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Although climate change is a global problem, specific mitigation measures are frequently
applied on regional or national scales only. This is the case in particular for measures to
reduce the emissions of land-based transport, which is largely characterized by regional
or national systems with independent infrastructure, organization, and regulation. The cli-
mate perturbations caused by regional transport emissions are small compared to those
resulting from global emissions. Consequently, they can be smaller than the detection lim-
its in global three-dimensional chemistry-climate model simulations, hampering the eval-
uation of the climate benefit of mitigation strategies. Hence, we developed a new approach
to solve this problem. The approach is based on a combination of a detailed three-
dimensional global chemistry-climate model system, aerosol-climate response functions,
and a zero-dimensional climate response model. For demonstration purposes, the
approach was applied to results from a transport and emission modeling suite, which
was designed to quantify the present-day and possible future transport activities in
Germany and the resulting emissions. The results show that, in a baseline scenario,
German transport emissions result in an increase in global mean surface temperature of
the order of 0.01 K during the 21st century. This effect is dominated by the CO2 emissions,
in contrast to the impact of global transport emissions, where non-CO2 species make a lar-
ger relative contribution to transport-induced climate change than in the case of German
emissions. Our new approach is ready for operational use to evaluate the climate benefit
of mitigation strategies to reduce the impact of transport emissions.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
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1. Introduction

Recent changes of the Earth’s climate can be attributed to anthropogenic emissions, and these changes are expected to
further increase in the future (e.g., Stocker et al., 2013). Emissions from the transport sectors (land-based transport, shipping,
and aviation) significantly contribute to this effect (e.g., Fuglestvedt et al., 2008; Eyring et al., 2010; Lee et al., 2010; Sausen,
2010; Uherek et al., 2010; Sausen et al., 2012). This is of particular relevance in view of comparatively large growth rates of
these sectors. Climatically active components of transport emissions include (i) the long-lived greenhouse gas CO2; (ii) short-
lived trace gases, in particular nitrogen oxides (NOx = NO + NO2), carbon monoxide (CO), and volatile organic compounds
(VOC), which can induce changes in the concentration of the greenhouse gases ozone (O3) and methane (CH4); as well as
(iii) aerosol particles (e.g., soot) and aerosol precursor gases (e.g., SO2 or the aforementioned NOx and VOC), which can cause
important modifications of clouds and radiation.

Many concepts for mitigating climate change have been developed. These include numerous strategies to reduce the
emissions from the transport sectors (see Kahn Ribeiro et al., 2007, for a review). Climate change is a global problem. How-
ever, specific measures frequently apply on regional or national scales only. This is the case in particular for land-based
transport, which is largely characterized by regional or national systems with independent infrastructure, organization,
and regulation. As an example, in 2007 the German government initiated an integrated energy and climate program
(German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, 2007). One of the central
objectives of this initiative has been a significant reduction of the national transport emissions. This is intended to be
achieved by a number of measures including a CO2 strategy for passenger cars, an expansion of the biofuels market, a
CO2-based reform of vehicle taxes, energy labeling of passenger cars, as well as modifications of the German heavy goods
vehicle toll. Such measures influence not only the emissions of CO2, but also the amount of other, co-emitted species. Hence,
evaluating possible climate benefits of such measures requires a quantification of the climate impact of the regional
transport emissions taking into account all climate-relevant emission components. An important facet of the problem is that
even local mitigation measures may induce a large-scale to global climate response.

Global climate models are the central tools for assessing anthropogenic climate change since cause-effect relations can be
studied in detail. In addition, such models allow projections of future climate based on different emission scenarios (e.g.,
Stocker et al., 2013). Many studies have focused on modeling climate effects of emissions from the global transport systems
(e.g., Lauer et al., 2007; Hoor et al., 2009; Skeie et al., 2009; Dahlmann et al., 2011; Lund et al., 2012; Peters et al., 2012, 2013;
Righi et al., 2013, 2015, 2016). Also the climate benefits of specific mitigation options for global transport have been mod-
eled, particularly for aviation (e.g., Ponater et al., 2006; Frömming et al., 2012; Grewe et al., 2014) and international shipping
(e.g., Lauer et al., 2010; Righi et al., 2011). However, corresponding studies of the global climate benefits of regional measures
to reduce emissions of land-based transport are lacking.

Different types of climate models have been used for quantifying the global climate impacts of the different species emit-
ted. While long-lived greenhouse gases (e.g., CO2) are well-mixed in the atmosphere and, consequently, show a nearly homo-
geneous spatial distribution, short-lived species (e.g., ozone or particles) are mostly characterized by large spatial variations
and their climate effects, even the global mean response, can depend on the location of the corresponding emissions (e.g.,
Joshi et al., 2003; Berntsen et al., 2005, 2006; Shindell et al., 2010). This implies that three-dimensional global atmospheric
chemistry-climate models are needed to simulate these effects. Performing such simulations for longer time periods (e.g.,
centuries) would cause extreme computational expenses. Therefore, such model studies are typically performed for selected
periods of a few years only (e.g., Gottschaldt et al., 2013; Righi et al., 2013).

The commonway to quantify perturbations of short-lived species induced by a specific emission source is to compare two
three-dimensional simulations, one with and one without these emissions. On the basis of radiative transfer calculations,
these perturbations are then translated into a radiative forcing (RF) metric, which represents their impact on the Earth’s radi-
ation budget and can be interpreted as an indicator for the strength of the resulting global climate change (e.g., Myhre et al.,
2013). A positive global mean radiative forcing results in a warming of climate, whereas a negative forcing induces a cooling.
Once the radiative forcing has been quantified, it can be used as the basis for further climate change calculations, for exam-
ple, for estimating the corresponding change in global mean surface temperature.

In the case of long-lived greenhouse gases a different approach is favored. The quasi-homogeneous spatial distribution of
these compounds has the advantage that zero-dimensional climate response models can be applied to simulate the atmo-
spheric concentration perturbations induced by specific emission sources as well as the resulting global climate effects
(e.g., Sausen and Schumann, 2000). Due to their numerical efficiency, such models allow for larger numbers of simulations
in order to analyze many different emission scenarios or mitigation options. These models also enable long-term simulations
and projections, which are necessary to consider the long residence times and the resulting atmospheric accumulation of
long-lived species, such as CO2, which can reside in the atmosphere for centuries.

Climate response models are based on response functions derived from simulations with detailed climate models. These
response functions provide both changes in greenhouse gas concentrations and changes in global mean surface temperature
per unit of emission. Therefore, they are suitable for quantifying the effects of even small local CO2 emission sources. Hence,
the global climate effects induced by the CO2 emissions of regional transport systems can be determined and, consequently,
the effects of regional emissions in different future scenarios can be compared. In contrast, a fundamental problem arises
when effects of emissions of short-lived species are assessed with three-dimensional models. The global perturbations
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induced by regional emissions are small compared to those resulting from global emissions. As a consequence, the modeled
perturbations can be smaller than the detection limits in global three-dimensional chemistry-climate model simulations
(e.g., Deckert et al., 2011; Righi et al., 2013) and the transport-induced climate effects cannot be quantified.

For the assessment of gas-phase chemical perturbations, this problem can be solved by neglecting any feedbacks of the
perturbations to other atmospheric processes in the model (Deckert et al., 2011). This significantly reduces the noise (arising
from natural variability) and, hence, increases the signal-to-noise ratios of the transport-induced perturbations. Based on the
chemical perturbations quantified by this method, the corresponding radiation and climate effects can be derived in subse-
quent calculations using, for example, off-line radiative transfer and climate response models. However, a decoupling of pro-
cesses as described by Deckert et al. (2011) is not suitable for the quantification of aerosol effects since aerosol-induced
modifications of clouds, that is, coupling processes, are major mechanisms of anthropogenic climate change. This severely
hampers the assessment of the climate effects of regional emission sources.

Hence, for a complete assessment of the global climate impact of regional land-based transport emissions, different mod-
eling techniques need to be combined and, with regard to aerosol effects, new methods need to be designed. In the present
study, we developed such an overall approach, covering the effects of the whole suite of different emission components. The
method is based on a combination of (i) a three-dimensional global chemistry-climate model system to quantify ozone dis-
tribution changes and their radiative impact; (ii) a set of newly derived aerosol-climate response functions to quantify the
radiative forcing of aerosol perturbations directly from aerosol and aerosol precursor emissions; and (iii) a climate response
model to simulate the concentration changes of the long-lived greenhouse gases CO2 and CH4 and the resulting radiative
impacts. The latter model has the additional capability to translate the radiative effects of all species into changes of the glo-
bal mean surface temperature.

For demonstration purposes, the approach was applied to the results of a transport and emission modeling suite, which
had been designed to assess the present-day and possible future transport activities in Germany as well as the resulting
emissions of climate-relevant species. The development and application of the approach were part of the DLR project VEU
(Verkehrsentwicklung und Umwelt, i.e., transport development and environment; www.dlr.de/VEU/en/). VEU has the objec-
tive to analyze German transport activities and their environmental impacts. The applied model framework, including trans-
port, emission, and atmospheric models, enables an evaluation of mitigation strategies by modeling the full cause-effect
chain ranging from transport demand, over transport activity and emissions, to the resulting climate effects. Although the
application example focused on the effects of transport emissions in Germany, the methods are in principle applicable to
other regions, too.

In addition to their climate impact, transport-induced air pollutants can affect human health (e.g., Pope and Dockery,
2006; Chow et al., 2006). However, we focus on the climate effects here and refrain from discussing air pollution aspects
since this would be beyond the scope of the present paper.

This article is organized as follows: Section 2 describes the methodology to quantify the climate impacts of regional emis-
sion sources as well as the methods to derive emissions of the German transport system. The section starts with a brief
methodological summary which provides basic technical information for those readers who are particularly interested in
the application results and who intend to focus their attention on Section 3, where the results are presented and discussed.
Section 4 summarizes the main conclusions of our study.
2. Models and methodology

2.1. Methodological overview

To evaluate the climate impact of transport emissions, changes in the atmospheric concentrations of the individual
climate-relevant species as well as the corresponding effects on radiation and, finally, climate need to be assessed. The atmo-
spheric modeling suite applied here to achieve this is shown in Fig. 1 together with the data flow between its different
components.

To quantify transport effects on atmospheric ozone, the global three-dimensional chemistry-climate model system EMAC
(ECHAM5/MESSy atmospheric chemistry model; Section 2.2.1) is applied in the so-called quasi chemistry transport model
(QCTM) configuration. That means that feedbacks of the chemical perturbations to other atmospheric processes are
neglected, which enhances the signal-to-noise ratio. The model is used to calculate the transport-induced ozone modifica-
tions and the resulting radiative forcing. An additional result of these model calculations is the transport-induced change in
methane lifetime caused by modified chemical sinks. This information is applied in a subsequent modeling step (see below)
to quantify the corresponding change in the methane concentration and the resulting radiative forcing. For a more detailed
description of the QCTM application in the present study, we refer to Section 2.2.1.

To quantify the radiative forcing of aerosol perturbations induced by regional transport emissions, we derived a set of
climate response functions which allow the calculation of aerosol radiative forcing directly from the emissions. These func-
tions are based on detailed three-dimensional aerosol-climate model calculations also performed with the EMAC model sys-
tem. By varying the total European anthropogenic emissions of aerosols and aerosol precursor gases in these simulations, the
dependence of the aerosol radiative forcing on the emission strength was quantified and corresponding response functions
were fitted to the results. This enabled us to quantify the radiative forcings of aerosol perturbations induced by specific
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Fig. 1. Schematic overview of the atmospheric modeling approach and the data flow between the different tools applied. The aerosol-climate response
functions, the chemistry-climate model EMAC (in QCTM mode), and the climate response model AirClim are applied to calculate the radiative forcings (RF)
of changes in aerosols, ozone (O3), methane (CH4), and CO2 induced by transport emissions. AirClim further simulates the resulting climate effects expressed
as the change in global mean surface temperature DT. Ds(CH4) denotes the change of methane lifetime induced by transport emissions.
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transport activities in the European area, even if these perturbations are below the detection limit in the three-dimensional
simulations. A detailed description of this approach is provided in Section 2.2.2.

For calculating the transport-induced changes in the concentrations of CO2 and CH4 as well as the corresponding radiative
forcings, we apply the climate response model AirClim (Section 2.2.3). While the CO2-related modifications are derived from
the CO2 emissions, the CH4-related changes are quantified on the basis of the CH4 lifetime modifications simulated with
EMAC in the QCTM setup. Since the radiative forcings of the CO2 and CH4 concentration changes depend on the background
concentrations of these species, AirClim employs time-dependent background concentrations according to observations for
the past. To account for the future development of the CO2 and CH4 background as well, appropriate scenarios have to be
assumed. In the applications of the present study, we take into account three different future scenarios to assess the sensi-
tivity of our results to different assumptions about future developments. The chosen background scenarios are described in
Section 2.2.4.

The final outcome of the three methods described above are radiative forcings. Additional processing is necessary to
assess the climate effects resulting from these radiation budget perturbations. This cannot be accomplished by simply taking
into account atmospheric processes alone since climate change also involves modifications of ocean temperatures which
take place on long time-scales (decades). Computationally expensive coupled atmosphere-ocean models are required to sim-
ulate the temporal and spatial details of this effect. Such models cannot be applied for a large number of simulations of
transport-induced perturbations. Therefore relations between radiative forcing and parameters describing the associated cli-
mate change (e.g., change in global mean surface temperature) were established in previous studies and are exploited within
the AirClim model, in a final simulation step to calculate temperature changes resulting from the radiative forcings of the
individual species (ozone, aerosol, CO2, and CH4). The details of this approach are described in Section 2.2.4.

In the demonstration application within the VEU project, the modeling approach described above was used to quantify
the climate effects of the emissions from the transport activities within Germany. The focus was on land-based transport
including road transportation, railways, and inland navigation. For the description of the German transport system within
VEU, transport models were applied which are suitable for assessing present-day and possible future transport activities.
Fig. 2 provides a flow chart of the transport modeling methodology followed here. Based on socio-economic input data, pas-
senger and freight transport demand is modeled to generate origin-destination matrices. These matrices are then used to
assign transport demand to the traffic network for calculating transport activity in terms of link flows, that is, the number
of vehicle movements per time between network nodes. In this manner, transport activities for different vehicle types are
quantified. In addition, the future development of the passenger car fleet composition is explicitly modeled, in order to take
into account the penetration of new technologies into the vehicle market. For a detailed description of the transport mod-
eling approach, we refer to Section 2.3.1. The emissions of climate relevant species from the German transport system are
quantified by combining the modeled transport activity data with emission factors for the respective vehicle types. Details
about the chosen emission factors are provided in Section 2.3.2.

For the present study, a baseline scenario of the transport development in Germany between 2008 and 2030 was gener-
ated. Transport activities and the resulting emissions were calculated for the years 2008, 2020, and 2030. Due to methodical
Please cite this article in press as: Hendricks, J., et al. Quantifying the climate impact of emissions from land-based transport in Germany.
Transport. Res. Part D (2017), http://dx.doi.org/10.1016/j.trd.2017.06.003

http://dx.doi.org/10.1016/j.trd.2017.06.003


Fig. 2. Schematic overview of the transport and emission modeling approach.
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issues described in Section 2.2.1, the atmospheric simulations, particularly of ozone and the methane lifetime change (QCTM
simulations), require information about all emission sources within Europe. Hence, the German transport emission data
were complemented by inventories of transport emissions of all other European countries (except for the European part
of Russia) and corresponding Europe-wide anthropogenic non-transport emissions (Section 2.3.2).

Due to the long atmospheric residence time and the resulting accumulation and long-term climatic impact of CO2, the
time period from 2008 to 2030 is too short to perform an appropriate analysis of the climate effects. Longer time periods
need to be analyzed to enable a fair comparison of the effects of short-lived species and long-lived greenhouse gases (Sec-
tion 2.2.4). Hence, we expanded the time horizon of our analysis to the year 2100 and also took into account past transport-
induced emissions back to 1850. To this end, the emission data generated for transport in Germany in the period from 2008
to 2030 were complemented by corresponding data for the past, based on results of other studies. Since no information was
available about the emissions during parts of the considered time periods, appropriate assumptions were made in these
cases. For the years beyond 2030, constant emissions on the 2030 level were assumed. Details of these emission estimates
are described in Section 3.1. The results of the transport and emission modeling suite and the corresponding results of mod-
eling the climate effects of the German transport emissions are described in Sections 3.1 and 3.2, respectively.
2.2. Atmospheric modeling

2.2.1. Transport-induced ozone changes
To quantify the effect of transport emissions on atmospheric ozone, we employ the global three-dimensional chemistry-

climate model system EMAC (Jöckel et al., 2006). It consists of a physical climate model (ECHAM5) coupled with a number of
submodels which are needed to simulate atmospheric chemistry. In this combination, the physical climate model simulates
atmospheric dynamics (e.g., winds, temperature), the hydrological cycle, and the atmospheric radiation budget. The addi-
tional submodels describe specific processes in the chemical species’ life cycle, such as emissions, gas and liquid-phase
chemical transformations, or deposition to the surface.

To enable the quantification of small perturbations, we apply this model framework in the QCTM configuration (Deckert
et al., 2011). Using this model setup, the feedbacks of atmospheric chemistry perturbations to other atmospheric processes,
in particular to radiation and dynamics, are neglected by considering prescribed concentrations of radiatively active gases in
the radiative transfer calculations, rather than driving the radiation by chemical concentrations calculated on-line. This
implies that the chemical perturbations do not change atmospheric dynamics (i.e., weather and climate), thus reducing
the ‘noise’ in the modeled transport effects and enabling the quantification even of small transport-induced chemistry
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perturbations. For the applications of the present study, the model was operated in the configuration described as ‘base con-
figuration’ by Gottschaldt et al. (2013), but using different emission inventories as input.

To describe the possible future development of global anthropogenic emissions, we consider the Representative Concen-
tration Pathways (RCPs) emission data (van Vuuren et al., 2011) generated in support of the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC; e.g., Stocker et al., 2013). For the QCTM simulations of our demonstration
application, we analyzed the differences in total annual emissions of short-lived species in the different European countries
as represented by the RCPs and as quantified in VEU. We then chose the RCP scenario (RCP8.5) that is closest to the VEU
projections, assuming that this scenario shows the highest consistency to the VEU scenario also with regard to the future
development of short-lived species emissions outside Europe. To allow for maximum consistency with the VEU scenario
within Europe, we embedded the European VEU emissions into the global data set. This was achieved by scaling the RCP
emission amounts of each constituent in the respective sectors and European countries to match the corresponding VEU
emissions.

The effects of emissions from the transport sector on atmospheric ozone can be calculated by comparing two different
QCTM simulations, one including all emission sources and another one neglecting the emissions from the transport sector.
This standard approach is referred to as the perturbation method (e.g., Grewe et al., 2012). For our demonstration applica-
tion, this implies that simulations with and without German transport emissions were necessary. Although the numerical
noise is reduced significantly in the QCTM approach compared to simulations with the fully coupled model, some noise is
still inherent in the chemistry calculations and may complicate the quantification of the expectedly small signal resulting
from the German emissions. To overcome this, we enhanced the transport-induced perturbation by simulating the ozone
change induced by the land-based transport emissions of all European countries (except for the European part of Russia),
instead of focusing on the effect of German emissions only. The radiative forcing that results from this ozone change was
then calculated according to Gottschaldt et al. (2013) from the differences of the radiative fluxes simulated in the two model
runs. We then estimated the radiative forcing resulting from German transport activities by downscaling the European effect
according to the ratio of German to European transport-induced NOx emissions. NOx was chosen here as representative for
the emission components since it is a key driver of the chemical perturbations.

Estimating the German effect by this scaling procedure requires the assumption that the radiative forcing per emitted
amount of pollutant is similar for the European and the German emissions. Since pollutants released over Europe usually
experience vigorous mixing, uncertainties due to this assumption are probably small. However, a potential problem could
be the following. Since the production of ozone shows a strongly nonlinear dependence on the concentration of NOx, the
quantification of contributions of specific NOx sources to ozone with the perturbation method can be critical, especially in
the case of high NOx background concentrations as occurring in polluted air masses (Grewe et al., 2012). Underestimations
of factors up to 5 are possible. This uncertainty will be considered in the interpretation of the QCTM results in Section 3.2.

In addition to the analysis of ozone perturbations, we use the QCTM simulations to quantify transport-induced changes in
the concentration of the hydroxyl radical OH. The reaction with OH is the major sink of the greenhouse gas methane. Hence,
changes in the OH concentration result in modifications of the methane lifetime. To account for this, we use the quantified
transport-induced effects on OH to estimate the resulting methane lifetime modification by applying the approach described
by Gottschaldt et al. (2013). The lifetime change is then considered by the climate response model described in Section 2.2.3
to estimate transport-induced methane-related climate effects. Note that also the quantification of the methane lifetime
modification may suffer from uncertainties, for similar reasons as for the uncertainty of the ozone effect. However, an uncer-
tainty range of the methane effect has not yet been quantified.

In order to estimate potential future transport effects in the demonstration application, the QCTM simulations were per-
formed with emission data for the year 2030 (Sections 2.3.2 and 3.1). Other years were not considered due to the huge com-
putational expenses of the QCTM configuration stemming from its detailed representation of atmospheric chemistry. Even
though future emissions were considered, the simulations were carried out for the climate around the year 2000. This had
the advantage that the model could be driven by meteorological analysis data (Gottschaldt et al., 2013) implying that uncer-
tainties due to imperfect simulations of future climate were avoided. The consideration of the time around 2000 had the
additional advantage that the simulations were fully comparable with the results of Gottschaldt et al. (2013), which enabled
us to prove the reliability of the new calculations. The errors in the modeled transport effects on ozone and the methane
lifetime resulting from the temporal inconsistency of climate and emissions are probably small (Koffi et al., 2010). Choosing
the 2000 time slice, instead of more recent years (e.g., around 2010), can be regarded as uncritical for assessing future trans-
port effects since only moderate climate change occurs on the timescale of a decade. To evaluate the robustness of the trans-
port effects quantified with this model setup, we performed simulations assuming the meteorology of a period of three
different years (2001, 2002, 2003) after a model spin-up performed for year 2000. The results are discussed in Section 3.2.

2.2.2. Transport-induced aerosol and cloud effects
For quantifying the effects of transport emissions on atmospheric aerosol, we apply the EMACmodel including the aerosol

submodel MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications). This model configuration
enables simulations of the number, the size distribution, the mass, and the chemical composition of atmospheric aerosols
as well as their effects on clouds and radiation. EMAC in combination with MADE has been successfully applied in previous
studies of the impact of aerosols from global transport emissions (e.g., Lauer et al., 2007, 2010; Righi et al., 2011, 2013, 2015,
2016). For assessing aerosol effects of regional emission sources, the QCTM approach discussed above is not viable because
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the feedback of the perturbed aerosol distribution to the background atmosphere cannot be suppressed, in particular
because the indirect aerosol effects on clouds (Section 1) would otherwise be omitted. Hence, an alternative method had
to be developed for the quantification of aerosol-induced climate forcings of regional transport emissions.

To achieve this, we analyzed how the aerosol-induced global mean radiative forcing depends on the emission strength of
aerosols and aerosol precursor gases, with the aim to derive response functions for calculation of the radiative forcing
directly from the emissions. Therefore we performed a set of simulations varying the emission totals of the different
aerosol-related species. Varying all species simultaneously in equal proportions is not constructive since their individual rel-
ative emission contributions can strongly depend on the transport scenario considered. Hence, we individually varied the
emissions of the different aerosol constituents and aerosol precursor gases. With regard to our demonstration application,
we focused on emissions within Europe, as a first step. Varying only transport-induced emissions has a too small effect to
allow a statistically robust quantification, especially when low emission amounts are assumed. To enhance the signal, we
varied the total European anthropogenic emissions of the individual species. This is justified since the emissions from trans-
port and all other sectors mostly show very similar source regions and consequently have similar radiative effects per emit-
ted mass of an individual species.

Since the effects of small emission perturbations cannot be quantified with the perturbation method, we considered rel-
atively large changes. For the different simulations we assumed 25%, 50%, 150%, and 200% of the emission amount consid-
ered in a corresponding reference simulation (100%) and quantified the respective aerosol radiative forcing by comparing
with model runs where the anthropogenic emissions of the respective constituent are fully neglected (i.e., 0%). We per-
formed such perturbation studies for the aerosol constituents black carbon (BC) and particulate organic matter (POM) as well
as the aerosol precursor gases SO2 and NOx.

For consistency reasons, the model calculations were driven by the same meteorological data as the QCTM model runs.
Simulations over 17 years (1996–2012) were necessary to generate statistically significant signals for all species. Since we
are interested in the radiative forcing resulting from specific (fixed) emission amounts, the temporal change of emissions
during the 17-year period was neglected and all years were simulated on the basis of year 2000 emission data. The purpose
of considering many years instead of 2000 only is to study the effects of the specific emissions under varying meteorological
conditions, in order to derive representative response functions via temporal averaging. For more details of the chosen model
setup and the quantification of aerosol radiative forcing, we refer to Righi et al. (2013).

The results of these simulations, shown in Fig. 3, indicate that perturbations of the emissions of the different species
around the reference point (100% emission) result in nearly linear changes of the globally averaged long-term mean
(1996–2012) radiative forcing. The linear regression lines shown in the individual plots approximate the shape of the rela-
tionship around the reference state considerably well. Hence, the change of the radiative forcing RFi from species i caused by
a perturbation of the emitted amount Ei of the species can be approximately described as:
Please
Transp
RFi � RF0
i ¼ ai � ðEi � E0

i Þ; jEi � E0
i j � E0

i ð1Þ

or
DRFi ¼ ai � DEi; jDEij � E0
i ð2Þ
where E0
i and RF0

i stand for the emitted amount and corresponding radiative forcing in the reference state (100% emission) and
the constantai represents the slopeof the respective linearfit (Table1). Errorsdue to the linear approximation increasewith the
size of the perturbation. For instance, the linear functions shownoticeable radiative forcings in case of zero emissions, which is
not reasonable. Hence, it is obvious that the functions should be applied only for small perturbations of E0

i (jDEij � E0
i ).

Assuming that the radiative impact per emitted mass of the respective species is similar for German and European-wide
emissions (Section 2.2.1), the aerosol radiative forcing RFðEGT

i Þ stemming from German transport emissions EGT
i of species i

can be derived as:
RFðEGT
i Þ ¼ ai � EGT

i ð3Þ

Based on the radiative forcings from the individual species the total radiative forcing of aerosol particles from German

transport emissions has to be determined. To test whether the individual radiative forcings are linearly combinable we also
performed simulations varying all species simultaneously. The radiative forcing of the total anthropogenic aerosol derived
from these simulations (not displayed) is very similar to the sum of the individual forcings. This indicates that linear com-
binations of the individual effects are good approximations. Hence, the total radiative forcing of the aerosol perturbation
induced by German transport emissions RFðEGTÞ can be derived as:
RFðEGTÞ ¼
X
i

RFðEGT
i Þ; ð4Þ
2.2.3. Transport-induced changes in long-lived greenhouse gases
To derive transport-induced changes in the global mean CO2 and methane concentrations as well as the resulting radia-

tive forcings, we apply the climate response model AirClim (Grewe and Stenke, 2008; Grewe and Dahlmann, 2012;
Dahlmann et al., 2016). The model calculates the temporal development of the global mean CO2 concentration change
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Fig. 3. Globally averaged long-term mean aerosol radiative forcing (RF) resulting from European anthropogenic emissions of the individual aerosol species
black carbon (BC, top left) and particulate organic matter (POM, top right) as well as the aerosol precursor gases NOx (bottom left) and SO2 (bottom right).
The individual plots show the dependence of the radiative forcing on the emission amount (25, 50, 100, 150, and 200% of the reference emission amount of
100%). The linear functions were fitted to the individual simulation results (dots). The corresponding linear regression parameters as well as correlation
coefficients (R2) are shown in Table 1. The error bars represent the uncertainty of the results (95% confidence level) derived from the interannual variation of
the radiative forcing during the simulated 17-year period. Values that are statistically not significant according to a univariate t-test (5% error probability)
are shown as open circles. See Section 2.2.2 for details.

Table 1
Parameters of the linear regression lines (Fig. 3, Eq. (1)) which approximate the dependence of the global radiative forcing from aerosol-related species on their
emitted amount. In case of gaseous aerosol precursors (NOx and SO2), RF includes aerosol effects only. R2

i denotes the Pearson correlation coefficient. Emissions
are expressed as European total annual anthropogenic mass emissions. The emitted mass of NOx is expressed as NO equivalent. The emission of POM is
calculated from that of particulate organic carbon (OC) via multiplication by 1.4.

Species ai
mW=m2

Tg=a

� �
ai

mW=m2

% of E0i

� �
RF0i mW=m2

� �
E0i Tg=að Þ R2

i

BC 16.37 0.10 13.81 0.613 0.955
POM �12.87 �0.20 �28.41 1.582 0.984
NOx �1.40 �0.14 �31.30 10.01 0.931
SO2 �3.55 �0.56 �58.20 15.72 0.999
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DCCO2 ðtÞ resulting from a specific emission source. This is achieved via a response function considering five different pre-
scribed response times that characterize different loss processes in the CO2 life cycle (Sausen and Schumann, 2000). This
approach is capable of describing the effects of small regional emission perturbations. The radiative forcing of the concen-
tration change is calculated according to Ramaswamy et al. (2001):
Please
Transp
RFCO2 ðtÞ ¼ aCO2 ln
CCO2 ðtÞ
C0
CO2

ðtÞ ; ð5Þ
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where C0
CO2

ðtÞ is the background concentration as a function of time, CCO2 ðtÞ ¼ C0
CO2

ðtÞ þ DCCO2 ðtÞ is the concentration per-
turbed by the additional emissions considered, and aCO2 is a constant factor of 5.35 W/m2. In the present study, the back-

ground concentrations C0
CO2

ðtÞ of the past were chosen according to measurements, whereas future projections were
taken from the RCP scenarios. We refer to Meinshausen et al. (2011) for a detailed description of these concentration profiles.

AirClim also derives changes in the mean concentration of methane from transport-induced modifications of the methane
lifetime. To enable a consistent quantification of transport effects on ozone and methane, we take into account the methane
lifetime change derived from the QCTM simulations as described in Section 2.2.1. The radiative forcing of the methane per-
turbation is then calculated according to Ramaswamy et al. (2001) as a function of the concentration change and the back-
ground concentration. As in the case of CO2, past and future background concentrations were chosen according to
Meinshausen et al. (2011). Since the oxidation cycle of methane influences the ozone production, changes in the methane
concentration lead to a further modification of the ozone concentration and a corresponding radiative forcing. This effect
is considered according to Dahlmann et al. (2016). In the discussion of the AirClim results in Section 3.2 we have included
this additional effect into the radiative forcing of methane since it is closely coupled to the direct methane effect and shows
the same timescales of the induced climate modifications.

2.2.4. Synthesis of atmospheric model results
The approaches described above enable the calculation of the radiative forcings resulting from changes in CO2, methane,

aerosol particles (direct and indirect effects), and ozone caused by regional transport emission sources. Beyond radiative forc-
ing, the change in global mean surface temperature DT is a common metric for assessing global climate change. As already
indicated in Fig. 1, the responsemodel AirClim allows to deriveDT from the radiative forcings. Depending on the specific ques-
tion addressed, alternative metrics can be derived from radiative forcing or DT. For a discussion of the most commonmetrics,
their respective merits, and their applications, we refer to Fuglestvedt et al. (2010) and Grewe and Dahlmann (2015).

The temperature change resulting from RFCO2 ðtÞ is calculated with AirClim following the approach of Sausen and
Schumann (2000), which applies a temperature response function based on simulations with a detailed global
atmosphere-ocean climate model (Cubasch et al., 1992). This function can also be applied to the radiative forcing of other
species. However, this requires that the resulting temperature responses are multiplied by the so-called efficacy parameter
(Hansen et al., 2005), which accounts for the different sensitivities of temperature change to the radiative forcings induced
by perturbations of different atmospheric species. We assume efficacy parameters of 1.37 and 1.18 for ozone and methane,
respectively (Ponater et al., 2006). For aerosol-induced climate effects we use an efficacy parameter of 1. This is a conserva-
tive choice reflecting that existing estimates of the parameter for aerosols depend strongly on the applied model and on the
type of the emissions as well as their spatial distribution (Hansen et al., 2005; Shine et al., 2012). Aerosol efficacy is one of the
largest unknowns in this research area.

For assessing the climate effects of the different species, their atmospheric residence times need to be considered in order
to account for the long-term accumulation of long-lived species in the atmosphere and the resulting increased climatic
impact of these compounds. Simulations of time periods of the order of centuries are necessary to achieve this for CO2.
To evaluate the effects of transport-induced emissions in our application example, we considered the time period from
1850 to 2100. Hence, the AirClim simulations range from the time when the growth of land-based transport volumes began,
to future years which are described by widely-used scenarios of future emissions (i.e., the RCPs).

As explained in Section 2.2.1, the transport-induced ozone radiative forcing as well as the change in methane lifetime
were calculated with the detailed chemistry model EMAC for a selected time slice (2030) only. To simulate the effects in
other years, we assume that the ozone radiative forcing and the methane lifetime modification change proportionally to
the NOx emissions (Section 3.1) since NOx is the major driver of these effects. As outlined above, the radiative forcing of aero-
sol perturbations can be calculated as the sum of the contributions of different aerosol constituents. If the emissions of the
individual aerosol species and aerosol precursors are known as a function of time, the linear relations described above can be
applied to the respective time period. Particularly for the past, such emission data is lacking. However, information about
past emissions of total particulate matter is available (Section 3.1). Hence, we assume that the past aerosol-induced climate
effects are proportional to the total particulate matter emissions.

The radiative forcings of the transport-induced CO2 and methane perturbations depend on the background concentra-
tions of these species. To account for the uncertainty of the respective future background concentrations in our demonstra-
tion application, we performed AirClim simulations considering three different future scenarios: RCP2.6, RCP4.5, and RCP8.5,
which cover a wide range of possible background conditions, from comparatively low (RCP2.6) over medium (RCP4.5) to very
high (RCP8.5) concentrations (Meinshausen et al., 2011). The results of these simulations are time series of radiative forcing
and changes in global mean surface temperature obtained individually for each of the different radiatively active species
(CO2, aerosol, ozone, methane).

2.3. Transport and emission modeling

2.3.1. Transport modeling
As a basis for the calculation of emissions from land-based transport within Germany for present-day conditions and dif-

ferent future scenarios, a transport modeling approach was developed within the VEU project to assess transport demand
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and the resulting transport activity (Fig. 2). The aim of these transport modeling efforts was to provide all relevant informa-
tion for emission modeling on an aggregated German level, that is, for calculating German total emissions from ground-
based transport. In view of these goals, the modeling approach was derived to meet the following requirements:

1. All relevant land-based transport activities have to be covered. This includes both passenger and freight transport by
all land-based transport modes (road, rail, and inland navigation).

2. Structural changes, like demographic trends, with relevance for transport demand and consequently transport emis-
sions have to be represented. Furthermore, the applied models have to be sensitive to other demand influencing fac-
tors, such as costs, varying between the scenarios considered.

3. Despite the aggregation of the German emissions, the approach should be capable of considering also measures
applied on smaller scales, for instance, local measures implemented only in specific cities. This implies that the spa-
tial resolution of the applied models should be high enough to represent such measures.

4. For flexibility reasons, the chosen approach should be generic enough to be applicable to areas different from the cur-
rent analysis area (Germany).

In the modeling methodology followed here, transport demand is modeled on macroscopic level, which means that indi-
viduals eliciting similar travel behavior are aggregated to groups. The calculations are based on socio-economic data (for
instance, information about economic development, population, households, workforce, income levels) and provide
origin-destination-matrices for several thousand traffic analysis zones (TAZs). The surrounding countries are aggregated
to additional traffic zones. The description of demand distinguishes between vehicle, train, and vessel types on road, rail,
and inland waterways, respectively, in case of freight transport and between the modes motorized private transport, public
transport, bicycles, and pedestrians for passenger transport (Table 2). To generate all information required for emission mod-
eling, the modes of motorized transport are further split into different vehicle technology categories, according to powertrain
and fuel type (such as diesel, gasoline, or electrified) and emission classes (Euro standards). For passenger cars, the shares of
the different vehicle technologies are explicitly modeled to reflect changes in the energy mix as well as the penetration of
new technologies like electrified vehicles and vehicles complying with more stringent emission standards. Based on the
origin-destination-matrices, demand is assigned to the traffic network by quantifying link flows (number of vehicle move-
ments per time period between network nodes) to describe the transport activity.

The combination of models for passenger transport, freight transport, and vehicle technologies makes the approach ver-
satile and compliant with the requirements described above. Interdependencies between demand and traffic, between vehi-
cle technologies and demand, and between freight and passenger traffic can be taken into account. The individual modeling
approaches, as applied for the assessment of the baseline scenario considered here, are described in the following.

In order to model passenger travel demand, the EVA model (Vrtic et al., 2007) is adopted. EVA is a disaggregated macro-
scopic model of personal travel behavior and traffic flow. As a first step, EVA defines the number of produced and attracted
trips for each travel zone, based on spatially disaggregated empirical data, like population and workforce information. The
number of trips is calculated for different trip purposes like work or education. Subsequently, destination and mode choice
are calculated simultaneously. The final result are the all-traffic flows for any combination of origin, destination, and mode.

To describe travel demand for Germany appropriately, the country is divided into 6561 traffic analysis zones, which rep-
resent origins and destinations of the trips. The purpose-specific traffic volume is calculated for each zone. For this reason,
many different input data sets are required. In particular, detailed information about population (e.g., age, sex, income, car
ownership) and its temporal development is of high relevance. This information is taken from different external data sources
(e.g., BBSR, 2009). As mentioned above, not only motorized private transport and public transport but also cycling and walk-
ing are considered. Taking into account non-motorized modes for a nationwide model is due to the requirement to represent
all relevant mode shifts on land, as shifts to and from these modes result in emission changes.

The macroscopic freight transport model (Müller et al., 2012) is based on information about the German economy (for
instance, gross-value added of distinct economic activities or number of employees in these sectors), which is taken from
Table 2
Means of transport considered in the applied transport models. The abbreviation ‘gw’ stands for the
vehicles’ gross weight.

Transport type Transport means

Passenger transport Motorized private transport, public transport, cycling, walking

Freight transport
Inland waterways: Small barges, large barges, tankers
Railway: Trainload, wagonload, combined transport
Road: Light duty vehicles (gw 6 3.5 t),

Heavy duty vehicles 1 (3.5 t < gw 6 7.5 t),
Heavy duty vehicles 2 (7.5 t < gw 6 12 t),
Heavy duty vehicles 3 (gw > 12 t, without tractor-trailer combinations)
Heavy duty vehicles 4 (gw > 12 t, tractor-trailer combinations)
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an external forecast (IWH, 2006). The correlation of economic indicators with the amount of goods transported is used to
derive the freight generation (attraction and production of freight transport). Thus changes in the economic structure lead
to changes in the modeled freight transport demand. The spatial distribution of freight flows is described by a gravity model
approach which takes the freight generated in the traffic zones as attraction/production and derives the deterrence measure
from transport cost and travel times between these zones. The assignment to one of three ground-based transport modes
(road, rail, ship) follows random utility-based discrete choice theory. The conversion of freight flows to vehicle trips uses
transport statistics in order to determine vehicle class-dependent gross weight, load factors, and empty trip rates.

After calculating the origin-destination-matrices for all modes, these trips need to be assigned to the traffic network
(roads, railways, waterways) in order to derive level-of-service data for destination and mode choice as well as to calculate
the route choice. The relevant network of all land-based modes is represented by over one million links and 470.000 nodes.
As a result, the trip assignment generates detailed information about the traffic volume of the assigned modes on each link.
An exception is public transport which is described in terms of aggregated traffic volumes, as we do not have all data nec-
essary to assign trips to the network (e.g., lines, line routes, time profiles).

In addition to modeling the traffic volumes, knowledge on vehicle technologies and their evolution over time is essential
to calculate emissions. For the VEU application, we used the agent-based vehicle technology scenario model VECTOR21
(Mock, 2010) for simulating the competition between conventional and alternative powertrains for the new passenger car
market in Germany. In the applied version, 900 types of customers are modeled using costs of ownership as a basis for their
purchase decision, taking into account the political framework for CO2 emission targets. In addition, the passenger car fleet is
modeled including energy consumption and CO2 emissions. The fleet composition is assessed by applying a stock modeling
approach. Starting from the initial year, fleet turnover is modeled taking into account the vehicle age distribution and sur-
vival rates to describe the diffusion of innovative technologies into the stock. The results were used, together with the trans-
port volumes on the road network, as a basis for describing the emissions.

2.3.2. Emission modeling
To calculate transport emissions, transport activities (in terms of mileages) are multiplied by corresponding emission fac-

tors, which describe the amount of specific pollutants released by specific vehicles per distance travelled. To calculate Ger-
man transport emissions for 2008, 2020, and 2030, we applied the activity data for motorized private transport, busses, light
and heavy duty vehicles, passenger and freight rail transport, and inland navigation (Section 2.3.1). Due to differences in the
vehicle-specific emission factors, we used the road transport activity data divided into the different categories according to
engine capacity, European emission standard (EURO 0–6), and fuel type (gasoline, diesel, liquefied petroleum gas (LPG), com-
pressed natural gas (CNG), and electricity). For rail transport we applied activity data divided into electric and diesel traction.
To complement the activity data, activities for off-road transport (e.g., in construction or agriculture) were taken from the
results of TIMES PanEU energy system model runs (Blesl et al., 2008). The emission factors for road transport including cold
starts and gasoline evaporation were chosen according to HBEFA (2010). An exception were black and organic carbon (BC,
OC) particulate matter emissions which were calculated with emission factors described by Samaras (2013). For rail trans-
port we applied emission factors reported by EMEP/EEA (2012).

The quantification of transport-induced ozone changes (Section 2.2.1) requires short-lived species emission data also for
German non-transport sectors and for all sectors in other European countries. For 2008 these data were chosen according to
CLRTAP (2011). Emission data for 2020 and 2030 were also calculated on the basis of activity data and corresponding emis-
sion factors. Future activity data for the different sectors were estimated by means of energy demand modeling with the
TIMES PanEU model mentioned above. For the transport sector, the final energy consumptions (i.e., energy used by the final
consumer) for road transport, rail transport, and navigation were modeled separately. For each of the transport modes, the
model considers a variety of conventional and alternative fuels (e.g., biofuels, methanol, natural gas, LPG, dimethyl ether
(DME), hydrogen, electricity). In order to complement the baseline scenario of German transport emissions by a baseline
estimate of the European emissions up to 2030, our assumptions for the future energy consumption in the EU27 were based
on current European legislation and targets, with 2010 as reference year. The following key assumptions were made:

1. Reduction of the greenhouse gas emissions in the EU and Germany by 20% and 30%, respectively, until 2020, and 30%
and 40%, respectively, until 2030 compared to 1990.

2. Reduction of EU-wide greenhouse gas emissions from the sectors included in the ETS (Emission Trading System) by
21% until 2020 compared to 2005.

3. Increasing minimum production of electricity from renewables: 30% in the EU by 2030 and 30% in Germany by 2020.
4. Market shares for hybrid electric, battery electric, and plug-in hybrid electric vehicles of less than 10% each.
5. Implementation of EU directive 2009/28/EC requesting a minimum quota of 10% renewable fuels in transport final

energy consumption by 2020.
6. Share of biofuels in Germany: 7% in all years.

We refer to Blesl et al. (2010) and Bruchof and Voß (2010) for further energy modeling details. The emission factors to
calculate the emissions for 2020 and 2030 for all source categories except for the transport sector were chosen in analogy
to the GAINS model approach (Amann et al., 2008). For the transport sector in Europe (except Germany), emission factors
were adopted from the transport emission database of the TREMOVE 3.5 model (TML, 2011). Corresponding emissions of
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the aerosol components OC and BC were calculated from the total amount of suspended particles according to Kupiainen and
Klimont (2004).
3. Results and discussion

3.1. Transport and emissions

As an exemplary result of the transport models described in Section 2.3.1, Fig. 4 shows the aggregated German annual
mileage of different road vehicle types in 2008, 2020 and 2030. The mileage of passenger cars is by far the highest of all
means of transport and is projected to increase by 8%, from 600 to 649 billion kilometers, between 2008 and 2030. Although
we assume that the population in Germany declines in the future, an expected increase in average distance travelled causes
this considerable increase of driven mileage. The mileages of freight transport by the different road-based means of transport
increase as well and show larger growth rates than the passenger car segment. For instance, the mileage of heavy duty vehi-
cles increases by over 60% between 2008 and 2030. It is important to note that the resulting emission shares of the different
vehicle types (see below) may deviate strongly from corresponding mileage shares due to large differences in fuel consump-
tion and emission factors. It should also be noted that the results are based on data from before the economic crisis starting
in 2007. Thus they do not exactly reflect recent developments, which could lead to different growth rates. The data, however,
are sufficient to demonstrate the applicability of our methods.

The corresponding transport-induced emissions calculated with the methods described in Section 2.3.2 are shown in
Fig. 5, in terms of total annual emissions of the different species. We show both German and corresponding European trans-
port emissions as total amount and relative contributions to the total anthropogenic emissions in the respective area, again
for the years 2008, 2020, and 2030. In the following we refer to these emission data as the ‘VEU emissions’. An additional
analysis of the various emission contributions (not shown) reveals that the calculated transport emissions are dominated
by road transportation. Contributions of railways and inland navigation are relevant only for a few species considered,
but even in these cases they only contribute a few percent to the respective total transport emissions. The results shown
in Fig. 5 reveal that transport is a major source of NOx and CO in Germany. The contributions to total German anthropogenic
emissions of these two species amount to 31% and 34% in 2008, respectively. The emission calculations also provide infor-
mation about the contributions of specific vehicle types to the respective emissions (not shown). In 2008, the transport-
induced NOx emissions in Germany are mainly caused by heavy duty vehicles (55% of total transport NOx emissions, dom-
inated by emissions of tractor-trailer combinations) and passenger cars (34%). Transport-induced CO emissions stem from a
larger variety of sources (55% from passenger cars, 20% frommopeds and motorcycles, 12% from light duty vehicles, and 11%
from heavy duty vehicles). Transport also makes a large contribution to the anthropogenic emissions of CO2 in Germany (22%
in 2008). This is mainly due to emissions from passenger cars (75% of total transport CO2 emissions) and heavy duty vehicles
(18%). Transport emissions also significantly contribute to the German total anthropogenic emissions of black carbon (16% in
2008), non-methane VOC (14%), and particulate organic carbon (12%). Note, that for application in the atmospheric aerosol
simulations, the emitted amount of particulate organic carbon (OC) is transformed to emissions of particulate organic matter
(POM) via multiplication by a factor of 1.4 (Righi et al., 2013).

The results obtained for German transport further suggest that a strong decrease in the emissions of short-lived species
will occur in the near future, owing to advances in vehicle technology. For instance, electrified vehicles reach a share of 40%
of the passenger car fleet in the VECTOR21 simulations for 2030, with 13% of the fleet being pure battery (non-hybrid) elec-
tric vehicles. This results from assuming stringent CO2 emission targets for new passenger cars in combination with an
expansion of charging infrastructure, moderate electricity prices, and targeted tax reductions, in order to reach the national
goal of one million electrified vehicles until 2020. The emission reduction until 2030 is smaller but still significant in case of
CO2 since the effects of reductions in the vehicle specific emissions are partly offset by increasing transport volumes. As a
Fig. 4. Transport activity in Germany as calculated with the applied transport models. The figure shows annual mileages for passenger cars (blue), light
duty vehicles (red), and heavy duty vehicles (dark grey) in the years 2008, 2020, and 2030.
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Fig. 5. Annual emissions of land-based transport in Germany (red bars) and Europe (blue bars) calculated within the VEU project (see text for more details).
The figure shows emissions of nitrogen oxides (NOx, expressed as NO equivalent), carbon monoxide (CO), non-methane volatile organic compounds
(NMVOC, labelled as VOC in the plots), ammonia (NH3), particulate black and organic carbon (BC, OC), sulfur dioxide (SO2) and carbon dioxide (CO2).
Absolute emission amounts (left) as well as the relative contribution to total anthropogenic emissions (right) in the years 2008 (top), 2020 (middle), and
2030 (bottom) are presented. The total amounts of the respective emissions are given at the bottom of each bar. Absolute emissions are given in Tg for CO2

and Gg for all other species. Note the logarithmic scaling of the absolute emissions.
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consequence, the relative contributions of transport emissions decrease in the case of short-lived species but stay nearly on
the same level as in 2008 in case of CO2. The emissions calculated for Europe-wide transport show similar characteristics as
those of the German transport system. However, the emissions of most short-lived species show larger relative contributions
to total emissions than in Germany, especially in 2008. This can be explained by the higher average age of the vehicle fleet of
many European countries. Another important difference is that the calculated European transport CO2 emissions increase in
the future, which can be attributed to a slower efficiency improvement of conventional vehicles as well as a less stringent
implementation of alternative fuels and powertrains. For instance, according to our assumptions (Section 2.3.2), the pene-
tration of electric vehicles into the market occurs more slowly on the European level than in Germany. The calculated emis-
sions generally show large differences in the individual amounts of the different species released. However, it should be
noted that the mere amount cannot be taken as proxy for the climate impact when comparing the effects of the individual
species since they show very different efficiencies for inducing climate change (e.g., Myhre et al., 2013). Hence, a detailed
quantification of the individual climatic impacts, as carried out in the present study, is inevitable.

For some species, the transport-induced emissions calculated here are larger than the corresponding values reported by
the German federal environment agency (UBA) which are part of the emission inventories published by the UNFCCC (United
Nations Framework Convention on Climate Change). For instance, the CO2 emissions of German transport in 2008 amount to
218 Tg according to our calculations while UBA reports a value of 153 Tg only. These discrepancies result from conceptual
differences in the methodical approaches. For instance, according to the Kyoto protocol, national emissions reported in the
UNFCCC data base have to be calculated on the basis of the amount of fuel sold in the respective country. In contrast, the
values obtained here result from bottom-up calculations including also movements of vehicles fueled in neighboring coun-
tries, for instance, as a reaction to higher German fuel prices. This includes transit freight transport as well as passenger
transport and explains an important fraction of the additional transport emissions derived in the present study.

Since the VEU emission data are confined to the time period between 2008 and 2030, additional data sets had to be con-
sidered and assumptions had to be made in order to yield German transport emissions for the whole time period from 1850
to 2100 (Section 2.2.4). For the years 1990–2008, we used the emission inventories of transport-induced CO2, NOx, and total
particulate matter reported annually by UBA. We scaled these data to match the corresponding VEU emissions in 2008 in
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order to compensate for discrepancies due to methodological differences. For 1970–1990, we used data on CO2 emissions
from European transport which were generated within the EU project QUANTIFY (Borken-Kleefeld et al., 2010; Uherek
et al., 2010). Since spatially resolved emission data from that project are only available for 2000, we used the 1970–1990
EU15 total transport emissions. To estimate the German contribution, we rescaled the EU15 totals according to the relative
contribution of Germany to the EU15 emissions in 2000. The obtained data were scaled to match the 1990 values of the
1990–2008 data generated as described above, to compensate for methodological differences in emission assessment. The
resulting values were then linearly extrapolated back to 1950. To estimate emissions for earlier years, we assumed a linear
increase of the German transport-induced CO2 emissions from zero in 1850 to the 1950 value calculated as described above.
Since land-based transport emissions were negligibly small in the first half of the 19th century, the choice of 1850 as starting
point as well as the assumption of zero emissions in this year are both justified.

The resulting time series of CO2 emissions is presented in Fig. 7a. The major features of these past emissions are a com-
paratively small increase until about 1950 followed by a rapid growth until the last decade of the 20th century. This behavior
is very similar to that of the global anthropogenic CO2 emissions reported, for instance, by Meinshausen et al. (2011). For the
future years 2030–2100 we conservatively assumed that transport-induced CO2 emissions remain constant at the 2030 level,
since we refrain from projections without robust model-based calculations.

For specifying transport-induced NOx emissions throughout the period 1850–2100, we followed a similar strategy as for
CO2. VEU data were used for 2008–2030 and constant values at the 2030 level are assumed until 2100. As mentioned above,
values for the past were taken from the UBA database back to 1990, and scaled to match the VEU data in 2008. Emissions
prior to 1990 were assumed to change in proportion to CO2 emissions. This approach was also chosen to calculate particle
emissions. Since consistent information about past emissions of the individual aerosol species black and organic carbon is
not available, we considered total particulate matter emissions and derived the past values of the total aerosol-induced
RF from the value calculated for 2008 by assuming that the aerosol RF changes in proportion to the total particulate matter
emission. Transport emissions of SO2, an important precursor of sulfate aerosol, were not taken into account since they are
negligible for the VEU years, due to the very low sulfur content of present-day fuels. Also ammonia (NH3) from transport is
neglected because of the very small amount emitted. It should be noted that rough assumptions on past emissions of short-
lived species can be regarded as less critical since long-term accumulation effects are negligible.

3.2. Climate effects

As a first step to quantify the atmospheric impact of the transport emissions, the EMAC model in the QCTM configuration
was applied as described in Section 2.2.1. For these simulations, we employed the European emission inventory for the year
2030 (Sections 2.3.2) generated in the VEU project and embedded in the RCP8.5 global emission data set for the same year.
To quantify the transport-induced effects, we compared a simulation, in which European transport emissions are neglected,
to a reference simulation including the full set of emissions. The differences of these two model runs (‘reference run’ minus
‘simulation with reduced emissions’) can be interpreted as the transport-induced signal. Recall that, in the QCTM application,
we quantified the effects of the European transport emissions to enhance the signal-to-noise ratio. The results were then
scaled down to the effects of the German transport system.

Fig. 6 shows concentrations of NOx, ozone (O3), and the hydroxyl radical (OH) as a function of altitude (and equivalent air
pressure) and latitude. The concentrations were averaged over the three simulated years and the respective circle of latitude.
The figure presents background concentrations not including contributions from European transport (left column) as well as
the corresponding absolute (middle column) and relative (right column) transport-induced changes. Note that the effects of
the transport emissions show pronounced longitudinal variations (not displayed), especially at lower altitudes where par-
ticularly large perturbations occur over Europe and its surroundings.

The results clearly indicate that in areas with increased transport-induced NOx also the ozone and OH concentrations
increase. The changes mainly occur in the northern hemisphere, with largest effects at those latitudes where the emissions
are released. Compared to the respective background concentrations in these areas, the concentrations of NOx, ozone, and OH
increase by up to 4%, 0.5%, and 1%, respectively. Such small perturbations were to be expected since European transport con-
tributes only a few percent to the global anthropogenic NOx emissions. In addition, large fractions of the background con-
centrations result from natural sources, such as NOx emissions from lightning or ozone intrusions from the stratosphere.
The magnitude of the transport-induced effects demonstrates that we have to deal with comparably small perturbations that
would be hard to detect within a fully-coupled chemistry-climate model simulation, particularly in the case of O3 and OH. In
the QCTM simulation, the perturbations show only very small interannual variations, which implies that the dependence of
the chemical effects on the specific meteorological characteristics of the different years is small and, consequently, the quan-
tified signals can be regarded as highly significant.

Since ozone is a greenhouse gas, an increase in its concentration results in a positive radiative forcing, which corresponds
to a warming of the atmosphere. The global radiative forcing due to the ozone perturbation induced by European transport
emissions in 2030 as derived from the QCTM simulations amounts to 1.29 mW/m2. According to Section 2.2.1, this value was
scaled down to obtain a forcing of the German transport emissions of 0.072 mW/m2 in 2030. The corresponding relative
changes of the methane lifetime, induced by the increase in OH, amount to�8.38% and, if downscaled,�0.47%. The reduction
in methane lifetime implies a decrease in the methane concentration and a resulting cooling effect, which partly offsets the
ozone-induced warming (see below). As mentioned in Section 2.2.1, the contribution of transport emissions to atmospheric
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Fig. 6. Global simulation of trace gas concentrations and their transport-induced changes. Shown are annual mean zonal average concentrations of NOx (top
row), ozone (O3) (middle row), and OH (bottom row) simulated considering emissions of the year 2030. The results are plotted as a function of geographical
latitude and altitude (or equivalent air pressure). The figure presents background concentrations obtained by neglecting European transport emissions (left
column), their absolute change due to European transport emissions (middle column), and corresponding relative changes (right column). Note the
different units used for background concentrations and transport-induced changes. 1E-n stands for 10�n . The largest changes occur in the troposphere
(lowest part of the atmosphere; the white line indicates the tropopause, which marks the boundary between the troposphere and the stratosphere above).
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ozone can be underestimated by the perturbation method by factors of up to 5. We will consider this uncertainty in the dis-
cussion of the role of ozone-related climate impacts below.

The aerosol radiative forcing resulting from the German transport emissions of particles (BC and OC) and particle precur-
sors (mainly NOx) described in Section 3.1 was calculated according to Eq. (4). These calculations result in transport-induced
aerosol radiative forcings of �0.62, �0.27, and �0.18 mW/m2 in 2008, 2020, and 2030, respectively. Hence, the aerosol effect
calculated for 2030 is of similar magnitude as the corresponding ozone effect, but of opposite sign. The transport-induced
aerosol has a cooling effect, which counteracts the ozone-induced warming. According to Section 2.2.4, the aerosol and ozone
radiative forcing values in combination with the methane lifetime change due to German transport emissions were used as
input for the AirClim simulations, which were performed as the last step to obtain an overall assessment of the climate
impact. In addition, the information about the emissions of CO2, NOx, and total aerosol during the whole analyzed period
from 1850 to 2100 (Section 3.1) was used to calculate the CO2 effect and to describe the temporal developments.
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The assumed long-term development of the German transport emissions as well as the resulting radiative forcing of the
different species and corresponding change of the global mean surface temperature simulated with AirClim are displayed in
Fig. 7. Results for selected years are also presented in Table 3. Due to its very long residence time and the resulting accumu-
lation in the atmosphere over time, CO2 causes the largest radiative forcing among the considered species. The forcing exhi-
bits a strong increase, particularly between 1950 and 2000. Under assumption of background concentrations according to
the RCP8.5 scenario, the maximum forcing of 14.4 mW/m2 is reached around 2025. Due to the long-term accumulation, a
time shift of about 25 years occurs between the maximum emissions around the year 2000 and this maximum radiative forc-
ing. Values of around 14 mW/m2 are persistent during the first decades of the 21st century. These values are of the order of
1% of the total anthropogenic CO2 forcing, which amounted to about 1.7 W/m2 in 2011 (Myhre et al., 2013), for instance.

Unfortunately, an evaluation of this result by comparison with observational data is not possible, since global perturba-
tions of CO2 and the resulting changes of the Earth’s radiation budget cannot be simply attributed to very specific emission
sources, such as German road transport, through measurements. However, the plausibility of the results can be evaluated for
the year 2000 since climatic impacts of global transport emissions have been analyzed for this year in previous studies. The
AirClim simulations suggest that the radiative forcing induced by the CO2 emissions of the German transport system
amounts to about 12 mW/m2 in 2000. By simply scaling this number with the ratio of the global to the national number
Fig. 7. Temporal change of (a) the transport-induced emissions of CO2, NOx (expressed as NO equivalent, multiplied by 100), and particulate matter
(primary aerosol, i.e., BC and POM, multiplied by 1000) assumed for Germany between 1850 and 2100 as well as (b) the resulting radiative forcings (RF) and
(c) changes in global mean surface temperature (DT) simulated with AirClim. The vertical lines indicate the years covered by the VEU emission data set. The
different solutions for future radiative forcing and temperature change due to CO2 result from different assumptions on future CO2 background
concentrations according to different future scenarios (RCP2.6, RCP4.5, and RCP8.5). Effects of CH4 differ only slightly among the scenarios. Hence, O3 + CH4

values are shown for RCP8.5 only. The blue shaded area denotes the uncertainty ranging from O3 + CH4 to 5�O3 + CH4. For values obtained for selected years
in the different AirClim simulations, we refer to Table 3. Note that aerosol effects resulting from SO2 emissions are not considered. See text for more details
on this simplification.
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Table 3
Radiative forcing RF [mW/m2] and change of global mean surface temperature DT [mK] due to changes in CO2, ozone, methane, and aerosol induced by German
transport emissions. In addition the sum of ozone and methane effects (as highlighted in Fig. 7) is shown. The values are extracted from the AirClim simulations
for selected years. In case of the long-lived greenhouse gases CO2 and CH4, results of simulations for different scenarios (RCPs 2.6, 4.5, and 8.5) are presented.
The values given for CH4 include also the effects of long-term ozone modifications resulting from transport-induced methane changes. Values for the time
before 1950 are not shown since they are only small. Up to the year 2000 the simulations are identical since the future scenarios start in that year. Ozone and
aerosol effects do not vary among the scenarios (see text for more details on this assumption). The uncertainty range limit 5�O3 + CH4 is shown for RCP8.5 only,
due to the similarity of the scenarios.

Species Scenario 1950 1990 2000 2008 2020 2030 2100

Transport-induced RF [mW/m2]
CO2 RCP8.5 2.50 9.24 11.98 13.39 14.32 14.29 9.64

RCP4.5 2.50 9.24 11.98 13.39 14.48 14.74 16.75
RCP2.6 2.50 9.24 11.98 13.39 14.45 14.89 21.41

O3 All 0.09 0.63 0.49 0.28 0.13 0.07 0.07

CH4 RCP8.5 �0.05 �0.30 �0.33 �0.29 �0.19 �0.12 �0.07
RCP4.5 �0.05 �0.30 �0.33 �0.29 �0.19 �0.12 �0.05
RCP2.6 �0.05 �0.30 �0.33 �0.30 �0.20 �0.12 �0.05

O3+CH4 RCP8.5 0.04 0.33 0.16 �0.01 �0.06 �0.05 0.00
RCP4.5 0.04 0.33 0.16 �0.01 �0.06 �0.05 0.02
RCP2.6 0.04 0.33 0.16 �0.02 �0.07 �0.05 0.02

5�O3+CH4 RCP8.5 0.40 2.85 2.12 1.11 0.46 0.23 0.28

Aerosol All �0.23 �1.53 �1.15 �0.62 �0.27 �0.18 �0.18

Transport-induced DT [mK]
CO2 RCP8.5 1.00 3.13 4.24 5.22 6.58 7.47 8.05

RCP4.5 1.00 3.13 4.24 5.22 6.59 7.54 10.74
RCP2.6 1.00 3.13 4.24 5.22 6.59 7.55 12.72

O3 All 0.06 0.28 0.34 0.34 0.30 0.25 0.10

CH4 RCP8.5 �0.02 �0.11 �0.15 �0.18 �0.18 �0.17 �0.08
RCP4.5 �0.02 �0.11 �0.15 �0.18 �0.18 �0.17 �0.07
RCP2.6 �0.02 �0.11 �0.15 �0.18 �0.19 �0.17 �0.07

O3 + CH4 RCP8.5 0.04 0.17 0.19 0.16 0.12 0.08 0.02
RCP4.5 0.04 0.17 0.19 0.16 0.12 0.08 0.03
RCP2.6 0.04 0.17 0.19 0.16 0.11 0.08 0.03

5�O3 + CH4 RCP8.5 0.28 1.29 1.55 1.52 1.32 1.08 0.42

Aerosol All �0.11 �0.50 �0.61 �0.60 �0.52 �0.43 �0.18
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of road vehicles in 2000 (about 7:5 � 108 versus 4:5 � 107) a forcing of 200 mW/m2 is obtained which is in the order of the
forcing of global road and rail transport CO2 emissions of 175(±21) mW/m2 reported by Uherek et al. (2010) based on results
of Fuglestvedt et al. (2008). It should be noted that scaling the rail contribution with the number of road vehicles is probably
uncritical due to the small contribution of rail emissions. Scaling the 12 mW/m2 with land-based transport-induced CO2

emissions in 2000 results in a very similar global transport effect (assuming global emissions of 4400 Tg according to
Uherek et al. (2010) versus national emissions of 260 Tg according to Section 3.1). We would like to stress that these esti-
mates are just approximations since the CO2 effect depends also on the history of the transport activities, that is, the past
development of the global-versus-national-ratio of the numbers of vehicles or CO2 emissions, respectively. Nevertheless,
the estimates indicate that the obtained magnitude of the simulated forcing is plausible.

The AirClim results presented in Fig. 7 further reveal that the long-term future development of the CO2-related radiative
forcing of the German transport emissions strongly depends on the chosen background scenario (Section 2.2.4). Using dif-
ferent scenarios enables us to estimate the uncertainty due to assumptions about future global emissions by spanning a pos-
sible range of future developments. After 2030 the forcing further increases to values around 21 mW/m2 in 2100 if the
RCP2.6 background scenario is assumed. In this case the CO2 background concentrations decrease. This results in an increas-
ing German transport effect due to the nonlinear dependence of the CO2 radiative forcing on its atmospheric burden (the
smaller the CO2 background concentration, the larger the radiative forcing of additional CO2 released into the atmosphere;
Eq. (5)). In contrast, the forcing is decreasing to values around 10 mW/m2 when RCP8.5 is assumed where the background
concentration shows a huge future increase and the climate effect per emitted amount of CO2 is declining. RCP4.5 also shows
an increase in the background concentration which weakens during the 21st century and stops in 2100. This results in a forc-
ing in between those of the two other scenarios.

The modeled increase in global mean surface temperature DT induced by the CO2 emissions of German transport behaves
similar to the corresponding radiative forcing. However, the essential difference is that DT reacts much more slowly to
changes of the emissions. Time shifts of more than a decade occur between corresponding features in RF and DT. This is
mainly due to the long time scales of the ocean temperature to adjust to the atmospheric changes. As a consequence, DT
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shows a gradual increase in RCPs 2.6 and 4.5 without plateau, as occurring in the radiative forcing development, and a less
pronounced decrease in the late 21st century in RCP8.5. The future temperature change is of the order of 10 mK and ranges
between 8.1 mK (RCP8.5) and 12.7 mK (RCP2.6) in 2100. In the year 2000, DT amounts to 4.2 mK. In analogy to the radiative
forcing, this value can be scaled up to the effect of global land-based transport. This results in an estimated temperature
change of about 70 mK which is consistent with the value of 80 mK reported by Uherek et al. (2010) based on results of
Skeie et al. (2009).

Our simulations suggest that aerosol particles from German transport emissions induce noticeable effects only between
about 1950 and 2020 (RF) and 1970 and 2050 (DT). The negative values imply that aerosols induce a cooling and therefore
partly counteract the warming effect of CO2. The aerosol-induced DT is largest around the year 2000 amounting to �0.6 mK,
which offsets 14% of the CO2 effect. Due to reductions in the emissions of aerosol particles and aerosol precursor gases (here
NOx), the aerosol effects decline in the future and are very small compared to the CO2 effect at the end of the 21st century.
The aerosol effects were not quantified for different background scenarios since they show an approximately linear behavior
for a wide range of concentrations as discussed in Section 2.2.2.

It is important to stress that the quantification of the aerosol impact suffers from large uncertainties. Many aerosol-
related processes, such as aerosol effects on ice clouds, the formation of secondary organic aerosol from volatile organic com-
pounds, or the effects of non-exhaust vehicle emissions (tire and break wear, resuspension of road dust) which might
increase in the future due to increasing traffic volume, are still poorly understood and were therefore not considered in
the present calculations. Taking into account such processes could lead to different estimates of the aerosol-induced climate
effects.

The modeled RF and DT resulting from the transport-induced ozone and methane modifications are even smaller than the
corresponding aerosol effects. However, we need to consider that the ozone effect is probably underestimated by the per-
turbation method. In an extreme case, about 5 times more ozone could be produced which would result in an ozone effect
exceeding the aerosol impact. It is common to analyze the sum of the warming ozone and cooling methane effects since they
are initiated by the same emission components. The net effect is a warming during the whole simulated period with a max-
imum DT between 0.2 and 1.6 mK around the year 2000, taking into account the uncertainty range of the ozone perturbation.
Hence, the simulations reveal that, compared to the dominant CO2-induced warming, this additional warming effect could
have been of considerable importance during that time. Due to the declining emissions and its non-cumulative (and there-
fore episodic) character, this additional warming decreases to rather small values in our future projection.

The ozone and methane effects exhibit interesting features which might become very relevant if our approach would be
applied to scenarios for countries with higher non-CO2 emissions resulting from less stringent emission regulations. For
instance, the simulations show that the net radiative forcing related to ozone and methane becomes negative over a few dec-
ades in the first half of the 21st century (Table 3, O3 + CH4). This is due to the ozone-related radiative forcing decreasing fas-
ter than the corresponding methane-induced forcing, which is a consequence of the longer response time of the methane
concentration to emission changes. The net effect turns to positive values again when the emissions stay constant. The
results also suggest that, in contrast to CO2, transport-induced methane causes very similar temperature changes in the dif-
ferent scenarios. This is due to a smaller variability of the methane background among the scenarios as well as due to a com-
pensation of two effects controlling the climate impact of the methane perturbation. On the one hand, the transport-induced
methane reduction increases with increasing background concentration since the reduction in methane lifetime applies to
total methane. On the other hand, the radiative forcing of the methane perturbation decreases with increasing background
concentration, due to similar nonlinearities as discussed for CO2.

In this context, it should be noted that due to the huge computational expenses of the QCTM simulations the transport-
induced ozone production and CH4 lifetime reduction have been quantified for RCP8.5 only, while the CH4 background con-
centrations in the AirClim simulations are varied according to the underlying RCP scenarios. This discrepancy appears to be
uncritical in the present application since the methane effects are of secondary importance. However, if the methods devel-
oped here would be applied to regions where emissions of short-lived species, inducing the CH4 perturbations, are more rel-
evant, QCTM simulations for different background scenarios would be necessary.

It is of vital importance to stress that the conclusions drawn from our assessment of the climate effects of German trans-
port emissions do not hold for global transport. While non-CO2 effects are less important in our simulations they are much
more relevant if global transport effects are in focus (Righi et al., 2013, 2015). This can be attributed to higher non-CO2-to-
CO2 transport emission ratios in many other areas of the globe, such as Southeast Asia. In addition, emissions of short-lived
species released in other geographical areas could have larger climatic impacts per emitted amount. Even though the sim-
ulated effects of German transport emissions of non-CO2 species are comparably small, it is important to note that the fea-
sibility of the new approach to quantify such small effects could be demonstrated. This modeling capability is a major
prerequisite to evaluate mitigation strategies applied to regional transport systems only. The method is ready for operational
use and can be applied also to transport systems of other regions.
4. Conclusions

We have developed a method to quantify the global climate effects of regional transport emissions. This new approach
overcomes the methodological difficulties to detect the effects of regional emissions of short-lived species with conventional
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global three-dimensional chemistry-climate simulations. These difficulties arise from the large natural variability of the cli-
mate system and the resulting poor signal-to-noise ratios for small perturbations. The new method is based on a combina-
tion of simulations performed with a comprehensive global chemistry-climate model and a climate response model. It is
complemented by a set of aerosol-climate response functions. The approach enables the quantification of the effects of all
relevant emission components including particulate matter, short-lived gaseous pollutants, and long-lived greenhouse gases.
To demonstrate its applicability, the method was applied to results from a transport and emission model suite which allows
the description of the current and scenario-based future German transport activities and the related emissions. This enabled,
for the first time, to quantify and compare the individual climatic impacts of the different species emitted by the German
transport system.

Simulations performed for a baseline scenario of German transport activities suggest that German transport emissions
induce an increase of the global mean surface temperature of the order of 10 mK during the 21st century. The model calcu-
lations further suggest that this climate impact is dominated by the emissions of CO2. The magnitude of the temperature
change depends on the assumptions for the CO2 background concentration, which is controlled by the future development
of global anthropogenic emissions.

The dominance of the climate effect of CO2 over the non-CO2 effects is different from the corresponding impact of global
transport emissions, where non-CO2 species make a larger relative contribution to transport-induced climate change than in
the case of German transport emissions. This is mainly due to larger emission shares and possibly also larger climate impacts
per emitted mass of non-CO2 species released in other areas of the globe. The comparatively small climate effects of non-CO2

species from German transport emissions does not imply that these emissions are generally irrelevant. For instance, legal
thresholds for particulate matter concentrations are frequently exceeded in major German cities, with large contributions
from transport emissions. In this context, it is also important to stress that the quantification of non-CO2 climate effects suf-
fers from uncertainties due to still existing gaps in understanding the roles of a number of specific atmospheric processes
involved, particularly related to the effects of aerosol particles. This implies that future studies might result in significant
modifications of the modeled climatic impacts of non-CO2 species.

Our new climate modeling approach in combination with the applied transport and emission models offers the possibility
to generate different future transport scenarios for Germany and to assess the corresponding climate effects. In principle, our
climate modeling approach can also be applied to other regions, including areas where non-CO2 emissions are more impor-
tant than in the case of Germany, for instance, Asian countries. This would require an extension of the set of aerosol-climate
response functions by descriptions of the aerosol impact for these regions, based on simulations with a detailed three-
dimensional aerosol-climate model. In addition, new QCTM simulations focusing on gas-phase effects of emissions released
in the respective areas would be necessary.

The following further improvements could help to reduce the uncertainties and to enhance the efficiency and flexibility of
our method. The quantification of the contributions of transport emissions to atmospheric ozone with the applied QCTM
model suffers from nonlinearities in the dependence of the ozone production rate on the amount of NOx emissions. To reduce
the related uncertainties, tagging methods to track the transport contribution directly in the simulation of the chemical sys-
tem could be applied (Grewe et al., 2012). Tagging transport-induced OH may also help to advance the quantifications of the
methane lifetime modifications resulting from transport emissions. Since three-dimensional chemistry-climate models as
the QCTM used here are computationally expensive and therefore not suitable to assess a large number of scenarios, a cli-
mate response model to quantify transport effects on ozone and methane lifetime directly from the emissions is desirable.
The development of such a model is an ongoing activity in the VEU project. To improve the simulations of transport-induced
aerosol effects, the applied models should be extended to include processes which have been neglected so far, such as aerosol
effects on ice clouds, the formation and climate impacts of secondary organic aerosols, or the emission and effects of non-
exhaust particles from tire and brake abrasion or resuspension of road dust.

In addition, large progress would be made by the development of a climate response model covering the effects of all rel-
evant emission components. This could be achieved by combining the existing climate response model AirClim with the
aerosol-climate response functions and the response model currently developed to quantify ozone and methane changes.
Such an overall approach would allow for efficient and self-consistent assessments of the climate impacts even for a large
number of transport scenarios and would facilitate Monte-Carlo-like simulations with varying input parameters to analyze
sensitivities and uncertainties (as in Dahlmann et al., 2016, for aviation emissions). A test bed for this approach could be the
assessment of scenarios for the development of the German transport system up to 2040 which are currently elaborated
within VEU.

The response functions applied in climate response models allow the quantification of climate effects directly from the
emissions, even in case of very small emission perturbations. Hence, these models enable not only the assessment of climate
effects for scenarios describing the entire transport system. They also allow the analysis of the potential benefits resulting
from specific measures to mitigate transport-induced climate change. For instance, political measures like incentives or reg-
ulations to establish sustainable vehicle technologies or measures fostering a modal shift in passenger and freight transport
could be the focus. Also very specific measures, such as the implementation of new exhaust treatment systems, could be
assessed, and the benefits of different measures could be compared.
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