain.

mcs s2 + (ccs + c f s)s + (kcs +k f s))Xcs(s)− (c f s s +k f s)X f s(s) = Fcs(s)−F f s(s) (4.3a)

(m f s s2 + c f s s +k f s)X f s(s)− (c f s s +k f s)Xcs(s) = F f s(s) (4.3b)

From (4.3a) and (4.3b) the four transfer functions from the input forces Fcs and F f s to the
stage positions xcs and x f s can be derived, which describe the response of the system.
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Figure 4.4: Dual positioning stage modeled as mass spring damper system. Image courtesy [16]

Gcs,cs(s) = xcs

Fcs
Gcs, f s(s) = xcs

F f s

G f s,cs(s) = x f s

Fcs
G f s, f s(s) = x f s

F f s
(4.4)

Here Gcs,cs and G f s, f s are the transfer functions that need to be considered while design-
ing the controllers. Gcs,cs describes how the coarse stage position reacts to a force input of
the coarse stage actuator and G f s, f s describes how the fine stage position reacts to a force
input of the fine stage actuator. The off-diagonal terms Gcs, f s and G f s,cs are referred to as
the cross-coupling terms, essentially describing the mechanical coupling between the two
stages.

The transfer functions are

Gcs,cs(s) = m f s s2 + c f s s +k f s

(m f s s2 + c f s s +k f s)(mcs s2 + (c f s + ccs)s +k f s +kcs)− (c f s s +k f s)2
(4.5)

Gcs, f s(s) = −m f s s2

(m f s s2 + c f s s +k f s)(mcs s2 + (c f s + ccs)s +k f s +kcs)− (c f s s +k f s)2
(4.6)

G f s,cs(s) = c f s s +k f s

(m f s s2 + c f s s +k f s)(mcs s2 + (c f s + ccs)s +k f s +kcs)− (c f s s +k f s)2
(4.7)

G f s, f s(s) = mcs s2 + ccs s +kcs

(m f s s2 + c f s s +k f s)(mcs s2 + (c f s + ccs)s +k f s +kcs)− (c f s s +k f s)2
(4.8)

4.2.2. FREQUENCY RESPONSE ESTIMATION

In order to model the dynamics of the plant described in section 4.2.1, known input sig-
nals are applied to the system and the frequency response is measured. White noise and
frequency sweep of 0.1 to 2000 Hz are used as input signals. Sufficient amplitude of force
inputs were chosen to give a small but a detectable response. With known force input and
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position output data, frequency response function can be calculated as

H( f ) =

N∑
i=1

Yi ( f )U∗
i

N∑
i=1

Ui ( f )U∗
i

(4.9)

where U∗
i and Y ∗

i are the input and output fourier transforms respectively. This calcula-
tion was performed using the function etfe in MATLAB. The obtained frequency response
and identified system can be found in Figure 4.5. Resonance frequencies of the system are
around 2.5 Hz and 4.5 Hz.
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Figure 4.5: Measured frequency response function and identified transfer functions of the system.

From the coarse stage response Gcs,cs it can be seen that the measured response shows an
additional phase lag starting at around 40 Hz. This additional phase lag is caused by the
phase delay of the amplifier. In the response of the fine stage, a higher order resonance
can be observed at approximately 1000 Hz. Also, a small additional phase lag is observed
starting at around 100 Hz. In the estimated response, these behaviour are not captured.

These additional phase lags and dynamics would act as a limiting factor in achieving high
control bandwidths and must be taken into account in designing the controllers. Also, this
makes the chosen plant an ideal system to test the developed control techniques.
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Figure 4.6: Measured and estimated responses of (a) coarse stage (b) fine stage

4.2.3. IDENTIFICATION IN TIME DOMAIN

In order to determine the parameters of the plant, system identification was done in the
time domain, by trying to minimise the error between the simulated output and the mea-
sured output. This was modelled as an optimisation problem in MATLAB, with the objec-
tive function being the error.

To obtain appropriate initial values that are close to the ideal parameters, the coarse stage
and the fine stage were mounted separately to the optical test unit. The frequency response
functions of the two stages can be modelled as two mass -spring -damper systems with
second order transfer functions. The transfer functions Gcs and G f s for the coarse and fine
stages respectively are given below:

Gcs = 1

mcs s2 + ccs s +kcs
(4.10)

Gcs = 1

m f s s2 + c f s s +k f s
(4.11)

The function lsqnonlin of the optimisation toolbox in MATLAB was used for the nonlinear
optimisation problem. For the identification of the coarse stage, a white noise input signal
is used, and another dataset for a white noise sequence is used for validation. Parameter
optimisation for the fine stage was done using a filtered chirp signal and then validated us-
ing a white noise signal. For each case, the VAF was also calculated to ensure the validity
of the results and were found to be higher than 99% for all cases. The measured and sim-
ulated responses can be found in Figure 4.7 and Figure 4.8 for the coarse and fine stages
respectively.
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Figure 4.7: Simulated response versus measured response of the coarse stage
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Figure 4.8: Simulated response versus measured response of the fine stage

The identified frequency responses of the two stages together with their modelled responses
are shown in 4.6a and 4.6b.In this figure, the parameters are updated to match the mod-
eled responses to the measured responses. The identified transfer functions would also be
useful in conducting tests on the stages separately.

Attempts to identify the overall system using the identified parameters using an optimiza-
tion algorithm were not successful as the algorithm did not converge.

4.2.4. FREQUENCY DOMAIN IDENTIFICATION

The identification of the MIMO system was hence carried out as a grey box identification
problem. The MATLAB function tfest was used to fit the transfer function Gcs,cs(s). Once
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this was done, the same denominator is applicable for other transfer functions of the MIMO
system, and only the zeros had to be ascertained. This was done using the parameters iden-
tified earlier. The transfer function gains were manually adjusted.

Validation of the ascertained parameters was done by simulating the response to a filtered
chirp signal and a white noise input. The simulated responses were checked to closely
resemble the measured responses, as can be seen in Figure 4.9. VAF was calculated to be
97.6% and 97.2% for the two responses respectively. The final parameters used in the model
are given in Table 4.1.
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Figure 4.9: Validation of the identified system

Parameter Value Unit
mcs 2.34 kg
ccs 17 Nsm−1

kcs 2000 Nm−1

m f s 0.57 kg
c f s 0.28 Nsm−1

k f s 146 Nm−1

Table 4.1: Model Parameters
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4.3. BANDWIDTH REQUIREMENTS FOR PRECISION

The system must have a certain minimum stiffness to achieve the desired levels of accu-
racy, as the stiffness determines the natural frequency of the system. It is known that this
natural frequency is directly related to the performance of the system with respect to reject-
ing external vibration disturbances [2]. It has also been shown in [2] that a virtual stiffness
can be created between the metrology frame and the moving mass using a feedback con-
troller. However, to sufficiently reject the disturbances, the controller should have a certain
minumum bandwidth. This minimal bandwidth is calculated in this section.

4.3.1. COARSE STAGE

The main source of disturbance acting on the coarse stage is assumed to be disturbances
forces caused by reset of the fine stage controller. An accelerometer was employed to mea-
sure these accelerations. For a step of 0.1µm, the accelerations were measure to be 1.2m/s2.
Assuming that the coarse stage has a low stiffness and damping, the required control forces
to counteract the disturbances are equal to

Fcontr ol = mavi b (4.12)

where m is the moving mass of the coarse stage and avi b the maximum acceleration of the
vibrations. When a simple controller with only a proportional gain kp is used, the control
forces of the controller are given by

Fcontr ol = kpεmax,cs (4.13)

where εmax,cs is the maximum allowed tracking error of the coarse stage. The controller
bandwidth fbw in Hz can then be calculated using

fbw = 1

2π

√
kp

m
. (4.14)

Combining Equations (4.12) - (4.14) yields :

fbw = 1

2π

√
avi b

ε
. (4.15)

With the maximum tracking error for the coarse stage limited to 10µm and disturbances in
the form of accelerations of 1.2m/s2, a bandwidth of atleast 54Hz is required.

4.3.2. FINE STAGE

The main forces acting on the fine stage arise out of the tracking error of the coarse stage
and the transmission of external vibrations to the fine stage. In the optical test facility on
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which the system is mounted, Vibration Criterion A (VC-A) is assumed to be valid. The RMS
velocity is given to be 50µms−1 from which the maximum velocity vmax can be calculated.
The total control force required to compensate for the disturbances is thus given by

Fcontr ol = c f s vmax +εmax,csk f s . (4.16)

Taking a maximum allowable position error of 10nm , and using Equations (4.12) - (4.14),
we calculate the required control bandwidth for the fine stage as

fbw = 1

2π

√
c f s vmax +εmax,csk f s

εmax, f sm f s
= 81.1Hz (4.17)

Also, the minimum stiffness for achieving a precision of 10nm can be calculated as

k f s,mi n = c f s vmax +εmax,csk f s .

εmax, f s
= 1.48×105 Nm−1 (4.18)

Assuming a saturation voltage of 3V( 1A), the active stiffness was found to be 1.65×108 Nm−1

. This validates the design choice of fixing the fine stage stiffness at 146Nm−1, as the ac-
tive stiffness has been shown to be higher than the stiffness needed to achieve the desired
precision.





5
CONTROLLER DESIGN

In this chapter, the control structure used for reset controllers is introduced. Implemen-
tation of the controllers in discrete time state space form within the MATLAB/Simulink
environment is then discussed. Following this, the three reset controllers developed in
chapter 3 are tuned for the fine stage of the experimental setup discussed in chapter 4.
A linear PID controller is also tuned based on guidelines given in subsection 1.1.2. Open
loop frequency response is estimated through describing functions for the reset controllers
and compared with PID.

5.1. RESET CONTROL STRUCTURE

Reset elements, by definition operate on the error signal, with reset occurring at the zero
crossings of error. Thus the reset element must be the first element in the control loop.
The reset part is placed first in the control loop and the non reset part is placed in series. A
block diagram depicting the structure of reset PID controllers is shown in Figure 5.1. The
state space representations are as follows :

Σr :=


ẋr (t ) = Ar xr (t )+Br e(t ), e(t ) 6= 0
xr (t+) = Aρxr (t ), e(t ) = 0
ur (t ) =Cr xr (t )+Dr e(t )

(5.1)

Σnr :=
{

ẋnr (t ) = Anr xnr (t )+Bnr ur (t ),
unr (t ) =Cnr xnr (t )+Dnr ur (t )

(5.2)

ΣRC :=


ẋRC (t ) = ARC xRC (t )+BRC e(t ), e(t ) 6= 0
xRC (t+) = ĀρxRC (t ) e(t ) = 0
u(t ) =CRC xRC (t )+DRC e(t )

(5.3)

where e(t ) is the error signal, ur (t ) is the output of the reset part, which is given as in-
put to the nonlinear component. u(t ) is the control input to the plant. The reset con-
troller states, nonlinear controller states, and reset PID states are given by xr (t ), xnr (t ) and
xRC (t ) = [xT

r xT
nr ]T respectively. The reset matrices for the reset component and for the reset
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ure u
Σr Σnr

ΣRC

Figure 5.1: The reset PID controller is split into two components, the reset part and the non reset part.

PID are given by Aρ and Āρ respectively. ARC ,BRC ,CRC , and DRC are state space matrices
of the base linear controller and are given by

ARC =
[

Ar 0
Bnr Cr Anr

]
,

BRC =
[

Br

Bnr Dr

]

CRC = [
Dnr Cr Cnr

]
;

DRC = Dnr Dr

(5.4)

where reset matrix Āρ is given by

Āρ =
[

Aρ 0
0 Innr

]
(5.5)

where nnr is the number of non reset control states.

5.2. CONTROLLER IMPLEMENTATION

The reset controllers are implemented in the system in discrete time. The controllers tuned
in continuous time are discretized using the MATLAB function c2d. A sampling frequency
of 20kHz was chosen, which is much higher than the sampling frequency mandated for the
control bandwidths to be used. This was the maximum frequency that can be applied in
the dSPACE interface. The discrete time state space is given by

ΣRC :=


x[k +1] = Ad x[k]+Bd e[k], e[k] 6= 0
x[k +1] = Aρx[k], e[k] = 0
u[k] =Cd x[k]+Dd e[k]

(5.6)

where Ad ,Bd ,Cd ,Dd are the discrete time state space matrices corresponding to ARC ,BRC ,CRC ,
and DRC . The state space representation was implemented in Simulink as shown in Fig-
ure 5.2.
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Parameter Controller A Controller B Controller C
ωc 150 200 150
Kp 9.24×105 1.74×106 3.09×105

ωi ωc /10 ωc /10 ωc /10
ωd ωc /5 ωc /5 ωc /3
ωτ - - ωc ×3
α 0.7 0.7 -
ωl ωc ×7 ωc ×7 ωc ×4.5

Table 5.1: Controller Parameters

B

K*u

C

K*u
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x0

u

Z-1

Resettable Delay
Hit 

Crossing

K*u

A_rho

1

Control Input

Dd

Cd

Ad

Bd

Aρ

e

u

Figure 5.2: Block diagram for Reset PID in discrete time

5.3. CONTROLLER PARAMETERS

All developed controllers were tuned for the fine stage in the experimental setup, to have
a phase margin of 45°. Also, a PID controller is tuned so that the improvement in perfor-
mance using reset PID can be validated. Bandwidth for the PID controller is chosen as 150
Hz, which is higher than the minimum bandwidth calculated in section 4.3. The cutoff fre-
quencies for the integrator, differentiator and the taming pole are chosen as per the rules
of thumb. A first order low pass filter is placed at a frequency of 900Hz, which is 6 times
higher than the bandwidth. The targets for bandwidth and phase margin were met with
these parameters.

Parameters in (3.3) and (3.4) for the three reset controllers are tabulated in Table 5.1. Open
loop for all controllers are estimated using describing functions and are compared with PID
in Figure 5.3.
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Figure 5.3: (a) Case 1 - comparison of open loop for Reset controller A vs PID. (b) Case 2 - comparison of
open loop for Reset controller B vs PID. (c) Case 3 - comparison of open loop for Reset controller C vs PID.



6
EXPERIMENTAL VERIFICATION

The controllers that were tuned in section 5.3 are implemented in the setup and experi-
ments are conducted to validate the controllers performance. The fine stage has been re-
moved from the coarse stage for this set of experiments because the plant is now a second
order system and the effect of change in controller parameters will be more readily perceiv-
able. The practical experiments conducted in both time domain and frequency domain are
explained and the results are shown. In the time domain, reference tracking performance
and steady state precision in the presence of noise are analyzed. In frequency domain, sen-
sitivity function and complementary sensitivity function are computed and compared with
the estimations made from describing functions.

6.1. TIME DOMAIN

6.1.1. REFERENCE TRACKING

A fourth order motion profile, as developed in [17] was applied to the stage to study the
reference tracking performance. By imposing limits on the first four derivatives of position
(velocity, acceleration, jerk, and snap), a prefiltered trajectory was created, the demands
of which are much lesser than the physical limits of the system. Such a profile also limits
the high frequency content in the reference signal, reducing the demands on the feedback
controller. Also, in [17], a feedforward was proposed to improve the tracking performance,
which essentially is an inverse of the plant transfer function. The DC gain of the feedfor-
ward equals the inverse DC gain of the plant, which has been shown in [18] to be necessary
for better set point regulation and to avoid limit cycles.

The parameters used to generate the trajectory are listed in Table 6.1
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Controller Maximum Steady State Error (nm) RMS Tracking Error (nm)
PID 40 41.48

Controller A 20 23.12
Controller B 40 15.73
Controller C 30 43.15

Table 6.2: Comparison of maximum steady state errors and RMS tracking errors for the developed
controllers.

Parameter Value
Displacement 400µm

Maximum velocity 7.5mms−1

Maximum acceleration 5cm/s2

Maximum jerk 1m/s3

Maximum snap 10m/s4

Table 6.1: Amplitude and the constraints on the derivatives of the fourth order profile

The control structure used is shown in Figure 6.1. The gains q1, q2, q3, q4, and the param-
eters of the discrete filter are calculated as given in [17].

Snap profile generator

K Ts

z-1
Position

K Ts

z-1
Velocity
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z-1
Acceleration

K Ts

z-1
   Jerk  

q1

q2

q3

q4

num(z)

den(z)
Discrete Filter  

In1 Out1

Controller

In1 Out1

Plant position 
measurement

Snap 

profile

feedforward

Figure 6.1: Control structure used for reference tracking

The tracking errors obtained with the 3 reset controllers are compared with the tracking er-
ror from PID in Figure 6.2. The RMS values of tracking errors are tabulated in Table 6.2. The
RMS error for Controller A has reduced by 34% compared to PID. This can be explained
by the higher low frequency gain of Controller A. The reduction for Controller B is even
higher, at around 60%. This also is as expected, since by increasing bandwidth, the gain of
Controller B at lower frequencies is greater than that of controller A. This reduction is the
highest among the 3 controllers. Reset controller C does not show any improvement in the
tracking performance.
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Figure 6.2: (a) Case 1 -Tracking error for Reset controller A vs PID. (b) Case 2 - Tracking error for Reset
controller B vs PID. (c) Case 3 - Tracking error for Reset controller C vs PID.

6.1.2. STEADY STATE PRECISION

The steady state performance of the controllers was studied to validate the improvement in
precision predicted in the describing function analysis. In steady state, with only the sensor
noise present in the system, the achieved precision was 10nm for all the three controllers,
which is equal to the resolution of the interferometer used. So, white noise of amplitude
50nm was added as measurement noise n as shown in Figure 6.3 and the error signal was
measured.

C(s) y

-
P(s)

+

+
n

Figure 6.3: Block diagram showing additional noise added for closed loop identification

The measured error signals obtained with the three reset controller cases are compared
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with the error obtained from PID in Figure 6.4. The maximum values of errors are tabulated
in Table 6.2.
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Figure 6.4: (a) Case 1 - steady state error for Reset controller A vs PID. (b) Case 2 - steady state error for Reset
controller B vs PID. (c) Case 3 - steady state error for Reset controller C vs PID

The maximum steady state error has been shown to have improved from 40nm for the PID
to 20nm for controller A, and 30nm for controller C. The bandwidth of Controller B was
gradually increased from 150Hz. It was observed that the steady state error increased with
increase in bandwidth and at a bandwidth of around 200Hz, it became equal to that of the
PID. Thus, a bandwidth improvement of 33% has been achieved.

6.2. FREQUENCY DOMAIN

The sensitivity function and the complementary sensitivity function were identified by
adding chirp noise as measurement noise in the closed loop system depicted in Figure 6.3.
The signal is a bidirectional logarithmic frequency sweep from 0.1 Hz to 2000 Hz for a time
duration of 8 minutes, with a target time of 120 seconds. An amplitude of 1µm was chosen,
and the signal was filtered with a low pass filter to sufficiently attenuate the higher frequen-
cies and thereby limit the control input to within saturation levels.
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Having measured the noise input and the position output, the sensitivity function and the
complementary sensitivity function were identified using the MATLAB function etfe. Sen-
sitivity function was obtained as the transfer from n to y +n, and the complementary sen-
sitivity function as the transfer from −n to y .

The identified sensitivity functions for the three controllers compared with sensitivity func-
tions estimated from describing function analysis in Figure 6.6. Similarly, the complemen-
tary sensitivity functions are compared in Fig. Figure 6.5. It can be seen that the measured
responses match well with the estimated responses. From Fig. 6.5b, it can be seen that
the bandwidth has been increased from 150Hz to around 200Hz by Controller B, which is
an improvement of 33%. Though the bandwidths achieved are as expected, the sensitiv-
ity peaks in the identified responses for controllers A and B are slightly higher than with
describing functions, which shows that reset has added marginally lesser phase than an-
ticipated from describing functions, which can be attributed to the phase delay introduced
by discretization. This is not the case with controller C, as reset was not used in this case to
add phase at bandwidth. The better tracking performance of controller B can be explained
by the lower sensitivity shown by controller B at low frequencies compared to controller A
in 6.6a and 6.6b. In 6.5c, a reduction in complementary sensitivity can be seen at high fre-
quencies, which indicates improvement in precision. Apart from the deviations between
the expected and measured frequency responses described above, describing functions
provide a good approximation of reset behavior in the three controllers.
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Figure 6.5: (a) Case 1 - Measured vs Estimated complementary sensitivity function for Reset controller A. (b)
Case 2 - Measured vs Estimated complementary sensitivity function for Reset controller B. (c) Case 3 -

Measured vs Estimated complementary sensitivity function for Reset controller C
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7
EXPERIMENTAL RESULTS - DUAL STAGE

In this chapter, performance of reset is investigated in the dual stage setup. The mas-
ter/slave architecture used to control the two stages is discussed. The concept of decou-
pling used to reduce the cross-coupling between the two stages is discussed. Following
this, the results from reference tracking experiments are discussed.

7.1. CONTROL STRUCTURE

7.1.1. MASTER/SLAVE CONTROL

A master/slave control strategy is a simple but effective way to drive a dual stage positioning
system. In this technique, two independent Single-Input-Single-Output (SISO) controllers
are used to control the Multiple-Input-Multiple-Output dual stage system. A basic mas-
ter/slave control scheme that is used is shown in Figure 7.1. In a dual stage positioning
system, the fine stage G1(s) acts as the master. To track the predefined set point, the fine
stage position is controlled with a high bandwidth feedback controller C1(s). The coarse
stage G2(s) is made to act as the slave, that tries to follow the fine stage position as well as
possible. This is done by making the position error between the fine stage and the coarse
stage as the error signal for the coarse stage controller G2(s), and as a result the coarse stage
position x2 goes to such a value that the position error becomes zero.

+
C1(s) G1(s)

_

ref
x1

C2(s) G2(s)
_

+
x2

Figure 7.1: The master/slave control scheme used for the dualstage positioning system. C1(s) and G1(s)
represent the fine stage controller and plant respectively, whereas C2(s) and G2(s) denote the coarse stage

controller and plant.
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7.1.2. DECOUPLING

In the dual stage positioning system, it is inevitable that the control loops affect each other
by acting as disturbances. However, since the dynamics of the system are known, they can
be considered to be known disturbances. By judicious use of feedforward, these distur-
bances can be compensated for by a process termed decoupling. It is essentially an attempt
to isolate the fine and course stage from each others dynamics.

Decoupling feedforward was applied in the system as given in [19]. The block diagram for
this decoupling method is shown in Figure 7.2. Let the transfer functions for i-th input
Ui (s) to j-th output Y j (s) be defined as G j i (s).

GFF
ji
(s)

Gij(s)

GFF
ji
(s)

U'i(s)

Yi(s)

Uj(s)

Ui(s)

+

+

+

+

Figure 7.2: Block diagram showing decoupling feedforward

Because of coupling, j-th input Ui (s) also has a contribution to output Yi (s) as follows:

Yi s =Gi i (s)+Ui s +Gi j (s)U j (s) (7.1)

In order to compensate for the coupling from j-th loop to the i-th loop in the frequency

band [0 ω f f ], the feedforward gain G j i
F F (s) should be chosen such that

G j i
F F (s)Gi i (s)+Gi j (s) ≈ 0, ∀ω ∈ [0 ω f f ] (7.2)

This could also be written as,
G j i

F F (s) =−G−1
i i (s)Gi j (s) (7.3)

7.2. REFERENCE TRACKING

The control structure for reference tracking was constructed based on the master/slave
control scheme with decoupling feedforward force, as shown in Figure 7.3. This is in addi-
tion to the fine stage feedforward computed from the reference.
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Figure 7.3: Block diagram of the control structure used for dual stage reference tracking. The master/slave
control scheme is added with decoupling and reference feedforward.

A fourth order reference profile was generated as explained in section 6.1. The parameters
used to generate the trajectory are listed in Table 7.1

Parameter Value
Displacement 3mm

Maximum velocity 2cms−1

Maximum acceleration 0.25m/s2

Maximum jerk 50m/s3

Maximum snap 500m/s4

Table 7.1: Amplitude and the constraints on the derivatives of the fourth order profile

The coarse stage was controlled by a PID with a bandwidth of 70Hz and the fine stage is
controlled by each of the controllers designed for the fine stage. The obtained tracking
errors when using the reset controllers are compared with that of PID in Figure 7.4. It can be
seen that controller A performs better than PID, and the RMS error has been calculated to
have reduced by 50.6%. Controller B provides better tracking that controller A, as expected,
and RMS error reduced by 61.7%. Performance of controller C was similar to that of PID.
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Figure 7.4: (a) Case 1 -Tracking error for Reset controller A vs PID. (b) Case 2 - Tracking error for Reset
controller B vs PID. (c) Case 3 - Tracking error for Reset controller C vs PID.



8
GUIDELINES FOR TUNING

In this chapter, basic rules of thumb that can be used to tune the three developed con-
trollers are provided. Controller parameters largely depend on the phase margin required
and the value of γ to be used, and therefore can not be generalized. Guidelines provided
are for the case γ= 0.

8.1. RESET CONTROLLERS A AND B

• Integral action is terminated at ωi =ωc /10.

• Differentiating action is started at ωd =ωc /5.

• Taming pole of lead component is placed at ωt =αωd where α= 0.75.

• The corner frequency for LPF is taken as ωl = 7×ωc .

• For Controller A, the proportional gain is equal to the inverse of the gain of the plant
at ωc .

• For Controller B, the proportional gain is 1.75 times the inverse of the gain of the plant
at ωc .

8.2. RESET CONTROLLER C

• Differentiating action is started at ωd =ωc /3 and terminated at ωt =ωc ×3.

• Integral action is terminated at ωi =ωc /10.

• Proportional gain is calculated by taking the inverse gain of the plant transfer func-
tion at ωc and dividing by 3.

• Corner frequency of reset LPF is placed at ωl r = 4.5×ωc to achieve the same phase
margin obtained when using a linear LPF at ωl = 6×ωc .
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9
CONCLUSIONS

9.1. GENERAL CONCLUSIONS

In this thesis, reset control has been implemented in the PID control scheme with the view
of relaxing the waterbed effect, and improving the bandwidth of the system while main-
taining the same level of precision, and vice versa. New design rules for Reset PID control
have been developed, analogous to the rules of thumb used for tuning PID controllers.

Describing function analysis was used as an approximation method to aid in the loop shap-
ing process, while developing reset controllers. Three different controller configurations
are used; two configurations with reset implemented in the taming pole of the lead compo-
nent, and one configuration with reset in the low pass filter. The first configuration termed
’Reset Controller A’ provides improvement in precision and tracking while maintaining the
same bandwidth and phase margin compared to linear PID. ’Reset Controller B’ has been
tuned to provide better tracking and higher bandwidth while maintaining same precision
and phase margin. The tracking performance of controller B is better than that of controller
A. ’Reset Controller C’, with reset in LPF, provides improvement in precision while all other
performance criteria are the same.

The controllers have been shown to satisfy sufficient conditions for ensuring asymptotic
stability. The controllers are then implemented digitally within a MATLAB/Simulink en-
vironment and implemented on a dual stage positioning system, via a real-time dSPACE
DS1103 controller interface. A toolbox has been created that can be used for implemen-
tation of Reset PID and for further research. The fine stage was separated from the coarse
stage and mounted to the optical test facility for initial experiments to validate the devel-
oped controllers. Time domain experiments were conducted on the fine stage to study the
performance with regard to tracking and precision. In the frequency domain, closed loop
identification techniques were used to identify the complementary sensitivity and sensi-
tivity functions.

A fourth order input-shaped reference signal with a stroke of 400nm was applied to the
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closed loop system along with second order feedforward. The tracking errors from using
each of the three reset controllers were compared with the tracking error from PID. It was
observed that controller A provided the best tracking performance, with an RMS error that
is 56% of that of PID. Controller B provided further improvement in tracking, and the RMS
error reduced to 39% of that of PID. This is inline with the open loop shapes obtained by de-
scribing function analysis. The tracking performance of controller C showed no improve-
ment over PID.

The steady state precision of the 3 reset controllers and PID were measured to be 10nm,
which is the same as the resolution of the interferometer used. In order to study the im-
provement in precision, a 50nm white noise signal was added as measurement noise in
the closed loop, while the reference was set at zero. The PID controller produced a maxi-
mum steady state error of 40nm, while this was reduced to 20nm for controller A and 30nm
for controller C. Controllers A and C were tuned to provided better precision at the same
bandwidth as the PID at 150Hz, and it is seen that both controllers have achieved that, with
controller A performing better than controller C. Thus, controller A can be chosen to be the
better choice, also noting that it provides better tracking than controller C. Reset Controller
B with bandwidth at 200Hz provided the same precision as the PID with bandwidth 150Hz
which is a 33% improvement in bandwidth.

The measured closed loop frequency responses were compared with those calculated from
describing functions and it was observed that they match well. It was shown that though
the phase added by reset lead element is slightly lesser than expected for controllers A and
B, describing functions provide a good approximation of phase addition in Reset PID. For
controller C, the improvement in precision was substantiated by the reduced complemen-
tary sensitivity function at high frequencies.

A fourth order reference profile with a stroke of 3cm was then applied to the dual stage
system with fourth order feedforward. The two stages were decoupled from each other us-
ing additional feedforward, so as to minimize the effect of one closed loop on another. The
coarse stage was controlled by a PID controller of bandwidth 70Hz, while the fine stage was
controlled by the same controllers as before. Controller A provided a reduction of around
51% in tracking error, while it was around 62% for controller B. This is in line with the per-
formance obtained from the second order system.

The water-bed effect, due to which it was impossible to improve bandwidth or precision
without impacting the other was impossible in PID has been overcome to a considerable
extent using reset control. The reset controllers, as explained above have shown better
precision without compromising the bandwidth and higher bandwidth without reduction
in precision.
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9.2. RECOMMENDATIONS

During the course of the thesis, several observations were made that can further enhance
the knowledge behind Reset PID control. Also, more general recommendations are given
that would help understand reset control better.

9.2.1. HIGHER ORDER DESCRIBING FUNCTION ANALYSIS

The sinusoidal input describing method used in this thesis only considers the first coef-
ficient of the fourier transform of output. This method thus ignores the higher order dy-
namics induced by reset. Although the practical results from the setup correspond well to
the simulated results, taking into consideration the higher order dynamics can help under-
stand the effects of increasing nonlinearity on the system. A detailed approach for Higher
Order Describing Function Analysis (HOSIDF) can be found in [20], and this could be im-
plemented in future work.

9.2.2. PHASE ADDITION BY RESET

It was observed that the sensitivity peak for controller A and B were slightly larger in prac-
tice than what was estimated from describing functions. Further study is required to ascer-
tain the cause for this.

9.2.3. DISTURBANCE REJECTION

This thesis was intended to overcome the waterbed effect in PID control, with focus on
achieving better bandwidth and precision independently without affecting each other. The
performance of Reset PID controllers have not been analyzed from the point of view of dis-
turbance rejection. It has been shown in [7] that adding phase to the system through reset
without affecting the gain characteristics can help achieve mid-frequency disturbance re-
jection. In Reset controllers A and B, the amount of phase added can be changed by chang-
ing the nonlinearity in the system, without affecting the gain behavior. The performance
however needs to be validated.

9.2.4. STEP RESPONSE

Although all the controllers in the thesis have been made to have the same phase margin
as the PID controller against which the comparisons are made, step response of the system
was not studied. Analyzing step response can help understand the relationship between
the describing function phase margin and overshoot in reset systems.

9.2.5. DOUBLE RESET

Reset has been implemented in the lead component and low pass filter individually. Fur-
ther research is necessary to check if precision can be improved by applying reset in both
components simultaneously.Implementation will be less straight-forward because unlike
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with linear control elements, positions of the reset elements in the control loop do affect
the response of the system. Design complexity increases when different γ values need to
be used for the two reset elements and new rules of thumb will have to be defined.
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A
DATASHEETS

In this section, the data sheets of the Aerotech ABL101000LT linear stage and Aerotech
Soloist ML motion composer can be found.
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B
FINE STAGE SPECIFICATIONS

B.1. ACTUATOR SPECIFICATIONS

Specification Value
Resistance R 2.1Ω
Inductance L 580µH

No. of windings 140
Coil dimensions 30×60×2 mm

Magnet dimensions 20×6×3 mm
Magnet remanent flux density Br 1.42T
Average flux density in air gap Bg 0.85T

Motor constant 1.61NA−1

B.2. AMPLIFIER SPECIFICATIONS

Specification Value
Gain (A/V) 0.348
Offset (mA) 0.5

Noise level at 10 kHz (mApp) 6
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C
MATLAB CODE - STABILITY CHECK

C.1. LYAPUNOV STABILITY

1 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % Check Hbeta s t a b i l i t y condition
3 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4

5 %Plant TF
6 load Hindividual
7 P_tf = H2;
8

9 %% Compute Reset PID c o n t r o l l e r
10

11 % I n i t i a l i s e parameters
12

13 PM = 45;
14 BW = 150; % Bandwidth in Hz
15 mode = ’RCA ’ ; % mode − str ing , ’RCA’ for Reset Controller A ,
16 % ’RCB’ for Reset Controller B,
17 % ’RCC’ for Reset Controller C
18

19 %function c a l l to calculate c o n t r o l l e r
20 [ ss_rc , Arho , nr ] = resetgen_s (mode, P_tf ,PM,BW) ;
21

22 %% I n i t i a l i s e LMI
23 % Compute closed loop system
24

25 s y s c l =feedback ( s e r i e s ( ss_rc , ss ( P_tf ) ) , 1 ) ;
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26 Acl= s y s c l . a ; % Closed loop A−matrix
27 A=Acl /norm( Acl ) ; % Normalise A−matrix
28

29 nnr = s i z e ( ss_rc . a , 1 )−nr ;
30 np = order ( P_tf ) ;
31

32 % Compute C0 and B0
33 Cp=ss (H2) . c ;
34 beta=sdpvar ( 1 , 1 , ’ f u l l ’ , ’ r e a l ’ ) ; % sdpvar − symbolic decision variable
35 Prho=sdpvar ( 1 , 1 , ’ f u l l ’ , ’ r e a l ’ ) ;
36

37 B0=[ zeros (np , nr ) ; zeros ( nnr , nr ) ; ones ( nr , nr ) ] ;
38 C0=[ beta *Cp zeros ( nr , nnr ) Prho ] ;
39 P=sdpvar ( s i z e ( s y s c l . a , 1 ) , s i z e ( s y s c l . a , 1 ) , ’ symmetric ’ ) ;
40

41 %% Solve LMI
42 % Requires i n s t a l l a t i o n of YALMIP
43

44 lmi=A’ * P+P*A<=0;
45 eps=1e−14;
46 constr =[P>=eps * eye ( s i z e ( s y s c l . a , 1 ) ) , B0 ’ * P==C0 ] ;
47 ops=sdpsettings ( ’ solver ’ , ’sedumi ’ , ’ verbose ’ ,0 , ’debug ’ , 1 ) ;
48

49 F=solvesdp ( [ lmi constr ] , 0 , ops ) ;
50

51 i f F . problem==0
52 display ( s t r c a t ( ’ Solution found ’ ) )
53 end

C.2. GLOBAL ASYMPTOTIC STABILITY

1 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % | lambda( Arho*exp ( pi /w* Aol ) |
3 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4

5 %Plant TF
6 load Hindividual
7 P_tf = H2;
8

9 %% Compute Reset PID c o n t r o l l e r
10

11 % I n i t i a l i s e parameters
12 f =logspace (1 ,6 ,1 e3 ) ;
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13 PM = 45; % Phase margin
14 BW = 150; % Bandwidth in Hz
15 mode = ’RCA ’ ;% mode − str ing , ’RCA’ for Reset Controller A ,
16 % ’RCB’ for Reset Controller B,
17 % ’RCC’ for Reset Controller C
18

19 %function c a l l to calculate c o n t r o l l e r
20 [ ss_rc , Arho , nr ] = resetgen_s (mode, P_tf ,PM,BW) ;
21

22 %% Compute open−loop
23

24 P=ss ( P_tf ) ;
25 L= s e r i e s ( ss_rc , P) ;
26

27 n= s i z e ( ss_rc . a , 1 ) ; % number of c o n t r o l l e r s t a t e s
28 m= s i z e (P . a , 1 ) ; % number of plant s t a t e s
29

30 %% Compute and plot eigenvalues
31 eigenval=zeros (n+m) ; % i n i t i a l i z e
32

33 Arho = blkdiag ( Arho , eye (m) ) ;
34

35 for i =1: length ( f ) ;
36 w=2* pi * f ( i ) ;
37 term=Arho * (expm( pi /w*L . a ) ) ;
38 i f sum(sum( isnan ( term ) ) ) ==0;
39 eigenval ( : , i ) =abs ( eig ( term ) ) ;
40 end
41 end
42

43 semilogx ( f , eigenval )
44 hold on
45 ylabel ( ’ $ | \ lambda( A_\rho e ^{\ f r a c { \ pi } { \ omega} A_ { ol } } ) | $ ’ )
46 xlabel ( ’ Frequency (Hz) ’ )
47 grid on
48 set ( gca , ’ YMinorTick ’ , ’on ’ )



No more differentiator in PID:
Development of Nonlinear PID Control for Motion Systems

A. Palanikumar, N. Saikumar, S. Hassan HosseinNia

Abstract— Industrial PID consist of three elements, Lag,
Lead and Low Pass Filters (LPF). PID being a linear control
method is inherently bounded by the waterbed effect due to
which there exists a trade-off between precision and tracking,
provided by Lag and LPF on one side and stability and
robustness, provided by Lead, on the other side. Nonlinear reset
strategies applied in the Lag and LPF elements have been very
effective in reducing this trade. However, there is lack of study
in developing a reset Lead element. In this paper, we develop a
novel lead element which provides higher precision and stability
unlike the linear lead filters. The concept is presented and
validated on a Lorentz-actuated nanometer precision stage.
Improving the precision, tracking and bandwidth are shown
through two separate designs. The performance is validated in
both time and frequency domain to ensure that phase margin
achieved on the practical setup matches design theories.

I. INTRODUCTION

The high tech industry is at the forefront of pushing
the limitations and barriers in motion control technology.
Demands for achieving higher precision and speeds are ever
increasing. The wafer scanner industry, which is involved in
manufacturing integrated circuits, is a prime example where
(sub) nanometer precision positioning is required, while at
the same time meeting challenging throughput demands. For
accurate and fast servo-positioning of mechanical actuators
in real life engineering systems, high quality motion control
is required.

PID and related linear controllers (includes use of other
linear filters) have been the standard for industrial motion
control for many years owing to various factors such as its
wide applicability and ease of implementation. PID does not
require a precise model or thorough knowledge of the system
and can instead be tuned using standard guidelines. With
multiple advancements in feedforward control techniques,
it has become possible to achieve high bandwidths and
precision using PID. However, when extreme demands have
to be met, the fundamental limitations of linear control,
to which PID is not exempt, become more evident. Such
inherent limitations cause different performance criteria to
be conflicting in nature, making it impossible to improve
one criterion without negatively influencing another. This
phenomenon is known in linear control theory as waterbed
effect. For a more detailed explanation of the water bed
effect, [1] and [2] can be referred.

The authors are with the Department of Precision and Microsystems
Engineering, Delft University of Technology, Delft, The Netherlands

Requirements for precision motion control have been
discussed in detail in [3] and [4]. Loop shaping, one of
the popular methods for designing PID controllers in the
high tech industry, is a technique in which the controller is
designed in such a way that the frequency response of the
open loop transfer function has the desired shape in gain and
phase. For good tracking, high gain at frequencies upto the
bandwidth is required. In PID, the integrator plays the role
of increasing gain at low frequencies. Simultaneously, gain
at high frequencies needs to be low to effectively attenuate
noise in the system and hence provide good precision. This
is commonly achieved through the use of low pass filters. In
the frequency region around the bandwidth, phase behavior
determines the stability and robustness of the system . Phase
addition in PID is achieved by the tamed differentiator or
lead component. The constraint in the relation between gain
and phase behavior in linear systems is explained by Bode’s
gain-phase relationship [5]. Hence attempts to change gain
behaviour to improve precision and/or tracking negatively
affects phase and hence stability and vice-versa. Also
attempts to improve bandwidth results in decrease in phase
margin and deterioration in precision performance. These
limitations are fundamental to linear controllers including
advanced optimal linear control and can only be overcome
with the use of nonlinear control.

Reset control is one such promising technique which can
be used for this purpose. Reset control was first introduced
by J.C. Clegg in 1958, in the form of an integrator whose
state is reset whenever the input error signal crosses zero
[6]. Approximation of the behavior of Clegg integrator (CI)
through describing function analysis shows that the CI has
a phase lag of about −38◦, which is 52◦ higher than that
of a linear integrator, for similar gain behavior. Since then,
a lot of work has been done on reset control theory and
the benefits of using reset controllers in various practical
applications have been investigated. For example, reset
control has been used to achieve improved performance in
hard-disk-drive systems, [7], [8] and mechatronic systems
[9], [10]. In [11], it is shown that reset can be used to reduce
overshoot and improve settling time in PZT positioning
stages. Despite the promise shown, it is observed that
much of the research in reset control was focused on the
integrator. Some efforts have been made in investigating
other reset elements as well. For example, in [12], a
generalized fractional order reset element is introduced.
In [13], a reset lead-lag filter has been used to improve
mid-frequency disturbance rejection. And in [14], a second



order reset element has been introduced to be used in stage
control design. However apart from reset integrator, the use
of reset elements within the framework of PID for improved
performance has not been well investigated.

The motivation for this research arises from the possibility
of reducing the severity of the waterbed effect limitation
in PID using reset control. In this paper, reset has been
implemented in the taming pole of the lead component in
PID, and a Reset PID controller has been developed using
common loop shaping techniques. The main contribution
of this work is the concept of reset PID to overcome
fundamental limitations of linear control along with two
cases of reset PID controller design with first design used
to improve tracking and precision for same bandwidth and
second design for increase in bandwidth and tracking for
same precision.

In section II, necessary background information about re-
set control is provided. The concept of reset PID is provided
in section III. The experimental setup used for validation of
the developed controllers is described in section IV. In sec-
tion V, experimental results from implementation of the two
controllers are given, and compared with the performance of
linear PID controller, followed by conclusions.

II. PRELIMINARIES
A. Definition of Reset Control

A general reset controller can be defined as follows, using
the notations used in [1]:

ΣRC :=





ẋr(t) = ARxr(t) +BRe(t) if e(t) 6= 0,

xr(t
+) = Aρxr(t) if e(t) = 0

u(t) = CRxr(t) +DRe(t)

(1)

where matrices AR, BR, CR, DR are the base linear state-
space matrices of the control system. Aρ is the reset matrix,
which determines the after reset values of the states. u(t) is
the control input and the error signal e(t) is the difference
between reference r(t) and output y(t). xr(t) denotes the
controller states. A typical control structure using reset
control is shown in Fig. 1. The reset controller ΣRC is
separated into two components : a nonlinear part Σr whose
states are reset, and a linear part Σnr whose states are not
reset. The two components are connected in series, with the
output ur(t) from reset part given as input to the non reset
part.

B. Describing Function Analysis

Frequency response of reset elements can be approximated
using describing function analysis. This method makes the
assumption that non linear system behavior has a quasi-
linear amplitude dependent relation between sinusoidal
excitation inputs and the steady state response at the
fundamental excitation frequency. The higher harmonics are
neglected under the assumption that they are sufficiently

+ Σr Σnr

ΣRC

Σp yr

-

e ur u

FF

+

Fig. 1: Block diagram of feedback loop with a reset controller
ΣRC , and plant Σp. Feedforward term FF is calculated as
given in [15].

filtered out by the low pass characteristics of the system.
Describing functions thus help extend the use of loop
shaping techniques to reset control. For a more detailed
explanation of describing functions, [16] can be referred.

The general describing function of a reset system as
defined in [7] is given by:

GDF(jω) = CR(jωI −AR)−1BR(I + jΘD(ω)) +DR (2)

with
ΘD(ω) = −2ω2

π
∆(ω)[ΓD(ω)− Λ−1(ω)] (3)

where the following equations have been used:




Λ(ω) = ω2I +A2
R

∆(ω) = I + e
π
ωAR

∆D(ω) = I +Aρe
π
ωAR

C. Controlling nonlinearity with γ

The reset matrix Aρ in (1) provides a degree of freedom
in tuning the system and is defined as follows:

Aρ =

[
γInr 0

0 Innr

]
(4)

where nr and nnr are the number of states in Σr and
Σnr respectively.

If the resetting parameter γ = 1, the reset element reduces
to its base linear system as no reset occurs and γ = −1
denotes extreme reset. As |γ − 1| increases, the nonlinearity
in the system increases because the magnitude of jump in
state value increases. Increase in nonlinearity is not desired
due to the associated higher order dynamics. The variation
of phase lag with change in γ is shown in Fig. 2a, and it
can be seen that the more nonlinear the system is, greater
is the phase benefit.

Describing function of the generalized first order reset
element (GFORE) developed in [7], is compared with a linear
lag filter in Fig. 3. It can be seen that for the case of γ = 0,
upto the corner frequency at 100 Hz, the behavior of GFORE
is similar to that of the lag filter. At higher frequencies, the
phase lag in GFORE is only 38◦ (for Aρ = 0), as compared
to 90◦ in lag filter, while gain behaviors are almost similar.
Describing functions have also been plotted for γ = −0.5
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Fig. 2: (a) Variation of phase lag with change in
γ.(b)Variation of ratio β with change in γ.

and γ = 0.5 to depict the variation in frequency response
with changing γ.

Frequency (rad/s)

Aρ
Aρ
Aρ

G
G
G

Fig. 3: Frequency response of FORE compared with that of
a linear lag filter.

It can be seen that the cutoff frequency of GFORE also
varies with change in γ [12]. The ratio of cutoff frequency
of GFORE to that of lag filter (β) is plotted in Fig. 2b for
different values of γ . Choosing γ values between -1 and
1 can help attain the desired trade-off between phase lag,
cutoff frequency and non linearity.

D. Stability Analysis

The stability condition given in [1] is used for checking
the stability of the system. The following condition was
provided for ensuring asymptotic stability of a reset control
system :

Theorem [1] There exists a constant β ∈ Rnr×1 and Pρ ∈
Rnr×nr , Pρ > 0 where nr is the number of reset states, such
that the restricted Lyapunov equation

P > 0, ATclP + PAcl < 0 (5)

BT0 P = C0 (6)

has a solution for P , where C0 and B0 are defined by

C0 =
[
βCnrp 0nr×nnr Pρ

]
, B0 =




0nnrp×nr
0nr×nr
Inr




(7)

Acl is the closed loop matrix A-matrix

C0 =

[
Ar BrCnrp

−BnrpCr Anrp

]
(8)

in which (Ar, Br, Cr, Dr) are the state space matrices
of Σr and (Anrp, Bnrp, Cnrp, Dnrp) are the state space
matrices of Σnr and Σp in series.

This condition has been used to test stability of all
developed controllers.

III. RESET PID

Transfer function of linear PID in series form is given by:

GPID = Kp

(
1 +

ωI
s

)

︸ ︷︷ ︸
Lag component

(
s

ωd
+ 1

)/(
s

ωt
+ 1

)

︸ ︷︷ ︸
Lead component

(
ωl

s+ ωl

)

︸ ︷︷ ︸
LPF

(9)
where ωI is the frequency at which integral action is

stopped, and ωl is the cut off frequency of the LPF. Kp is
the proportional gain. Differentiating action is started at ωd
and terminated at ωt, and therefore ωt > ωd.

As discussed in section I, differentiator or lead component
of the PID adds essential phase to the system in bandwidth
region to achieve stability and robustness. Phase at the
crossover frequency also affects the maximum overshoot
of the system. Differentiator is tamed by placing a pole at
ωt because having large gains at higher frequencies is not
desirable for noise attenuation and precision. The maximum
phase lead that can be achieved from the differentiator in
the absence of this taming pole would be 90◦. However,
the pole reduces the maximum phase lead to a value which
depends on frequency interval between the zero and the
pole. By symmetrically placing the zero and pole around
the crossover frequency ωc, it is ensured that the maximum
phase from lead is achieved at bandwidth. Fig. 4a shows
the frequency response of a typical differentiator used in PID.
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Fig. 4: (a) Bode plot of a differentiator. (b) Bode plot
showing increase in maximum phase and also high freqeuncy
gain with increasing ratio of ωt to ωd



Higher and lower phase margins can be achieved by
increasing or decreasing the frequency range between ωd
and ωt respectively. The problem with this approach is
that it results in a trade-off between tracking and precision
performance on one side and stability and robustness on
the other. This can be observed in Fig. 4b. As the positive
phase obtained increases with increase in the ratio of ωt to
ωd, the gain at higher frequencies is also increased, which
affects the precision of the system. As a result, with the
linear design, it is not possible to improve precision while
having the same degree of robustness. Also, with increasing
phase, there is a decrease in low frequency gain thereby
affecting tracking behavior.

Reset can be introduced in this tamed differentiator to
improve performance such that this fundamental limitation
is overcome. Reset is introduced such that only the taming
pole is reset resulting in the reset and non-reset parts given
by:

Σnr =
(
s
ωd

+ 1
)

; Σr = 1

( s
ωt

+1) (10)

Although the non-resetting part as given in (10) is not a
proper function, the completed non-resetting part of Reset
PID also consists of integrator and LPFs and hence will be
proper. In the case that this is not true, an LPF can be added
at a frequency where it does not affect phase at bandwidth,
purely to make the function proper.

The frequency response obtained through describing
function analysis is compared with that of a linear tamed
differentiator in Fig. 5a. It can be seen that for a similar
gain behavior, phase at frequencies higher than ωt is not
zero in the case of reset. If γ = 0 is used, the positive
phase achieved would be 52 degrees (as shown in section II).

Since in this case phase addition by reset is after ωt > ωc,
it is not useful in adding phase around bandwidth. However,
ωt can be brought closer to ωd and can even be made equal to
ωd to obtain a 0 dB gain line with a positive phase, as shown
in Fig. 5. Thus, phase addition at bandwidth is done purely
through reset and not differentiating action. To compensate
for changes in cutoff frequency due to reset (as shown in Fig.
2b), a factor α is used. The reset element can be reformulated
as given in (11). γ is chosen such that same phase margin
is achieved.

Σr =
1(

s
αωd

+ 1
) (11)

It can be observed that the gain at high frequency is lower
than the PID, while the low frequency gain is increased,
without affecting the phase margin. It can be concluded that
theoretically, better tracking and better precision has been
achieved while maintaining the same robustness, which was
impossible to do with linear control.
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Fig. 5: (a)Describing function analysis shows positive phase
added by reset at frequencies above ωt when compared to a
linear lead component. (b) Reset can be used to achieve the
same phase lead with favourable gain behavior.

The reset element, when combined with an integrator and
low pass filter, forms Reset PID controller A, given by (12).

ΣRC =

(
αωd

s+ αωd

)

︸ ︷︷ ︸
Σr

Kp

(
1 +

ωI
s

)(
1 +

s

ωd

)(
ωl

s+ ωl

)

︸ ︷︷ ︸
Σnr

(12)
Kp is chosen such that the open loop gain calculated

from describing function analysis equals unity at ωc .
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Fig. 6: (a) Comparison of describing function of Reset
PID controller A with a PID controller having the same
bandwidth and phase margin. (b) Comparison of describing
function of Reset PID controller B with a PID controller
having the same precision and phase margin.

By increasing the controller gain such that the gain at high
frequencies equals that of PID, an increase in bandwidth
can be achieved for the same phase margin and precision
as shown in Fig. 6b. It can be seen that bandwidth has
increased from ωc to ωcr. This controller, which provides
improved tracking and bandwidth for the same phase margin
and precision, will be referred to as Reset PID Controller B.
Gain for Controller B at low frequencies is higher than that



of Controller A, thereby indicating a further improvement in
tracking performance.

IV. EXPERIMENTAL SETUP

The developed reset PID controller was implemented in
the Lorrentz-actuated precision positioning stage shown in
Fig. 7a. The coil of the Lorentz actuator is attached to the
stator and permanent magnets are mounted on the mover.
Parallel leaf flexures are used for the linear guiding of
the stage. The position of the stage is measured using a
Renishaw RLE10 laser interferometer with a resolution of
10 nm. Controllers are developed using MATLAB/Simulink
environment and are run real time in a dSPACE DS1103
control system, which acts as the interface between the
computers and the plant. A sampling rate of 20 kHz is used
for all controllers.
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Fig. 7: (a) Picture of the Lorentz stage (right) with the laser
encoder on the left. (b) Frequency response of the system
and the identified system model

The frequency response is shown in Fig.7b along with the
identified system, which has the behavior of a second order
mass-spring-damper system.

V. EXPERIMENTAL VALIDATION

A. Controller Tuning

Controllers A and B are tuned for the precision stage, to
have a bandwidth of 150 Hz and 200 Hz respectively, with
a phase margin of 45◦. ωI is chosen to be ωc/10, ωd to be
ωc/5 and ωl = ωc ∗ 7. α is taken as 0.7. Kp is 9.24× 105

for Controller A and 1.74× 106 for Controller B.

B. Time Domain Experiments

1) Reference tracking: Fourth-order trajectory planning
as formulated in [15] is used to create a triangular wave
reference signal with an amplitude of 400 nm. Also, the
second-order feedforward proposed in [15] is implemented.
Maximum allowed velocity, acceleration, jerk and snap of
this reference signal are limited. The tracking errors obtained
from the reset controllers are compared with the error from
PID in Fig. 8. RMS values of tracking errors are tabulated in
Table I. The RMS error for Controller A has reduced by 34 %
compared to PID. This can be explained by the higher low
frequency gain of Controller A. The reduction for Controller
B is even higher, at around 60 %. This also is as expected,
since by increasing bandwidth, the gain of Controller B at
lower frequencies is greater than that of controller A.
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Fig. 8: (a) Case 1 -Tracking error for Reset controller A vs
PID. (b) Case 2 - Tracking error for Reset controller B vs
PID.

Controller Max. Steady State Error
(nm)

RMS Tracking Error
(nm)

PID 40 41.48
Controller A 20 23.12
Controller B 40 15.73

TABLE I: Comparison of maximum steady state errors and
RMS tracking errors for the developed controllers.

2) Steady State Precision: In steady state, with only
sensor noise present in the system, the achieved precision
was 10 nm for all the three controllers, which is equal to the
resolution of the interferometer used. Therefore, to study
the improvement in precision, white noise of amplitude
50 nm was added as measurement noise n and the error
signal was measured. The obtained steady state errors are
compared with that of the PID in Fig. 9, and the maximum
errors are tabulated in Table I. As expected, Controller A
showed reduction in steady state error while Controller B
was tuned to have the same precision and hence there was
no improvement.
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Fig. 9: (a) Case 1 - Steady error for Reset controller A vs
PID. (b) Case 2 - Steady error for Reset controller B vs PID.

C. Frequency Domain Experiments

In order to validate the controllers in frequency domain, a
closed loop identification technique was used to compute the
sensitivity function S(jω) and the complementary sensitivity
function T (jω). Both T (jω) and S(jω) were identified
by applying a frequency sweep at the measurement noise
position n in Fig. 10. T (jω) was identified as the transfer



C(s) y
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P(s)

+

+
n

Fig. 10: Block diagram of the control loop with signals
y(t) and n(t) used for closed loop identification.

from −n to y, whereas S(jω) was identified as the transfer
from n to y + n.

The identified sensitivity functions for controllers A and
B are compared with sensitivity functions estimated from
describing function analysis in Fig. 11. Similarly, the com-
plementary sensitivity functions are compared in Fig. 12. It
can be seen that the measured responses match well with
the estimated responses. From Fig. 12b, it can be seen that
the bandwidth has been increased from 150 Hz to around
200 Hz by Controller B, which is an improvement of 33 %.
The sensitivity peaks in the identified responses are slightly
higher than with describing functions, which shows that reset
has added marginally lesser phase than anticipated from
describing functions. However, describing function method
has been shown to be a good approximation of phase addition
by reset in reset PID controllers.
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Fig. 11: (a) Comparison of estimated and measured sensi-
tivity function for Controller A (b) Comparison of estimated
and measured complementary function for Controller B
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Fig. 12: (a) Comparison of estimated and measured comple-
mentary sensitivity function for Controller A (b) Comparison
of estimated and measured complementary sensitivity func-
tion for Controller B

VI. CONCLUSIONS

In this work a novel reset control method has been
proposed in which reset is implemented within the frame-
work of PID, to overcome waterbed effect and achieve
better performance. Two reset PID controllers have been
developed. The developed controllers were implemented in
a high precision positioning setup. Controller A has been
shown to provide better tracking and precision than PID,
for the same bandwidth. Controller B, as expected from its
higher low frequency gain, showed even better tracking and a
33 % improvement in bandwidth for the same precision. The
approximations of frequency responses made using describ-
ing function analysis are validated by identifying sensitivity
function and complementary sensitivity function from the
setup. It is shown that the identified responses match well
with closed loop responses calculated from describing func-
tions. Thus, the fundamental trade-off between bandwidth
and precision in PID has been relaxed, and the severity of
water bed effect has been reduced using reset control.
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