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Abstract. This paper addresses the complexities inherent in constructing sus-
tainable extraterrestrial habitats within lava tubes that are envisioned as promising
locations for human habitation and scientific inquiry. These environments are char-
acterized by various challenges, which are addressed in this case by integrating
computer vision (CV) techniques and 3D printing in-situ. The CV component
generates a detailed depth map from synthetic imagery to combine this depth map
with an adaptive 3D printing process, which is proposed to ensure level surfaces
at various depths, facilitating precise foundation and habitat placement within the
demanding context of lava tubes. Significantly, synthetic imagery is employed due
to the absence of real lava tube photos at this early stage of the current exploration.
The focal point lies in utilizing advanced deep learning (DL) algorithms and con-
volutional neural networks (CNN) to generate depth maps for extra/-terrestrial
environments. This research represents a platform for further knowledge develop-
ment in the fields of CV and its application to 3D printing in-situ, hence opening
new avenues for sustainable extraterrestrial habitats.

Keywords: Lava tube habitats · Computer vision · 3D printing · Depth map ·
Robotic construction · Adaptive filling · Real-time mapping · Surface
irregularities · Habitability

1 Introduction

The exploration and colonization of celestial bodies have long been envisioned by
humankind. One of the significant challenges faced in this endeavor is the construc-
tion of habitable spaces in extraterrestrial environments, particularly within the irregular
and treacherous confines of lava tubes [1]. These natural underground spaces, prevalent
on the Moon, Mars, and Earth [2], offer a unique opportunity for safe habitation and sci-
entific research due to their protective nature against radiation and extreme temperatures
[3, 4].
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Fig. 1. Rhizome 1.01 prototypes using TUDelft rovers (left) andVertico’s cement-based concrete
and robotic system (right)

However, harnessing the potential of lava tubes requires innovative approaches to
overcome their inherent irregularities and hazards [5, 6]. This paper presents an inno-
vative approach relying on knowledge developed in the European Space Agency (ESA)
funded project, Rhizome 1.0 (see Fig. 1), aiming to revolutionize extraterrestrial con-
struction methodologies by synergizing computer vision (CV) techniques and advanced
3D printing towards transforming lava tubes into viable multi-functional habitats.

This exploration, as part of the ESAandVertico funded project, Rhizome 2.0,2 begins
with a deep understanding of the complexities within these natural formations. Lava
tubes, shaped by ancient volcanic activities, present uneven surfaces riddled with cracks,
crevices, and rocky formations [7]. Traditional construction methods prove inadequate,
demanding aparadigmshift towards autonomous, adaptive systems capable of navigating
unpredictable terrains.

3D printing is becoming increasingly acknowledged as a technology with great
potential for extra-/terrestrial construction due to its versatility and efficiency [17]. In-
situ 3D printing, guided by artificial intelligence (AI), enables the on-site production
of extra-/terrestrial habitats using locally available information and materials. Hence,
in this research, a robotic AI-supported 3D printing construction system is envisaged
that maps the irregularities of lava tube surfaces. Specifically, the synergy between real-
time mapping, machine learning (ML) i.e., deep learning (DL), CV, and depth sensing
technologies is aimed at optimizing the efficiency, precision, and adaptability of the
construction process, facilitating the on-site production of extra-/terrestrial habitats with
a high degree of autonomy and resource utilization. This precise mapping acts as the
cornerstone upon which the adaptive filling i.e., terrain leveling mechanisms operate,
ensuring a stable and regularized surface for subsequent construction of habitats.

The paper presents the intricacies of the proposed methodology, emphasizing the
integration of CV for dynamic terrain analysis and 3D printing for on-site, customized
construction. While both CV and LiDAR play pivotal roles, this work explores the
capabilities of CV, especially when compared to the well-established LiDAR scanning,
in enhancing real-time terrain analysis and adaptive 3D printing for in-situ habitats.

1 Link to CS-wiki: http://www.roboticbuilding.eu/project/rhizome-development-of-an-autarkic-
design-to-robotic-production-and-operation-system-for-building-off-earth-habitats/.

2 Link to CS-wiki: http://www.roboticbuilding.eu/project/rhizome-2-0/.

http://www.roboticbuilding.eu/project/rhizome-development-of-an-autarkic-design-to-robotic-production-and-operation-system-for-building-off-earth-habitats/
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2 Related Work

The pursuit of constructing habitable spaces in extraterrestrial environments has spurred
diverse research endeavors. The integration of CV techniques and 3D printing for in-
situ construction, as explored in this study, aligns with and builds upon several existing
threads of research.

In the realm of 3D printing for extraterrestrial habitats, Bier et al. (2021) introduced
significant advancements in the design, production, and operation of subterranean off-
Earth infrastructure. Von Ehrenfried (2022) delved into the concept of living in caves
on Earth, Moon, and Mars, providing insights into potential subterranean living spaces
to reduce exposure to radiation.

Considering the safety aspects of lunar habitats, de Angelis et al. (2006) conducted a
comprehensive radiation safety analysis specifically tailored for lunar lava tubes, explor-
ing their viability as protective shelters. Meanwhile, Ehresmann et al. (2021) focused
on Mars, presenting findings on natural radiation levels measured with the MSL/RAD
instrument, contributing valuable data for future Martian habitat designs.

Expanding the discussion to geological features, Sauro et al. (2020) offered a com-
prehensive review of lava tubes on Earth, Moon, andMars, shedding light on their varied
sizes and morphologies through comparative planetology. Furthermore, Perkins (2020)
delved into the intriguing prospect of lava tubes serving as havens for ancient alien life
and potential shelters for future human explorers.

Beyond planetary exploration, the literature includes awealth of information on com-
puter vision and LiDAR technologies. Porr et al. (2002) presented a VLSI-compatible
computer vision algorithm for real-time stereoscopic depth estimation. In the realm
of LiDAR technology, Zhao et al. (2019) discussed recent developments and industry
trends.

This diverse array of research forms the foundation for the current study, weaving
together insights from space exploration, habitat design, and advanced sensing tech-
nologies. While these studies contribute valuable insights to the broader field of space
exploration and construction, the present research uniquely focuses on the fusion of CV
and 3D printing technology, offering an innovative approach to address the complexities
of lava tube environments.

3 Problem Statement

The prospect of utilizing lava tubes as potential habitation sites on celestial bodies
like Mars and the Moon has sparked ambitious efforts in space colonization [8]. These
subterranean chambers offer natural shielding against cosmic radiation and extreme
temperature fluctuations, making them promising candidates for secure and sustainable
living spaces [2–6]. However, the uneven and rugged terrains within lava tubes pose
significant challenges for construction.

Integrating CV techniques with advanced 3D printing technology offers a transfor-
mative approach to address the challenges posed by complex landscapes. It brings about
real-time adaptability and efficiency, making it a promising solution for construction
projects in challenging terrains. Terrain analysis is a complex undertaking in a lava tube,
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primarily due to numerous surface irregularities to traverse in varying lighting condi-
tions. To overcome the difficulties associated with real-time mapping, comprehensive
terrain analysis requires the use of proper cameras and sophisticated CV techniques. By
utilizing advanced CV algorithms, precise insights into the topography are achieved,
enabling 3D printing that dynamically responds to identified irregularities in real-time.
This capability not only streamlines the construction process but also ensures struc-
tural stability while leveling surfaces with accuracy. Utilizing advanced CV algorithms
is essential for precisely deciphering the irregularities, as they have the potential to
provide exact insights into the terrain [13, 14]. These algorithms are included in the
category of depth detection algorithms that map and decipher the irregularities of lava
tube surfaces, ranging from smaller surface irregularities to substantial hills and valleys.

4 Implications

The core objective of employing CV in lava tubes transcends mere technical challenges;
it fundamentally impacts the habitability of the constructed spaces. By precisely map-
ping irregularities, the construction system ensures not only structural stability but also
facilitates the seamless attachment of habitable structures against the lava tube walls and
ground surfaces where necessary.

The understanding of the terrain’s irregularities is crucial for the adaptive filling
approach. The pixel-wise classification provided by the model is the cornerstone of
the adaptive filling technique. By accurately identifying irregularities, the subsequent
construction processes are finely tuned to the specific challenges posed by the lava tube
environment.

This CV-supported technology developed on Earth for off-Earth applications will
be transferred to on-Earth applications in remote, challenging terrains like mountain-
ous regions or extreme possibly disaster-stricken environments where rapid, stable
infrastructure deployment is crucial.

From disaster-prone regions needing resilient structures to ecologically sensitive
areas requiring eco-friendly solutions, CV driven innovation bridges the gap between
space exploration and terrestrial needs by minimizing environmental impact and
heralding a sustainable future for construction practices worldwide.

5 CV vs. LiDAR Scanning

While LiDAR scanning utilizes laser pulses to measure distances, creating precise 3D
representations of surfaces, there are advantages of using CV, making the process of
depth estimation possibly more effective and efficient especially in scenarios where
LiDAR scanning might encounter limitations:

(a) Real-time Analysis: CV operates instantaneously, allowing for swift analysis of
dynamic environments [9, 10]. In lava tubes,where conditions can change rapidly, the
ability to make immediate decisions based on real-time data is crucial. CV systems
swiftly process visual data, enabling adaptive responses to unforeseen challenges in
the construction process.
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(b) CostEfficiency:UnlikeLiDAR technology,which canbe expensive [11, 12],CVsys-
tems utilize off-the-shelf cameras and sensors, making themmore cost-effective and
accessible. This affordability renders CV a practical choice, especially in scenarios
with limited budgets.

(c) Redundancy: Employing both LiDAR and CV creates redundancy in data collection
methods. In situations where LiDAR scanning might fail due to technical issues
or environmental constraints, such as extreme dust or low visibility, CV can serve
as a reliable backup. Redundancy ensures a continuous flow of data, essential for
uninterrupted construction operations.

(d) Low Power Consumption: Cameras generally consume less power compared to
LiDAR systems.

(e) Color and Texture Information: Cameras provide additional color and texture
information, enhancing the richness of data.

(f) Wider Field of View: Cameras may have a wider field of view, contributing to a
more comprehensive understanding of the surroundings.

The real-time analysis offered by CV enables swift responses to dynamic environ-
ments, crucial for unpredictable conditions like those in lava tubes. The cost efficiency
of CV, using available cameras and sensors, makes it practical, especially in budget-
constrained scenarios. LiDAR does have also several advantages such as night vision,
no use of complex algorithms, consistency and reliability in all weather conditions.

Ideally incorporating both LiDAR and CV in the endeavor ensures redundancy
in data collection, providing a reliable backup in situations where technical issues or
environmental constraints might impede the effectiveness of one system.

6 Methodology

In this research, an incremental solution approach is adopted where the methodology
involves breaking down the overarching problem into manageable stages, proposing and
implementing solutions one step at a time. Each phase is designed to build upon the pre-
ceding steps from synthetic depth map generation to the utilization of the U-Net deep
learning framework for image segmentation. By doing so, the approach is systematically
refined and optimized, ensuring the effectiveness of the proposed solutions. To demon-
strate the impact of each step, comprehensive results, including quantitative data and
qualitative insights are presented, showcasing the tangible outcomes achieved at each
stage. This approach not only enhances the transparency of the employed methodology
but also allows for a thorough evaluation of the efficacy of proposed solutions.

DepthMap andU-Net. The explored CV-supported methodology employs a Grasshop-
per script crafted to extract details from a 3D surface model, going beyond mere visual
representation. Due to the very limited lava tube imagery, the advanced capabilities of
Perlin noise algorithms3 [15] are leveraged to create synthetic depth maps that unveil
the irregularities of the surfaces. A depth map, in this work, is represented as a compact
integer-valued grayscale imagewhere each pixel represents the distance from the camera

3 In depth estimation, the Perlin noise script was employed to generate synthetic depth maps or
surfaces that mimic real-world textures and help train depth estimationmodels more effectively.
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to the corresponding point in the scene. Lighter pixels indicate closer objects, and darker
pixels represent farther objects. Depth maps are vital for tasks like 3D modeling and
understanding the spatial layout of a scene from 2D images. The depth maps (see Fig. 2)
serve as the foundational bedrock for the in-depth analysis, providing an understanding
of the intricacies inherent to lava tubes.

Fig. 2. Depth maps. Original input (left) and simplified depth map (right). The image underwent
a thresholding operation, classifying pixels into five distinct intensity levels. This segmentation
technique provides nuanced distinctions in visual features by categorizing the image into five
layers based on intensity values. The choice of five layers strikes a balance between computational
efficiency and the need to capture both coarse- and finer-grained structures in the lava tube. While
optimizing computational resources, future adaptations may consider adding layers to enhance
representation, acknowledging the trade-off between simplicity and the depth required for a more
detailed analysis.

At the core of the method lies a robust data generation process to capture the raw
essence of surface irregularities. The resulting black-and-white depth maps form the
initial dataset; offer a glimpse into the diverse topography of the lava tube environment
(see Fig. 3).

Python is used to process the imagery generated in the Grasshopper software fur-
ther. The script processes the initial depth maps, transforming them into a spectrum of
color-coded masks. Each hue on these masks signifies a distinct depth level, creating a
representation of the lava tube’s irregularities. The color-coded dataset forms the corner-
stone of the training process, enabling the model to comprehend the interplay of depth
within the lava tube environment. Each lava tube cavity is classified based on these data-
rich depth maps. The depth understanding forms the foundation of the adaptive filling
approach. With precision, irregularities are filled, hence ensuring a stable, level surface
on the surface of choice.

A U-Net [16] i.e., DL framework specifically developed for image segmentation,
is employed in this study to associate depth maps with the intricate features of terrain
imagery within the challenging lava tube environment. Renowned for its prowess in
capturing fine details, U-Net plays a pivotal role in this approach. Following the archi-
tecture of the original U-Net implementation, convolutional layers for both down- and
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Fig. 3. Generation of the depth maps. Left: Grasshopper software script for synthetic image gen-
eration via Perlin noise algorithms. Right: Depth maps output in colour and black/white produced
by Rhino’s ZBuffer. Training models on both grayscale and color images enhance the model’s
robustness allowing it to learn features and patterns that are invariant to color variations, making
it more adaptable to different scenarios.

up-sampling are utilized, ensuring adaptability to the unique characteristics of the lava
tube surfaces. Notably, the U-Net model takes a grayscale image of the terrain (single-
channel) as input and produces a depth map (multi-channel) as output, providing a
comprehensive representation of the terrain’s spatial intricacies.

Fig. 4. Training data batch sample



356 G. Calabrese et al.

Fig. 5. Python Pseudocode. Extract from the model training, segmentation and classification
models. DeepLabV3 assigns semantic labels to every pixel in an image, effectively segmenting
the image into meaningful parts [19, 20].

Training Curves. The objective is to minimize the disparity between the predicted
outputs and the actual labels in the training dataset. The U-Net was optimized using
the Adam optimizer, a cross-entropy loss, and dropout for regularization. The Adam
optimizer is a stochastic gradient descent method incorporating an adaptive estimation
of the learning rate based on the mean and variance of the gradients of the model weights
[18]. The training data consisted of six batches, each containing 100 images categorized
into various scenarios, including color, black/white, left light source, right light source,
left flash of light, and right flash of light (see Figs. 4 and 5).

The training process involved 20 epochs, and the learning rate was set to 0.001. Note
that a decrease in the loss correlates with an increase in performance.

The training curves (see Fig. 7) illustrate the model’s learning progress, demonstrat-
ing a reasonable proficiency in handling the tasks. Notably, the training accuracy exhibit
steady improvement over time.However, it’s observed that the validation accuracy shows
only marginal enhancement, suggesting a potential risk of overfitting on the training
data. This discrepancy hints at the need for additional data to enhance generalization
and fine-tune the model’s performance on unseen examples.

The training curves indicate consistent improvement in training accuracy indicating
that the model improves at predicting the depth maps in the training set. It is crucial
to balance high training accuracy with good validation performance to ensure that the
model generalizes well to unseen data. If validation accuracy rises during training, it
signifies the model is improving in making accurate predictions on new data, fulfilling
themain purpose of validation. Initially high validation loss suggests themodel struggles
to fit data, but a decreasing trend over time shows that the model is learning and adapting
through training. The training and validation metrics provide insights into how well the
model is learning and generalizing from the data, from the learning curves it can be
extrapolated:

Training Accuracy (0.8). The training accuracy of 0.8 indicates that, on the training
data, the model correctly predicts the desired outcomes 80% of the time. This suggests
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Fig. 6. Example predictions. Test samples are shown on the left. The predictions of the train
U-Net are visualized on the right. A threshold of 5 is chosen, hence the 5 grayscale levels in the
predictions.

a reasonable level of proficiency in capturing patterns within the training set, quite
sufficient for the task.

Validation Curves. Validation curves are visual tools in ml that illustrate how a model
performs during training by plotting a chosen metric, like accuracy or loss. These curves
aid in determining optimal settings, avoiding overfitting or underfitting. Analyzing the
curve’s shape provides valuable insights into the model’s behavior, assisting in the
refinement of parameters for enhanced predictive accuracy and robustness.

Validation Accuracy (0.5).The lower validation accuracy of 0.5 suggests that themodel’s
performance on new, unseen data is not as successful. It could indicate a potential issue
with overfitting, where the model may be too specialized to the training data and does
not generalize well. This indicates that more training data is required to omit overfitting.

In summary, while the model is learning well on the training data (as indicated
by the high training accuracy and low training loss), the challenge lies in ensuring
good generalization to new data (reflected in the lower validation accuracy and higher
validation loss). Figure 6 shows example predictions. It would be worth to consider
regularization techniques, or acquiring additional diverse data to address the observed
overfitting and enhance the model’s overall performance (Fig. 7).

In the context of this study, understanding the implications of these numerical values
is crucial. To illustrate, a score of 0.8 signifies that 80% of pixels are correctly classified,
but 20%aremisclassified.Assessingprecision for irregular surfaceswith intricate details,
this levelmay fall short of expectations.While it indicates a promising beginning, it raises
concerns, suggesting, for example, that part of the image could be inaccurately predicted.

In summary, the experiments yield a satisfactory outcome, indicating that the applied
methodologies are effective to a certain extent. However, there is room for improvement
in refining and optimizing the approaches employed. The results suggest a promising
foundation, yet opportunities for enhancing precision, efficiency, or addressing specific
limitations are apparent, presenting avenues for future enhancements in the experimental
design or implementation strategies.
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Fig. 7. Training curves indicating the training process. From left to right, the training accuracy,
training loss, the validation accuracy, validation loss.

7 Conclusion

In conclusion, this research represents a fusion of technological innovation and adaptabil-
ity, envisaging a new era in construction methodologies. Through the integration of CV
techniques and 3D printing technology, the complex challenges posed by lava tube irreg-
ularities are addressed. The result is a comprehensive system capable of autonomously
analyzing real-time surface data which dynamically adapts the 3D printing construction
process to these intricate features of the surface. This procedure provides the neces-
sary prerequisites for leveling surfaces as well as constructing the habitats requiring
positioning and maneuvering of the printer robot.

The model, following training and validation, has demonstrated promising potential.
The augmentation of the datasetwith diverse exampleswould enhance themodel’s under-
standing, paving the way for more effective generalization in future applications. Simul-
taneously, ongoing meticulous evaluations of the model’s architecture would ensure its
capability to handle increasingly intricate irregularities.

In a future experimental setup in a lava tube in Sicily to be implemented in collab-
oration with the University of Palermo and the I NEBRODI Naturalistic Association, a
camera placed at the extremity of a robotic arm of a rover would capture the essence
of the lava tube environment, yielding a wealth of images that intricately document the
irregularities of the surfaces. These images, showcasing the nature of the terrain, would
serve as the foundational elements for the training dataset.
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For further advancement of the study, a proposed strategy involves capturing real
photographs of a lava tube and coupling them with LIDAR results to ascertain the depth
in each image. This approach aims to provide a tangible dataset for validation, laying the
groundwork for refining and fine-tuning the pre-trained model on image and depth map
pairs. While the specifics of this process remain a challenge for future exploration, it
stands as a crucial step in ensuring the model’s accuracy and applicability in real-world
scenarios.

Reflecting on the significance of these findings, it becomes evident that the successful
development and implementation of an integrated construction methodology with CV
represents a pivotal moment in the trajectory of space exploration. The adaptability
showcased in addressing the challenges of extraterrestrial environments positions this
approach as a cornerstone for future sustainable habitats beyond Earth.

This research not only marks a significant leap forward in construction but also sets
the stage for a continuous journey of innovation and refinement, with the ultimate goal
of establishing sustainable habitats in extra-/terrestrial environments.
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the students Mo Behboodi and Jesper Van der Ploeg under the supervision of researchers from
Robotic Building and AiDAPT labs as part of the Rhizome 1.0 and 2.0 (Link to Rhizome 1.0
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1749/20/NL/GLC.
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