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A B S T R A C T

Fast online generation of feasible and optimal reference trajectories is crucial in tracking model predictive
control, especially for stability and optimality in presence of a time varying parameter. In this paper, in order to
circumvent the operational efforts of handling a discrete set of precomputed trajectories and switching between
them, time warping of a single trajectory is proposed as an alternative concept. In particular, the conceptual ideas
of warping theory are presented and illustrated based on the example of a tethered kite system for airborne wind
energy. In detail, for warpable systems, feasibility and optimality of trajectories are discussed. Subsequently, the
full algorithm of a nonlinear model predictive control implementation based on warping a single precomputed
reference is presented. Finally, the warping algorithm is applied to the airborne wind energy system. Simulation
results in presence of real world perturbations are evaluated and compared.

1. Introduction

In most industrial advanced control processes, the plant economic
optimization is typically divided into two levels: a first level where the
plant optimal steady-state operational point is computed and a second
level that receives the operational point and regulates the plant (Rawl-
ings & Amrit, 2009). One choice to implement the second level is
nonlinear model predictive control (NMPC) (Rawlings & Amrit, 2009),
a control scheme that uses the plant model to track the operational
setpoints. A variant of this algorithm is a scheme that, instead of
computing and tracking a steady-state setpoint, considers a time-varying
optimal trajectory. In this scenario, if the second level uses NMPC to
track the optimized trajectory, the resultant control scheme is referred
to as tracking NMPC (Alexis, Nikolakopoulos, & Tzes, 2014; Zanon, Gros,
& Diehl, 2016).

While stability theory for tracking NMPC has been developed (Grüne
& Pannek, 2011; Rawlings & Amrit, 2009) and despite the algorithm
being successfully implemented and demonstrated in different scenar-
ios (Chauhdry & Luh, 2012; Cortinovis, Mercangöz, Mathur, Poland,
& Blaumann, 2013; Dutta et al., 2014; Guerreiro, Silvestre, Cunha, &
Pascoal, 2014; Nagy, Mahn, Franke, & Allgöwer, 2007; Wiese, Blom,
Manzie, Brear, & Kitchener, 2015), it suffers from various issues.
In particular, if the trajectories are computed offline, the controller

* Corresponding author at: Delft Center for Systems and Control, Delft University of Technology, The Netherlands.
E-mail addresses: j.lagogarcia@tudelft.nl, jesus.lagogarcia@vito.be (J. Lago).

lacks online adaptation to real disturbances and model mismatches.
Moreover, even if the tracking trajectories are recomputed online, the
time required to compute a new optimal trajectory introduces delays
between the first and the second level (Rawlings & Amrit, 2009);
if the system has fast dynamics, these delays prevent the first level
to react in time to environmental changes. In both scenarios, if the
environmental conditions change, the precomputed trajectory might no
longer be optimal nor even feasible.

A possible solution to address the mentioned problems is economic
NMPC, a type of NMPC that, instead of using a cost function that
penalizes the deviation from a tracking trajectory, uses a more general
cost function. More specifically, by directly optimizing the quantity that
indicates when a trajectory is optimal, economic NMPC has the potential
to generate online and track optimal trajectories. In practice, however,
ensuring stability for economic NMPC is harder than for tracking NMPC,
and as a result, the latter is usually a safer and more stable choice
whenever it comes to highly nonlinear and real applications.

A field where the described problems are especially relevant is
airborne wind energy (AWE) (Ahrens, Diehl, & Schmehl, 2013), a
novel type of renewable energy that harvests energy from the wind
using flying kites or planes. In particular, the energy extracted by
an AWE system is dependent on its flight trajectory, which in turn

https://doi.org/10.1016/j.conengprac.2018.06.008
Received 12 February 2018; Received in revised form 8 May 2018; Accepted 11 June 2018
Available online 29 June 2018
0967-0661/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.conengprac.2018.06.008
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2018.06.008&domain=pdf
mailto:j.lagogarcia@tudelft.nl
mailto:jesus.lagogarcia@vito.be
https://doi.org/10.1016/j.conengprac.2018.06.008


J. Lago et al. Control Engineering Practice 78 (2018) 65–78

depends on the wind velocity and direction. As these two atmospheric
properties might greatly vary in the matter of seconds, any controller
that aims at optimally flying an AWE system needs to perform online
generation of flying trajectories. Considering the models proposed for
AWE systems (Erhard, Horn, & Diehl, 2017; Erhard & Strauch, 2013b;
Fagiano, Milanese, & Piga, 2012; Gros, Zanon, & Diehl, 2013), they
typically consist of a state space with 4–15 states and highly nonlinear
dynamics. As a result, to obtain optimal trajectories, complex nonlinear
optimization problems need to be solved (Erhard et al., 2017; Gros et
al., 2013), which not only require long computation times, but can even
lead to failures of the optimization solvers (Gros et al., 2013). In this
scenario, both economic and tracking NMPC have big disadvantages,
i.e. the former is less stable and the latter only tracks a suboptimal
trajectory computed offline.

In this paper, to address the mentioned problems, an algorithm
that tries to merge the benefits of economic and tracking NMPC is
proposed. In particular, warping NMPC is presented, a control algorithm
for tracking a trajectory that is updated online to ensure that it remains
optimal.

The algorithm is based on warping theory, a framework first pre-
sented in Lago, Erhard, and Diehl (2017) that is based on two key
concepts: warpable systems and warpable optimal control problems.
While the theoretical foundations of the algorithm have been presented
in Lago et al. (2017), in this paper the algorithm is extended for its
implementation in a real system via three contributions:

1. Extension of the warping NMPC concept defined in Lago et al.
(2017) into a full algorithm that can be applied in a real system.

2. Application of the algorithm to the simulation of a real system,
i.e. an AWE system, showing how the control algorithm can,
under real life conditions, track optimal trajectories that change
in time.

3. Explanation of the conceptual idea of warping theory. In par-
ticular, in Lago et al. (2017), the warping theoretical concepts
were defined. In this paper, the intuition behind the theoretical
concepts is provided and these concepts are illustrated with
explanations based on a real application.

The paper is organized as follows: Section 2 introduces the two main
areas related to this research: AWE and NMPC. Section 3 summarizes
the warping theory proposed in Lago et al. (2017) and extends it by
adding conceptual explanations and examples. Subsequently, Section 4
presents the proposed control algorithm that can be used to generate and
control optimal trajectories: warping NMPC. Finally, Section 5 presents
the performance of warping NMPC with a real life example: the AWE
kite system of the company Skysails.

For notational simplicity, concatenations of several vectors,
e.g. [𝐱⊤,𝐮⊤]⊤, will be shortened as (𝐱,𝐮). Likewise, the concatenation
of state 𝐱 and control 𝐮 vectors will be denoted by 𝐲, i.e. 𝐲 = (𝐱,𝐮).

2. Preliminaries

In this section a brief overview of the theory that is used and
modified in this paper is provided.

2.1. Airborne wind energy

AWE is a novel type of renewable energy source that aims at
harvesting wind power without incurring the large material costs of
traditional wind turbines. In particular, in a standard wind turbine, the
bulk of the power is generated by the outer 30% of the rotor blades
and the rest of the construction is just needed to keep these wings in
their fast crosswind motion (Ahrens et al., 2013). In addition, while the
extracted power scales with the square of the height, the mass scales
cubically. As a result, the maximum size of standard wind turbines is
limited, and thus, they are not capable of reaching and harvesting the
significantly higher wind energy potential at higher altitudes (Ahrens
et al., 2013).

Fig. 1. AWE system pumping cycle: a power phase where the airfoil flies in
crosswind motion to produce energy using the high tether forces, a transfer
phase to fly to a neutral wind window position, and a return phase to restart the
cycle consuming only a fraction of the generated energy (Erhard et al., 2017).

2.1.1. Operational pumping cycle
AWE tries to reduce this problem by redesigning the turbine: it

implements the rotor blades as tethered airfoils that are anchored to
the ground and fly in crosswind motion. By doing so, it saves significant
material costs, and improves the power efficiency as the airfoils can
reach higher altitudes where wind speed is stronger and more consistent.
To harvest the wind energy, an AWE system can use two working
principles: drag or lift mode (Loyd, 1980). In the case of the latter,
AWE uses the fact that the lift force on an airfoil increases with the
square of the apparent airspeed, i.e., a kite flying in crosswind direction
with a velocity five times faster than the wind speed will produce a force
on the tethered line 25 times higher than a static kite, to produce high
tether forces that rotate a winch with an electric generator at ground
level. The operation is done following a periodic cycle where the airfoil
unrolls the tether to produce energy and then rolls it back to restart
the process. This periodic cycle, usually known as pumping cycle, is
illustrated in Fig. 1 and consists of three phases:

1. Power generation phase: the airfoil flies in crosswind motion
inducing high line forces to reel out the tether and produce
energy on the ground generator.

2. Transfer phase: the airfoil flies to a neutral wind position with
low line forces.

3. Return phase: the tether is reeled in and the kite is kept at a
neutral wind position so that only a fraction of the generated
energy is consumed in this phase.

2.1.2. Dynamical model
In this paper, as a case study, the model for the real AWE system of

the Skysails company is considered. This system, which is depicted in
Fig. 2, is based on a flying kite.

A model of the system was developed and validated in Erhard
and Strauch (2013a) and Erhard and Strauch (2013b). The model is
characterized by four states [𝜓,𝜑, 𝜗, 𝑙]⊤, two control inputs [𝛿, 𝑣reel]⊤,
and two parameters 𝑔k and 𝐸. In this definition, 𝑙 is the tether length,
𝜓, 𝜑, and 𝜗 the angles defining the kite position and orientation, 𝛿 the
kite steering command, and 𝑣reel the reeling tether velocity. Based on
these definitions, the equations of motion (EOM) are described as:

�̇� = 𝑔k𝑣a𝛿 + �̇� cos 𝜗, (1a)

�̇� = −
𝑣a

𝑙 sin 𝜗
sin𝜓, (1b)

�̇� = −
𝑣w
𝑙

sin 𝜗 +
𝑣a
𝑙
cos𝜓, (1c)

�̇� = 𝑣reel, (1d)
with ∶

𝑣a = 𝑣w𝐸 cos 𝜗 − �̇�𝐸. (1e)
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Fig. 2. SkySails kite prototype for power generation in a real flight test (Erhard
et al., 2017).

where 𝑣w is the wind ambient velocity and 𝑣a is the air path velocity,
i.e., the apparent wind velocity at the kite.

2.1.3. Maximizing extracted energy
Considering the described working principle, the airfoil trajectories

should be such that the generated energy in the overall pumping cycle
is maximized. However, as the force in the tether and the generated
power depends on the wind speed, the trajectory that maximizes the
energy varies in time. As a result, to maximize the extracted energy, the
airfoil controller needs to generate online optimal trajectories and track
them.

In our case study, the importance of maximizing the extracted energy
can be easily exemplified. As defined by Erhard et al. (2017), the
optimal periodic trajectories 𝐲∗(𝑡) =

(

𝐱∗(𝑡),𝐮∗(𝑡)
)

that maximize the
average power in a pumping cycle are obtained by solving the following
optimal control problem (OCP):

minimize
𝐲(⋅), 𝑇 𝐽 = − 1

𝑇 ∫

𝑇

0
𝑣a(𝑡)

2 �̇�(𝑡) d𝑡 (2a)

subject to 𝛷
(

𝐱(𝑡),𝐮(𝑡), 𝑣w
)

= �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ] (2b)

𝐡
(

𝐱(𝑡), 𝛿(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ] (2c)

𝑣min ≤ 𝑣reel(𝑡) ≤ 𝑣max, 𝑡 ∈ [0, 𝑇 ] (2d)

𝐱(0) − 𝐱(𝑇 ) = 0. (2e)

In the OCP above, as tether force scales with the square of 𝑣a, 𝑣a(𝑡)2 �̇�(𝑡)
in (2a) represents a quantity proportional to the mechanical power.
Furthermore, representing the limits on the controls, the constraints
of the real system are ensured by (2c)–(2d). Finally, periodicity of the
optimal trajectories is guaranteed by (2e).

If this OCP is solved and the average extracted power in a pumping
cycle is computed, the power efficiency of the optimal trajectories can
be in turn compared with the trajectories of the current controller. In
particular, the optimal trajectories have an efficiency of 35% of the
so called Loyd limit (Loyd, 1980), which is almost double the 18%
efficiency obtained by the previously proposed controller (Erhard &
Strauch, 2015), i.e., optimal trajectories can extract a double amount of
energy in comparison with the current controller.

Note that, in the context of AWE, efficiency is defined as the ratio
between the extracted average power in a pumping cycle divided by the
maximum ideal power as defined by Loyd (Loyd, 1980):

𝜂Loyd =
𝐽

4
27 𝐸

2 𝑣3w
, (3)

where 𝐽 is defined by (2a) and the nominator is adjusted accordingly to
the AWE model (Erhard et al., 2017).

2.2. Nonlinear model predictive control

Nonlinear model predictive control (NMPC) is a family of predictive
control algorithms that, by means of a dynamical model, try to anticipate
the future and to select the optimal control policy that optimizes a given
cost function. Its basic working principle is to solve an OCP at each
time iteration to obtain an optimal control trajectory 𝐔∗ that ensures
the system dynamics as well as other constraints. In particular, the
controller strategy can be described as follows:

1. First, the controller receives information regarding the current
system state �̄�0.

2. Then, it solves an OCP in order to obtain the optimal control
trajectory 𝐔∗. In this scenario the decision variables are the
controls 𝐔 = (𝐮0,𝐮1,… ,𝐮𝑁−1) and the states 𝐗 = (𝐱0, 𝐱1,… , 𝐱𝑁 ).

3. Once the OCP is solved, the algorithm applies the first optimal
control 𝐮∗0 to the system, it moves the optimization horizon a
time step forward, observes the new state �̄�0, and repeats the
procedure from 1.

In the case of tracking NMPC, the cost function minimizes the least
squares error between the predicted trajectories 𝐗 and 𝐔 and some
reference trajectories 𝐗r and 𝐔r , which are usually obtained by means
of an offline OCP. In detail, tracking NMPC solves at every iteration the
following problem:

min
𝐗,𝐔

𝑁−1
∑

𝑘=0

(

‖𝐱r,𝑘 − 𝐱𝑘‖2𝐐 + ‖𝐮r,𝑘 − 𝐮𝑘‖2𝐑
)

+ 𝐸
(

𝐱𝑁
)

(4a)

s.t. 𝐱0 − �̄�0 = 0 (4b)

𝛷𝑘(𝐱𝑘,𝐮𝑘) − 𝐱𝑘+1 = 0, 𝑘 = 0,… , 𝑁 − 1 (4c)

𝐡(𝐱𝑘,𝐮𝑘) ≤ 0, 𝑘 = 0,… , 𝑁 − 1 (4d)

𝐫
(

𝐱𝑁
)

≤ 0, (4e)

with matrices 𝐐 > 0 and 𝐑 > 0, 𝐗r = (𝐱r,0,… , 𝐱r,N) and 𝐔r =
(𝐮r,0,… ,𝐮r,N−1), and the equation for the system dynamics 𝐱𝑘+1 =
𝛷𝑘(𝐱𝑘,𝐮𝑘).

2.3. Numerical optimization

In order to solve the OCPs and NMPC problems defined in this paper,
the Casadi (Andersson, 2013) framework for dynamic optimization and
the optimization solver IPOPT (Wächter & Biegler, 2006) are employed.

In addition, to discretize the dynamics of the AWE system, a direct
method is used: multiple shooting (Bock & Plitt, 1984); further details
on how to implement this method for the considered AWE system are
given in Erhard et al. (2017) and Lago Garcia (2016).

3. Warping: Theory and application

In this section, the definition of the concepts that warping NMPC is
based on are provided: warpable systems and warpable optimal control
problems. In order to exemplify these concepts and provide the intuition
behind them, the flying trajectories of the AWE system are employed. A
more formal definition of warping theory is elaborated in the appendices
and in Lago et al. (2017).

3.1. Empirical observation in optimal solutions

For the considered AWE system, if its optimal trajectories are
regarded as a function of the wind speed, a very interesting phenomenon
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Fig. 3. 3D views of the optimal trajectories obtained by solving the OCP (2a)–
(2e) for different 𝑣w values.

can be observed: as depicted in Fig. 3, the periodic optimal trajectories
at different wind speeds represent the same 3D flight paths.

However, when these trajectories are regarded in the time domain,
it can be observed how, while all optimal trajectories make the kite fly
through the same physical locations, the velocity of the kite at each
trajectory is different.

However, when these trajectories are regarded in the time domain,
it can be observed how, while all optimal trajectories make the kite fly
through the same physical locations, the velocity of the kite at each
trajectory is different. More specifically, while the trajectories are the
same, the time it takes for the kite to fly them is dependent on the
wind velocity. This effect can be further explained looking at Fig. 4,
which illustrates the periodic optimal trajectories of two of the states
for different wind speeds and in different time frames.

Indeed, if we consider the 2D optimal trajectories at 𝑣w = 10m/s,
𝑣w = 8m/s, and 𝑣w = 6m/s, we can easily show that, defining each
trajectory in a different time frame, the 3 trajectories represent the
same 2D path. This concept is perfectly depicted in Fig. 4: defining the
optimal trajectory for 𝑣w = 10m/s in a time frame 𝜏10, and the optimal
trajectories for 𝑣w = 8m/s and 𝑣w = 6m/s in the warped time frames
𝜏8 = 10

8 𝜏10 and 𝜏6 = 10
6 𝜏10, it can be observed that the three trajectories

are exactly the same. In other words, warping in time the trajectories
at 𝑣w = 8m/s and 𝑣w = 6m/s with ratios 10

8 and 10
6 leads to the same

optimal trajectory obtained for 𝑣w = 10m/s.
This same phenomenon, as shown in Fig. 5, can also be noticed in

the inputs of the system.

3.2. Conceptual idea of warping

As these trajectories are the same in the 3D space but different in
the time domain, they can be interpreted as time warped versions of
each other. In particular, an optimal trajectory for a certain wind speed

could be obtained by squeezing or extending. i.e., warping in time, the
optimal trajectory at any other given wind speed.

This concept of translating between optimal trajectories at different
wind speeds is defined as warping. Similarly, any dynamic system with
the necessary properties to implement warping will be denoted as a
warpable system. Both concepts, i.e. warping and warpable systems,
will be the key concepts of the control algorithm that is proposed. In
the following sections, the two concepts are formalized and the intuition
behind them is provided.

3.3. Warpable dynamical system

A warpable dynamical system (WDS) is any dynamical system whose
dynamics have the following structure:

�̇�(𝑡) = 𝑝(𝑡) 𝐟
(

𝐱(𝑡),𝐮1(𝑡)
)

+ 𝐋
(

𝐱(𝑡),𝐮1(𝑡)
)

𝐮2(𝑡)
= 𝑝(𝑡) 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡),

(5)

where 𝐱 ∈ R𝑚 is the system state, 𝐮1 ∈ R𝑛1 and 𝐮2 ∈ R𝑛2 the system
inputs, and 𝑝 ∈ R a time dependent positive parameter. Note that 𝑝(𝑡)
is assumed to be positive without loss of generality as the sign of 𝑝(𝑡)
could be transferred to 𝐠(𝑡) and 𝐟 (⋅).

Recalling now the EOM of the AWE kite system, i.e. (1a)–(1e), it is
easy to show that it is a WDS system. In particular, substituting Eq. (1e)
into Eqs. (1a),(1b) and (1c), (1b) into (1a), and (1d) into (1e), yields the
following equivalent EOM:

�̇�=𝑣w
(

cos 𝜗𝐸𝑔k𝛿 −
𝐸 sin𝜓
𝑙 tan 𝜗

cos 𝜗
)

+𝑣reel
( 𝐸
𝑙 tan 𝜗

− 𝐸𝑔k𝛿
)

(6a)

�̇�=𝑣w
−𝐸 sin𝜓
𝑙 tan 𝜗

+𝑣reel
𝐸

𝑙 sin 𝜗
, (6b)

�̇�=𝑣w
(

−sin 𝜗
𝑙

+
𝐸 cos 𝜗 cos𝜓

𝑙

)

−𝑣reel
𝐸 cos𝜓

𝑙
, (6c)

�̇�= 𝑣reel. (6d)

Therefore, the kite is a WDS with 𝐮1 = [𝛿], 𝐮2 = [𝑣reel], and 𝑝 = 𝑣w.
This type of dynamical systems is interesting because of its warping

property w.r.t. the parameter 𝑝: any feasible trajectory for a parameter
value 𝑝 = 𝑝1 can be warped in time to obtain a feasible trajectory
for any other parameter value 𝑝 = 𝑝2. More specifically, this property
allows to compute a feasible solution for the general system (5), given a
feasible trajectory

(

𝐱ref (𝜏),𝐮1,ref (𝜏),𝐮2,ref (𝜏)
)

for a reference WDS system.
In particular, a feasible trajectory of (5) is given by:

𝐱(𝑡) = 𝐱ref
(

𝑤(𝑡)
)

, (7a)
𝐮1(𝑡) = 𝐮1,ref

(

𝑤(𝑡)
)

, (7b)
𝐮2(𝑡) = �̇�(𝑡)𝐮2,ref

(

𝑤(𝑡)
)

, (7c)

where 𝑤(𝑡) is called warping factor and is defined by:

�̇�(𝑡) = d𝜏
d𝑡

=
𝑝(𝑡)
𝑝ref

(8)

Formally, this property is defined by Lemma A.1 in Appendix A. The
interpretation behind the lemma is simple: all feasible trajectories of
WDS are equal to each other but defined in different time frames. The
relation between any of these trajectories is simply computed by the
warping factor𝑤(𝑡), which represents the relation between the velocities
of the dynamics d𝑡 and d𝜏 in the different frames. The exception to
that rule is the 𝐮2 subset of inputs, which not only is warped in time,
but also amplified or attenuated to account for the 𝑝(𝑡)-independence
of the second term of Eq. (5). Note that (7c) can be given as 𝐮2(𝑡) =
𝐮2,ref (𝜏)𝑝(𝑡)∕𝑝ref

In the AWE system, the wind velocity 𝑣w is the warping parameter,
and thus, it determines the speed of the system dynamics and the
relation between feasible trajectories. This effect, formalized by the
EOM and Lemma above, is actually what was shown in Figs. 4 and 5,
where trajectories at different wind speeds had the same 3D trajectory
at different time scales.

In this example, note the effect that warping has on the control 𝑣reel,
which, as defined by (7c), not only is warped but also attenuated or
amplified. This transformation can be observed in Fig. 6, which extends
the warping scenario of Figs. 4–5 to the control 𝑣reel.
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Fig. 4. Top: Optimal states 𝜑 and 𝑙 for different 𝑣w values. Bottom: optimal states 𝜑 and 𝑙 for different 𝑣w values but defined at three different time frames. The
optimal trajectory for 𝑣w = 𝑧m/s is defined in the time frame 𝜏𝑧. It can be observed how the optimal trajectories are time warped versions of each other.

Fig. 5. Optimal input 𝛿 for different 𝑣w values (Lago et al., 2017).

Fig. 6. Optimal input control 𝑣reel for different 𝑣w values (Lago et al., 2017).

3.4. Preservation of optimality in warping

As it will be explained in Section 4, the basic idea of the pro-
posed controller is to compute one reference trajectory for a reference
parameter 𝑝ref , and apply the warping transformation to adapt the
tracking trajectory to the time varying parameter 𝑝(𝑡). As a result,
when warping trajectories, not only feasibility is important but also
maintaining optimality is highly desirable.

3.4.1. Warpable optimal control problems
In the context of warping, it can be shown that optimality is

maintained if the warped trajectory is the solution of a Warpable Optimal
Control Problem (WOCP):

WOCP(𝑝) ∶

min
𝐲(⋅),𝑇 ∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡 (9a)

s.t. 𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡) = �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ] (9b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ] (9c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. (9d)

In this case, due to the absence of 𝐮2 constraints and the structure of the
objective function, optimal solutions 𝐲∗(𝑡) for any parameter 𝑝 can be
obtained by warping an optimal solution 𝐲∗ref (𝑡) computed for a reference

parameter 𝑝ref . This very interesting property is formally defined by
Theorem B.1 in Appendix B.

3.4.2. Semi-warpable optimal control problems
While the solutions of WOCPs preserve optimality, the WOCP struc-

ture has a big limitation: 𝐮2 cannot be constrained. In terms of the
AWE system, this implies that the optimal trajectories cannot bound the
reeling speed [𝑣reel] = 𝐮2; that is obviously not possible as the trajectories
have to ensure that 𝑣reel remains within the safety bounds.

This problem can be better understood regarding Fig. 6 displaying
the optimal trajectories at different wind speeds: if the trajectory at
𝑝ref = 6m/s is taken as a reference, the warping transformation for
𝑝 = 8m/s would generate the shown graph for 8 m/s. Indeed, as the
optimal trajectory at 8 m/s does not reach the bounds for 𝑣reel, the
warped trajectory is exactly equal to the optimal one. However, the same
does not hold for the trajectory at 𝑝 = 10m/s; particularly, as observed
from Fig. 6, the optimal trajectory at 𝑝 = 10m/s reaches the −5m/s
bound of 𝑣reel. Therefore, in this case, if the trajectory at 𝑝ref = 6m/s
is warped, the warped trajectory would contain 𝑣reel values that would
violate the 𝐮2 constraint 𝑣reel ≥ −5m/s (note that the control 𝑣reel is
limited at −5m/s).

Semi-Warpable Optimal Control Problem (SWOCP) is a class of OCPs
that solve this issue by generalizing the WOCP structure to the case of
having 𝐮2 path constraints:

SWOCP(𝑝) ∶
WOCP(𝑝) (10a–10d)

𝐡2
(

𝐱(𝑡),𝐮1(𝑡),𝐮2(𝑡)
)

≤ 0 𝑡 ∈ [0, 𝑇 ] (10e)

For a more detailed and formal definition of SWOCPs we refer to
Appendix B.2.

The key distinction w.r.t. to an WOCP is that, by adding the 𝐮2-
dependent constraints, warped trajectories might no longer satisfy the
path constraints of the OCP:

𝐡2
(

𝐱∗ref (𝜏),𝐮
∗
1,ref (𝜏),𝐮

∗
2,ref (𝜏)

)

≤ 0

⟹𝐡2
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),
𝑝ref
𝑝

𝐮𝑝2(𝑡)
)

≤ 0

⟹̸ 𝐡2
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),𝐮𝑝2(𝑡)
)

≤ 0. (11)

Based on the observation above, the natural question that arises is
then: if warping might violate the path constraint, how can warping
preserve optimality for SWOCP-generated trajectories? The answer to
that question are best warpable references.
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Fig. 7. Comparison between optimal 𝑣reel and suboptimal 𝑣reel computed from
a BWR (Note that 𝑣w,max = 10m/s is assumed in this case).

3.4.3. Best warpable references
Given the optimal solution 𝐲∗bwr (𝑡) of a SWOCP(𝑝bwr), i.e. a SWOCP

defined for a reference parameter 𝑝bwr , 𝐲∗bwr (𝑡) is defined to be a best
warpable reference (BWR) if all the warped trajectory of 𝐲∗bwr (𝑡) satisfy
the 𝐮2-dependent constraints of the SWOCP.

A very interesting property of BWRs is that, provided that a BWR ex-
ist for a given SWOCP and that the 𝐮2-dependent constraints are inactive
at the BWR, the BWR can be regarded as an optimal reference trajectory.
More specifically, any warped trajectory 𝐲𝑝(𝑡), obtained by warping the
optimal solution 𝐲∗ref (𝜏) of the reference SWOCP(𝑝ref )=SWOCP(𝑝bwr), is
also an optimal solution of the general SWOCP(𝑝).

This interesting property is formally defined in Corollary B.1 of
Appendix B. Similarly, BWRs are formally defined in Definition B.2 of
the same appendix.

When considering this property, it is also necessary to analyze the
implications of having 𝐮2-dependent constraints that are active at the
BWR. In particular, if 𝐡2 is active for 𝑝bwr , i.e. 𝐡2

(

𝐲bwr (𝜏)
)

= 0, the
warped trajectories 𝐲𝑝(𝑡) are usually suboptimal. In this case, since they
are still feasible and are generated from an optimal trajectory, they still
represent a better solution than a random feasible trajectory. This issue
is illustrated in Fig. 7, where a warped trajectory obtained from the BWR
is compared to the optimal trajectory 𝑣∗reel at 𝑣w = 6m/s.

For the proposed algorithm, the above property has a very important
implication: if computation of a BWR is possible, the BWR can be used
as a reference trajectory to generate optimal or suboptimal trajectories
for any parameter 𝑝. As shown in Theorem B.2 of Appendix B, there are
some ways to compute BWRs. For our case study, it is only important
to know the following one: if the path-constraint 𝐡2

(

𝐱(𝑡),𝐮1(𝑡),𝐮2(𝑡)
)

can
be reformulated as:

𝐟lower
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 𝐮2(𝑡) ≤ 𝐟upper
(

𝐱(𝑡),𝐮1(𝑡)
)

,

where ∶ 𝐟lower (𝐱,𝐮1) ≤ 0, 𝐟upper (𝐱,𝐮1) ≥ 0.
(12)

the solution of SWOCP(𝑝max), i.e. the SWOCP version where the param-
eter 𝑝 is at its maximum value, is a BWR. A formal proof of this property
is given by Theorem B.2 in Appendix B.

3.4.4. Optimality of AWE trajectories
Using the above properties and definitions, it can be shown that

optimality is preserved when warping the trajectories of the AWE
system. In particular, recalling (2) as the OCP that optimized the flying
trajectories, (1e) can be used to expand the cost function as:

𝐽 = − 1
𝑇 ∫

𝑇

0
𝑣2a �̇� d𝑡 = − 1

𝑇 ∫

𝑇

0

(

𝑣w 𝐸 cos 𝜗 − 𝑣reel 𝐸
)2𝑣reel d𝑡

= −
𝑣3w
𝑇 ∫

𝑇

0

(

𝐸 cos 𝜗 −
(

𝑣reel
𝑣w

))2 (𝑣reel
𝑣w

)

d𝑡 (13)

Considering this reformulation and (2a)–(2e), it is clear that the flying
trajectories are solutions of a SWOCP. Then, since (2d) has the structure
of (12), a BWR is given by the OCP solution at the maximum wind speed
𝑣w.

Fig. 8. Warping NMPC example with �̇�(𝑡) = 𝑝(𝑡)
𝑝ref

= 1
2

and 𝐲 = [𝑦] ∈ R1.

4. Warping NMPC

Once the theoretical foundations of warping are defined, warping
NMPC can be finally introduced. Within the algorithm, two different
control applications will be distinguished: tracking of general feasible
trajectories and tracking of optimal trajectories.

4.1. Generation of feasible trajectories

In its first variant, warping NMPC uses a feasible trajectory for a
reference parameter 𝑝ref as a reference trajectory 𝐲ref (𝜏). In particular,
at each iteration, it reads from the environment the 𝑝(𝑡) value. Based on
it, it warps 𝐲ref (𝜏) to obtain a feasible trajectory 𝐲𝑝(𝑡) for the 𝑝(𝑡) value.
Finally, it updates the tracking trajectory with 𝐲𝑝(𝑡).

Fig. 8 illustrates this concept: 𝐲ref , feasible for a constant 𝑝ref , is
computed offline. Then, by time warping 𝐲ref online, warping NMPC
generates a feasible tracking trajectory for the real 𝑝(𝑡). In a computer
implementation, a discrete precomputed reference trajectory 𝐘ref =
(𝐲ref ,0,… , 𝐲ref ,𝑁 ) is used to obtain the discrete tracking trajectory at the
current time 𝐘track = (𝐲track,0, … , 𝐲track,𝑁 ).

4.2. Generation of optimal trajectories

In a second and third variants, warping NMPC extends the case
of tracking feasible trajectories to tracking optimal trajectories. In
particular, to ensure that tracking trajectories are optimal, the new
NMPC scheme follows the procedure described for feasible trajectories,
but computing the reference trajectory 𝐲ref (𝜏) in a very distinct manner.
In particular, to obtain 𝐲ref (𝜏), it considers one of two possibilities:

1. Computing 𝐲ref (𝜏) as the solution of a WOCP(𝑝), i.e. 𝐲ref (𝜏) =
𝐲∗ref (𝜏). In that case, due to the property of WOCPs, any tracking
trajectory 𝐲𝑝(𝑡) obtained from warping 𝐲∗ref (𝜏) will also be opti-
mal.

2. Computing 𝐲ref (𝜏) as the BWR of a SWOCP(𝑝), i.e. 𝑝ref = 𝑝bwr .
In this case, as explained in Section 3.4.3, the warped tracking
trajectories 𝐲𝑝(𝑡) will be either optimal or suboptimal depending
on whether 𝐡2(⋅) is inactive or active at 𝐲ref (𝜏).

4.3. Algorithm

Whether the algorithm uses the variant defined in Section 4.1 or
one of the two variants defined in Section 4.2, its implementation is
the same. In particular, in a computer implementation, warping NMPC
uses the same scheme as a traditional tracking NMPC, but updates the
tracking trajectory 𝐘track in a different manner.

4.3.1. Traditional shifting
A classical tracking NMPC scheme updates the tracking trajectory

𝐘track at each iteration by shifting one time step backwards the latest
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Fig. 9. Warping NMPC shifting strategy for 𝐲 = [𝑦] ∈ R1: 𝜏track is used to follow
the last point of 𝐘track within the reference trajectory 𝐲ref .

𝐘track and adding a new point 𝐲new at the end of it. To compute 𝐲new,
the NMPC regards a fixed reference trajectory 𝐘ref = (𝐲ref ,0,… , 𝐲ref ,𝑀 )
defined in a fixed reference time grid 𝐭ref = [𝑡ref ,0,… , 𝑡ref ,𝑀 ]. Then,
defining the 𝛥𝑡 in the reference time grid as the 𝛥𝑡 of the NMPC, 𝐲new is
simply selected from 𝐘ref . The following equations illustrate the update:

𝑡k ∶ 𝐘track,k =
(

𝐲ref ,k , 𝐲ref ,k+1,… , 𝐲ref ,k+N
)

𝑡k+1 ∶ 𝐘track,k+1 =
(

𝐲ref ,k+1, … , 𝐲ref ,k+N, 𝐲new
)

with ∶

𝐲new = 𝐲ref ,k+1+N

(14)

This type of update, i.e. just updating the last value of 𝐘track and
shifting the others, is done to avoid big changes on the optimization
problem, and in turn, to improve the stability of the NMPC.

4.3.2. Shifting in warping NMPC
In order to preserve this stability property in the proposed warping

NMPC, 𝐘track is also updated with this shifting scheme. However, instead
of using a fixed reference trajectory in a fixed time frame and directly
selecting 𝐲new from it, the new scheme uses a reference trajectory 𝐘ref =
(𝐲ref ,0,… , 𝐲ref ,𝑀 ) in a reference time grid 𝝉 ref = [𝜏ref ,0, 𝜏ref ,1,… , 𝜏ref ,𝑀 ]
and selects 𝐲new by finding the relation between 𝝉 ref and the real time
grid 𝐭. In this context, the real time grid 𝐭 = [𝑡0,… , 𝑡𝑀 ] represents
the sampling interval of the real-time operational controller, and 𝝉 ref
represents a warped version of 𝐭.

Defining the controller sampling time as 𝛥𝑡, the time point at the end
of the NMPC horizon by 𝑡𝑁 , the equivalent point of 𝑡𝑁 in the warped
time frame 𝝉 ref by 𝜏𝑁 , and considering a NMPC horizon of 𝑁 +1 points,
the algorithm to update 𝐲new consists of five steps:

1. The algorithm reads the new value of 𝑝.
2. The algorithm uses a continuous time variable 𝜏track to track 𝜏𝑁 .

To do so, 𝜏track is updated at each iteration by increasing its value
by a warped time step 𝛥𝜏 = 𝛥𝑡 𝑝

𝑝ref
.

3. As 𝑡𝑁 represents the time location of 𝐲new in the real time grid,
𝜏track represents the time location of 𝐲new in the warped time
grid 𝝉 ref . Therefore, 𝐲new is updated by finding 𝜏track in 𝝉 ref , and
interpolating 𝐘ref accordingly.

4. The control 𝐮2 of 𝐲new is attenuated/amplified in order to fulfill
the warping equivalence between 𝐘ref and 𝐘track .

5. The new 𝐘track is built by shifting the previous 𝐘track and adding
𝐲new at the end.

This algorithm is represented in Algorithm 1 and illustrated in Fig. 9.
An important fact is that the trajectory adaptability to the changes
on 𝑝(𝑡) have a delay equal to the NMPC horizon length. However, for
many applications, this is rarely a real problem due to the short NMPC
horizons.

Algorithm 1 Warping NMPC
1: function updateTrackingTrajectory(𝐘track)
2: ⊳ Update warping parameter p
3: 𝑝 ← readLatestMeasurement()
4: ⊳ Compute warped time step
5: 𝛥𝜏 ← 𝛥𝑡 𝑝

𝑝ref
6: ⊳ Update tracking variable
7: 𝜏track ← 𝜏track + 𝛥𝜏
8: ⊳ Generate next tracking point
9: 𝐲next ← nextTrackingPoint(𝜏track , 𝑝)

10: ⊳ Update tracking trajectory
11: 𝐘track ← shiftAndAdd(𝐘track , 𝐲next)
12: return 𝐘track
13: end function
14:
15: function nextTrackingPoint(𝜏next , 𝑝)
16: ⊳ Compute closest past reference point
17: 𝜏past ← arg min

𝜏 |𝜏 − 𝜏next |,
18: s.t. 𝜏 ≤ 𝜏next , 𝜏 ∈ 𝜏ref
19: 𝐲past ← 𝐲ref (𝜏past ),
20: ⊳ Compute closest future reference point
21: 𝜏future ← arg min

𝜏 |𝜏 − 𝜏next |,
22: s.t. 𝜏 > 𝜏next , 𝜏 ∈ 𝜏ref
23: 𝐲future ← 𝐲ref (𝜏future)
24: ⊳ Interpolate
25: 𝐲next ← 𝐲past +

𝐲future−𝐲past
𝜏future−𝜏past

(𝜏next − 𝜏past )

26: ⊳ Attenuate controls 𝑢2
27: 𝐲next (𝐮2) ← 𝐲next (𝐮2)

𝑝
𝑝ref

28: return 𝐲next
29: end function

4.4. Implementation details

In order to implement the described algorithm, there are two imple-
mentation details that have to be taken into account:

4.4.1. Trajectory discretization
While all the mathematical proofs have been given for continuous

time trajectories, the implementation of the algorithm is done in discrete
time. Particularly, the trajectories employed by the algorithm are ob-
tained by interpolating between the values of the continuous trajectories
at a predefined discrete time grid. As a result, the trajectories employed
by the algorithm are approximations of the continuous counterparts.

To ensure that the properties of optimality and feasibility of the
continuous case are preserved in the discrete case, i.e. to ensure that
the discretized trajectory accurately approximates the continuous one,
the NMPC algorithm should employ a small enough sampling time 𝛥𝑡.
Particularly, the implementation of the algorithm should ensure that
𝛥𝑡 ≪ 𝜏ref ,𝑀 , with 𝜏ref ,𝑀 defining the time duration of the reference
trajectory.

The exact relation between 𝛥𝑡 and 𝜏ref ,𝑀 that guarantees a good
approximation will obviously depend on the application. For the case
study presented in this paper, i.e. an AWE system, we show that
2000𝛥𝑡 ≈ 𝜏ref ,𝑀 is small enough to ensure that the discrete trajectories
accurately approximate the continuous ones. Particularly, as we will
show in the next section, considering a sampling time 𝛥𝑡 = 100ms for
a 𝜏ref ,𝑀 ≈ 200 s, the discrete reference trajectory can be warped in time
and still ensures feasibility and optimality.

4.4.2. Measuring 𝑝(𝑡)
The parameter 𝑝(𝑡) is arguably the most important parameter in the

proposed algorithm. Particularly, as 𝑝(𝑡) determines the warping rela-
tion, it is paramount to have 𝑝(𝑡) measurements updated fast enough so
that the warped trajectories that the NMPC tracks stay feasible/optimal.
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Table 1
Efficiency comparison of optimal solutions and trajectories obtained by warping.
𝑣w 6 m/s 8 m/s 10 m/s 12 m/s 14 m/s 15 m/s

𝜂Loyd optimal 35.4% 35.4% 35.3% 34.9% 34.2% 33.7%
𝜂Loyd warping 33.7% (all wind speeds)

In particular, in order to guarantee that the warped trajectories
remain optimal and feasible, the measurement interval of 𝑝(𝑡) should
be lower than the sampling time 𝛥𝑡 of the controller.

5. AWE system control via warping NMPC

The proposed algorithm can now be used to control the AWE system,
which needs to track optimal trajectories that change as a function of the
wind speed. However, before implementing the algorithm, it needs to
be ensured that the system satisfies the requirements of warping NMPC,
i.e. that the kite is a WDS and that the system’s optimal trajectories are
the solution of a SWOCP.

As defined in Section 3.3, the kite is a warpable system with 𝐮1 = [𝛿],
𝐮2 = [𝑣reel], and 𝑝 = 𝑣w. In particular, the wind velocity 𝑣w is a warping
parameter that determines the speed of the system dynamics. Moreover,
as defined in Section 3.4.4, the optimal trajectories are the solution of
a SWOCP. In particular, a BWR can be computed using the maximum
𝑣w-value (15 m/s in our real system). Based on these results, warping
NMPC can indeed be used to perform online generation and tracking of
optimal trajectories by using the BWR as the reference trajectory.

5.1. Efficiency of BWR

As a first step before implementing warping NMPC, the efficiency
quality of the considered BWR needs to be evaluated. In particular, since
at the optimal solution 𝐲∗ref for 𝑣w = 15 m∕s the constraint (2d) is active,
the warped tracking trajectories are suboptimal (refer to Section 3.4.3
and the remark of Corollary B.1). Therefore, to evaluate the decrease
in optimality of when using warped trajectories, Table 1 compares the
power efficiency (as given by (3)) of optimal trajectories at different
𝑝 = 𝑣w values with respect to their warped counterparts.

Considering that explicitly solving the SWOCP for different 𝑣w
values leads only to a maximum efficiency increase of less than 2%,
the warped trajectories represent a very good approximation of their
optimal counterparts. Therefore, it can be concluded that, in theory,
warping NMPC is a highly efficient algorithm for online generation of
nearly optimal trajectories for the AWE system.

5.2. Implementation

After proving that the kite is a warpable system and that optimal
(flying) trajectories can be obtained by warping, the proposed warping
NMPC can be implemented in the AWE system. To evaluate the per-
formance of the algorithm, the study will be divided into two parts:
first, the controller will be analyzed using a simulator that regards the
wind velocity as the only disturbance; this study provides the ideal
improvements that can be obtained with the proposed controller. Then,
in a second step, the analysis will be repeated considering a real plant
simulator that includes all the real life disturbances; this second study
provides the real improvements that can be obtained with the controller
in real life conditions.

5.2.1. Initial assessment
As first assessment, the controller is tested under the assumption

that wind velocity is the only disturbance. In particular, as depicted in
Fig. 10, a realistic wind speed profile that drops in 25 min from 10 m/s
to 6 m/s is considered.

Using the above profile, warping NMPC is compared against a
normal tracking NMPC scheme that uses a constant tracking trajectory

Fig. 10. Considered wind profile.

Fig. 11. Comparison between normal NMPC and warping NMPC for 𝑣w = 6m/s
in simulation environment.

Table 2
Efficiency comparison between warping and tracking NMPC under the assump-
tion that wind velocity is the only disturbance.

NMPC Scheme 𝜂Loyd
Tracking NMPC −2.09%
Warping NMPC 31.57%

generated at 𝑣w = 10m/s. In particular, in order to evaluate the
difference in performance when the wind speed is different from the one
used when computing the reference trajectory, the two control schemes
are evaluated at the end of wind speed profile interval (𝑣w ≈ 6m/s).

The comparison is illustrated in Fig. 11, which depicts the 3D
pumping cycle trajectories at the end of the simulation interval, and
Table 2, which compares the efficiency of the two control schemes in
the last pumping cycle.

As it can be observed, the tracking NMPC scheme, which is based
on a constant trajectory generated at 𝑣w = 10m/s, is unable to track
the reference trajectory and extract energy (indicated by a negative
Loyd factor 𝜂Loyd = −2.09%). In particular, it keeps the kite at a high
elevation angle and barely performs any movement. By contrast, the
warping NMPC reaches power efficiencies (𝜂Loyd = 31.57%) very close
to the ideal one by adaptation to the varying wind speed 𝑣w. Therefore,
from these initial results, it seems clear warping NMPC has the potential
to greatly improve the efficiency of the AWE system.

5.2.2. Realistic plant simulator
To verify the results of the previous experiments, the analysis is

repeated using a realistic plant simulator. In particular, the plant
simulator developed by Skysails and whose equations of motion have
been empirically validated with real flight data is employed. This
plant simulation extends the wind speed disturbances to a complete
set of real flight disturbances. In particular, considering the different
effects observe in real flight conditions, the plant simulator includes the
following disturbances:

1. Parameter mismatches to model that in real conditions the glide
ratio 𝐸 and the steering constant 𝑔k are not the ideal estimated
parameters.
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Table 3
Warping NMPC comparison considering a nominal wind speed profile decrease
from 10 m/s to 6 m/s.

NMPC Scheme 𝜂Loyd
Tracking NMPC −3.41%
Warping NMPC 30.47%

2. A wind direction profile using real wind data.
3. An offset error on the control 𝛿.
4. A realistic observer that makes estimation errors.
5. A delay between the steering command 𝛿 and its influence on the

dynamic.

As before, the considered wind profile is the same as depicted in
Fig. 10, i.e., a realistic wind speed profile that drops in 25 min from
10 m/s to 6 m/s. Likewise, the two control schemes are evaluated at
the end of wind speed profile interval. The results are first listed in
Table 3 where the efficiency of the two control schemes is compared. In
addition, the 3D trajectories are again depicted in Fig. 12.

Considering the obtained results, the following observations can be
made:

1. As before, due to the disturbances, tracking NMPC is unable to
harvest any energy, i.e. it displays a negative efficiency.

2. By contrast, warping NMPC obtains an efficiency of 30.47%,
which is very close to the ideal one obtained in the first assess-
ment.

3. Warping NMPC not only obtains a good efficiency, but it is also
able to keep the flying trajectories very close to the optimal
one. In particular, by comparing Figs. 11 and 12 it can be
observed that, while the real trajectories are now not as perfect
as in the first assessment, warping NMPC manages to fly stable
trajectories similar to the optimal ones despite being under real
life disturbances.

Finally, to provide a more complete set of results, the comparison
between tracking and warping NMPC in terms of the flying trajectories
as a function of time is also included. In particular, Fig. 13 compares
the flying trajectories of the state angles [𝜓,𝜑, 𝜗]⊤ for the two control
schemes at the end of the wind profile interval. By observing the
tremendous difference of performance in the three cases, it can be
confirmed once again the importance of using warping NMPC in order
to fly stable trajectories and to maximize the extracted energy.

5.3. Discussion

Considering the obtained results, there are 3 key topics that need
further discussion: (1) the stability and efficiency of the proposed algo-
rithm; (2) the effect of varying wind speeds within a single time period;
(3) the computation time requirements of the proposed algorithm.

5.3.1. Stability and efficiency
When looking at the obtained results, it is clear that the proposed

algorithm provides significant gains for the AWE system under study.
In particular, while a regular version of tracking NMPC is unstable and
unable to track flying trajectories, the proposed NMPC scheme can track
optimal trajectories without any major issue.

Moreover, while the traditional tracking NMPC scheme is unable to
harvest wind energy, the proposed scheme is able to harvest a significant
amount of wind energy and obtain a Loyd efficiency that is very close
to the maximum theoretical optimal efficiency.

5.3.2. Varying wind speeds
When analyzing the proposed algorithm, it is clear that one of its

underlying assumptions is to consider a constant wind velocity during a

Fig. 12. Comparison between normal NMPC and warping NMPC in a real plant
simulator.

time period. In particular, the tracking trajectory of the NMPC scheme
is continuously updated considering the last position of the AWE system
and the latest measurement of the wind speed. If the wind velocity
does not change within a time period, this tracking trajectory is then
guaranteed to be optimal.

As wind speed changes within a time period, a natural question to ask
is whether the controller remains stable under this varying conditions
and whether the trajectories remain optimal despite the changing wind
speed.

From a stability point of view, it is clear that the algorithm can
handle varying wind speeds. This can be shown considering the obtained
results as, using a real simulator and varying wind conditions, the
proposed algorithms keeps the AWE system stable and is able to track
the trajectories without any issues.

From the point of view of optimality, it can be argued that the al-
gorithm cannot track perfectly optimal trajectories as the assumption of
constant wind speed does not hold. However, considering the stochastic
nature of the wind speed, it can also be argued that assuming constant
wind velocity is one of the best assumptions that can in practice be
made to obtain optimal tracking trajectories. Moreover, considering that
optimal trajectories have a Loyd efficiency of 33.7% and the proposed
algorithm obtains (under real simulated conditions) an efficiency of
30.47%, it can further be argued that, while the tracking trajectories are
not optimal, they are good enough for the controller to have a nearly
optimal efficiency.

5.3.3. Computation time
One of the critical implementation considerations when using the

proposed controller is whether its computation requirements are small
enough for a real-time controller. Particularly, if a single algorithm
iteration requires longer computation times than the controller sampling
time, the proposed algorithm would not be suitable for running in real-
time.

As warping is simply a scaling operation, its computation time is
negligible compared to a NMPC iteration. Moreover, as the tracking
NMPC solves a quadratic problem, the total computation time of a single
iteration is much lower than the controller sampling time. In particular,
using a standard 2016 laptop with an Intel i7-6920HQ CPU (quad core
CPU with 2,9 GHz base frequency) and 16 GB of RAM, the iteration time
is around 10 ms. Considering that the controller of the AWE system uses
a sampling time of 100 ms, the proposed algorithm is suitable to run in
real-time as the operational controller.

6. Conclusion

In this paper, the ideas of warping theory have been applied in order
to build a NMPC algorithm that is able to perform online generation and
tracking of optimal trajectories.
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Fig. 13. Comparison between tracking and warping NMPC in terms of the trajectories of 𝜓 , 𝜗, and 𝜑 on the time domain. Left: tracking NMPC. Right: warping
NMPC.

The algorithm, which is called warping NMPC, has been successfully
implemented in the simulation framework of a real airborne wind energy
(AWE). In particular, the system under study has optimal trajectories
that depend on the wind velocity 𝑣w. As a result, to fly optimal
trajectories and maximize the extracted energy, the control algorithm
needs to re-adapt the flying trajectories in real-time. In this context, it
has been shown how, using warping NMPC, the AWE system could keep
the flying trajectories optimal, and in turn, double the extracted energy
when compared with the previously proposed controller.
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Appendix A. Warping theory

In this appendix, the conceptual explanations given in Section 3 are
extended. In particular, the formal definition of the family of dynamical
systems that can use warping is provided and a simple illustrative
example is given. As it will be shown, the AWE system under study
belongs to this class of systems, i.e. warpable systems. To formally define
them, the notion of warped times frames needs to be first introduced.

A.1. Warped time frame 𝜏

Consider a real time frame 𝑡 which is used to describe any motion
of a dynamical system. A warped time frame 𝜏 with respect to 𝑡 can be
defined by formulating the relation between the time velocities d𝑡 and d𝜏

in both frames. This relation is called warping factor �̇�(𝑡) and is defined
as:
d𝜏
d𝑡

= �̇�(𝑡),

with �̇�(𝑡) > 0, d𝑡 > 0 and d𝜏 > 0. It is important to note that time
transformations from 𝑡 to 𝜏 can be computed by 𝜏 = 𝑤(𝑡) = ∫ 𝑡0 �̇�(𝑡

′)d𝑡′.
Likewise, 𝜏 can be warped back to obtain 𝑡 by using d𝑡

d𝜏 = 1
�̇�(𝑡) , i.e. the

warping operation is bidirectional. According to these definitions, time
is a strictly positive monotonic function, i.e. 𝑡 and 𝜏 = 𝑤(𝑡) must be
strictly positive monotone.

Fig. A.14 exemplifies the relation between 𝑡 and 𝜏 for different
warping factors. In particular, the blue line represents the case where
�̇�(𝑡) is constant and bigger than one which leads to a motion in the time
frame 𝜏 relatively faster than in 𝑡. In contrast, the red line represents the
opposite behavior, i.e. �̇�(𝑡) is still constant but the motion in 𝑡 is now
faster than in 𝜏. Finally, the yellow line illustrates a general case where
the warping factor varies as a function of time and the time variation in
𝑡 with respect to 𝜏 is not constant.

A.2. Warpable dynamical system

Regard a general dynamical system defined by the EOM �̇�(𝑡) =
𝛷(𝐱(𝑡),𝐮(𝑡), 𝑝(𝑡), 𝑡), with 𝑡 representing the time, 𝐱 ∈ R𝑚 the system state,
𝐮 ∈ R𝑛𝑢 the system input, and 𝑝 ∈ R the time dependent parameters.
The system is defined as a warpable dynamic system if the EOM can be
expressed as:

�̇�(𝑡) = 𝑝(𝑡) 𝐟
(

𝐱(𝑡),𝐮1(𝑡)
)

+ 𝐋
(

𝐱(𝑡),𝐮1(𝑡)
)

𝐮2(𝑡)
= 𝑝(𝑡) 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡),

(A.1)

with ∶ 𝑝(𝑡) ∈ R, 𝐮(𝑡) =
(

𝐮1(𝑡),𝐮2(𝑡)
)

∈ R𝑛1+𝑛2 ,

𝐟 ∶ R𝑚+𝑛1 ⟶ R𝑚, 𝐋 ∶ R𝑚+𝑛1 ⟶ R𝑚×𝑛2 .
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Fig. A.14. Warping factor and time variation in time frames 𝜏, 𝑡. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Lemma A.1 (Time Warped Dynamical System). Given the solution
(

𝐱ref (𝜏),𝐮1,ref (𝜏),𝐮2,ref (𝜏)
)

for a reference system:

�̇�ref (𝜏) = 𝑝ref 𝐟
(

𝐱ref (𝜏),𝐮1,ref (𝜏)
)

+ 𝐋
(

𝐱ref (𝜏),𝐮1,ref (𝜏)
)

𝐮2,ref (𝜏)
= 𝑝ref 𝐠ref (𝜏) + 𝐒ref (𝜏)𝐮2,ref (𝜏),

(A.2)

a solution for the general system (A.1) is given by:

𝐱(𝑡) = 𝐱ref
(

𝑤(𝑡)
)

, (A.3a)
𝐮1(𝑡) = 𝐮1,ref

(

𝑤(𝑡)
)

, (A.3b)
𝐮2(𝑡) = �̇�(𝑡)𝐮2,ref

(

𝑤(𝑡)
)

, (A.3c)

where the warping factor between 𝑡 and 𝜏 is defined by:

�̇�(𝑡) = d𝜏
d𝑡

=
𝑝(𝑡)
𝑝ref

and 𝑤(𝑡) = ∫

𝑡

0

𝑝(𝑡′)
𝑝ref

d𝑡′ = 𝜏. (A.4)

Note 1: without loss of generality, the initial condition 𝐱(0) = 𝐱ref (0) is
assumed.

Note 2: a trajectory is assumed to be feasible as long as it respects the
system dynamics, i.e. bounded trajectories are not considered.

Proof.

�̇�(𝑡)
(A.3a)
=

d𝐱ref
d𝜏

|

|

|𝜏=𝑤(𝑡)
�̇�(𝑡)

(A.2)
= �̇�(𝑡) 𝑝ref 𝐟

(

𝐱ref
(

𝑤(𝑡)
)

,𝐮1,ref
(

𝑤(𝑡)
)

)

+ 𝐋
(

𝐱ref
(

𝑤(𝑡)
)

,𝐮1,ref
(

𝑤(𝑡)
)

)

�̇�(𝑡)𝐮2,ref
(

𝑤(𝑡)
)

((A.3a)-(A.3c))
=

(𝐴.4)
𝑝(𝑡) 𝐟

(

𝐱(𝑡),𝐮1(𝑡)
)

+ 𝐋
(

𝐱(𝑡),𝐮1(𝑡)
)

𝐮2(𝑡). □ (A.5)

A.3. Warping interpretation

Time warping is a change on the velocity of the dynamics that bring
a system to a different time frame. In this new time frame 𝜏 = 𝑤(𝑡),
the ratio �̇�(𝑡) between 𝑝(𝑡) and 𝑝ref (ratio between 𝑑𝜏 and 𝑑𝑡) would
characterize the ratio of the time velocities of the two time frames.
An example of a motion in warped time frames can be given by the
following system:
[

�̇�1(𝑡)
�̇�2(𝑡)

]

= 𝛺(𝑡)
[

0 1
−1 0

] [

𝑥1(𝑡)
𝑥2(𝑡)

]

(A.6)

Considering 𝛺(𝑡) = 1 and 𝐱(0) = [1, 0]⊤, the solution reads 𝑥2(𝑡) =
sin(𝑡). Warping this solution with �̇�(𝑡) = 1∕𝛺2, a trajectory 𝑥2(𝜏) = sin(𝜏)
in a time frame 𝜏 = 𝑡∕𝛺2 is obtained. Fig. A.15 depicts these two
trajectories for the case of 𝛺2 = 2.

Fig. A.15. Warping of a sin trajectory with �̇�(𝑡) = 1
2
.

In this warped time frame, 𝐮2,ref (𝜏) = 𝐮2(𝑡)𝑝ref∕𝑝(𝑡) is the set of inputs
that not only have to be warped in time, but also amplified or attenuated
to account for the 𝑝(𝑡)-independence of the second term of Eq. (A.1).

Appendix B. Optimality preservation in warping

In Appendix A, the notion of warped time frames, warpable sys-
tems, and warping trajectories was introduced. In this appendix, the
theoretical foundations that explain that, for specific scenarios, warping
preserves optimality are then presented.

B.1. Warpable optimal control problem

Regard a general Optimal Control Problem (OCP) defined in a time
frame 𝑡:

min
𝐲(⋅),𝑇

𝐽
(

𝐲(𝑡)
)

= ∫

𝑇

0
𝐿
(

𝐱(𝑡),𝐮(𝑡), 𝑝(𝑡)
)

d𝑡 (B.1a)

s.t. 𝛷
(

𝐱(𝑡),𝐮(𝑡), 𝑝(𝑡)
)

= �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ] (B.1b)

𝐡
(

𝐱(𝑡),𝐮(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ] (B.1c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0, (B.1d)
with

𝐲(𝑡) = (𝐱(𝑡),𝐮(𝑡)). (B.1e)

The general OCP is defined to be a Warpable Optimal Control Problem
(WOCP) if it holds that:

1. The dynamical system of the OCP is warpable:

𝛷(⋅) = 𝑝(𝑡) 𝐟
(

𝐱(𝑡),𝐮1(𝑡)
)

+ 𝐋
(

𝐱(𝑡),𝐮1(𝑡)
)

𝐮2(𝑡). (B.2a)

2. 𝑝(𝑡) ∈ R++ is constant in the time interval [0, 𝑇 ].
3. The path constraints are independent of 𝐮2(𝑡):

𝐡
(

𝐱(𝑡),𝐮(𝑡)
)

= 𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

. (B.2b)

4. The cost of the OCP can be written as:

∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡. (B.2c)

In this case, a WOCP is equal to:

WOCP(𝑝) ∶

min
𝐲(⋅),𝑇 ∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡 (B.3a)

s.t. 𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡) = �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ] (B.3b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ] (B.3c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. (B.3d)
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Theorem B.1 (Optimality of Warpable Dynamical Systems). Regard the
WOCP in a reference time frame:

min
𝐲ref (⋅),𝜏 ∫

𝜏

0
𝐿1(𝑝ref )𝐿2

(

𝐱ref (𝜏),𝐮1,ref (𝜏),
𝐮2,ref (𝜏)
𝑝ref

)

d𝜏 (B.4)

s.t. 𝑝ref 𝐠ref (𝜏) + 𝐒ref (𝜏)𝐮2,ref (𝜏) = �̇�ref (𝜏), 𝜏 ∈ [0, 𝜏]

𝐡
(

𝐱ref (𝜏),𝐮1,ref (𝜏)
)

≤ 0, 𝜏 ∈ [0, 𝜏]

𝐫
(

𝐱ref (0), 𝐱ref (𝜏)
)

≤ 0.

Given the optimal solution of the reference problem:

𝐲∗ref (𝜏) =
(

𝐱∗ref (𝜏),𝐮
∗
1,ref (𝜏),𝐮

∗
2,ref (𝜏)

)

, (B.5)

then, the warped trajectory of 𝐲∗ref (𝜏):

𝐲𝑝(𝑡) =
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),𝐮𝑝2(𝑡)
)

, (B.6)

with constant warping factor:

�̇�(𝑡) =
𝑝
𝑝ref

= �̇�, (B.7)

and with warping transformations defined by (A.3a)– (A.3c), is the optimal
solution of (B.3), i.e.:

𝐱𝑝(𝑡) ∶= 𝐱∗ref
(

𝑤(𝑡)
)

= 𝐱∗(𝑡), (B.8a)

𝐮𝑝1(𝑡) ∶= 𝐮∗1,ref
(

𝑤(𝑡)
)

= 𝐮∗1(𝑡), (B.8b)

𝐮𝑝2(𝑡) ∶= 𝐮∗2,ref
(

𝑤(𝑡)
)

�̇�= 𝐮∗2(𝑡). (B.8c)

Note that, since the warping factor is time independent, time warping becomes
a linear transformation:

𝜏 = ∫

𝑡

0

𝑝
𝑝ref

d𝑡′ =
𝑝
𝑝ref

𝑡⟹ 𝜏 = 𝑤(𝑇 ) =
𝑝
𝑝ref

𝑇 . (B.9)

Proof. If 𝐲∗ref (𝜏) is defined as the solution of:

min
𝐲ref (⋅),𝜏 ∫

𝜏=𝑤(𝑇 )

0
𝐿1(𝑝ref )𝐿2

(

𝐱ref (𝜏),𝐮1,ref (𝜏),
𝐮2,ref (𝜏)
𝑝ref

)

d𝜏 (B.10a)

s.t.

𝑝ref 𝐠ref (𝜏) + 𝐒ref (𝜏)𝐮2,ref (𝜏) = �̇�ref (𝜏), 𝜏 ∈ [0, 𝜏], (B.10b)

𝐡
(

𝐱ref (𝜏),𝐮1,ref (𝜏)
)

≤ 0, 𝜏 ∈ [0, 𝜏], (B.10c)

𝐫
(

𝐱ref (0), 𝐱ref (𝜏)
)

≤ 0, (B.10d)

then, by (A.4) and (B.9), and moving the constant terms out of the
integral, it holds that 𝐲∗ref (𝜏) is also the solution of:

min
𝐲ref (⋅),𝑇

𝐿1(𝑝ref )∫

𝑇

0
𝐿2

(

𝐱ref
(

𝑤(𝑡)
)

,𝐮1,ref
(

𝑤(𝑡)
)

,

𝐮2,ref
(

𝑤(𝑡)
)

𝑝ref

)

�̇� d𝑡 (B.11a)

s.t.

𝑝ref 𝐠ref
(

𝑤(𝑡)
)

+ 𝐒ref
(

𝑤(𝑡)
)

𝐮2,ref
(

𝑤(𝑡)
)

= �̇�ref
(

𝑤(𝑡)
)

,
𝑝
𝑝ref

𝑡 ∈ [0,
𝑝
𝑝ref

𝑇 ], (B.11b)

𝐡
(

𝐱ref
(

𝑤(𝑡)
)

,𝐮1,ref
(

𝑤(𝑡)
))

≤ 0,
𝑝
𝑝ref

𝑡 ∈ [0,
𝑝
𝑝ref

𝑇 ], (B.11c)

𝐫
(

𝐱ref
(

𝑤(0)
)

, 𝐱ref
(

𝑤(𝑇 )
))

≤ 0. (B.11d)

Then, considering the warping relations (A.3a)–(A.3c) and (A.5), and
defining 𝐲𝑝(𝑡) as the warped version of 𝐲∗ref (𝜏), it also holds that 𝐲𝑝(𝑡) is

the optimal solution of:

min
𝐲(⋅),𝑇

𝐿1(𝑝ref )∫

𝑇

0
𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
�̇� 𝑝ref

)

�̇� d𝑡 (B.12a)

s.t.
𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡)

�̇�
=

�̇�(𝑡)
�̇�
, 𝑡 ∈ [0, 𝑇 ], (B.12b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ], (B.12c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. (B.12d)

Next, by the definition (B.7) of the warping factor �̇� and reformu-
lating 𝐿1(𝑝ref ) as 𝐿1(𝑝ref )𝐿1(𝑝)

𝐿1(𝑝)
, it follows that 𝐲𝑝(𝑡) is also the optimal

solution of:

min
𝐲(⋅),𝑇

𝑝𝐿1(𝑝ref )
𝑝ref 𝐿1(𝑝) ∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡 (B.13a)

s.t. 𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡) = �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ], (B.13b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ], (B.13c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. (B.13d)

Finally, as a constant factor multiplying the cost function does not
change the optimal solution of the OCP, 𝐲𝑝(𝑡), the warped version of
𝐲∗ref (𝜏), must also be the optimal solution of the original problem:

min
𝐲(⋅),𝑇 ∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡 (B.14a)

s.t. 𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡) = �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ], (B.14b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ], (B.14c)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. □ (B.14d)

B.2. Semi-Warpable optimal control problem

Consider a general WOCP as given by (B.3a)–(B.3d). The problem
extension of adding 𝐮2(𝑡)-dependent path constraints is defined as Semi-
Warpable Optimal Control Problem (SWOCP) and can be expressed as:

SWOCP(𝑝) ∶

min
𝐲(⋅) ∫

𝑇

0
𝐿1(𝑝)𝐿2

(

𝐱(𝑡),𝐮1(𝑡),
𝐮2(𝑡)
𝑝

)

d𝑡 (B.15a)

s.t.

𝑝 𝐠(𝑡) + 𝐒(𝑡)𝐮2(𝑡) = �̇�(𝑡), 𝑡 ∈ [0, 𝑇 ] (B.15b)

𝐡
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ] (B.15c)

𝐡2
(

𝐱(𝑡),𝐮1(𝑡),𝐮2(𝑡)
)

≤ 0 𝑡 ∈ [0, 𝑇 ] (B.15d)

𝐫
(

𝐱(0), 𝐱(𝑇 )
)

≤ 0. (B.15e)

It is important to note that, by adding 𝐮2-dependent constraints, a
warped version 𝐲𝑝 of an optimal reference trajectory 𝐲∗ref (𝜏) does not
necessarily satisfy feasibility:

𝐡2
(

𝐱∗ref (𝜏),𝐮
∗
1,ref (𝜏),𝐮

∗
2,ref (𝜏)

)

≤ 0

⟹𝐡2
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),
𝑝ref
𝑝

𝐮𝑝2(𝑡)
)

≤ 0

⟹̸ 𝐡2
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),𝐮𝑝2(𝑡)
)

≤ 0. (B.16)

Definition B.1 (Warpable Reference (WR)). Regard a general warpable
system with 𝑝 ∈ [𝑝min, 𝑝max]. Consider as well general inequality con-
straints

𝐡2
(

𝐱(𝑡),𝐮1(𝑡),𝐮2(𝑡)
)

≤ 0, 𝑡 ∈ [0, 𝑇 ], (B.17)
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that any feasible trajectory should satisfy. Then, the trajectory 𝐲wr (𝑡),
obtained for a parameter value 𝑝wr , is defined to be a warpable reference
(WR) if:

1. 𝐲wr (𝑡) satisfies (B.17).
2. Any warped trajectory of 𝐲wr (𝑡), with warping factor �̇� = 𝑝∕𝑝wr ,

satisfies (B.17).

Definition B.2 (Best Warpable Reference (BWR)). Regard a general
SWOCP as defined by (B.15b) and with 𝑝 ∈ [𝑝min, 𝑝max]. A trajectory
𝐲bwr (𝑡), obtained for a parameter value 𝑝bwr , is defined to be a best
warpable reference (BWR) if:

1. 𝐲bwr (𝑡) is an optimal solution of the SWOCP(𝑝bwr).
2. 𝐲bwr (𝑡) is a WR with respect to the constraint (B.17).

Corollary B.1 (Optimal Reference for SWOCP). Regard a SWOCP for
which a BWR exists and the constraint (B.15d) is inactive at this BWR.
Then, the BWR could be regarded as an optimal reference, i.e. 𝑝ref = 𝑝bwr ,
and any warped trajectory 𝐲𝑝(𝑡), obtained by warping the optimal solution
𝐲∗ref (𝜏) of the reference SWOCP(𝑝ref )=SWOCP(𝑝bwr), is also an optimal
solution of the general SWOCP(𝑝).

Proof. In an optimization problem, any inactive inequality constraint
at the optimal solution can be removed from the problem without
modifying the local optimal solution (global in case of convex problems).
In our case, the 𝐮2-dependent constraint (B.15d) is inactive at 𝐲∗ref (𝜏)
and by Definitions B.1 and B.2 any warped trajectory 𝐲𝑝(𝑡) also satisfies
(B.15d). As a result, (B.15d) can be removed, the original SWOCP
is transformed into a WOCP and Corollary B.1 holds directly due to
Theorem B.1. □

Remark. If 𝐡2 is active for 𝑝bwr , i.e. 𝐡2
(

𝐲bwr (𝜏)
)

= 0, the warped
trajectories 𝐲𝑝(𝑡) are usually suboptimal. In this case, since they are
still feasible and are generated from an optimal trajectory, they still
represent a better solution than a random feasible trajectory.

Theorem B.2 (Existence and Generation of BWRs). Regard the optimal
solution of the SWOCP(𝑝max) to be 𝐲∗max(𝜏). Regard as well 𝑚 inequality
constraints involving 𝐮2, i.e. 𝐡2(𝐱,𝐮1,𝐮2) = [ℎ2,1(⋅), ℎ2,2(⋅),… , ℎ2,𝑚(⋅)]. If
ℎ2,𝑖

(

𝐱(𝜏),𝐮1(𝜏),𝐮2(𝜏)
)

, ∀ 𝑖 = 1,… , 𝑚 and ∀ 𝜏 ∈ [0, 𝜏], is monotonically
increasing (decreasing) with respect to 𝐮2 and is only active for 𝐮2 ≥ 0
(𝐮2 ≤ 0), then 𝐲∗max(𝜏) is a BWR.

Proof. Since 𝐲∗𝑝max
(𝜏) is an optimal solution, it satisfies the constraint

ℎ2,𝑖(⋅) ≤ 0. Furthermore, using the standard warping relations (B.8a)–
(B.8c), feasibility is equivalent to saying that any warped trajectory 𝐲𝑝(𝑡)
satisfies:

ℎ2,𝑖
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),
𝑝max
𝑝

𝐮𝑝2(𝑡)
)

≤ 0. (B.18)

Moreover, for any monotonically increasing (decreasing) ℎ2,𝑖 and posi-
tive (negative) values of 𝐮2 it holds that:

ℎ2,𝑖
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),𝐮𝑝2(𝑡)
)

≤ ℎ2,𝑖
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),
𝑝max
𝑝

𝐮𝑝2(𝑡)
)

(B.19)

Finally, combining (B.18)–(B.19) and using the fact that 𝐡2 is only active
for positive (negative) 𝐮2 values, it holds that:

ℎ2,𝑖
(

𝐱𝑝(𝑡),𝐮𝑝1(𝑡),𝐮𝑝2(𝑡)
)

≤ 0. (B.20)

As a result, any warped trajectory 𝐲𝑝(𝑡) is a feasible solution with
respect to ℎ2,𝑖(⋅), ∀ 𝑖 = 1,… , 𝑚, and 𝐲∗𝑝max

(𝜏) is a BWR. □

Corollary B.2. An important class of functions satisfying the above
equations is any 𝐡2

(

𝐱(𝑡),𝐮1(𝑡),𝐮2(𝑡)
)

that can be reformulated as:

𝐟lower
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 𝐮2(𝑡) ≤ 𝐟upper
(

𝐱(𝑡),𝐮1(𝑡)
)

,

where ∶ 𝐟lower (𝐱,𝐮1) < 0, 𝐟upper (𝐱,𝐮1) > 0.
(B.21)

Proof. The above constraint is equivalent to:

𝐮2(𝑡) − 𝐟upper
(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, (B.22a)
− 𝐮2(𝑡) + 𝐟lower

(

𝐱(𝑡),𝐮1(𝑡)
)

≤ 0, (B.22b)

and this reformulation satisfies the conditions of Theorem B.2 as:

1. (B.22a) is monotonically increasing with respect to 𝐮2 and, since
𝐟upper (𝐱,𝐮1) > 0, it can only active be for 𝐮2 > 0.

2. (B.22b) is monotonically decreasing with respect to 𝐮2 and it can
only be active for 𝐮2 < 0.

3. Only one of the two equations can be active at the same time as
(B.22a) is active for 𝐮2 > 0 and (B.22b) is active for 𝐮2 < 0. □

It should be finally mentioned, that there are SWOCPs, for which
no BWR exists. As this is not the case for the AWE system under study,
the applicability of warping to those kinds of SWOCPs is far beyond the
scope of this paper.
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